Science.gov

Sample records for 2a pp2a catalytic

  1. Inhibitor-1 and -2 of PP2A have preference between PP2A complexes.

    PubMed

    Hino, Hirotsugu; Takaki, Kaori; Mochida, Satoru

    2015-11-13

    Protein phosphatase 2A (PP2A) forms tens of kinds of complexes with different substrate specificity and functions by using various regulatory B subunits. But how these complexes' activities are regulated separately is not well understood. Here we showed unequal enzyme inhibition of each form by two proteinous PP2A inhibitors, I1(PP2A) and I2(PP2A). Immunoprecipitation assay using Xenopus egg extract showed that I1(PP2A) bound B″/PR48, and I2(PP2A) bound B56γ and B″/PR48 among four B subunits analyzed. Thus I1(PP2A) and I2(PP2A) seem to have B-subunit specificity. These results support the hypothesis that PP2A complexes containing common catalytic subunit are individually regulated for their separate functions in vivo. PMID:26449453

  2. Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic β-cells.

    PubMed

    Zhang, Xiangmin; Damacharla, Divyasri; Ma, Danjun; Qi, Yue; Tagett, Rebecca; Draghici, Sorin; Kowluru, Anjaneyulu; Yi, Zhengping

    2016-03-15

    Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases. We hypothesize that PP2A regulates signaling cascades in pancreatic β-cells in the context of glucose-stimulated insulin secretion (GSIS). Using co-immunoprecipitation (co-IP) and tandem mass spectrometry, we globally identified the protein interaction partners of the PP2A catalytic subunit (PP2Ac) in insulin-secreting pancreatic β-cells. Among the 514 identified PP2Ac interaction partners, 476 were novel. This represents the first global view of PP2Ac protein-protein interactions caused by hyperglycemic conditions. Additionally, numerous PP2Ac partners were found involved in a variety of signaling pathways in the β-cell function, such as insulin secretion. Our data suggest that PP2A interacts with various signaling proteins necessary for physiological insulin secretion as well as signaling proteins known to regulate cell dysfunction and apoptosis in the pancreatic β-cells. PMID:26780722

  3. PP2A: The Wolf in Sheep’s Clothing?

    PubMed Central

    Kiely, Maeve; Kiely, Patrick A.

    2015-01-01

    Protein Phosphatase 2A (PP2A) is a major serine/threonine phosphatase in cells. It consists of a catalytic subunit (C), a structural subunit (A), and a regulatory/variable B-type subunit. PP2A has a critical role to play in homeostasis where its predominant function is as a phosphatase that regulates the major cell signaling pathways in cells. Changes in the assembly, activity and substrate specificity of the PP2A holoenzyme have a direct role in disease and are a major contributor to the maintenance of the transformed phenotype in cancer. We have learned a lot about how PP2A functions from specific mutations that disrupt the core assembly of PP2A and from viral proteins that target PP2A and inhibit its effect as a phosphatase. This prompted various studies revealing that restoration of PP2A activity benefits some cancer patients. However, our understanding of the mechanism of action of this is limited because of the complex nature of PP2A holoenzyme assembly and because it acts through a wide variety of signaling pathways. Information on PP2A is also conflicting as there are situations whereby inactivation of PP2A induces apoptosis in many cancer cells. In this review we discuss this relationship and we also address many of the pertinent and topical questions that relate to novel therapeutic strategies aimed at altering PP2A activity. PMID:25867001

  4. PP2A Regulates HDAC4 Nuclear Import

    PubMed Central

    Paroni, Gabriela; Cernotta, Nadia; Dello Russo, Claudio; Gallinari, Paola; Pallaoro, Michele; Foti, Carmela; Talamo, Fabio; Orsatti, Laura; Steinkühler, Christian

    2008-01-01

    Different signal-regulated serine/threonine kinases phosphorylate class II histone deacetylases (HDACs) to promote nuclear export, cytosolic accumulation, and activation of gene transcription. However, little is known about mechanisms operating in the opposite direction, which, possibly through phosphatases, should promote class II HDACs nuclear entry and subsequent gene repression. Here we show that HDAC4 forms a complex with the PP2A holoenzyme Cα, Aα, B/PR55α. In vitro and in vivo binding studies demonstrate that the N-terminus of HDAC4 interacts with the catalytic subunit of PP2A. HDAC4 is dephosphorylated by PP2A and experiments using okadaic acid or RNA interference have revealed that PP2A controls HDAC4 nuclear import. Moreover, we identified serine 298 as a putative phosphorylation site important for HDAC4 nuclear import. The HDAC4 mutant mimicking phosphorylation of serine 298 is defective in nuclear import. Mutation of serine 298 to alanine partially rescues the defect in HDAC4 nuclear import observed in cells with down-regulated PP2A. These observations suggest that PP2A, via the dephosphorylation of multiple serines including the 14-3-3 binding sites and serine 298, controls HDAC4 nuclear import. PMID:18045992

  5. PR65A Phosphorylation Regulates PP2A Complex Signaling

    PubMed Central

    Kotlo, Kumar; Xing, Yongna; Lather, Sonia; Grillon, Jean Michel; Johnson, Keven; Skidgel, Randal A.; Solaro, R. John; Danziger, Robert S.

    2014-01-01

    Serine-threonine Protein phosphatase 2 A (PP2A), a member of the PPP family of phosphatases, regulates a variety of essential cellular processes, including cell-cycling, DNA replication, transcription, translation, and secondary signaling pathways. In the heart, increased PP2A activity/signaling has been linked to cardiac remodeling, contractile dysfunction and, in failure, arrythmogenicity. The core PP2A complex is a hetero-trimeric holoenzyme consisting of a 36 kDa catalytic subunit (PP2Ac); a regulatory scaffold subunit of 65 kDa (PR65A or PP2Aa); and one of at least 18 associated variable regulatory proteins (B subunits) classified into 3 families. In the present study, three in vivo sites of phosphorylation in cardiac PR65A are identified (S303, T268, S314). Using HEK cells transfected with recombinant forms of PR65A with phosphomimetic (P-PR65A) and non-phosphorylated (N-PR65A) amino acid substitutions at these sites, these phosphorylations were shown to inhibit the interaction of PR65A with PP2Ac and PP2A holoenzyme signaling. Forty-seven phospho-proteins were increased in abundance in HEK cells transfected with P-PR65A versus N-PR65A by phospho-protein profiling using 2D-DIGE analysis on phospho-enriched whole cell protein extracts. Among these proteins were elongation factor 1α (EF1A), elongation factor 2, heat shock protein 60 (HSP60), NADPH-dehydrogenase 1 alpha sub complex, annexin A, and PR65A. Compared to controls, failing hearts from the Dahl rat had less phosphorylated PR65A protein abundance and increased PP2A activity. Thus, PR65A phosphorylation is an in vivo mechanism for regulation of the PP2A signaling complex and increased PP2A activity in heart failure. PMID:24465463

  6. Regulation of PP2A by Sphingolipid Metabolism and Signaling

    PubMed Central

    Oaks, Joshua; Ogretmen, Besim

    2014-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is a primary regulator of cellular proliferation through targeting of proliferative kinases, cell cycle regulators, and apoptosis inhibitors. It is through the regulation of these regulatory elements that gives PP2A tumor suppressor functions. In addition to mutations on the regulatory subunits, the phosphatase/tumor suppressing activity of PP2A is also inhibited in several cancer types due to overexpression or modification of the endogenous PP2A inhibitors such as SET/I2PP2A. This review focuses on the current literature regarding the interactions between the lipid signaling molecules, selectively sphingolipids, and the PP2A inhibitor SET for the regulation of PP2A, and the therapeutic potential of sphingolipids as PP2A activators for tumor suppression via targeting SET oncoprotein. PMID:25642418

  7. Proteome-wide search for PP2A substrates in fission yeast.

    PubMed

    Bernal, Manuel; Zhurinsky, Jacob; Iglesias-Romero, Ana B; Sanchez-Romero, Maria A; Flor-Parra, Ignacio; Tomas-Gallardo, Laura; Perez-Pulido, Antonio J; Jimenez, Juan; Daga, Rafael R

    2014-06-01

    PP2A (protein phosphatase 2A) is a major phosphatase in eukaryotic cells that plays an essential role in many processes. PP2A mutations in Schizosaccharomyces pombe result in defects of cell cycle control, cytokinesis and morphogenesis. Which PP2A substrates are responsible for these changes is not known. In this work, we searched for PP2A substrates in S. pombe using two approaches, 2D-DIGE analysis of PP2A complex mutants and identification of PP2A interacting proteins. In both cases, we used MS to identify proteins of interest. In the DIGE experiment, we compared proteomes of wild-type S. pombe, deletion of pta2, the phosphoactivator of the PP2A catalytic subunit, and pab1-4, a mutant of B-type PP2A regulatory subunit. A total of 1742 protein spots were reproducibly resolved by 2D-DIGE and 51 spots demonstrated significant changes between PP2A mutants and the wild-type control. MS analysis of these spots identified 27 proteins that include key regulators of glycerol synthesis, carbon metabolism, amino acid biosyntesis, vitamin production, and protein folding. Importantly, we independently identified a subset of these proteins as PP2A binding partners by affinity precipitation, suggesting they may be direct targets of PP2A. We have validated our approach by demonstrating that phosphorylation of Gpd1, a key enzyme in glycerol biogenesis, is regulated by PP2A and that ability of cells to respond to osmotic stress by synthesizing glycerol is compromised in the PP2A mutants. Our work contributes to a better understanding of PP2A function and identifies potential PP2A substrates. PMID:24634168

  8. Silencing PP2A inhibitor by lenti-shRNA interference ameliorates neuropathologies and memory deficits in tg2576 mice.

    PubMed

    Liu, Gong-Ping; Wei, Wei; Zhou, Xin; Shi, Hai-Rong; Liu, Xing-Hua; Chai, Gao-Shang; Yao, Xiu-Qing; Zhang, Jia-Yu; Peng, Cai-Xia; Hu, Juan; Li, Xia-Chun; Wang, Qun; Wang, Jian-Zhi

    2013-12-01

    Deficits of protein phosphatase-2A (PP2A) play a crucial role in tau hyperphosphorylation, amyloid overproduction, and synaptic suppression of Alzheimer's disease (AD), in which PP2A is inactivated by the endogenously increased inhibitory protein, namely inhibitor-2 of PP2A (I2(PP2A)). Therefore, in vivo silencing I2(PP2A) may rescue PP2A and mitigate AD neurodegeneration. By infusion of lentivirus-shRNA targeting I2(PP2A) (LV-siI2(PP2A)) into hippocampus and frontal cortex of 11-month-old tg2576 mice, we demonstrated that expression of LV-siI2(PP2A) decreased remarkably the elevated I2(PP2A) in both mRNA and protein levels. Simultaneously, the PP2A activity was restored with the mechanisms involving reduction of the inhibitory binding of I2(PP2A) to PP2A catalytic subunit (PP2AC), repression of the inhibitory Leu309-demethylation and elevation of PP2AC. Silencing I2(PP2A) induced a long-lasting attenuation of amyloidogenesis in tg2576 mice with inhibition of amyloid precursor protein hyperphosphorylation and β-secretase activity, whereas simultaneous inhibition of PP2A abolished the antiamyloidogenic effects of I2(PP2A) silencing. Finally, silencing I2(PP2A) could improve learning and memory of tg2576 mice with preservation of several memory-associated components. Our data reveal that targeting I2(PP2A) can efficiently rescue Aβ toxicities and improve the memory deficits in tg2576 mice, suggesting that I2(PP2A) could be a promising target for potential AD therapies. PMID:23922015

  9. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1

    SciTech Connect

    V Stanevich; L Jiang; K Satyshur; Y Li; P Jeffrey; Z Li; P Menden; M Semmelhack; Y Xing

    2011-12-31

    Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.

