Science.gov

Sample records for 2a pp2a catalytic

  1. Isoliensinine induces dephosphorylation of NF-κB p65 subunit at Ser536 via a PP2A-dependent mechanism in hepatocellular carcinoma cells: roles of impairing PP2A/I2PP2A interaction

    PubMed Central

    Shu, Guangwen; Zhang, Lang; Jiang, Shanqing; Cheng, Zhuo; Wang, Guan; Huang, Xu; Yang, Xinzhou

    2016-01-01

    Our previous study discovered that isoliensinine (isolie) triggers hepatocellular carcinoma (HCC) cell apoptosis via inducing p65 dephosphorylation at Ser536 and inhibition of NF-κB. Here, we showed that isolie promoted p65/PP2A interaction in vitro and in vivo. Repression of PP2A activity or knockdown of the expression of PP2A-C (the catalytic subunit of PP2A) abrogated isolie-provoked p65 dephosphorylation. I2PP2A is an endogenous PP2A inhibitor. Isolie directly impaired PP2A/I2PP2A interaction. Knockdown of I2PP2A boosted p65/PP2A association and p65 dephosphorylation. Overexpression of I2PP2A restrained isolie-induced p65 dephosphorylation. Untransformed hepatocytes were insensitive to isolie-induced NF-κB inhibition and cell apoptosis. In these cells, basal levels of I2PP2A and p65 phosphorylation at Ser536 were lower than in HCC cells. These findings collectively indicated that isolie suppresses NF-κB in HCC cells through impairing PP2A/I2PP2A interaction and stimulating PP2A-dependent p65 dephosphorylation at Ser536. PMID:27244888

  2. Isoliensinine induces dephosphorylation of NF-kB p65 subunit at Ser536 via a PP2A-dependent mechanism in hepatocellular carcinoma cells: roles of impairing PP2A/I2PP2A interaction.

    PubMed

    Shu, Guangwen; Zhang, Lang; Jiang, Shanqing; Cheng, Zhuo; Wang, Guan; Huang, Xu; Yang, Xinzhou

    2016-06-28

    Our previous study discovered that isoliensinine (isolie) triggers hepatocellular carcinoma (HCC) cell apoptosis via inducing p65 dephosphorylation at Ser536 and inhibition of NF-κB. Here, we showed that isolie promoted p65/PP2A interaction in vitro and in vivo. Repression of PP2A activity or knockdown of the expression of PP2A-C (the catalytic subunit of PP2A) abrogated isolie-provoked p65 dephosphorylation. I2PP2A is an endogenous PP2A inhibitor. Isolie directly impaired PP2A/I2PP2A interaction. Knockdown of I2PP2A boosted p65/PP2A association and p65 dephosphorylation. Overexpression of I2PP2A restrained isolie-induced p65 dephosphorylation. Untransformed hepatocytes were insensitive to isolie-induced NF-κB inhibition and cell apoptosis. In these cells, basal levels of I2PP2A and p65 phosphorylation at Ser536 were lower than in HCC cells. These findings collectively indicated that isolie suppresses NF-κB in HCC cells through impairing PP2A/I2PP2A interaction and stimulating PP2A-dependent p65 dephosphorylation at Ser536.

  3. PP2A Regulates HDAC4 Nuclear Import

    PubMed Central

    Paroni, Gabriela; Cernotta, Nadia; Dello Russo, Claudio; Gallinari, Paola; Pallaoro, Michele; Foti, Carmela; Talamo, Fabio; Orsatti, Laura; Steinkühler, Christian

    2008-01-01

    Different signal-regulated serine/threonine kinases phosphorylate class II histone deacetylases (HDACs) to promote nuclear export, cytosolic accumulation, and activation of gene transcription. However, little is known about mechanisms operating in the opposite direction, which, possibly through phosphatases, should promote class II HDACs nuclear entry and subsequent gene repression. Here we show that HDAC4 forms a complex with the PP2A holoenzyme Cα, Aα, B/PR55α. In vitro and in vivo binding studies demonstrate that the N-terminus of HDAC4 interacts with the catalytic subunit of PP2A. HDAC4 is dephosphorylated by PP2A and experiments using okadaic acid or RNA interference have revealed that PP2A controls HDAC4 nuclear import. Moreover, we identified serine 298 as a putative phosphorylation site important for HDAC4 nuclear import. The HDAC4 mutant mimicking phosphorylation of serine 298 is defective in nuclear import. Mutation of serine 298 to alanine partially rescues the defect in HDAC4 nuclear import observed in cells with down-regulated PP2A. These observations suggest that PP2A, via the dephosphorylation of multiple serines including the 14-3-3 binding sites and serine 298, controls HDAC4 nuclear import. PMID:18045992

  4. Regulation of PP2A by Sphingolipid Metabolism and Signaling

    PubMed Central

    Oaks, Joshua; Ogretmen, Besim

    2014-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is a primary regulator of cellular proliferation through targeting of proliferative kinases, cell cycle regulators, and apoptosis inhibitors. It is through the regulation of these regulatory elements that gives PP2A tumor suppressor functions. In addition to mutations on the regulatory subunits, the phosphatase/tumor suppressing activity of PP2A is also inhibited in several cancer types due to overexpression or modification of the endogenous PP2A inhibitors such as SET/I2PP2A. This review focuses on the current literature regarding the interactions between the lipid signaling molecules, selectively sphingolipids, and the PP2A inhibitor SET for the regulation of PP2A, and the therapeutic potential of sphingolipids as PP2A activators for tumor suppression via targeting SET oncoprotein. PMID:25642418

  5. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone

    SciTech Connect

    Guo, Feng; Stanevich, Vitali; Wlodarchak, Nathan; Sengupta, Rituparna; Jiang, Li; Satyshur, Kenneth A.; Xing, Yongna

    2013-10-08

    Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A active site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.

  6. The PP2A inhibitor I2PP2A is essential for sister chromatid segregation in oocyte meiosis II.

    PubMed

    Chambon, Jean-Philippe; Touati, Sandra A; Berneau, Stéphane; Cladière, Damien; Hebras, Céline; Groeme, Rachel; McDougall, Alex; Wassmann, Katja

    2013-03-18

    Haploid gametes are generated through two consecutive meiotic divisions, with the segregation of chromosome pairs in meiosis I and sister chromatids in meiosis II. Separase-mediated stepwise removal of cohesion, first from chromosome arms and later from the centromere region, is a prerequisite for maintaining sister chromatids together until their separation in meiosis II [1]. In all model organisms, centromeric cohesin is protected from separase-dependent removal in meiosis I through the activity of PP2A-B56 phosphatase, which is recruited to centromeres by shugoshin/MEI-S332 (Sgo) [2-5]. How this protection of centromeric cohesin is removed in meiosis II is not entirely clear; we find that all the PP2A subunits remain colocalized with the cohesin subunit Rec8 at the centromere of metaphase II chromosomes. Here, we show that sister chromatid separation in oocytes depends on a PP2A inhibitor, namely I2PP2A. I2PP2A colocalizes with the PP2A enzyme at centromeres at metaphase II, independently of bipolar attachment. When I2PP2A is depleted, sister chromatids fail to segregate during meiosis II. Our findings demonstrate that in oocytes I2PP2A is essential for faithful sister chromatid segregation by mediating deprotection of centromeric cohesin in meiosis II.

  7. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1

    SciTech Connect

    V Stanevich; L Jiang; K Satyshur; Y Li; P Jeffrey; Z Li; P Menden; M Semmelhack; Y Xing

    2011-12-31

    Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.

  8. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1

    SciTech Connect

    Stanevich, Vitali; Jiang, Li; Satyshur, Kenneth A.; Li, Yongfeng; Jeffrey, Philip D.; Li, Zhu; Menden, Patrick; Semmelhack, Martin F.; Xing, Yongna

    2012-05-29

    Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.

  9. Mitotic exit: Determining the PP2A dephosphorylation program.

    PubMed

    Pereira, Gislene; Schiebel, Elmar

    2016-08-29

    In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55's dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis.

  10. Mitotic exit: Determining the PP2A dephosphorylation program

    PubMed Central

    2016-01-01

    In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55’s dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis. PMID:27551057

  11. A subset of RAB proteins modulates PP2A phosphatase activity.

    PubMed

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-09-09

    Protein phosphatase 2A (PP2A) is one of the most abundant serine-threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias.

  12. PR55α, a Regulatory Subunit of PP2A, Specifically Regulates PP2A-mediated β-Catenin Dephosphorylation

    PubMed Central

    Zhang, Wen; Yang, Jun; Liu, Yajuan; Chen, Xi; Yu, Tianxin; Jia, Jianhang; Liu, Chunming

    2009-01-01

    A central question in Wnt signaling is the regulation of β-catenin phosphorylation and degradation. Multiple kinases, including CKIα and GSK3, are involved in β-catenin phosphorylation. Protein phosphatases such as PP2A and PP1 have been implicated in the regulation of β-catenin. However, which phosphatase dephosphorylates β-catenin in vivo and how the specificity of β-catenin dephosphorylation is regulated are not clear. In this study, we show that PP2A regulates β-catenin phosphorylation and degradation in vivo. We demonstrate that PP2A is required for Wnt/β-catenin signaling in Drosophila. Moreover, we have identified PR55α as the regulatory subunit of PP2A that controls β-catenin phosphorylation and degradation. PR55α, but not the catalytic subunit, PP2Ac, directly interacts with β-catenin. RNA interference knockdown of PR55α elevates β-catenin phosphorylation and decreases Wnt signaling, whereas overexpressing PR55α enhances Wnt signaling. Taken together, our results suggest that PR55α specifically regulates PP2A-mediated β-catenin dephosphorylation and plays an essential role in Wnt signaling. PMID:19556239

  13. Pathologic significance of SET/I2PP2A-mediated PP2A and non-PP2A pathways in polycystic ovary syndrome (PCOS).

    PubMed

    Jiang, Shi-Wen; Xu, Siliang; Chen, Haibin; Liu, Xiaoqiang; Tang, Zuoqing; Cui, Yugui; Liu, Jiayin

    2017-01-01

    SET (SE translocation, SET), a constitutive inhibitor of protein phosphatase 2A (PP2A), is a multifunctional oncoprotein involved in DNA replication, histone modification, nucleosome assembly, gene transcription and cell proliferation. It is widely expressed in human tissues including the gonadal system and brain. Intensive studies have shown that overexpressed SET plays an important role in the development of Alzheimer's disease (AD), and may also contribute to the malignant transformation of breast and ovarian cancers. Recent studies indicated that through interaction with PP2A, SET may upregulate androgen biosynthesis and contribute to hyperandrogenism in polycystic ovary syndrome (PCOS) patients. This review article summarizes data concerning the SET expression in ovaries from PCOS and normal women, and analyzes the role/regulatory mechanism of SET for androgen biosynthesis in PCOS, as well as the significance of this action in the development of PCOS. The potential value of SET-triggered pathway as a therapeutic target and the application of anti-SET reagents for treating hyperandrogenism in PCOS patients are also discussed.

  14. Silencing I2PP2A Rescues Tau Pathologies and Memory Deficits through Rescuing PP2A and Inhibiting GSK-3β Signaling in Human Tau Transgenic Mice

    PubMed Central

    Zhang, Yao; Ma, Rong-Hong; Li, Xia-Chun; Zhang, Jia-Yu; Shi, Hai-Rong; Wei, Wei; Luo, Dan-Ju; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2014-01-01

    Increase of inhibitor-2 of protein phosphatase-2A I2PP2A is associated with protein phosphatase-2A (PP2A) inhibition and tau hyperphosphorylation in Alzheimer’s disease (AD). Down-regulating I2PP2A attenuated amyloidogenesis and improved the cognitive functions in transgenic mice expressing amyloid precursor protein (tg2576). Here, we found that silencing I2PP2A by hippocampal infusion of Lenti - siI2PP2A down-regulated I2PP2A (~45%) with reduction of tau phosphorylation/accumulation, improvement of memory deficits, and dendritic plasticity in 12-month-old human tau transgenic mice. Silencing I2PP2A not only restored PP2A activity but also inhibited glycogen synthase kinase-3β (GSK-3β) with a significant activation of protein kinase A (PKA) and Akt. In HEK293/tau and N2a/tau cells, silencing I2PP2A by pSUPER - siI2PP2A also significantly reduced tau hyperphosphorylation with restoration of PP2A activity and inhibition of GSK-3β, demonstrated by the decreased GSK-3β total protein and mRNA levels, and the increased inhibitory phosphorylation of GSK-3β at serine-9. Furthermore, activation of PKA but not Akt mediated the inhibition of GSK-3β by I2PP2A silencing. We conclude that targeting I2PP2A can improve tau pathologies and memory deficits in human tau transgenic mice, and activation of PKA contributes to GSK-3β inhibition induced by silencing I2PP2A in vitro, suggesting that I2PP2A is a promising multiple target of AD. PMID:24987368

  15. Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana

    PubMed Central

    Hu, Rongbin; Zhu, Yinfeng; Shen, Guoxin; Zhang, Hong

    2017-01-01

    ABSTRACT Protein phosphatase 2A (PP2A) was shown to play important roles in biotic and abiotic stress signaling pathways in plants. PP2A is made of 3 subunits: a scaffolding subunit A, a regulatory subunit B, and a catalytic subunit C. It is believed that the B subunit recognizes specific substrates and the C subunit directly acts on the selected substrates, whereas the A subunit brings a B subunit and a C subunit together to form a specific PP2A holoenzyme. Because there are multiple isoforms for each PP2A subunit, there could be hundreds of novel PP2A holoenzymes in plants. For an example, there are 3 A subunits, 17 B subunits, and 5 C subunits in Arabidopsis, which could form 255 different PP2A holoenzymes. Understanding the roles of these PP2A holoenzymes in various signaling pathways is a challenging task. In a recent study,1 we discovered that PP2A-C5, the catalytic subunit 5 of PP2A, plays an important role in salt tolerance in Arabidopsis. We found that a knockout mutant of PP2A-C5 (i.e. pp2a-c5–1) was very sensitive to salt treatments, whereas PP2A-C5-overexpressing plants were more tolerant to salt stresses. Genetic analyses between pp2a-c5–1 and Salt-Overly-Sensitive (SOS) mutants indicated that PP2A-C5 does not function in the same pathway as SOS genes. Using yeast 2-hybrid analysis, we found that PP2A-C5 interacts with several vacuolar membrane bound chloride channel proteins. We hypothesize that these vacuolar chloride channel proteins might be PP2A-C5's substrates in vivo, and the action of PP2A-C5 on these channel proteins could increase or activate their activities, thereby result in accumulation of the chloride and sodium contents in vacuoles, leading to increased salt tolerance in plants. PMID:28045581

  16. A novel protein phosphatase 2A (PP2A) is involved in the transformation of human protozoan parasite Trypanosoma cruzi.

    PubMed Central

    González, Jorge; Cornejo, Alberto; Santos, Marcia R M; Cordero, Esteban M; Gutiérrez, Bessy; Porcile, Patricio; Mortara, Renato A; Sagua, Hernán; Da Silveira, José Franco; Araya, Jorge E

    2003-01-01

    Here we provide evidence for a critical role of PP2As (protein phosphatase 2As) in the transformation of Trypanosoma cruzi. In axenic medium at pH 5.0, trypomastigotes rapidly transform into amastigotes, a process blocked by okadaic acid, a potent PP2A inhibitor, at concentrations as low as 0.1 microM. 1-Norokadaone, an inactive okadaic acid analogue, did not affect the transformation. Electron microscopy studies indicated that okadaic acid-treated trypomastigotes had not undergone ultrastructural modifications, reinforcing the idea that PP2A inhibits transformation. Using a microcystin-Sepharose affinity column we purified the native T. cruzi PP2A. The enzyme displayed activity against 32P-labelled phosphorylase a that was inhibited in a dose-dependent manner by okadaic acid. The protein was also submitted to MS and, from the peptides obtained, degenerate primers were used to clone a novel T. cruzi PP2A enzyme by PCR. The isolated gene encodes a protein of 303 amino acids, termed TcPP2A, which displayed a high degree of homology (86%) with the catalytic subunit of Trypanosoma brucei PP2A. Northern-blot analysis revealed the presence of a major 2.1-kb mRNA hybridizing in all T. cruzi developmental stages. Southern-blot analysis suggested that the TcPP2A gene is present in low copy number in the T. cruzi genome. These results are consistent with the mapping of PP2A genes in two chromosomal bands by pulsed-field gel electrophoresis and chromoblot hybridization. Our studies suggest that in T. cruzi PP2A is important for the complete transformation of trypomastigotes into amastigotes during the life cycle of this protozoan parasite. PMID:12737627

  17. PP2A inhibition as a novel therapeutic target in castration-resistant prostate cancer.

    PubMed

    González-Alonso, Paula; Cristóbal, Ion; Manso, Rebeca; Madoz-Gúrpide, Juan; García-Foncillas, Jesús; Rojo, Federico

    2015-08-01

    Protein phosphatase 2A (PP2A) is a well-known tumor suppressor frequently inhibited in human cancer. Alterations affecting PP2A subunits together with the deregulation of endogenous PP2A inhibitors such as CIP2A and SET have been described as contributing mechanisms to inactivate PP2A in prostate cancer. Moreover, recent findings highlight that functional inactivation of PP2A could represent a key event in the acquisition of castration-resistant phenotype and a novel molecular target with high impact at both clinical and therapeutic levels in prostate cancer.

  18. Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility

    PubMed Central

    Dudiki, Tejasvi; Kadunganattil, Suraj; Ferrara, John K.; Kline, Douglas W.; Vijayaraghavan, Srinivasan

    2015-01-01

    Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function. PMID:26569399

  19. Mechanism of PP2A-mediated IKKβ dephosphorylation: a systems biological approach

    PubMed Central

    Witt, Johannes; Barisic, Sandra; Schumann, Eva; Allgöwer, Frank; Sawodny, Oliver; Sauter, Thomas; Kulms, Dagmar

    2009-01-01

    Background Biological effects of nuclear factor-κB (NFκB) can differ tremendously depending on the cellular context. For example, NFκB induced by interleukin-1 (IL-1) is converted from an inhibitor of death receptor induced apoptosis into a promoter of ultraviolet-B radiation (UVB)-induced apoptosis. This conversion requires prolonged NFκB activation and is facilitated by IL-1 + UVB-induced abrogation of the negative feedback loop for NFκB, involving a lack of inhibitor of κB (IκBα) protein reappearance. Permanent activation of the upstream kinase IKKβ results from UVB-induced inhibition of the catalytic subunit of Ser-Thr phosphatase PP2A (PP2Ac), leading to immediate phosphorylation and degradation of newly synthesized IκBα. Results To investigate the mechanism underlying the general PP2A-mediated tuning of IKKβ phosphorylation upon IL-1 stimulation, we have developed a strictly reduced mathematical model based on ordinary differential equations which includes the essential processes concerning the IL-1 receptor, IKKβ and PP2A. Combining experimental and modelling approaches we demonstrate that constitutively active, but not post-stimulation activated PP2A, tunes out IKKβ phosphorylation thus allowing for IκBα resynthesis in response to IL-1. Identifiability analysis and determination of confidence intervals reveal that the model allows reliable predictions regarding the dynamics of PP2A deactivation and IKKβ phosphorylation. Additionally, scenario analysis is used to scrutinize several hypotheses regarding the mode of UVB-induced PP2Ac inhibition. The model suggests that down regulation of PP2Ac activity, which results in prevention of IκBα reappearance, is not a direct UVB action but requires instrumentality. Conclusion The model developed here can be used as a reliable building block of larger NFκB models and offers comprehensive simplification potential for future modeling of NFκB signaling. It gives more insight into the newly discovered

  20. From the Biology of PP2A to the PADs for Therapy of Hematologic Malignancies

    PubMed Central

    Ciccone, Maria; Calin, George A.; Perrotti, Danilo

    2015-01-01

    Over the past decades, an emerging role of phosphatases in the pathogenesis of hematologic malignancies and solid tumors has been established. The tumor-suppressor protein phosphatase 2A (PP2A) belongs to the serine–threonine phosphatases family and accounts for the majority of serine–threonine phosphatase activity in eukaryotic cells. Numerous studies have shown that inhibition of PP2A expression and/or function may contribute to leukemogenesis in several hematological malignancies. Likewise, overexpression or aberrant expression of physiologic PP2A inhibitory molecules (e.g., SET and its associated SETBP1 and CIP2A) may turn off PP2A function and participate to leukemic progression. The discovery of PP2A as tumor suppressor has prompted the evaluation of the safety and the efficacy of new compounds, which can restore PP2A activity in leukemic cells. Although further studies are needed to better understand how PP2A acts in the intricate phosphatases/kinases cancer network, the results reviewed herein strongly support the development on new PP2A-activating drugs and the immediate introduction of those available into clinical protocols for leukemia patients refractory or resistant to current available therapies. PMID:25763353

  1. Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1.

    PubMed

    Kaur, Amanpreet; Westermarck, Jukka

    2016-12-15

    Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis by dephosphorylation of a variety of signaling proteins and acts as a tumor suppressor. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by highly complex mechanisms that are reviewed here. Importantly, recent studies have shown that PME-1 promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types. In human glioma, high PME-1 expression correlates with tumor progression and kinase inhibitor resistance. We discuss the emerging cancer-associated function of PME-1 and its potential clinical relevance.

  2. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia

    PubMed Central

    Gutierrez, Alejandro; Pan, Li; Groen, Richard W.J.; Baleydier, Frederic; Kentsis, Alex; Marineau, Jason; Grebliunaite, Ruta; Kozakewich, Elena; Reed, Casie; Pflumio, Francoise; Poglio, Sandrine; Uzan, Benjamin; Clemons, Paul; VerPlank, Lynn; An, Frank; Burbank, Jason; Norton, Stephanie; Tolliday, Nicola; Steen, Hanno; Weng, Andrew P.; Yuan, Huipin; Bradner, James E.; Mitsiades, Constantine; Look, A. Thomas; Aster, Jon C.

    2014-01-01

    T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drug’s antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential. PMID:24401270

  3. All roads lead to PP2A: Exploiting the therapeutic potential of this phosphatase

    PubMed Central

    Sangodkar, Jaya; Farrington, Caroline; McClinch, Kimberly; Galsky, Matthew D.; Kastrinsky, David B.; Narla, Goutham

    2015-01-01

    Protein phosphatase 2A is a serine/threonine phosphatase involved in the regulation of many cellular processes. A confirmed tumor suppressor protein, PP2A is genetically altered or functionally inactivated in many cancers highlighting a need for its therapeutic reactivation. In this review we will discuss recent literature on PP2A: the elucidation of its structure and the functions of its subunits, and the identification of molecular lesions and post-translational modifications leading to its dysregulation in cancer. A final section will discuss the proteins and small molecules that modulate PP2A and how these might be used to target dysregulated forms of PP2A to treat cancers and other diseases. PMID:26507691

  4. PP2A: The Achilles Heal in MDS with 5q Deletion.

    PubMed

    Sallman, David A; Wei, Sheng; List, Alan

    2014-01-01

    Myelodysplastic syndromes (MDS) represent a hematologically diverse group of myeloid neoplasms, however, one subtype characterized by an isolated deletion of chromosome 5q [del(5q)] is pathologically and clinically distinct. Patients with del(5q) MDS share biological features that account for the profound hypoplastic anemia and unique sensitivity to treatment with lenalidomide. Ineffective erythropoiesis in del(5q) MDS arises from allelic deletion of the ribosomal processing S-14 (RPS14) gene, which leads to MDM2 sequestration with consequent p53 activation and erythroid cell death. Since its approval in 2005, lenalidomide has changed the natural course of the disease. Patients who achieve transfusion independence and/or a cytogenetic response with lenalidomide have a decreased risk of progression to acute myeloid leukemia and an improved overall survival compared to non-responders. Elucidation of the mechanisms of action of lenalidomide in del(5q) MDS has advanced therapeutic strategies for this disease. The selective cytotoxicity of lenalidomide in del(5q) clones derives from inhibition of a haplodeficient phosphatase whose catalytic domain is encoded within the common deleted region on chromosome 5q, i.e., protein phosphatase 2A (PP2Acα). PP2A is a highly conserved, dual specificity phosphatase that plays an essential role in regulation of the G2/M checkpoint. Inhibition of PP2Acα results in cell-cycle arrest and apoptosis in del(5q) cells. Targeted knockdown of PP2Acα using siRNA is sufficient to sensitize non-del(5q) clones to lenalidomide. Through its inhibitory effect on PP2A, lenalidomide stabilizes MDM2 to restore p53 degradation in erythroid precursors, with subsequent arrest in G2/M. Unfortunately, the majority of patients with del(5q) MDS develop resistance to lenalidomide over time associated with PP2Acα over-expression. Targeted inhibition of PP2A with a more potent inhibitor has emerged as an attractive therapeutic approach for patients with del

  5. Structure-Activity Relationship Studies of Fostriecin, Cytostatin, and Key Analogs, with PP1, PP2A, PP5, and (β12–β13)-Chimeras (PP1/PP2A and PP5/PP2A), Provide Further Insight into the Inhibitory Actions of Fostriecin Family Inhibitors

    PubMed Central

    Swingle, Mark R.; Amable, Lauren; Lawhorn, Brian G.; Buck, Suzanne B.; Burke, Christopher P.; Ratti, Pukar; Fischer, Kimberly L.; Boger, Dale L.

    2009-01-01

    Fostriecin and cytostatin are structurally related natural inhibitors of serine/threonine phosphatases, with promising antitumor activity. The total synthesis of these antitumor agents has enabled the production of structural analogs, which are useful to explore the biological significance of features contained in the parent compounds. Here, the inhibitory activity of fostriecin, cytostatin, and 10 key structural analogs were tested in side-by-side phosphatase assays to further characterize their inhibitory activity against PP1c (Ser/Thr protein phosphatase 1 catalytic subunit), PP2Ac (Ser/Thr protein phosphatase 2A catalytic subunit), PP5c (Ser/Thr protein phosphatase 5 catalytic subunit), and chimeras of PP1 (Ser/Thr protein phosphatase 1) and PP5 (Ser/Thr protein phosphatase 5), in which key residues predicted for inhibitor contact with PP2A (Ser/Thr protein phosphatase 2A) were introduced into PP1 and PP5 using site-directed mutagenesis. The data confirm the importance of the C9-phosphate and C11-alcohol for general inhibition and further demonstrate the importance of a predicted C3 interaction with a unique cysteine (Cys269) in the β12–β13 loop of PP2A. The data also indicate that additional features beyond the unsaturated lactone contribute to inhibitory potency and selectivity. Notably, a derivative of fostriecin lacking the entire lactone subunit demonstrated marked potency and selectivity for PP2A, while having substantially reduced and similar activity against PP1 and PP1/PP2A- PP5/PP2A-chimeras that have greatly increased sensitivity to both fostriecin and cytostatin. This suggests that other features [e.g., the (Z,Z,E)-triene] also contribute to inhibitory selectivity. When considered together with previous data, these studies suggest that, despite the high structural conservation of the catalytic site in PP1, PP2A and PP5, the development of highly selective catalytic inhibitors should be feasible. PMID:19592665

  6. PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos.

    PubMed

    Kitagawa, Daiju; Flückiger, Isabelle; Polanowska, Jolanta; Keller, Debora; Reboul, Jérôme; Gönczy, Pierre

    2011-04-19

    Centrosome duplication occurs once per cell cycle and ensures that the two resulting centrosomes assemble a bipolar mitotic spindle. Centriole formation is fundamental for centrosome duplication. In Caenorhabditis elegans, the evolutionarily conserved proteins SPD-2, ZYG-1, SAS-6, SAS-5, and SAS-4 are essential for centriole formation, but how they function is not fully understood. Here, we demonstrate that Protein Phosphatase 2A (PP2A) is also critical for centriole formation in C. elegans embryos. We find that PP2A subunits genetically and physically interact with the SAS-5/SAS-6 complex. Furthermore, we show that PP2A-mediated dephosphorylation promotes centriolar targeting of SAS-5 and ensures SAS-6 delivery to the site of centriole assembly. We find that PP2A is similarly needed for the presence of HsSAS-6 at centrioles and for centriole formation in human cells. These findings lead us to propose that PP2A-mediated loading of SAS-6 proteins is critical at the onset of centriole formation.

  7. The therapeutic effects of SET/I2PP2A inhibitors on canine melanoma.

    PubMed

    Enjoji, Shuhei; Yabe, Ryotaro; Fujiwara, Nobuyuki; Tsuji, Shunya; Vitek, Michael P; Mizuno, Takuya; Nakagawa, Takayuki; Usui, Tatsuya; Ohama, Takashi; Sato, Koichi

    2015-11-01

    Canine melanoma is one of the most important diseases in small animal medicine. Protein phosphatase 2A (PP2A), a well conserved serine/threonine phosphatase, plays a critical role as a tumor suppressor. SET/I2PP2A is an endogenous inhibitor for PP2A, which directly binds to PP2A and suppresses its phosphatase activity. Elevated SET protein levels have been reported to exacerbate human tumor progression. The role of SET in canine melanoma, however, has not been understood. Here, we investigated the potential therapeutic role for SET inhibitors in canine melanoma. The expression of SET protein was observed in 6 canine melanoma cell lines. We used CMeC-1 cells (primary origin) and CMeC-2 cells (metastatic origin) to generate cell lines stably expressing SET-targeting shRNAs. Knockdown of SET expression in CMeC-2, but not in CMeC-1, leads to decreased cell proliferation, invasion and colony formation. Phosphorylation level of p70 S6 kinase was decreased by SET knockdown in CMeC-2, suggesting the involvement of mTOR (mammalian target of rapamycin)/p70 S6 kinase signaling. The SET inhibitors, OP449 and FTY720, more effectively killed CMeC-2 than CMeC-1. We observed PP2A activation in CMeC-2 treated with OP449 and FTY720. These results demonstrated the potential therapeutic application of SET inhibitors for canine melanoma.

  8. C-terminal truncation of GSK-3β enhances its dephosphorylation by PP2A.

    PubMed

    Jin, Nana; Wu, Yue; Xu, Wen; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-03-07

    Glycogen synthase kinase-3β (GSK-3β) is the major tau kinase. Its phosphorylation at Ser9 suppresses the activity. In Alzheimer's disease (AD) brain, GSK-3β is truncated at the C-terminus by over-activated calpain I, leading to an increase in its activity. However, the effect of truncation on its phosphorylation is unknown. We found here that in AD brain and in cultured cells, C-terminally truncated GSK-3β is less phosphorylated at Ser9 than the full-length enzyme. The truncation promotes GSK-3β nuclear translocation and enhances its interaction with protein phosphatase 2A (PP2A), leading to dephosphorylation. Thus, the truncation of GSK-3β may enhance its activity through Ser9 dephosphorylation by PP2A. Our findings shed new light onto the role of calpain - GSK-3β - PP2A in tau pathogenesis of AD. This article is protected by copyright. All rights reserved.

  9. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells

    PubMed Central

    Neviani, Paolo; Harb, Jason G.; Oaks, Joshua J.; Santhanam, Ramasamy; Walker, Christopher J.; Ellis, Justin J.; Ferenchak, Gregory; Dorrance, Adrienne M.; Paisie, Carolyn A.; Eiring, Anna M.; Ma, Yihui; Mao, Hsiaoyin C.; Zhang, Bin; Wunderlich, Mark; May, Philippa C.; Sun, Chaode; Saddoughi, Sahar A.; Bielawski, Jacek; Blum, William; Klisovic, Rebecca B.; Solt, Janelle A.; Byrd, John C.; Volinia, Stefano; Cortes, Jorge; Huettner, Claudia S.; Koschmieder, Steffen; Holyoake, Tessa L.; Devine, Steven; Caligiuri, Michael A.; Croce, Carlo M.; Garzon, Ramiro; Ogretmen, Besim; Arlinghaus, Ralph B.; Chen, Ching-Shih; Bittman, Robert; Hokland, Peter; Roy, Denis-Claude; Milojkovic, Dragana; Apperley, Jane; Goldman, John M.; Reid, Alistair; Mulloy, James C.; Bhatia, Ravi; Marcucci, Guido; Perrotti, Danilo

    2013-01-01

    The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase–independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression — but not activity — of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/β-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase–independent and PP2A-mediated inhibition of JAK2 and β-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1–positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/β-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs. PMID:23999433

  10. PP2A and GSK-3beta act antagonistically to regulate active zone development.

    PubMed

    Viquez, Natasha M; Füger, Petra; Valakh, Vera; Daniels, Richard W; Rasse, Tobias M; DiAntonio, Aaron

    2009-09-16

    The synapse is composed of an active zone apposed to a postsynaptic cluster of neurotransmitter receptors. Each Drosophila neuromuscular junction comprises hundreds of such individual release sites apposed to clusters of glutamate receptors. Here, we show that protein phosphatase 2A (PP2A) is required for the development of structurally normal active zones opposite glutamate receptors. When PP2A is inhibited presynaptically, many glutamate receptor clusters are unapposed to Bruchpilot (Brp), an active zone protein required for normal transmitter release. These unapposed receptors are not due to presynaptic retraction of synaptic boutons, since other presynaptic components are still apposed to the entire postsynaptic specialization. Instead, these data suggest that Brp localization is regulated at the level of individual release sites. Live imaging of glutamate receptors demonstrates that this disruption to active zone development is accompanied by abnormal postsynaptic development, with decreased formation of glutamate receptor clusters. Remarkably, inhibition of the serine-threonine kinase GSK-3beta completely suppresses the active zone defect, as well as other synaptic morphology phenotypes associated with inhibition of PP2A. These data suggest that PP2A and GSK-3beta function antagonistically to control active zone development, providing a potential mechanism for regulating synaptic efficacy at a single release site.

  11. Oncoprotein CIP2A is stabilized via interaction with tumor suppressor PP2A/B56.

    PubMed

    Wang, Jiao; Okkeri, Juha; Pavic, Karolina; Wang, Zhizhi; Kauko, Otto; Halonen, Tuuli; Sarek, Grzegorz; Ojala, Päivi M; Rao, Zihe; Xu, Wenqing; Westermarck, Jukka

    2017-03-01

    Protein phosphatase 2A (PP2A) is a critical human tumor suppressor. Cancerous inhibitor of PP2A (CIP2A) supports the activity of several critical cancer drivers (Akt, MYC, E2F1) and promotes malignancy in most cancer types via PP2A inhibition. However, the 3D structure of CIP2A has not been solved, and it remains enigmatic how it interacts with PP2A. Here, we show by yeast two-hybrid assays, and subsequent validation experiments, that CIP2A forms homodimers. The homodimerization of CIP2A is confirmed by solving the crystal structure of an N-terminal CIP2A fragment (amino acids 1-560) at 3.0 Å resolution, and by subsequent structure-based mutational analyses of the dimerization interface. We further describe that the CIP2A dimer interacts with the PP2A subunits B56α and B56γ. CIP2A binds to the B56 proteins via a conserved N-terminal region, and dimerization promotes B56 binding. Intriguingly, inhibition of either CIP2A dimerization or B56α/γ expression destabilizes CIP2A, indicating opportunities for controlled degradation. These results provide the first structure-function analysis of the interaction of CIP2A with PP2A/B56 and have direct implications for its targeting in cancer therapy.

  12. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    PubMed Central

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L.; Mackey, David

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B’ regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B’ subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B’ subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B’ subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B’ subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  13. Molecular cloning, expression and functional analysis of three subunits of protein phosphatase 2A (PP2A) from black tiger shrimps (Penaeus monodon).

    PubMed

    Zhao, Chao; Wang, Yan; Fu, Mingjun; Yang, Keng; Qiu, Lihua

    2017-02-01

    Protein phosphatase 2A (PP2A) is a cellular serine-threonine (Ser/Thr) phosphatase that plays a crucial role in regulating most cellular functions. In the present study, the full-length cDNAs of three subunits of PmPP2A (PmPP2A-A, PP2A-B and PP2A-C) were cloned from Penaeus monodon, which are the first available for shrimps. Sequence analysis showed that PmPP2A-A, PmPP2A-B and PmPP2A-C encoded polypeptides of 591, 443, and 324 amino acids, respectively. The mRNAs of three subunits of PmPP2A were expressed constitutively in all tissues examined, and predominantly in the ovaries. In ovarian maturation stages, the three subunits of PmPP2A were continuously but differentially expressed. Dopamine and 5-hydroxytryptamine injection experiments were conducted to study the expression profile of three subunits of PmPP2A, and the results indicated that PmPP2A played a negative regulatory role in the process of ovarian maturation. In addition, the recombinant proteins of three subunits of PmPP2A were successfully obtained, and the phosphatase activity of PmPP2A was tested in vitro. The results of this study will advance our understanding about the molecular mechanisms of PmPP2A in Penaeus monodon.

  14. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases.

    PubMed

    Luo, J; Pato, M D; Riordan, J R; Hanrahan, J W

    1998-05-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity declines rapidly when excised from transfected Chinese hamster ovary (CHO) or human airway cells because of membrane-associated phosphatase activity. In the present study, we found that CFTR channels usually remained active in patches excised from baby hamster kidney (BHK) cells overexpressing CFTR. Those patches with stable channel activity were used to investigate the regulation of CFTR by exogenous protein phosphatases (PP). Adding PP2A, PP2C, or alkaline phosphatase to excised patches reduced CFTR channel activity by > 90% but did not abolish it completely. PP2B caused weak deactivation, whereas PP1 had no detectable effect on open probability (Po). Interestingly, the time course of deactivation by PP2C was identical to that of the spontaneous rundown observed in some patches after excision. PP2C and PP2A had distinct effects on channel gating Po declined during exposure to exogenous PP2C (and during spontaneous rundown, when it was observed) without any change in mean burst duration. By contrast, deactivation by exogenous PP2A was associated with a dramatic shortening of burst duration similar to that reported previously in patches from cardiac cells during deactivation of CFTR by endogenous phosphatases. Rundown of CFTR-mediated current across intact T84 epithelial cell monolayers was insensitive to toxic levels of the PP2A inhibitor calyculin A. These results demonstrate that exogenous PP2C is a potent regulator of CFTR activity, that its effects on single-channel gating are distinct from those of PP2A but similar to those of endogenous phosphatases in CHO, BHK, and T84 epithelial cells, and that multiple protein phosphatases may be required for complete deactivation of CFTR channels.

  15. PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root.

    PubMed

    Yue, Kun; Sandal, Priyanka; Williams, Elisabeth L; Murphy, Evan; Stes, Elisabeth; Nikonorova, Natalia; Ramakrishna, Priya; Czyzewicz, Nathan; Montero-Morales, Laura; Kumpf, Robert; Lin, Zhefeng; van de Cotte, Brigitte; Iqbal, Mudassar; Van Bel, Michiel; Van De Slijke, Eveline; Meyer, Matthew R; Gadeyne, Astrid; Zipfel, Cyril; De Jaeger, Geert; Van Montagu, Marc; Van Damme, Daniël; Gevaert, Kris; Rao, A Gururaj; Beeckman, Tom; De Smet, Ive

    2016-02-02

    In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions. Here, we used various complementary proteomic approaches to identify ACR4-interacting protein candidates that are likely regulators of formative cell divisions and that could pave the way to unraveling the molecular basis behind ACR4-mediated signaling. We identified PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes, as a previously unidentified regulator of formative cell divisions and as one of the first described substrates of ACR4. Our in vitro data argue for the existence of a tight posttranslational regulation in the associated biochemical network through reciprocal regulation between ACR4 and PP2A-3 at the phosphorylation level.

  16. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis.

    PubMed

    Lipina, Christopher; Hundal, Harinder S

    2014-11-01

    Carnosic acid (CA) is a major constituent of the labiate herbal plant Rosemary (Rosmarinus officinalis), which has been shown to exhibit a number of beneficial health properties. In particular, recently there has been growing interest into the anti-obesity effects conveyed by CA, including its ability to counteract obesity-associated hyperglycaemia and insulin resistance. However, the mechanisms underlying its anti-diabetic responses are not fully understood. In this study, we hypothesized that CA may act to improve glycaemic status through enhancing peripheral glucose clearance. Herein, we demonstrate that CA acts to mimic the metabolic actions of insulin by directly stimulating glucose uptake in rat skeletal L6 myotubes, concomitant with increased translocation of the GLUT4 glucose transporter to the plasma membrane. Mechanistically, CA-induced glucose transport was found to be dependent on protein kinase B (PKB/Akt) but not AMPK, despite both kinases being activated by CA. Crucially, in accordance with its ability to activate PKB and stimulate glucose uptake, we show that CA conveys these effects through a pathway involving PME-1 (protein phosphatase methylesterase-1), a key negative regulator of the serine/threonine phosphatase PP2A (protein phosphatase 2A). Herein, we demonstrate that CA promotes PME-1 mediated demethylation of the PP2A catalytic subunit leading to its suppressed activity, and in doing so, alleviates the repressive action of PP2A towards PKB. Collectively, our findings provide new insight into how CA may improve glucose homeostasis through enhancing peripheral glucose clearance in tissues such as skeletal muscle through a PME-1/PP2A/PKB signalling axis, thereby mitigating pathological effects associated with the hyperglycaemic state.

  17. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    SciTech Connect

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W.

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  18. IK-guided PP2A suppresses Aurora B activity in the interphase of tumor cells.

    PubMed

    Lee, Sunyi; Jeong, Ae Lee; Park, Jeong Su; Han, Sora; Jang, Chang-Young; Kim, Keun Il; Kim, Yonghwan; Park, Jong Hoon; Lim, Jong-Seok; Lee, Myung Sok; Yang, Young

    2016-09-01

    Aurora B activation is triggered at the mitotic entry and required for proper microtubule-kinetochore attachment at mitotic phase. Therefore, Aurora B should be in inactive form in interphase to prevent aberrant cell cycle progression. However, it is unclear how the inactivation of Aurora B is sustained during interphase. In this study, we find that IK depletion-induced mitotic arrest leads to G2 arrest by Aurora B inhibition, indicating that IK depletion enhances Aurora B activation before mitotic entry. IK binds to Aurora B, and colocalizes on the nuclear foci during interphase. Our data further show that IK inhibits Aurora B activation through recruiting PP2A into IK and Aurora B complex. It is thus believed that IK, as a scaffold protein, guides PP2A into Aurora B to suppress its activity in interphase until mitotic entry.

  19. PP2A Inhibitor PME-1 Drives Kinase Inhibitor Resistance in Glioma Cells.

    PubMed

    Kaur, Amanpreet; Denisova, Oxana V; Qiao, Xi; Jumppanen, Mikael; Peuhu, Emilia; Ahmed, Shafiq U; Raheem, Olayinka; Haapasalo, Hannu; Eriksson, John; Chalmers, Anthony J; Laakkonen, Pirjo; Westermarck, Jukka

    2016-12-01

    Glioblastoma multiforme lacks effective therapy options. Although deregulated kinase pathways are drivers of malignant progression in glioblastoma multiforme, glioma cells exhibit intrinsic resistance toward many kinase inhibitors, and the molecular basis of this resistance remains poorly understood. Here, we show that overexpression of the protein phosphatase 2A (PP2A) inhibitor protein PME-1 drives resistance of glioma cells to various multikinase inhibitors. The PME-1-elicited resistance was dependent on specific PP2A complexes and was mediated by a decrease in cytoplasmic HDAC4 activity. Importantly, both PME-1 and HDAC4 associated with human glioma progression, supporting clinical relevance of the identified mechanism. Synthetic lethality induced by both PME-1 and HDAC4 inhibition was dependent on the coexpression of proapoptotic protein BAD. Thus, PME-1-mediated PP2A inhibition is a novel mechanistic explanation for multikinase inhibitor resistance in glioma cells. Clinically, these results may inform patient stratification strategies for future clinical trials with selected kinase inhibitors in glioblastoma multiforme. Cancer Res; 76(23); 7001-11. ©2016 AACR.

  20. PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration

    PubMed Central

    Janssens, Veerle; Zwaenepoel, Karen; Rossé, Carine; Petit, Marleen M. R.; Goris, Jozef; Parker, Peter J.

    2017-01-01

    Here, we identify the LIM protein lipoma-preferred partner (LPP) as a binding partner of a specific protein phosphatase 2A (PP2A) heterotrimer that is characterised by the regulatory PR130/B″α1 subunit (encoded by PPP2R3A). The PR130 subunit interacts with the LIM domains of LPP through a conserved Zn2+-finger-like motif in the differentially spliced N-terminus of PR130. Isolated LPP-associated PP2A complexes are catalytically active. PR130 colocalises with LPP at multiple locations within cells, including focal contacts, but is specifically excluded from mature focal adhesions, where LPP is still present. An LPP–PR130 fusion protein only localises to focal adhesions upon deletion of the domain of PR130 that binds to the PP2A catalytic subunit (PP2A/C), suggesting that PR130–LPP complex formation is dynamic and that permanent recruitment of PP2A activity might be unfavourable for focal adhesion maturation. Accordingly, siRNA-mediated knockdown of PR130 increases adhesion of HT1080 fibrosarcoma cells onto collagen I and decreases their migration in scratch wound and Transwell assays. Complex formation with LPP is mandatory for these PR130-PP2A functions, as neither phenotype can be rescued by re-expression of a PR130 mutant that no longer binds to LPP. Our data highlight the importance of specific, locally recruited PP2A complexes in cell adhesion and migration dynamics. PMID:26945059

  1. Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers

    PubMed Central

    Williams, Byron C; Filter, Joshua J; Blake-Hodek, Kristina A; Wadzinski, Brian E; Fuda, Nicholas J; Shalloway, David; Goldberg, Michael L

    2014-01-01

    During M phase, Endosulfine (Endos) family proteins are phosphorylated by Greatwall kinase (Gwl), and the resultant pEndos inhibits the phosphatase PP2A-B55, which would otherwise prematurely reverse many CDK-driven phosphorylations. We show here that PP2A-B55 is the enzyme responsible for dephosphorylating pEndos during M phase exit. The kinetic parameters for PP2A-B55’s action on pEndos are orders of magnitude lower than those for CDK-phosphorylated substrates, suggesting a simple model for PP2A-B55 regulation that we call inhibition by unfair competition. As the name suggests, during M phase PP2A-B55’s attention is diverted to pEndos, which binds much more avidly and is dephosphorylated more slowly than other substrates. When Gwl is inactivated during the M phase-to-interphase transition, the dynamic balance changes: pEndos dephosphorylated by PP2A-B55 cannot be replaced, so the phosphatase can refocus its attention on CDK-phosphorylated substrates. This mechanism explains simultaneously how PP2A-B55 and Gwl together regulate pEndos, and how pEndos controls PP2A-B55. DOI: http://dx.doi.org/10.7554/eLife.01695.001 PMID:24618897

  2. PP2A targeting by viral proteins: a widespread biological strategy from DNA/RNA tumor viruses to HIV-1.

    PubMed

    Guergnon, Julien; Godet, Angélique N; Galioot, Amandine; Falanga, Pierre Barthélémy; Colle, Jean-Hervé; Cayla, Xavier; Garcia, Alphonse

    2011-11-01

    Protein phosphatase 2A (PP2A) is a large family of holoenzymes that comprises 1% of total cellular proteins and accounts for the majority of Ser/Thr phosphatase activity in eukaryotic cells. Although initially viewed as constitutive housekeeping enzymes, it is now well established that PP2A proteins represent a family of highly and sophistically regulated phosphatases. The past decade, multiple complementary studies have improved our knowledge about structural and functional regulation of PP2A holoenzymes. In this regard, after summarizing major cellular regulation, this review will mainly focus on discussing a particulate biological strategy, used by various viruses, which is based on the targeting of PP2A enzymes by viral proteins in order to specifically deregulate, for their own benefit, cellular pathways of their hosts. The impact of such PP2A targeting for research in human diseases, and in further therapeutic developments, is also discussed.