  10. The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1

    SciTech Connect

    Stanevich, Vitali; Jiang, Li; Satyshur, Kenneth A.; Li, Yongfeng; Jeffrey, Philip D.; Li, Zhu; Menden, Patrick; Semmelhack, Martin F.; Xing, Yongna

    2012-05-29

    Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is catalyzed by PP2A-specific methyltransferase LCMT-1, an enzyme required for cell survival. We determined crystal structures of human LCMT-1 in isolation and in complex with PP2A stabilized by a cofactor mimic. The structures show that the LCMT-1 active-site pocket recognizes the carboxyl terminus of PP2A, and, interestingly, the PP2A active site makes extensive contacts to LCMT-1. We demonstrated that activation of the PP2A active site stimulates methylation, suggesting a mechanism for efficient conversion of activated PP2A into substrate-specific holoenzymes, thus minimizing unregulated phosphatase activity or formation of inactive holoenzymes. A dominant-negative LCMT-1 mutant attenuates the cell cycle without causing cell death, likely by inhibiting uncontrolled phosphatase activity. Our studies suggested mechanisms of LCMT-1 in tight control of PP2A function, important for the cell cycle and cell survival.

  11. Mitotic exit: Determining the PP2A dephosphorylation program.

    PubMed

    Pereira, Gislene; Schiebel, Elmar

    2016-08-29

    In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55's dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis. PMID:27551057

  12. A subset of RAB proteins modulates PP2A phosphatase activity.

    PubMed

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-01-01

    Protein phosphatase 2A (PP2A) is one of the most abundant serine-threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias. PMID:27611305

  13. A subset of RAB proteins modulates PP2A phosphatase activity

    PubMed Central

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-01-01

    Protein phosphatase 2A (PP2A) is one of the most abundant serine–threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias. PMID:27611305

  14. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast

    PubMed Central

    Castermans, Dries; Somers, Ils; Kriel, Johan; Louwet, Wendy; Wera, Stefaan; Versele, Matthias; Janssens, Veerle; Thevelein, Johan M

    2012-01-01

    The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein

  15. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy

    PubMed Central

    Li, Lei; Fang, Chao; Xu, Di; Xu, Yidan; Fu, Heling; Li, Jianmin

    2016-01-01

    Cardiac hypertrophy is a common pathological alteration in heart disease, which has been reported to be connected with serine/threonine protein phosphatases that control the dephosphorylation of a variety of cardiac proteins. Herein, we generated protein phosphatase type 2A knockout expressing a tamoxifen-inducible Cre recombinase protein fused to two mutant estrogen-receptor ligand-binding domains (MerCreMer) under the control of the a-myosin heavy chain promoter. Cardiac function of mice was determined by echocardiography. Decrease in PP2A activity leads to increased cardiomyocyte hypertrophy and fibrosis. Loss of PP2ACα leads to the heart failure, including the changes of EF, FS, LV, ANP and BNP. On the molecular level, knockout mice shows increased expression of B55a and B56e at 60 days after tamoxifen injection. Additionally, the regulation of the Akt/GSK3β/β-catenin pathway is severely disturbed in knockout mice. In conclusion, cardiomyocyte specific deletion of PP2A gene causes the cardiac hypertrophy. We will use the knockout mice to generate a type of cardiomyocyte hypertrophy mouse model with myocardial fibrosis. PMID:27186301

  16. Human cytomegalovirus carries serine/threonine protein phosphatases PP1 and a host-cell derived PP2A.

    PubMed Central

    Michelson, S; Turowski, P; Picard, L; Goris, J; Landini, M P; Topilko, A; Hemmings, B; Bessia, C; Garcia, A; Virelizier, J L

    1996-01-01

    Human cytomegalovirus (CMV), a herpesvirus, is an important cause of morbidity and mortality in immunocompromised patients. When studying hyper-immediate-early events after contact between CMV virions and the cell membrane, we observed a hypophosphorylation of cellular proteins within 10 min. This can be explained in part by our finding that purified CMV contains serine/threonine protein phosphatase activities. Biochemical analyses indicate that this protein phosphatase activity has all characteristics of type 1 and 2A protein phosphatases (PP1 and PP2A). Specifically, PP1 accounts for approximately 30% and PP2A accounts for the remaining 70% of the phosphorylase phosphatase activity found. CMV produced in astrocytoma cells stably expressing an amino-terminally tagged PP2A catalytic subunit contained tagged enzyme, thus demonstrating the cellular origin of CMV-associated PP2A. PP2A is specifically found inside the virus, associated with the nucleocapsid fraction. Western blot (immunoblot) analysis of purified virus revealed the presence of the catalytic subunits of PP2A and PP1. Furthermore, the catalytic subunit of PP2A appears to be complexed to the regulatory subunits PR65 and PR55, which is also the most abundant configuration of this enzyme found in the host cells. Incubation of virus with okadaic acid before contact of CMV with cells prevented hypophosphorylation of cellular proteins, thus demonstrating the role of CMV-associated phosphatases in this phenomenon. CMV can thus transport an active enzyme from one cell to another. PMID:8627658

  17. PP2A regulates kinetochore-microtubule attachment during meiosis I in oocyte.

    PubMed

    Tang, An; Shi, Peiliang; Song, Anying; Zou, Dayuan; Zhou, Yue; Gu, Pengyu; Huang, Zan; Wang, Qinghua; Lin, Zhaoyu; Gao, Xiang

    2016-06-01

    Studies using in vitro cultured oocytes have indicated that the protein phosphatase 2A (PP2A), a major serine/threonine protein phosphatase, participates in multiple steps of meiosis. Details of oocyte maturation regulation by PP2A remain unclear and an in vivo model can provide more convincing information. Here, we inactivated PP2A by mutating genes encoding for its catalytic subunits (PP2Acs) in mouse oocytes. We found that eliminating both PP2Acs caused female infertility. Oocytes lacking PP2Acs failed to complete 1(st) meiotic division due to chromosome misalignment and abnormal spindle assembly. In mitosis, PP2A counteracts Aurora kinase B/C (AurkB/C) to facilitate correct kinetochore-microtubule (KT-MT) attachment. In meiosis I in oocyte, we found that PP2Ac deficiency destabilized KT-MT attachments. Chemical inhibition of AurkB/C in PP2Ac-null oocytes partly restored the formation of lateral/merotelic KT-MT attachments but not correct KT-MT attachments. Taken together, our findings demonstrate that PP2Acs are essential for chromosome alignments and regulate the formation of correct KT-MT attachments in meiosis I in oocytes. PMID:27096707

  18. Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility.

    PubMed

    Dudiki, Tejasvi; Kadunganattil, Suraj; Ferrara, John K; Kline, Douglas W; Vijayaraghavan, Srinivasan

    2015-01-01

    Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function. PMID:26569399

  19. Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility

    PubMed Central

    Dudiki, Tejasvi; Kadunganattil, Suraj; Ferrara, John K.; Kline, Douglas W.; Vijayaraghavan, Srinivasan

    2015-01-01

    Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function. PMID:26569399

  20. Targeting Inhibitors of the Tumor Suppressor PP2A for the Treatment of Pancreatic Cancer

    PubMed Central

    Farrell, Amy S.; Allen-Petersen, Brittany; Daniel, Colin J.; Wang, Xiaoyan; Wang, Zhiping; Rodriguez, Sarah; Impey, Soren; Oddo, Jessica; Vitek, Michael P.; Lopez, Charles; Christensen, Dale J.; Sheppard, Brett; Sears, Rosalie C.

    2014-01-01

    Pancreatic cancer is a deadly disease that is usually diagnosed in the advanced stages when few effective therapies are available. Given the aggressive clinical course of this disease and lack of good treatment options, the development of new therapeutic agents for the treatment of pancreatic cancer is of the upmost importance. Several pathways shown to contribute to pancreatic cancer progression are negatively regulated by the tumor suppressor, protein phosphatase 2A (PP2A). Here, the endogenous inhibitors of PP2A, SET (also known as I2PP2A) and Cancerous Inhibitor of PP2A (CIP2A), were shown to be overexpressed in human pancreatic cancer, contributing to decreased PP2A activity, and overexpression and stabilization of the oncoprotein c-Myc, a key PP2A target. Knockdown of SET or CIP2A increases PP2A activity, increases c-Myc degradation, and decreases the tumorigenic potential of pancreatic cancer cell lines both in vitro and in vivo. Moreover, treatment with a novel SET inhibitor, OP449, pharmacologically recapitulates the phenotypes and significantly reduces proliferation and tumorigenic potential of several pancreatic cancer cell lines, with an accompanying attenuation of cell growth and survival signaling. Furthermore, primary cells from pancreatic cancer patients were sensitive to OP449 treatment, indicating that PP2A regulated pathways are highly relevant to this deadly disease. PMID:24667985

  1. Mechanism of PP2A-mediated IKKβ dephosphorylation: a systems biological approach

    PubMed Central

    Witt, Johannes; Barisic, Sandra; Schumann, Eva; Allgöwer, Frank; Sawodny, Oliver; Sauter, Thomas; Kulms, Dagmar

    2009-01-01

    Background Biological effects of nuclear factor-κB (NFκB) can differ tremendously depending on the cellular context. For example, NFκB induced by interleukin-1 (IL-1) is converted from an inhibitor of death receptor induced apoptosis into a promoter of ultraviolet-B radiation (UVB)-induced apoptosis. This conversion requires prolonged NFκB activation and is facilitated by IL-1 + UVB-induced abrogation of the negative feedback loop for NFκB, involving a lack of inhibitor of κB (IκBα) protein reappearance. Permanent activation of the upstream kinase IKKβ results from UVB-induced inhibition of the catalytic subunit of Ser-Thr phosphatase PP2A (PP2Ac), leading to immediate phosphorylation and degradation of newly synthesized IκBα. Results To investigate the mechanism underlying the general PP2A-mediated tuning of IKKβ phosphorylation upon IL-1 stimulation, we have developed a strictly reduced mathematical model based on ordinary differential equations which includes the essential processes concerning the IL-1 receptor, IKKβ and PP2A. Combining experimental and modelling approaches we demonstrate that constitutively active, but not post-stimulation activated PP2A, tunes out IKKβ phosphorylation thus allowing for IκBα resynthesis in response to IL-1. Identifiability analysis and determination of confidence intervals reveal that the model allows reliable predictions regarding the dynamics of PP2A deactivation and IKKβ phosphorylation. Additionally, scenario analysis is used to scrutinize several hypotheses regarding the mode of UVB-induced PP2Ac inhibition. The model suggests that down regulation of PP2Ac activity, which results in prevention of IκBα reappearance, is not a direct UVB action but requires instrumentality. Conclusion The model developed here can be used as a reliable building block of larger NFκB models and offers comprehensive simplification potential for future modeling of NFκB signaling. It gives more insight into the newly discovered

  2. The tumor suppressor PP2A Abeta regulates the RalA GTPase.

    PubMed

    Sablina, Anna A; Chen, Wen; Arroyo, Jason D; Corral, Laura; Hector, Melissa; Bulmer, Sara E; DeCaprio, James A; Hahn, William C

    2007-06-01

    The serine-threonine protein phosphatase 2A (PP2A) is a heterotrimeric enzyme family that regulates numerous signaling pathways. Biallelic mutations of the structural PP2A Abeta subunit occur in several types of human tumors; however, the functional consequences of these cancer-associated PP2A Abeta mutations in cell transformation remain undefined. Here we show that suppression of PP2A Abeta expression permits immortalized human cells to achieve a tumorigenic state. Cancer-associated Abeta mutants fail to reverse tumorigenic phenotype induced by PP2A Abeta suppression, indicating that these mutants function as null alleles. Wild-type PP2A Abeta but not cancer-derived Abeta mutants form a complex with the small GTPase RalA. PP2A Abeta-containing complexes dephosphorylate RalA at Ser183 and Ser194, inactivating RalA and abolishing its transforming function. These observations identify PP2A Abeta as a tumor suppressor gene that transforms immortalized human cells by regulating the function of RalA. PMID:17540176

  3. PP2A inhibition results in hepatic insulin resistance despite Akt2 activation.

    PubMed

    Galbo, Thomas; Perry, Rachel J; Nishimura, Erica; Samuel, Varman T; Quistorff, Bjørn; Shulman, Gerald I