  3. Cytoplasmic Retention of Protein Phosphatase 2A Inhibitor 2 (I2PP2A) Induces Alzheimer-like Abnormal Hyperphosphorylation of Tau*

    PubMed Central

    Arif, Mohammad; Wei, Jianshe; Zhang, Qi; Liu, Fei; Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Iqbal, Khalid

    2014-01-01

    Abnormal hyperphosphorylation of Tau leads to the formation of neurofibrillary tangles, a hallmark of Alzheimer disease (AD), and related tauopathies. The phosphorylation of Tau is regulated by protein phosphatase 2A (PP2A), which in turn is modulated by endogenous inhibitor 2 (I2PP2A). In AD brain, I2PP2A is translocated from neuronal nucleus to cytoplasm, where it inhibits PP2A activity and promotes abnormal phosphorylation of Tau. Here we describe the identification of a potential nuclear localization signal (NLS) in the C-terminal region of I2PP2A containing a conserved basic motif, 179RKR181, which is sufficient for directing its nuclear localization. The current study further presents an inducible cell model (Tet-Off system) of AD-type abnormal hyperphosphorylation of Tau by expressing I2PP2A in which the NLS was inactivated by 179RKR181 → AAA along with 168KR169 → AA mutations. In this model, the mutant NLS (mNLS)-I2PP2A (I2PP2AAA-AAA) was retained in the cell cytoplasm, where it physically interacted with PP2A and inhibited its activity. Inhibition of PP2A was associated with the abnormal hyperphosphorylation of Tau, which resulted in microtubule network instability and neurite outgrowth impairment. Expression of mNLS-I2PP2A activated CAMKII and GSK-3β, which are Tau kinases regulated by PP2A. The immunoprecipitation experiments showed the direct interaction of I2PP2A with PP2A and GSK-3β but not with CAMKII. Thus, the cell model provides insights into the nature of the potential NLS and the mechanistic relationship between I2PP2A-induced inhibition of PP2A and hyperphosphorylation of Tau that can be utilized to develop drugs preventing Tau pathology. PMID:25128526

  4. PP2A methylation controls sensitivity and resistance to β-amyloid-induced cognitive and electrophysiological impairments.

    PubMed

    Nicholls, Russell E; Sontag, Jean-Marie; Zhang, Hong; Staniszewski, Agnieszka; Yan, Shijun; Kim, Carla Y; Yim, Michael; Woodruff, Caitlin M; Arning, Erland; Wasek, Brandi; Yin, Deqi; Bottiglieri, Teodoro; Sontag, Estelle; Kandel, Eric R; Arancio, Ottavio

    2016-03-22

    Elevated levels of the β-amyloid peptide (Aβ) are thought to contribute to cognitive and behavioral impairments observed in Alzheimer's disease (AD). Protein phosphatase 2A (PP2A) participates in multiple molecular pathways implicated in AD, and its expression and activity are reduced in postmortem brains of AD patients. PP2A is regulated by protein methylation, and impaired PP2A methylation is thought to contribute to increased AD risk in hyperhomocysteinemic individuals. To examine further the link between PP2A and AD, we generated transgenic mice that overexpress the PP2A methylesterase, protein phosphatase methylesterase-1 (PME-1), or the PP2A methyltransferase, leucine carboxyl methyltransferase-1 (LCMT-1), and examined the sensitivity of these animals to behavioral and electrophysiological impairments caused by exogenous Aβ exposure. We found that PME-1 overexpression enhanced these impairments, whereas LCMT-1 overexpression protected against Aβ-induced impairments. Neither transgene affected Aβ production or the electrophysiological response to low concentrations of Aβ, suggesting that these manipulations selectively affect the pathological response to elevated Aβ levels. Together these data identify a molecular mechanism linking PP2A to the development of AD-related cognitive impairments that might be therapeutically exploited to target selectively the pathological effects caused by elevated Aβ levels in AD patients.

  5. PP2A methylation controls sensitivity and resistance to β-amyloid–induced cognitive and electrophysiological impairments

    PubMed Central

    Nicholls, Russell E.; Sontag, Jean-Marie; Zhang, Hong; Staniszewski, Agnieszka; Yan, Shijun; Kim, Carla Y.; Yim, Michael; Woodruff, Caitlin M.; Arning, Erland; Wasek, Brandi; Yin, Deqi; Bottiglieri, Teodoro; Sontag, Estelle; Kandel, Eric R.; Arancio, Ottavio

    2016-01-01

    Elevated levels of the β-amyloid peptide (Aβ) are thought to contribute to cognitive and behavioral impairments observed in Alzheimer’s disease (AD). Protein phosphatase 2A (PP2A) participates in multiple molecular pathways implicated in AD, and its expression and activity are reduced in postmortem brains of AD patients. PP2A is regulated by protein methylation, and impaired PP2A methylation is thought to contribute to increased AD risk in hyperhomocysteinemic individuals. To examine further the link between PP2A and AD, we generated transgenic mice that overexpress the PP2A methylesterase, protein phosphatase methylesterase-1 (PME-1), or the PP2A methyltransferase, leucine carboxyl methyltransferase-1 (LCMT-1), and examined the sensitivity of these animals to behavioral and electrophysiological impairments caused by exogenous Aβ exposure. We found that PME-1 overexpression enhanced these impairments, whereas LCMT-1 overexpression protected against Aβ-induced impairments. Neither transgene affected Aβ production or the electrophysiological response to low concentrations of Aβ, suggesting that these manipulations selectively affect the pathological response to elevated Aβ levels. Together these data identify a molecular mechanism linking PP2A to the development of AD-related cognitive impairments that might be therapeutically exploited to target selectively the pathological effects caused by elevated Aβ levels in AD patients. PMID:26951658

  6. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits

    PubMed Central

    Sommer, Lauren M.; Cho, Hyuk; Choudhary, Madhusudan; Seeling, Joni M.

    2015-01-01

    Protein phosphatase 2A (PP2A) is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56αβε and B56γδ. Further duplications led to three B56αβε genes and two B56γδ in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56δ function may be compensated for by an alternatively spliced transcript, B56δ/γ, encoding a B56δ-like amino-terminal region and a B56γ core. PMID:25950761

  7. Psychosine induces the dephosphorylation of neurofilaments by deregulation of PP1 and PP2A phosphatases

    PubMed Central

    Cantuti-Castelvetri, Ludovico; Zhu, Hongling; Givogri, Maria I.; Chidavaenzi, Robstein L.; Lopez-Rosas, Aurora; Bongarzone, Ernesto R.

    2012-01-01

    Patients with Krabbe disease, a genetic demyelinating syndrome caused by deficiency of galactosyl-ceramidase and the resulting accumulation of galactosyl-sphingolipids, develop signs of a dying-back axonopathy compounded by a deficiency of large-caliber axons. Here, we show that axonal caliber in Twitcher mice, an animal model for Krabbe disease, is impaired in peripheral axons and is accompanied by a progressive reduction in the abundance and phosphorylation of the three neurofilament (NF) subunits. These changes correlate with an increase in the density of NFs per cross-sectional area in numerous mutant peripheral axons and abnormal increases in the activity of two serine/threonine phosphatases (PP1 and PP2A) in mutant tissue. Similarly, acutely isolated mutant cortical neurons show abnormal phosphorylation of NFs. Psychosine, the neurotoxin accumulated in Krabbe disease, was sufficient to induce abnormal dephosphorylation of NF subunits in a normal motor neuron cell line as well as in acutely isolated normal cortical neurons. This in vitro effect was mediated by PP1 and PP2A, which specifically dephosphorylated NFs. These results demonstrate that the reduced caliber observed in some axons in Krabbe disease involves abnormal dephosphorylation of NFs. We propose that a psychosine-driven pathogenic mechanism through deregulated phosphotransferase activities may be involved in this process. PMID:22326830

  8. Orchestrated Action of PP2A Antagonizes Atg13 Phosphorylation and Promotes Autophagy after the Inactivation of TORC1

    PubMed Central

    Kondo, Akihiro; Kaneko, Atsuki; Koike, Naoki; Ushimaru, Takashi

    2016-01-01

    Target of rapamycin complex 1 (TORC1) phosphorylates autophagy-related Atg13 and represses autophagy under nutrient-rich conditions. However, when TORC1 becomes inactive upon nutrient depletion or treatment with the TORC1 inhibitor rapamycin, Atg13 dephosphorylation occurs rapidly, and autophagy is induced. At present, the phosphatases involved in Atg13 dephosphorylation remain unknown. Here, we show that two protein phosphatase 2A (PP2A) phosphatases, PP2A-Cdc55 and PP2A-Rts1, which are activated by inactivation of TORC1, are required for sufficient Atg13 dephosphorylation and autophagy induction after TORC1 inactivation in budding yeast. After rapamycin treatment, dephosphorylation of Atg13, activation of Atg1 kinase, pre-autophagosomal structure (PAS) formation and autophagy induction are all impaired in PP2A-deleted cells. Conversely, overexpression of non-phosphorylatable Atg13 suppressed defects in autophagy in PP2A mutant. This study revealed that the orchestrated action of PP2A antagonizes Atg13 phosphorylation and promotes autophagy after the inactivation of TORC1. PMID:27973551

  9. Shugoshin-1 balances Aurora B kinase activity via PP2A to promote chromosome bi-orientation.

    PubMed

    Meppelink, Amanda; Kabeche, Lilian; Vromans, Martijn J M; Compton, Duane A; Lens, Susanne M A

    2015-04-28

    Correction of faulty kinetochore-microtubule attachments is essential for faithful chromosome segregation and dictated by the opposing activities of Aurora B kinase and PP1 and PP2A phosphatases. How kinase and phosphatase activities are appropriately balanced is less clear. Here, we show that a centromeric pool of PP2A-B56 counteracts Aurora B T-loop phosphorylation and is recruited to centromeres through Shugoshin-1 (Sgo1). In non-transformed RPE-1 cells, Aurora B, Sgo1, and PP2A-B56 are enriched on centromeres and levels diminish as chromosomes establish bi-oriented attachments. Elevating Sgo1 levels at centromeres recruits excess PP2A-B56, and this counteracts Aurora B kinase activity, undermining efficient correction of kinetochore-microtubule attachment errors. Conversely, Sgo1-depleted cells display reduced centromeric localization of Aurora B, whereas the remaining kinase is hyperactive due to concomitant reduction of centromeric PP2A-B56. Our data suggest that Sgo1 can tune the stability of kinetochore-microtubule attachments through recruitment of PP2A-B56 that balances Aurora B activity at the centromere.

  10. PP2A inhibitors arrest G2/M transition through JNK/Sp1- dependent down-regulation of CDK1 and autophagy-dependent up-regulation of p21.

    PubMed

    Gong, Fei-Ran; Wu, Meng-Yao; Shen, Meng; Zhi, Qiaoming; Xu, Ze-Kuan; Wang, Rong; Wang, Wen-Jie; Zong, Yang; Li, Zeng-Liang; Wu, Yadi; Zhou, Binhua P; Chen, Kai; Tao, Min; Li, Wei

    2015-07-30

    Protein phosphatase 2A (PP2A) plays an important role in the control of the cell cycle. We previously reported that the PP2A inhibitors, cantharidin and okadaic acid (OA), efficiently repressed the growth of cancer cells. In the present study, we found that PP2A inhibitors arrested the cell cycle at the G2 phase through a mechanism that was dependent on the JNK pathway. Microarrays further showed that PP2A inhibitors induced expression changes in multiple genes that participate in cell cycle transition. To verify whether these expression changes were executed in a PP2A-dependent manner, we targeted the PP2A catalytic subunit (PP2Ac) using siRNA and evaluated gene expression with a microarray. After the cross comparison of these microarray data, we identified that CDK1 was potentially the same target when treated with either PP2A inhibitors or PP2Ac siRNA. In addition, we found that the down-regulation of CDK1 occurred in a JNK-dependent manner. Luciferase reporter gene assays demonstrated that repression of the transcription of CDK1 was executed through the JNK-dependent activation of the Sp1 transcription factor. By constructing deletion mutants of the CDK1 promoter and by using ChIP assays, we identified an element in the CDK1 promoter that responded to the JNK/Sp1 pathway after stimulation with PP2A inhibitors. Cantharidin and OA also up-regulated the expression of p21, an inhibitor of CDK1, via autophagy rather than PP2A/JNK pathway. Thus, this present study found that the PP2A/JNK/Sp1/CDK1 pathway and the autophagy/p21 pathway participated in G2/M cell cycle arrest triggered by PP2A inhibitors.

  11. Regulation of polo-like kinase 1 by DNA damage and PP2A/B55α

    PubMed Central

    Wang, Ling; Guo, Qingyuan; Fisher, Laura A; Liu, Dongxu; Peng, Aimin

    2015-01-01

    In addition to governing mitotic progression, Plk1 also suppresses the activation of the G2 DNA damage checkpoint and promotes checkpoint recovery. Previous studies have shown that checkpoint activation after DNA damage requires inhibition of Plk1, but the underlying mechanism of Plk1 regulation was unknown. In this study we show that the specific phosphatase activity toward Plk1 Thr-210 in interphase Xenopus egg extracts is predominantly PP2A-dependent, and this phosphatase activity is upregulated by DNA damage. Consistently, PP2A associates with Plk1 and the association increases after DNA damage. We further revealed that B55α, a targeting subunit of PP2A and putative tumor suppressor, mediates PP2A/Plk1 association and Plk1 dephosphorylation. B55α and PP2A association is greatly strengthened after DNA damage in an ATM/ATR and checkpoint kinase-dependent manner. Collectively, we report a phosphatase-dependent mechanism that responds to DNA damage and regulates Plk1 and checkpoint recovery. PMID:25483054

  12. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis.

    PubMed

    Hu, Xiaoyong; Garcia, Consuelo; Fazli, Ladan; Gleave, Martin; Vitek, Michael P; Jansen, Marilyn; Christensen, Dale; Mulholland, David J

    2015-11-13

    The PP2A signaling axis regulates multiple oncogenic drivers of castration resistant prostate cancer (CRPC). We show that targeting the endogenous PP2A regulator, SET (I2PP2A), is a viable strategy to inhibit prostate cancers that are resistant to androgen deprivation therapy. Our data is corroborated by analysis of prostate cancer patient cohorts showing significant elevation of SET transcripts. Tissue microarray analysis reveals that elevated SET expression correlates with clinical cancer grading, duration of neoadjuvant hormone therapy (NHT) and time to biochemical recurrence. Using prostate regeneration assays, we show that in vivo SET overexpression is sufficient to induce hyperplasia and prostatic intraepithelial neoplasia. Knockdown of SET induced significant reductions in tumorgenesis both in murine and human xenograft models. To further validate SET as a therapeutic target, we conducted in vitro and in vivo treatments using OP449 - a recently characterized PP2A-activating drug (PAD). OP449 elicits robust anti-cancer effects inhibiting growth in a panel of enzalutamide resistant prostate cancer cell lines. Using the Pten conditional deletion mouse model of prostate cancer, OP449 potently inhibited PI3K-Akt signaling and impeded CRPC progression. Collectively, our data supports a critical role for the SET-PP2A signaling axis in CRPC progression and hormone resistant disease.

  13. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis

    PubMed Central

    Hu, Xiaoyong; Garcia, Consuelo; Fazli, Ladan; Gleave, Martin; Vitek, Michael P.; Jansen, Marilyn; Christensen, Dale; Mulholland, David J

    2015-01-01

    The PP2A signaling axis regulates multiple oncogenic drivers of castration resistant prostate cancer (CRPC). We show that targeting the endogenous PP2A regulator, SET (I2PP2A), is a viable strategy to inhibit prostate cancers that are resistant to androgen deprivation therapy. Our data is corroborated by analysis of prostate cancer patient cohorts showing significant elevation of SET transcripts. Tissue microarray analysis reveals that elevated SET expression correlates with clinical cancer grading, duration of neoadjuvant hormone therapy (NHT) and time to biochemical recurrence. Using prostate regeneration assays, we show that in vivo SET overexpression is sufficient to induce hyperplasia and prostatic intraepithelial neoplasia. Knockdown of SET induced significant reductions in tumorgenesis both in murine and human xenograft models. To further validate SET as a therapeutic target, we conducted in vitro and in vivo treatments using OP449 - a recently characterized PP2A-activating drug (PAD). OP449 elicits robust anti-cancer effects inhibiting growth in a panel of enzalutamide resistant prostate cancer cell lines. Using the Pten conditional deletion mouse model of prostate cancer, OP449 potently inhibited PI3K-Akt signaling and impeded CRPC progression. Collectively, our data supports a critical role for the SET-PP2A signaling axis in CRPC progression and hormone resistant disease. PMID:26563471

  14. The role of PP2A-associated proteins and signal pathways in microcystin-LR toxicity.

    PubMed

    Liu, Jing; Sun, Yu

    2015-07-02

    Microcystins are a family of monocyclic heptapeptides produced by cyanobacteria during water blooms. Microcystin-LR (MC-LR) is the most common member of this family. Microcystins induce a variety of toxic cellular effects, including oxidative damage, apoptosis, cytoskeletal destabilization, and cancer cell invasion. Recent studies have examined the molecular mechanism of their toxicity. Protein phosphatase 2A (PP2A) is emerging as a critical regulator of the microcystin-induced molecular network. Furthermore, it has been shown that several molecules or signal pathways associated with PP2A play important roles in microcystin-induced toxic effects. This review summarizes the recent research progress of the molecular mechanism and focuses on the role of PP2A in MC-LR toxicity, which will contribute to a better understanding of the mechanism of microcystin toxicity, and will provide biomarkers for toxicity assessment and control.

  15. A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit.

    PubMed

    Cundell, Michael J; Hutter, Lukas H; Nunes Bastos, Ricardo; Poser, Elena; Holder, James; Mohammed, Shabaz; Novak, Bela; Barr, Francis A

    2016-08-29

    PP2A-B55 is one of the major phosphatases regulating cell division. Despite its importance for temporal control during mitotic exit, how B55 substrates are recognized and differentially dephosphorylated is unclear. Using phosphoproteomics combined with kinetic modeling to extract B55-dependent rate constants, we have systematically identified B55 substrates and assigned their temporal order in mitotic exit. These substrates share a bipartite polybasic recognition determinant (BPR) flanking a Cdk1 phosphorylation site. Experiments and modeling show that dephosphorylation rate is encoded into B55 substrates, including its inhibitor ENSA, by cooperative action of basic residues within the BPR. A complementary acidic surface on B55 decodes this signal, supporting a cooperative electrostatic mechanism for substrate selection. A further level of specificity is encoded into B55 substrates because B55 displays selectivity for phosphothreonine. These simple biochemical properties, combined with feedback control of B55 activity by the phosphoserine-containing substrate/inhibitor ENSA, can help explain the temporal sequence of events during exit from mitosis.

  16. A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit

    PubMed Central

    Cundell, Michael J.; Holder, James

    2016-01-01

    PP2A-B55 is one of the major phosphatases regulating cell division. Despite its importance for temporal control during mitotic exit, how B55 substrates are recognized and differentially dephosphorylated is unclear. Using phosphoproteomics combined with kinetic modeling to extract B55-dependent rate constants, we have systematically identified B55 substrates and assigned their temporal order in mitotic exit. These substrates share a bipartite polybasic recognition determinant (BPR) flanking a Cdk1 phosphorylation site. Experiments and modeling show that dephosphorylation rate is encoded into B55 substrates, including its inhibitor ENSA, by cooperative action of basic residues within the BPR. A complementary acidic surface on B55 decodes this signal, supporting a cooperative electrostatic mechanism for substrate selection. A further level of specificity is encoded into B55 substrates because B55 displays selectivity for phosphothreonine. These simple biochemical properties, combined with feedback control of B55 activity by the phosphoserine-containing substrate/inhibitor ENSA, can help explain the temporal sequence of events during exit from mitosis. PMID:27551054

  17. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects

    PubMed Central

    Zazo, Sandra; Arpí, Oriol; Menéndez, Silvia; Manso, Rebeca; Lluch, Ana; Eroles, Pilar; Rovira, Ana; Albanell, Joan; García-Foncillas, Jesús; Madoz-Gúrpide, Juan; Rojo, Federico

    2015-01-01

    The protein phosphatase 2A (PP2A) is a key tumor suppressor which has emerged as a novel molecular target in some human cancers. Here, we show that PP2A inhibition is a common event in breast cancer and identified PP2A phosphorylation and deregulation SET and CIP2A as molecular contributing mechanisms to inactivate PP2A. Interestingly, restoration of PP2A activity after FTY720 treatment reduced cell growth, induced apoptosis and decreased AKT and ERK activation. Moreover, FTY720 led to PP2A activation then enhancing doxorubicin-induced antitumor effects both in vitro and in vivo. PP2A inhibition (CPscore: PP2A phosphorylation and/or CIP2A overexpression) was detected in 27% of cases (62/230), and associated with grade (p = 0.017), relapse (p < 0.001), negative estrogen (p < 0.001) and progesterone receptor expression (p < 0.001), HER2-positive tumors (p = 0.049), Ki-67 expression (p < 0.001), and higher AKT (p < 0.001) and ERK (p < 0.001) phosphorylation. Moreover, PP2A inhibition determined shorter overall (p = 0.006) and event-free survival (p = 0.003), and multivariate analysis confirmed its independent prognostic impact. Altogether, our results indicate that PP2A is frequently inactivated in breast cancer and determines worse outcome, and its restoration using PP2A activators represents an alternative therapeutic strategy in this disease. PMID:25726524

  18. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects.

    PubMed

    Rincón, Raúl; Cristóbal, Ion; Zazo, Sandra; Arpí, Oriol; Menéndez, Silvia; Manso, Rebeca; Lluch, Ana; Eroles, Pilar; Rovira, Ana; Albanell, Joan; García-Foncillas, Jesús; Madoz-Gúrpide, Juan; Rojo, Federico

    2015-02-28

    The protein phosphatase 2A (PP2A) is a key tumor suppressor which has emerged as a novel molecular target in some human cancers. Here, we show that PP2A inhibition is a common event in breast cancer and identified PP2A phosphorylation and deregulation SET and CIP2A as molecular contributing mechanisms to inactivate PP2A. Interestingly, restoration of PP2A activity after FTY720 treatment reduced cell growth, induced apoptosis and decreased AKT and ERK activation. Moreover, FTY720 led to PP2A activation then enhancing doxorubicin-induced antitumor effects both in vitro and in vivo. PP2A inhibition (CPscore: PP2A phosphorylation and/or CIP2A overexpression) was detected in 27% of cases (62/230), and associated with grade (p = 0.017), relapse (p < 0.001), negative estrogen (p < 0.001) and progesterone receptor expression (p < 0.001), HER2-positive tumors (p = 0.049), Ki-67 expression (p < 0.001), and higher AKT (p < 0.001) and ERK (p < 0.001) phosphorylation. Moreover, PP2A inhibition determined shorter overall (p = 0.006) and event-free survival (p = 0.003), and multivariate analysis confirmed its independent prognostic impact. Altogether, our results indicate that PP2A is frequently inactivated in breast cancer and determines worse outcome, and its restoration using PP2A activators represents an alternative therapeutic strategy in this disease.

  19. PP2A impaired activity is a common event in acute myeloid leukemia and its activation by forskolin has a potent anti-leukemic effect.

    PubMed

    Cristóbal, I; Garcia-Orti, L; Cirauqui, C; Alonso, M M; Calasanz, M J; Odero, M D

    2011-04-01

    Protein phosphatase 2A (PP2A) is a human tumor suppressor that inhibits cellular transformation by regulating the activity of several signaling proteins critical for malignant cell behavior. PP2A has been described as a potential therapeutic target in chronic myeloid leukemia, Philadelphia chromosome-positive acute lymphoblastic leukemia and B-cell chronic lymphocytic leukemia. Here, we show that PP2A inactivation is a recurrent event in acute myeloid leukemia (AML), and that restoration of PP2A phosphatase activity by treatment with forskolin in AML cells blocks proliferation, induces caspase-dependent apoptosis and affects AKT and ERK1/2 activity. Moreover, treatment with forskolin had an additive effect with Idarubicin and Ara-c, drugs used in standard induction therapy in AML patients. Analysis at protein level of the PP2A activation status in a series of patients with AML at diagnosis showed PP2A hyperphosphorylation in 78% of cases (29/37). In addition, we found that either deregulated expression of the endogenous PP2A inhibitors SET or CIP2A, overexpression of SETBP1, or downregulation of some PP2A subunits, might be contributing to PP2A inhibition in AML. In conclusion, our results show that PP2A inhibition is a common event in AML cells and that PP2A activators, such as forskolin or FTY720, could represent potential novel therapeutic targets in AML.

  20. Protein phosphatase 2A family members (PP2A and PP6) associate with U1 snRNP and the spliceosome during pre-mRNA splicing

    PubMed Central

    Kamoun, Malek; Filali, Mohammed; Murray, Michael V.; Awasthi, Sita; Wadzinski, Brian E.

    2013-01-01

    Protein phosphorylation and dephosphorylation are both important for multiple steps in the splicing pathway. Members of the PP1 and PP2A subfamilies of phospho-serine/threonine phosphatases play essential but redundant roles in the second step of the splicing reaction. PP6, a member of the PP2A subfamily, is the mammalian homologue of yeast Sit4p and ppe1, which are involved in cell cycle regulation; however, the involvement of PP6 in the splicing pathway remains unclear. Here we show that PP2A family members physically associate with the spliceosome throughout the splicing reaction. PP2A holoenzyme and PP6 were found stably associated with U1 snRNP. Together our findings indicate that these phosphatases regulate splicing catalysis involving U1 snRNP and suggest an important evolutionary conserved role of PP2A family phosphatases in pre-mRNA splicing. PMID:24064353

  1. Study of Protein Phosphatase 2A (PP2A) Activity in LPS-Induced Tolerance Using Fluorescence-Based and Immunoprecipitation-Aided Methodology.

    PubMed

    Sun, Lei; Ii, Adlai L Pappy; Pham, Tiffany T; Shanley, Thomas P

    2015-06-29

    Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces "immune tolerance" of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαl°xl°x;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαl°xl°x;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.

  2. The mitotic PP2A regulator ENSA/ARPP-19 is remarkably conserved across plants and most eukaryotes.

    PubMed

    Labandera, Anne-Marie; Vahab, Ahmad R; Chaudhuri, Sibapriya; Kerk, David; Moorhead, Greg B G

    2015-03-20

    Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase of eukaryotes. PP2A containing the B55 subunit is a key regulator of mitosis and must be inhibited by phosphorylated α-endosulfine (ENSA) or cyclic AMP-regulated 19 kDa phosphoprotein (ARPP-19) to allow passage through mitosis. Exit from mitosis then requires dephosphorylation of ENSA/ARPP-19 to relieve inhibition of PP2A/B55. ENSA/ARPP-19 has been characterized in several vertebrates and budding yeast, but little is known about its presence in plants and the majority of other eukaryotes. Here we show that three isoforms of ENSA/ARPP-19 are present in the Arabidopsis thaliana genome with distinct expression profiles across various plant tissues. The ENSA/ARPP-19 proteins, and in particular their key inhibitory sequence FDSGDY (FDSADW in plants), is remarkably conserved across plants and most eukaryotes suggesting an ancient origin and conserved function to control PP2A activity.

  3. The PP2A-B56 phosphatase opposes cyclin E autocatalytic degradation via site-specific dephosphorylation.

    PubMed

    Davis, Ryan J; Swanger, Jherek; Hughes, Bridget T; Clurman, Bruce E

    2017-01-30

    Cyclin E, in conjunction with its catalytic partner cyclin-dependent kinase 2 (CDK2), regulates cell cycle progression as cells exit quiescence and enter S-phase. Multiple mechanisms control cyclin E periodicity during the cell cycle, including phosphorylation-dependent cyclin E ubiquitylation by the SCF(Fbw7) ubiquitin ligase. Serine 384 (S384) is the critical cyclin E phosphorylation site that stimulates Fbw7 binding and cyclin E ubiquitylation and degradation. Because S384 is autophosphorylated by bound CDK2, this presents a paradox as to how cyclin E can evade autocatalytically induced degradation in order to phosphorylate its other substrates. We found that S384 phosphorylation is dynamically regulated in cells, and that cyclin E is specifically dephosphorylated at S384 by the PP2A-B56 phosphatase, thereby uncoupling cyclin E degradation from cyclin E-CDK2 activity. Furthermore, the rate of S384 dephosphorylation is high in interphase but low in mitosis. This provides a mechanism whereby interphase cells can oppose autocatalytic cyclin E degradation and maintain cyclin E-CDK2 activity, while also enabling cyclin E destruction in mitosis, when inappropriate cyclin E expression is genotoxic.

  4. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A)

    PubMed Central

    Obanda, Diana N.; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T.

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  5. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A).

    PubMed

    Obanda, Diana N; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T

    2016-02-26

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation.

  6. Protein Phosphatase 2A (PP2A) Regulates Low Density Lipoprotein Uptake through Regulating Sterol Response Element-binding Protein-2 (SREBP-2) DNA Binding*

    PubMed Central

    Rice, Lyndi M.; Donigan, Melissa; Yang, Muhua; Liu, Weidong; Pandya, Devanshi; Joseph, Biny K.; Sodi, Valerie; Gearhart, Tricia L.; Yip, Jenny; Bouchard, Michael; Nickels, Joseph T.

    2014-01-01

    LDL-cholesterol (LDL-C) uptake by Ldlr is regulated at the transcriptional level by the cleavage-dependent activation of membrane-associated sterol response element-binding protein (SREBP-2). Activated SREBP-2 translocates to the nucleus, where it binds to an LDLR promoter sterol response element (SRE), increasing LDLR gene expression and LDL-C uptake. SREBP-2 cleavage and translocation steps are well established. Several SREBP-2 phosphorylation sites have been mapped and functionally characterized. The phosphatases dephosphorylating these sites remain elusive. The phosphatase(s) regulating SREBP-2 represents a novel pharmacological target for treating hypercholesterolemia. Here we show that protein phosphatase 2A (PP2A) promotes SREBP-2 LDLR promoter binding in response to cholesterol depletion. No binding to an LDLR SRE was observed in the presence of the HMG-CoA reductase inhibitor, lovastatin, when PP2A activity was inhibited by okadaic acid or depleted by siRNA methods. SREBP-2 cleavage and nuclear translocation were not affected by loss of PP2A. PP2A activity was required for SREBP-2 DNA binding. In response to cholesterol depletion, PP2A directly interacted with SREBP-2 and altered its phosphorylation state, causing an increase in SREBP-2 binding to an LDLR SRE site. Increased binding resulted in induced LDLR gene expression and increased LDL uptake. We conclude that PP2A activity regulates cholesterol homeostasis and LDL-C uptake. PMID:24770487

  7. Targeting A Tumor Suppressor To Suppress Tumor Growth: News and Views on Protein Phosphatase 2A (PP2A) as a Target for Anti-cancer Therapy

    PubMed Central

    Perrotti, Danilo; Neviani, Paolo

    2013-01-01

    Protein phosphatase 2A (PP2A), one of the major serine-threonine phosphatases in mammalian cells, maintains cell homeostasis by counteracting most of the kinase-driven intracellular signaling pathways. Unrestrained activation of oncogenic kinases together with inhibition of tumor suppressors is frequently required for the development of cancer. Because it has been found genetically altered or functionally inactivated in many solid cancers and leukemias, PP2A is indeed a bona fide tumor suppressor. For example, the phosphatase activity of PP2A is suppressed in chronic myelogenous leukemia and other malignancies characterized by the aberrant activity of oncogenic kinases. Notably, preclinical studies indicate that pharmacologic restoration of PP2A tumor suppressor activity by PP2A activating drugs (PADs, e.g. FTY720) effectively antagonizes cancer development and progression. Herein, we systematically discuss the importance of PP2A as a druggable tumor suppressor in light of the possible introduction of PADs into anti-cancer therapeutic protocols. PMID:23639323

  8. Synthesis of Highly Selective Submicromolar Microcystin‐Based Inhibitors of Protein Phosphatase (PP)2A over PP1

    PubMed Central

    Fontanillo, Miriam; Zemskov, Ivan; Häfner, Maximilian; Uhrig, Ulrike; Salvi, Francesca; Simon, Bernd; Wittmann, Valentin

    2016-01-01

    Abstract Research and therapeutic targeting of the phosphoserine/threonine phosphatases PP1 and PP2A is hindered by the lack of selective inhibitors. The microcystin (MC) natural toxins target both phosphatases with equal potency, and their complex synthesis has complicated structure–activity relationship studies in the past. We report herein the synthesis and biochemical evaluation of 11 MC analogues, which was accomplished through an efficient strategy combining solid‐ and solution‐phase approaches. Our approach led to the first MC analogue with submicromolar inhibitory potency that is strongly selective for PP2A over PP1 and does not require the complex lipophilic Adda group. Through mutational and structural analyses, we identified a new key element for binding, as well as reasons for the selectivity. This work gives unprecedented insight into how selectivity between these phosphatases can be achieved with MC analogues. PMID:27723199

  9. URI Regulates KAP1 Phosphorylation and Transcriptional Repression via PP2A Phosphatase in Prostate Cancer Cells.

    PubMed

    Mita, Paolo; Savas, Jeffrey N; Briggs, Erica M; Ha, Susan; Gnanakkan, Veena; Yates, John R; Robins, Diane M; David, Gregory; Boeke, Jef D; Garabedian, Michael J; Logan, Susan K

    2016-12-02

    URI (unconventional prefoldin RPB5 interactor protein) is an unconventional prefoldin, RNA polymerase II interactor that functions as a transcriptional repressor and is part of a larger nuclear protein complex. The components of this complex and the mechanism of transcriptional repression have not been characterized. Here we show that KAP1 (KRAB-associated protein 1) and the protein phosphatase PP2A interact with URI. Mechanistically, we show that KAP1 phosphorylation is decreased following recruitment of PP2A by URI. We functionally characterize the novel URI-KAP1-PP2A complex, demonstrating a role of URI in retrotransposon repression, a key function previously demonstrated for the KAP1-SETDB1 complex. Microarray analysis of annotated transposons revealed a selective increase in the transcription of LINE-1 and L1PA2 retroelements upon knockdown of URI. These data unveil a new nuclear function of URI and identify a novel post-transcriptional regulation of KAP1 protein that may have important implications in reactivation of transposable elements in prostate cancer cells.

  10. Opposing Activities of Aurora B Kinase and B56-PP2A Phosphatase on MKlp2 Determine Abscission Timing.

    PubMed

    Fung, Suet Yin Sarah; Kitagawa, Mayumi; Liao, Pei-Ju; Wong, Jasmine; Lee, Sang Hyun

    2017-01-09

    After cleavage furrow ingression during cytokinesis, nascent daughter cells remain connected by an intercellular bridge (ICB) and the midbody [1, 2]. The midbody becomes an assembly platform for ESCRT complexes that split apart the plasma membrane (PM) anchored to the ICB and complete abscission, which is the final step of cell division [3-5]. Aurora B governs abscission by regulating its timing as a checkpoint [6-10]. However, the underlying mechanisms for this process remain unknown. Here, we reveal the mechanism controlling abscission through integration of Aurora B kinase and B56-bound PP2A phosphatase activities on the kinesin motor protein MKlp2. We identify MKlp2 as an essential protein for promoting abscission, which may regulate tethering and stabilizing of the PM to the microtubule cytoskeleton at the ICB through its previously uncharacterized lipid association motif (LAM). MKlp2 recruits Aurora B to the ICB [11-15]. In turn, Aurora B phosphorylation of MKlp2 S878 in the LAM is a key inhibitory signal for abscission. Conversely, B56-PP2A promotes abscission by opposing Aurora B phosphorylation of MKlp2 S878. Strikingly, a phospho-resistant MKlp2 S878A mutant overcomes Aurora-B-mediated abscission blockade. Thus, abscission is determined by the balance of Aurora B and B56-PP2A activities on MKlp2 S878 within the LAM. Together, these findings establish a key mechanism for Aurora B regulation of abscission in mammalian cells.

  11. Methionine and S-Adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis

    PubMed Central

    Zubiete-Franco, Imanol; García-Rodríguez, Juan Luis; Martínez-Uña, Maite; Martínez-Lopez, Nuria; Woodhoo, Ashwin; Juan, Virginia Gutiérrez-De; Beraza, Naiara; Lage-Medina, Sergio; Andrade, Fernando; Fernandez, Marta Llarena; Aldámiz-Echevarría, Luis; Fernández-Ramos, David; Falcon-Perez, Juan Manuel; Lopitz-Otsoa, Fernando; Fernandez-Tussy, Pablo; Barbier-Torres, Lucía; Luka, Zigmund; Wagner, Conrad; García-Monzón, Carmelo; Lu, Shelly C.; Aspichueta, Patricia; Mato, José María; Martínez-Chantar, María Luz; Varela-Rey, Marta

    2015-01-01

    Background & Aims Glycine N-methyltransferase (GNMT) expression is decreased in some patients with severe NAFLD. Gnmt deficiency in mice (Gnmt-KO) results in abnormally elevated serum levels of methionine and its metabolite S-adenosylmethionine (SAMe), and this leads to rapid liver steatosis development. Autophagy plays a critical role in lipid catabolism (lipophagy), and defects in autophagy have been related to liver steatosis development. Since methionine and its metabolite SAMe are well known inactivators of autophagy, we aimed to examine whether high levels of both metabolites could block autophagy-mediated lipid catabolism. Methods We examined methionine levels in a cohort of 358 serum samples from steatotic patients. We used hepatocytes cultured with methionine and SAMe, and hepatocytes and livers from Gnmt-KO mice. Results We detected a significant increase in serum methionine levels in steatotic patients. We observed that autophagy and lipophagy were impaired in hepatocytes cultured with high methionine and SAMe, and that Gnmt-KO livers were characterized by an impairment in autophagy functionality, likely caused by defects at the lysosomal level. Elevated levels of methionine and SAMe activated PP2A by methylation, while blocking PP2A activity restored autophagy flux in Gnmt-KO hepatocytes, and in hepatocytes treated with SAMe and Methionine. Finally, normalization of methionine and SAMe levels in Gnmt-KO mice using a methionine deficient diet normalized the methylation capacity, PP2A methylation, autophagy, and ameloriated liver steatosis. Conclusions These data suggest that elevated levels of methionine and SAMe can inhibit autophagic catabolism of lipids contributing to liver steatosis. PMID:26394163

  12. The Role of PP2A Methylation in Susceptibility and Resistance to TBI and AD-Induced Neurodegeneration

    DTIC Science & Technology

    2013-09-01

    73 Tanzi,  R.E.  (2012).  The   Genetics  of   Alzheimer  Disease.  Cold  Spring  Harbor   Perspectives  in  Medicine  2...ABSTRACT The focus of the current study is to test the effect of genetic manipulations that target the tau phosphatase, PP2A, on behavioral...impairments resulting from shockwave exposure in a mouse model, and to compare those results with the effects of the same genetic manipulations on the

  13. PP2A-twins is antagonized by greatwall and collaborates with polo for cell cycle progression and centrosome attachment to nuclei in drosophila embryos.

    PubMed

    Wang, Peng; Pinson, Xavier; Archambault, Vincent

    2011-08-01

    Cell division and development are regulated by networks of kinases and phosphatases. In early Drosophila embryogenesis, 13 rapid nuclear divisions take place in a syncytium, requiring fine coordination between cell cycle regulators. The Polo kinase is a conserved, crucial regulator of M-phase. We have recently reported an antagonism between Polo and Greatwall (Gwl), another mitotic kinase, in Drosophila embryos. However, the nature of the pathways linking them remained elusive. We have conducted a comprehensive screen for additional genes functioning with polo and gwl. We uncovered a strong interdependence between Polo and Protein Phosphatase 2A (PP2A) with its B-type subunit Twins (Tws). Reducing the maternal contribution of Polo and PP2A-Tws together is embryonic lethal. We found that Polo and PP2A-Tws collaborate to ensure centrosome attachment to nuclei. While a reduction in Polo activity leads to centrosome detachments observable mostly around prophase, a reduction in PP2A-Tws activity leads to centrosome detachments at mitotic exit, and a reduction in both Polo and PP2A-Tws enhances the frequency of detachments at all stages. Moreover, we show that Gwl antagonizes PP2A-Tws function in both meiosis and mitosis. Our study highlights how proper coordination of mitotic entry and exit is required during embryonic cell cycles and defines important roles for Polo and the Gwl-PP2A-Tws pathway in this process.

  14. Compression regulates gene expression of chondrocytes through HDAC4 nuclear relocation via PP2A-dependent HDAC4 dephosphorylation.

    PubMed

    Chen, Chongwei; Wei, Xiaochun; Wang, Shaowei; Jiao, Qiang; Zhang, Yang; Du, Guoqing; Wang, Xiaohu; Wei, Fangyuan; Zhang, Jianzhong; Wei, Lei

    2016-07-01

    Biomechanics plays a critical role in the modulation of chondrocyte function. The mechanisms by which mechanical loading is transduced into intracellular signals that regulate chondrocyte gene expression remain largely unknown. Histone deacetylase 4 (HDAC4) is specifically expressed in chondrocytes. Mice lacking HDAC4 display chondrocyte hypertrophy, ectopic and premature ossification, and die early during the perinatal period. HDAC4 has a remarkable ability to translocate between the cell's cytoplasm and nucleus. It has been established that subcellular relocation of HDAC4 plays a critical role in chondrocyte differentiation and proliferation. However, it remains unclear whether subcellular relocation of HDAC4 in chondrocytes can be induced by mechanical loading. In this study, we first report that compressive loading induces HDAC4 relocation from the cytoplasm to the nucleus of chondrocytes via stimulation of Ser/Thr-phosphoprotein phosphatases 2A (PP2A) activity, which results in dephosphorylation of HDAC4. Dephosphorylated HDAC4 relocates to the nucleus to achieve transcriptional repression of Runx2 and regulates chondrocyte gene expression in response to compression. Our results elucidate the mechanism by which mechanical compression regulates chondrocyte gene expression through HDAC4 relocation from the cell's cytoplasm to the nucleus via PP2A-dependent HDAC4 dephosphorylation.

  15. PHF20 regulates NF-κB signalling by disrupting recruitment of PP2A to p65

    PubMed Central

    Zhang, Tiejun; Park, Kyeong Ah; Li, Yuwen; Byun, Hee Sun; Jeon, Juhee; Lee, Yoonjung; Hong, Jang Hee; Kim, Jin Man; Huang, Song-Mei; Choi, Seung-Won; Kim, Sun-Hwan; Sohn, Kyung-Cheol; Ro, Hyunju; Lee, Ji Hoon; Lu, Tao; Stark, George R.; Shen, Han-Ming; Liu, Zheng-gang; Park, Jongsun; Hur, Gang Min

    2014-01-01

    Constitutive NF-κB activation in cancer cells is caused by defects in the signalling network responsible for terminating the NF-κB response. Here we report that plant homeodomain finger protein 20 maintains NF-κB in an active state in the nucleus by inhibiting the interaction between PP2A and p65. We show that plant homeodomain finger protein 20 induces canonical NF-κB signalling by increasing the DNA-binding activity of NF-κB subunit p65. In plant homeodomain finger protein 20-overexpressing cells, the termination of tumour necrosis factor-induced p65 phosphorylation is impaired whereas upstream signalling events triggered by tumour necrosis factor are unaffected. This effect strictly depends on the interaction between plant homeodomain finger protein 20 and methylated lysine residues of p65, which hinders recruitment of PP2A to p65, thereby maintaining p65 in a phosphorylated state. We further show that plant homeodomain finger protein 20 levels correlate with p65 phosphorylation levels in human glioma specimens. Our work identifies plant homeodomain finger protein 20 as a novel regulator of NF-κB activation and suggests that elevated expression of plant homeodomain finger protein 20 may drive constitutive NF-κB activation in some cancers. PMID:23797602

  16. Activation of CK1ε by PP2A/PR61ε is required for the initiation of Wnt signaling

    PubMed Central

    Curto, J; Padilla, M; Villarroel, A; Yang, J; de Herreros, AG; Duñach, M

    2016-01-01

    Canonical Wnt signaling induces the stabilization of β-catenin, its translocation to the nucleus and the activation of target promoters. This pathway is initiated by the binding of Wnt ligands to the Frizzled receptor, the association of the LRP5/6 coreceptor and the formation of a complex comprising Dvl-2, Axin and protein kinases CK1α, ε, γ and GSK3. Among these, activation of CK1ε, constitutively bound to LRP5/6 through p120-catenin, is required for the association of the rest of the components. We describe here that CK1ε is activated by the PP2A/PR61ε phosphatase. Binding of Wnt ligands promotes the interaction of LRP5/6-associated CK1ε with Frizzled-bound PR61ε regulatory subunit, facilitating the access of PP2A catalytic subunit to CK1ε and its activation, what enables the recruitment of Dvl-2 to the receptor complex and the initiation of the Wnt pathway. Our results uncover the mechanism of activation of the canonical Wnt pathway by its ligands. PMID:27321178

  17. Activation of CK1ɛ by PP2A/PR61ɛ is required for the initiation of Wnt signaling.

    PubMed

    Vinyoles, M; Del Valle-Pérez, B; Curto, J; Padilla, M; Villarroel, A; Yang, J; de Herreros, A G; Duñach, M

    2017-01-19

    Canonical Wnt signaling induces the stabilization of β-catenin, its translocation to the nucleus and the activation of target promoters. This pathway is initiated by the binding of Wnt ligands to the Frizzled receptor, the association of the LRP5/6 co-receptor and the formation of a complex comprising Dvl-2, Axin and protein kinases CK1α, ɛ, γ and GSK3. Among these, activation of CK1ɛ, constitutively bound to LRP5/6 through p120-catenin, is required for the association of the rest of the components. We describe here that CK1ɛ is activated by the PP2A/PR61ɛ phosphatase. Binding of Wnt ligands promotes the interaction of LRP5/6-associated CK1ɛ with Frizzled-bound PR61ɛ regulatory subunit, facilitating the access of PP2A catalytic subunit to CK1ɛ and its activation, what enables the recruitment of Dvl-2 to the receptor complex and the initiation of the Wnt pathway. Our results uncover the mechanism of activation of the canonical Wnt pathway by its ligands.

  18. Novel B55α-PP2A mutations in AML promote AKT T308 phosphorylation and sensitivity to AKT inhibitor-induced growth arrest

    PubMed Central

    Shouse, Geoffrey; de Necochea-Campion, Rosalia; Mirshahidi, Saied; Liu, Xuan; Chen, Chien-Shing

    2016-01-01

    Activation of the Protein Kinase B (PKB), or AKT pathway has been shown to correlate with acute myeloid leukemia (AML) prognosis. B55α-Protein Phosphatase 2A (PP2A) has been shown to dephosphorylate AKT at Thr-308 rendering it inactive. In fact, low expression of the PP2A regulatory subunit B55α was associated with activated phospho-AKT and correlated with inferior outcomes in AML. Despite this fact, no studies have specifically demonstrated a mechanism whereby B55α expression is regulated in AML. In this study, we demonstrate novel loss of function mutations in the PPP2R2A gene identified in leukemic blasts from three AML patients. These mutations eliminate B55α protein expression thereby allowing constitutive AKT activation. In addition, leukemic blasts with PPP2R2A gene mutation were more sensitive to treatment with the AKT inhibitor MK2206, but less responsive to the PP2A activator FTY720. Using leukemia cell lines, we further demonstrate that B55α expression correlates with AKT Thr-308 phosphorylation and predicts responsiveness to AKT inhibition and PP2A activation. Together our data illustrate the importance of the B55α-PP2A-AKT pathway in leukemogenesis. Screening for disruptions in this pathway at initial AML diagnosis may predict response to targeted therapies against AKT and PP2A. PMID:27531894

  19. The Brassinosteroid-Activated BRI1 Receptor Kinase Is Switched off by Dephosphorylation Mediated by Cytoplasm-Localized PP2A B' Subunits.

    PubMed

    Wang, Ruiju; Liu, Mengmeng; Yuan, Min; Oses-Prieto, Juan A; Cai, Xingbo; Sun, Ying; Burlingame, Alma L; Wang, Zhi-Yong; Tang, Wenqiang

    2016-01-04

    Brassinosteroid (BR) binding activates the receptor kinase BRI1 by inducing heterodimerization with its co-receptor kinase BAK1; however, the mechanisms that reversibly inactivate BRI1 remain unclear. Here we show that cytoplasm-localized protein phosphatase 2A (PP2A) B' regulatory subunits interact with BRI1 to mediate its dephosphorylation and inactivation. Loss-of-function and overexpression experiments showed that a group of PP2A B' regulatory subunits, represented by B'η, negatively regulate BR signaling by decreasing BRI1 phosphorylation. BR increases the expression levels of these B' subunits, and B'η interacts preferentially with phosphorylated BRI1, suggesting that the dynamics of BR signaling are modulated by the PP2A-mediated feedback inactivation of BRI1. Compared with PP2A B'α and B'β, which promote BR responses by dephosphorylating the downstream transcription factor BZR1, the BRI1-inactivating B' subunits showed similar binding to BRI1 and BZR1 but distinct subcellular localization. Alteration of the nuclear/cytoplasmic localization of the B' subunits revealed that cytoplasmic PP2A dephosphorylates BRI1 and inhibits the BR response, whereas nuclear PP2A dephosphorylates BZR1 and activates the BR response. Our findings not only identify the PP2A regulatory B subunits that mediate the binding and dephosphorylation of BRI1, but also demonstrate that the subcellular localization of PP2A specifies its substrate selection and distinct effects on BR signaling.

  20. An integrated workflow for charting the human interaction proteome: insights into the PP2A system

    PubMed Central

    Glatter, Timo; Wepf, Alexander; Aebersold, Ruedi; Gstaiger, Matthias

    2009-01-01

    Protein complexes represent major functional units for the execution of biological processes. Systematic affinity purification coupled with mass spectrometry (AP-MS) yielded a wealth of information on the compendium of protein complexes expressed in Saccharomyces cerevisiae. However, global AP-MS analysis of human protein complexes is hampered by the low throughput, sensitivity and data robustness of existing procedures, which limit its application for systems biology research. Here, we address these limitations by a novel integrated method, which we applied and benchmarked for the human protein phosphatase 2A system. We identified a total of 197 protein interactions with high reproducibility, showing the coexistence of distinct classes of phosphatase complexes that are linked to proteins implicated in mitosis, cell signalling, DNA damage control and more. These results show that the presented analytical process will substantially advance throughput and reproducibility in future systematic AP-MS studies on human protein complexes. PMID:19156129

  1. An integrated workflow for charting the human interaction proteome: insights into the PP2A system.

    PubMed

    Glatter, Timo; Wepf, Alexander; Aebersold, Ruedi; Gstaiger, Matthias

    2009-01-01

    Protein complexes represent major functional units for the execution of biological processes. Systematic affinity purification coupled with mass spectrometry (AP-MS) yielded a wealth of information on the compendium of protein complexes expressed in Saccharomyces cerevisiae. However, global AP-MS analysis of human protein complexes is hampered by the low throughput, sensitivity and data robustness of existing procedures, which limit its application for systems biology research. Here, we address these limitations by a novel integrated method, which we applied and benchmarked for the human protein phosphatase 2A system. We identified a total of 197 protein interactions with high reproducibility, showing the coexistence of distinct classes of phosphatase complexes that are linked to proteins implicated in mitosis, cell signalling, DNA damage control and more. These results show that the presented analytical process will substantially advance throughput and reproducibility in future systematic AP-MS studies on human protein complexes.

  2. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis.

    PubMed

    Rodriguez Pino, Marbelys; Castillo, Boris; Kim, Bohye; Kim, Lou W

    2015-12-01

    We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA(-) cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA(-) cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA(-) cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis.

  3. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis

    PubMed Central

    Rodriguez Pino, Marbelys; Castillo, Boris; Kim, Bohye; Kim, Lou W.

    2015-01-01

    We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA− cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA− cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA− cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis. PMID:26424797

  4. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling.

    PubMed

    Ribeiro, Paulo S; Josué, Filipe; Wepf, Alexander; Wehr, Michael C; Rinner, Oliver; Kelly, Gavin; Tapon, Nicolas; Gstaiger, Matthias

    2010-08-27

    The Hippo (Hpo) pathway is a central determinant of tissue size in both Drosophila and higher organisms. The core of the pathway is a kinase cascade composed of an upstream kinase Hpo (MST1/2 in mammals) and a downstream kinase Warts (Wts, Lats1/2 in mammals), as well as several scaffold proteins, Sav, dRASSF, and Mats. Activation of the core kinase cassette results in phosphorylation and inactivation of the progrowth transcriptional coactivator Yki, leading to increased apoptosis and reduced tissue growth. The mechanisms that prevent inappropriate Hpo activation remain unclear, and in particular, the identity of the phosphatase that antagonizes Hpo is unknown. Using combined proteomic and RNAi screening approaches, we identify the dSTRIPAK PP2A complex as a major regulator of Hpo signaling. dSTRIPAK depletion leads to increased Hpo activatory phosphorylation and repression of Yki target genes in vivo, suggesting this phosphatase complex prevents Hpo activation during development.

  5. PP2A Ligand ITH12246 Protects against Memory Impairment and Focal Cerebral Ischemia in Mice

    PubMed Central

    2013-01-01

    ITH12246 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate) is a 1,8-naphthyridine described to feature an interesting neuroprotective profile in in vitro models of Alzheimer’s disease. These effects were proposed to be due in part to a regulatory action on protein phosphatase 2A inhibition, as it prevented binding of its inhibitor okadaic acid. We decided to investigate the pharmacological properties of ITH12246, evaluating its ability to counteract the memory impairment evoked by scopolamine, a muscarinic antagonist described to promote memory loss, as well as to reduce the infarct volume in mice suffering phototrombosis. Prior to conducting these experiments, we confirmed its in vitro neuroprotective activity against both oxidative stress and Ca2+ overload-derived excitotoxicity, using SH-SY5Y neuroblastoma cells and rat hippocampal slices. Using a predictive model of blood-brain barrier crossing, it seems that the passage of ITH12246 is not hindered. Its potential hepatotoxicity was observed only at very high concentrations, from 0.1 mM. ITH12246, at the concentration of 10 mg/kg i.p., was able to improve the memory index of mice treated with scopolamine, from 0.22 to 0.35, in a similar fashion to the well-known Alzheimer’s disease drug galantamine 2.5 mg/kg. On the other hand, ITH12246, at the concentration of 2.5 mg/kg, reduced the phototrombosis-triggered infarct volume by 67%. In the same experimental conditions, 15 mg/kg melatonin, used as control standard, reduced the infarct volume by 30%. All of these findings allow us to consider ITH12246 as a new potential drug for the treatment of neurodegenerative diseases, which would act as a multifactorial neuroprotectant. PMID:23763493

  6. Identification of the Adenovirus E4orf4 Protein Binding Site on the B55α and Cdc55 Regulatory Subunits of PP2A: Implications for PP2A Function, Tumor Cell Killing and Viral Replication

    PubMed Central

    Mui, Melissa Z.; Kucharski, Michael; Miron, Marie-Joëlle; Hur, Woosuk Steve; Berghuis, Albert M.; Blanchette, Paola; Branton, Philip E.

    2013-01-01

    Adenovirus E4orf4 protein induces the death of human cancer cells and Saccharomyces cerevisiae. Binding of E4orf4 to the B/B55/Cdc55 regulatory subunit of protein phosphatase 2A (PP2A) is required, and such binding inhibits PP2AB55 activity leading to dose-dependent cell death. We found that E4orf4 binds across the putative substrate binding groove predicted from the crystal structure of B55α such that the substrate p107 can no longer interact with PP2AB55α. We propose that E4orf4 inhibits PP2AB55 activity by preventing access of substrates and that at high E4orf4 levels this inhibition results in cell death through the failure to dephosphorylate substrates required for cell cycle progression. However, E4orf4 is expressed at much lower and less toxic levels during a normal adenovirus infection. We suggest that in this context E4orf4 largely serves to recruit novel substrates such as ASF/SF2/SRSF1 to PP2AB55 to enhance adenovirus replication. Thus E4orf4 toxicity probably represents an artifact of overexpression and does not reflect the evolutionary function of this viral product. PMID:24244166

  7. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway.

    PubMed

    Ahn, Chang Sook; Ahn, Hee-Kyung; Pai, Hyun-Sook

    2015-02-01

    Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.

  8. Notch-1 signaling activates NF-κB in human breast carcinoma MDA-MB-231 cells via PP2A-dependent AKT pathway.

    PubMed

    Li, Li; Zhang, Jing; Xiong, Niya; Li, Shun; Chen, Yu; Yang, Hong; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao

    2016-04-01

    Breast cancer has a high incidence in the world and is becoming a leading cause of death in female patients due to its high metastatic ability. High expression of Notch-1 and its ligand Jagged-1 correlates with poor prognosis in breast cancer. Our previous work has shown that Notch-1 signaling pathway upregulates NF-κB transcriptional activity and induces the adhesion, migration and invasion of human breast cancer cell line MDA-MB-231. However, the role of Notch-1 in NF-κB activation is still poorly understood. Here, we aim to understand the exact mechanism that Notch-1 regulates NF-κB activity. In MDA-MB-231 cells where Notch-1 is constitutively activated, the phosphorylation of p85 and AKT (Tyr308/Ser473) is upregulated, indicating PI3K/AKT pathway is activated. Notch-1 activation caused the increase of PP2A phosphorylation at Tyr307, indicating Notch-1 inhibits PP2A activity. NF-κB transcriptional activity was evaluated by dual-luciferase reporter assay, and the results showed that, while silencing of Notch-1, PP2A activity was upregulated and NF-κB activity was downregulated, whereas PP2A inhibitor okadaic acid (OA) restored NF-κB activity. Immunofluorescence and Western blots showed that OA treatment antagonized the decrease of p65 nuclear translocation caused by Notch-1 silencing. Moreover, OA treatment also upregulated MMP-2, MMP-9 and VEGF mRNA expression levels, indicating OA rescues Notch-1 silencing that caused low cell invasion. Taken together, our results suggest that Notch-1-activating PI3K/AKT/NF-κB pathway is PP2A dependent; PP2A may be a potential therapeutic target in breast cancer.

  9. PhosphoTyrosyl phosphatase activator of Plasmodium falciparum: identification of its residues involved in binding to and activation of PP2A.

    PubMed

    Vandomme, Audrey; Fréville, Aline; Cailliau, Katia; Kalamou, Hadidjatou; Bodart, Jean-François; Khalife, Jamal; Pierrot, Christine

    2014-02-11

    In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V(283), G(292) and M(296)) of PfPTPA are indispensable for the interaction and that the G(292) residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity.

  10. Overexpression of PP2A inhibitor SET oncoprotein is associated with tumor progression and poor prognosis in human non-small cell lung cancer.

    PubMed

    Liu, Hao; Gu, Yixue; Wang, Hongsheng; Yin, Jiang; Zheng, Guopei; Zhang, Zhijie; Lu, Minyin; Wang, Chenkun; He, Zhimin

    2015-06-20

    SET oncoprotein is an endogenous inhibitor of protein phosphatase 2A (PP2A), and SET-mediated PP2A inhibition is an important regulatory mechanism for promoting cancer initiation and progression of several types of human leukemia disease. However, its potential relevance in solid tumors as non-small cell lung cancer (NSCLC) remains mostly unknown. In this study, we showed that SET was evidently overexpressed in human NSCLC cell lines and NSCLC tissues. Clinicopathologic analysis showed that SET expression was significantly correlated with clinical stage (p < 0.001), and lymph node metastasis (p < 0.05). Kaplan-Meier analysis revealed that patients with high SET expression had poorer overall survival rates than those with low SET expression. Moreover, knockdown of SET in NSCLC cells resulted in attenuated proliferative and invasive abilities. The biological effect of SET on proliferation and invasion was mediated by the inhibition of the PP2A, which in turn, activation of AKT and ERK, increased the expression of cyclin D1 and MMP9, and decreased the expression of p27. Furthermore, we observed that restoration of PP2A using SET antagonist FTY720 impaired proliferative and invasive potential in vitro, as well as inhibited tumor growth in vivo of NSCLC cells. Taken together, SET oncoprotein plays an important role in NSCLC progression, which could serve as a potential prognosis marker and a novel therapeutic target for NSCLC patients.

  11. MYC-dependent recruitment of RUNX1 and GATA2 on the SET oncogene promoter enhances PP2A inactivation in acute myeloid leukemia.

    PubMed

    Pippa, Raffaella; Dominguez, Ana; Malumbres, Raquel; Endo, Akinori; Arriazu, Elena; Marcotegui, Nerea; Guruceaga, Elizabeth; Odero, María D

    2016-06-06

    The SET (I2PP2A) oncoprotein is a potent inhibitor of protein phosphatase 2A (PP2A) that regulates many cell processes and important signaling pathways. Despite the importance of SET overexpression and its prognostic impact in both hematologic and solid tumors, little is known about the mechanisms involved in its transcriptional regulation. In this report, we define the minimal promoter region of the SET gene, and identify a novel multi-protein transcription complex, composed of MYC, SP1, RUNX1 and GATA2, which activates SET expression in AML. The role of MYC is crucial, since it increases the expression of the other three transcription factors of the complex, and supports their recruitment to the promoter of SET. These data shed light on a new regulatory mechanism in cancer, in addition to the already known PP2A-MYC and SET-PP2A. Besides, we show that there is a significant positive correlation between the expression of SET and MYC, RUNX1, and GATA2 in AML patients, which further endorses our results. Altogether, this study opens new directions for understanding the mechanisms that lead to SET overexpression, and demonstrates that MYC, SP1, RUNX1 and GATA2 are key transcriptional regulators of SET expression in AML.

  12. PhosphoTyrosyl Phosphatase Activator of Plasmodium falciparum: Identification of Its Residues Involved in Binding to and Activation of PP2A

    PubMed Central

    Vandomme, Audrey; Fréville, Aline; Cailliau, Katia; Kalamou, Hadidjatou; Bodart, Jean-François; Khalife, Jamal; Pierrot, Christine

    2014-01-01

    In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V283, G292 and M296) of PfPTPA are indispensable for the interaction and that the G292 residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity. PMID:24521882

  13. B55α PP2A Holoenzymes Modulate the Phosphorylation Status of the Retinoblastoma-related Protein p107 and Its Activation*

    PubMed Central

    Jayadeva, Girish; Kurimchak, Alison; Garriga, Judit; Sotillo, Elena; Davis, Anthony J.; Haines, Dale S.; Mumby, Marc; Graña, Xavier

    2010-01-01

    Pocket proteins negatively regulate transcription of E2F-dependent genes and progression through the G0/G1 transition and the cell cycle restriction point in G1. Pocket protein repressor activities are inactivated via phosphorylation at multiple Pro-directed Ser/Thr sites by the coordinated action of G1 and G1/S cyclin-dependent kinases. These phosphorylations are reversed by the action of two families of Ser/Thr phosphatases: PP1, which has been implicated in abrupt dephosphorylation of retinoblastoma protein (pRB) in mitosis, and PP2A, which plays a role in an equilibrium that counteracts cyclin-dependent kinase (CDK) action throughout the cell cycle. However, the identity of the trimeric PP2A holoenzyme(s) functioning in this process is unknown. Here we report the identification of a PP2A trimeric holoenzyme containing B55α, which plays a major role in restricting the phosphorylation state of p107 and inducing its activation in human cells. Our data also suggest targeted selectivity in the interaction of pocket proteins with distinct PP2A holoenzymes, which is likely necessary for simultaneous pocket protein activation. PMID:20663872

  14. The phosphorylated form of FTY720 activates PP2A, represses inflammation and is devoid of S1P agonism in A549 lung epithelial cells.

    PubMed

    Rahman, Md Mostafizur; Prünte, Laura; Lebender, Leonard F; Patel, Brijeshkumar S; Gelissen, Ingrid; Hansbro, Philip M; Morris, Jonathan C; Clark, Andrew R; Verrills, Nicole M; Ammit, Alaina J

    2016-11-16

    Protein phosphatase 2A (PP2A) activity can be enhanced pharmacologically by PP2A-activating drugs (PADs). The sphingosine analog FTY720 is the best known PAD and we have shown that FTY720 represses production of pro-inflammatory cytokines responsible for respiratory disease pathogenesis. Whether its phosphorylated form, FTY720-P, also enhances PP2A activity independently of the sphingosine 1-phosphate (S1P) pathway was unknown. Herein, we show that FTY720-P enhances TNF-induced PP2A phosphatase activity and significantly represses TNF-induced interleukin 6 (IL-6) and IL-8 mRNA expression and protein secretion from A549 lung epithelial cells. Comparing FTY720 and FTY720-P with S1P, we show that unlike S1P, the sphingosine analogs do not induce cytokine production on their own. In fact, FTY720 and FTY720-P significantly repress S1P-induced IL-6 and IL-8 production. We then examined their impact on expression of cyclooxygenase 2 (COX-2) and resultant prostaglandin E2 (PGE2) production. S1P did not increase production of this pro-inflammatory enzyme because COX-2 mRNA gene expression is NF-κB-dependent, and unlike TNF, S1P did not activate NF-κB. However, TNF-induced COX-2 mRNA expression and PGE2 secretion is repressed by FTY720 and FTY720-P. Hence, FTY720-P enhances PP2A activity and that PADs can repress production of pro-inflammatory cytokines and enzymes in A549 lung epithelial cells in a manner devoid of S1P agonism.

  15. A triangular connection between Cyclin G, PP2A and Akt1 in the regulation of growth and metabolism in Drosophila

    PubMed Central

    Fischer, Patrick; Preiss, Anette; Nagel, Anja C.

    2016-01-01

    ABSTRACT Size and weight control is a tightly regulated process, involving the highly conserved Insulin receptor/target of rapamycin (InR/TOR) signaling cascade. We recently identified Cyclin G (CycG) as an important modulator of InR/TOR signaling activity in Drosophila. cycG mutant flies are underweight and show a disturbed fat metabolism resembling TOR mutants. In fact, InR/TOR signaling activity is disturbed in cycG mutants at the level of Akt1, the central kinase linking InR and TORC1. Akt1 is negatively regulated by protein phosphatase PP2A. Notably the binding of the PP2A B′-regulatory subunit Widerborst (Wdb) to Akt1 is differentially regulated in cycG mutants, presumably by a direct interaction of CycG and Wdb. Since the metabolic defects of cycG mutant animals are abrogated by a concomitant loss of Wdb, CycG presumably influences Akt1 activity at the PP2A nexus. Here we show that Well rounded (Wrd), another B' subunit of PP2A in Drosophila, binds CycG similar to Wdb, and that its loss ameliorates some, but not all, of the metabolic defects of cycG mutants. We propose a model, whereby the binding of CycG to a particular B′-regulatory subunit influences the tissue specific activity of PP2A, required for the fine tuning of the InR/TOR signaling cascade in Drosophila. PMID:26980713

  16. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach.

    PubMed

    Kondo, Koyuki; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP) 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades.

  17. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach

    PubMed Central

    Kondo, Koyuki; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP) 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades. PMID:26690982

  18. Silencing [Formula: see text] Rescues Tau Pathologies and Memory Deficits through Rescuing PP2A and Inhibiting GSK-3β Signaling in Human Tau Transgenic Mice.

    PubMed

    Zhang, Yao; Ma, Rong-Hong; Li, Xia-Chun; Zhang, Jia-Yu; Shi, Hai-Rong; Wei, Wei; Luo, Dan-Ju; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2014-01-01

    Increase of inhibitor-2 of protein phosphatase-2A [Formula: see text] is associated with protein phosphatase-2A (PP2A) inhibition and tau hyperphosphorylation in Alzheimer's disease (AD). Down-regulating [Formula: see text] attenuated amyloidogenesis and improved the cognitive functions in transgenic mice expressing amyloid precursor protein (tg2576). Here, we found that silencing [Formula: see text] by hippocampal infusion of [Formula: see text] down-regulated [Formula: see text] (~45%) with reduction of tau phosphorylation/accumulation, improvement of memory deficits, and dendritic plasticity in 12-month-old human tau transgenic mice. Silencing [Formula: see text] not only restored PP2A activity but also inhibited glycogen synthase kinase-3β (GSK-3β) with a significant activation of protein kinase A (PKA) and Akt. In HEK293/tau and N2a/tau cells, silencing [Formula: see text] by [Formula: see text] also significantly reduced tau hyperphosphorylation with restoration of PP2A activity and inhibition of GSK-3β, demonstrated by the decreased GSK-3β total protein and mRNA levels, and the increased inhibitory phosphorylation of GSK-3β at serine-9. Furthermore, activation of PKA but not Akt mediated the inhibition of GSK-3β by [Formula: see text] silencing. We conclude that targeting [Formula: see text] can improve tau pathologies and memory deficits in human tau transgenic mice, and activation of PKA contributes to GSK-3β inhibition induced by silencing [Formula: see text]in vitro, suggesting that [Formula: see text] is a promising multiple target of AD.

  19. par-1, Atypical pkc, and PP2A/B55 sur-6 Are Implicated in the Regulation of Exocyst-Mediated Membrane Trafficking in Caenorhabditis elegans

    PubMed Central

    Jiu, Yaming; Hasygar, Kiran; Tang, Lois; Liu, Yanbo; Holmberg, Carina I.; Bürglin, Thomas R.; Hietakangas, Ville; Jäntti, Jussi

    2013-01-01

    The exocyst is a conserved protein complex that is involved in tethering secretory vesicles to the plasma membrane and regulating cell polarity. Despite a large body of work, little is known how exocyst function is controlled. To identify regulators for exocyst function, we performed a targeted RNA interference (RNAi) screen in Caenorhabditis elegans to uncover kinases and phosphatases that genetically interact with the exocyst. We identified seven kinase and seven phosphatase genes that display enhanced phenotypes when combined with hypomorphic alleles of exoc-7 (exo70), exoc-8 (exo84), or an exoc-7;exoc-8 double mutant. We show that in line with its reported role in exocytotic membrane trafficking, a defective exoc-8 caused accumulation of exocytotic soluble NSF attachment protein receptor (SNARE) proteins in both intestinal and neuronal cells in C. elegans. Down-regulation of the phosphatase protein phosphatase 2A (PP2A) phosphatase regulatory subunit sur-6/B55 gene resulted in accumulation of exocytic SNARE proteins SNB-1 and SNAP-29 in wild-type and in exoc-8 mutant animals. In contrast, RNAi of the kinase par-1 caused reduced intracellular green fluorescent protein signal for the same proteins. Double RNAi experiments for par-1, pkc-3, and sur-6/B55 in C. elegans suggest a possible cooperation and involvement in postembryo lethality, developmental timing, as well as SNARE protein trafficking. Functional analysis of the homologous kinases and phosphatases in Drosophila median neurosecretory cells showed that atypical protein kinase C kinase and phosphatase PP2A regulate exocyst-dependent, insulin-like peptide secretion. Collectively, these results characterize kinases and phosphatases implicated in the regulation of exocyst function, and suggest the possibility for interplay between the par-1 and pkc-3 kinases and the PP2A phosphatase regulatory subunit sur-6 in this process. PMID:24192838

  20. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells

    PubMed Central

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-01-01

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323

  1. AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway.

    PubMed

    Chen, Bo; Li, Jin; Zhu, Haibo

    2016-10-01

    The differentiation of macrophages into lipid-laden foam cells is a hallmark in early-stage atherosclerosis. The developmental role of adenosine monophosphate-activated protein kinase (AMPK) in a transformation of foam cells, especially in macrophage cholesterol uptake that remains undetermined. Here we demonstrate that AMPK activation in response to IMM-H007 or AICAR resulted in a decrease in macrophage cholesterol uptake and thus inhibited foam cell formation in macrophages mediated by oxidized low-density lipoprotein (oxLDL). This functional change was caused by a downregulation of mRNA and protein expression of LOX-1 but not other scavenger receptors, including scavenger receptor-A (SR-A), CD36 and scavenger receptor-BI (SR-BI). The expression of LOX-1 was regulated by AMPK activation induced decreased phosphorylation of nuclear transcription factor NF-κB, since siRNA interference or dominant negative AMPK overexpression significantly promotes Ser536 dephosphorylation of NF-κB p65 and thus increases LOX-1 expression. Moreover, pharmacological AMPK activation was shown to promote protein phosphatase 2A (PP2A) activity and the specific PP2A inhibitor, okadaic acid, could prevent the effects of IMM-H007 or AICAR on NF-κB and LOX-1. In vivo, pharmacological AMPK activation reduced the lesion size of atherosclerosis and the expression of LOX-1 in aortas in apolipoprotein E-deficient mice. Our current findings suggest a novel mechanism of LOX-1 regulation by AMPK to attenuate macrophage oxLDL uptake and atherosclerosis.

  2. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity.

    PubMed

    Umberger, Nicole L; Caspary, Tamara

    2015-01-15

    Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-Akt(T308) and P-Akt(S473), and previous work showed decreased P-Akt(S473) in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-Akt(T308) and P-Akt(S473) in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-Akt(T308). Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-Akt(S473) or P-Akt(T308) upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA-dependent phosphorylation of Akt(S473) and Akt(T308) in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.

  3. Altered regulation of the Spry2/Dyrk1A/PP2A triad by homocysteine impairs neural progenitor cell proliferation.

    PubMed

    Rabaneda, Luis G; Geribaldi-Doldán, Noelia; Murillo-Carretero, Maribel; Carrasco, Manuel; Martínez-Salas, José M; Verástegui, Cristina; Castro, Carmen

    2016-12-01

    Hyperhomocysteinemia reduces neurogenesis in the adult mouse brain. Homocysteine (Hcy) inhibits postnatal neural progenitor cell (NPC) proliferation by specifically impairing the fibroblast growth factor receptor (FGFR)-Erk1/2-cyclin E signaling pathway. We demonstrate herein that the inhibition of FGFR-dependent NPC proliferation induced by Hcy is mediated by its capacity to alter the cellular methylation potential. Our results show that this alteration modified the expression pattern and activity of Sprouty2 (Spry2), a negative regulator of the above mentioned pathway. Both elevated concentrations of Hcy and methyltransferase activity inhibition induced Spry2 promoter demethylation in NPC cultures leading to a sustained upregulation of the expression of Spry2 mRNA and protein. In addition, protein levels of two kinases responsible for Spry2 activation/deactivation were altered by Hcy: Spry2 kinase Dyrk1A levels diminished while Spry2 phosphatase PP2A increased, leading to changes in the phosphorylation pattern, activity and stability of Spry2. In conclusion, Hcy inhibits NPC proliferation by indirect mechanisms involving alterations in DNA methylation, gene expression, and Spry2 function, causing FGFR signaling impairment.

  4. Active β-catenin is regulated by the PTEN/PI3 kinase pathway: a role for protein phosphatase PP2A

    PubMed Central

    Persad, Amit; Venkateswaran, Geetha; Hao, Li; Garcia, Maria E.; Yoon, Jenny; Sidhu, Jaskiran; Persad, Sujata

    2016-01-01

    Dysregulation of Wnt/β-catenin signaling has been associated with the development and progression of many cancers. The stability and subcellular localization of β-catenin, a dual functional protein that plays a role in intracellular adhesion and in regulating gene expression, is tightly regulated. However, little is known about the transcriptionally active form of β-catenin, Active Beta Catenin (ABC), that is unphosphorylated at serine 37 (Ser37) and threonine 41 (Thr41). Elucidating the mechanism by which β-catenin is activated to generate ABC is vital to the development of therapeutic strategies to block β-catenin signaling for cancer treatment. Using melanoma, breast and prostate cancer cell lines, we show that while cellular β-catenin levels are regulated by the Wnt pathway, cellular ABC levels are mainly regulated by the PI3K pathway and are dependent on the phosphatase activity of the protein phosphatase PP2A. Furthermore, we demonstrate that although the PI3K/PTEN pathway does not regulate total β-catenin protein levels within the cell, it plays a role in regulating the subcellular localization of β-catenin. Our results support a novel functional interaction/cross-talk between the PTEN/PI3K and Wnt pathways in the regulation of the subcellular/nuclear levels of ABC, which is crucially important for the protein's activity as a transcription factor and its biological effects in health and disease. PMID:28191283

  5. A PP2A regulatory subunit PPTR-1 regulates the C. elegans Insulin/IGF-1 signaling pathway by modulating AKT-1 phosphorylation

    PubMed Central

    Padmanabhan, Srivatsan; Mukhopadhyay, Arnab; Narasimhan, Sri Devi; Tesz, Gregory; Czech, Michael P.; Tissenbaum, Heidi A.

    2009-01-01

    Summary The C. elegans insulin/IGF-1 signaling (IIS) cascade plays a central role in the regulation of lifespan, dauer diapause, metabolism and stress response. The major regulatory control of IIS is through phosphorylation of its components by serine/threonine-specific protein kinases. In a RNAi screen for serine/threonine protein phosphatases that counter-balance the effect of the kinases in the IIS pathway, we identified pptr-1, a B56 regulatory subunit of the PP2A holoenzyme. Modulation of pptr-1 affects phenotypes associated with the IIS pathway including lifespan, dauer, stress resistance and fat storage. We show that PPTR-1 functions by regulating worm AKT-1 phosphorylation at Thr 350. With striking conservation, mammalian B56β regulates Akt phosphorylation at Thr 308 in 3T3-L1 adipocytes. In C. elegans, this modulation ultimately leads to changes in subcellular localization and transcriptional activity of the forkhead transcription factor DAF-16. This study reveals a conserved role for the B56 regulatory subunit in modulating insulin signaling through AKT dephosphorylation and thereby has widespread implications in cancer and diabetes research. PMID:19249087

  6. Rapamycin inhibits BAFF-stimulated cell proliferation and survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells.

    PubMed

    Zeng, Qingyu; Zhang, Hai; Qin, Jiamin; Xu, Zhigang; Gui, Lin; Liu, Beibei; Liu, Chunxiao; Xu, Chong; Liu, Wen; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2015-12-01

    B-cell activating factor (BAFF) is involved in not only physiology of normal B cells, but also pathophysiology of aggressive B cells related to malignant and autoimmune diseases. Rapamycin, a lipophilic macrolide antibiotic, has recently shown to be effective in the treatment of human lupus erythematosus. However, how rapamycin inhibits BAFF-stimulated B-cell proliferation and survival has not been fully elucidated. Here, we show that rapamycin inhibited human soluble BAFF (hsBAFF)-induced cell proliferation and survival in normal and B-lymphoid (Raji and Daudi) cells by activation of PP2A and inactivation of Erk1/2. Pretreatment with PD98059, down-regulation of Erk1/2, expression of dominant negative MKK1, or overexpression of wild-type PP2A potentiated rapamycin's suppression of hsBAFF-activated Erk1/2 and B-cell proliferation/viability, whereas expression of constitutively active MKK1, inhibition of PP2A by okadaic acid, or expression of dominant negative PP2A attenuated the inhibitory effects of rapamycin. Furthermore, expression of a rapamycin-resistant and kinase-active mTOR (mTOR-T), but not a rapamycin-resistant and kinase-dead mTOR-T (mTOR-TE), conferred resistance to rapamycin's effects on PP2A, Erk1/2 and B-cell proliferation/viability, implying mTOR-dependent mechanism involved. The findings indicate that rapamycin inhibits BAFF-stimulated cell proliferation/survival by targeting mTOR-mediated PP2A-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Our data highlight that rapamycin may be exploited for preventing excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.

  7. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells.

    PubMed

    Hales, Eric C; Orr, Steven M; Larson Gedman, Amanda; Taub, Jeffrey W; Matherly, Larry H

    2013-08-02

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr(308) phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr(308) phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr(308) phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr(308) by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr(172) and p70S6K-Thr(389), both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K.

  8. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage

    PubMed Central

    Tong, Y; Ying, H; Liu, R; Li, L; Bergholz, J; Xiao, Z-X

    2015-01-01

    Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development. PMID:25675300

  9. Pin1 inhibits PP2A-mediated Rb dephosphorylation in regulation of cell cycle and S-phase DNA damage.

    PubMed

    Tong, Y; Ying, H; Liu, R; Li, L; Bergholz, J; Xiao, Z-X

    2015-02-12

    Inactivation of the retinoblastoma protein (Rb) has a key role in tumorigenesis. It is well established that Rb function is largely regulated by a dynamic balance of phosphorylation and dephosphorylation. Although much research has been done to understand the mechanisms and function of RB phosphorylation, the regulation of Rb dephosphorylation is still not well understood. In this study, we demonstrate that Pin1 has an important role in the regulation of Rb function in cell cycle progression and S-phase checkpoint upon DNA damage. We show that the Rb C-pocket directly binds to the Pin1 WW domain in vitro and in vivo, and that the phosphorylation of Rb C-pocket by G1/S Cyclin/Cyclin-dependent kinase complexes is critical for mediating this interaction. We further show that Rb-mediated cell cycle arrest and Rb-induced premature cellular senescence are effectively inhibited by Pin1 expression. In addition, DNA damage induces Rb dephosphorylation in a PP2A-dependent manner, and this process is inhibited by Pin1. Furthermore, the overexpression of Pin1 promotes Rb hyperphosphorylation upon S-phase DNA damage. Importantly, both the Pin1 WW domain and isomerase activity are required for its effect on S-phase checkpoint. Moreover, the overexpression of Pin1 is correlated with Rb hyperphosphorylation in breast cancer biopsies. These results indicate that Pin1 has a critical role in the modulation of Rb function by the regulation of Rb dephosphorylation, which may have an important pathological role in cancer development.

  10. Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle.

    PubMed

    Lorca, Thierry; Bernis, Cyril; Vigneron, Suzanne; Burgess, Andrew; Brioudes, Estelle; Labbé, Jean-Claude; Castro, Anna

    2010-07-01

    Recent results indicate that regulating the balance between cyclin-B-Cdc2 kinase, also known as M-phase-promoting factor (MPF), and protein phosphatase 2A (PP2A) is crucial to enable correct mitotic entry and exit. In this work, we studied the regulatory mechanisms controlling the cyclin-B-Cdc2 and PP2A balance by analysing the activity of the Greatwall kinase and PP2A, and the different components of the MPF amplification loop (Myt1, Wee1, Cdc25) during the first embryonic cell cycle. Previous data indicated that the Myt1-Wee1-Cdc25 equilibrium is tightly regulated at the G2-M and M-G1 phase transitions; however, no data exist regarding the regulation of this balance during M phase and interphase. Here, we demonstrate that constant regulation of the cyclin-B-Cdc2 amplification loop is required for correct mitotic division and to promote correct timing of mitotic entry. Our results show that removal of Cdc25 from metaphase-II-arrested oocytes promotes mitotic exit, whereas depletion of either Myt1 or Wee1 in interphase egg extracts induces premature mitotic entry. We also provide evidence that, besides the cyclin-B-Cdc2 amplification loop, the Greatwall-PP2A pathway must also be tightly regulated to promote correct first embryonic cell division. When PP2A is prematurely inhibited in the absence of cyclin-B-Cdc2 activation, endogenous cyclin-A-Cdc2 activity induces irreversible aberrant mitosis in which there is, first, partial transient phosphorylation of mitotic substrates and, second, subsequent rapid and complete degradation of cyclin A and cyclin B, thus promoting premature and rapid exit from mitosis.

  11. Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae

    PubMed Central

    2011-01-01

    Background Treatment of plants with HrpNEa, a protein of harpin group produced by Gram-negative plant pathogenic bacteria, induces plant resistance to insect herbivores, including the green peach aphid Myzus persicae, a generalist phloem-feeding insect. Under attacks by phloem-feeding insects, plants defend themselves using the phloem-based defense mechanism, which is supposed to involve the phloem protein 2 (PP2), one of the most abundant proteins in the phloem sap. The purpose of this study was to obtain genetic evidence for the function of the Arabidopsis thaliana (Arabidopsis) PP2-encoding gene AtPP2-A1 in resistance to M. persicae when the plant was treated with HrpNEa and after the plant was transformed with AtPP2-A1. Results The electrical penetration graph technique was used to visualize the phloem-feeding activities of apterous agamic M. persicae females on leaves of Arabidopsis plants treated with HrpNEa and an inactive protein control, respectively. A repression of phloem feeding was induced by HrpNEa in wild-type (WT) Arabidopsis but not in atpp2-a1/E/142, the plant mutant that had a defect in the AtPP2-A1 gene, the most HrpNEa-responsive of 30 AtPP2 genes. In WT rather than atpp2-a1/E/142, the deterrent effect of HrpNEa treatment on the phloem-feeding activity accompanied an enhancement of AtPP2-A1 expression. In PP2OETAt (AtPP2-A1-overexpression transgenic Arabidopsis thaliana) plants, abundant amounts of the AtPP2-A1 gene transcript were detected in different organs, including leaves, stems, calyces, and petals. All these organs had a deterrent effect on the phloem-feeding activity compared with the same organs of the transgenic control plant. When a large-scale aphid population was monitored for 24 hours, there was a significant decrease in the number of aphids that colonized leaves of HrpNEa-treated WT and PP2OETAt plants, respectively, compared with control plants. Conclusions The repression in phloem-feeding activities of M. persicae as a result

  12. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth.

    PubMed

    Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen

    2015-09-01

    Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions.

  13. Docosahexaenoic acid inhibits vascular endothelial growth factor (VEGF)-induced cell migration via the GPR120/PP2A/ERK1/2/eNOS signaling pathway in human umbilical vein endothelial cells.

    PubMed

    Chao, Che-Yi; Lii, Chong-Kuei; Ye, Siou-Yu; Li, Chien-Chun; Lu, Chia-Yang; Lin, Ai-Hsuan; Liu, Kai-Li; Chen, Haw-Wen

    2014-05-07

    Cell migration plays an important role in angiogenesis and wound repair. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is essential for endothelial cell survival, proliferation, and migration. Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, shows both anti-inflammatory and antioxidant activities in vitro and in vivo. This study investigated the molecular mechanism by which DHA down-regulates VEGF-induced cell migration. HUVECs were used as the study model, and the MTT assay, Western blot, wound-healing assay, and phosphatase activity assay were used to explore the effects of DHA on cell migration. GPR120 is the putative receptor for DHA action. The results showed that DHA, PD98059 (an ERK1/2 inhibitor), and GW9508 (a GPR120 agonist) inhibited VEGF-induced cell migration. In contrast, pretreatment with okadaic acid (OA, a PP2A inhibitor) and S-nitroso-N-acetyl-DL-penicillamine (an NO donor) reversed the inhibition of cell migration by DHA. VEGF-induced cell migration was accompanied by phosphorylation of ERK1/2 and eNOS. Treatment of HUVECs with DHA increased PP2A enzyme activity and decreased VEGF-induced phosphorylation of ERK1/2 and eNOS. However, pretreatment with OA significantly decreased DHA-induced PP2A enzyme activity and reversed the DHA inhibition of VEGF-induced ERK1/2 and eNOS phosphorylation. These results suggest that stimulation of PP2A activity and inhibition of the VEGF-induced ERK1/2/eNOS signaling pathway may be involved in the DHA suppression of VEGF-induced cell migration. Thus, the effect of DHA on angiogenesis and wound repair is at least partly by virtue of its attenuation of cell migration.

  14. A Novel Function of F-Box Protein FBXO17 in Negative Regulation of Type I IFN Signaling by Recruiting PP2A for IFN Regulatory Factor 3 Deactivation.

    PubMed

    Peng, Di; Wang, Zining; Huang, Anfei; Zhao, Yong; Qin, F Xiao-Feng

    2017-01-15

    The F-box proteins were originally identified as the key component of SKP1-Cullin1-F-box E3 ligase complexes that control the stability of their specific downstream substrates essential for cell growth and survival. However, the involvement of these proteins in type I IFN (IFN-I) signaling during innate immunity has not been investigated. In this study we report that the F-box protein FBXO17 negatively regulates IFN-I signaling triggered by double-strand DNA, RNA, or viral infection. We found that FBXO17 specifically interacts with IFN regulatory factor 3 (IRF3) and decreases its dimerization and nuclear translocation. The decrease of IRF3 dimerization and nuclear translocation is due to the recruitment of protein phosphatase 2 (PP2A) mediated by FBXO17, resulting in IRF3 dephosphorylation. Interestingly, PP2A recruitment does not require the F-box domain but instead the F-box associated region of the protein; thus, the recruitment is independent of the canonical function of the SKP1-Cullin1-F-box family of E3 ligase. Together, our studies identify a previously unreported role of FBXO17 in regulating IFN-I signaling and further demonstrate a novel mechanism for IRF3 deactivation by F-box protein-mediated recruitment of PP2A.

  15. A Novel Function of F-Box Protein FBXO17 in Negative Regulation of Type I IFN Signaling by Recruiting PP2A for IFN Regulatory Factor 3 Deactivation

    PubMed Central

    Peng, Di; Wang, Zining; Huang, Anfei

    2017-01-01

    The F-box proteins were originally identified as the key component of SKP1-Cullin1-F-box E3 ligase complexes that control the stability of their specific downstream substrates essential for cell growth and survival. However, the involvement of these proteins in type I IFN (IFN-I) signaling during innate immunity has not been investigated. In this study we report that the F-box protein FBXO17 negatively regulates IFN-I signaling triggered by double-strand DNA, RNA, or viral infection. We found that FBXO17 specifically interacts with IFN regulatory factor 3 (IRF3) and decreases its dimerization and nuclear translocation. The decrease of IRF3 dimerization and nuclear translocation is due to the recruitment of protein phosphatase 2 (PP2A) mediated by FBXO17, resulting in IRF3 dephosphorylation. Interestingly, PP2A recruitment does not require the F-box domain but instead the F-box associated region of the protein; thus, the recruitment is independent of the canonical function of the SKP1-Cullin1-F-box family of E3 ligase. Together, our studies identify a previously unreported role of FBXO17 in regulating IFN-I signaling and further demonstrate a novel mechanism for IRF3 deactivation by F-box protein-mediated recruitment of PP2A. PMID:27956528

  16. MiR-1 Overexpression Enhances Ca2+ release and Promotes Cardiac Arrhythmogenesis by Targeting PP2A Regulatory Subunit B56α and Causing CaMKII-Dependent Hyperphosphorylation of RyR2

    PubMed Central

    Terentyev, Dmitry; Belevych, Andriy E.; Terentyeva, Radmila; Martin, Mickey M.; Malana, Geraldine E.; Kuhn, Donald E.; Abdellatif, Maha; Feldman, David S; Elton, Terry S.; Gyorke, Sandor

    2015-01-01

    MicroRNAs are small endogenous noncoding RNAs that regulate protein expression by hybridization to imprecise complementary sequences of target mRNAs. Changes in abundance of muscle-specific microRNA, miR-1, have been implicated in cardiac disease, including arrhythmia and heart failure. However, the specific molecular targets and cellular mechanisms involved in the action of miR-1 in the heart are only beginning to emerge. In this study we investigated the effects of increased expression of miR-1 on excitation-contraction coupling and Ca2+ cycling in rat ventricular myocytes using methods of electrophysiology, Ca2+ imaging and quantitative immunoblotting. Adenoviral-mediated overexpression of miR-1 in myocytes resulted in a marked increase in the amplitude of the inward Ca2+ current, flattening of Ca2+ transients voltage dependency and enhanced frequency of spontaneous Ca2+ sparks while reducing the sarcoplasmic reticulum Ca2+ content as compared with control. In the presence of isoproterenol, rhythmically paced, miR-1-overexpressing myocytes exhibited spontaneous arrhythmogenic oscillations of intracellular Ca2+, events that occurred rarely in control myocytes under the same conditions. The effects of miR-1 were completely reversed by the CaMKII inhibitor KN93. Although phosphorylation of phospholamban was not altered, miR-1 overexpression increased phosphorylation of the ryanodine receptor (RyR2) at S2814 (CaMKII) but not at S2808 (PKA). Overexpression of miR-1 was accompanied by a selective decrease in expression of the protein phosphatase PP2A regulatory subunit B56α involved in PP2A targeting to specialized subcellular domains. We conclude that miR-1 enhances cardiac excitation-contraction coupling by selectively increasing phosphorylation of the L-type and RyR2 channels via disrupting localization of PP2A activity to these channels. PMID:19131648

  17. Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle.