    2013-10-01

    In the liver, insulin suppresses hepatic gluconeogenesis by activating Akt, which inactivates the key gluconeogenic transcription factor FoxO1 (Forkhead Box O1). Recent studies have implicated hyperactivity of the Akt phosphatase Protein Phosphatase 2A (PP2A) and impaired Akt signaling as a molecular defect underlying insulin resistance. We therefore hypothesized that PP2A inhibition would enhance insulin-stimulated Akt activity and decrease glucose production. PP2A inhibitors increased hepatic Akt phosphorylation and inhibited FoxO1in vitro and in vivo, and suppressed gluconeogenesis in hepatocytes. Paradoxically, PP2A inhibition exacerbated insulin resistance in vivo. This was explained by phosphorylation of both hepatic glycogen synthase (GS) (inactivation) and phosphorylase (activation) resulting in impairment of glycogen storage. Our findings underline the significance of GS and Phosphorylase as hepatic PP2A substrates and importance of glycogen metabolism in acute plasma glucose regulation. PMID:24150286

  4. Lyn sustains oncogenic signaling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A.

    PubMed

    Zonta, Francesca; Pagano, Mario Angelo; Trentin, Livio; Tibaldi, Elena; Frezzato, Federica; Trimarco, Valentina; Facco, Monica; Zagotto, Giuseppe; Pavan, Valeria; Ribaudo, Giovanni; Bordin, Luciana; Semenzato, Gianpietro; Brunati, Anna Maria

    2015-06-11

    Aberrant protein kinase activities, and the consequent dramatic increase of Ser/Thr and -Tyr phosphorylation, promote the deregulation of the survival pathways in chronic lymphocytic leukemia (CLL), which is crucial to the pathogenesis and progression of the disease. In this study, we show that the tumor suppressor protein phosphatase 2A (PP2A), one of the major Ser/Thr phosphatases, is in an inhibited form because of the synergistic contribution of 2 events, the interaction with its physiologic inhibitor SET and the phosphorylation of Y307 of the catalytic subunit of PP2A. The latter event is mediated by Lyn, a Src family kinase previously found to be overexpressed, delocalized, and constitutively active in CLL cells. This Lyn/PP2A axis accounts for the persistent high level of phosphorylation of the phosphatase's targets and represents a key connection linking phosphotyrosine- and phosphoserine/threonine-mediated oncogenic signals. The data herein presented show that the disruption of the SET/PP2A complex by a novel FTY720-analog (MP07-66) devoid of immunosuppressive effects leads to the reactivation of PP2A, which in turn triggers apoptosis of CLL cells. When used in combination with SFK inhibitors, the action of MP07-66 is synergistically amplified, providing a new option in the therapeutic strategy for CLL patients. PMID:25931585

  5. Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues.

    PubMed

    Lillo, Cathrine; Kataya, Amr R A; Heidari, Behzad; Creighton, Maria T; Nemie-Feyissa, Dugassa; Ginbot, Zekarias; Jonassen, Else M

    2014-12-01

    The three closely related groups of serine/threonine protein phosphatases PP2A, PP4 and PP6 are conserved throughout eukaryotes. The catalytic subunits are present in trimeric and dimeric complexes with scaffolding and regulatory subunits that control activity and confer substrate specificity to the protein phosphatases. In Arabidopsis, three scaffolding (A subunits) and 17 regulatory (B subunits) proteins form complexes with five PP2A catalytic subunits giving up to 255 possible combinations. Three SAP-domain proteins act as regulatory subunits of PP6. Based on sequence similarities with proteins in yeast and mammals, two putative PP4 regulatory subunits are recognized in Arabidopsis. Recent breakthroughs have been made concerning the functions of some of the PP2A and PP6 regulatory subunits, for example the FASS/TON2 in regulation of the cellular skeleton, B' subunits in brassinosteroid signalling and SAL proteins in regulation of auxin transport. Reverse genetics is starting to reveal also many more physiological functions of other subunits. A system with key regulatory proteins (TAP46, TIP41, PTPA, LCMT1, PME-1) is present in all eukaryotes to stabilize, activate and inactivate the catalytic subunits. In this review, we present the status of knowledge concerning physiological functions of PP2A, PP4 and PP6 in Arabidopsis, and relate these to yeast and mammals. PMID:24810976

  6. PP2A Phosphatase as a Regulator of ROS Signaling in Plants

    PubMed Central

    Rahikainen, Moona; Pascual, Jesús; Alegre, Sara; Durian, Guido; Kangasjärvi, Saijaliisa

    2016-01-01

    Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks in plants. PMID:26950157

  7. PP2A Phosphatase as a Regulator of ROS Signaling in Plants.

    PubMed

    Rahikainen, Moona; Pascual, Jesús; Alegre, Sara; Durian, Guido; Kangasjärvi, Saijaliisa

    2016-01-01

    Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks in plants. PMID:26950157

  8. Inhibition of cdc2 activation by INH/PP2A.

    PubMed Central

    Lee, T H; Turck, C; Kirschner, M W

    1994-01-01

    INH, a type 2A protein phosphatase (PP2A), negatively regulates entry into M phase and the cyclin B-dependent activation of cdc2 in Xenopus extracts. INH appears to be central to the mechanism of the trigger for mitotic initiation, as it prevents the premature activation of cdc2. We first show that INH is a conventional form of PP2A with a B alpha regulatory subunit. We next explore the mechanism by which it inhibits cdc2 activation by examining the effect of purified PP2A on the reaction pathways controlling cdc2 activity. Our results suggest that although PP2A inhibits the switch in tyrosine kinase and tyrosine phosphatase activities accompanying mitosis, this switch is a consequence of the inhibition of some other rate-limiting event. In the preactivation phase, PP2A inhibits the pathway leading to T161 phosphorylation, suggesting that this activity may be one of the rate-limiting events for transition. However, our results also suggest that the accumulation of active cdc2/cyclin complexes during the lag is only one of the events required for triggering entry into mitosis. Images PMID:8049524

  9. The therapeutic effects of SET/I2PP2A inhibitors on canine melanoma.

    PubMed

    Enjoji, Shuhei; Yabe, Ryotaro; Fujiwara, Nobuyuki; Tsuji, Shunya; Vitek, Michael P; Mizuno, Takuya; Nakagawa, Takayuki; Usui, Tatsuya; Ohama, Takashi; Sato, Koichi

    2015-11-01

    Canine melanoma is one of the most important diseases in small animal medicine. Protein phosphatase 2A (PP2A), a well conserved serine/threonine phosphatase, plays a critical role as a tumor suppressor. SET/I2PP2A is an endogenous inhibitor for PP2A, which directly binds to PP2A and suppresses its phosphatase activity. Elevated SET protein levels have been reported to exacerbate human tumor progression. The role of SET in canine melanoma, however, has not been understood. Here, we investigated the potential therapeutic role for SET inhibitors in canine melanoma. The expression of SET protein was observed in 6 canine melanoma cell lines. We used CMeC-1 cells (primary origin) and CMeC-2 cells (metastatic origin) to generate cell lines stably expressing SET-targeting shRNAs. Knockdown of SET expression in CMeC-2, but not in CMeC-1, leads to decreased cell proliferation, invasion and colony formation. Phosphorylation level of p70 S6 kinase was decreased by SET knockdown in CMeC-2, suggesting the involvement of mTOR (mammalian target of rapamycin)/p70 S6 kinase signaling. The SET inhibitors, OP449 and FTY720, more effectively killed CMeC-2 than CMeC-1. We observed PP2A activation in CMeC-2 treated with OP449 and FTY720. These results demonstrated the potential therapeutic application of SET inhibitors for canine melanoma. PMID:26062569

  10. Inhibition of PP2A by LIS1 increases HIV-1 gene expression

    PubMed Central

    Epie, Nicolas; Ammosova, Tatyana; Turner, Willie; Nekhai, Sergei

    2006-01-01

    Background Lissencephaly is a severe brain malformation in part caused by mutations in the LIS1 gene. LIS1 interacts with microtubule-associated proteins, and enhances transport of microtubule fragments. Previously we showed that LIS1 interacts with HIV-1 Tat protein and that this interaction was mediated by WD40 domains of LIS1. In the present study, we analyze the effect of LIS1 on Tat-mediated transcription of HIV-1 LTR. Results Tat-mediated HIV-1 transcription was upregulated in 293 cells transfected with LIS1 expression vector. The WD5 but not the N-terminal domain of LIS1 increases Tat-dependent HIV-1 transcription. The effect of LIS1 was similar to the effect of okadaic acid, an inhibitor of protein phosphatase 2A (PP2A). We then analyzed the effect of LIS1 on the activity of PP2A in vitro. We show that LIS1 and its isolated WD5 domain but not the N-terminal domain of LIS1 blocks PP2A activity. Conclusion Our results show that inhibition of PP2A by LIS1 induces HIV-1 transcription. Our results also point to a possibility that LIS1 might function in the cells as a yet unrecognized regulatory subunit of PP2A. PMID:17018134

  11. Activation of the Tumor Suppressor PP2A Emerges as a Potential Therapeutic Strategy for Treating Prostate Cancer

    PubMed Central

    Cristóbal, Ion; González-Alonso, Paula; Daoud, Lina; Solano, Esther; Torrejón, Blanca; Manso, Rebeca; Madoz-Gúrpide, Juan; Rojo, Federico; García-Foncillas, Jesús

    2015-01-01

    Protein phosphatase 2A (PP2A) is a tumor suppressor complex that has recently been reported as a novel and highly relevant molecular target in prostate cancer (PCa). However, its potential therapeutic value remains to be fully clarified. We treated PC-3 and LNCaP cell lines with the PP2A activators forskolin and FTY720 alone or combined with the PP2A inhibitor okadaic acid. We examined PP2A activity, cell growth, prostasphere formation, levels of PP2A phosphorylation, CIP2A and SET expression, and AKT and ERK activation. Interestingly, both forskolin and FTY720 dephosphorylated and activated PP2A, impairing proliferation and prostasphere formation and inducing changes in AKT and ERK phosphorylation. Moreover, FTY720 led to reduced CIP2A levels. Treatment with okadaic acid impaired PP2A activation thus demonstrating the antitumoral PP2A-dependent mechanism of action of both forskolin and FTY720. Levels of PP2A phosphorylation together with SET and CIP2A protein expression were studied in 24 PCa patients and both were associated with high Gleason scores and presence of metastatic disease. Altogether, our results suggest that PP2A inhibition could be involved in PCa progression, and the use of PP2A-activating drugs might represent a novel alternative therapeutic strategy for treating PCa patients. PMID:26023836

  12. PP2A as a master regulator of the cell cycle

    PubMed Central

    Wlodarchak, Nathan; Xing, Yongna

    2016-01-01

    Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases. PMID:26906453

  13. PP2A as a master regulator of the cell cycle.

    PubMed

    Wlodarchak, Nathan; Xing, Yongna

    2016-01-01

    Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases. PMID:26906453

  14. PP2A inhibition overcomes acquired resistance to HER2 targeted therapy

    PubMed Central

    2014-01-01

    Background HER2 targeted therapies including trastuzumab and more recently lapatinib have significantly improved the prognosis for HER2 positive breast cancer patients. However, resistance to these agents is a significant clinical problem. Although several mechanisms have been proposed for resistance to trastuzumab, the mechanisms of lapatinib resistance remain largely unknown. In this study we generated new models of acquired resistance to HER2 targeted therapy and investigated mechanisms of resistance using phospho-proteomic profiling. Results Long-term continuous exposure of SKBR3 cells to low dose lapatinib established a cell line, SKBR3-L, which is resistant to both lapatinib and trastuzumab. Phospho-proteomic profiling and immunoblotting revealed significant alterations in phospho-proteins involved in key signaling pathways and molecular events. In particular, phosphorylation of eukaryotic elongation factor 2 (eEF2), which inactivates eEF2, was significantly decreased in SKBR3-L cells compared to the parental SKBR3 cells. SKBR3-L cells exhibited significantly increased activity of protein phosphatase 2A (PP2A), a phosphatase that dephosphorylates eEF2. SKBR3-L cells showed increased sensitivity to PP2A inhibition, with okadaic acid, compared to SKBR3 cells. PP2A inhibition significantly enhanced response to lapatinib in both the SKBR3 and SKBR3-L cells. Furthermore, treatment of SKBR3 parental cells with the PP2A activator, FTY720, decreased sensitivity to lapatinib. The alteration in eEF2 phosphorylation, PP2A activity and sensitivity to okadaic acid were also observed in a second HER2 positive cell line model of acquired lapatinib resistance, HCC1954-L. Conclusions Our data suggests that decreased eEF2 phosphorylation, mediated by increased PP2A activity, contributes to resistance to HER2 inhibition and may provide novel targets for therapeutic intervention in HER2 positive breast cancer which is resistant to HER2 targeted therapies. PMID:24958351

  15. Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine.