    PubMed

    Tan, Pearl Lin; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2015-05-01

    Oxidative stress, caused by excess reactive oxygen species (ROS), has been hypothesized to cause or exacerbate skeletal muscle wasting in a number of diseases and chronic conditions. ROS, such as hydrogen peroxide, have the potential to affect signal transduction pathways such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt pathway that regulates protein synthesis. Previous studies have found contradictory outcomes for the effect of ROS on the PI3K/Akt signaling pathway, where oxidative stress can either enhance or inhibit Akt phosphorylation. The apparent contradictions could reflect differences in experimental cell types or types of ROS treatments. We replicate both effects in myotubes of cultured skeletal muscle C2C12 cells, and show that increased oxidative stress can either inhibit or enhance Akt phosphorylation. This differential response could be explained: thiol oxidation of Akt, but not the phosphatases PTEN or PP2A, caused a decline in Akt phosphorylation; whereas the thiol oxidation of Akt, PTEN and PP2A increased Akt phosphorylation. These observations indicate that a more complete understanding of the effects of oxidative stress on a signal transduction pathway comes not only from identifying the proteins susceptible to thiol oxidation, but also their relative sensitivity to ROS.

  18. Glycogen synthase kinase-3β regulates leucine-309 demethylation of protein phosphatase-2A via PPMT1 and PME-1.

    PubMed

    Yao, Xiu-Qing; Li, Xia-Chun; Zhang, Xiao-Xue; Yin, Yang-Yang; Liu, Bin; Luo, Dan-Ju; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2012-07-30

    Protein phosphatase-2A (PP2A) activity is significantly suppressed in Alzheimer's disease. We have reported that glycogen synthase kinase-3β (GSK-3β) inhibits PP2A via upregulating the phosphorylation of PP2A catalytic subunit (PP2A(C)). Here we studied the effects of GSK-3β on the inhibitory demethylation of PP2A at leucine-309 (dmL309-PP2A(C)). We found that GSK-3β regulates dmL309-PP2A(C) level by regulating PME-1 and PPMT1. Knockdown of PME-1 or PPMT1 eliminated the effects of GSK-3β on PP2A(C). GSK-3 could negatively regulate PP2A regulatory subunit protein level. We conclude that GSK-3β can inhibit PP2A by increasing the inhibitory L309-demethylation involving upregulation of PME-1 and inhibition of PPMT1.

  19. Calyculins and Related Marine Natural Products as Serine-Threonine Protein Phosphatase PP1 and PP2A Inhibitors and Total Syntheses of Calyculin A, B, and C

    PubMed Central

    Fagerholm, Annika E.; Habrant, Damien; Koskinen, Ari M. P.

    2010-01-01

    Calyculins, highly cytotoxic polyketides, originally isolated from the marine sponge Discodermia calyx by Fusetani and co-workers, belong to the lithistid sponges group. These molecules have become interesting targets for cell biologists and synthetic organic chemists. The serine/threonine protein phosphatases play an essential role in the cellular signalling, metabolism, and cell cycle control. Calyculins express potent protein phosphatase 1 and 2A inhibitory activity, and have therefore become valuable tools for cellular biologists studying intracellular processes and their control by reversible phosphorylation. Calyculins might also play an important role in the development of several diseases such as cancer, neurodegenerative diseases, and type 2-diabetes mellitus. The fascinating structures of calyculins have inspired various groups of synthetic organic chemists to develop total syntheses of the most abundant calyculins A and C. However, with fifteen chiral centres, a cyano-capped tetraene unit, a phosphate-bearing spiroketal, an anti, anti, anti dipropionate segment, an α-chiral oxazole, and a trihydroxylated γ-amino acid, calyculins reach versatility that only few natural products can surpass, and truly challenge modern chemists’ asymmetric synthesis skills. PMID:20161975

  20. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice.

    PubMed

    Liangpunsakul, Suthat; Rahmini, Yasmeen; Ross, Ruth A; Zhao, Zhenwen; Xu, Yan; Crabb, David W

    2012-03-01

    Our previous data showed the inhibitory effect of ethanol on AMP-activated protein kinase phosphorylation, which appears to be mediated, in part, through increased levels of hepatic ceramide and activation of protein phosphatase 2A (Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Am J Physiol Gastrointest Liver Physiol 298: G1004-G1012, 2010). The effect of ethanol on AMP-activated protein kinase phosphorylation was reversed by imipramine, suggesting that the generation of ceramide via acid sphingomyelinase (ASMase) is stimulated by ethanol. In this study, we determined the effects of imipramine on the development of hepatic steatosis, the generation of ceramide, and downstream effects of ceramide on inflammatory, insulin, and apoptotic signaling pathways, in ethanol-fed mice. The effect of ethanol and imipramine (10 μg/g body wt ip) on ceramide levels, as well as inflammatory, insulin, and apoptotic signaling pathways, was studied in C57BL/6J mice fed the Lieber-DeCarli diet. Ethanol-fed mice developed the expected steatosis, and cotreatment with imipramine for the last 2 wk of ethanol feeding resulted in improvement in hepatic steatosis. Ethanol feeding for 4 wk induced impaired glucose tolerance compared with controls, and this was modestly improved with imipramine treatment. There was a significant decrease in total ceramide concentrations in response to imipramine in ethanol-fed mice treated with and without imipramine (287 ± 11 vs. 348 ± 12 pmol/mg tissue). The magnitude and specificity of inhibition on each ceramide species differed. A significant decrease was observed for C16 (28 ± 3 vs. 33 ± 2 pmol/mg tissue) and C24 (164 ± 9 vs. 201 ± 4 pmol/mg tissue) ceramide. Ethanol feeding increased the levels of the phosphorylated forms of ERK slightly and increased phospho-p38 and phospho-JNK substantially. The levels of phospho-p38 and phospho-JNK were reduced by treatment with imipramine. The activation of ASMase and generation

  1. A protein phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis.

    PubMed

    Wen, Feng; Wang, Jinqian; Xing, Da

    2012-08-01

    Chloroplast avoidance movements mediated by phototropin 2 (phot2) are one of most important physiological events in the response to high-fluence blue light (BL), which reduces damage to the photosynthetic machinery under excess light. Protein phosphatase 2A-2 (PP2A-2) is an isoform of the catalytic subunit of PP2A, which regulates a number of developmental processes. To investigate whether PP2A-2 was involved in high-fluence BL-induced chloroplast avoidance movements, we first analyzed chloroplast migration in the leaves of the pp2a-2 mutant in response to BL. The data showed that PP2A-2 might act as a positive regulator in phot2-mediated chloroplast avoidance movements, but not in phot1-mediated chloroplast accumulation movements. Then, the effect of okadaic acid (OA) and cantharidin (selective PP2A inhibitors) on high-fluence BL response was further investigated in Arabidopsis thaliana mesophyll cells. Within a certain concentration range, exogenously applied OA or cantharidin inhibited the high-fluence BL-induced chloroplast movements in a concentration-dependent manner. Actin depolymerizing factor (ADF)/cofilin phosphorylation assays demonstrated that PP2A-2 can activate/dephosphorylate ADF/cofilin, an actin-binding protein, in Arabidopsis mesophyll cells. Consistent with this observation, the experiments showed that OA could inhibit ADF1 binding to the actin and suppress the reorganization of the actin cytoskeleton after high-fluence BL irradiation. The adf1 and adf3 mutants also exhibited reduced high-fluence BL-induced chloroplast avoidance movements. In conclusion, we identified that PP2A-2 regulated the activation of ADF/cofilin, which, in turn, regulated actin cytoskeleton remodeling and was involved in phot2-mediated chloroplast avoidance movements.

  2. Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus.

    PubMed

    Preethi, Jayakumar; Singh, Hemant K; Venkataraman, Jois Shreyas; Rajan, Koilmani Emmanuvel

    2014-05-01

    Contextual fear conditioning is a paradigm for investigating cellular mechanisms involved in hippocampus-dependent memory. Earlier, we showed that standardised extract of Bacopa monniera (CDRI-08) improves hippocampus-dependent learning in postnatal rats by elevating the level of serotonin (5-hydroxytryptamine, 5-HT), activate 5-HT3A receptors, and cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein. In this study, we have further examined the molecular mechanism of CDRI-08 in hippocampus-dependent memory and compared to the histone deacetylase (HDACs) inhibitor sodium butyrate (NaB). To assess the hippocampus-dependent memory, wistar rat pups were subjected to contextual fear conditioning (CFC) following daily (postnatal days 15-29) administration of vehicle solution (0.5 % gum acacia + 0.9 % saline)/CDRI-08 (80 mg/kg, p.o.)/NaB (1.2 g/kg in PBS, i.p.). CDRI-08/NaB treated group showed enhanced freezing behavior compared to control group when re-exposed to the same context. Administration of CDRI-08/NaB resulted in activation of extracellular signal-regulated kinase ERK/CREB signaling cascade and up-regulation of p300, Ac-H3 and Ac-H4 levels, and down-regulation of HDACs (1, 2) and protein phosphatases (PP1α, PP2A) in hippocampus following CFC. This would subsequently result in an increased brain-derived neurotrophic factor (Bdnf) (exon IV) mRNA in hippocampus. Altogether, our results indicate that CDRI-08 enhances hippocampus-dependent contextual memory by differentially regulating histone acetylation and protein phosphatases in hippocampus.

  3. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.

    PubMed Central

    Janssens, V; Goris, J

    2001-01-01

    Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon. PMID:11171037

  4. Protein phosphatase 2A Cα regulates osteoblast differentiation and the expressions of bone sialoprotein and osteocalcin via osterix transcription factor.

    PubMed

    Okamura, Hirohiko; Yoshida, Kaya; Yang, Di; Haneji, Tatsuji

    2013-05-01

    Serine/threonine protein phosphatase 2A (PP2A) participates in regulating many important physiological processes such as cell cycle, growth, apoptosis, and signal transduction. Osterix is a zinc-finger-containing transcription factor that is essential for osteoblast differentiation and regulation of many bone-related genes. We have recently reported that decrease in α-isoform of PP2A catalytic subunit (PP2A Cα) accelerates osteoblast differentiation through the expression of bone-related genes. In this study, we further examined the role of PP2A Cα in osteoblast differentiation by establishing the stable cell lines that overexpress PP2A Cα. Overexpression of PP2A Cα reduced alkaline phosphatase (ALP) activity. Osteoblast differentiation and mineralization were also decreased in PP2A Cα-overexpressing cells, with reduction of bone-related genes including osterix, bone sialoprotein (Bsp), and osteocalcin (OCN). Luciferase assay showed that the transcriptional activity of the Osterix promoter region was decreased in PP2A Cα-overexpressing cells. Introduction of ectopic Osterix rescued the expression of Bsp and OCN in PP2A Cα-overexpressing cells. These results indicate that PP2A Cα and its activity play a negative role in osteoblast differentiation and Osterix is a key factor responsible for regulating the expressions of Bsp and OCN during PP2A Cα-mediated osteoblast differentiation.

  5. Detection of okadaic acid and related esters in mussels during diarrhetic shellfish poisoning (DSP) episodes in Greece using the mouse bioassay, the PP2A inhibition assay and HPLC with fluorimetric detection.

    PubMed

    Prassopoulou, Eleanna; Katikou, Panagiota; Georgantelis, Dimitrios; Kyritsakis, Apostolos

    2009-02-01

    An approach involving chemical, functional and biological techniques was taken for the detection and quantification of the marine toxin okadaic acid (OA) in mussels from Thermaikos and Saronikos Gulfs, Greece, during DSP episodes that occurred in 2006-2007. Samples were analyzed using the mouse bioassay, high performance liquid chromatography with fluorimetric detection (HPLC-FLD), using l-bromoacetylpyrene (BAP), as a precolumn derivatisation reagent, and the protein phosphatase 2A inhibition assay (PP2AIA) using a commercially available kit. Okadaic acid (OA) and its polar and non-polar esters were detected and quantified by HPLC-FLD, after hydrolysis of the samples during preparation. The detection limit of the HPLC method for OA was 5.86 microg OA/kg, which permits this method to be used for the regulatory control of these toxins in shellfish. Comparison of the results by all three methods revealed excellent consistency.

  6. Structural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A

    SciTech Connect

    Xing,Y.; Li, Z.; Chen, Y.; Stock, J.; Jeffrey, P.; Shi, Y.

    2008-01-01

    Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that plays a role in many biological processes. Reversible carboxyl methylation of the PP2A catalytic subunit is an essential regulatory mechanism for its function. Demethylation and negative regulation of PP2A is mediated by a PP2A-specific methylesterase PME-1, which is conserved from yeast to humans. However, the underlying mechanism of PME-1 function remains enigmatic. Here we report the crystal structures of PME-1 by itself and in complex with a PP2A heterodimeric core enzyme. The structures reveal that PME-1 directly binds to the active site of PP2A and that this interaction results in the activation of PME-1 by rearranging the catalytic triad into an active conformation. Strikingly, these interactions also lead to inactivation of PP2A by evicting the manganese ions that are required for the phosphatase activity of PP2A. These observations identify a dual role of PME-1 that regulates PP2A activation, methylation, and holoenzyme assembly in cells.

  7. FAM122A, a new endogenous inhibitor of protein phosphatase 2A

    PubMed Central

    Fan, Li; Liu, Man-Hua; Guo, Meng; Hu, Chuan-Xi; Yan, Zhao-Wen; Chen, Jing; Chen, Guo-Qiang; Huang, Ying

    2016-01-01

    The regulation of the ubiquitously expressed protein phosphatase 2A (PP2A) is essential for various cellular functions such as cell proliferation, transformation, and fate determination. In this study, we demonstrate that the highly conserved protein in mammals, designated FAM122A, directly interacts with PP2A-Aα and B55α rather than B56α subunits, and inhibits the phosphatase activity of PP2A-Aα/B55α/Cα complex. Further, FAM122A potentiates the degradation of catalytic subunit PP2A-Cα with the increased poly-ubiquitination. In agreement, FAM122A silencing inhibits while its overexpression enhances cell growth and colony-forming ability. Collectively, we identify FAM122A as a new endogenous PP2A inhibitor and its physiological and pathophysiological significances warrant to be further investigated. PMID:27588481

  8. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development

    PubMed Central

    Beier, Anna; Krisp, Christoph; Wolters, Dirk A.

    2016-01-01

    ABSTRACT The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora. Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. PMID:27329756

  9. Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors

    PubMed Central

    Lee, Erwin M.; Harrison, Celeste; Kahl, Richard; Flanagan, Hayley; Panicker, Nikita; Mashkani, Baratali; Don, Anthony S.; Morris, Jonathan; Toop, Hamish; Lock, Richard B.; Powell, Jason A.; Thomas, Daniel; Guthridge, Mark A.; Moore, Andrew; Ashman, Leonie K.; Skelding, Kathryn A.; Enjeti, Anoop; Verrills, Nicole M.

    2016-01-01

    Constitutive activation of the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3), via co-expression of its ligand or by genetic mutation, is common in acute myeloid leukemia (AML). In this study we show that FLT3 activation inhibits the activity of the tumor suppressor, protein phosphatase 2A (PP2A). Using BaF3 cells transduced with wildtype or mutant FLT3, we show that FLT3-induced PP2A inhibition sensitizes cells to the pharmacological PP2A activators, FTY720 and AAL(S). FTY720 and AAL(S) induced cell death and inhibited colony formation of FLT3 activated cells. Furthermore, PP2A activators reduced the phosphorylation of ERK and AKT, downstream targets shared by both FLT3 and PP2A, in FLT3/ITD+ BaF3 and MV4-11 cell lines. PP2A activity was lower in primary human bone marrow derived AML blasts compared to normal bone marrow, with blasts from FLT3-ITD patients displaying lower PP2A activity than WT-FLT3 blasts. Reduced PP2A activity was associated with hyperphosphorylation of the PP2A catalytic subunit, and reduced expression of PP2A structural and regulatory subunits. AML patient blasts were also sensitive to cell death induced by FTY720 and AAL(S), but these compounds had minimal effect on normal CD34+ bone marrow derived monocytes. Finally, PP2A activating compounds displayed synergistic effects when used in combination with tyrosine kinase inhibitors in FLT3-ITD+ cells. A combination of Sorafenib and FTY720 was also synergistic in the presence of a protective stromal microenvironment. Thus combining a PP2A activating compound and a FLT3 inhibitor may be a novel therapeutic approach for treating AML. PMID:27329844

  10. Protein serine/threonine Phosphotase-2A is differentially expressed and regulates eye development in vertebrates.

    PubMed

    Liu, W-B; Hu, X-H; Zhang, X-W; Deng, M-X; Nie, L; Hui, S-S; Duan, W; Tao, M; Zhang, C; Liu, J; Hu, W-F; Huang, Z-X; Li, L; Yi, M; Li, T-T; Wang, L; Liu, Y; Liu, S-J; Li, D W-C

    2013-09-01

    Protein serine/threonine phosphatase-2A (PP-2A) is one of the key enzymes responsible for dephosphorylation in vertebrates. PP-2A-mediated dephosphorylation participates in many different biological processes including cell proliferation, differentiation, transformation, apoptosis, autophage and senescence. However, whether PP-2A directly controls animal development remains to be explored. Here, we present direct evidence to show that PP-2A displays important functions in regulating eye development of vertebrates. Using goldfish as a model system, we have demonstrated the following novel information. First, inhibition of PP-2A activity leads to significant death of the treated embryos, which is derived from blastomere apoptosis associated with enhanced phosphorylation of Bcl-XL at Ser-62, and the survived embryos displayed severe phenotype in the eye. Second, knockdown of PP-2A with morpholino oligomers leads to significant death of the injected embryos. The survived embryos from PP-2A knockdown displayed clear retardation in lens differentiation. Finally, overexpression of each catalytic subunit of PP-2A also causes death of majority of the injected embryos and leads to absence of goldfish eye lens or severely disturbed differentiation. Together, our results provide direct evidence that protein phosphatase-2A is important for normal eye development in goldfish.

  11. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A.

    PubMed

    Ogris, E; Du, X; Nelson, K C; Mak, E K; Yu, X X; Lane, W S; Pallas, D C

    1999-05-14

    Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.

  12. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    NASA Astrophysics Data System (ADS)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  13. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    SciTech Connect

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  14. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization1[OPEN

    PubMed Central

    2017-01-01

    Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events. PMID:28034953

  15. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii.

    PubMed

    Lin, Huawen; Miller, Michelle L; Granas, David M; Dutcher, Susan K

    2013-01-01

    Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.

  16. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam

    PubMed Central

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M.; Iqbal, Khalid

    2014-01-01

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr307 and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr307 in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr307. These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5–PP2A complex, and its phosphorylation at Tyr307 by Src. PMID:24395787

  17. Dual Regulation of the Mitotic Exit Network (MEN) by PP2A-Cdc55 Phosphatase

    PubMed Central

    Baro, Barbara; Hernáez, María Luisa; Gil, Concha; Queralt, Ethel

    2013-01-01

    Exit from mitosis in budding yeast is triggered by activation of the key mitotic phosphatase Cdc14. At anaphase onset, the protease separase and Zds1 promote the downregulation of PP2ACdc55 phosphatase, which facilitates Cdk1-dependent phosphorylation of Net1 and provides the first wave of Cdc14 activity. Once Cdk1 activity starts to decline, the mitotic exit network (MEN) is activated to achieve full Cdc14 activation. Here we describe how the PP2ACdc55 phosphatase could act as a functional link between FEAR and MEN due to its action on Bfa1 and Mob1. We demonstrate that PP2ACdc55 regulates MEN activation by facilitating Cdc5- and Cdk1-dependent phosphorylation of Bfa1 and Mob1, respectively. Downregulation of PP2ACdc55 initiates MEN activity up to Cdc15 by Bfa1 inactivation. Surprisingly, the premature Bfa1 inactivation observed does not entail premature MEN activation, since an additional Cdk1-Clb2 inhibitory signal acting towards Dbf2-Mob1 activity restrains MEN activity until anaphase. In conclusion, we propose a clear picture of how PP2ACdc55 functions affect the regulation of various MEN components, contributing to mitotic exit. PMID:24339788

  18. PME-1 modulates protein phosphatase 2A activity to promote the malignant phenotype of endometrial cancer cells.

    PubMed

    Wandzioch, Ewa; Pusey, Michelle; Werda, Amy; Bail, Sophie; Bhaskar, Aishwarya; Nestor, Mariya; Yang, Jing-Jing; Rice, Lyndi M

    2014-08-15

    Protein phosphatase 2A (PP2A) negatively regulates tumorigenic signaling pathways, in part, by supporting the function of tumor suppressors like p53. The PP2A methylesterase PME-1 limits the activity of PP2A by demethylating its catalytic subunit. Here, we report the finding that PME-1 overexpression correlates with increased cell proliferation and invasive phenotypes in endometrial adenocarcinoma cells, where it helps maintain activated ERK and Akt by inhibiting PP2A. We obtained evidence that PME-1 could bind and regulate protein phosphatase 4 (PP4), a tumor-promoting protein, but not the related protein phosphatase 6 (PP6). When the PP2A, PP4, or PP6 catalytic subunits were overexpressed, inhibiting PME-1 was sufficient to limit cell proliferation. In clinical specimens of endometrial adenocarcinoma, PME-1 levels were increased and we found that PME-1 overexpression was sufficient to drive tumor growth in a xenograft model of the disease. Our findings identify PME-1 as a modifier of malignant development and suggest its candidacy as a diagnostic marker and as a therapeutic target in endometrial cancer.

  19. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    PubMed Central

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis. PMID:26805394

  20. Suppression of Scant Identifies Endos as a Substrate of Greatwall Kinase and a Negative Regulator of Protein Phosphatase 2A in Mitosis

    PubMed Central

    Rangone, Hélène; Wegel, Eva; Gatt, Melanie K.; Yeung, Eirene; Flowers, Alexander; Debski, Janusz; Dadlez, Michal; Janssens, Veerle; Carpenter, Adelaide T. C.; Glover, David M.

    2011-01-01

    Protein phosphatase 2A (PP2A) plays a major role in dephosphorylating the targets of the major mitotic kinase Cdk1 at mitotic exit, yet how it is regulated in mitotic progression is poorly understood. Here we show that mutations in either the catalytic or regulatory twins/B55 subunit of PP2A act as enhancers of gwlScant, a gain-of-function allele of the Greatwall kinase gene that leads to embryonic lethality in Drosophila when the maternal dosage of the mitotic kinase Polo is reduced. We also show that heterozygous mutant endos alleles suppress heterozygous gwlScant; many more embryos survive. Furthermore, heterozygous PP2A mutations make females heterozygous for the strong mutation polo11 partially sterile, even in the absence of gwlScant. Heterozygosity for an endos mutation suppresses this PP2A/polo11 sterility. Homozygous mutation or knockdown of endos leads to phenotypes suggestive of defects in maintaining the mitotic state. In accord with the genetic interactions shown by the gwlScant dominant mutant, the mitotic defects of Endos knockdown in cultured cells can be suppressed by knockdown of either the catalytic or the Twins/B55 regulatory subunits of PP2A but not by the other three regulatory B subunits of Drosophila PP2A. Greatwall phosphorylates Endos at a single site, Ser68, and this is essential for Endos function. Together these interactions suggest that Greatwall and Endos act to promote the inactivation of PP2A-Twins/B55 in Drosophila. We discuss the involvement of Polo kinase in such a regulatory loop. PMID:21852956

  1. The Ubiquitin E3 Ligase NOSIP Modulates Protein Phosphatase 2A Activity in Craniofacial Development

    PubMed Central

    Hoffmeister, Meike; Prelle, Carola; Küchler, Philipp; Kovacevic, Igor; Moser, Markus; Müller-Esterl, Werner; Oess, Stefanie

    2014-01-01

    Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. PMID:25546391

  2. Purification and characterization of protein phosphatase 2A from petals of the tulip Tulipa gesnerina.

    PubMed

    Azad, Md Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2006-11-30

    The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748- fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.

  3. Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation.

    PubMed

    Yabe, Ryotaro; Miura, Akane; Usui, Tatsuya; Mudrak, Ingrid; Ogris, Egon; Ohama, Takashi; Sato, Koichi

    2015-01-01

    Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.

  4. Physical association of GPR54 C-terminal with protein phosphatase 2A

    SciTech Connect

    Evans, Barry J.; Wang Zixuan; Mobley, La'Tonya; Khosravi, Davood; Fujii, Nobutaka; Navenot, Jean-Marc; Peiper, Stephen C.

    2008-12-26

    KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.

  5. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    SciTech Connect

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.; E-mail: andy.blakely@vanderbilt.edu

    2005-08-05

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH{sub 2}-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.

  6. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells

    PubMed Central

    Sontag, Jean-Marie; Nunbhakdi-Craig, Viyada; Mitterhuber, Martina; Ogris, Egon; Sontag, Estelle

    2010-01-01

    Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase LCMT1, and demethylation by the methylesterase PME-1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. Here, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of PME-1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes. PMID:21044074

  7. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells.

    PubMed

    Sontag, Jean-Marie; Nunbhakdi-Craig, Viyada; Mitterhuber, Martina; Ogris, Egon; Sontag, Estelle

    2010-12-01

    Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase (LCMT1), and demethylation by the protein phosphatase methylesterase 1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. In this study, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of protein phosphatase methylesterase 1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes.

  8. The Role of PP2A Methylation in Susceptibility and Resistance to TBI and AD-Induced Neurodegeneration

    DTIC Science & Technology

    2014-10-01

    methylation affects sensitivity to behavioral impairments resulting traumatic brain injury caused by shockwave exposure. The primary bases for this...of these transgenes will exert similar effects with respect to shockwave -induced impairments. In the past year of the project, we identified shockwave ...increases. We also identified shockwave -induced behavioral impairments in these animals and similarly assessed the effect of PME over expression on

  9. The Role of PP2A Methylation in Susceptibility and Resistance to TBI and AD-Induced Neurodegeneration

    DTIC Science & Technology

    2015-06-01

    from shockwave exposure, and to compare those results with the effects of the same manipulations on the sensitivity to Alzheimer’s disease (AD) - like...our hypothesis is that they exert similar effects on shockwave -induced impairments. This effort has required a substantial investment in developing...equipment and protocols for exposing mice to a range of shockwave exposure conditions that mimic militarily relevant exposures. We found changes in

  10. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    NASA Technical Reports Server (NTRS)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  11. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals.

    PubMed

    Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2004-05-01

    A protein phosphatase holo-type enzyme (38, 65, and 75 kDa) preparation and a free catalytic subunit (38 kDa) purified from tulip petals were characterized as protein phosphatase 2A (PP2A) by immunological and biochemical approaches. The plasma membrane containing the putative plasma membrane aquaporin (PM-AQP) was prepared from tulip petals, phosphorylated in vitro, and used as the substrate for both of the purified PP2A preparations. Although both preparations dephosphorylated the phosphorylated PM-AQP at 20 degrees C, only the holo-type enzyme preparation acted at 5 degrees C on the phosphorylated PM-AQP with higher substrate specificity, suggesting that regulatory subunits are required for low temperature-dependent dephosphorylation of PM-AQP in tulip petals.

  12. Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney.

    PubMed

    Li, M; Guo, H; Damuni, Z

    1995-02-14

    Two heat-stable protein inhibitors of protein phosphatase 2A (PP2A), tentatively designated I1PP2A and I2PP2A, have been purified to apparent homogeneity from extracts of bovine kidney. The purified preparations of I1PP2A exhibited an apparent M(r) approximately 30,000 and 250,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography on Sephacryl S-300, respectively. In contrast, the purified preparations of I2PP2A exhibited an apparent M(r) approximately 20,000 and 80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography on Sephacryl S-200, respectively. The purified preparations of I1PP2A and I2PP2A inhibited PP2A with 32P-labeled myelin basic protein, 32P-labeled histone H1, 32P-labeled pyruvate dehydrogenase complex, 32P-labeled phosphorylase, and protamine kinase as substrates. By contrast, I1PP2A and I2PP2A exhibited little effect, if any, on the activity of PP2A with 32P-labeled casein, and did not prevent the autodephosphorylation of PP2A in incubations with the autophosphorylation-activated protein kinase [Guo, H., & Damuni, Z. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 2500-2504]. The purified preparations of I1PP2A and I2PP2A had little effect, if any, on the activities of protein phosphatase 1, protein phosphatase 2B, protein phosphatase 2C, and pyruvate dehydrogenase phosphatase. With 32P-labeled MBP as a substrate, kinetic analysis according to Henderson showed that I1PP2A and I2PP2A were noncompetitive and displayed a Ki of about 30 and 25 nM, respectively. Following cleavage with Staphylococcus aureus V8 protease, I1PP2A and I2PP2A displayed distinct peptide patterns, indicating that these inhibitor proteins are the products of distinct genes. The N-terminal amino acid sequences of the purified preparations indicate that I1PP2A and I2PP2A are novel proteins.

  13. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  14. Berberine Attenuates Axonal Transport Impairment and Axonopathy Induced by Calyculin A in N2a Cells

    PubMed Central

    Abid, Morad Dirhem Naji; Yan, Huanhuan; Huang, Hao; Wan, Limin; Feng, Zuohua; Chen, Juan

    2014-01-01

    Berberine is a primary component of the most functional extracts of Coptidis rhizome used in traditional Chinese medicine for centuries. Recent reports indicate that Berberine has the potential to prevent and treat Alzheimer's disease (AD). The previous studies reported that Calyculin A (CA) impaired the axonal transport in neuroblastoma-2a (N2a) cells. Berberine attenuated tau hyperphosphorylation and cytotoxicity induced by CA. Our study aimed at investigating the effects of Berberine on the axonal transport impairment induced by CA in N2a cells. The results showed that Berberine could protect the cell from CA -induced toxicity in metabolism and viability, as well as hyperphosphorylation of tau and neurofilaments (NFs). Furthermore, Berberine could reverse CA-induced axonal transport impairment significantly. Berberine also partially reversed the phosphorylation of the catalytic subunit of PP-2A at Tyrosine 307, a crucial site negatively regulating the activity of PP-2A, and reduced the levels of malondialdehyde and the activity of superoxide dismutase, markers of oxidative stress, induced by CA. The present work for the first time demonstrates that Berberine may play a role in protecting against CA-induced axonal transport impairment by modulating the activity of PP-2A and oxidative stress. Our findings also suggest that Berberine may be a potential therapeutic drug for AD. PMID:24713870

  15. Protein Phosphatase 2A Signaling in Human Prostate Cancer

    DTIC Science & Technology

    2012-06-01

    immunoblot and malachite green based assay, respectively. We observe that LNCaP- shPPP2CA cells have low PP2ACα expression (Figure 1A) and activity...regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001;353:417-39. (6) Jennbacken K, Gustavsson H...cancer cells - - - shPPP2CA. Expression and activity of catalytic subunit of PP2A (PP2ACα) was determined by immunoblot and melachite green - based

  16. Ceramide-Initiated Protein Phosphatase 2A Activation Contributes to Arterial Dysfunction In Vivo

    PubMed Central

    Bharath, Leena P.; Ruan, Ting; Li, Youyou; Ravindran, Anindita; Wan, Xin; Nhan, Jennifer Kim; Walker, Matthew Lewis; Deeter, Lance; Goodrich, Rebekah; Johnson, Elizabeth; Munday, Derek; Mueller, Robert; Kunz, David; Jones, Deborah; Reese, Van; Summers, Scott A.; Babu, Pon Velayutham Anandh; Holland, William L.; Zhang, Quan-Jiang; Abel, E. Dale

    2015-01-01

    Prior studies have implicated accumulation of ceramide in blood vessels as a basis for vascular dysfunction in diet-induced obesity via a mechanism involving type 2 protein phosphatase (PP2A) dephosphorylation of endothelial nitric oxide synthase (eNOS). The current study sought to elucidate the mechanisms linking ceramide accumulation with PP2A activation and determine whether pharmacological inhibition of PP2A in vivo normalizes obesity-associated vascular dysfunction and limits the severity of hypertension. We show in endothelial cells that ceramide associates with the inhibitor 2 of PP2A (I2PP2A) in the cytosol, which disrupts the association of I2PP2A with PP2A leading to its translocation to the plasma membrane. The increased association between PP2A and eNOS at the plasma membrane promotes dissociation of an Akt-Hsp90-eNOS complex that is required for eNOS phosphorylation and activation. A novel small-molecule inhibitor of PP2A attenuated PP2A activation, prevented disruption of the Akt-Hsp90-eNOS complex in the vasculature, preserved arterial function, and maintained normal blood pressure in obese mice. These findings reveal a novel mechanism whereby ceramide initiates PP2A colocalization with eNOS and demonstrate that PP2A activation precipitates vascular dysfunction in diet-induced obesity. Therapeutic strategies targeted to reducing PP2A activation might be beneficial in attenuating vascular complications that exist in the context of type 2 diabetes, obesity, and conditions associated with insulin resistance. PMID:26253611

  17. Effects of detergents on catalytic activity of human endometase/matrilysin 2, a putative cancer biomarker.

    PubMed

    Park, Hyun I; Lee, Seakwoo; Ullah, Asad; Cao, Qiang; Sang, Qing-Xiang Amy

    2010-01-15

    Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 ( approximately 90muM). Their IC(50) values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon's plot; however, the inhibition mechanism of endometase was noncompetitive with a K(i) value of 240muM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.

  18. REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling

    PubMed Central

    Dennis, Michael D.; Coleman, Catherine S.; Berg, Arthur; Jefferson, Leonard S.; Kimball, Scot R.

    2014-01-01

    The protein kinase mTOR (mechanistic target of rapamycin) in complex 1 (mTORC1) promotes cell growth and proliferation in response to anabolic stimuli, including growth factors and nutrients. Growth factors activate mTORC1 by stimulating the kinase Akt, which phosphorylates and inhibits the tuberous sclerosis complex (TSC; which is comprised of TSC1, TSC2, and TBC1D7), thereby stimulating the mTORC1 activator Rheb. Here, we identified the mechanism through which REDD1 (regulated in DNA damage and development 1) represses the mTORC1 signaling pathway. We found that REDD1 promoted the protein phosphatase 2A (PP2A)-dependent dephosphorylation of Akt at Thr308 but not at Ser473. Consistent with previous studies showing that phosphorylation of Akt on Thr308, but not Ser473, is necessary for phosphorylation of TSC2, we observed a REDD1-dependent reduction in the phosphorylation of TSC2 and subsequently in the activity of Rheb. REDD1 and PP2A coimmunoprecipitated with Akt from wild-type but not REDD1-knockout mouse embryonic fibroblasts, suggesting that REDD1 may act as a targeting protein for the catalytic subunit of PP2A. Furthermore, binding to both Akt and PP2A was essential for REDD1 to repress signaling to mTORC1. Overall, the results demonstrate that REDD1 acts not just as a repressor of mTORC1, but also as a constant modulator of the phosphorylation of Akt in response to growth factors and nutrients. PMID:25056877

  19. Explicit water near the catalytic I helix Thr in the predicted solution structure of CYP2A4.

    PubMed

    Gorokhov, Anna; Negishi, Masahiko; Johnson, Eric F; Pedersen, Lars C; Perera, Lalith; Darden, Tom A; Pedersen, Lee G

    2003-01-01

    The solution structure of mouse cytochrome P450 2A4 (CYP2A4), a monooxygenase of deoxysteroids, was obtained using homology modeling and molecular dynamics. The solvent-equilibrated CYP2A4 preserves the essential features of CYP450s. A comparison of the models CYP2A4 and CYP2A4 with testosterone bound CYP2A4/T illustrates the changes induced by the binding of the substrate. Experimental evidence links four amino acid residues to the catalytic activity, substrate specificity, and regioselectivity of this enzyme. Three of the four amino acids are found within contact distance of the testosterone substrate, and therefore may control the binding of the substrate through direct interaction. Remarkably, a water complex previously observed in x-ray crystal structure forms near the bulge in the central I helix that contains a conserved Thr. The properties of the I helix are computed in the context of the presence or absence of ligand.

  20. Myeloid-Specific Gene Deletion of Protein Phosphatase 2A Magnifies MyD88- and TRIF-Dependent Inflammation following Endotoxin Challenge.

    PubMed

    Sun, Lei; Pham, Tiffany T; Cornell, Timothy T; McDonough, Kelli L; McHugh, Walker M; Blatt, Neal B; Dahmer, Mary K; Shanley, Thomas P

    2017-01-01

    Protein phosphatase 2A (PP2A) is a member of the intracellular serine/threonine phosphatases. Innate immune cell activation triggered by pathogen-associated molecular patterns is mediated by various protein kinases, and PP2A plays a counter-regulatory role by deactivating these kinases. In this study, we generated a conditional knockout of the α isoform of the catalytic subunit of PP2A (PP2ACα). After crossing with myeloid-specific cre-expressing mice, effective gene knockout was achieved in various myeloid cells. The myeloid-specific knockout mice (lyM-PP2A(fl/fl)) showed higher mortality in response to endotoxin challenge and bacterial infection. Upon LPS challenge, serum levels of TNF-α, KC, IL-6, and IL-10 were significantly increased in lyM-PP2A(fl/fl) mice, and increased phosphorylation was observed in MAPK pathways (p38, ERK, JNK) and the NF-κB pathway (IKKα/β, NF-κB p65) in bone marrow-derived macrophages (BMDMs) from knockout mice. Heightened NF-κB activation was not associated with degradation of IκBα; instead, enhanced phosphorylation of the NF-κB p65 subunit and p38 phosphorylation-mediated TNF-α mRNA stabilization appear to contribute to the increased TNF-α expression. In addition, increased IL-10 expression appears to be due to PP2ACα-knockout-induced IKKα/β hyperactivation. Microarray experiments indicated that the Toll/IL-1R domain-containing adaptor inducing IFN-β/ TNFR-associated factor 3 pathway was highly upregulated in LPS-treated PP2ACα-knockout BMDMs, and knockout BMDMs had elevated IFN-α/β production compared with control BMDMs. Serum IFN-β levels from PP2ACα-knockout mice treated with LPS were also greater than those in controls. Thus, we demonstrate that PP2A plays an important role in regulating inflammation and survival in the setting of septic insult by targeting MyD88- and Toll/IL-1R domain-containing adaptor inducing IFN-β-dependent pathways.

  1. MID1 Catalyzes the Ubiquitination of Protein Phosphatase 2A and Mutations within Its Bbox1 Domain Disrupt Polyubiquitination of Alpha4 but Not of PP2Ac

    PubMed Central

    Du, Haijuan; Wu, Kuanlin; Didoronkute, Alma; Levy, Marcus V. A.; Todi, Nimish; Shchelokova, Anna; Massiah, Michael A.

    2014-01-01

    MID1 is a microtubule-associated protein that belongs to the TRIM family. MID1 functions as an ubiquitin E3 ligase, and recently was shown to catalyze the polyubiquitination of, alpha4, a protein regulator of protein phosphatase 2A (PP2A). It has been hypothesized that MID1 regulates PP2A, requiring the intermediary interaction with alpha4. Here we report that MID1 catalyzes the in vitro ubiquitination of the catalytic subunit of PP2A (PP2Ac) in the absence of alpha4. In the presence of alpha4, the level of PP2Ac ubiquitination is reduced. Using the MID1 RING-Bbox1-Bbox2 (RB1B2) construct containing the E3 ligase domains, we investigate the functional effects of mutations within the Bbox domains that are identified in patients with X-linked Opitz G syndrome (XLOS). The RB1B2 proteins harboring the C142S, C145T, A130V/T mutations within the Bbox1 domain and C195F mutation within the Bbox2 domain maintain auto-polyubiquitination activity. Qualitatively, the RB1B2 proteins containing these mutations are able to catalyze the ubiquitination of PP2Ac. In contrast, the RB1B2 proteins with mutations within the Bbox1 domain are unable to catalyze the polyubiquitination of alpha4. These results suggest that unregulated alpha4 may be the direct consequence of these natural mutations in the Bbox1 domain of MID1, and hence alpha4 could play a greater role to account for the increased amount of PP2A observed in XLOS-derived fibroblasts. PMID:25207814

  2. Structure of a Protein Phosphatase 2A Holoenzyme: Insights into B55-Mediated Tau Dephosphorylation

    SciTech Connect

    Xu, Y.; Chen, Y; Zhang, P; Jeffrey, P; Shi, Y

    2008-01-01

    Protein phosphatase 2A (PP2A) regulates many essential aspects of cellular physiology. Members of the regulatory B/B55/PR55 family are thought to play a key role in the dephosphorylation of Tau, whose hyperphosphorylation contributes to Alzheimer's disease. The underlying mechanisms of the PP2A-Tau connection remain largely enigmatic. Here, we report the complete reconstitution of a Tau dephosphorylation assay and the crystal structure of a heterotrimeric PP2A holoenzyme involving the regulatory subunit B?. We show that B? specifically and markedly facilitates dephosphorylation of the phosphorylated Tau in our reconstituted assay. The B? subunit comprises a seven-bladed ? propeller, with an acidic, substrate-binding groove located in the center of the propeller. The ? propeller latches onto the ridge of the PP2A scaffold subunit with the help of a protruding ? hairpin arm. Structure-guided mutagenesis studies revealed the underpinnings of PP2A-mediated dephosphorylation of Tau.

  3. miRNA-1246 induces pro-inflammatory responses in mesenchymal stem/stromal cells by regulating PKA and PP2A.

    PubMed

    Bott, Alexander; Erdem, Nese; Lerrer, Shalom; Hotz-Wagenblatt, Agnes; Breunig, Christian; Abnaof, Khalid; Wörner, Angelika; Wilhelm, Heike; Münstermann, Ewald; Ben-Baruch, Adit; Wiemann, Stefan

    2017-01-31

    The tumor microenvironment (TME) has an impact on breast cancer progression by creating a pro-inflammatory milieu within the tumor. However, little is known about the roles of miRNAs in cells of the TME during this process. We identified six putative oncomiRs in a breast cancer dataset, all strongly correlating with poor overall patient survival. Out of the six candidates, miR-1246 was upregulated in aggressive breast cancer subtypes and expressed at highest levels in mesenchymal stem/stroma cells (MSCs). Functionally, miR-1246 led to a p65-dependent increase in transcription and release of pro-inflammatory mediators IL-6, CCL2 and CCL5 in MSCs, and increased NF-κB activity. The pro-inflammatory phenotype of miR-1246 in MSCs was independent of TNFα stimulations and mediated by direct targeting of the tumor-suppressors PRKAR1A and PPP2CB. In vitro recapitulation of the TME revealed increased Stat3 phosphorylation in breast epithelial (MCF10A) and cancer cells (SK-BR-3, MCF7, T47D) upon incubation with conditioned medium (CM) of MSCs overexpressing miR-1246. Additionally, this stimulation enhanced proliferation of MCF10A cells, increased migration of MDA-MB-231 cells and induced attraction of THP-1 monocytic cells. Our data shows that miR-1246 acts as both key-enhancer of pro-inflammatory responses in MSCs and putative oncomiR in breast cancer, suggesting its influence on cancer-related inflammation and breast cancer progression.

  4. α1-Antitrypsin Activates Protein Phosphatase 2A to Counter Lung Inflammatory Responses

    PubMed Central

    Geraghty, Patrick; Eden, Edward; Pillai, Manju; Campos, Michael; McElvaney, Noel G.

    2014-01-01

    Rationale: α1-Antitrypsin (A1AT) was identified as a plasma protease inhibitor; however, it is now recognized as a multifunctional protein that modulates immunity, inflammation, proteostasis, apoptosis, and cellular senescence. Like A1AT, protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, regulates similar biologic processes and plays a key role in chronic obstructive pulmonary disease. Objectives: Given their common effects, this study investigated whether A1AT acts via PP2A to alter tumor necrosis factor (TNF) signaling, inflammation, and proteolytic responses in this disease. Methods: PP2A activity was measured in peripheral blood neutrophils from A1AT-deficient (PiZZ) and healthy (PiMM) individuals and in alveolar macrophages from normal (60 mg/kg) and high-dose (120 mg/kg) A1AT-treated PiZZ subjects. PP2A activation was assessed in human neutrophils, airway epithelial cells, and peripheral blood monocytes treated with plasma purified A1AT protein. Similarly, lung PP2A activity was measured in mice administered intranasal A1AT. PP2A was silenced in lung epithelial cells treated with A1AT and matrix metalloproteinase and cytokine production was then measured following TNF-α stimulation. Measurements and Main Results: PP2A was significantly lower in neutrophils isolated from PiZZ compared with PiMM subjects. A1AT protein activated PP2A in human alveolar macrophages, monocytes, neutrophils, airway epithelial cells, and in mouse lungs. This activation required functionally active A1AT protein and protein tyrosine phosphatase 1B expression. A1AT treatment acted via PP2A to prevent p38 and IκBα phosphorylation and matrix metalloproteinase and cytokine induction in TNF-α–stimulated epithelial cells. Conclusions: Together, these data indicate that A1AT modulates PP2A to counter inflammatory and proteolytic responses induced by TNF signaling in the lung. PMID:25341065

  5. Zinc binds to and directly inhibits protein phosphatase 2A in vitro.

    PubMed

    Xiong, Yan; Luo, Dan-Ju; Wang, Xiu-Lian; Qiu, Mei; Yang, Yang; Yan, Xiong; Wang, Jian-Zhi; Ye, Qi-Fa; Liu, Rong

    2015-06-01

    Zinc induces protein phosphatase 2A (PP2A) inactivation and tau hyperphosphorylation through PP2A (tyrosine 307) phosphorylation in cells and the brain, but whether Zn(2+) has a direct inhibitory effect on PP2A is not clear. Here we explored the effect of Zn(2+) on PP2A and their direct interaction in vitro. The results showed that Zn(2+) mimicked the inhibitory effect of okadaic acid on protein phosphatase and prevented tau dephosphorylation in N2a cell lysates. PP2A activity assays indicated that a low concentration (10 μmol/L) of Zn(2+) inhibited PP2A directly. Further Zn(2+)-IDA-agarose affinity binding assays showed that Zn(2+) bound to and inhibited PP2Ac(51-270) but not PP2Ac(1-50) or PP2Ac(271-309). Taken together, Zn(2+) inhibits PP2A directly through binding to PP2Ac(51-270) in vitro.