    PubMed

    Chohan, Muhammad Omar; Khatoon, Sabiha; Iqbal, Inge-Grundke; Iqbal, Khalid

    2006-07-10

    The activity of protein phosphatase (PP)-2A, which regulates tau phosphorylation, is compromised in Alzheimer disease brain. Here we show that the transient transfection of PC12 cells with inhibitor-2 (I2PP2A) of PP2A causes abnormal hyperphosphorylation of tau at Ser396/Ser404 and Ser262/Ser356. This hyperphosphorylation of tau is observed only when a sub-cellular shift of I2PP2A takes place from the nucleus to the cytoplasm and is accompanied by cleavage of I2PP2A into a 20 kDa fragment. Memantine, an un-competitive inhibitor of N-methyl-D-aspartate receptors, inhibits this abnormal phosphorylation of tau and cell death and prevents the I2PP2A-induced inhibition of PP2A activity in vitro. These findings demonstrate novel mechanisms by which I2PP2A regulates the intracellular activity of PP2A and phosphorylation of tau, and by which Memantine modulates PP2A signaling and inhibits neurofibrillary degeneration. PMID:16806196

  16. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    PubMed Central

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L.; Mackey, David

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B’ regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B’ subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B’ subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B’ subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B’ subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  17. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins.

    PubMed

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L; Mackey, David

    2016-05-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  18. PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root

    PubMed Central

    Yue, Kun; Sandal, Priyanka; Williams, Elisabeth L.; Murphy, Evan; Stes, Elisabeth; Nikonorova, Natalia; Ramakrishna, Priya; Czyzewicz, Nathan; Montero-Morales, Laura; Kumpf, Robert; Lin, Zhefeng; van de Cotte, Brigitte; Iqbal, Mudassar; Van Bel, Michiel; Van De Slijke, Eveline; Meyer, Matthew R.; Gadeyne, Astrid; Zipfel, Cyril; De Jaeger, Geert; Van Montagu, Marc; Van Damme, Daniël; Gevaert, Kris; Rao, A. Gururaj; Beeckman, Tom; De Smet, Ive

    2016-01-01

    In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions. Here, we used various complementary proteomic approaches to identify ACR4-interacting protein candidates that are likely regulators of formative cell divisions and that could pave the way to unraveling the molecular basis behind ACR4-mediated signaling. We identified PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes, as a previously unidentified regulator of formative cell divisions and as one of the first described substrates of ACR4. Our in vitro data argue for the existence of a tight posttranslational regulation in the associated biochemical network through reciprocal regulation between ACR4 and PP2A-3 at the phosphorylation level. PMID:26792519

  19. PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root.

    PubMed

    Yue, Kun; Sandal, Priyanka; Williams, Elisabeth L; Murphy, Evan; Stes, Elisabeth; Nikonorova, Natalia; Ramakrishna, Priya; Czyzewicz, Nathan; Montero-Morales, Laura; Kumpf, Robert; Lin, Zhefeng; van de Cotte, Brigitte; Iqbal, Mudassar; Van Bel, Michiel; Van De Slijke, Eveline; Meyer, Matthew R; Gadeyne, Astrid; Zipfel, Cyril; De Jaeger, Geert; Van Montagu, Marc; Van Damme, Daniël; Gevaert, Kris; Rao, A Gururaj; Beeckman, Tom; De Smet, Ive

    2016-02-01

    In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions. Here, we used various complementary proteomic approaches to identify ACR4-interacting protein candidates that are likely regulators of formative cell divisions and that could pave the way to unraveling the molecular basis behind ACR4-mediated signaling. We identified PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes, as a previously unidentified regulator of formative cell divisions and as one of the first described substrates of ACR4. Our in vitro data argue for the existence of a tight posttranslational regulation in the associated biochemical network through reciprocal regulation between ACR4 and PP2A-3 at the phosphorylation level. PMID:26792519

  20. Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway

    SciTech Connect

    Chuang, Jian-Ying; Hung, Jan-Jong

    2011-04-15

    Highlights: {yields} Overexpression of HDAC1 induces Sp1 deacetylation and raises Sp1/p300 complex formation to bind to PP2Ac promoter. {yields} Overexpression of HDAC1 strongly inhibits the phosphorylation of pRb through up-regulation of PP2A. {yields} Overexpressed HDAC1 restrains cell proliferaction and induces cell senescence though a novel Sp1/PP2A/pRb pathway. -- Abstract: Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

  1. Specific Targeting of Caspase-9/PP2A Interaction as Potential New Anti-Cancer Therapy

    PubMed Central

    Arrouss, Issam; Nemati, Fariba; Roncal, Fernando; Wislez, Marie; Dorgham, Karim; Vallerand, David; Rabbe, Nathalie; Karboul, Narjesse; Carlotti, Françoise; Bravo, Jeronimo; Mazier, Dominique

    2013-01-01

    Purpose PP2A is a serine/threonine phosphatase critical to physiological processes, including apoptosis. Cell penetrating peptides are molecules that can translocate into cells without causing membrane damage. Our goal was to develop cell-penetrating fusion peptides specifically designed to disrupt the caspase-9/PP2A interaction and evaluate their therapeutic potential in vitro and in vivo. Experimental Design We generated a peptide containing a penetrating sequence associated to the interaction motif between human caspase-9 and PP2A (DPT-C9h), in order to target their association. Using tumour cell lines, primary human cells and primary human breast cancer (BC) xenografts, we investigated the capacity of DPT-C9h to provoke apoptosis in vitro and inhibition of tumour growth (TGI) in vivo. DPT-C9h was intraperitonealy administered at doses from 1 to 25 mg/kg/day for 5 weeks. Relative Tumour Volume (RTV) was calculated. Results We demonstrated that DPT-C9h specifically target caspase-9/PP2A interaction in vitro and in vivo and induced caspase-9-dependent apoptosis in cancer cell lines. DPT-C9h also induced significant TGI in BC xenografts models. The mouse-specific peptide DPT-C9 also induced TGI in lung (K-Ras model) and breast cancer (PyMT) models. DPT-C9h has a specific effect on transformed B cells isolated from chronic lymphocytic leukemia patients without any effect on primary healthy cells. Finally, neither toxicity nor immunogenic responses were observed. Conclusion Using the cell-penetrating peptides blocking caspase-9/PP2A interactions, we have demonstrated that DPT-C9h had a strong therapeutic effect in vitro and in vivo in mouse models of tumour progression. PMID:23637769

  2. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases.

    PubMed

    Luo, J; Pato, M D; Riordan, J R; Hanrahan, J W

    1998-05-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity declines rapidly when excised from transfected Chinese hamster ovary (CHO) or human airway cells because of membrane-associated phosphatase activity. In the present study, we found that CFTR channels usually remained active in patches excised from baby hamster kidney (BHK) cells overexpressing CFTR. Those patches with stable channel activity were used to investigate the regulation of CFTR by exogenous protein phosphatases (PP). Adding PP2A, PP2C, or alkaline phosphatase to excised patches reduced CFTR channel activity by > 90% but did not abolish it completely. PP2B caused weak deactivation, whereas PP1 had no detectable effect on open probability (Po). Interestingly, the time course of deactivation by PP2C was identical to that of the spontaneous rundown observed in some patches after excision. PP2C and PP2A had distinct effects on channel gating Po declined during exposure to exogenous PP2C (and during spontaneous rundown, when it was observed) without any change in mean burst duration. By contrast, deactivation by exogenous PP2A was associated with a dramatic shortening of burst duration similar to that reported previously in patches from cardiac cells during deactivation of CFTR by endogenous phosphatases. Rundown of CFTR-mediated current across intact T84 epithelial cell monolayers was insensitive to toxic levels of the PP2A inhibitor calyculin A. These results demonstrate that exogenous PP2C is a potent regulator of CFTR activity, that its effects on single-channel gating are distinct from those of PP2A but similar to those of endogenous phosphatases in CHO, BHK, and T84 epithelial cells, and that multiple protein phosphatases may be required for complete deactivation of CFTR channels. PMID:9612228

  3. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis.

    PubMed

    Lipina, Christopher; Hundal, Harinder S

    2014-11-01

    Carnosic acid (CA) is a major constituent of the labiate herbal plant Rosemary (Rosmarinus officinalis), which has been shown to exhibit a number of beneficial health properties. In particular, recently there has been growing interest into the anti-obesity effects conveyed by CA, including its ability to counteract obesity-associated hyperglycaemia and insulin resistance. However, the mechanisms underlying its anti-diabetic responses are not fully understood. In this study, we hypothesized that CA may act to improve glycaemic status through enhancing peripheral glucose clearance. Herein, we demonstrate that CA acts to mimic the metabolic actions of insulin by directly stimulating glucose uptake in rat skeletal L6 myotubes, concomitant with increased translocation of the GLUT4 glucose transporter to the plasma membrane. Mechanistically, CA-induced glucose transport was found to be dependent on protein kinase B (PKB/Akt) but not AMPK, despite both kinases being activated by CA. Crucially, in accordance with its ability to activate PKB and stimulate glucose uptake, we show that CA conveys these effects through a pathway involving PME-1 (protein phosphatase methylesterase-1), a key negative regulator of the serine/threonine phosphatase PP2A (protein phosphatase 2A). Herein, we demonstrate that CA promotes PME-1 mediated demethylation of the PP2A catalytic subunit leading to its suppressed activity, and in doing so, alleviates the repressive action of PP2A towards PKB. Collectively, our findings provide new insight into how CA may improve glucose homeostasis through enhancing peripheral glucose clearance in tissues such as skeletal muscle through a PME-1/PP2A/PKB signalling axis, thereby mitigating pathological effects associated with the hyperglycaemic state. PMID:25038454

  4. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    SciTech Connect

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W.

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  5. PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration.

    PubMed

    Janssens, Veerle; Zwaenepoel, Karen; Rossé, Carine; Petit, Marleen M R; Goris, Jozef; Parker, Peter J

    2016-04-15

    Here, we identify the LIM protein lipoma-preferred partner (LPP) as a binding partner of a specific protein phosphatase 2A (PP2A) heterotrimer that is characterised by the regulatory PR130/B″α1 subunit (encoded byPPP2R3A). The PR130 subunit interacts with the LIM domains of LPP through a conserved Zn(2+)-finger-like motif in the differentially spliced N-terminus of PR130. Isolated LPP-associated PP2A complexes are catalytically active. PR130 colocalises with LPP at multiple locations within cells, including focal contacts, but is specifically excluded from mature focal adhesions, where LPP is still present. An LPP-PR130 fusion protein only localises to focal adhesions upon deletion of the domain of PR130 that binds to the PP2A catalytic subunit (PP2A/C), suggesting that PR130-LPP complex formation is dynamic and that permanent recruitment of PP2A activity might be unfavourable for focal adhesion maturation. Accordingly, siRNA-mediated knockdown of PR130 increases adhesion of HT1080 fibrosarcoma cells onto collagen I and decreases their migration in scratch wound and Transwell assays. Complex formation with LPP is mandatory for these PR130-PP2A functions, as neither phenotype can be rescued by re-expression of a PR130 mutant that no longer binds to LPP. Our data highlight the importance of specific, locally recruited PP2A complexes in cell adhesion and migration dynamics. PMID:26945059

  6. IK-guided PP2A suppresses Aurora B activity in the interphase of tumor cells.

    PubMed

    Lee, Sunyi; Jeong, Ae Lee; Park, Jeong Su; Han, Sora; Jang, Chang-Young; Kim, Keun Il; Kim, Yonghwan; Park, Jong Hoon; Lim, Jong-Seok; Lee, Myung Sok; Yang, Young

    2016-09-01

    Aurora B activation is triggered at the mitotic entry and required for proper microtubule-kinetochore attachment at mitotic phase. Therefore, Aurora B should be in inactive form in interphase to prevent aberrant cell cycle progression. However, it is unclear how the inactivation of Aurora B is sustained during interphase. In this study, we find that IK depletion-induced mitotic arrest leads to G2 arrest by Aurora B inhibition, indicating that IK depletion enhances Aurora B activation before mitotic entry. IK binds to Aurora B, and colocalizes on the nuclear foci during interphase. Our data further show that IK inhibits Aurora B activation through recruiting PP2A into IK and Aurora B complex. It is thus believed that IK, as a scaffold protein, guides PP2A into Aurora B to suppress its activity in interphase until mitotic entry. PMID:26906715