  6. Targeting inhibitor 2 of protein phosphatase 2A as a therapeutic strategy for prostate cancer treatment

    PubMed Central

    Mukhopadhyay, Archana; Tabanor, Kayann; Chaguturu, Rathnam; Aldrich, Jane V

    2013-01-01

    Inhibitor 2 of protein phosphatase 2A (I2PP2A), a biological inhibitor of the cellular serine/threonine protein phosphatase PP2A, is associated with numerous cellular processes that often lead to the formation and progression of cancer. In this study we hypothesized that targeting the inhibition of I2PP2A’s multiple functions in prostate cancer cells might prevent cancer progression. We have investigated the effect of the small chain C6-ceramide, known to be a bioactive tumor suppressor lipid, on I2PP2A function, thereby affecting c-Myc signaling and histone acetylation in cells. Our data indicated that C6-ceramide treatment of prostate cancer cells induces cell death in PC-3, DU145, and LNCaP cells, but not normal prostate epithelial cells. C6-ceramide was able to disrupt the association between PP2A and I2PP2A. C6-ceramide inhibits I2PP2A’s upregulation of c-Myc and downregulation of histone acetylation in prostate cancer cells. Our data indicated that targeting cancer related signaling pathways through I2PP2A using ceramide as an anti-I2PP2A agent could have beneficial effects as a therapeutic approach to prevent prostate cancer. PMID:24025258

  7. Structural and biochemical characterization of human PR70 in isolation and in complex with the scaffolding subunit of protein phosphatase 2A.

    PubMed

    Dovega, Rebecca; Tsutakawa, Susan; Quistgaard, Esben M; Anandapadamanaban, Madhanagopal; Löw, Christian; Nordlund, Pär

    2014-01-01

    Protein Phosphatase 2A (PP2A) is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A) subunit, a catalytic (C) subunit and various regulatory (B) subunits. Here we report a 2.0 Å crystal structure of the free B''/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B''/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B''/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B'' containing holoenzymes.

  8. Structural and Biochemical Characterization of Human PR70 in Isolation and in Complex with the Scaffolding Subunit of Protein Phosphatase 2A

    PubMed Central

    Dovega, Rebecca; Tsutakawa, Susan; Quistgaard, Esben M.; Anandapadamanaban, Madhanagopal; Löw, Christian; Nordlund, Pär

    2014-01-01

    Protein Phosphatase 2A (PP2A) is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A) subunit, a catalytic (C) subunit and various regulatory (B) subunits. Here we report a 2.0 Å crystal structure of the free B’’/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B’’/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B’’/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B’’ containing holoenzymes. PMID:25007185

  9. Yeast Protein Phosphatase 2A-Cdc55 Regulates the Transcriptional Response to Hyperosmolarity Stress by Regulating Msn2 and Msn4 Chromatin Recruitment

    PubMed Central

    Reiter, Wolfgang; Klopf, Eva; De Wever, Veerle; Anrather, Dorothea; Petryshyn, Andriy; Roetzer, Andreas; Niederacher, Gerhard; Roitinger, Elisabeth; Dohnal, Ilse; Görner, Wolfram; Mechtler, Karl; Brocard, Cécile

    2013-01-01

    We have identified Cdc55, a regulatory B subunit of protein phosphatase 2A (PP2A), as an essential activating factor for stress gene transcription in Saccharomyces cerevisiae. The presence of PP2A-Cdc55 is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. We show that PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 during hyperosmolarity stress. PP2A-Cdc55 also enhances Msn2-dependent transactivation, required for extended chromatin recruitment of the transcription factor. We analyzed a possible direct regulatory role for PP2A-Cdc55 on the phosphorylation status of Msn2. Detailed mass spectrometric and genetic analysis of Msn2 showed that stress exposure causes immediate transient dephosphorylation of Msn2 which is not dependent on PP2A-Cdc55 activity. Furthermore, the Hog1 mitogen-activated protein kinase pathway activity is not influenced by PP2A-Cdc55. We therefore propose that the PP2A-Cdc55 phosphatase is not involved in cytosolic stress signal perception but is involved in a specific intranuclear mechanism to regulate Msn2 and Msn4 nuclear accumulation and chromatin association under stress conditions. PMID:23275436

  10. Role of Protein Phosphatase 2A in Osteoblast Differentiation and Function

    PubMed Central

    Okamura, Hirohiko; Yoshida, Kaya; Morimoto, Hiroyuki; Teramachi, Jumpei; Ochiai, Kazuhiko; Haneji, Tatsuji; Yamamoto, Akihito

    2017-01-01

    The reversible phosphorylation of proteins plays hugely important roles in a variety of cellular processes, such as differentiation, proliferation, and apoptosis. These processes are strictly controlled by protein kinases (phosphorylation) and phosphatases (de-phosphorylation). Here we provide a brief history of the study of protein phosphorylation, including a summary of different types of protein kinases and phosphatases. One of the most physiologically important serine/threonine phosphatases is PP2A. This review provides a description of the phenotypes of various PP2A transgenic mice and further focuses on the known functions of PP2A in bone formation, including its role in osteoblast differentiation and function. A reduction in PP2A promotes bone formation and osteoblast differentiation through the regulation of bone-related transcription factors such as Osterix. Interestingly, downregulation of PP2A also stimulates adipocyte differentiation from undifferentiated mesenchymal cells under the appropriate adipogenic differentiation conditions. In osteoblasts, PP2A is also involved in the ability to control osteoclastogenesis as well as in the proliferation and metastasis of osteosarcoma cells. Thus, PP2A is considered to be a comprehensive factor in controlling the differentiation and function of cells derived from mesenchymal cells such as osteoblasts and adipocytes. PMID:28241467

  11. SET antagonist enhances the chemosensitivity of non-small cell lung cancer cells by reactivating protein phosphatase 2A.

    PubMed

    Hung, Man-Hsin; Wang, Cheng-Yi; Chen, Yen-Lin; Chu, Pei-Yi; Hsiao, Yung-Jen; Tai, Wei-Tien; Chao, Ting-Ting; Yu, Hui-Chuan; Shiau, Chung-Wai; Chen, Kuen-Feng

    2016-01-05

    SET is known as a potent PP2A inhibitor, however, its oncogenic role including its tumorigenic potential and involvement in the development of chemoresistance in non-small cell lung cancer (NSCLC) has not yet been fully discussed. In present study, we investigated the oncogenic role of SET by SET-knockdown and showed that SET silencing impaired cell growth rate, colony formation and tumor sphere formation in A549 cells. Notably, silencing SET enhanced the pro-apoptotic effects of paclitaxel, while ectopic expression of SET diminished the sensitivity of NSCLC cells to paclitaxel. Since the SET protein was shown to affect chemosensitivity, we next examined whether combining a novel SET antagonist, EMQA, sensitized NSCLC cells to paclitaxel. Both the in vitro and in vivo experiments suggested that EMQA and paclitaxel combination treatment was synergistic. Importantly, we found that downregulating p-Akt by inhibiting SET-mediated protein phosphatase 2A (PP2A) inactivation determined the pro-apoptotic effects of EMQA and paclitaxel combination treatment. To dissect the critical site for EMQA functioning, we generated several truncated SET proteins. By analysis of the effects of EMQA on the binding affinities of different truncated SET proteins to PP2A-catalytic subunits, we revealed that the 227-277 amino-acid sequence is critical for EMQA-induced SET inhibition. Our findings demonstrate the critical role of SET in NSCLC, particularly in the development of chemoresistance. The synergistic effects of paclitaxel and the SET antagonist shown in current study encourage further validation of the clinical potential of this combination.

  12. SET antagonist enhances the chemosensitivity of non-small cell lung cancer cells by reactivating protein phosphatase 2A

    PubMed Central

    Hung, Man-Hsin; Wang, Cheng-Yi; Chen, Yen-Lin; Chu, Pei-Yi; Hsiao, Yung-Jen; Tai, Wei-Tien; Chao, Ting-Ting; Yu, Hui-Chuan; Shiau, Chung-Wai; Chen, Kuen-Feng

    2016-01-01

    SET is known as a potent PP2A inhibitor, however, its oncogenic role including its tumorigenic potential and involvement in the development of chemoresistance in non-small cell lung cancer (NSCLC) has not yet been fully discussed. In present study, we investigated the oncogenic role of SET by SET-knockdown and showed that SET silencing impaired cell growth rate, colony formation and tumor sphere formation in A549 cells. Notably, silencing SET enhanced the pro-apoptotic effects of paclitaxel, while ectopic expression of SET diminished the sensitivity of NSCLC cells to paclitaxel. Since the SET protein was shown to affect chemosensitivity, we next examined whether combining a novel SET antagonist, EMQA, sensitized NSCLC cells to paclitaxel. Both the in vitro and in vivo experiments suggested that EMQA and paclitaxel combination treatment was synergistic. Importantly, we found that downregulating p-Akt by inhibiting SET-mediated protein phosphatase 2A (PP2A) inactivation determined the pro-apoptotic effects of EMQA and paclitaxel combination treatment. To dissect the critical site for EMQA functioning, we generated several truncated SET proteins. By analysis of the effects of EMQA on the binding affinities of different truncated SET proteins to PP2A-catalytic subunits, we revealed that the 227–277 amino-acid sequence is critical for EMQA-induced SET inhibition. Our findings demonstrate the critical role of SET in NSCLC, particularly in the development of chemoresistance. The synergistic effects of paclitaxel and the SET antagonist shown in current study encourage further validation of the clinical potential of this combination. PMID:26575017

  13. A novel pool of protein phosphatase 2A is associated with microtubules and is regulated during the cell cycle

    PubMed Central

    1995-01-01

    Immunofluorescence microscopy revealed the presence of protein phosphatase 2A (PP2A) on microtubules in neuronal and nonneuronal cells. Interphase and mitotic spindle microtubules, as well as centrosomes, were all labeled with antibodies against individual PP2A subunits, showing that the AB alpha C holoenzyme is associated with microtubules. Biochemical analysis showed that PP2A could be reversibly bound to microtubules in vitro and that approximately 75% of the PP2A in cytosolic extracts could interact with microtubules. The activity of microtubule-associated PP2A was differentially regulated during the cell cycle. Enzymatic activity was high during S phase and intermediate during G1, while the activity in G2 and M was 20-fold lower than during S phase. The amount of microtubule-bound PP2A remained constant throughout the cell cycle, implying that cell cycle regulation of its enzymatic activity involves factors other than microtubules. These results raise the possibility that PP2A regulates cell cycle-dependent microtubule functions, such as karyokinesis and membrane transport. PMID:7896877

  14. Chlorinated Biphenyl Quinones and Phenyl-2,5-benzoquinone Differentially Modify the Catalytic Activity of Human Hydroxysteroid Sulfotransferase hSULT2A1

    PubMed Central

    Qin, Xiaoyan; Lehmler, Hans-Joachim; Teesch, Lynn M.; Robertson, Larry W.; Duffel, Michael W.

    2013-01-01

    Human hydroxysteroid sulfotransferase (hSULT2A1) catalyzes the sulfation of a broad range of environmental chemicals, drugs, and other xenobiotics in addition to endogenous compounds that include hydroxysteroids and bile acids. Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and oxidized metabolites of PCBs may play significant roles in the etiology of their adverse health effects. Quinones derived from oxidative metabolism of PCBs (PCB-quinones) react with nucleophilic sites in proteins and also undergo redox cycling to generate reactive oxygen species. This, along with the sensitivity of hSULT2A1 to oxidative modification at cysteine residues led us to hypothesize that electrophilic PCB-quinones react with hSULT2A1 to alter its catalytic function. Thus, we examined the effects of four phenylbenzoquinones on the ability of hSULT2A1 to catalyze the sulfation of the endogenous substrate, dehydroepiandrosterone (DHEA). The quinones studied were 2′-chlorophenyl-2,5-benzoquinone (2′-Cl-BQ), 4′-chlorophenyl-2,5-benzoquinone (4′-Cl-BQ), 4′-chlorophenyl-3,6-dichloro-2,5-benzoquinone (3,6,4′-triCl-BQ), and phenyl-2,5-benzoquinone (PBQ). At all concentrations examined, pretreatment of hSULT2A1 with the PCB-quinones decreased catalytic activity of hSULT2A1. Pretreatment with low concentrations of PBQ, however, increased the catalytic activity of the enzyme, while higher concentrations inhibited catalysis. A decrease in substrate inhibition with DHEA was seen following preincubation of hSULT2A1 with all of the quinones. Proteolytic digestion of the enzyme followed by LC/MS analysis indicated PCB-quinone- and PBQ-adducts at Cys55 and Cys199, as well as oxidation products at methionines in the protein. Equilibrium binding experiments and molecular modeling suggested that changes due to these modifications may affect the nucleotide binding site and the entrance to the sulfuryl acceptor binding site of hSULT2A1. PMID:24059442

  15. Interplay of myosin phosphatase and protein phosphatase-2A in the regulation of endothelial nitric-oxide synthase phosphorylation and nitric oxide production

    PubMed Central

    Bátori, Róbert; Bécsi, Bálint; Nagy, Dénes; Kónya, Zoltán; Hegedűs, Csaba; Bordán, Zsuzsanna; Verin, Alexander; Lontay, Beáta; Erdődi, Ferenc

    2017-01-01

    The inhibitory phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) at Thr497 (eNOSpThr497) by protein kinase C or RhoA-activated kinase is a major regulatory determinant of eNOS activity. The signalling mechanisms involved in the dephosphorylation of eNOSpThr497 have not yet been clarified. This study identifies myosin phosphatase (MP) holoenzyme consisting of protein phosphatase-1 catalytic subunit (PP1c) and MP target subunit-1 (MYPT1) as an eNOSpThr497 phosphatase. In support of this finding are: (i) eNOS and MYPT1 interacts in various endothelial cells (ECs) and in in vitro binding assays (ii) MYPT1 targets and stimulates PP1c toward eNOSpThr497 substrate (iii) phosphorylation of MYPT1 at Thr696 (MYPT1pThr696) controls the activity of MP on eNOSpThr497. Phosphatase inhibition suppresses both NO production and transendothelial resistance (TER) of ECs. In contrast, epigallocatechin-3-gallate (EGCG) signals ECs via the 67 kDa laminin-receptor (67LR) resulting in protein kinase A dependent activation of protein phosphatase-2A (PP2A). PP2A dephosphorylates MYPT1pThr696 and thereby stimulates MP activity inducing dephosphorylation of eNOSpThr497 and the 20 kDa myosin II light chains. Thus an interplay of MP and PP2A is involved in the physiological regulation of EC functions implying that an EGCG dependent activation of these phosphatases leads to enhanced NO production and EC barrier improvement. PMID:28300193

  16. Phosphorylated protein phosphatase 2A determines poor outcome in patients with metastatic colorectal cancer

    PubMed Central

    Cristóbal, I; Manso, R; Rincón, R; Caramés, C; Zazo, S; del Pulgar, T G; Cebrián, A; Madoz-Gúrpide, J; Rojo, F; García-Foncillas, J

    2014-01-01

    Background: Protein phosphatase 2A (PP2A) is a tumour suppressor frequently inactivated in human cancer and its tyrosine-307 phosphorylation has been reported as a molecular inhibitory mechanism. Methods: Expression of phosphorylated PP2A (p-PP2A) was evaluated in 250 metastatic colorectal cancer (CRC) patients. Chi-square, Kaplan–Meier and Cox analyses were used to determine correlations with clinical and molecular parameters and impact on clinical outcomes. Results: High p-PP2A levels were found in 17.2% cases and were associated with ECOG performance status (P=0.001) and presence of synchronous metastasis at diagnosis (P=0.035). This subgroup showed substantially worse overall survival (OS) (median OS, 6.0 vs 26.2 months, P<0.001) and progression-free survival (PFS) (median PFS, 3.8 vs 13.3 months, P<0.001). The prognostic impact of p-PP2A was particularly evident in patients aged <70 years (P<0.001). Multivariate analysis revealed that p-PP2A retained its prognostic impact for OS (hazard ratio 2.7; 95% confidence interval, 1.8–4.1; P<0.001) and PFS (hazard ratio 3.0; 95% confidence interval, 1.8–5.0; P<0.001). Conclusions: Phosphorylated PP2A is an alteration that determines poor outcome in metastatic CRC and represents a novel potential therapeutic target in this disease, thus enabling to define a subgroup of patients who could benefit from future treatments based on PP2A activators. PMID:25003662

  17. Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase.

    PubMed

    Wu, K; Knox, R; Sun, X Z; Joseph, P; Jaiswal, A K; Zhang, D; Deng, P S; Chen, S

    1997-11-15

    Human NAD(P)H:quinone acceptor oxidoreductase-2 (NQO2) has been prepared using an Escherichia coli expression method. NQO2 is thought to be an isoform of DT-diaphorase (EC 1.6.99.2) [also referred to as NAD(P)H:quinone acceptor oxidoreductase] because there is a 49% identity between their amino acid sequences. The present investigation has revealed that like DT-diaphorase, NQO2 is a dimer enzyme with one FAD prosthetic group per subunit. Interestingly, NQO2 uses dihydronicotinamide riboside (NRH) rather than NAD(P)H as an electron donor. It catalyzes a two-electron reduction of quinones and oxidation-reduction dyes. One-electron acceptors, such as potassium ferricyanide, cannot be reduced by NQO2. This enzyme also catalyzes a four-electron reduction, using methyl red as the electron acceptor. The NRH-methyl red reductase activity of NQO2 is 11 times the NADH-methyl red reductase activity of DT-diaphorase. In addition, through a four-electron reduction reaction, NQO2 can catalyze nitroreduction of cytotoxic compound CB 1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. NQO2 is 3000 times more effective than DT-diaphorase in the reduction of CB 1954. Therefore, NQO2 is a NRH-dependent oxidoreductase which catalyzes two- and four-electron reduction reactions. NQO2 is resistant to typical inhibitors of DT-diaphorase, such as dicumarol, Cibacron blue, and phenindone. Flavones are inhibitors of NQO2. However, structural requirements of flavones for the inhibition of NQO2 are different from those for DT-diaphorase. The most potent flavone inhibitor tested so far is quercetin (3,5,7,3',4'-. 6pentahydroxyflavone). It has been found that quercetin is a competitive inhibitor with respect to NRH (Ki = 21 nM). NQO2 is 43 amino acids shorter than DT-diaphorase, and it has been suggested that the carboxyl terminus of DT-diaphorase plays a role in substrate binding (S. Chen et al., Protein Sci. 3, 51-57, 1994). In order to understand better the basis of catalytic differences between

  18. Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A

    NASA Technical Reports Server (NTRS)

    Jackson, K.; Soll, D.; Evans, M. L. (Principal Investigator)

    1999-01-01

    The heterotrimeric protein phosphatase 2A (PP2A) is a component of multiple signaling pathways in eukaryotes. Disruption of PP2A activity in Arabidopsis is known to alter auxin transport and growth response pathways. We demonstrated that the regulatory subunit A of an Arabidopsis PP2A interacts with a novel cyclophilin, ROC7. The gene for this cyclophilin encodes a protein that contains a unique 30-amino acid extension at the N-terminus, which distinguishes the gene product from all previously identified Arabidopsis cyclophilins. Altered forms of ROC7 cyclophilin with mutations in the conserved DENFKL domain did not bind to PP2A. Unlike protein phosphatase 2B, PP2A activity in Arabidopsis extracts was not affected by the presence of the cyclophilin-binding molecule cyclosporin. The ROC7 transcript was expressed to high levels in all tissues tested. Expression of an ROC7 antisense transcript gave rise to increased root growth. These results indicate that cyclophilin may have a role in regulating PP2A activity, by a mechanism that differs from that employed for cyclophilin regulation of PP2B.

  19. Reduction of protein phosphatase 2A Cα enhances bone formation and osteoblast differentiation through the expression of bone-specific transcription factor Osterix.

    PubMed

    Okamura, Hirohiko; Yoshida, Kaya; Ochiai, Kazuhiko; Haneji, Tatsuji

    2011-09-01

    The serine/threonine protein phosphatase 2A (PP2A) participates in regulating many important physiological processes such as control of cell cycle, growth, and division. On the other hand, Osterix is a zinc-finger-containing transcription factor that is essential for the differentiation of osteoblasts and regulation of many bone-related genes. Here we examined the effect of okadaic acid (OA), a specific inhibitor of PP2A, on bone formation in vivo and the molecular mechanism regulated by PP2A Cα in osteoblast differentiation. Administration of 1nM OA to the calvarial region in mice increased bone mineral density, as shown by μCT, while histomorphological analysis showed an increase in mineral apposition and bone thickness in the same region. In addition, treatment with 1nM OA stimulated osteoblast differentiation and the expression of Osterix, bone sialoprotein (Bsp), and osteocalcin (OCN) in mouse osteoblastic MC3T3-E1 cells. Moreover, the expression and phosphatase activity of PP2A Cα was decreased in the initial step of osteoblast differentiation, which was in parallel with an increase in Osterix expression. To further clarify the role of PP2A Cα in osteoblast differentiation, we constructed PP2A knock-down cells by infecting MC3T3-E1 cells with a lentivirus expressing shRNA specific for the PP2A Cα. Accordingly, the silencing of PP2A Cα in MC3T3-E1 cells dramatically increased osteoblast differentiation and mineralization, which were accompanied with expressions of Osterix, Bsp, and OCN. Our data indicate that PP2A Cα plays an important role in the regulation of bone formation and osteoblast differentiation through the bone-related genes.

  20. Roles of phosphotase 2A in nociceptive signal processing.

    PubMed

    Wang, Yun; Lei, Yongzhong; Fang, Li; Mu, Yonggao; Wu, Jing; Zhang, Xuan

    2013-09-08

    Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules.

  1. Acetaldehyde disrupts tight junctions in Caco-2 cell monolayers by a protein phosphatase 2A-dependent mechanism.

    PubMed

    Dunagan, Mitzi; Chaudhry, Kamaljit; Samak, Geetha; Rao, R K

    2012-12-15

    Acetaldehyde is accumulated at high concentrations in the colonic lumen following ethanol administration. Previous studies demonstrated that acetaldehyde disrupts intestinal epithelial tight junctions and increases paracellular permeability. In the present study, we investigated the role of PP2A in the acetaldehyde-induced disruption of intestinal epithelial tight junctions. Caco-2 cell monolayers were exposed to 200-600 μM acetaldehyde for varying times, and the epithelial barrier function was evaluated by measuring transepithelial electrical resistance and inulin permeability. Acetaldehyde treatment resulted in a time-dependent increase in inulin permeability and redistribution of occludin and ZO-1 from the intercellular junctions. Treatment of cells with fostriecin (a PP2A-selective inhibitor) or knockdown of PP2A by siRNA blocked acetaldehyde-induced increase in inulin permeability and redistribution of occludin and ZO-1. The effects of fostriecin and acetaldehyde were confirmed in mouse intestine ex vivo. Acetaldehyde-induced tight junction disruption and barrier dysfunction were also attenuated by a PP2A-specific inhibitory peptide, TPDYFL. Coimmunoprecipitation studies showed that acetaldehyde increased the interaction of PP2A with occludin and induced dephosphorylation of occludin on threonine residues. Fostriecin and TPDYFL significantly reduced acetaldehyde-induced threonine dephosphorylation of occludin. Acetaldehyde failed to change the level of the methylated form of PP2A-C subunit. However, genistein (a tyrosine kinase inhibitor) blocked acetaldehyde-induced association of PP2A with occludin and threonine dephosphorylation of occludin. These results demonstrate that acetaldehyde-induced disruption of tight junctions is mediated by PP2A translocation to tight junctions and dephosphorylation of occludin on threonine residues.

  2. Changes in the activities of protein phosphatase type 1 and type 2A in sea urchin embryos during early development.

    PubMed

    Kawamoto, M; Fujiwara, A; Yasumasu, I

    2000-08-01

    In the eggs and embryos of sea urchins, the activity of protein phosphatase type 2A (PP2A) increased during the developmental period between fertilization and the morula stage, decreased after the prehatching blastula stage and increased again after hatching. The PP2A activity changed keeping pace with alteration to the activities of cAMP-dependent protein kinase (A kinase), Ca2+/calmodulin-dependent protein kinase (CaM kinase) and casein kinase. Probably, PP2A contributes to the quick turning off of cellular signals because of protein phosphorylation. The activity of protein phosphatase type 1 (PP1) was not detectable up to the morula stage and appreciably increased thereafter. In the isolated nucleus fraction, specific activities of PP1 and PP2A were higher than in whole embryos at all stages in early development. Exponential increase in the number of nuclei because of egg cleavage probably makes PP1 activity detectable in whole embryos after the morula stage. In isolated nuclei, the activities of PP1 and PP2A appreciably decreased after hatching, whereas the activities of A kinase, Ca2+/phospholipid-dependent protein kinase (C kinase) and CaM kinase, as well as casein kinase, became higher. In nuclei, cellular signals caused by protein phosphorylation after hatching do not seem to be turned off by these protein kinases so quickly as before hatching. The PP1 and PP2A in nuclei also seem to contribute to the elimination of signal noise.

  3. Therapeutic relevance of the protein phosphatase 2A in cancer

    PubMed Central

    Bhanumathy, Kalpana Kalyanasundaram; Lee, Joo Sang; Parameswaran, Sreejit; Furber, Levi; Abuhussein, Omar; Paul, James M.; McDonald, Megan; Templeton, Shaina D.; Shukla, Hersh; El Zawily, Amr M.; Boyd, Frederick; Alli, Nezeka; Mousseau, Darrell D.; Geyer, Ron; Bonham, Keith; Anderson, Deborah H.; Yan, Jiong; Yu-Lee, Li-Yuan; Weaver, Beth A.; Uppalapati, Maruti; Ruppin, Eytan; Sablina, Anna; Freywald, Andrew; Vizeacoumar, Franco J.

    2016-01-01

    Chromosomal Instability (CIN) is regarded as a unifying feature of heterogeneous tumor populations, driving intratumoral heterogeneity. Polo-Like Kinase 1 (PLK1), a serine-threonine kinase that is often overexpressed across multiple tumor types, is one of the key regulators of CIN and is considered as a potential therapeutic target. However, targeting PLK1 has remained a challenge due to the off-target effects caused by the inhibition of other members of the polo-like family. Here we use synthetic dosage lethality (SDL), where the overexpression of PLK1 is lethal only when another, normally non-lethal, mutation or deletion is present. Rather than directly inhibiting PLK1, we found that inhibition of PP2A causes selective lethality to PLK1-overexpressing breast, pancreatic, ovarian, glioblastoma, and prostate cancer cells. As PP2A is widely regarded as a tumor suppressor, we resorted to gene expression datasets from cancer patients to functionally dissect its therapeutic relevance. We identified two major classes of PP2A subunits that negatively correlated with each other. Interestingly, most mitotic regulators, including PLK1, exhibited SDL interactions with only one class of PP2A subunits (PPP2R1A, PPP2R2D, PPP2R3B, PPP2R5B and PPP2R5D). Validation studies and other functional cell-based assays showed that inhibition of PPP2R5D affects both levels of phospho-Rb as well as sister chromatid cohesion in PLK1-overexpressing cells. Finally, analysis of clinical data revealed that patients with high expression of mitotic regulators and low expression of Class I subunits of PP2A improved survival. Overall, these observations point to a context-dependent role of PP2A that warrants further exploration for therapeutic benefits. PMID:27557495

  4. [Changes of activity and expression of protein phosphatase type 2A during the apoptosis of NB4 and MR2 cells induced by arsenic trioxide].

    PubMed

    Xu, Xi-Hui; Ouyang, Jian; Xie, Pin-Hao; Chen, Jun-Hao

    2008-10-01

    This study was aimed to investigate the change of expression and activity of protein phosphatases type 2A (PP2A) during the apoptosis of NB4 and MR2 cells induced by Arsenic trioxide (ATO). NB4 and MR2 cells were incubated with Okadaic acid (OKA) (0.5 nmol/L), ATO (0.5 - 2.0 micromol/L), and the combination of OKA and ATO at the same doses as in the single-agent treatment respectively. Then the proliferation of NB4 and MR2 cells was determined by MTT assay, the morphologic changes of cells were evaluated by Wright's staining, the apoptosis rates were detected by flow cytometry. At last, the activities of PP2A were evaluated by the serine/threonine phosphatase assay system, and the levels of PP2A subunits were detected by Western blot analysis. The results showed that ATO inhibited proliferation of NB4 and MR2 cells, and the inhibition rates of ATO on the two cells significantly increased after the addition of OKA. OKA could augment the apoptosis of NB4 and MR2 cells induced by ATO. During the apoptosis of NB4 and MR2 cells, the activity of PP2A decreased with increasing concentration of ATO, and OKA augmented the inhibitory effect of ATO on the activity. The level of PP2A structural subunit (PP2A-A) decreased during ATO-induced apoptosis of NB4 and MR2 cells, that expressions of B and C subunits of PP2A were relatively unaltered. It is concluded that the activity of PP2A decreases with increasing concentration of ATO during the apoptosis of NB4 and MR2 cells, and the decrease of the activity of PP2A maybe is related to the repression of expression of PP2A -A subunit; the inhibition of the activity of PP2A can promote the ATO induced apoptosis of NB4 and MRL cells.

  5. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity.

    PubMed

    Segonzac, Cécile; Macho, Alberto P; Sanmartín, Maite; Ntoukakis, Vardis; Sánchez-Serrano, José Juan; Zipfel, Cyril

    2014-09-17

    Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B'η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes.

  6. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity

    PubMed Central

    Segonzac, Cécile; Macho, Alberto P; Sanmartín, Maite; Ntoukakis, Vardis; Sánchez-Serrano, José Juan; Zipfel, Cyril

    2014-01-01

    Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B’η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes. PMID:25085430

  7. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  8. Dephosphorylation of JC virus agnoprotein by protein phosphatase 2A: Inhibition by small t antigen

    PubMed Central

    Sariyer, Ilker K.; Khalili, Kamel; Safak, Mahmut

    2009-01-01

    Previous studies have demonstrated that the JC virus (JCV) late regulatory protein agnoprotein is phosphorylated by the serine/threonine-specific protein kinase-C (PKC) and mutants of this protein at the PKC phosphorylation sites exhibit defects in the viral replication cycle. We have now investigated whether agnoprotein phosphorylation is regulated by PP2A, a serine/threonine-specific protein phosphatase and whether JCV small t antigen (Sm t-Ag) is involved in this regulation. Protein–protein interaction studies demonstrated that PP2A associates with agnoprotein and dephosphorylates it at PKC-specific sites. Sm t-Ag was also found to interact with PP2A and this interaction inhibited the dephosphorylation of agnoprotein by PP2A. The interaction domains of Sm t-Ag and agnoprotein with PP2A were mapped, as were the interaction domains of Sm t-Ag with agnoprotein. The middle portion of Sm t-Ag (aa 82–124) was found to be critical for the interaction with both agnoprotein and PP2A and the N-terminal region of agnoprotein for interaction with Sm t-Ag. To further understand the role of Sm t-Ag in JCV regulation, a stop codon was introduced at Ser90 immediately after splice donor site of the JCV early gene and the functional consequences of this mutation were investigated. The ability of this mutant virus to replicate was substantially reduced compared to WT. Next, the functional significance of PP2A in JCV replication was examined by siRNA targeting. Downregulation of PP2A caused a significant reduction in the level of JCV replication. Moreover, the impact of Sm t-Ag on agnoprotein phosphorylation was investigated by creating a double mutant of JCV, where Sm t-Ag stop codon mutant was combined with an agnoprotein triple phosphorylation mutant (Ser7, Ser11 and Thr21 to Ala). Results showed that double mutant behaves much like the triple phosphorylation mutant of agnoprotein during viral replication cycle, which suggests that agnoprotein might be an important target of

  9. TORC2 Signaling Is Antagonized by Protein Phosphatase 2A and the Far Complex in Saccharomyces cerevisiae

    PubMed Central

    Pracheil, Tammy; Thornton, Janet; Liu, Zhengchang

    2012-01-01

    The target of rapamycin (TOR) kinase, a central regulator of eukaryotic cell growth, exists in two essential, yet distinct, TOR kinase complexes in the budding yeast Saccharomyces cerevisiae: rapamycin-sensitive TORC1 and rapamycin-insensitive TORC2. Lst8, a component of both TOR complexes, is essential for cell viability. However, it is unclear whether the essential function of Lst8 is linked to TORC1, TORC2, or both. To that end, we carried out a genetic screen to isolate lst8 deletion suppressor mutants. Here we report that mutations in SAC7 and FAR11 suppress lethality of lst8Δ and TORC2-deficient (tor2-21) mutations but not TORC1 inactivation, suggesting that the essential function of Lst8 is linked only to TORC2. More importantly, characterization of lst8Δ bypass mutants reveals a role for protein phosphatase 2A (PP2A) in the regulation of TORC2 signaling. We show that Far11, a member of the Far3-7-8-9-10-11 complex involved in pheromone-induced cell cycle arrest, interacts with Tpd3 and Pph21, conserved components of PP2A, and deletions of components of the Far3-7-8-9-10-11 complex and PP2A rescue growth defects in lst8Δ and tor2-21 mutants. In addition, loss of the regulatory B′ subunit of PP2A Rts1 or Far11 restores phosphorylation to the TORC2 substrate Slm1 in a tor2-21 mutant. Mammalian Far11 orthologs FAM40A/B exist in a complex with PP2A known as STRIPAK, suggesting a conserved functional association of PP2A and Far11. Antagonism of TORC2 signaling by PP2A-Far11 represents a novel regulatory mechanism for controlling spatial cell growth of yeast. PMID:22298706

  10. Modulation of plant HMG-CoA reductase by protein phosphatase 2A

    PubMed Central

    Antolín-Llovera, Meritxell; Leivar, Pablo; Arró, Montserrat; Ferrer, Albert; Boronat, Albert

    2011-01-01

    The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B″ regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR. PMID:21701259

  11. Effects of anthocyanidins and anthocyanins on the expression and catalytic activities of CYP2A6, CYP2B6, CYP2C9, and CYP3A4 in primary human hepatocytes and human liver microsomes.

    PubMed

    Srovnalova, Alzbeta; Svecarova, Michaela; Zapletalova, Michaela Kopecna; Anzenbacher, Pavel; Bachleda, Petr; Anzenbacherova, Eva; Dvorak, Zdenek

    2014-01-22

    Anthocyanidins and anthocyanins are pharmacologically active constituents of various berry fruits, such as blueberry and cranberry. These compounds are also contained in massively used nutritional supplements based on extracts or dry matter from berry fruits. The current study evaluated the effects of anthocyanidins and anthocyanins on the expression and catalytic activity of major drug-metabolizing enzymes CYP2C9, CYP2A6, CYP2B6, and CYP3A4 in primary cultures of human hepatocytes and human liver microsomes. Expression of mRNA was quantified by qRT-PCR. Expression of proteins was evaluated by Western blotting and immunochemiluminescence. The catalytic activity of CYP enzymes was measured by HPLC using specific enzyme substrates. Tested anthocyanidins (6) and anthocyanins (21) did not induce the expression of mRNA and protein of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 genes in human hepatocytes. Catalytic activities of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 enzymes were inhibited by all anthocyanidins to different extents (e.g., delphinidin inhibits CYP3A4 by >90% at 100 μM with IC50 = 32 μM). Of 21 anthocyanins tested, only cyanidin-3-O-rhamnoside (CYP3A4 by >75% at 100 μM with IC50 = 44 μM) and two glycosides of delphinidin significantly inhibited examined cytochromes P450. It may be concluded that in the ranges of common ingestion of either food or dietary supplement an induction or significant inhibition of CYP2C9, CYP2A6, CYP2B6, and CYP3A4 activity is most probably not expected.

  12. Protein Phosphatase 2A Reactivates FOXO3a through a Dynamic Interplay with 14-3-3 and AKT

    PubMed Central

    Singh, Amrik; Ye, Min; Bucur, Octavian; Zhu, Shudong; Tanya Santos, Maria; Rabinovitz, Isaac; Wei, Wenyi; Gao, Daming; Hahn, William C.

    2010-01-01

    Forkhead box transcription factor FOXO3a, a key regulator of cell survival, is regulated by reversible phosphorylation and subcellular localization. Although the kinases regulating FOXO3a activity have been characterized, the role of protein phosphatases (PP) in the control of FOXO3a subcellular localization and function is unknown. In this study, we detected a robust interaction between FOXO3a and PP2A. We further demonstrate that 14-3-3, while not impeding the interaction between PP2A and FOXO3a, restrains its activity toward AKT phosphorylation sites T32/S253. Disruption of PP2A function revealed that after AKT inhibition, PP2A-mediated dephosphorylation of T32/S253 is required for dissociation of 14-3-3, nuclear translocation, and transcriptional activation of FOXO3a. Our findings reveal that distinct phosphatases dephosphorylate conserved AKT motifs within the FOXO family and that PP2A is entwined in a dynamic interplay with AKT and 14-3-3 to directly regulate FOXO3a subcellular localization and transcriptional activation. PMID:20110348

  13. Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice

    PubMed Central

    Sontag, Jean-Marie; Wasek, Brandi; Taleski, Goce; Smith, Josephine; Arning, Erland; Sontag, Estelle; Bottiglieri, Teodoro

    2014-01-01

    Common functional polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, a key enzyme in folate and homocysteine metabolism, influence risk for a variety of complex disorders, including developmental, vascular, and neurological diseases. MTHFR deficiency is associated with elevation of homocysteine levels and alterations in the methylation cycle. Here, using young and aged Mthfr knockout mouse models, we show that mild MTHFR deficiency can lead to brain-region specific impairment of the methylation of Ser/Thr protein phosphatase 2A (PP2A). Relative to wild-type controls, decreased expression levels of PP2A and leucine carboxyl methyltransferase (LCMT1) were primarily observed in the hippocampus and cerebellum, and to a lesser extent in the cortex of young null Mthfr−/− and aged heterozygous Mthfr+/− mice. A marked down regulation of LCMT1 correlated with the loss of PP2A/Bα holoenzymes. Dietary folate deficiency significantly decreased LCMT1, methylated PP2A and PP2A/Bα levels in all brain regions examined from aged Mthfr+/+ mice, and further exacerbated the regional effects of MTHFR deficiency in aged Mthfr+/− mice. In turn, the down regulation of PP2A/Bα was associated with enhanced phosphorylation of Tau, a neuropathological hallmark of Alzheimer’s disease (AD). Our findings identify hypomethylation of PP2A enzymes, which are major CNS phosphatases, as a novel mechanism by which MTHFR deficiency and Mthfr gene-diet interactions could lead to disruption of neuronal homeostasis, and increase the risk for a variety of neuropsychiatric disorders, including age-related diseases like sporadic AD. PMID:25202269

  14. The role of Saccharomyces cerevisiae type 2A phosphatase in the actin cytoskeleton and in entry into mitosis.

    PubMed Central

    Lin, F C; Arndt, K T

    1995-01-01

    We have prepared a temperature-sensitive Saccharomyces cerevisiae type 2A phosphatase (PP2A) mutant, pph21-102. At the restrictive temperature, the pph21-102 cells arrested predominantly with small or aberrant buds, and their actin cytoskeleton and chitin deposition were abnormal. The involvement of PP2A in bud growth may be due to the role of PP2A in actin distribution during the cell cycle. Moreover, after a shift to the non-permissive temperature, the pph21-102 cells were blocked in G2 and had low activity of Clb2-Cdc28 kinase. Expression of Clb2 from the S.cerevisiae ADH promoter in pph21-102 cells was able to partially bypass the G2 arrest in the first cell cycle, but was not able to stimulate passage through a second mitosis. These cells had higher total amounts of Clb2-Cdc28 kinase activity, but the Clb2-normalized specific activity was lower in the pph21-102 cells compared with wild-type cells. Unlike wild-type strains, a PP2A-deficient strain was sensitive to the loss of MIH1, which is a homolog of the Schizosaccharomyces pombe mitotic inducer cdc25+. Furthermore, the cdc28F19 mutation cured the synthetic defects of a PP2A-deficient strain containing a deletion of MIH1. These results suggest that PP2A is required during G2 for the activation of Clb-Cdc28 kinase complexes for progression into mitosis. Images PMID:7796803

  15. Inhibition of specific binding of okadaic acid to protein phosphatase 2A by microcystin-LR, calyculin-A and tautomycin: method of analysis of interactions of tight-binding ligands with target protein.

    PubMed Central

    Takai, A; Sasaki, K; Nagai, H; Mieskes, G; Isobe, M; Isono, K; Yasumoto, T

    1995-01-01

    Several groups have reported that okadaic acid (OA) and some other tight-binding protein phosphatase inhibitors including microcystin-LR (MCLR), calyculin-A and tautomycin prevent each other from binding to protein phosphatase 2A (PP2A). In this paper, we have introduced an improved procedure for examining to what extent the affinity of an enzyme for a labelled tight-binding ligand is reduced by binding of an unlabelled tight-binding, ligand to the enzyme. Using this procedure, we have analysed the dose-dependent reduction of PP2A binding of [24-3H]OA by addition of OA, MCLR, calyculin-A and tautomycin. The results indicate that the binding of the unlabelled inhibitors to the PP2A molecule causes a dramatic (10(6)-10(8)-fold) increase in the dissociation constant associated with the interaction of [24-3H]OA and PP2A. This suggests that OA and the other inhibitors bind to PP2A in a mutually exclusive manner. The protein phosphatase inhibitors may share the same binding site on the PP2A molecule. We have also measured values of the dissociation constant (Ki) for the interaction of these toxins with protein phosphatase 1 (PP1). For MCLR and calyculin-A, the ratio of the Ki value obtained for PP1 to that for PP2A was in the range 4-9, whereas it was 0.01-0.02 for tautomycin. The value of tautomycin is considerably smaller than that (0.4) calculated from previously reported Ki values. PMID:7702557

  16. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants

    PubMed Central

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  17. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling

    PubMed Central

    Kauko, Otto; Laajala, Teemu Daniel; Jumppanen, Mikael; Hintsanen, Petteri; Suni, Veronika; Haapaniemi, Pekka; Corthals, Garry; Aittokallio, Tero; Westermarck, Jukka; Imanishi, Susumu Y.

    2015-01-01

    Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays. PMID:26278961

  18. Oxidative Impairment of Hippocampal Long-term Potentiation Involves Activation of Protein Phosphatase 2A and Is Prevented by Ketone Bodies

    PubMed Central

    Maalouf, Marwan; Rho, Jong M.

    2008-01-01

    Previous studies have shown that ketone bodies (KB) exert antioxidant effects in experimental models of neurological disease. In the present study, we explored the effects of the KB acetoacetate (ACA) and β-hydroxybutyrate (BHB) on impairment of hippocampal long-term potentiation (LTP) in rats by hydrogen peroxide (H2O2) using electrophysiological, fluorescence imaging and enzyme assay techniques. We found that: (1) a combination of ACA and BHB (1 mM each) prevented impairment of LTP by H2O2 (200 μM); (2) KB significantly lowered intracellular levels of reactive oxygen species (ROS) — measured with the fluorescent indicator carboxy-H2DCFDA — in CA1 pyramidal neurons exposed to H2O2; (3) the effect of KB on LTP was replicated by the protein phosphatase 2A (PP2A) inhibitor fostriecin; (4) KB prevented impairment of LTP by the PP2A activator C6 ceramide; (5) fostriecin did not prevent the increase in ROS levels in CA1 pyramidal neurons exposed to H2O2, and C6 ceramide did not increase ROS levels; (6) PP2A activity was enhanced by both H2O2and rotenone – a mitochondrial complex I inhibitor that increases endogenous superoxide production; and (7) KB inhibited PP2A activity in protein extracts from brain tissue treated with either H2O2 or ceramide. We propose that oxidative impairment of hippocampal LTP is associated with PP2A activation, and that KB prevent this impairment in part by inducing PP2A inhibition through an antioxidant mechanism. PMID:18646208

  19. Protein phosphatase 2A is essential to maintain active Wnt signaling and its Aβ tumor suppressor subunit is not expressed in colon cancer cells.

    PubMed

    Carmen Figueroa-Aldariz, M; Castañeda-Patlán, M Cristina; Santoyo-Ramos, Paula; Zentella, Alejandro; Robles-Flores, Martha

    2015-11-01

    Canonical Wnt signaling is altered in most cases of colorectal cancer. Experimental evidence indicates that protein phosphatase 2A (PP2A) may play either positive or negative roles in Wnt signaling but its precise in vivo functions remain elusive. In this work, using colon cultured cell lines we showed that basal PP2A activity is markedly reduced in malignant cells compared to non-malignant counterparts. We found that whereas normal or cancer cells displaying not altered Wnt signaling express mRNAs coding for PP2A-A scaffold α and β isoforms, cancer cells which have altered Wnt signaling do not express the Aβ isoform mRNA. Remarkably, we found that the Aβ protein levels are lost in all colon cancer cells, and in patients' tumor biopsies. In addition, all cancer cells exhibit higher levels of RalA activity, compared to non-malignant cells. Rescue experiments to restore Aβ expression in malignant RKO cells, diminished the RalGTPase activation and cell proliferation, indicating that the Aβ isoform acts as tumor suppressor in colon cancer cells. Reciprocal co-immunoprecipitation and immunofluorescence studies showed that the PP2A-C and -Aα subunits, expressed in all colon cells, interact in vivo with β-catenin only in malignant cells. Selective inhibition of PP2A did not significantly affect cellular apoptosis but induced dose-dependent negative effects in β-catenin-mediated transcriptional activity and in cell proliferation of malignant cells, indicating that the residual PP2A activity found in malignant cells, mediated by -C and Aα core subunits, is essential to maintain active Wnt signaling and cell proliferation in colon cancer cells.

  20. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors

    NASA Astrophysics Data System (ADS)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  1. Protein phosphatase 2A is a critical regulator of protein kinase C zeta signaling targeted by SV40 small t to promote cell growth and NF-kappaB activation.