  7. PRG-1 Regulates Synaptic Plasticity via Intracellular PP2A/β1-Integrin Signaling.

    PubMed

    Liu, Xingfeng; Huai, Jisen; Endle, Heiko; Schlüter, Leslie; Fan, Wei; Li, Yunbo; Richers, Sebastian; Yurugi, Hajime; Rajalingam, Krishnaraj; Ji, Haichao; Cheng, Hong; Rister, Benjamin; Horta, Guilherme; Baumgart, Jan; Berger, Hendrik; Laube, Gregor; Schmitt, Ulrich; Schmeisser, Michael J; Boeckers, Tobias M; Tenzer, Stefan; Vlachos, Andreas; Deller, Thomas; Nitsch, Robert; Vogt, Johannes

    2016-08-01

    Alterations in dendritic spine numbers are linked to deficits in learning and memory. While we previously revealed that postsynaptic plasticity-related gene 1 (PRG-1) controls lysophosphatidic acid (LPA) signaling at glutamatergic synapses via presynaptic LPA receptors, we now show that PRG-1 also affects spine density and synaptic plasticity in a cell-autonomous fashion via protein phosphatase 2A (PP2A)/β1-integrin activation. PRG-1 deficiency reduces spine numbers and β1-integrin activation, alters long-term potentiation (LTP), and impairs spatial memory. The intracellular PRG-1 C terminus interacts in an LPA-dependent fashion with PP2A, thus modulating its phosphatase activity at the postsynaptic density. This results in recruitment of adhesome components src, paxillin, and talin to lipid rafts and ultimately in activation of β1-integrins. Consistent with these findings, activation of PP2A with FTY720 rescues defects in spine density and LTP of PRG-1-deficient animals. These results disclose a mechanism by which bioactive lipid signaling via PRG-1 could affect synaptic plasticity and memory formation. PMID:27453502

  8. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase.

    PubMed

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E; López-Méndez, Blanca; Sigurðsson, Jón Otti; Montoya, Guillermo; Olsen, Jesper V; Nilsson, Jakob

    2016-08-18

    Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface-exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides a molecular description of PP2A binding specificity with broad implications for understanding signaling in eukaryotes. PMID:27453045

  9. Greatwall-phosphorylated Endosulfine is both an inhibitor and a substrate of PP2A-B55 heterotrimers

    PubMed Central

    Williams, Byron C; Filter, Joshua J; Blake-Hodek, Kristina A; Wadzinski, Brian E; Fuda, Nicholas J; Shalloway, David; Goldberg, Michael L

    2014-01-01

    During M phase, Endosulfine (Endos) family proteins are phosphorylated by Greatwall kinase (Gwl), and the resultant pEndos inhibits the phosphatase PP2A-B55, which would otherwise prematurely reverse many CDK-driven phosphorylations. We show here that PP2A-B55 is the enzyme responsible for dephosphorylating pEndos during M phase exit. The kinetic parameters for PP2A-B55’s action on pEndos are orders of magnitude lower than those for CDK-phosphorylated substrates, suggesting a simple model for PP2A-B55 regulation that we call inhibition by unfair competition. As the name suggests, during M phase PP2A-B55’s attention is diverted to pEndos, which binds much more avidly and is dephosphorylated more slowly than other substrates. When Gwl is inactivated during the M phase-to-interphase transition, the dynamic balance changes: pEndos dephosphorylated by PP2A-B55 cannot be replaced, so the phosphatase can refocus its attention on CDK-phosphorylated substrates. This mechanism explains simultaneously how PP2A-B55 and Gwl together regulate pEndos, and how pEndos controls PP2A-B55. DOI: http://dx.doi.org/10.7554/eLife.01695.001 PMID:24618897

  10. Cytoplasmic Retention of Protein Phosphatase 2A Inhibitor 2 (I2PP2A) Induces Alzheimer-like Abnormal Hyperphosphorylation of Tau*

    PubMed Central

    Arif, Mohammad; Wei, Jianshe; Zhang, Qi; Liu, Fei; Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Iqbal, Khalid

    2014-01-01

    Abnormal hyperphosphorylation of Tau leads to the formation of neurofibrillary tangles, a hallmark of Alzheimer disease (AD), and related tauopathies. The phosphorylation of Tau is regulated by protein phosphatase 2A (PP2A), which in turn is modulated by endogenous inhibitor 2 (I2PP2A). In AD brain, I2PP2A is translocated from neuronal nucleus to cytoplasm, where it inhibits PP2A activity and promotes abnormal phosphorylation of Tau. Here we describe the identification of a potential nuclear localization signal (NLS) in the C-terminal region of I2PP2A containing a conserved basic motif, 179RKR181, which is sufficient for directing its nuclear localization. The current study further presents an inducible cell model (Tet-Off system) of AD-type abnormal hyperphosphorylation of Tau by expressing I2PP2A in which the NLS was inactivated by 179RKR181 → AAA along with 168KR169 → AA mutations. In this model, the mutant NLS (mNLS)-I2PP2A (I2PP2AAA-AAA) was retained in the cell cytoplasm, where it physically interacted with PP2A and inhibited its activity. Inhibition of PP2A was associated with the abnormal hyperphosphorylation of Tau, which resulted in microtubule network instability and neurite outgrowth impairment. Expression of mNLS-I2PP2A activated CAMKII and GSK-3β, which are Tau kinases regulated by PP2A. The immunoprecipitation experiments showed the direct interaction of I2PP2A with PP2A and GSK-3β but not with CAMKII. Thus, the cell model provides insights into the nature of the potential NLS and the mechanistic relationship between I2PP2A-induced inhibition of PP2A and hyperphosphorylation of Tau that can be utilized to develop drugs preventing Tau pathology. PMID:25128526

  11. Protein phosphatase 2A (PP2A) has a potential role in CAPE-induced apoptosis of CCRF-CEM cells via effecting human telomerase reverse transcriptase activity.

    PubMed

    Avci, Cigir Biray; Sahin, Fahri; Gunduz, Cumhur; Selvi, Nur; Aydin, Hikmet Hakan; Oktem, Gulperi; Topcuoglu, Nejat; Saydam, Guray

    2007-12-01

    Caffeic acid phenethyl ester (CAPE) is one of the most effective components of propolis which is collected by honey bees. The aim of this study was to investigate the cytotoxic and apoptotic effects of CAPE in the CCRF-CEM cell line and to clarify the role of serine/threonine protein phosphatase 2A (PP2A) and human telomerase reverse transcriptase (hTERT) activity as an underlining mechanism of CAPE-induced apoptosis. Trypan blue dye exclusion test and XTT methods were used to evaluate the cytotoxicity and ELISA based oligonucleotide detection, which can be seen during apoptosis, was used to determine apoptosis. Acridine orange/ethidium bromide dye technique was also used to evaluate apoptosis. The cytotoxic effect of CAPE was detected in a dose and time dependent manner with the IC(50) of 1 muM. ELISA and acridine orange/ethidium bromide methods have shown remarkable apoptosis at 48th hour in CAPE treated cells. To investigate the role of PP2A in CAPE-induced apoptosis of CCRF-CEM cells, we performed combination studies with CAPE and, Calyculin A and Okadaic acid, which are very well known inhibitors of PP2A, in IC(20) of inhibitors and IC(50) of CAPE. Combination studies revealed synergistic effect of both drugs by concomitant use. Western blot analyses of PP2A catalytic and regulatory subunits showed down-regulation of expression of PP2A catalytic subunit in CAPE treated cells at 48th hour. Since, PP2A is important in hTERT (telomerase catalytic subunit) activation and deactivation, we also performed hTERT activity in CAPE treated cells simultaneously. Treating cells with IC(50) of CAPE for 96 h with the intervals of 24 h showed marked reduction of hTERT activity. The reduction of hTERT activity in CAPE treated CCRF-CEM cells was more prominent in the initial 48 h. The variation of hTERT activity in CAPE treated CCRF-CEM cells may be the reason for the protein phosphatase interaction that occurred after treatment with CAPE. PMID:17852432

  12. Protein Phosphatase 2A (PP2A) Regulatory Subunits ParA and PabA Orchestrate Septation and Conidiation and Are Essential for PP2A Activity in Aspergillus nidulans

    PubMed Central

    Zhong, Guo-wei; Jiang, Ping; Qiao, Wei-ran; Zhang, Yuan-wei; Wei, Wen-fan

    2014-01-01

    Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism. Different activities of PP2A and subcellular localization are determined by its regulatory subunits. Here we identified and characterized the functions of two protein phosphatase regulatory subunit homologs, ParA and PabA, in Aspergillus nidulans. Our results demonstrate that ParA localizes to the septum site and that deletion of parA causes hyperseptation, while overexpression of parA abolishes septum formation; this suggests that ParA may function as a negative regulator of septation. In comparison, PabA displays a clear colocalization pattern with 4′,6-diamidino-2-phenylindole (DAPI)-stained nuclei, and deletion of pabA induces a remarkable delayed-septation phenotype. Both parA and pabA are required for hyphal growth, conidiation, and self-fertilization, likely to maintain normal levels of PP2A activity. Most interestingly, parA deletion is capable of suppressing septation defects in pabA mutants, suggesting that ParA counteracts PabA during the septation process. In contrast, double mutants of parA and pabA led to synthetic defects in colony growth, indicating that ParA functions synthetically with PabA during hyphal growth. Moreover, unlike the case for PP2A-Par1 and PP2A-Pab1 in yeast (which are negative regulators that inactivate the septation initiation network [SIN]), loss of ParA or PabA fails to suppress defects of temperature-sensitive mutants of the SEPH kinase of the SIN. Thus, our findings support the previously unrealized evidence that the B-family subunits of PP2A have comprehensive functions as partners of heterotrimeric enzyme complexes of PP2A, both spatially and temporally, in A. nidulans. PMID:25280816

  13. Cardiac Function Is Regulated by B56α-mediated Targeting of Protein Phosphatase 2A (PP2A) to Contractile Relevant Substrates*

    PubMed Central

    Kirchhefer, Uwe; Brekle, Christiane; Eskandar, John; Isensee, Gunnar; Kučerová, Dana; Müller, Frank U.; Pinet, Florence; Schulte, Jan S.; Seidl, Matthias D.; Boknik, Peter

    2014-01-01

    Dephosphorylation of important myocardial proteins is regulated by protein phosphatase 2A (PP2A), representing a heterotrimer that is comprised of catalytic, scaffolding, and regulatory (B) subunits. There is a multitude of B subunit family members directing the PP2A holoenzyme to different myocellular compartments. To gain a better understanding of how these B subunits contribute to the regulation of cardiac performance, we generated transgenic (TG) mice with cardiomyocyte-directed overexpression of B56α, a phosphoprotein of the PP2A-B56 family. The 2-fold overexpression of B56α was associated with an enhanced PP2A activity that was localized mainly in the cytoplasm and myofilament fraction. Contractility was enhanced both at the whole heart level and in isolated cardiomyocytes of TG compared with WT mice. However, peak amplitude of [Ca]i did not differ between TG and WT cardiomyocytes. The basal phosphorylation of cardiac troponin inhibitor (cTnI) and the myosin-binding protein C was reduced by 26 and 35%, respectively, in TG compared with WT hearts. The stimulation of β-adrenergic receptors by isoproterenol (ISO) resulted in an impaired contractile response of TG hearts. At a depolarizing potential of −5 mV, the ICa,L current density was decreased by 28% after administration of ISO in TG cardiomyocytes. In addition, the ISO-stimulated phosphorylation of phospholamban at Ser16 was reduced by 27% in TG hearts. Thus, the increased PP2A-B56α activity in TG hearts is localized to specific subcellular sites leading to the dephosphorylation of important contractile proteins. This may result in higher myofilament Ca2+ sensitivity and increased basal contractility in TG hearts. These effects were reversed by β-adrenergic stimulation. PMID:25320082

  14. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits

    PubMed Central

    Sommer, Lauren M.; Cho, Hyuk; Choudhary, Madhusudan; Seeling, Joni M.

    2015-01-01

    Protein phosphatase 2A (PP2A) is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56αβε and B56γδ. Further duplications led to three B56αβε genes and two B56γδ in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56δ function may be compensated for by an alternatively spliced transcript, B56δ/γ, encoding a B56δ-like amino-terminal region and a B56γ core. PMID:25950761

  15. PP2A inhibitors arrest G2/M transition through JNK/Sp1-dependent down-regulation of CDK1 and autophagy-dependent up-regulation of p21

    PubMed Central

    Zhi, Qiaoming; Xu, Ze-Kuan; Wang, Rong; Wang, Wen-Jie; Zong, Yang; Li, Zeng-Liang; Wu, Yadi; Zhou, Binhua P.; Chen, Kai; Tao, Min; Li, Wei

    2015-01-01

    Protein phosphatase 2A (PP2A) plays an important role in the control of the cell cycle. We previously reported that the PP2A inhibitors, cantharidin and okadaic acid (OA), efficiently repressed the growth of cancer cells. In the present study, we found that PP2A inhibitors arrested the cell cycle at the G2 phase through a mechanism that was dependent on the JNK pathway. Microarrays further showed that PP2A inhibitors induced expression changes in multiple genes that participate in cell cycle transition. To verify whether these expression changes were executed in a PP2A-dependent manner, we targeted the PP2A catalytic subunit (PP2Ac) using siRNA and evaluated gene expression with a microarray. After the cross comparison of these microarray data, we identified that CDK1 was potentially the same target when treated with either PP2A inhibitors or PP2Ac siRNA. In addition, we found that the down-regulation of CDK1 occurred in a JNK-dependent manner. Luciferase reporter gene assays demonstrated that repression of the transcription of CDK1 was executed through the JNK-dependent activation of the Sp1 transcription factor. By constructing deletion mutants of the CDK1 promoter and by using ChIP assays, we identified an element in the CDK1 promoter that responded to the JNK/Sp1 pathway after stimulation with PP2A inhibitors. Cantharidin and OA also up-regulated the expression of p21, an inhibitor of CDK1, via autophagy rather than PP2A/JNK pathway. Thus, this present study found that the PP2A/JNK/Sp1/CDK1 pathway and the autophagy/p21 pathway participated in G2/M cell cycle arrest triggered by PP2A inhibitors. PMID:26053095

  16. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase.

    PubMed

    Guenebeaud, Céline; Goldschneider, David; Castets, Marie; Guix, Catherine; Chazot, Guillaume; Delloye-Bourgeois, Céline; Eisenberg-Lerner, Avital; Shohat, Galit; Zhang, Mingjie; Laudet, Vincent; Kimchi, Adi; Bernet, Agnès; Mehlen, Patrick

    2010-12-22

    The UNC5H dependence receptors promote apoptosis in the absence of their ligand, netrin-1, and this is important for neuronal and vascular development and for limitation of cancer progression. UNC5H2 (also called UNC5B) triggers cell death through the activation of the serine-threonine protein kinase DAPk. While performing a siRNA screen to identify genes implicated in UNC5H-induced apoptosis, we identified the structural subunit PR65β of the holoenzyme protein phosphatase 2A (PP2A). We show that UNC5H2/B recruits a protein complex that includes PR65β and DAPk and retains PP2A activity. PP2A activity is required for UNC5H2/B-induced apoptosis, since it activates DAPk by triggering its dephosphorylation. Moreover, netrin-1 binding to UNC5H2/B prevents this effect through interaction of the PP2A inhibitor CIP2A to UNC5H2/B. Thus we show here that, in the absence of netrin-1, recruitment of PP2A to UNC5H2/B allows the activation of DAPk via a PP2A-mediated dephosphorylation and that this mechanism is involved in angiogenesis regulation. PMID:21172653

  17. PP2A regulatory subunit Bα controls endothelial contractility and vessel lumen integrity via regulation of HDAC7.

    PubMed

    Martin, Maud; Geudens, Ilse; Bruyr, Jonathan; Potente, Michael; Bleuart, Anouk; Lebrun, Marielle; Simonis, Nicolas; Deroanne, Christophe; Twizere, Jean-Claude; Soubeyran, Philippe; Peixoto, Paul; Mottet, Denis; Janssens, Veerle; Hofmann, Wolf-Karsten; Claes, Filip; Carmeliet, Peter; Kettmann, Richard; Gerhardt, Holger; Dequiedt, Franck

    2013-09-11

    To supply tissues with nutrients and oxygen, the cardiovascular system forms a seamless, hierarchically branched, network of lumenized tubes. Here, we show that maintenance of patent vessel lumens requires the Bα regulatory subunit of protein phosphatase 2A (PP2A). Deficiency of Bα in zebrafish precludes vascular lumen stabilization resulting in perfusion defects. Similarly, inactivation of PP2A-Bα in cultured ECs induces tubulogenesis failure due to alteration of cytoskeleton dynamics, actomyosin contractility and maturation of cell-extracellular matrix (ECM) contacts. Mechanistically, we show that PP2A-Bα controls the activity of HDAC7, an essential transcriptional regulator of vascular stability. In the absence of PP2A-Bα, transcriptional repression by HDAC7 is abrogated leading to enhanced expression of the cytoskeleton adaptor protein ArgBP2. ArgBP2 hyperactivates RhoA causing inadequate rearrangements of the EC actomyosin cytoskeleton. This study unravels the first specific role for a PP2A holoenzyme in development: the PP2A-Bα/HDAC7/ArgBP2 axis maintains vascular lumens by balancing endothelial cytoskeletal dynamics and cell-matrix adhesion. PMID:23955003

  18. Capsaicin inhibits the Wnt/β-catenin signaling pathway by down-regulating PP2A.

    PubMed

    Park, Dong-Seok; Yoon, Gang-Ho; Lee, Hyun-Shik; Choi, Sun-Cheol

    2016-09-01

    Xenopus embryo serves as an ideal model for teratogenesis assays to examine the effects of any substances on the cellular processes critical for early development and adult tissue homeostasis. In our chemical library screening with frog embryo, capsaicin was found to repress the Wnt/β-catenin signaling. Depending on the stages at which embryos became exposed to capsaicin, it could disrupt formation of dorsal or posterior body axis of embryo, which is associated with inhibition of maternal or zygotic Wnt signal in early development. In agreement with these phenotypes, capsaicin suppressed the expression of Wnt target genes such as Siamois and Chordin in the organizer region of embryo and in Wnt signals-stimulated tissue explants. In addition, the cellular level of β-catenin, a key component of Wnt pathway, was down-regulated in capsaicin-treated embryonic cells. Unlike wild-type β-catenin, its non-phosphorylatable mutant in which serine and threonine residues phosphorylated by GSK3 are substituted with alanine was not destabilized by capsaicin, indicative of the effect of this chemical on the phosphorylation status of β-catenin. In support of this, capsaicin up-regulated the level of GSK3- or CK1-phosphorylated β-catenin, concomitantly lowering that of its de-phosphorylated version. Notably, capsaicin augmented the phosphorylation of a phosphatase, PP2A at tyrosine 307, suggesting its repression of the enzymatic activity of the phosphatase. Furthermore, capsaicin still enhanced β-catenin phosphorylation in cells treated with a GSK3 inhibitor, LiCl but not in those treated with a phosphatase inhibitor, okadaic acid. Together, these results indicate that capsaicin inhibits the patterning of the dorso-ventral and anterior-posterior body axes of embryo by repressing PP2A and thereby down-regulating the Wnt/β-catenin signaling. PMID:27318088

  19. PP2A delays APC/C-dependent degradation of separase-associated but not free securin

    PubMed Central

    Hellmuth, Susanne; Böttger, Franziska; Pan, Cuiping; Mann, Matthias; Stemmann, Olaf

    2014-01-01

    The universal triggering event of eukaryotic chromosome segregation is cleavage of centromeric cohesin by separase. Prior to anaphase, most separase is kept inactive by association with securin. Protein phosphatase 2A (PP2A) constitutes another binding partner of human separase, but the functional relevance of this interaction has remained enigmatic. We demonstrate that PP2A stabilizes separase-associated securin by dephosphorylation, while phosphorylation of free securin enhances its polyubiquitylation by the ubiquitin ligase APC/C and proteasomal degradation. Changing PP2A substrate phosphorylation sites to alanines slows degradation of free securin, delays separase activation, lengthens early anaphase, and results in anaphase bridges and DNA damage. In contrast, separase-associated securin is destabilized by introduction of phosphorylation-mimetic aspartates or extinction of separase-associated PP2A activity. G2- or prometaphase-arrested cells suffer from unscheduled activation of separase when endogenous securin is replaced by aspartate-mutant securin. Thus, PP2A-dependent stabilization of separase-associated securin prevents precocious activation of separase during checkpoint-mediated arrests with basal APC/C activity and increases the abruptness and fidelity of sister chromatid separation in anaphase. PMID:24781523

  20. Fcp1 phosphatase controls Greatwall kinase to promote PP2A-B55 activation and mitotic progression

    PubMed Central

    Della Monica, Rosa; Visconti, Roberta; Cervone, Nando; Serpico, Angela Flavia; Grieco, Domenico

    2015-01-01

    During cell division, progression through mitosis is driven by a protein phosphorylation wave. This wave namely depends on an activation-inactivation cycle of cyclin B-dependent kinase (Cdk) 1 while activities of major protein phosphatases, like PP1 and PP2A, appear directly or indirectly repressed by Cdk1. However, how Cdk1 inactivation is coordinated with reactivation of major phosphatases at mitosis exit still lacks substantial knowledge. We show here that activation of PP2A-B55, a major mitosis exit phosphatase, required the phosphatase Fcp1 downstream Cdk1 inactivation in human cells. During mitosis exit, Fcp1 bound Greatwall (Gwl), a Cdk1-stimulated kinase that phosphorylates Ensa/ARPP19 and converts these proteins into potent PP2A-B55 inhibitors during mitosis onset, and dephosphorylated it at Cdk1 phosphorylation sites. Fcp1-catalyzed dephosphorylation drastically reduced Gwl kinase activity towards Ensa/ARPP19 promoting PP2A-B55 activation. Thus, Fcp1 coordinates Cdk1 and Gwl inactivation to derepress PP2A-B55, generating a dephosphorylation switch that drives mitosis progression. DOI: http://dx.doi.org/10.7554/eLife.10399.001 PMID:26653855

  1. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects

    PubMed Central

    Zazo, Sandra; Arpí, Oriol; Menéndez, Silvia; Manso, Rebeca; Lluch, Ana; Eroles, Pilar; Rovira, Ana; Albanell, Joan; García-Foncillas, Jesús; Madoz-Gúrpide, Juan; Rojo, Federico

    2015-01-01

    The protein phosphatase 2A (PP2A) is a key tumor suppressor which has emerged as a novel molecular target in some human cancers. Here, we show that PP2A inhibition is a common event in breast cancer and identified PP2A phosphorylation and deregulation SET and CIP2A as molecular contributing mechanisms to inactivate PP2A. Interestingly, restoration of PP2A activity after FTY720 treatment reduced cell growth, induced apoptosis and decreased AKT and ERK activation. Moreover, FTY720 led to PP2A activation then enhancing doxorubicin-induced antitumor effects both in vitro and in vivo. PP2A inhibition (CPscore: PP2A phosphorylation and/or CIP2A overexpression) was detected in 27% of cases (62/230), and associated with grade (p = 0.017), relapse (p < 0.001), negative estrogen (p < 0.001) and progesterone receptor expression (p < 0.001), HER2-positive tumors (p = 0.049), Ki-67 expression (p < 0.001), and higher AKT (p < 0.001) and ERK (p < 0.001) phosphorylation. Moreover, PP2A inhibition determined shorter overall (p = 0.006) and event-free survival (p = 0.003), and multivariate analysis confirmed its independent prognostic impact. Altogether, our results indicate that PP2A is frequently inactivated in breast cancer and determines worse outcome, and its restoration using PP2A activators represents an alternative therapeutic strategy in this disease. PMID:25726524