    PubMed Central

    Sontag, E; Sontag, J M; Garcia, A

    1997-01-01

    We have reported that inhibition of protein phosphatase 2A (PP2A) by expression of SV40 small t stimulates the mitogenic MAP kinase cascade. Here, we show that SV40 small t can substitute for tumor necrosis factor-alpha (TNF-alpha) or serum and stimulate atypical protein kinase C zeta (PKC zeta) activity, resulting in MEK activation, cell proliferation and NF-kappaB-dependent gene transcriptional activation in CV-1 and NIH 3T3 cells. These effects were abrogated by co-expression of kinase-deficient PKC zeta and inhibition of phosphatidylinositol 3-kinase p85alpha-p110 by wortmannin, LY294002 and a dominant-negative mutant of p85alpha. In contrast, expression of kinase-inactive ERK2 inhibited small t-dependent cell growth but was unable to abolish small t-induced NF-kappaB transactivation. Our results provide the first in vivo evidence for a critical regulatory role of PP2A in bifunctional PKC zeta signaling pathways controlled by phosphatidylinositol 3-kinase. Constitutive activation of PKC zeta and NF-kappaB following inhibition of PP2A supports new mechanisms by which SV40 small t promotes cell growth and transformation. By establishing PP2A as a key player in the response of cells to growth factors and stress signals like TNF-alpha, our findings could explain why PP2A is a primary target utilized during SV40 infection to alter cellular behavior. PMID:9312025

  2. Catalytic reforming

    SciTech Connect

    Aldag, A.W. Jr.

    1986-01-28

    This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

  3. CIP2A Promotes Proliferation of Spermatogonial Progenitor Cells and Spermatogenesis in Mice

    PubMed Central

    Mäkelä, Juho-Antti; Hobbs, Robin M.; Mannermaa, Leni; Kallajoki, Markku; Chan, Edward K.; Pandolfi, Pier Paolo; Toppari, Jorma; Westermarck, Jukka

    2012-01-01

    Protein phosphatase 2A (PP2A) is a critical regulator of protein serine/threonine phosphorylation. However, the physiological and developmental roles of different PP2A complexes are very poorly understood. Here, we show that a newly characterized PP2A inhibitory protein CIP2A is co-expressed with ki-67 and with self-renewal protein PLZF in the spermatogonial progenitor cell (SPC) population in the testis. CIP2A and PLZF expression was shown also to correlate Ki-67 expression in human testicular spermatogonia. Functionally, CIP2A mutant mouse testes exhibited smaller number of PLZF-positive SPCs and reduced sperm counts. Moreover, seminiferous tubuli cells isolated from CIP2A mutant mice showed reduced expression of Plzf and other renewal genes Oct-4 and Nanog at mRNA level. However, PLZF-deficient testes did not show altered CIP2A expression. Importantly, spermatogonia-specific restoration of CIP2A expression rescued PLZF expression and sperm production defects observed in CIP2A mutant mice. Taken together, these results reveal first physiological function for an emerging human oncoprotein CIP2A, and provide insights into maintenance of PLZF-positive progenitors. Moreover, demonstration that CIP2A expression can be systematically inhibited without severe consequences to normal mouse development and viability may have clinical relevance regarding targeting of oncogenic CIP2A for future cancer therapies. PMID:22461891

  4. Protein Phosphatase 2A Signaling in Human Prostate Cancer

    DTIC Science & Technology

    2014-08-01

    phosphatidylinositol 3’-kinase and Akt/protein kinase B. Cancer Res 1999;59:1449-53. (14) Grethe S, Porn -Ares MI. p38 MAPK regulates phosphorylation of Bad...growth and sig- nalling. Biochem J 2001;353:417–39. 15. Grethe S, Porn -Ares MI. p38 MAPK regulates phosphorylation of Bad via PP2A-dependent suppression of

  5. CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation.

    PubMed

    Yu, Chao; Ji, Shu-Yan; Sha, Qian-Qian; Sun, Qing-Yuan; Fan, Heng-Yu

    2015-08-18

    Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility.

  6. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    PubMed Central

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  7. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  8. Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus.

    PubMed Central

    Ruediger, R; Roeckel, D; Fait, J; Bergqvist, A; Magnusson, G; Walter, G

    1992-01-01

    Protein phosphatase 2A is composed of three subunits: the catalytic subunit C and two regulatory subunits, A and B. The A subunit consists of 15 nonidentical repeats and has a rodlike shape. It is associated with the B and C subunits as well as with the simian virus 40 small T, polyomavirus small T, and polyomavirus medium T tumor antigens. We determined the binding sites on subunit A for subunit C and tumor antigens by site-directed mutagenesis of A. Twenty-four N- and C-terminal truncations and internal deletions of A were assayed by coimmunoprecipitation for their ability to bind C and tumor antigens. It was found that C binds to repeats 11 to 15 at the C terminus of A, whereas T antigens bind to overlapping but distinct regions of the N terminus. Simian virus 40 small T binds to repeats 3 to 6, and polyomavirus small T and medium T bind to repeats 2 to 8. The data suggest cooperativity between C and T antigens in binding to A. This is most apparent for medium T antigen, which can only bind to those A subunit molecules that provide the entire binding region for the C subunit. We infer from our results that B also binds to N-terminal repeats. A model of the small T/medium T/B-A-C complexes is presented. Images PMID:1328865

  9. Organocatalysis in heterocyclic synthesis: DABCO as a mild and efficient catalytic system for the synthesis of a novel class of quinazoline, thiazolo [3,2-a]quinazoline and thiazolo[2,3-b] quinazoline derivatives

    PubMed Central

    2013-01-01

    Background There are only limited publications devoted to the synthesis of especially thiazolo[3,2-a]quinazoline which involved reaction of 2-mercaptopropargyl quinazolin-4-one with various aryl iodides catalyzed by Pd-Cu or by condensation of 2-mercapto-4-oxoquinazoline with chloroacetic acid, inspite of this procedure was also reported in the literature to afford the thiazolo [2,3-b] quinazoline. So the multistep synthesis of the thiazolo[3,2-a]- quinazoline suffered from some flaws and in this study we have synthesized a novel class of thiazoloquinazolines by a simple and convenient method involving catalysis by 1,4-diazabicyclo[2.2.2]octane (DABCO). Results A new and convenient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a-i was established through the reaction between methyl-2-(2-thio-cyanatoacetamido)benzoate (4) and a variety of arylidene malononitriles 8a-i in the presence of DABCO as a mild and efficient catalytic system via a Michael type addition reaction and a mechanism for formation of the products observed is proposed. Moreover 4 was converted to ethyl-2-[(4-oxo-3,4-dihydroquinazolin-2-yl)thio]acetate (10) upon reflux in ethanol containing DABCO as catalyst. The latter was reacted with aromatic aldehydes and dimethylformamide dimethylacetal (DMF-DMA) to afford a mixture of two regioselectively products with identical percentage yield, these two products were identified as thiazolo[3,2-a]quinazoline 9,13 and thiazolo[2,3-b]quinazoline 11,12 derivatives respectively. The structure of the compounds prepared in this study was elucidated by different spectroscopic tools of analyses also the X-ray single crystal technique was employed in this study for structure elucidation, Z/E potential isomerism configuration determination and to determine the regioselectivity of the reactions. Conclusion A simple and efficient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a

  10. Multilevel Control of Arabidopsis 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase by Protein Phosphatase 2A[W

    PubMed Central

    Leivar, Pablo; Antolín-Llovera, Meritxell; Ferrero, Sergi; Closa, Marta; Arró, Montserrat; Ferrer, Albert; Boronat, Albert; Campos, Narciso

    2011-01-01

    Plants synthesize a myriad of isoprenoid products that are required both for essential constitutive processes and for adaptive responses to the environment. The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes a key regulatory step of the mevalonate pathway for isoprenoid biosynthesis and is modulated by many endogenous and external stimuli. In spite of that, no protein factor interacting with and regulating plant HMGR in vivo has been described so far. Here, we report the identification of two B′′ regulatory subunits of protein phosphatase 2A (PP2A), designated B′′α and B′′β, that interact with HMGR1S and HMGR1L, the major isoforms of Arabidopsis thaliana HMGR. B′′α and B′′β are Ca2+ binding proteins of the EF-hand type. We show that HMGR transcript, protein, and activity levels are modulated by PP2A in Arabidopsis. When seedlings are transferred to salt-containing medium, B′′α and PP2A mediate the decrease and subsequent increase of HMGR activity, which results from a steady rise of HMGR1-encoding transcript levels and an initial sharper reduction of HMGR protein level. In unchallenged plants, PP2A is a posttranslational negative regulator of HMGR activity with the participation of B′′β. Our data indicate that PP2A exerts multilevel control on HMGR through the five-member B′′ protein family during normal development and in response to a variety of stress conditions. PMID:21478440

  11. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  12. Dephosphorylation of Major Sperm Protein (MSP) Fiber Protein 3 by Protein Phosphatase 2A during Cell Body Retraction in the MSP-based Amoeboid Motility of Ascaris Sperm

    PubMed Central

    Yi, Kexi; Wang, Xu; Emmett, Mark R.; Marshall, Alan G.; Stewart, Murray

    2009-01-01

    The crawling movement of nematode sperm requires coordination of leading edge protrusion with cell body retraction, both of which are powered by modulation of a cytoskeleton based on major sperm protein (MSP) filaments. We used a cell-free in vitro motility system in which both protrusion and retraction can be reconstituted, to identify two proteins involved in cell body retraction. Pharmacological and depletion-add back assays showed that retraction was triggered by a putative protein phosphatase 2A (PP2A, a Ser/Thr phosphatase activated by tyrosine dephosphorylation). Immunofluorescence showed that PP2A was present in the cell body and was concentrated at the base of the lamellipod where the force for retraction is generated. PP2A targeted MSP fiber protein 3 (MFP3), a protein unique to nematode sperm that binds to the MSP filaments in the motility apparatus. Dephosphorylation of MFP3 caused its release from the cytoskeleton and generated filament disassembly. Our results suggest that interaction between PP2A and MFP3 leads to local disassembly of the MSP cytoskeleton at the base of the lamellipod in sperm that in turn pulls the trailing cell body forward. PMID:19458186

  13. A role for protein phosphatase 2A in regulating p38 mitogen activated protein kinase activation and tumor necrosis factor-alpha expression during influenza virus infection.

    PubMed

    Law, Anna H Y; Tam, Alex H M; Lee, Davy C W; Lau, Allan S Y

    2013-04-02

    Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF)-alpha through p38 mitogen activated protein kinase (MAPK). However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1) and protein phosphatase type 2A (PP2A) in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac) infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  14. Protein phosphatase 2A regulates interleukin-2 receptor complex formation and JAK3/STAT5 activation.

    PubMed

    Ross, Jeremy A; Cheng, Hanyin; Nagy, Zsuzsanna S; Frost, Jeffrey A; Kirken, Robert A

    2010-02-05

    Reversible protein phosphorylation plays a key role in interleukin-2 (IL-2) receptor-mediated activation of Janus tyrosine kinase 3 (JAK3) and signal transducer and activator of transcription 5 (STAT5) in lymphocytes. Although the mechanisms governing IL-2-induced tyrosine phosphorylation and activation of JAK3/STAT5 have been extensively studied, the role of serine/threonine phosphorylation in controlling these effectors remains to be elucidated. Using phosphoamino acid analysis, JAK3 and STAT5 were determined to be serine and tyrosine-phosphorylated in response to IL-2 stimulation of the human natural killer-like cell line, YT. IL-2 stimulation also induced serine/threonine phosphorylation of IL-2Rbeta, but not IL-2Rgamma. To investigate the regulation of serine/threonine phosphorylation in IL-2 signaling, the roles of protein phosphatase 1 (PP1) and 2A (PP2A) were examined. Inhibition of phosphatase activity by calyculin A treatment of YT cells resulted in a significant induction of serine phosphorylation of JAK3 and STAT5, and serine/threonine phosphorylation of IL-2Rbeta. Moreover, inhibition of PP2A, but not PP1, diminished IL-2-induced tyrosine phosphorylation of IL-2Rbeta, JAK3, and STAT5, and abolished STAT5 DNA binding activity. Serine/threonine phosphorylation of IL-2Rbeta by a staurosporine-sensitive kinase also blocked its association with JAK3 and IL-2Rgamma in YT cells. Taken together, these data indicate that serine/threonine phosphorylation negatively regulates IL-2 signaling at multiple levels, including receptor complex formation and JAK3/STAT5 activation, and that this regulation is counteracted by PP2A. These findings also suggest that PP2A may serve as a therapeutic target for modulating JAK3/STAT5 activation in human disease.

  15. Sp1 transcriptional activity is up-regulated by phosphatase 2A in dividing T lymphocytes.

    PubMed

    Lacroix, Isabelle; Lipcey, Carol; Imbert, Jean; Kahn-Perlès, Brigitte

    2002-03-15

    We have followed Sp1 expression in primary human T lymphocytes induced, via CD2 plus CD28 costimulation, to sustained proliferation and subsequent return to quiescence. Binding of Sp1 to wheat germ agglutinin lectin was not modified following activation, indicating that the overall glycosylation of the protein was unchanged. Sp1 underwent, instead, a major dephosphorylation that correlated with cyclin A expression and, thus, with cell cycle progression. A similar change was observed in T cells that re-entered cell cycle following secondary interleukin-2 stimulation, as well as in serum-induced proliferating NIH/3T3 fibroblasts. Phosphatase 2A (PP2A) appears involved because 1) treatment of dividing cells with okadaic acid or cantharidin inhibited Sp1 dephosphorylation and 2) PP2A dephosphorylated Sp1 in vitro and strongly interacted with Sp1 in vivo. Sp1 dephosphorylation is likely to increase its transcriptional activity because PP2A overexpression potentiated Sp1 site-driven chloramphenicol acetyltransferase expression in dividing Kit225 T cells and okadaic acid reversed this effect. This increase might be mediated by a stronger affinity of dephosphorylated Sp1 for DNA, as illustrated by the reduced DNA occupancy by hyperphosphorylated Sp factors from cantharidin- or nocodazole-treated cells. Finally, Sp1 dephosphorylation appears to occur throughout cell cycle except for mitosis, a likely common feature to all cycling cells.

  16. Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): An oncoprotein with many hands

    PubMed Central

    De, Pradip; Carlson, Jennifer; Leyland-Jones, Brian; Dey, Nandini

    2014-01-01

    Oncoprotein CIP2A a Cancerous Inhibitor of PP2A forms an “oncogenic nexus” by virtue of its control on PP2A and MYC stabilization in cancer cells. The expression and prognostic function of CIP2A in different solid tumors including colorectal carcinoma, head & neck cancers, gastric cancers, lung carcinoma, cholangiocarcinoma, esophageal cancers, pancreatic carcinoma, brain cancers, breast carcinoma, bladder cancers, ovarian carcinoma, renal cell carcinomas, tongue cancers, cervical carcinoma, prostate cancers, and oral carcinoma as well as a number of hematological malignancies are just beginning to emerge. Herein, we reviewed the recent progress in our understanding of (1) how an “oncogenic nexus” of CIP2A participates in the tumorigenic transformation of cells and (2) how we can prospect/view the clinical relevance of CIP2A in the context of cancer therapy. The review will try to understand the role of CIP2A (a) as a biomarker in cancers and evaluate the prognostic value of CIP2A in different cancers (b) as a therapeutic target in cancers and (c) in drug response and developing chemo-resistance in cancers. PMID:25015035

  17. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.

  18. The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4

    PubMed Central

    Chan, Leon Y.; Amon, Angelika

    2009-01-01

    In budding yeast, a surveillance mechanism known as the spindle position checkpoint (SPOC) ensures accurate genome partitioning. In the event of spindle misposition, the checkpoint delays exit from mitosis by restraining the activity of the mitotic exit network (MEN). To date, the only component of the checkpoint to be identified is the protein kinase Kin4. Furthermore, how the kinase is regulated by spindle position is not known. Here, we identify the protein phosphatase 2A (PP2A) in complex with the regulatory subunit Rts1 as a component of the SPOC. Loss of PP2A-Rts1 function abrogates the SPOC but not other mitotic checkpoints. We further show that the protein phosphatase functions upstream of Kin4, regulating the kinase's phosphorylation and localization during an unperturbed cell cycle and during SPOC activation, thus defining the phosphatase as a key regulator of SPOC function. PMID:19605686

  19. The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4.

    PubMed

    Chan, Leon Y; Amon, Angelika

    2009-07-15

    In budding yeast, a surveillance mechanism known as the spindle position checkpoint (SPOC) ensures accurate genome partitioning. In the event of spindle misposition, the checkpoint delays exit from mitosis by restraining the activity of the mitotic exit network (MEN). To date, the only component of the checkpoint to be identified is the protein kinase Kin4. Furthermore, how the kinase is regulated by spindle position is not known. Here, we identify the protein phosphatase 2A (PP2A) in complex with the regulatory subunit Rts1 as a component of the SPOC. Loss of PP2A-Rts1 function abrogates the SPOC but not other mitotic checkpoints. We further show that the protein phosphatase functions upstream of Kin4, regulating the kinase's phosphorylation and localization during an unperturbed cell cycle and during SPOC activation, thus defining the phosphatase as a key regulator of SPOC function.

  20. Rich catalytic injection

    DOEpatents

    Veninger, Albert

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  1. Protein Phosphatase 2A Signaling in Human Prostate Cancer

    DTIC Science & Technology

    2011-06-01

    been shown to be involved in androgen-independent growth of human prostate cancer cells (Carson et al., 1999; Grethe and Porn -Ares, 2006; Murillo et... Porn -Ares MI. (2006). p38 MAPK regulates phosphorylation of Bad via PP2A- dependent suppression of the MEK1/2-ERK1/2 survival pathway in TNF-alpha...threonine phosphatases implicated in cell growth and sig- nalling. Biochem J 2001;353:417–39. 15. Grethe S, Porn -Ares MI. p38 MAPK regulates

  2. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  3. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling

    PubMed Central

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-01-01

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical–basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity. PMID:26888284

  4. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    PubMed

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-08

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  5. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  6. Enhancement of catalytic efficiency of enzymes through exposure to anhydrous organic solvent at 70 degrees C. Three-dimensional structure of a treated serine proteinase at 2.2 A resolution.

    PubMed

    Gupta, M N; Tyagi, R; Sharma, S; Karthikeyan, S; Singh, T P

    2000-05-15

    The enzyme behavior in anhydrous media has important applications in biotechnology. So far chemical modifications and protein engineering have been used to alter the catalytic power of the enzymes. For the first time, it is demonstrated that an exposure of enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes: proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin have been exposed to acetonitrile at 70 degrees C for three hours. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, the structure of one of these treated enzymes, proteinase K has been analyzed in detail using X-ray diffraction method. The overall structure of the enzyme is similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad is intact after the treatment. However, the water structure in the substrate binding site undergoes some rearrangement as some of the water molecules are either displaced or completely absent. The most striking observation concerning the water structure pertains to the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules are located in the recognition site. The sites occupied by acetonitrile molecules are independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. All of them are interlinked through water molecules. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu-96, Ile-107, and Leu-133. The development of such a hydrophobic environment at the recognition site

  7. Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson's disease model

    PubMed Central

    Liu, Jia; Chen, Min; Wang, Xue; Wang, Yi; Duan, Chunli; Gao, Ge; Lu, Lingling; Wu, Xia; Wang, Xiaomin; Yang, Hui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but there are few treatments currently available. The autophagy pathway plays an important role in the pathogenesis of PD; modulating this pathway is considered to be a promising treatment strategy. Piperine (PIP) is a Chinese medicine with anti-inflammatory and antioxidant effects. The present study investigated the neuroprotective effects of PIP on rotenone-induced neurotoxicity in SK-N-SH cells, primary rat cortical neurons, and in a mouse model. Mice were administered rotenone (10mg/kg) for 6 weeks; PIP (25mg/kg, 50mg/kg) was subsequently administered for 4 weeks. We found that PIP treatment attenuated rotenone-induced motor deficits, and rescued the loss of dopaminergic neurons in the substantia nigra. PIP increased cell viability and restored mitochondrial functioning in SK-N-SH cells and primary neurons. In addition, PIP induced autophagy by inhibiting mammalian target of rapamycin complex 1(mTORC1) via activation of protein phosphotase 2A (PP2A). However, inhibiting PP2A activity with okadaic acid reduced these protective effects, suggesting that PP2A is a target of PIP. These findings demonstrate that PIP exerts neuroprotective effects in PD models via induction of autophagy, and may be an effective agent for PD treatment. PMID:27572322

  8. Piperine induces autophagy by enhancing protein phosphotase 2A activity in a rotenone-induced Parkinson's disease model.

    PubMed

    Liu, Jia; Chen, Min; Wang, Xue; Wang, Yi; Duan, Chunli; Gao, Ge; Lu, Lingling; Wu, Xia; Wang, Xiaomin; Yang, Hui

    2016-09-20

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but there are few treatments currently available. The autophagy pathway plays an important role in the pathogenesis of PD; modulating this pathway is considered to be a promising treatment strategy. Piperine (PIP) is a Chinese medicine with anti-inflammatory and antioxidant effects. The present study investigated the neuroprotective effects of PIP on rotenone-induced neurotoxicity in SK-N-SH cells, primary rat cortical neurons, and in a mouse model. Mice were administered rotenone (10mg/kg) for 6 weeks; PIP (25mg/kg, 50mg/kg) was subsequently administered for 4 weeks. We found that PIP treatment attenuated rotenone-induced motor deficits, and rescued the loss of dopaminergic neurons in the substantia nigra. PIP increased cell viability and restored mitochondrial functioning in SK-N-SH cells and primary neurons. In addition, PIP induced autophagy by inhibiting mammalian target of rapamycin complex 1(mTORC1) via activation of protein phosphotase 2A (PP2A). However, inhibiting PP2A activity with okadaic acid reduced these protective effects, suggesting that PP2A is a target of PIP. These findings demonstrate that PIP exerts neuroprotective effects in PD models via induction of autophagy, and may be an effective agent for PD treatment.

  9. Interactions between glycogen synthase kinase 3beta, protein kinase B, and protein phosphatase 2A in tau phosphorylation in mouse N2a neuroblastoma cells.

    PubMed

    Zhou, Xin-Wen; Winblad, Bengt; Guan, Zhizhong; Pei, Jin-Jing

    2009-01-01

    In this study, we investigated how tau phosphorylation is regulated by protein kinase glycogen synthase kinase 3beta (GSK3 beta), protein kinase B (PKB), and protein phosphatase 2A (PP2A) in mouse N2a neuroblastoma cells. Results showed that GSK3 beta overexpression significantly increased PKB phosphorylation at the S473 site but not the T308 site. Neither GSK3 beta nor PKB overexpression could reduce the PP2AC phosphorylation at the Y307 site. In contrast, either PKB or GSK3 beta knockdown could increase PP2A phosphorylation at the Y307 site. PP2AC knockdown increased GSK3 beta phosphorylation at the S9 site but not at the Y216 site, and PKB phosphorylation at the T308 site but not at the S473 site. Tau phosphorylation at the S396 site was increased by GSK3 beta or PKB overexpression. Tau phosphorylation at the S214 site was only induced by PKB overexpression in the study. While GSK3 beta knockdown decreased tau phosphorylation at the S396 site, PKB knockdown increased tau phosphorylation at both the S396 and S214 sites. PP2AC knockdown decreased tau phosphorylation at the S396 and S214 sites. These findings suggest that tau phosphorylation at the S396 and S214 sites is differentially regulated by GSK3 beta, PKB, and PP2A in N2a cells. The final phosphorylation state of tau is possibly caused by the synergic action of the three enzymes.

  10. On the regulation of protein phosphatase 2A and its role in controlling entry into and exit from mitosis.

    PubMed

    Hunt, Tim

    2013-05-01

    The process of mitosis involves a comprehensive reorganization of the cell: chromosomes condense, the nuclear envelope breaks down, the mitotic spindle is assembled, cells round up and release their ties to the substrate and so on and so forth. This reorganization is triggered by the activation of the protein kinase, Cyclin-Dependent Kinase 1 (CDK1). The end of mitosis is marked by the proteolysis of the cyclin subunit of CDK1, which terminates kinase activity. At this point, the phosphate moieties that altered the properties of hundreds of proteins to bring about the cellular reorganization are removed by protein phosphatases. At least one protein phosphatase, PP2A-B55, is completely shut off in mitosis. Depletion of this particular form of PP2A accelerates entry into mitosis, and blocks exit from mitosis. Control of this phosphatase is achieved by an inhibitor protein (α-endosulfine or ARPP-19) that becomes inhibitory when phosphorylated by a protein kinase called Greatwall, which is itself a substrate of CDK1. Failure to inhibit PP2A-B55 causes arrest of the cell cycle in G2 phase. I will discuss the role of this control mechanism in the control of mitosis.

  11. Cross Talk between Wnt/β-Catenin and CIP2A/Plk1 Signaling in Prostate Cancer: Promising Therapeutic Implications

    PubMed Central

    Rojo, Federico; Madoz-Gúrpide, Juan

    2016-01-01

    Aberrant activation of the Wnt/β-catenin pathway and polo-like kinase 1 (Plk1) overexpression represent two common events in prostate cancer with relevant functional implications. This minireview analyzes their potential therapeutic significance in prostate cancer based on their role as androgen receptor (AR) signaling regulators and the pivotal role of the tumor suppressor protein phosphatase 2A (PP2A) modulating these pathways. PMID:27090640

  12. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  13. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  14. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  15. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  16. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  17. Phosphorylation status of the SCR homeodomain determines its functional activity: essential role for protein phosphatase 2A,B′

    PubMed Central

    Berry, Meera; Gehring, Walter

    2000-01-01

    Sex combs reduced (SCR) is a Drosophila Hox protein that determines the identity of the labial and prothoracic segments. In search of factors that might associate with SCR to control its activity and/or specificity, we performed a yeast two-hybrid screen. A Drosophila homologue of the regulatory subunit (B′/PR61) of serine-threonine protein phosphatase 2A (dPP2A,B′) specifically interacted with the SCR homeodomain. The N-terminal arm within the SCR homeodomain was shown to be a target of phosphorylation/dephosphorylation by cAMP-dependent protein kinase A and protein phosphatase 2A, respectively. In vivo analyses revealed that mutant forms of SCR mimicking constitutively dephosphorylated or phosphorylated states of the homeodomain were active or inactive, respectively. Inactivity of the phosphorylated mimic form was attributed to impaired DNA binding. Specific ablation of dPP2A,B′ gene activity by double-stranded RNA-mediated genetic interference resulted in embryos without salivary glands, an SCR null phenotype. Our data demonstrate an essential role for Drosophila PP2A,B′ in positively modulating SCR function. PMID:10856239

  18. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  19. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  20. Transient catalytic combustor model

    NASA Astrophysics Data System (ADS)

    Tien, J. S.

    1981-05-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  1. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    PubMed

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  2. Catalytic membranes beckon

    SciTech Connect

    Caruana, C.M.

    1994-11-01

    Chemical engineers here and abroad are finding that the marriage of catalysts and membranes holds promise for faster and more specific reactions, although commercialization of this technology is several years away. Catalytic membrane reactors (CMRs) combine a heterogeneous catalyst and a permselective membrane. Reactions performed by CMRs provide higher yields--sometimes as much as 50% higher--because of better reaction selectivity--as opposed to separation selectivity. CMRs also can work at very high temperatures, using ceramic materials that would not be possible with organic membranes. Although the use of CMRs is not widespread presently, the development of new membranes--particularly porous ceramic and zeolite membranes--will increase the potential to improve yields of many catalytic processes. The paper discusses ongoing studies, metal and advanced materials for membranes, the need for continued research, hydrogen recovery from coal-derived gases, catalytic oxidation of sulfides, CMRs for water purification, and oxidative coupling of methane.

  3. Catalytic hydrotreating process

    DOEpatents

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  4. Nitric oxide modulates chromatin folding in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling.

    PubMed

    Illi, Barbara; Dello Russo, Claudio; Colussi, Claudia; Rosati, Jessica; Pallaoro, Michele; Spallotta, Francesco; Rotili, Dante; Valente, Sergio; Ragone, Gianluca; Martelli, Fabio; Biglioli, Paolo; Steinkuhler, Christian; Gallinari, Paola; Mai, Antonello; Capogrossi, Maurizio C; Gaetano, Carlo

    2008-01-04

    Nitric oxide (NO) modulates important endothelial cell (EC) functions and gene expression by a molecular mechanism which is still poorly characterized. Here we show that in human umbilical vein ECs (HUVECs) NO inhibited serum-induced histone acetylation and enhanced histone deacetylase (HDAC) activity. By immunofluorescence and Western blot analyses it was found that NO induced class II HDAC4 and 5 nuclear shuttling and that class II HDACs selective inhibitor MC1568 rescued serum-dependent histone acetylation above control level in NO-treated HUVECs. In contrast, class I HDACs inhibitor MS27-275 had no effect, indicating a specific role for class II HDACs in NO-dependent histone deacetylation. In addition, it was found that NO ability to induce HDAC4 and HDAC5 nuclear shuttling involved the activation of the protein phosphatase 2A (PP2A). In fact, HDAC4 nuclear translocation was impaired in ECs expressing small-t antigen and exposed to NO. Finally, in cells engineered to express a HDAC4-Flag fusion protein, NO induced the formation of a macromolecular complex including HDAC4, HDAC3, HDAC5, and an active PP2A. The present results show that NO-dependent PP2A activation plays a key role in class II HDACs nuclear translocation.

  5. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  6. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  7. Afatinib induces apoptosis in NSCLC without EGFR mutation through Elk-1-mediated suppression of CIP2A.

    PubMed

    Chao, Ting-Ting; Wang, Cheng-Yi; Chen, Yen-Lin; Lai, Chih-Cheng; Chang, Fang-Yu; Tsai, Yi-Ting; Chao, Chung-Hao H; Shiau, Chung-Wai; Huang, Yuh-Chin T; Yu, Chong-Jen; Chen, Kuen-Feng

    2015-02-10

    Afatinib has anti-tumor effect in non-small cell lung carcinoma (NSCLC) with epidermal growth factor receptor (EGFR) mutation. We found afatinib can also induce apoptosis in NSCLC cells without EGFR mutation through CIP2A pathway. Four NSCLC cell lines (H358 H441 H460 and A549) were treated with afatinib to determine their sensitivity to afatinib-induced cell death and apoptosis. The effects of CIP2A on afatinib-induced apoptosis were confirmed by overexpression and knockdown of CIP2A expression in the sensitive and resistant cells, respectively. Reduction of Elk-1 binding to the CIP2A promoter and suppression of CIP2A transcription were analyzed. In vivo efficacy of afatinib against H358 and H460 xenografts tumors were also determined in nude mice. Afatinib induced significant cell death and apoptosis in H358 and H441 cells, but not in H460 or A549 cells. The apoptotic effect of afatinib in sensitive cells was associated with downregulation of CIP2A, promotion of PP2A activity and decrease in AKT phosphorylation. Afatinib suppressed CIP2A at the gene transcription level by reducing the promoter binding activity of Elk-1. Clinical samples showed that higher CIP2A expression predicted a poor prognosis and Elk-1 and CIP2A expressions were highly correlated. In conclusion, afatinib induces apoptosis in NSCLC without EGFR mutations through Elk-1/CIP2A/PP2A/AKT pathway.

  8. Catalytic efficiency of designed catalytic proteins

    PubMed Central

    Korendovych, Ivan V; DeGrado, William F

    2014-01-01

    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution. PMID:25048695

  9. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  10. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  11. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  12. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  13. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    SciTech Connect

    Eum, Sung Yong Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  14. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  15. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  16. Quenched catalytic cracking process

    SciTech Connect

    Krambeck, F.J.; Penick, J.E.; Schipper, P.H.

    1990-12-18

    This paper describes improvement in a fluidized catalytic cracking process wherein a fluidizable catalyst cracking catalyst and a hydrocarbon feed are charged to a reactor riser at catalytic riser cracking conditions to form catalytically cracked vapor product and spent catalyst which are discharged into a reactor vessel having a volume via a riser reactor outlet equipped with a separation means to produce a catalyst lean phase. It comprises: a majority of the cracked product, and a catalyst rich phase comprising a majority of the spend catalyst. The the catalyst rich phase is discharged into a dense bed of catalyst maintained below the riser outlet and the catalyst lean phase is discharged into the vessel for a time, and at a temperature, which cause unselective thermal cracking of the cracked product in the reactor volume before product is withdrawn from the vessel via a vessel outlet. The improvement comprises: addition, after riser cracking is completed, and after separation of cracked products from catalyst, of a quenching stream into the vessel above the dense bed of catalyst, via a quench stream addition point which allows the quench stream to contact at least a majority of the volume of the vessel above the dense bed.

  17. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  18. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis.

    PubMed Central

    Garbers, C; DeLong, A; Deruére, J; Bernasconi, P; Söll, D

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis. Images PMID:8641277

  19. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    PubMed Central

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  20. Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review

    NASA Astrophysics Data System (ADS)

    Li, Yawei; Chan, Siew Hwa; Sun, Qiang

    2015-05-01

    The conversion of CO2 into fuels and useful chemicals has been intensively pursued for renewable, sustainable and green energy. However, due to the negative adiabatic electron affinity (EA) and large ionization potential (IP), the CO2 molecule is chemically inert, thus making the conversion difficult under normal conditions. Novel catalysts, which have high stability, superior efficiency and low cost, are urgently needed to facilitate the conversion. As the first step to design such catalysts, understanding the mechanisms involved in CO2 conversion is absolutely indispensable. In this review, we have summarized the recent theoretical progress in mechanistic studies based on density functional theory, kinetic Monte Carlo simulation, and microkinetics modeling. We focus on reaction channels, intermediate products, the key factors determining the conversion of CO2 in solid-gas interface thermocatalytic reduction and solid-liquid interface electrocatalytic reduction. Furthermore, we have proposed some possible strategies for improving CO2 electrocatalysis and also discussed the challenges in theory, model construction, and future research directions.

  1. Catalytic reforming process

    SciTech Connect

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  2. HSP105 Recruits Protein Phosphatase 2A To Dephosphorylate β-Catenin

    PubMed Central

    Yu, Nancy; Kakunda, Michael; Pham, Victoria; Lill, Jennie R.; Du, Pan; Wongchenko, Matthew; Yan, Yibing; Firestein, Ron

    2015-01-01

    The Wnt/β-catenin pathway causes accumulation of β-catenin in the cytoplasm and its subsequent translocation into the nucleus to initiate the transcription of the target genes. Without Wnt stimulation, β-catenin forms a complex with axin (axis inhibitor), adenomatous polyposis coli (APC), casein kinase 1α (CK1α), and glycogen synthase kinase 3β (GSK3β) and undergoes phosphorylation-dependent ubiquitination. Phosphatases, such as protein phosphatase 2A (PP2A), interestingly, also are components of this degradation complex; therefore, a balance must be reached between phosphorylation and dephosphorylation. How this balance is regulated is largely unknown. Here we show that a heat shock protein, HSP105, is a previously unidentified component of the β-catenin degradation complex. HSP105 is required for Wnt signaling, since depletion of HSP105 compromises β-catenin accumulation and target gene transcription upon Wnt stimulation. Mechanistically, HSP105 depletion disrupts the integration of PP2A into the β-catenin degradation complex, favoring the hyperphosphorylation and degradation of β-catenin. HSP105 is overexpressed in many types of tumors, correlating with increased nuclear β-catenin protein levels and Wnt target gene upregulation. Furthermore, overexpression of HSP105 is a prognostic biomarker that correlates with poor overall survival in breast cancer patients as well as melanoma patients participating in the BRIM2 clinical study. PMID:25645927

  3. Novel Catalytic Membrane Reactors

    SciTech Connect

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  4. CIP2A modulates cell-cycle progression in human cancer cells by regulating the stability and activity of Plk1.

    PubMed

    Kim, Jae-Sung; Kim, Eun Ju; Oh, Jeong Su; Park, In-Chul; Hwang, Sang-Gu

    2013-11-15

    Abnormal cell-cycle control can lead to aberrant cell proliferation and cancer. The oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) is an inhibitor of protein phosphatase 2A (PP2A) that stabilizes c-Myc. However, the precise role of CIP2A in cell division is not understood. Herein, we show that CIP2A is required for mitotic progression by regulating the polo-like kinase (Plk1). With mitotic entry, CIP2A translocated from the cytoplasm to the nucleus, where it was enriched at spindle poles. CIP2A depletion delayed mitotic progression, resulting in mitotic abnormalities independent of PP2A activity. Unexpectedly, CIP2A interacted directly with the polo-box domain of Plk1 during mitosis. This interaction was required to maintain Plk1 stability by blocking APC/C-Cdh1-dependent proteolysis, thereby enhancing the kinase activity of Plk1 during mitosis. We observed strong correlation and in vivo interactions between these two proteins in multiple human cancer specimens. Overall, our results established a novel function for CIP2A in facilitating the stability and activity of the pivotal mitotic kinase Plk1 in cell-cycle progression and tumor development.

  5. Catalytic cracking of hydrocarbons

    SciTech Connect

    Absil, R.P.L.; Bowes, E.; Green, G.J.; Marler, D.O.; Shihabi, D.S.; Socha, R.F.

    1992-02-04

    This patent describes an improvement in a catalytic cracking process in which a hydrocarbon feed is cracked in a cracking zone in the absence of added hydrogen and in the presence of a circulating inventory of solid acidic cracking a catalyst which acquires a deposit of coke that contains chemically bound nitrogen while the cracking catalyst is in the cracking zone, the coke catalyst being circulated to t regeneration zone to convert the coke catalyst to a regenerated catalyst with the formation of a flue gas comprising nitrogen oxides: the improvement comprises incorporating into the circulating catalyst inventory an amount of additive particles comprising a synthetic porous crystalline material containing copper metal or cations, to reduce the content of nitrogen oxides in the flue gas.

  6. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  7. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  8. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  9. The B56γ3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1

    PubMed Central

    Lai, Tai-Yu; Yang, Yu-San; Hong, Wei-Fu; Chiang, Chi-Wu

    2016-01-01

    The B56γ-containing protein phosphatase 2A (PP2A-B56γ) has been postulated to have tumor suppressive functions. Here, we report regulation of p27KIP1 subcellular localization by PP2A-B56γ3. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), whose phosphorylation promotes cytoplasmic localization of p27KIP1, whereas B56γ3 knockdown significantly increased the level of phospho-Thr157. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr157 in a dose-dependent and okadaic acid-sensitive manner. B56γ3 did not increase p27KIP1 nuclear localization by down-regulating the upstream kinase Akt activity and outcompeted a myristoylated constitutively active Akt (Aktca) in regulating Thr157 phosphorylation and subcellular localization of p27KIP1. In addition, results of interaction domain mapping revealed that both the N-terminal and C-terminal domains of p27 and a domain at the C-terminus of B56γ3 are required for interaction between p27 and B56γ3. Furthermore, we demonstrated that p27KIP1 levels are positively correlated with B56γ levels in both non-tumor and tumor parts of a set of human colon tissue specimens. However, positive correlation between nuclear p27KIP1 levels and B56γ levels was found only in the non-tumor parts, but not in tumor parts of these tissues, implicating a dysregulation in PP2A-B56γ3-regulated p27KIP1 nuclear localization in these tumor tissues. Altogether, this study provides a new mechanism by which the PP2A-B56γ3 holoenzyme plays its tumor suppressor role. PMID:26684356

  10. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  11. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells

    SciTech Connect

    Qiu, Mingning Liu, Lei Chen, Lieqian Tan, Guobin Liang, Ziji Wang, Kangning Liu, Jianjun Chen, Hege

    2014-09-12

    Highlights: • miR-183 was up-regulated in renal cancer tissues. • Inhibition of endogenous miR-183 suppressed renal cancer cell growth and metastasis. • miR-183 increased cell growth and metastasis. • miR-183 regulated renal cancer cell growth and metastasis via directly targeting tumor suppressor protein phosphatase 2A. - Abstract: The aim of this study was to investigate the function of miR-183 in renal cancer cells and the mechanisms miR-183 regulates this process. In this study, level of miR-183 in clinical renal cancer specimens was detected by quantitative real-time PCR. miR-183 was up- and down-regulated in two renal cancer cell lines ACHN and A498, respectively, and cell proliferation, Caspase 3/7 activity, colony formation, in vitro migration and invasion were measured; and then the mechanisms of miR-183 regulating was analyzed. We found that miR-183 was up-regulated in renal cancer tissues; inhibition of endogenous miR-183 suppressed in vitro cell proliferation, colony formation, migration, and invasion and stimulated Caspase 3/7 activity; up-regulated miR-183 increased cell growth and metastasis and suppressed Caspase 3/7 activity. We also found that miR-183 directly targeted tumor suppressor, specifically the 3′UTR of three subunits of protein phosphatase 2A (PP2A-Cα, PP2A-Cβ, and PP2A-B56-γ) transcripts, inhibiting their expression and regulated the downstream regulators p21, p27, MMP2/3/7 and TIMP1/2/3/4. These results revealed the oncogenes role of miR-183 in renal cancer cells via direct targeting protein phosphatase 2A.

  12. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  13. Catalytic gasification of biomass

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  14. Catalytic reforming of naphtha fractions

    SciTech Connect

    Bishop, K.C.; Vorhis, F.H.

    1980-09-16

    Production of motor gasoline and a btx-enriched reformate by fractionating a naphtha feedstock into a mid-boiling btxprecursor fraction, a relatively high-boiling fraction and a relatively low-boiling fraction; catalytically reforming the btxprecursor fraction in a first reforming zone; combining the relatively high-boiling and low-boiling fractions and catalytically reforming the combined fractions in a second reforming zone.

  15. Second generation tyrosine kinase inhibitors prevent disease progression in high-risk (high CIP2A) chronic myeloid leukaemia patients.

    PubMed

    Lucas, C M; Harris, R J; Holcroft, A K; Scott, L J; Carmell, N; McDonald, E; Polydoros, F; Clark, R E

    2015-07-01

    High cancerous inhibitor of PP2A (CIP2A) protein levels at diagnosis of chronic myeloid leukaemia (CML) are predictive of disease progression in imatinib-treated patients. It is not known whether this is true in patients treated with second generation tyrosine kinase inhibitors (2G TKI) from diagnosis, and whether 2G TKIs modulate the CIP2A pathway. Here, we show that patients with high diagnostic CIP2A levels who receive a 2G TKI do not progress, unlike those treated with imatinib (P=<0.0001). 2G TKIs induce more potent suppression of CIP2A and c-Myc than imatinib. The transcription factor E2F1 is elevated in high CIP2A patients and following 1 month of in vivo treatment 2G TKIs suppress E2F1 and reduce CIP2A; these effects are not seen with imatinib. Silencing of CIP2A, c-Myc or E2F1 in K562 cells or CML CD34+ cells reactivates PP2A leading to BCR-ABL suppression. CIP2A increases proliferation and this is only reduced by 2G TKIs. Patients with high CIP2A levels should be offered 2G TKI treatment in preference to imatinib. 2G TKIs disrupt the CIP2A/c-Myc/E2F1 positive feedback loop, leading to lower disease progression risk. The data supports the view that CIP2A inhibits PP2Ac, stabilising E2F1, creating a CIP2A/c-Myc/E2F1 positive feedback loop, which imatinib cannot overcome.

  16. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases.

    PubMed

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-09-03

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.

  17. Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex1[W][OPEN

    PubMed Central

    Charpentier, Myriam; Sun, Jongho; Wen, Jiangqi; Mysore, Kirankumar S.; Oldroyd, Giles E.D.

    2014-01-01

    Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB′1. Mutations in PP2AB′1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB′1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB′1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization. PMID:25293963

  18. Resveratrol Attenuates Formaldehyde Induced Hyperphosphorylation of Tau Protein and Cytotoxicity in N2a Cells

    PubMed Central

    He, Xiaping; Li, Zhenhui; Rizak, Joshua D.; Wu, Shihao; Wang, Zhengbo; He, Rongqiao; Su, Min; Qin, Dongdong; Wang, Jingkun; Hu, Xintian

    2017-01-01

    Recent studies have demonstrated that formaldehyde (FA)—induced neurotoxicity is important in the pathogenesis of Alzheimer's disease (AD). Elevated levels of FA have been associated with memory impairments and the main hallmarks of AD pathology, including β-amyloid plaques, tau protein hyperphosphorylation, and neuronal loss. Resveratrol (Res), as a polyphenol anti-oxidant, has been considered to have therapeutic potential for the treatment of AD. However, it has not been elucidated whether Res can exert its neuroprotective effects against FA-induced neuronal damages related to AD pathology. To answer this question, the effects of Res were investigated on Neuro-2a (N2a) cells prior to and after FA exposure. The experiments found that pre-treatment with Res significantly decreased FA-induced cytotoxicity, reduced cell apoptosis rates, and inhibited the hyperphosphorylation of tau protein at Thr181 in a dose-dependent manner. Further tests revealed that this effect was associated with the suppression of glycogen synthase kinase (GSK-3β) and calmodulin-dependent protein kinase II (CaMKII) activities, both of which are important kinases for tau protein hyperphosphorylation. In addition, Res was found to increase the activity of phosphoseryl/phosphothreonyl protein phosphatase-2A (PP2A). In summary, these findings provide evidence that Res protects N2a cells from FA-induced damages and suggests that inhibition of GSK-3β and CaMKII and the activation of PP2A by Res protect against the hyperphosphorylation and/or mediates the dephosphorylation of tau protein, respectively. These possible mechanisms underlying the neuroprotective effects of Res against FA-induced damages provide another perspective on AD treatment via inhibition of tau protein hyperhosphorylation. PMID:28197064

  19. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  20. Expression studies of catalytic antibodies

    SciTech Connect

    Ulrich, H.D.; Patten, P.A.; Yang, P.L.

    1995-12-05

    We have examined the positive influence of human constant regions on the folding and bacterial expression of active soluble mouse immunoglobulin variable domains derived form a number of catalytic antibodies. Expression yields of eight hybridoma-and myeloma-derived chimeric Fab fragments are compared in both shake flasks and high-density fermentation. In addition the usefulness of this system for the generation of in vivo expression libraries is examined by constructing and expressing combinations of heavy and light chain variable regions that were not selected as a pair during an immune response. A mutagenesis study of one of the recombinant catalytic Fab fragments reveals that single amino acid substitutions can have dramatic effects on the expression yield. This system should be generally applicable to the production of Fab fragments of catalytic and other hybridoma-derived antibodies for crystallographic and structure-function studies. 41 refs., 4 figs., 1 tab.

  1. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  2. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  3. Carbon Cloth Supports Catalytic Electrodes

    NASA Technical Reports Server (NTRS)

    Lu, W. T. P.; Ammon, R. L.

    1983-01-01

    Carbon cloth is starting material for promising new catalytic electrodes. Carbon-cloth electrodes are more efficient than sintered-carbon configuration previously used. Are also chemically stable and require less catalyst--an important economic advantage when catalyst is metal such as platinum.

  4. High temperature catalytic membrane reactors

    SciTech Connect

    Not Available

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  5. Catalytic oxidation of waste materials

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1977-01-01

    Aqueous stream of human waste is mixed with soluble ruthenium salts and is introduced into reactor at temperature where ruthenium black catalyst forms on internal surfaces of reactor. This provides catalytically active surface to convert oxidizable wastes into breakdown products such as water and carbon dioxide.

  6. Simple, Chemoselective, Catalytic Olefin Isomerization

    PubMed Central

    2015-01-01

    Catalytic amounts of Co(SaltBu,tBu)Cl and organosilane irreversibly isomerize terminal alkenes by one position. The same catalysts effect cycloisomerization of dienes and retrocycloisomerization of strained rings. Strong Lewis bases like amines and imidazoles, and labile functionalities like epoxides, are tolerated. PMID:25398144

  7. Catalytic Asymmetric Bromocyclization of Polyenes.

    PubMed

    Samanta, Ramesh C; Yamamoto, Hisashi

    2017-02-01

    The first catalytic asymmetric bromonium ion-induced polyene cyclization has been achieved by using a chiral BINOL-derived thiophosphoramide catalyst and 1,3-dibromo-5,5-dimethylhydantoin as an electrophilic bromine source. Bromocyclization products are obtained in high yields, with good enantiomeric ratios and high diastereoselectivity, and are abundantly found as scaffolds in natural products.

  8. Catalytically enhanced packed tower scrubbing

    SciTech Connect

    Stitt, E.H.; Taylor, F.J.; Kelly, K.

    1996-12-31

    An enhanced wet scrubbing process for the treatment of gas streams containing odours and low level VOC`s is presented. It comprises essentially a single scrubbing column and a fixed bed catalytic reactor through which the dilute alkaline bleach scrubbing liquor is recirculated. The process has significant cost advantages over conventional chemical scrubbing technology, and copes well with peaks in odour levels. Traditional bleach scrubbing, and the improvements in process chemistry and the flowsheet afforded by inclusion of the catalyst, are discussed. The catalyst enables many of the well known problems associated with bleach scrubbing to be overcome, and facilitates odour removal efficiencies of greater than 99% in a single column. Pilot plant data from trials on sewage treatment works are presented. These show clearly the ability of the catalytically enhanced process to achieve sulphide and odour removals in excess of 99% in the single column. Case studies of some of the existing commercial installations are given, indicating the wide range of applications, industries and scale of the installed units. Comparative data are presented, measured on a commercial unit for the conventional operation of a bleach scrubber, and with the retrofitted catalyst in use. These data show clearly the benefits of the catalytic process in terms of removal efficiencies; and hence by inference also in equipment size and costs. The catalytic process is also shown to achieve very high removal efficiencies of organo-sulphides in a single column. 8 refs., 3 figs., 10 tabs.

  9. Process for Coating Substrates with Catalytic Materials

    NASA Technical Reports Server (NTRS)

    Klelin, Ric J. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor)

    2004-01-01

    A process for forming catalysts by coating substrates with two or more catalytic components, which comprises the following sequence of steps. First, the substrate is infused with an adequate amount of solution having a starting material comprising a catalytic component precursor, wherein the thermal decomposition product of the catalytic component precursor is a catalytic component. Second, the excess of the solution is removed from the substrate. thereby leaving a coating of the catalytic component precursor on the surface of the substrate. Third, the coating of the catalytic component precursor is converted to the catalytic component by thermal decomposition. Finally, the coated substance is etched to increase the surface area. The list three steps are then repeated for at least a second catalytic component. This process is ideally suited for application in producing efficient low temperature oxidation catalysts.

  10. Catalytic gasification fundamentals

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.

    1992-01-01

    Last year it was found that Maya coke gasification could be greatly accelerated if the colting took place in the presence of small amounts (below 1%) of caustic. When the Maya coke thus prepared was impregnated with 1% of CaO-KO[sub x] catalyst, the rate of gasification was doubled. During the past year, this phenomenon has been further investigated and the work has been extended to two other and very different cokes. As shown in Figure 2, a Statfjord Bottoms coke prepared in the presence of 1% NaOH and then impregnated with CaO[sub x]-KO[sub x] catalyst gasified very much faster than the same material coked in the absence of NaOH. The same phenomenon is exhibited in Figure 3 for a Torrance Hondo coke, although in this case the difference between the cokes prepared in the presence and absence of NaOH is somewhat smaller. It is concluded that the preparation method of the coke is of major importance for the rate of gasification and that the phenomenon that presence of alkali during coking is helpful is a generic one.

  11. Catalytic gasification fundamentals

    SciTech Connect

    Heinemann, H.; Somorjai, G.A.

    1992-11-01

    Last year it was found that Maya coke gasification could be greatly accelerated if the coking took place in the presence of small amounts (below 1%) of caustic. When the Maya coke thus prepared was impregnated with 1% of CaO-KO{sub x} catalyst, the rate of gasification was doubled. During the past year, this phenomenon has been further investigated and the work has been extended to two other and very different cokes. As shown in Figure 2, a Statfjord Bottoms coke prepared in the presence of 1% NaOH and then impregnated with CaO{sub x}-KO{sub x} catalyst gasified very much faster than the same material coked in the absence of NaOH. The same phenomenon is exhibited in Figure 3 for a Torrance Hondo coke, although in this case the difference between the cokes prepared in the presence and absence of NaOH is somewhat smaller. It is concluded that the preparation method of the coke is of major importance for the rate of gasification and that the phenomenon that presence of alkali during coking is helpful is a generic one.

  12. Cip2a promotes cell cycle progression in triple-negative breast cancer cells by regulating the expression and nuclear export of p27Kip1.

    PubMed

    Liu, H; Qiu, H; Song, Y; Liu, Y; Wang, H; Lu, M; Deng, M; Gu, Y; Yin, J; Luo, K; Zhang, Z; Jia, X; Zheng, G; He, Z

    2016-10-03

    Triple-negative breast cancer (TNBC) is very aggressive and currently has no specific therapeutic targets; as a consequence, TNBC exhibits poor clinical outcome. In this study, we showed that cancerous inhibitor of protein phosphatase 2A (Cip2a) represents a promising target in TNBC because Cip2a was highly expressed in TNBC cells and tumor tissues, and its expression showed an inverse correlation with overall survival in patients with TNBC. We found that inhibition of Cip2a in TNBC cells induced cell cycle arrest at the G2/M phase, inhibited cell proliferation and delayed tumor growth in the xenograft model. Moreover, Cip2a markedly decreased the expression and nuclear localization of p27Kip1 and this is critical for the ability of Cip2a to promote TNBC progression. Mechanistically, our studies showed that Cip2a promoted p27Kip1 phosphoration at Ser10 via inhibiting Akt-associated PP2A activity, which seems to relocalize p27Kip1 to the cytoplasm in TNBC cells. On the other hand, Cip2a also recruited c-myc to mediate the transcriptional inhibition of p27Kip1. Notably, we observed negative correlation between Cip2a and p27Kip1 expression in TNBC specimens. In addition, our data showed that Cip2a depletion could sensitize TNBC to PARP inhibition. Collectively, these data suggested that Cip2a effectively promotes TNBC cell cycle progression and tumor growth via regulation of PP2A/c-myc/p27Kip1 signaling, which could serve as a potential therapeutic target for TNBC patients.Oncogene advance online publication, 3 October 2016; doi:10.1038/onc.2016.355.

  13. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  14. Catalytic σ-Bond Metathesis

    NASA Astrophysics Data System (ADS)

    Reznichenko, Alexander L.; Hultzsch, Kai C.

    This account summarizes information on recently reported applications of organo-rare-earth metal complexes in various catalytic transformations of small molecules. The σ-bond metathesis at d0rare-earth metal centers plays a pivotal role in carbon-carbon and carbon-heteroatom bond forming processes. Relevant mechanistic details are discussed and the focus of the review lies in practical applications of organo-rare-earth metal complexes.

  15. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation.

  16. Thermodynamics of catalytic nanoparticle morphology

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  17. A capillary zone electrophoretic method for the study of formation of a covalent conjugate between microcystin LR and protein phosphatase 2A.

    PubMed

    Hu, S; Li, P C

    2001-07-01

    The study of conjugate formation between microcystin (MCYST)-LR and protein phosphatase (PP) 2A, which was isolated from bovine kidney and mouse brain, was achieved by using a highly efficient capillary zone electrophoretic (CZE) separation method. The MCYST-LR-PP2A conjugate (from bovine kidney) was resolved from its precursor after just 15 min of incubation. Moreover, the migration time, and, hence, the total analysis time, was less than 5 min. While the present findings of the time lag between conjugate formation and full inhibition are not novel, the CZE method does provide an alternative tool to HPLC with a higher separation efficiency to yield data for kinetic and mechanistic studies of the enzyme-toxin interaction. The CZE data reported here were found not to be adequately described by a first-order kinetic model. Moreover, the CZE method, which involves the use of a low ionic strength aqueous buffer, does not suffer from the drawback of the use of denaturing organic solvents such as those used in HPLC.

  18. An update on catalytic reforming

    SciTech Connect

    Wei, D.H.; Moser, M.D.; Haizmann, R.S.

    1996-10-01

    The UOP Platforming process is a catalytic reforming process in widespread use throughout the petroleum and petrochemical industries. Since the first unit went onstream in 1949, the process has become a standard feature in refineries worldwide. Over the years, significant improvements have been made in process catalysts and process design. The most recent improvement is the combination of a catalyst called R-72 with a new patented flow scheme, R-72 staged loading, which gives significantly higher yields and provides increased catalyst stability. In this article, the authors describe two types of Platforming processes and the new R-72 staged loading scheme.

  19. A sustainable catalytic pyrrole synthesis

    NASA Astrophysics Data System (ADS)

    Michlik, Stefan; Kempe, Rhett

    2013-02-01

    The pyrrole heterocycle is a prominent chemical motif and is found widely in natural products, drugs, catalysts and advanced materials. Here we introduce a sustainable iridium-catalysed pyrrole synthesis in which secondary alcohols and amino alcohols are deoxygenated and linked selectively via the formation of C-N and C-C bonds. Two equivalents of hydrogen gas are eliminated in the course of the reaction, and alcohols based entirely on renewable resources can be used as starting materials. The catalytic synthesis protocol tolerates a large variety of functional groups, which includes olefins, chlorides, bromides, organometallic moieties, amines and hydroxyl groups. We have developed a catalyst that operates efficiently under mild conditions.

  20. Catalytic cracking of heavy oils

    SciTech Connect

    Otterstedt, J.E.; Gevert, B.; Sterte, J. )

    1987-08-01

    Of the many factors which influence product yields in a fluid catalytic cracker, the feed stock quality and the catalyst composition are of particular interest as they can be controlled only to a limited extent by the refiner. In the past decade there has been a trend towards using heavier feedstocks in the FCC-unit, which is expected to continue in the foreseeable future. It is therefore important to study how molecular types, characteristic not only of heavy petroleum oil but also of e.g. coal liquid, shale oil and biomass oil, respond to cracking over catalysts of different compositions.

  1. Molecular catalytic coal liquid conversion

    SciTech Connect

    Stock, L.M.; Yang, Shiyong

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  2. Catalytic membranes for fuel cells

    SciTech Connect

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  3. Mechanisms and Kinetics of Catalytic Reactions

    DTIC Science & Technology

    1990-08-01

    CHEMICAL RESEARCH, r- DEVELOPMENT 5 N ENGINEERING CRDE-R-084 "" CENTER CENER(GC-TR-1728-008) ’ 04 N MECHANISMS AND KINETICS OF CATALYTIC REACTIONS Q...and Kinetics of Catalytic Reactions &AUTHOR(S) Garlick, Stephanie M. 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) . PERFORMING ORGANIZATION...Tables........................87 vi MECHANISMS AND KINETICS OF CATALYTIC REACTIONS 1. INTRODUCTION The hydrolysis of phosphate esters in microemulsion

  4. Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease.

    PubMed

    Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Tung, Yunn Chyn; Liu, Fei; Iqbal, Khalid

    2013-06-14

    Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2(PP2A). In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2(PP2A) is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2(PP2A) translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2(PP2A), except when I2(PP2A) was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2(PP2A), inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2(PP2A)-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target.

  5. Catalytic microrotor driven by geometrical asymmetry.

    PubMed

    Yang, Mingcheng; Ripoll, Marisol; Chen, Ke

    2015-02-07

    An asymmetric gear with homogeneous surface properties is, here, presented as a prototype to fabricate catalytic microrotors. The driving torque arises from the diffusiophoretic effect induced by the concentration gradients generated by catalytic chemical reactions at the gear surface. This torque produces a spontaneous and unidirectional rotation of the asymmetric gear. By means of mesoscopic simulations, we prove and characterize this scenario. The gear rotational velocity is determined by the gear-solvent interactions, the gear geometry, the solvent viscosity, and the catalytic reaction ratio. Our work presents a simple way to design self-propelled microrotors, alternative to existing catalytic bi-component, or thermophoretic ones.

  6. Catalytic microrotor driven by geometrical asymmetry

    NASA Astrophysics Data System (ADS)

    Yang, Mingcheng; Ripoll, Marisol; Chen, Ke

    2015-02-01

    An asymmetric gear with homogeneous surface properties is, here, presented as a prototype to fabricate catalytic microrotors. The driving torque arises from the diffusiophoretic effect induced by the concentration gradients generated by catalytic chemical reactions at the gear surface. This torque produces a spontaneous and unidirectional rotation of the asymmetric gear. By means of mesoscopic simulations, we prove and characterize this scenario. The gear rotational velocity is determined by the gear-solvent interactions, the gear geometry, the solvent viscosity, and the catalytic reaction ratio. Our work presents a simple way to design self-propelled microrotors, alternative to existing catalytic bi-component, or thermophoretic ones.

  7. Catalytic conversion of light alkanes

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  8. Evolution of a Catalytic Mechanism

    PubMed Central

    Rauwerdink, Alissa; Lunzer, Mark; Devamani, Titu; Jones, Bryan; Mooney, Joanna; Zhang, Zhi-Jun; Xu, Jian-He; Kazlauskas, Romas J.; Dean, Antony M.

    2016-01-01

    The means by which superfamilies of specialized enzymes arise by gene duplication and functional divergence are poorly understood. The escape from adaptive conflict hypothesis, which posits multiple copies of a gene encoding a primitive inefficient and highly promiscuous generalist ancestor, receives support from experiments showing that resurrected ancestral enzymes are indeed more substrate-promiscuous than their modern descendants. Here, we provide evidence in support of an alternative model, the innovation–amplification–divergence hypothesis, which posits a single-copied ancestor as efficient and specific as any modern enzyme. We argue that the catalytic mechanisms of plant esterases and descendent acetone cyanohydrin lyases are incompatible with each other (e.g., the reactive substrate carbonyl must bind in opposite orientations in the active site). We then show that resurrected ancestral plant esterases are as catalytically specific as modern esterases, that the ancestor of modern acetone cyanohydrin lyases was itself only very weakly promiscuous, and that improvements in lyase activity came at the expense of esterase activity. These observations support the innovation–amplification–divergence hypothesis, in which an ancestor gains a weak promiscuous activity that is improved by selection at the expense of the ancestral activity, and not the escape from adaptive conflict in which an inefficient generalist ancestral enzyme steadily loses promiscuity throughout the transition to a highly active specialized modern enzyme. PMID:26681154

  9. Memantine Attenuates Alzheimer’s Disease-Like Pathology and Cognitive Impairment

    PubMed Central

    Wang, Xiaochuan; Blanchard, Julie; Iqbal, Khalid

    2015-01-01

    Deficiency of protein phosphatase-2A is a key event in Alzheimer’s disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer’s disease brain. In the present study, we overexpressed I1PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1PP2A in Wistar rats. The I1PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer’s disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer’s disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer’s disease patients. PMID:26697860

  10. Catalytic Leadership: Strategies for an Interconnected World.

    ERIC Educational Resources Information Center

    Luke, Jeffrey S.

    A catalytic leader brings together diverse individuals from multiple agencies to address intractable public problems. Strategies for promoting catalytic leadership are explored. The book opens with a review of the problems facing public leaders, emphasizing the complexity and interconnectedness of problems in the public sphere. The book highlights…

  11. Electrochemical promotion of catalytic reactions

    NASA Astrophysics Data System (ADS)

    Imbihl, R.

    2010-05-01

    The electrochemical promotion of heterogeneously catalyzed reactions (EPOC) became feasible through the use of porous metal electrodes interfaced to a solid electrolyte. With the O 2- conducting yttrium stabilized zirconia (YSZ), the Na + conducting β″-Al 2O 3 (β-alumina), and several other types of solid electrolytes the EPOC effect has been demonstrated for about 100 reaction systems in studies conducted mainly in the mbar range. Surface science investigations showed that the physical basis for the EPOC effect lies in the electrochemically induced spillover of oxygen and alkali metal, respectively, onto the surface of the metal electrodes. For the catalytic promotion effect general concepts and mechanistic schemes were proposed but these concepts and schemes are largely speculative. Applying surface analytical tools to EPOC systems the proposed mechanistic schemes can be verified or invalidated. This report summarizes the progress which has been achieved in the mechanistic understanding of the EPOC effect.

  12. Non-catalytic recuperative reformer

    SciTech Connect

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  13. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOEpatents

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  14. Catalytic cartridge SO3 decomposer

    SciTech Connect

    Galloway, T.R.

    1982-05-25

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a crossflow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axialflow cartridge, so3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  15. Catalytic reactor with improved burner

    DOEpatents

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  16. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  17. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  18. Method of fabricating a catalytic structure

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  19. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  20. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  1. Silver nanocluster catalytic microreactors for water purification

    NASA Astrophysics Data System (ADS)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  2. Catalytic converter with thermoelectric generator

    SciTech Connect

    Parise, R.J.

    1998-07-01

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  3. Therapeutic benefits of a component of coffee in a rat model of Alzheimer's disease.

    PubMed

    Basurto-Islas, Gustavo; Blanchard, Julie; Tung, Yunn Chyn; Fernandez, Jose R; Voronkov, Michael; Stock, Maxwell; Zhang, Sherry; Stock, Jeffry B; Iqbal, Khalid

    2014-12-01

    A minor component of coffee unrelated to caffeine, eicosanoyl-5-hydroxytryptamide (EHT), provides protection in a rat model for Alzheimer's disease (AD). In this model, viral expression of the phosphoprotein phosphatase 2A (PP2A) endogenous inhibitor, the I2(PP2A), or SET protein in the brains of rats leads to several characteristic features of AD including cognitive impairment, tau hyperphosphorylation, and elevated levels of cytoplasmic amyloid-β protein. Dietary supplementation with EHT for 6-12 months resulted in substantial amelioration of all these defects. The beneficial effects of EHT could be associated with its ability to increase PP2A activity by inhibiting the demethylation of its catalytic subunit PP2Ac. These findings raise the possibility that EHT may make a substantial contribution to the apparent neuroprotective benefits associated with coffee consumption as evidenced by numerous epidemiologic studies indicating that coffee drinkers have substantially lowered risk of developing AD.

  4. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    SciTech Connect

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the

  5. Glutaminolysis Was Induced by TGF-β1 through PP2Ac Regulated Raf-MEK-ERK Signaling in Endothelial Cells.

    PubMed

    Guo, YanYan; Deng, YuanJun; Li, XiaoQing; Ning, Yong; Lin, XuePing; Guo, ShuiMing; Chen, MeiXue; Han, Min

    2016-01-01

    Vascular endothelial cells can survive under hypoxic and inflammatory conditions by alterations of the cellular energy metabolism. In addition to high rates of glycolysis, glutaminolysis is another important way of providing the required energy to support cellular sprouting in such situations. However, the exact mechanism in which endothelial cells upregulate glutaminolysis remains unclear. Here we demonstrated that protein phosphatase 2A (PP2A)-mediated Raf-MEK-ERK signaling was involved in glutaminolysis in endothelial cells. Using models of human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor-β1 (TGF-β1), we observed a dramatic induction in cellular glutamate levels accompanied by Raf-MEK-ERK activation. By addition of U0126, the specific inhibitor of MEK1/2, the expression of kidney-type glutaminase (KGA, a critical glutaminase in glutaminolysis) was significantly decreased. Moreover, inhibition of PP2A by okadaic acid (OA), a specific inhibitor of PP2A phosphatase activity or by depletion of its catalytic subunit (PP2Ac), led to a significant inactivation of Raf-MEK-ERK signaling and reduced glutaminolysis in endothelial cells. Taken together, these results indicated that PP2A-dependent Raf-MEK-ERK activation was involved in glutaminolysis and inhibition of PP2A signals was sufficient to block Raf-MEK-ERK pathway and reduced glutamine metabolism in endothelial cells.

  6. Glutaminolysis Was Induced by TGF-β1 through PP2Ac Regulated Raf-MEK-ERK Signaling in Endothelial Cells

    PubMed Central

    Li, XiaoQing; Ning, Yong; Lin, XuePing; Guo, ShuiMing; Chen, MeiXue; Han, Min

    2016-01-01

    Vascular endothelial cells can survive under hypoxic and inflammatory conditions by alterations of the cellular energy metabolism. In addition to high rates of glycolysis, glutaminolysis is another important way of providing the required energy to support cellular sprouting in such situations. However, the exact mechanism in which endothelial cells upregulate glutaminolysis remains unclear. Here we demonstrated that protein phosphatase 2A (PP2A)-mediated Raf-MEK-ERK signaling was involved in glutaminolysis in endothelial cells. Using models of human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor-β1 (TGF-β1), we observed a dramatic induction in cellular glutamate levels accompanied by Raf-MEK-ERK activation. By addition of U0126, the specific inhibitor of MEK1/2, the expression of kidney-type glutaminase (KGA, a critical glutaminase in glutaminolysis) was significantly decreased. Moreover, inhibition of PP2A by okadaic acid (OA), a specific inhibitor of PP2A phosphatase activity or by depletion of its catalytic subunit (PP2Ac), led to a significant inactivation of Raf-MEK-ERK signaling and reduced glutaminolysis in endothelial cells. Taken together, these results indicated that PP2A-dependent Raf-MEK-ERK activation was involved in glutaminolysis and inhibition of PP2A signals was sufficient to block Raf-MEK-ERK pathway and reduced glutamine metabolism in endothelial cells. PMID:27612201

  7. Topological entropy of catalytic sets: Hypercycles revisited

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno

    2012-02-01

    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

  8. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation.

    PubMed

    Gao, Yanzhe; Yao, Jianhong; Poudel, Sumeet; Romer, Eric; Abu-Niaaj, Lubna; Leffak, Michael

    2014-12-26

    The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2-7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2-7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.

  9. Catalytic Wittig and aza-Wittig reactions

    PubMed Central

    Lao, Zhiqi

    2016-01-01

    This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines. PMID:28144327

  10. Catalytic reaction in confined flow channel

    DOEpatents

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  11. Catalytic conversion of cellulose to chemicals in ionic liquid.

    PubMed

    Tao, Furong; Song, Huanling; Chou, Lingjun

    2011-01-03

    A simple and effective route for the production of 5-hydroxymethyl furfural (HMF) and furfural from microcrystalline cellulose (MCC) has been developed. CoSO(4) in an ionic liquid, 1-(4-sulfonic acid) butyl-3-methylimidazolium hydrogen sulfate (IL-1), was found to be an efficient catalyst for the hydrolysis of cellulose at 150°C, which led to 84% conversion of MCC after 300min reaction time. In the presence of a catalytic amount of CoSO(4), the yields of HMF and furfural were up to 24% and 17%, respectively; a small amount of levulinic acid (LA) and reducing sugars (8% and 4%, respectively) were also generated. Dimers of furan compounds were detected as the main by-products through HPLC-MS, and with the help of mass spectrometric analysis, the components of gas products were methane, ethane, CO, CO(2,) and H(2). A mechanism for the CoSO(4)-IL-1 hydrolysis system was proposed and IL-1 was recycled for the first time, which exhibited favorable catalytic activity over five repeated runs. This catalytic system may be valuable to facilitate energy-efficient and cost-effective conversion of biomass into biofuels and platform chemicals.

  12. Halogen Chemistry on Catalytic Surfaces.

    PubMed

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling.

  13. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  14. Catalytic Chemistry on Oxide Nanostructures

    SciTech Connect

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek; Kay, Bruce D.; Rodriquez, Jose A.; Rousseau, Roger J.; Stacchiola, Dario; Weaver, Jason F.

    2016-05-29

    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus on demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.

  15. A review of tin oxide-based catalytic systems: Preparation, characterization and catalytic behavior

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.

    1987-01-01

    This paper reviews the important aspects of the preparation, characterization and catalytic behavior of tin oxide-based catalytic systems including doped tin oxide, mixed oxides which contain tin oxide, Pt supported on tin oxide and Pt/Sn supported on alumina. These systems have a broad range of applications and are continually increasing in importance. However, due to their complex nature, much remains to be understood concerning how they function catalytically.

  16. Catalytic Science Center Opens at Delaware

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1978

    1978-01-01

    Described is a catalytic science center designed to incorporate academic and industrial concerns. The center combines educational and research opportunities for undergraduate and graduate students, as well as for the chemical professional. (MA)

  17. Monitoring by Control Technique - Catalytic Oxidizer

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about catalytic oxidizer control techniques used to reduce pollutant emissions.

  18. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  19. Advanced Catalytic Combustors for Low Pollutant Emissions

    DTIC Science & Technology

    1979-11-01

    concepts were selected for further design efforts. Results of the Phase I design effort indicate that catalytic combustion is a promising means for...L VAMD. Recent efforta to develop fuel-air carburetion concepts fol use in gas turbine catalytic combustion systems, which are summarized in...Radial/Axial Parallel-Staged combustor shown in F’gure 10 (Con- cept 6) is essentially two separate combustion systems in parallel. In this design concept

  20. An Iron Reservoir to the Catalytic Metal

    PubMed Central

    Liu, Fange; Geng, Jiafeng; Gumpper, Ryan H.; Barman, Arghya; Davis, Ian; Ozarowski, Andrew; Hamelberg, Donald; Liu, Aimin

    2015-01-01

    The rubredoxin motif is present in over 74,000 protein sequences and 2,000 structures, but few have known functions. A secondary, non-catalytic, rubredoxin-like iron site is conserved in 3-hydroxyanthranilate 3,4-dioxygenase (HAO), from single cellular sources but not multicellular sources. Through the population of the two metal binding sites with various metals in bacterial HAO, the structural and functional relationship of the rubredoxin-like site was investigated using kinetic, spectroscopic, crystallographic, and computational approaches. It is shown that the first metal presented preferentially binds to the catalytic site rather than the rubredoxin-like site, which selectively binds iron when the catalytic site is occupied. Furthermore, an iron ion bound to the rubredoxin-like site is readily delivered to an empty catalytic site of metal-free HAO via an intermolecular transfer mechanism. Through the use of metal analysis and catalytic activity measurements, we show that a downstream metabolic intermediate can selectively remove the catalytic iron. As the prokaryotic HAO is often crucial for cell survival, there is a need for ensuring its activity. These results suggest that the rubredoxin-like site is a possible auxiliary iron source to the catalytic center when it is lost during catalysis in a pathway with metabolic intermediates of metal-chelating properties. A spare tire concept is proposed based on this biochemical study, and this concept opens up a potentially new functional paradigm for iron-sulfur centers in iron-dependent enzymes as transient iron binding and shuttling sites to ensure full metal loading of the catalytic site. PMID:25918158

  1. Correlation of Catalytic Rates With Solubility Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; England, Christopher

    1987-01-01

    Catalyst maximizes activity when its solubility parameter equals that of reactive species. Catalytic activities of some binary metal alloys at maximum when alloy compositions correspond to Hildebrand solubility parameters equal to those of reactive atomic species on catalyst. If this suggestive correlation proves to be general, applied to formulation of other mixed-metal catalysts. Also used to identify reactive species in certain catalytic reactions.

  2. Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B.

    PubMed

    Ulloa, L; Dombrádi, V; Díaz-Nido, J; Szücs, K; Gergely, P; Friedrich, P; Avila, J

    1993-09-06

    Rat brain microtubule-associated protein MAP1B has been tested as a substrate for Ser/Thr protein phosphatases (PP). The dephosphorylation reactions were followed by specific antibodies recognizing phosphorylated and phosphorylatable epitopes. One set of phosphorylation sites on MAP1B are referred to as mode I sites, and their phosphorylation is presumably catalyzed by proline-directed protein kinases. These mode I sites are efficiently dephosphorylated by PP2B and 2A but not by PP1. Another set of phosphorylation sites on MAP1B are named mode II sites, and their phosphorylation is possibly due to casein kinase II. These mode II sites are dephosphorylated by PP2A and PP1, the PP2B being ineffective. The selectivity of phosphatases for different sites within the same protein indicates the complexity of the dephosphorylation reactions regulating the functionality of MAP1B in neurons.

  3. Adsorbent catalytic nanoparticles and methods of using the same

    DOEpatents

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  4. SOFC system with integrated catalytic fuel processing

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  5. VOC Destruction by Catalytic Combustion Microturbine

    SciTech Connect

    Tom Barton

    2009-03-10

    This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of

  6. Atomically Precise Metal Nanoclusters for Catalytic Application

    SciTech Connect

    Jin, Rongchao

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  7. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  8. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  9. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  10. Telecom 2-A (TC2A)

    NASA Technical Reports Server (NTRS)

    Dulac, J.; Latour, J.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for Telecom 2-A (TC2A) are summarized. The Telecom 2-A will provide high-speed data link applications, telephone, and television service between France and overseas territories. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  11. Obscurin Targets Ankyrin-B and Protein Phosphatase 2A to the Cardiac M-line*

    PubMed Central

    Cunha, Shane R.; Mohler, Peter J.

    2008-01-01

    Ankyrin-B targets ion channels and transporters in excitable cells. Dysfunction in ankyrin-B-based pathways results in defects in cardiac physiology. Despite a wealth of knowledge regarding the role of ankyrin-B for cardiac function, little is known regarding the mechanisms underlying ankyrin-B regulation. Moreover, the pathways underlying ankyrin-B targeting in heart are unclear. We report that alternative splicing regulates ankyrin-B localization and function in cardiomyocytes. Specifically, we identify a novel exon (exon 43′) in the ankyrin-B regulatory domain that mediates interaction with the Rho-GEF obscurin. Ankyrin-B transcripts harboring exon 43′ represent the primary cardiac isoform in human and mouse. We demonstrate that ankyrin-B and obscurin are co-localized at the M-line of myocytes and co-immunoprecipitate from heart. We define the structural requirements for ankyrin-B/obscurin interaction to two motifs in the ankyrin-B regulatory domain and demonstrate that both are critical for obscurin/ankyrin-B interaction. In addition, we demonstrate that interaction with obscurin is required for ankyrin-B M-line targeting. Specifically, both obscurin-binding motifs are required for the M-line targeting of a GFP-ankyrin-B regulatory domain. Moreover, this construct acts as a dominant-negative by competing with endogenous ankyrin-B for obscurin-binding at the M-line, thus providing a powerful new tool to evaluate the function of obscurin/ankyrin-B interactions. With this new tool, we demonstrate that the obscurin/ankyrin-B interaction is critical for recruitment of PP2A to the cardiac M-line. Together, these data provide the first evidence for the molecular basis of ankyrin-B and PP2A targeting and function at the cardiac M-line. Finally, we report that ankyrin-B R1788W is localized adjacent to the ankyrin-B obscurin-binding motif and increases binding activity for obscurin. In summary, our new findings demonstrate that ANK2 is subject to alternative splicing

  12. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and

  13. Gene targeting of CK2 catalytic subunits

    PubMed Central

    Lou, David Y.; Toselli, Paul; Landesman-Bollag, Esther; Dominguez, Isabel

    2013-01-01

    Protein kinase CK2 is a highly conserved and ubiquitous serine–threonine kinase. It is a tetrameric enzyme that is made up of two regulatory CK2β subunits and two catalytic subunits, either CK2α/CK2α, CK2α/ CK2α′, or CK2α′/CK2α′. Although the two catalytic subunits diverge in their C termini, their enzymatic activities are similar. To identify the specific function of the two catalytic subunits in development, we have deleted them individually from the mouse genome by homologous recombination. We have previously reported that CK2α′is essential for male germ cell development, and we now demonstrate that CK2α has an essential role in embryogenesis, as mice lacking CK2α die in mid-embryogenesis, with cardiac and neural tube defects. PMID:18594950

  14. Porous media for catalytic renewable energy conversion

    NASA Astrophysics Data System (ADS)

    Hotz, Nico

    2012-05-01

    A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.

  15. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566...

  16. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566...

  17. 40 CFR 63.1567 - What are my requirements for inorganic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1567...

  18. Continuous in vitro evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Wright, M. C.; Joyce, G. F.

    1997-01-01

    A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.

  19. Janus droplet as a catalytic micromotor

    NASA Astrophysics Data System (ADS)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  20. A premixed hydrogen/oxygen catalytic igniter

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1989-01-01

    The catalytic ignition of hydrogen and oxygen propellants was studied using a premixing hydrogen/oxygen injector. The premixed injector was designed to eliminate problems associated with catalytic ignition caused by poor propellant mixing in the catalyst bed. Mixture ratio, mass flow rate, and propellant inlet temperature were varied parametrically in testing, and a pulse mode life test of the igniter was conducted. The results of the tests showed that the premixed injector eliminated flame flashback in the reactor and increased the life of the igniter significantly. The results of the experimental program and a comparison with data collected in a previous program are given.

  1. Gold Catalysed Redox Synthesis of Imidazo[1,2-a]pyridine using Pyridine N-Oxide and Alkynes

    PubMed Central

    Talbot, Eric P. A.; Richardson, Melodie; McKenna, Jeffrey M.; Toste, F. Dean

    2014-01-01

    A mild, catalytic, atom economical synthesis of imidazo[1,2-a]pyridines has been developed: catalytic PicAuCl2 in the presence of an acid produces a range imidazo[1,2-a]pyridines in good yield. This strategy is mild and forseen to be of particular use for the installation of stereogenic centers adjacent to the imidazo[1,2-a]pyridine ring without loss of enantiomeric excess. PMID:24839436

  2. Catalytic Converters Maintain Air Quality in Mines

    NASA Technical Reports Server (NTRS)

    2014-01-01

    At Langley Research Center, engineers developed a tin-oxide based washcoat to prevent oxygen buildup in carbon dioxide lasers used to detect wind shears. Airflow Catalyst Systems Inc. of Rochester, New York, licensed the technology and then adapted the washcoat for use as a catalytic converter to treat the exhaust from diesel mining equipment.

  3. Purification of reformer streams by catalytic hydrogenation

    SciTech Connect

    Polanek, P.J.; Hooper, H.M.; Mueller, J.; Walter, M.; Emmrich, G.

    1996-12-01

    Catalytic Reforming is one of the most important processes to produce high grade motor gasolines. Feedstocks are mainly gasoline and naphtha streams from the crude oil distillation boiling in the range of 212 F to 350 F. By catalytic reforming the octane number of these gasoline components is increased from 40--60 RON to 95--100 RON. Besides isomerization and dehydrocyclization reactions mainly formation of aromatics by dehydrogenation of naphthenes occur. Thus, catalytic reformers within refineries are an important source of BTX--aromatics (benzene, toluene, xylenes). Frequently, high purity aromatics are recovered from these streams using modern extractive distillation or liquid extraction processes, e.g. the Krupp-Koppers MORPHYLANE{reg_sign} process. Aromatics product specifications, notably bromine index and acid wash color, have obligated producers to utilize clay treatment to remove trace impurities of diolefins and/or olefins. The conventional clay treatment is a multiple vessel batch process which periodically requires disposal of the spent clay in a suitable environmental manner. BASF, in close cooperation with Krupp-Koppers, has developed a continuous Selective Catalytic Hydrogenation Process (SCHP) as an alternative to clay treatment which is very efficient, cost effective and environmentally compatible. In the following the main process aspects including the process scheme catalyst and operating conditions is described.

  4. Catalytic processes for space station waste conversion

    NASA Technical Reports Server (NTRS)

    Schoonover, M. W.; Madsen, R. A.

    1986-01-01

    Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.

  5. Process for catalytically oxidizing cycloolefins, particularly cyclohexene

    DOEpatents

    Mizuno, Noritaka; Lyon, David K.; Finke, Richard G.

    1993-01-01

    This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.

  6. Selectivity of catalytic methods of determination.

    PubMed

    Otto, M; Mueller, H; Werner, G

    1978-03-01

    By means of catalytic analytical methods, extremely low levels can be determined at low cost and with a high sensitivity that is equal to that of physical methods of trace analysis. The selectivity of the catalytic determinations, is, however, usually rather lower than that of other methods of trace analysis. The selectivity can sometimes be improved by modification of the indicator reaction through variation of the reagents and their concentrations, or by use of masking reagents or activators, or by combination with a separation method. Modification of the indicator reaction can be exemplified by the selective determination of osmium and ruthenium by their catalysis of the nitrate oxidation of 1-naphthylamine. By variation of the nitrate concentration and the use of 1,10-phenanthroline and 8-hydroxyquinoline as complexing agents it is possible to determine these two elements simultaneously. An especially significant increase in the selectivity is made possible by use of a preliminary separation step. If the ion to be determined is separated by solvent extraction and then catalytically determined directly in the extract, a very specific determination is possible; this technique has been called "extractive catalytic determination". This method has been used for determination of molybdenum (0.5 ng/ml) in sea-water, iron (5 ng/ml) in heavy metal salts, and copper (3 ng/ml) in the presence of numerous elements.

  7. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  8. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  9. Toward Facilitative Mentoring and Catalytic Interventions

    ERIC Educational Resources Information Center

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  10. Catalytic Amination of Alcohols, Aldehydes, and Ketones

    NASA Astrophysics Data System (ADS)

    Klyuev, M. V.; Khidekel', M. L.

    1980-01-01

    Data on the catalytic amination of alcohols and carbonyl compounds are examined, the catalysts for these processes are described, and the problems of their effectiveness, selectivity, and stability are discussed. The possible mechanisms of the reactions indicated are presented. The bibliography includes 266 references.

  11. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...

  12. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity.

    PubMed

    Liotta, L F; Gruttadauria, M; Di Carlo, G; Perrini, G; Librando, V

    2009-03-15

    This review article explored the catalytic degradation of phenol and some phenols derivates by means of advanced oxidation processes (AOPs). Among them, only the heterogeneous catalyzed processes based on catalytic wet peroxide oxidation, catalytic ozonation and catalytic wet oxidation were reviewed. Also selected recent examples about heterogeneous photocatalytic AOPs will be presented. In details, the present review contains: (i) data concerning catalytic wet peroxide oxidation of phenolic compounds over metal-exchanged zeolites, hydrotalcites, metal-exchanged clays and resins. (ii) Use of cobalt-based catalysts, hydrotalcite-like compounds, active carbons in the catalytic ozonation process. (iii) Activity of transition metal oxides, active carbons and supported noble metals catalysts in the catalytic wet oxidation of phenol and acetic acid. The most relevant results in terms of catalytic activity for each class of catalysts were reported.

  13. Catalytic site identification--a web server to identify catalytic site structural matches throughout PDB.

    PubMed

    Kirshner, Daniel A; Nilmeier, Jerome P; Lightstone, Felice C

    2013-07-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov.

  14. Architecture and function of metallopeptidase catalytic domains

    PubMed Central

    Cerdà-Costa, Núria; Gomis-Rüth, Francesc Xavier

    2014-01-01

    The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single-step reaction involving a solvent molecule, a general base/acid, and a mono-or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal-binding motif (HEXXH), which includes two metal-binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ∼130–270-residue catalytic domains, which are usually preceded by N-terminal pro-segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C-terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N-terminal subdomain spanning a five-stranded β-sheet, a backing helix, and an active-site helix. The latter contains most of the metal-binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C-terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met-turn—and a C-terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs. PMID:24596965

  15. Evolution of catalytic RNA in the laboratory

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F.

    1992-01-01

    We are interested in the biochemistry of existing RNA enzymes and in the development of RNA enzymes with novel catalytic function. The focal point of our research program has been the design and operation of a laboratory system for the controlled evolution of catalytic RNA. This system serves as working model of RNA-based life and can be used to explore the catalytic potential of RNA. Evolution requires the integration of three chemical processes: amplification, mutation, and selection. Amplification results in additional copies of the genetic material. Mutation operates at the level of genotype to introduce variability, this variability in turn being expressed as a range of phenotypes. Selection operates at the level of phenotype to reduce variability by excluding those individuals that do not conform to the prevailing fitness criteria. These three processes must be linked so that only the selected individuals are amplified, subject to mutational error, to produce a progeny distribution of mutant individuals. We devised techniques for the amplification, mutation, and selection of catalytic RNA, all of which can be performed rapidly in vitro within a single reaction vessel. We integrated these techniques in such a way that they can be performed iteratively and routinely. This allowed us to conduct evolution experiments in response to artificially-imposed selection constraints. Our objective was to develop novel RNA enzymes by altering the selection constraints in a controlled manner. In this way we were able to expand the catalytic repertoire of RNA. Our long-range objective is to develop an RNA enzyme with RNA replicase activity. If such an enzyme had the ability to produce additional copies of itself, then RNA evolution would operate autonomously and the origin of life will have been realized in the laboratory.

  16. Main problems in the theory of modeling of catalytic processes

    SciTech Connect

    Pisarenko, V.N.

    1994-09-01

    This paper formulates the main problems in the theory of modeling of catalytic processes yet to be solved and describes the stages of modeling. Fundamental problems of model construction for the physico-chemical phenomena and processes taking place in a catalytic reactor are considered. New methods for determining the mechanism of a catalytic reaction and selecting a kinetic model for it are analyzed. The use of the results of specially controlled experiments for the construction of models of a catalyst grain and a catalytic reactor is discussed. Algorithms are presented for determining the muliplicity of stationary states in the operation of a catalyst grain and a catalytic reactor.

  17. Tumor suppressor miR-375 regulates MYC expression via repression of CIP2A coding sequence through multiple miRNA-mRNA interactions.

    PubMed

    Jung, Hyun Min; Patel, Rushi S; Phillips, Brittany L; Wang, Hai; Cohen, Donald M; Reinhold, William C; Chang, Lung-Ji; Yang, Li-Jun; Chan, Edward K L

    2013-06-01

    MicroRNAs (miRNAs) are small, noncoding RNAs involved in posttranscriptional regulation of protein-coding genes in various biological processes. In our preliminary miRNA microarray analysis, miR-375 was identified as the most underexpressed in human oral tumor versus controls. The purpose of the present study is to examine the function of miR-375 as a candidate tumor suppressor miRNA in oral cancer. Cancerous inhibitor of PP2A (CIP2A), a guardian of oncoprotein MYC, is identified as a candidate miR-375 target based on bioinformatics. Luciferase assay accompanied by target sequence mutagenesis elucidates five functional miR-375-binding sites clustered in the CIP2A coding sequence close to the C-terminal domain. Overexpression of CIP2A is clearly demonstrated in oral cancers, and inverse correlation between miR-375 and CIP2A is observed in the tumors, as well as in NCI-60 cell lines, indicating the potential generalized involvement of the miR-375-CIP2A relationship in many other cancers. Transient transfection of miR-375 in oral cancer cells reduces the expression of CIP2A, resulting in decrease of MYC protein levels and leading to reduced proliferation, colony formation, migration, and invasion. Therefore this study shows that underexpression of tumor suppressor miR-375 could lead to uncontrolled CIP2A expression and extended stability of MYC, which contributes to promoting cancerous phenotypes.

  18. Catalytic combustion of coal-derived liquids

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested with three grades of SRC 2 coal derived liquids, naphtha, middle distillate, and a blend of three parts middle distillate to one part heavy distillate. A petroleum derived number 2 diesel fuel was also tested to provide a direct comparison. The catalytic reactor was tested at inlet temperatures from 600 to 800 K, reference velocities from 10 to 20 m/s, lean fuel air ratios, and a pressure of 3 x 10 to the 5th power Pa. Compared to the diesel, the naphtha gave slightly better combustion efficiency, the middle distillate was almost identical, and the middle heavy blend was slightly poorer. The coal derived liquid fuels contained from 0.58 to 0.95 percent nitrogen by weight. Conversion of fuel nitrogen to NOx was approximately 75 percent for all three grades of the coal derived liquids.

  19. Catalytic, hollow, refractory spheres, conversions with them

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  20. Catalytic gasification: Isotopic labeling and transient reaction

    SciTech Connect

    Saber, J.M.; Falconer, J.L.; Brown, L.F.

    1985-01-01

    Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 K and 950 K, and in the presence of gaseous carbon dioxide, the complexes promoted carbon and oxygen exchange between the gas-phase CO/sub 2/ and the surface. Oxygen exchanged between the surface complexes; but carbon did not exchange between the carbonate and the carbon black. As the temperature rose, the complexes decomposed to produce carbon dioxide, and catalytic gasification then began. Elemental potassium formed, and the active catalyst appears to alternate between potassium metal and a potassium-oxygen-carbon complex.

  1. Catalytic properties of the eukaryotic exosome.

    PubMed

    Chlebowski, Aleksander; Tomecki, Rafał; López, María Eugenia Gas; Séraphin, Bertrand; Dziembowski, Andrzej

    2010-01-01

    The eukaryotic exosome complex is built around the backbone of a 9-subunit ring similar to phosporolytic ribonucleases such as RNase PH and polynucleotide phosphorylase (PNPase). Unlike those enzymes, the ring is devoid of any detectable catalytic activities, with the possible exception of the plant version of the complex. Instead, the essential RNA decay capability is supplied by associated hydrolytic ribonucleases belonging to the Dis3 and Rrp6 families. Dis3 proteins are endowed with two different activities: the long known processive 3'-5' exonucleolytic one and the recently discovered endonucleolytic one. Rrp6 proteins are distributive exonucleases. This chapter will review the current knowledge about the catalytic properties of theses nucleases and their interplay within the exosome holocomplex.

  2. On the structural context and identification of enzyme catalytic residues.

    PubMed

    Chien, Yu-Tung; Huang, Shao-Wei

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  3. On the Structural Context and Identification of Enzyme Catalytic Residues

    PubMed Central

    Chien, Yu-Tung; Huang, Shao-Wei

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods. PMID:23484160

  4. Method and apparatus for a catalytic firebox reactor

    DOEpatents

    Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  5. Preface: Challenges for Catalytic Exhaust Aftertreatment

    SciTech Connect

    Nova, Isabella; Epling, Bill; Peden, Charles HF

    2014-03-31

    This special issue of Catalysis Today continues the tradition established since the 18th NAM in Cancun, 2003, of publishing the highlights coming from these catalytic after-treatment technologies sessions, where this volume contains 18 papers based on oral and poster presentations of the 23rd NAM, 2013. The guest editors would like to thank all of the catalyst scientists and engineers who presented in the "Emission control" sessions, and especially the authors who contributed to this special issue of Catalysis Today.