  2. Protein phosphatase 2a (PP2A) binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3

    PubMed Central

    2011-01-01

    Background Striatin, a putative protein phosphatase 2A (PP2A) B-type regulatory subunit, is a multi-domain scaffolding protein that has recently been linked to several diseases including cerebral cavernous malformation (CCM), which causes symptoms ranging from headaches to stroke. Striatin association with the PP2A A/C (structural subunit/catalytic subunit) heterodimer alters PP2A substrate specificity, but targets and roles of striatin-associated PP2A are not known. In addition to binding the PP2A A/C heterodimer to form a PP2A holoenzyme, striatin associates with cerebral cavernous malformation 3 (CCM3) protein, the mammalian Mps one binder (MOB) homolog, Mob3/phocein, the mammalian sterile 20-like (Mst) kinases, Mst3, Mst4 and STK25, and several other proteins to form a large signaling complex. Little is known about the molecular architecture of the striatin complex and the regulation of these sterile 20-like kinases. Results To help define the molecular organization of striatin complexes and to determine whether Mst3 might be negatively regulated by striatin-associated PP2A, a structure-function analysis of striatin was performed. Two distinct regions of striatin are capable of stably binding directly or indirectly to Mob3--one N-terminal, including the coiled-coil domain, and another more C-terminal, including the WD-repeat domain. In addition, striatin residues 191-344 contain determinants necessary for efficient association of Mst3, Mst4, and CCM3. PP2A associates with the coiled-coil domain of striatin, but unlike Mob3 and Mst3, its binding appears to require striatin oligomerization. Deletion of the caveolin-binding domain on striatin abolishes striatin family oligomerization and PP2A binding. Point mutations in striatin that disrupt PP2A association cause hyperphosphorylation and activation of striatin-associated Mst3. Conclusions Striatin orchestrates the regulation of Mst3 by PP2A. It binds Mst3 likely as a dimer with CCM3 via residues lying between

  3. Potential anti-tumor effects of FTY720 associated with PP2A activation: a brief review.

    PubMed

    Cristóbal, Ion; Madoz-Gúrpide, Juan; Manso, Rebeca; González-Alonso, Paula; Rojo, Federico; García-Foncillas, Jesús

    2016-06-01

    FTY720 (Fingolimod, Gilenya (†) ) is an FDA-approved immunosuppressant currently used in the treatment of multiple sclerosis. However, a large number of studies over the last few years have shown that FTY720 shows potent antitumor properties that suggest its potential usefulness as a novel anticancer agent. Interestingly, the restoration of protein phosphatase 2A (PP2A) activity mediated by FTY720 could play a key role in its antitumor effects. Taking into account that PP2A inactivation is a common event that determines poor outcome in several tumor types, FTY720 could serve as an alternative therapeutic strategy for cancer patients with such alterations. PMID:26950691

  4. Afferent Arteriolar Dilation to 11,12-EET Analogs Involves PP2A Activity and Ca2+-Activated K+ Channels

    PubMed Central

    Imig, John D.; Dimitropoulou, Christiana; Reddy, D. Sudarshan; White, Richard E.; Falck, John R.

    2008-01-01

    The epoxygenase metabolite, 11,12-epoxyeicosatrienoic acid (11,12-EET), has renal vascular actions. 11,12-EET analogs have been developed to determine the structure activity relationship for 11,12-EET and as a tool to investigate signaling mechanisms responsible for afferent arteriolar dilation. We hypothesized that 11,12-EET mediated afferent arteriolar dilation involves increased phosphoprotein phosphatase 2A (PP2A) and large-conductance calcium activated K+ (KCa) channels. We evaluated the chemically and/or metabolically stable 11,12-EET analogs: 11,12-EET-N-methylsulfonimide (11,12-EET-SI), 11-nonyloxy-undec-8(Z)-enoic acid (11,12-ether-EET-8-ZE), and 11,12-trans-oxidoeicosa-8(Z)-eonoic acid (11,12-tetra-EET-8-ZE). Afferent arteriolar responses were assessed. Activation of KCa channels by 11,12-EET analogs were established by single cell channel recordings in renal myocytes. Assessment of renal vascular responses revealed that 11,12-EET analogs increased afferent arteriolar diameter. Vasodilator responses to 11,12-EET analogs were abolished by K+ channel or PP2A inhibition. 11,12-EET analogs activated renal myocyte large-conductance KCa channels. 11,12-EET analogs increased cAMP by 2-fold and PP2A activity increased 3-8 fold in renal myocytes. PP2A inhibition did not significantly affect the 11,12-EET analog mediated increase in cAMP and PP2A increased renal myocyte KCa channel activity to a much greater extent than PKA. These data support the concept that 11,12-EET utilizes PP2A dependent pathways to activate large-conductance KCa channels and dilate the afferent arteriole. PMID:18260004

  5. The broken "Off" switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance.

    PubMed

    Ruvolo, Peter P

    2016-12-01

    Aberrant activation of signal transduction pathways can transform a normal cell to a malignant one and can impart survival properties that render cancer cells resistant to therapy. A diverse set of cascades have been implicated in various cancers including those mediated by serine/threonine kinases such RAS, PI3K/AKT, and PKC. Signal transduction is a dynamic process involving both "On" and "Off" switches. Activating mutations of RAS or PI3K can be viewed as the switch being stuck in the "On" position resulting in continued signaling by a survival and/or proliferation pathway. On the other hand, inactivation of protein phosphatases such as the PP2A family can be seen as the defective "Off" switch that similarly can activate these pathways. A problem for therapeutic targeting of PP2A is that the enzyme is a hetero-trimer and thus drug targeting involves complex structures. More importantly, since PP2A isoforms generally act as tumor suppressors one would want to activate these enzymes rather than suppress them. The elucidation of the role of cellular inhibitors like SET and CIP2A in cancer suggests that targeting these proteins can have therapeutic efficacy by mechanisms involving PP2A activation. Furthermore, drugs such as FTY-720 can activate PP2A isoforms directly. This review will cover the current state of knowledge of PP2A role as a tumor suppressor in cancer cells and as a mediator of processes that can impact drug resistance and immune surveillance. PMID:27556014

  6. The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action.

    PubMed

    Xing, Hongyan; Vanderford, Nathan L; Sarge, Kevin D

    2008-11-01

    To maintain phenotypes of cell lineages, cells must 'remember' which genes were active before mitosis entry and transmit this information to their daughter cells so that expression patterns can be faithfully re-established in G1. This phenomenon is called gene bookmarking. However, during mitosis transcription ceases, most sequence-specific proteins dissociate from DNA and the chromatin is tightly compacted, making it difficult to understand how gene activity 'memory' is maintained through this stage of the cell cycle. A feature of gene bookmarking is that in mitotic cells, the promoters of formerly active genes lack compaction, but how compaction of these regions is inhibited is unknown. Here we show that during mitosis, TATA-binding protein (TBP), which remains bound to DNA during mitosis, recruits PP2A. TBP also interacts with condensin to allow efficient dephosphorylation and inactivation of condensin near these promoters to inhibit their compaction. Further, ChIP-on-chip data show that TBP is bound to many chromosomal sites during mitosis, and is higher in transcribed regions but low in regions containing pseudogenes and genes whose expression is tissue-restricted. These results suggest that TBP is involved not only in gene transcription during interphase but also in preserving the memory of gene activity through mitosis to daughter cells. PMID:18931662

  7. LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential.

    PubMed

    Hong, Christopher S; Ho, Winson; Zhang, Chao; Yang, Chunzhang; Elder, J Bradley; Zhuang, Zhengping

    2015-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that plays a significant role in mitotic progression and cellular responses to DNA damage. While traditionally viewed as a tumor suppressor, inhibition of PP2A has recently come to attention as a novel therapeutic means of driving senescent cancer cells into mitosis and promoting cell death via mitotic catastrophe. These findings have been corroborated in numerous studies utilizing naturally produced compounds that selectively inhibit PP2A. To overcome the known human toxicities associated with these compounds, a water-soluble small molecule inhibitor, LB100, was recently developed to competitively inhibit the PP2A protein. This review summarizes the pre-clinical studies to date that have demonstrated the anti-cancer activity of LB100 via its chemo- and radio-sensitizing properties. These studies demonstrate the tremendous therapeutic potential of LB100 in a variety of cancer types. The results of an ongoing phase 1 trial are eagerly anticipated. PMID:25897893

  8. LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential

    PubMed Central

    Hong, Christopher S; Ho, Winson; Zhang, Chao; Yang, Chunzhang; Elder, J Bradley; Zhuang, Zhengping

    2015-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that plays a significant role in mitotic progression and cellular responses to DNA damage. While traditionally viewed as a tumor suppressor, inhibition of PP2A has recently come to attention as a novel therapeutic means of driving senescent cancer cells into mitosis and promoting cell death via mitotic catastrophe. These findings have been corroborated in numerous studies utilizing naturally produced compounds that selectively inhibit PP2A. To overcome the known human toxicities associated with these compounds, a water-soluble small molecule inhibitor, LB100, was recently developed to competitively inhibit the PP2A protein. This review summarizes the pre-clinical studies to date that have demonstrated the anti-cancer activity of LB100 via its chemo- and radio-sensitizing properties. These studies demonstrate the tremendous therapeutic potential of LB100 in a variety of cancer types. The results of an ongoing phase 1 trial are eagerly anticipated. PMID:25897893

  9. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A).

    PubMed

    Obanda, Diana N; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  10. An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A)

    PubMed Central

    Obanda, Diana N.; Ribnicky, David; Yu, Yongmei; Stephens, Jacqueline; Cefalu, William T.

    2016-01-01

    The leaf extract of Urtica dioica L. (UT) has been reported to improve glucose homeostasis in vivo, but definitive studies on efficacy and mechanism of action are lacking. We investigated the effects of UT on obesity- induced insulin resistance in skeletal muscle. Male C57BL/6J mice were divided into three groups: low-fat diet (LFD), high-fat diet (HFD) and HFD supplemented with UT. Body weight, body composition, plasma glucose and plasma insulin were monitored. Skeletal muscle (gastrocnemius) was analyzed for insulin sensitivity, ceramide accumulation and the post translational modification and activity of protein phosphatase 2A (PP2A). PP2A is activated by ceramides and dephosphorylates Akt. C2C12 myotubes exposed to excess free fatty acids with or without UT were also evaluated for insulin signaling and modulation of PP2A. The HFD induced insulin resistance, increased fasting plasma glucose, enhanced ceramide accumulation and PP2A activity in skeletal muscle. Supplementation with UT improved plasma glucose homeostasis and enhanced skeletal muscle insulin sensitivity without affecting body weight and body composition. In myotubes, UT attenuated the ability of FFAs to induce insulin resistance and PP2A hyperactivity without affecting ceramide accumulation and PP2A expression. UT decreased PP2A activity through posttranslational modification that was accompanied by a reduction in Akt dephosphorylation. PMID:26916435

  11. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism.