  6. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  7. In vitro selection of catalytic RNAs

    NASA Technical Reports Server (NTRS)

    Chapman, K. B.; Szostak, J. W.

    1994-01-01

    In vitro selection techniques are poised to allow a rapid expansion of the study of catalysis by RNA enzymes (ribozymes). This truly molecular version of genetics has already been applied to the study of the structures of known ribozymes and to the tailoring of their catalytic activity to meet specific requirements of substrate specificity or reaction conditions. During the past year, in vitro selection has been successfully used to isolate novel RNA catalysts from random sequence pools.

  8. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  9. Zeolitic catalytic conversion of alochols to hydrocarbons

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2017-01-03

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  10. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  11. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  12. Control of a catalytic fluid cracker

    SciTech Connect

    Arbel, A.; Huang, Z.; Rinard, I.; Shinnar, R.

    1993-12-13

    Control offers an important tool for savings in refineries, mainly by integration of process models into on-line control. This paper is part of a research effort to better understand problems of partial control; control of a Fluid Catalytic Cracker (FCC) is used as example. Goal is to understand better the control problems of an FCC in context of model based control of a refinery, and to understand the general problem of designing partial control systems.

  13. Vapor-Driven Propulsion of Catalytic Micromotors

    NASA Astrophysics Data System (ADS)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  14. IFP solutions for revamping catalytic reforming units

    SciTech Connect

    Gendler, J.L.; Domergue, B.; Mank, L.

    1996-12-01

    The decision-making process for the refiner considering a revamp of a catalytic reforming unit comprises many factors. These may be grouped in two broad areas: technical and economic. This paper presents the results of a study performed by IFP that illustrates catalytic reforming unit revamp options. Three IFP processes are described and operating conditions, expected yields, and economic data are presented. The following options are discussed: base case Conventional, fixed-bed, semi-regenerative catalytic reformer; Case 1--revamp using IFP Dualforming technology; Case 2--revamp using IFP Dualforming Plus technology; and Case 3--revamp to IFP Octanizing technology. The study illustrates various options for the refiner to balance unit performance improvements with equipment, site, and economic constraints. The study was performed assuming design feedrate of 98.2 tons/hour (20,000 BPSD) in all cases. Because of the increased need for octane in many refineries, the study assumed that operating severity was set at a design value of 100 research octane number clear (RON). In all of the cases in this study, it was assumed that the existing recycle compressor was reused. Operating pressure differences between the cases is discussed separately. Also, in all cases, a booster compressor was included in order to return export hydrogen pressure to that of the conventional unit.

  15. Catalytic pyrolysis of olive mill wastewater sludge

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  16. A revolution in micropower : the catalytic nanodiode.

    SciTech Connect

    Cross, Karen Charlene; Heller, Edwin J.; Figiel, Jeffrey James; Coker, Eric Nicholas; Creighton, James Randall; Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Coltrin, Michael Elliott; Pawlowski, Roger Patrick; Baucom, Kevin C.

    2010-11-01

    Our ability to field useful, nano-enabled microsystems that capitalize on recent advances in sensor technology is severely limited by the energy density of available power sources. The catalytic nanodiode (reported by Somorjai's group at Berkeley in 2005) was potentially an alternative revolutionary source of micropower. Their first reports claimed that a sizable fraction of the chemical energy may be harvested via hot electrons (a 'chemicurrent') that are created by the catalytic chemical reaction. We fabricated and tested Pt/GaN nanodiodes, which eventually produced currents up to several microamps. Our best reaction yields (electrons/CO{sub 2}) were on the order of 10{sup -3}; well below the 75% values first reported by Somorjai (we note they have also been unable to reproduce their early results). Over the course of this Project we have determined that the whole concept of 'chemicurrent', in fact, may be an illusion. Our results conclusively demonstrate that the current measured from our nanodiodes is derived from a thermoelectric voltage; we have found no credible evidence for true chemicurrent. Unfortunately this means that the catalytic nanodiode has no future as a micropower source.

  17. Demonstration of catalytic combustion with residual fuel

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1981-01-01

    An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

  18. Vapor-Driven Propulsion of Catalytic Micromotors

    PubMed Central

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-01-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors. PMID:26285032

  19. A mutagenesis study of a catalytic antibody

    SciTech Connect

    Jackson, D.Y.; Prudent, J.R.; Baldwin, E.P.; Schultz, P.G. )

    1991-01-01

    The authors have generated seven site-specific mutations in the genes encoding the variable region of the heavy chain domain (V{sub H}) of the phosphocholine-binding antibody S107.S107 is a member of a family of well-characterized highly homologous antibodies that bind phosphorylcholine mono- and diesters. Two of these antibodies, MOPC-167 and T15, have previously been shown to catalyze the hydrolysis of 4-nitrophenyl N-trimethylammonioethyl carbonate. Two conserved heavy-chain residues, Tyr-33 and Arg-52, were postulated to be involved in binding and hydrolysis of 4-nitrophenylcholine carbonate esters. To more precisely define the catalytic roles of these residues, three Arg-52 mutants (R52K, R52Q, R52C) and four Tyr-33 mutants (Y33H, Y33F, Y33E, Y33D) of antibody S107 were generated. The genes encoding the V{sub H} binding domain of S107 were inserted into plasmid pUC-fl, and in vitro mutagenesis was performed. These results not only demonstrate the importance of electrostatic interactions in catalysis by antibody S107 but also show that catalytic side chains can be introduced into antibodies to enhance their catalytic efficiency.

  20. Complementary structure sensitive and insensitive catalytic relationships.

    PubMed

    Van Santen, Rutger A

    2009-01-20

    The burgeoning field of nanoscience has stimulated an intense interest in properties that depend on particle size. For transition metal particles, one important property that depends on size is catalytic reactivity, in which bonds are broken or formed on the surface of the particles. Decreased particle size may increase, decrease, or have no effect on the reaction rates of a given catalytic system. This Account formulates a molecular theory of the structure sensitivity of catalytic reactions based on the computed activation energies of corresponding elementary reaction steps on transition metal surfaces. Recent progress in computational catalysis, surface science, and nanochemistry has significantly improved our theoretical understanding of particle-dependent reactivity changes in heterogeneous catalytic systems. Reactions that involve the cleavage or formation of molecular pi-bonds, as in CO or N(2), must be distinguished from reactions that involve the activation of sigma-bonds, such as CH bonds in methane. The activation of molecular pi-bonds requires a reaction center with a unique configuration of several metal atoms and step-edge sites, which can physically not be present on transition metal particles less than 2 nm. This is called class I surface sensitivity, and the rate of reaction will sharply decrease when particle size decreases below a critical size. The activation of sigma chemical bonds, in which the activation proceeds at a single metal atom, displays a markedly different size relationship. In this case, the dependence of reaction rate on coordinative unsaturation of reactive surface atoms is large in the forward direction of the reaction, but the activation energy of the reverse recombination reaction will not change. Dissociative adsorption with cleavage of a CH bond is strongly affected by the presence of surface atoms at the particle edges. This is class II surface sensitivity, and the rate will increase with decreasing particle size. Reverse

  1. Turning goals into results: the power of catalytic mechanisms.

    PubMed

    Collins, J

    1999-01-01

    Most executives have a big, hairy, audacious goal. They write vision statements, formalize procedures, and develop complicated incentive programs--all in pursuit of that goal. In other words, with the best of intentions, they install layers of stultifying bureaucracy. But it doesn't have to be that way. In this article, Jim Collins introduces the catalytic mechanism, a simple yet powerful managerial tool that helps translate lofty aspirations into concrete reality. Catalytic mechanisms are the crucial link between objectives and performance; they are a galvanizing, nonbureaucratic means to turn one into the other. What's the difference between catalytic mechanisms and most traditional managerial controls? Catalytic mechanisms share five characteristics. First, they produce desired results in unpredictable ways. Second, they distribute power for the benefit of the overall system, often to the discomfort of those who traditionally hold power. Third, catalytic mechanisms have teeth. Fourth, they eject "viruses"--those people who don't share the company's core values. Finally, they produce an ongoing effect. Catalytic mechanisms are just as effective for reaching individual goals as they are for corporate ones. To illustrate how catalytic mechanisms work, the author draws on examples of individuals and organizations that have relied on such mechanisms to achieve their goals. The same catalytic mechanism that works in one organization, however, will not necessarily work in another. Catalytic mechanisms must be tailored to specific goals and situations. To help readers get started, the author offers some general principles that support the process of building catalytic mechanisms effectively.

  2. Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus.

    PubMed

    Scorsato, Valéria; Lima, Tatiani B; Righetto, Germanna L; Zanchin, Nilson I T; Brandão-Neto, José; Sandy, James; Pereira, Humberto D'Muniz; Ferrari, Állan J R; Gozzo, Fabio C; Smetana, Juliana H C; Aparicio, Ricardo

    2016-08-04

    TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase's active site, providing a structural framework for the function of TIPRL in PP2A inhibition.

  3. Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus

    PubMed Central

    Scorsato, Valéria; Lima, Tatiani B.; Righetto, Germanna L.; Zanchin, Nilson I. T.; Brandão-Neto, José; Sandy, James; Pereira, Humberto D’Muniz; Ferrari, Állan J. R.; Gozzo, Fabio C.; Smetana, Juliana H. C.; Aparicio, Ricardo

    2016-01-01

    TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase’s active site, providing a structural framework for the function of TIPRL in PP2A inhibition. PMID:27489114

  4. Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus

    NASA Astrophysics Data System (ADS)

    Scorsato, Valéria; Lima, Tatiani B.; Righetto, Germanna L.; Zanchin, Nilson I. T.; Brandão-Neto, José; Sandy, James; Pereira, Humberto D.’Muniz; Ferrari, Állan J. R.; Gozzo, Fabio C.; Smetana, Juliana H. C.; Aparicio, Ricardo

    2016-08-01

    TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase’s active site, providing a structural framework for the function of TIPRL in PP2A inhibition.

  5. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    PubMed

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs.

  6. Catalytic Mechanism of Human Alpha-galactosidase

    SciTech Connect

    Guce, A.; Clark, N; Salgado, E; Ivanen, D; Kulinskaya, A; Brumer, H; Garman, S

    2010-01-01

    The enzyme {alpha}-galactosidase ({alpha}-GAL, also known as {alpha}-GAL A; E.C. 3.2.1.22) is responsible for the breakdown of {alpha}-galactosides in the lysosome. Defects in human {alpha}-GAL lead to the development of Fabry disease, a lysosomal storage disorder characterized by the buildup of {alpha}-galactosylated substrates in the tissues. {alpha}-GAL is an active target of clinical research: there are currently two treatment options for Fabry disease, recombinant enzyme replacement therapy (approved in the United States in 2003) and pharmacological chaperone therapy (currently in clinical trials). Previously, we have reported the structure of human {alpha}-GAL, which revealed the overall structure of the enzyme and established the locations of hundreds of mutations that lead to the development of Fabry disease. Here, we describe the catalytic mechanism of the enzyme derived from x-ray crystal structures of each of the four stages of the double displacement reaction mechanism. Use of a difluoro-{alpha}-galactopyranoside allowed trapping of a covalent intermediate. The ensemble of structures reveals distortion of the ligand into a {sup 1}S{sub 3} skew (or twist) boat conformation in the middle of the reaction cycle. The high resolution structures of each step in the catalytic cycle will allow for improved drug design efforts on {alpha}-GAL and other glycoside hydrolase family 27 enzymes by developing ligands that specifically target different states of the catalytic cycle. Additionally, the structures revealed a second ligand-binding site suitable for targeting by novel pharmacological chaperones.

  7. Transport in a Microfluidic Catalytic Reactor

    SciTech Connect

    Park, H G; Chung, J; Grigoropoulos, C P; Greif, R; Havstad, M; Morse, J D

    2003-04-30

    A study of the heat and mass transfer, flow, and thermodynamics of the reacting flow in a catalytic microreactor is presented. Methanol reforming is utilized in the fuel processing system driving a micro-scale proton exchange membrane fuel cell. Understanding the flow and thermal transport phenomena as well as the reaction mechanisms is essential for improving the efficiency of the reforming process as well as the quality of the processed fuel. Numerical studies have been carried out to characterize the transport in a silicon microfabricated reactor system. On the basis of these results, optimized conditions for fuel processing are determined.

  8. Thin film porous membranes for catalytic sensors

    SciTech Connect

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J.

    1997-06-01

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  9. Catalytic properties of lamellar compounds of graphite

    NASA Astrophysics Data System (ADS)

    Novikov, Yu. N.; Vol'pin, M. E.

    1981-05-01

    In heterogenous catalysis, the supports derived from graphite and carbon-graphite materials constitute a unique and exceptionally attractive group. The lamellar compounds of graphite with various kinds of electron acceptors and donors show catalytic activities on the following reactions: the oxidation of organic compounds with molecular oxygen, many sorts of polymerization, alcohol and formic acid dehydrogenation, hydrogenation and isomerization of olefins and acetylenes, ammonia synthesis from nitrogen and hydrogen, and also CO hydrogenation. Furthermore, the transition metal lamellar compounds of graphite are highly active catalysts in the process of the graphite-to-diamond conversion.

  10. Catalytic enantioselective synthesis of quaternary carbon stereocentres.

    PubMed

    Quasdorf, Kyle W; Overman, Larry E

    2014-12-11

    Quaternary carbon stereocentres-carbon atoms to which four distinct carbon substituents are attached-are common features of molecules found in nature. However, before recent advances in chemical catalysis, there were few methods of constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for the synthesis of single stereoisomers of such organic molecules. This progress now makes it possible to incorporate quaternary stereocentres selectively in many organic molecules that are useful in medicine, agriculture and potentially other areas such as flavouring, fragrances and materials.

  11. Amylosucrase from Neisseria polysaccharea: novel catalytic properties.

    PubMed

    Potocki de Montalk, G; Remaud-Simeon, M; Willemot, R M; Sarçabal, P; Planchot, V; Monsan, P

    2000-04-14

    Amylosucrase is a glucosyltransferase that synthesises an insoluble alpha-glucan from sucrose. The catalytic properties of the highly purified amylosucrase from Neisseria polysaccharea were characterised. Contrary to previously published results, it was demonstrated that in the presence of sucrose alone, several reactions are catalysed, in addition to polymer synthesis: sucrose hydrolysis, maltose and maltotriose synthesis by successive transfers of the glucosyl moiety of sucrose onto the released glucose, and finally turanose and trehalulose synthesis - these two sucrose isomers being obtained by glucosyl transfer onto fructose. The effect of initial sucrose concentration on initial activity demonstrated a non-Michaelian profile never previously described.

  12. Transient Numerical Modeling of Catalytic Channels

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    This paper presents a transient model of catalytic combustion suitable for isolated channels and monolith reactors. The model is a lumped two-phase (gas and solid) model where the gas phase is quasi-steady relative to the transient solid. Axial diffusion is neglected in the gas phase; lateral diffusion, however, is accounted for using transfer coefficients. The solid phase includes axial heat conduction and external heat loss due to convection and radiation. The combustion process utilizes detailed gas and surface reaction models. The gas-phase model becomes a system of stiff ordinary differential equations while the solid phase reduces, after discretization, into a system of stiff ordinary differential-algebraic equations. The time evolution of the system came from alternating integrations of the quasi-steady gas and transient solid. This work outlines the numerical model and presents some sensitivity studies on important parameters including internal transfer coefficients, catalytic surface site density, and external heat-loss (if applicable). The model is compared to two experiments using CO fuel: (1) steady-state conversion through an isothermal platinum (Pt) tube and (2) transient propagation of a catalytic reaction inside a small Pt tube. The model requires internal mass-transfer resistance to match the experiments at lower residence times. Under mass-transport limited conditions, the model reasonably predicted exit conversion using global mass-transfer coefficients. Near light-off, the model results did not match the experiment precisely even after adjustment of mass-transfer coefficients. Agreement improved for the first case after adjusting the surface kinetics such that the net rate of CO adsorption increased compared to O2. The CO / O2 surface mechanism came from a sub-set of reactions in a popular CH4 / O2 mechanism. For the second case, predictions improved for lean conditions with increased external heat loss or adjustment of the kinetics as in the

  13. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocenters

    PubMed Central

    Quasdorf, Kyle W.; Overman, Larry E.

    2015-01-01

    Preface Quaternary carbon stereocenters–carbon atoms to which four distinct carbon substituents are attached–are common features of molecules found in nature. However, prior to recent advances in chemical catalysis, there were few methods available for constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for synthesizing organic molecules containing such carbon atoms. This progress now makes it possible to selectively incorporate quaternary stereocenters in many high-value organic molecules for use in medicine, agriculture, and other areas. PMID:25503231

  14. Highly Concentrated Catalytic Asymmetric Allylation of Ketones

    PubMed Central

    Wooten, Alfred J.; Kim, Jeung Gon; Walsh, Patrick J.

    2008-01-01

    We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80–99%) with high enantioselectivities (79–95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84–87%). PMID:17249767

  15. Highly concentrated catalytic asymmetric allylation of ketones.

    PubMed

    Wooten, Alfred J; Kim, Jeung Gon; Walsh, Patrick J

    2007-02-01

    [reaction: see text] We report the catalytic asymmetric allylation of ketones under highly concentrated reaction conditions with a catalyst generated from titanium tetraisopropoxide and BINOL (1:2 ratio) in the presence of isopropanol. This catalyst promotes the addition of tetraallylstannane to a variety of ketones to produce tertiary homoallylic alcohols in excellent yield (80-99%) with high enantioselectivities (79-95%). The resulting homoallylic alcohols can also be epoxidized in situ using tert-butyl hydroperoxide (TBHP) to afford cyclic epoxy alcohols in high yield (84-87%).

  16. Enzymatic Catalytic Beds For Oxidation Of Alcohols

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.

    1993-01-01

    Modules containing beds of enzymatic material catalyzing oxidation of primary alcohols and some other organic compounds developed for use in wastewater-treatment systems of future spacecraft. Designed to be placed downstream of multifiltration modules, which contain filters and sorbent beds removing most of non-alcoholic contaminants but fail to remove significant amounts of low-molecular-weight, polar, nonionic compounds like alcohols. Catalytic modules also used on Earth to oxidize primary alcohols and other compounds in wastewater streams and industrial process streams.

  17. Catalytic combustion with incompletely vaporized residual fuel

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1981-01-01

    Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

  18. Catalytic enantioselective synthesis of quaternary carbon stereocentres

    NASA Astrophysics Data System (ADS)

    Quasdorf, Kyle W.; Overman, Larry E.

    2014-12-01

    Quaternary carbon stereocentres--carbon atoms to which four distinct carbon substituents are attached--are common features of molecules found in nature. However, before recent advances in chemical catalysis, there were few methods of constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for the synthesis of single stereoisomers of such organic molecules. This progress now makes it possible to incorporate quaternary stereocentres selectively in many organic molecules that are useful in medicine, agriculture and potentially other areas such as flavouring, fragrances and materials.

  19. A study on naphtha catalytic reforming reactor simulation and analysis.

    PubMed

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-06-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  20. A study on naphtha catalytic reforming reactor simulation and analysis

    PubMed Central

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data. PMID:15909350

  1. Piloted rich-catalytic lean-burn hybrid combustor

    DOEpatents

    Newburry, Donald Maurice

    2002-01-01

    A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

  2. Hydrogen-assisted catalytic ignition characteristics of different fuels

    SciTech Connect

    Zhong, Bei-Jing; Yang, Fan; Yang, Qing-Tao

    2010-10-15

    Hydrogen-assisted catalytic ignition characteristics of methane (CH{sub 4}), n-butane (n-C{sub 4}H{sub 10}) and dimethyl ether (DME) were studied experimentally in a Pt-coated monolith catalytic reactor. It is concluded that DME has the lowest catalytic ignition temperature and the least required H{sub 2} flow, while CH{sub 4} has the highest catalytic ignition temperature and the highest required H{sub 2} flow among the three fuels. (author)

  3. Catalytic performance and thermostability of chloroperoxidase in reverse micelle: achievement of a catalytically favorable enzyme conformation.

    PubMed

    Wang, Yali; Wu, Jinyue; Ru, Xuejiao; Jiang, Yucheng; Hu, Mancheng; Li, Shuni; Zhai, Quanguo

    2011-06-01

    The catalytic performance of chloroperoxidase (CPO) in peroxidation of 2, 2'-azinobis-(-3 ethylbenzothiazoline-6-sulfononic acid) diammonium salt (ABTS) and oxidation of indole in a reverse micelle composed of surfactant-water-isooctane-pentanol was investigated and optimized in this work. Some positive results were obtained as follows: the peroxidation activity of CPO was enhanced 248% and 263%, while oxidation activity was enhanced 215% and 222% in cetyltrimethylammonium bromide (CTABr) reverse micelle medium and dodecyltrimethylammonium bromide (DTABr) medium, respectively. Thermostability was also greatly improved in reverse micelle: at 40 °C, CPO essentially lost all its activity after 5 h incubation, while 58-76% catalytic activity was retained for both reactions in the two reverse micelle media. At 50 °C, about 44-75% catalytic activity remained for both reactions in reverse micelle after 2 h compared with no observed activity in pure buffer under the same conditions. The enhancement of CPO activity was dependent mainly on the surfactant concentration and structure, organic solvent ratio (V(pentanol)/V(isooctane)), and water content in the reverse micelle. The obtained kinetic parameters showed that the catalytic turnover frequency (k(cat)) was increased in reverse micelle. Moreover, the lower K(m) and higher k(cat)/K(m) demonstrated that both the affinity and specificity of CPO to substrates were improved in reverse micelle media. Fluorescence, circular dichroism (CD) and UV-vis spectra assays indicated that a catalytically favorable conformation of enzyme was achieved in reverse micelle, including the strengthening of the protein α-helix structure, and greater exposure of the heme prosthetic group for easy access of the substrate in bulk solution. These results are promising in view of the industrial applications of this versatile biological catalyst.

  4. Catalytic reactor for low-Btu fuels

    SciTech Connect

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  5. Catalytic bromine recovery from HBr waste

    SciTech Connect

    Schubert, P.F.; Beatty, R.D.; Mahajan, S.

    1993-12-31

    Waste HBr is formed during the bromination of many organic molecules, such as flame retardants, pharmaceuticals, and agricultural chemicals. For over 50 years attempts to recover the bromine from waste HBr by catalytic oxidation have been unsuccessful due to low catalyst activity and stability. The discovery of a new high-activity catalysts with excellent long-term stability and life capable of high HBr conversion below 300{degrees}C has made catalytic oxidation of waste HBr commercially feasible. The oxidation of anhydrous HBr using oxygen is highly exothermic, giving an adiabatic temperature rise of 2000{degrees}C. Use of 48 wt% HBr in the oxidation reduces the adiabatic temperature rise to only 300{degrees}C. A multitubular heat exchanger type of reactor can then be used to manage the heat. A 5,000 kg/yr pilot plant was built to verify the performance of the catalyst, the suitability of the reactor materials of construction, and the multibular reactor concept. The pilot unit has a single full-scale reactor tube 4 m long and 2.54 cm in diameter with a hot oil jacket for heat management. Excellent catalyst stability was observed during a 600 h catalyst-life test. HBr conversion of 99% was maintained throughout the run, and over 360 kg of bromine was produced. The temperature at a localized hot spot near the reactor inlet was only 15-20{degrees}C above the reactor inlet temperature, indicating efficient heat management.

  6. Catalytic pyrolysis of automobile shredder residue

    SciTech Connect

    Arzoumanidis, G.G.; McIntosh, M.J.; Steffensen, E.J.

    1995-07-01

    In the United States, approximately 10 million automobiles are scrapped and shredded each year. The mixture of plastics and other materials remaining after recovery of the metals is known as Automobile Shredder Residue (ASR). In 1994, about 3.5 million tons of ASR was produced and disposed of in landfills. However, environmental, legislative, and economic considerations are forcing the industry to search for recycling or other alternatives to disposal. Numerous studies have been done relating the ASR disposal problem to possible recycling treatments such as pyrolysis, gasification, co-liquefaction of ASR with coal, chemical recovery of plastics from ASR, catalytic pyrolysis, reclamation in molten salts, and vacuum pyrolysis. These and other possibilities have been studied intensively, and entire symposia have been devoted to the problem. Product mix, yields, toxicology issues, and projected economics of conceptual plant designs based on experimental results are among the key elements of past studies. Because the kinds of recycling methods that may be developed, along with their ultimate economic value, depend on a very large number of variables, these studies have been open-ended. It is hoped that it may be useful to explore some of these previously studied areas from fresh perspectives. One such approach, currently under development at Argonne National Laboratory, is the catalytic pyrolysis of ASR.

  7. Catalytic hydrothermal liquefaction of water hyacinth.

    PubMed

    Singh, Rawel; Balagurumurthy, Bhavya; Prakash, Aditya; Bhaskar, Thallada

    2015-02-01

    Thermal and catalytic hydrothermal liquefaction of water hyacinth was performed at temperatures from 250 to 300 °C under various water hyacinth:H2O ratio of 1:3, 1:6 and 1:12. Reactions were also carried out under various residence times (15-60 min) as well as catalytic conditions (KOH and K2CO3). The use of alkaline catalysts significantly increased the bio-oil yield. Maximum bio-oil yield (23 wt%) comprising of bio-oil1 and bio-oil2 as well as conversion (89%) were observed with 1N KOH solution. (1)H NMR and (13)C NMR data showed that both bio-oil1 and bio-oil2 have high aliphatic carbon content. FTIR of bio-residue indicated that the usage of alkaline catalyst resulted in bio-residue samples with lesser oxygen functionality indicating that catalyst has a marked effect on nature of the bio-residue and helps to decompose biomass to a greater extent compared to thermal case.

  8. Cutoff lensing: predicting catalytic sites in enzymes

    NASA Astrophysics Data System (ADS)

    Aubailly, Simon; Piazza, Francesco

    2015-10-01

    Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings.

  9. Catalytic decomposition of petroleum into natural gas

    SciTech Connect

    Mango, F.D.; Hightower, J.

    1997-12-01

    Petroleum is believed to be unstable in the earth, decomposing to lighter hydrocarbons at temperatures > 150{degrees}C. Oil and gas deposits support this view: gas/oil ratios and methane concentrations tend to increase with depth above 150{degrees}C. Although oil cracking is suggested and receives wide support, laboratory pyrolysis does not give products resembling natural gas. Moreover, it is doubtful that the light hydrocarbons in wet gas (C{sub 2}-C{sub 4}) could decompose over geologic time to dry gas (>95% methane) without catalytic assistance. We now report the catalytic decomposition of crude oil to a gas indistinguishable from natural gas. Like natural gas in deep basins, it becomes progressively enriched in methane: initially 90% (wet gas) to a final composition of 100% methane (dry gas). To our knowledge, the reaction is unprecedented and unexpectedly robust (conversion of oil to gas is 100% in days, 175{degrees}C) with significant implications regarding the stability of petroleum in sedimentary basins. The existence or nonexistence of oil in the deep subsurface may not depend on the thermal stability of hydrocarbons as currently thought. The critical factor could be the presence of transition metal catalysts which destabilize hydrocarbons and promote their decomposition to natural gas.

  10. Cutoff lensing: predicting catalytic sites in enzymes.

    PubMed

    Aubailly, Simon; Piazza, Francesco

    2015-10-08

    Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings.

  11. Cutoff lensing: predicting catalytic sites in enzymes

    PubMed Central

    Aubailly, Simon; Piazza, Francesco

    2015-01-01

    Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings. PMID:26445900

  12. Catalytic hydroprocessing of heavy oil feedstocks

    NASA Astrophysics Data System (ADS)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  13. Structured materials for catalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Hokenek, Selma

    The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts is, therefore, an attractive option. Similarly, the optical properties of nanoscale materials used for sensing must be attuned to their application. By adjusting the shape and composition of nanoparticles used in such applications, very fine changes can be made to the frequency of light that they absorb most efficiently. The design, synthesis, and characterization of (i) size controlled monometallic palladium nanoparticles for catalytic applications, (ii) nickel-palladium bimetallic nanoparticles and (iii) silver-palladium nanoparticles with applications in drug detection and biosensing through surface plasmon resonance, respectively, will be discussed. The composition, size, and shape of the nanoparticles formed were controlled through the use of wet chemistry techniques. After synthesis, the nanoparticles were analyzed using physical and chemical characterization techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy- Energy-Dispersive Spectrometry (STEM-EDX). The Pd and Ni-Pd nanoparticles were then supported on silica for catalytic testing using mass spectrometry. The optical properties of the Ag-Pd nanoparticles in suspension were further investigated using ultraviolet-visible spectrometry (UV-Vis). Monometallic palladium particles have

  14. 3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein-protein interaction characteristics.

    PubMed

    Dahlström, Käthe M; Salminen, Tiina A

    2015-12-07

    Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A) and MYC. The lack of structural information for CIP2A significantly prevents the design of anti-cancer therapeutics targeting this protein. In an attempt to counteract this fact, we modeled the three-dimensional structure of the N-terminal domain (CIP2A-ArmRP), analyzed key areas and amino acids, and coupled the results to the existing literature. The model reliably shows a stable armadillo repeat fold with a positively charged groove. The fact that this conserved groove highly likely binds peptides is corroborated by the presence of a conserved polar ladder, which is essential for the proper peptide-binding mode of armadillo repeat proteins and, according to our results, several known CIP2A interaction partners appropriately possess an ArmRP-binding consensus motif. Moreover, we show that Arg229Gln, which has been linked to the development of cancer, causes a significant change in charge and surface properties of CIP2A-ArmRP. In conclusion, our results reveal that CIP2A-ArmRP shares the typical fold, protein-protein interaction site and interaction patterns with other natural armadillo proteins and that, presumably, several interaction partners bind into the central groove of the modeled CIP2A-ArmRP. By providing essential structural characteristics of CIP2A, the present study significantly increases our knowledge on how CIP2A interacts with other proteins in cancer progression and how to develop new therapeutics targeting CIP2A.

  15. Study of Single Catalytic Events at Copper-in-Charcoal: Localization of Click Activity Through Subdiffraction Observation of Single Catalytic Events.

    PubMed

    Decan, Matthew R; Scaiano, Juan C

    2015-10-15

    Single molecule fluorescence microscopy reveals that copper-in-charcoal--a high performance click catalyst- has remarkably few catalytic sites, with 90% of the charcoal particles being inactive, and for the catalytic ones the active sites represent a minute fraction (∼0.003%) of the surface. The intermittent nature of the catalytic events enables subdiffraction resolution and mapping of the catalytic sites.

  16. Catalytic systems of cumene oxidation based on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kobotaeva, N. S.; Skorokhodova, T. S.; Ryabova, N. V.

    2015-03-01

    Catalytic systems for cumene oxidation were prepared on the basis of silver-activated carbon nanotubes. Silver lies on the surface of the carbon nanotubes in the nanocrystalline state and has a size of 15-20 nm. The use of the obtained catalytic systems in cumene oxidation with molecular oxygen allowed a considerable decrease in the oxidation temperature and an increase in selectivity.

  17. Computer model of catalytic combustion/Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Chu, E. K.; Chang, R. L.; Tong, H.

    1981-01-01

    The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.

  18. Portable Power Generation via Integrated Catalytic Microcombustion-Thermoelectric Devices

    DTIC Science & Technology

    2004-12-01

    PORTABLE POWER GENERATION VIA INTEGRATED CATALYTIC MICROCOMBUSTION-THERMOELECTRIC DEVICES D. G. Norton, K. W. Voit, T. Brüggemann, and D. G...resulting in electrical power generation from catalytic microcombustion with a thermal efficiency of ~1%. 1. INTRODUCTION Advances in soldier...environmental burdens. Power generation utilizing hydrocarbons offers a promising alternative to traditional batteries. The energy density of

  19. Microscale Synthesis of Chiral Alcohols via Asymmetric Catalytic Transfer Hydrogenation

    ERIC Educational Resources Information Center

    Peeters, Christine M.; Deliever, Rik; De Vos, Dirk

    2009-01-01

    Synthesis of pure enantiomers is a key issue in industry, especially in areas connected to life sciences. Catalytic asymmetric synthesis has emerged as a powerful and practical tool. Here we describe an experiment on racemic reduction and asymmetric reduction via a catalytic hydrogen transfer process. Acetophenone and substituted acetophenones are…

  20. Make the most of catalytic hydrogenations

    SciTech Connect

    Landert, J.P.; Scubla, T.

    1995-03-01

    Liquid-phase catalytic hydrogenation is one of the most useful and versatile reactions available for organic synthesis. Because it is environmentally clean, it has replaced other reduction processes, such as the Bechamp reaction, and zinc and sulfide reductions. Moreover, the economics are favorable, provided that raw materials free of catalyst poisons are used. The hydrogenation reaction is very selective with appropriate catalysts and can often be carried out without a solvent. Applications include reduction of unsaturated carbon compounds to saturated derivatives (for example, in vegetable-oil processing), carbonyl compounds to alcohols (such as sorbitol), and nitrocompounds to amines. the reactions are usually run in batch reactors to rapidly reach complete conversion and allow quick change-over of products. The paper describes the basics of hydrogenation; steering clear of process hazards; scale-up and optimization; and system design in practice.

  1. Catalytic Domain Architecture of Metzincin Metalloproteases*

    PubMed Central

    Gomis-Rüth, F. Xavier

    2009-01-01

    Metalloproteases cleave proteins and peptides, and deregulation of their function leads to pathology. An understanding of their structure and mechanisms of action is necessary to the development of strategies for their regulation. Among metallopeptidases are the metzincins, which are mostly multidomain proteins with ∼130–260-residue globular catalytic domains showing a common core architecture characterized by a long zinc-binding consensus motif, HEXXHXXGXX(H/D), and a methionine-containing Met-turn. Metzincins participate in unspecific protein degradation such as digestion of intake proteins and tissue development, maintenance, and remodeling, but they are also involved in highly specific cleavage events to activate or inactivate themselves or other (pro)enzymes and bioactive peptides. Metzincins are subdivided into families, and seven such families have been analyzed at the structural level: the astacins, ADAMs/adamalysins/reprolysins, serralysins, matrix metalloproteinases, snapalysins, leishmanolysins, and pappalysins. These families are reviewed from a structural point of view. PMID:19201757

  2. Catalytic Conia-ene and related reactions.

    PubMed

    Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter

    2015-10-07

    Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years.

  3. Catalytic reforming of heart cut fcc naphthas

    SciTech Connect

    Gerritsen, L.A.

    1985-03-01

    The anticipated lead phasedown in the USA and the growing demand for unleaded gasoline will require a higher gasoline pool octane number. One of the possibilities to achieve this increase of pool octane will be catalytic reforming of FCC naphtha. In this paper we evaluate the effects of FCC naphtha reforming on the reformer operation and gasoline pool volume for various lead phasedown scenarios. High-stability reforming catalysts, like TPR-8/CK-522 TRILOBE catalyst, will be required to maintain acceptable cycle lengths at the more severe reformer operating conditions. The properties and octane distribution of FCC naphtha are discussed, as well as its hydrotreating with high-active NiMo catalysts.

  4. Catalytic coal gasification: an emerging technology.

    PubMed

    Hirsch, R L; Gallagher, J E; Lessard, R R; Wesslhoft, R D

    1982-01-08

    Catalytic coal gasification is being developed as a more efficient and less costly approach to producing methane from coal. With a potassium catalyst all the reactions can take place at one temperature, so that endothermic and exothermic reactions can be integrated in a single reactor. A key aspect of the concept involves continuous recycling of product carbon monoxide and hydrogen to the gasifier following separation of methane. Development of the process has advanced steadily since the basic concept was proposed in 1971. A 23-day demonstration run was recently completed in a process development unit with a coal feed rate of 1 ton per day. The next major step in the program will be to design and construct a large pilot plant to bring the technology to commercial readiness in the late 1980's.

  5. Catalytic carbon membranes for hydrogen production

    SciTech Connect

    Damle, A.S.; Gangwal, S.K.

    1992-01-01

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  6. Soluble organic nanotubes for catalytic systems.

    PubMed

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-18

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core–shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the 'confined effect' and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  7. Soluble organic nanotubes for catalytic systems

    NASA Astrophysics Data System (ADS)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-01

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  8. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  9. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  10. Catalytic cartridge SO/sub 3/ decomposer

    SciTech Connect

    Galloway, T.R.

    1980-11-18

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  11. Catalytic cartridge SO/sub 3/ decomposer

    SciTech Connect

    Galloway, T.R.

    1982-09-28

    A catalytic cartridge internally heated is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  12. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, Jr., Edward M.

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  13. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  14. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  15. Contact structure for use in catalytic distillation

    DOEpatents

    Jones, Jr., Edward M.

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  16. Catalytic creativity. The case of Linus Pauling.

    PubMed

    Nakamura, J; Csikszentmihalyi, M

    2001-04-01

    This article illustrates how creativity is constituted by forces beyond the innovating individual, drawing examples from the career of the eminent chemist Linus Pauling. From a systems perspective, a scientific theory or other product is creative only if the innovation gains the acceptance of a field of experts and so transforms the culture. In addition to this crucial selective function vis-à-vis the completed work, the social field can play a catalytic role, fostering productive interactions between person and domain throughout a career. Pauling's case yields examples of how variously the social field contributes to creativity, shaping the individual's standards of judgment and providing opportunities, incentives, and critical evaluation. A formidable set of strengths suited Pauling for his scientific achievements, but examination of his career qualifies the notion of a lone genius whose brilliance carries the day.

  17. Biofuel from fast pyrolysis and catalytic hydrodeoxygenation.

    SciTech Connect

    Elliott, Douglas C.

    2015-09-04

    This review addresses recent developments in biomass fast pyrolysis bio-oil upgrading by catalytic hydrotreating. The research in the field has expanded dramatically in the past few years with numerous new research groups entering the field while existing efforts from others expand. The issues revolve around the catalyst formulation and operating conditions. Much work in batch reactor tests with precious metal catalysts needs further validation to verify long-term operability in continuous flow systems. The effect of the low level of sulfur in bio-oil needs more study to be better understood. Utilization of the upgraded bio-oil for feedstock to finished fuels is still in an early stage of understanding.

  18. Catalytic control of enzymatic fluorine specificity

    PubMed Central

    Weeks, Amy M.; Chang, Michelle C. Y.

    2012-01-01

    The investigation of unique chemical phenotypes has led to the discovery of enzymes with interesting behaviors that allow us to explore unusual function. The organofluorine-producing microbe Streptomyces cattleya has evolved a fluoroacetyl-CoA thioesterase (FlK) that demonstrates a surprisingly high level of discrimination for a single fluorine substituent on its substrate compared with the cellularly abundant hydrogen analog, acetyl-CoA. In this report, we show that the high selectivity of FlK is achieved through catalysis rather than molecular recognition, where deprotonation at the Cα position to form a putative ketene intermediate only occurs on the fluorinated substrate, thereby accelerating the rate of hydrolysis 104-fold compared with the nonfluorinated congener. These studies provide insight into mechanisms of catalytic selectivity in a native system where the existence of two reaction pathways determines substrate rather than product selection. PMID:23150553

  19. Creation of catalytic antibodies metabolizing organophosphate compounds.

    PubMed

    Kurkova, I N; Smirnov, I V; Belogurov, A A; Ponomarenko, N A; Gabibov, A G

    2012-10-01

    Development of new ways of creating catalytic antibodies possessing defined substrate specificity towards artificial substrates has important fundamental and practical aspects. Low immunogenicity combined with high stability of immunoglobulins in the blood stream makes abzymes potent remedies. A good example is the cocaine-hydrolyzing antibody that has successfully passed clinical trials. Creation of an effective antidote against organophosphate compounds, which are very toxic substances, is a very realistic goal. The most promising antidotes are based on cholinesterases. These antidotes are now expensive, and their production methods are inefficient. Recombinant antibodies are widely applied in clinics and have some advantage compared to enzymatic drugs. A new potential abzyme antidote will combine effective catalysis comparable to enzymes with high stability and the ability to switch on effector mechanisms specific for antibodies. Examples of abzymes metabolizing organophosphate substrates are discussed in this review.

  20. Propulsion Mechanism of Catalytic Microjet Engines

    PubMed Central

    Fomin, Vladimir M.; Hippler, Markus; Magdanz, Veronika; Soler, Lluís; Sanchez, Samuel; Schmidt, Oliver G.

    2014-01-01

    We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 μm/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets. PMID:25177214

  1. Basicity, Catalytic and Adsorptive Properties of Hydrotalcites

    NASA Astrophysics Data System (ADS)

    Figueras, Francois

    Solid bases have numerous potential applications, not only as catalyst for the manufacture of fine chemicals, in refining and petrochemistry, but also for adsorption and anion exchange. The present processes use liquid bases, typically alcoholic potash, and require neutralisation of the reaction medium at the end of the reaction, with production of salts. The substitution of these liquid bases by solids would provide cleaner and safer processes, due to the reduction of salts, and facilitate separation of the products and recycling of the catalyst. This chapter reviews the recent ideas on the modification of the basic properties of hydrotalcites by anion exchange and on the catalytic properties of solid bases as catalysts. Many examples of successful applications are given, with emphasis to industrial processes recently presented such as isomerisation of olefins. The basic properties of hydrotalcites can also be used to carry the exchange of toxic anions, humic acids or dyes, and have driven recent developments proposing HDT as drug carriers.

  2. Simulation of catalytic oxidation and selective catalytic NOx reduction in lean-exhaust hybrid vehicles

    SciTech Connect

    Gao, Zhiming; Daw, C Stuart; Chakravarthy, Veerathu K

    2012-01-01

    We utilize physically-based models for diesel exhaust catalytic oxidation and urea-based selective catalytic NOx reduction to study their impact on drive cycle performance of hypothetical light-duty diesel powered hybrid vehicles. The models have been implemented as highly flexible SIMULINK block modules that can be used to study multiple engine-aftertreatment system configurations. The parameters of the NOx reduction model have been adjusted to reflect the characteristics of Cu-zeolite catalysts, which are of widespread current interest. We demonstrate application of these models using the Powertrain System Analysis Toolkit (PSAT) software for vehicle simulations, along with a previously published methodology that accounts for emissions and temperature transients in the engine exhaust. Our results illustrate the potential impact of DOC and SCR interactions for lean hybrid electric and plug-in hybrid electric vehicles.

  3. SCN2A encephalopathy

    PubMed Central

    Howell, Katherine B.; McMahon, Jacinta M.; Carvill, Gemma L.; Tambunan, Dimira; Mackay, Mark T.; Rodriguez-Casero, Victoria; Webster, Richard; Clark, Damian; Freeman, Jeremy L.; Calvert, Sophie; Olson, Heather E.; Mandelstam, Simone; Poduri, Annapurna; Mefford, Heather C.; Harvey, A. Simon

    2015-01-01

    Objective: De novo SCN2A mutations have recently been associated with severe infantile-onset epilepsies. Herein, we define the phenotypic spectrum of SCN2A encephalopathy. Methods: Twelve patients with an SCN2A epileptic encephalopathy underwent electroclinical phenotyping. Results: Patients were aged 0.7 to 22 years; 3 were deceased. Seizures commenced on day 1–4 in 8, week 2–6 in 2, and after 1 year in 2. Characteristic features included clusters of brief focal seizures with multiple hourly (9 patients), multiple daily (2), or multiple weekly (1) seizures, peaking at maximal frequency within 3 months of onset. Multifocal interictal epileptiform discharges were seen in all. Three of 12 patients had infantile spasms. The epileptic syndrome at presentation was epilepsy of infancy with migrating focal seizures (EIMFS) in 7 and Ohtahara syndrome in 2. Nine patients had improved seizure control with sodium channel blockers including supratherapeutic or high therapeutic phenytoin levels in 5. Eight had severe to profound developmental impairment. Other features included movement disorders (10), axial hypotonia (11) with intermittent or persistent appendicular spasticity, early handedness, and severe gastrointestinal symptoms. Mutations arose de novo in 11 patients; paternal DNA was unavailable in one. Conclusions: Review of our 12 and 34 other reported cases of SCN2A encephalopathy suggests 3 phenotypes: neonatal-infantile–onset groups with severe and intermediate outcomes, and a childhood-onset group. Here, we show that SCN2A is the second most common cause of EIMFS and, importantly, does not always have a poor developmental outcome. Sodium channel blockers, particularly phenytoin, may improve seizure control. PMID:26291284

  4. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    NASA Technical Reports Server (NTRS)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  5. IVIg Treatment Reduces Catalytic Antibody Titers of Renal Transplanted Patients

    PubMed Central

    Mahendra, Ankit; Peyron, Ivan; Dollinger, Cécile; Gilardin, Laurent; Sharma, Meenu; Wootla, Bharath; Padiolleau-Lefevre, Séverine; Friboulet, Alain; Boquet, Didier; Legendre, Christophe; Kaveri, Srinivas V.

    2013-01-01

    Catalytic antibodies are immunoglobulins endowed with enzymatic activity. Catalytic IgG has been reported in several human autoimmune and inflammatory diseases. In particular, low levels of catalytic IgG have been proposed as a prognostic marker for chronic allograft rejection in patients undergoing kidney transplant. Kidney allograft is a treatment of choice for patients with end-stage renal failure. Intravenous immunoglobulins, a therapeutic pool of human IgG, is used in patients with donor-specific antibodies, alone or in conjunction with other immunosuppressive treatments, to desensitize the patients and prevent the development of acute graft rejection. Here, we followed for a period of 24 months the levels of catalytic IgG towards the synthetic peptide Pro-Phe-Arg-methylcoumarinimide in a large cohort of patients undergoing kidney transplantation. Twenty-four percent of the patients received IVIg at the time of transplantation. Our results demonstrate a marked reduction in levels of catalytic antibodies in all patients three months following kidney transplant. The decrease was significantly pronounced in patients receiving adjunct IVIg therapy. The results suggests that prevention of acute graft rejection using intravenous immunoglobulins induces a transient reduction in the levels of catalytic IgG, thus potentially jeopardizing the use of levels of catalytic antibodies as a prognosis marker for chronic allograft nephropathy. PMID:23967092

  6. Geometric tuning of self-propulsion for Janus catalytic particles

    NASA Astrophysics Data System (ADS)

    Michelin, Sébastien; Lauga, Eric

    2017-02-01

    Catalytic swimmers have attracted much attention as alternatives to biological systems for examining collective microscopic dynamics