    PubMed

    Galbo, Thomas; Olsen, Grith Skytte; Quistorff, Bjørn; Nishimura, Erica

    2011-01-01

    In type 2 Diabetes (T2D) free fatty acids (FFAs) in plasma are increased and hepatic insulin resistance is "selective", in the sense that the insulin-mediated decrease of glucose production is blunted while insulin's effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours. To establish the physiological relevance of the in vitro findings, we also studied insulin-resistant Zucker Diabetic Fatty (ZDF) rats. While insulin-receptor phosphorylation was unaffected, activation of Akt and inactivation of the downstream targets Glycogen synthase kinase 3α (Gsk3α and Forkhead box O1 (FoxO1) was inhibited in palmitate-exposed cells. Accordingly, dose-response curves for insulin-mediated suppression of the FoxO1-induced gluconeogenic genes and for de novo glucose production were right shifted, and insulin-stimulated glucose oxidation and glycogen synthesis were impaired. In contrast, similar to findings in human T2D, the ability of insulin to induce triglyceride (TG) accumulation and transcription of the enzymes that catalyze de novo lipogenesis and TG assembly was unaffected. Insulin-induction of these genes could, however, be blocked by inhibition of the atypical PKCs (aPKCs). The activity of the Akt-inactivating Protein Phosphatase 2A (PP2A) was increased in the insulin-resistant cells. Furthermore, inhibition of PP2A by specific inhibitors increased insulin-stimulated activation of Akt and phosphorylation of FoxO1 and Gsk3α. Finally, PP2A mRNA levels were increased in liver, muscle and adipose tissue, while PP2A activity was increased in liver and muscle tissue in insulin-resistant ZDF rats. In conclusion, our findings indicate that FFAs may cause a selective impairment of insulin action upon hepatic glucose metabolism by increasing PP2A activity. PMID:22087313

  12. Cloning and Characterization of TaPP2AbB"-α, a Member of the PP2A Regulatory Subunit in Wheat

    PubMed Central

    Liu, Dan; Li, Ang; Mao, Xinguo; Jing, Ruilian

    2014-01-01

    Protein phosphatase 2A (PP2A), a major Serine/Threonine protein phosphatase, consists of three subunits; a highly conserved structural subunit A, a catalytic subunit C, and a highly variable regulatory subunit B which determines the substrate specificity. Although the functional mechanism of PP2A in signaling transduction in Arabidopsis is known, their physiological roles in wheat remain to be characterized. In this study, we identified a novel regulatory subunit B, TaPP2AbB"-α, in wheat (Triticum aestivum L.). Subcellular localization indicated that TaPP2AbB"-α is located in the cell membrane, cytoplasm and nucleus. It interacts with both TaPP2Aa and TaPP2Ac. Expression pattern analyses revealed that TaPP2AbB"-α is strongly expressed in roots, and responds to NaCl, polyethylene glycol (PEG), cold and abscisic acid (ABA) stresses at the transcription level. Transgenic Arabidopsis plants overexpressing TaPP2AbB"-α developed more lateral roots, especially when treated with mannitol or NaCl. These results suggest that TaPP2AbB"-α, in conjunction with the other two PP2A subunits, is involved in multi-stress response, and positively regulates lateral root development under osmotic stress. PMID:24709994

  13. The B55α-containing PP2A holoenzyme dephosphorylates FOXO1 in islet β-cells under oxidative stress

    PubMed Central

    Yan, Ling; Guo, Shuangli; Brault, Marie; Harmon, Jamie; Robertson, R. Paul; Hamid, Rizwan; Stein, Roland; Yang, Elizabeth

    2016-01-01

    The FOXO1 (forkhead box O1) transcription factor influences many key cellular processes, including those important in metabolism, proliferation and cell death. Reversible phosphorylation of FOXO1 at Thr24 and Ser256 regulates its subcellular localization, with phosphorylation promoting cytoplasmic localization, whereas dephosphorylation triggers nuclear import and transcriptional activation. In the present study, we used biochemical and molecular approaches to isolate and link the serine/threonine PP2A (protein phosphatase 2A) holoenzyme containing the B55α regulatory subunit, with nuclear import of FOXO1 in pancreatic islet β-cells under oxidative stress, a condition associated with cellular dysfunction in Type 2 diabetes. The mechanism of FOXO1 dephosphorylation and nuclear translocation was investigated in pancreatic islet INS-1 and βTC-3 cell lines subjected to oxidative stress. A combined chemical cross-linking and MS strategy revealed the association of FOXO1 with a PP2A holoenzyme composed of the catalytic C, structural A and B55α regulatory subunits. Knockdown of B55α in INS-1 cells reduced FOXO1 dephosphorylation, inhibited FOXO1 nuclear translocation and attenuated oxidative stress-induced cell death. Furthermore, both B55α and nuclear FOXO1 levels were increased under hyperglycaemic conditions in db/db mouse islets, an animal model of Type 2 diabetes. We conclude that B55α-containing PP2A is a key regulator of FOXO1 activity in vivo. PMID:22417654

  14. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response.

    PubMed

    Guillonneau, Maëva; Paris, François; Dutoit, Soizic; Estephan, Hala; Bénéteau, Elise; Huot, Jacques; Corre, Isabelle

    2016-08-01

    Oxidative stress is a leading cause of endothelial dysfunction. The p38 MAPK pathway plays a determinant role in allowing cells to cope with oxidative stress and is tightly regulated by a balanced interaction between p38 protein and its interacting partners. By using a proteomic approach, we identified nucleophosmin (NPM) as a new partner of p38 in HUVECs. Coimmunoprecipitation and microscopic analyses confirmed the existence of a cytosolic nucleophosmin (NPM)/p38 interaction in basal condition. Oxidative stress, which was generated by exposure to 500 µM H2O2, induces a rapid dephosphorylation of NPM at T199 that depends on phosphatase PP2A, another partner of the NPM/p38 complex. Blocking PP2A activity leads to accumulation of NPM-pT199 and to an increased association of NPM with p38. Concomitantly to its dephosphorylation, oxidative stress promotes translocation of NPM to the nucleus to affect the DNA damage response. Dephosphorylated NPM impairs the signaling of oxidative stress-induced DNA damage via inhibition of the phosphorylation of ataxia-telangiectasia mutated and DNA-dependent protein kinase catalytic subunit. Overall, these results suggest that the p38/NPM/PP2A complex acts as a dynamic sensor, allowing endothelial cells to react rapidly to acute oxidative stress.-Guillonneau, M., Paris, F., Dutoit, S., Estephan, H., Bénéteau, E., Huot, J., Corre, I. Oxidative stress disassembles the p38/NPM/PP2A complex, which leads to modulation of nucleophosmin-mediated signaling to DNA damage response. PMID:27142525

  15. Zinc-α2-Glycoprotein Modulates AKT-Dependent Insulin Signaling in Human Adipocytes by Activation of the PP2A Phosphatase

    PubMed Central

    Duran, Xavier; Pachón, Gisela; Vázquez-Carballo, Ana; Roche, Kelly; Núñez-Roa, Catalina; Garrido-Sánchez, Lourdes; Tinahones, Francisco J.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Evidence from mouse models suggests that zinc-α2-glycoprotein (ZAG) is a novel anti-obesity adipokine. In humans, however, data are controversial and its physiological role in adipose tissue (AT) remains unknown. Here we explored the molecular mechanisms by which ZAG regulates carbohydrate metabolism in human adipocytes. Methods ZAG action on glucose uptake and insulin action was analyzed. β1 and β2-adrenoreceptor (AR) antagonists and siRNA targeting PP2A phosphatase were used to examine the mechanisms by which ZAG modulates insulin sensitivity. Plasma levels of ZAG were measured in a lean patient cohort stratified for HOMA-IR. Results ZAG treatment increased basal glucose uptake, correlating with an increase in GLUT expression, but induced insulin resistance in adipocytes. Pretreatment of adipocytes with propranolol and a specific β1-AR antagonist demonstrated that ZAG effects on basal glucose uptake and GLUT4 expression are mediated via β1-AR, whereas inhibition of insulin action is dependent on β2-AR activation. ZAG treatment correlated with an increase in PP2A activity. Silencing of the PP2A catalytic subunit abrogated the negative effect of ZAG on insulin-stimulated AKT phosphorylation and glucose uptake but not on GLUT4 expression and basal glucose uptake. ZAG circulating levels were unchanged in a lean patient cohort stratified for HOMA-IR. Neither glucose nor insulin was associated with plasma ZAG. Conclusions ZAG inhibits insulin-induced glucose uptake in human adipocytes by impairing insulin signaling at the level of AKT in a β2-AR- and PP2A-dependent manner. PMID:26068931

  16. 67-kDa laminin receptor-dependent protein phosphatase 2A (PP2A) activation elicits melanoma-specific antitumor activity overcoming drug resistance.

    PubMed

    Tsukamoto, Shuntaro; Huang, Yuhui; Umeda, Daisuke; Yamada, Shuhei; Yamashita, Shuya; Kumazoe, Motofumi; Kim, Yoonhee; Murata, Motoki; Yamada, Koji; Tachibana, Hirofumi

    2014-11-21

    The Ras/Raf/MEK/ERK pathway has been identified as a major, druggable regulator of melanoma. Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, resulting in constitutive melanoma hyperproliferation. A selective BRAF inhibitor showed remarkable clinical activity in patients with mutated BRAF. Unfortunately, most patients acquire resistance to the BRAF inhibitor, highlighting the urgent need for new melanoma treatment strategies. Green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) inhibits cell proliferation independently of BRAF inhibitor sensitivity, suggesting that increased understanding of the anti-melanoma activity of EGCG may provide a novel therapeutic target. Here, by performing functional genetic screening, we identified protein phosphatase 2A (PP2A) as a critical factor in the suppression of melanoma cell proliferation. We demonstrated that tumor-overexpressed 67-kDa laminin receptor (67LR) activates PP2A through adenylate cyclase/cAMP pathway eliciting inhibitions of oncoproteins and activation of tumor suppressor Merlin. Activating 67LR/PP2A pathway leading to melanoma-specific mTOR inhibition shows strong synergy with the BRAF inhibitor PLX4720 in the drug-resistant melanoma. Moreover, SET, a potent inhibitor of PP2A, is overexpressed on malignant melanoma. Silencing of SET enhances 67LR/PP2A signaling. Collectively, activation of 67LR/PP2A signaling may thus be a novel rational strategy for melanoma-specific treatment. PMID:25294877

  17. Two highly-related regulatory subunits of PP2A exert opposite effects on TGF-β/Activin/Nodal signalling

    PubMed Central

    Batut, Julie; Schmierer, Bernhard; Cao, Jing; Raftery, Laurel A.; Hill, Caroline S.; Howell, Michael

    2016-01-01

    Summary We identify Bα (PPP2R2A) and Bδ (PPP2R2D), two highly-related members of the B family of regulatory subunits of the protein phosphatase PP2A, as important modulators of TGF-β/Activin/Nodal signalling, which affect the pathway in opposite ways. Knockdown of Bα in Xenopus embryos or mammalian tissue culture cells suppresses TGF-β/Activin/Nodal-dependent responses, whereas knockdown of Bδ enhances these responses. Moreover, in Drosophila, overexpression of Smad2 rescues a severe wing phenotype caused by overexpression of the single Drosophila PP2A B subunit, Twins. We show that in vertebrates Bα enhances TGF-β/Activin/Nodal signalling by stabilising the basal levels of type I receptor, whereas Bδ negatively modulates these pathways by restricting receptor activity. Thus, these highly-related members of the same subfamily of PP2A regulatory subunits differentially regulate TGF-β/Activin/Nodal signalling to elicit opposing biological outcomes. PMID:18697906

  18. PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing

    PubMed Central

    Espert, Antonio; Uluocak, Pelin; Bastos, Ricardo Nunes; Mangat, Davinderpreet; Graab, Philipp

    2014-01-01

    The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC. PMID:25246613

  19. Dissecting cellular responses to irradiation via targeted disruptions of the ATM-CHK1-PP2A circuit

    PubMed Central

    Palii, Stela S.; Cui, Yuxia; Innes, Cynthia L.; Paules, Richard S.

    2013-01-01

    Exposure of proliferating cells to genotoxic stresses activates a cascade of signaling events termed the DNA damage response (DDR). The DDR preserves genetic stability by detecting DNA lesions, activating cell cycle checkpoints and promoting DNA damage repair. The phosphoinositide 3-kinase-related kinases (PIKKs) ataxia telangiectasia-mutated (ATM), ATM and Rad 3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are crucial for sensing lesions and signal transduction. The checkpoint kinase 1 (CHK1) is a traditional ATR target involved in DDR and normal cell cycle progression and represents a pharmacological target for anticancer regimens. This study employed cell lines stably depleted for CHK1, ATM or both for dissecting cross-talk and compensatory effects on G₂/M checkpoint in response to ionizing radiation (IR). We show that a 90% depletion of CHK1 renders cells radiosensitive without abrogating their IR-mediated G₂/M checkpoint arrest. ATM phosphorylation is enhanced in CHK1-deficient cells compared with their wild-type counterparts. This correlates with lower nuclear abundance of the PP2A catalytic subunit in CHK1-depleted cells. Stable depletion of CHK1 in an ATM-deficient background showed only a 50% reduction from wild-type CHK1 protein expression levels and resulted in an additive attenuation of the G₂/M checkpoint response compared with the individual knockdowns. ATM inhibition and 90% CHK1 depletion abrogated the early G₂/M checkpoint and precluded the cells from mounting an efficient compensatory response to IR at later time points. Our data indicates that dual targeting of ATM and CHK1 functionalities disrupts the compensatory response to DNA damage and could be exploited for developing efficient anti-neoplastic treatments. PMID:23462183

  20. Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE

    PubMed Central

    Battaglia-Hsu, Shyue-fang; Akchiche, Nassila; Noel, Nicole; Alberto, Jean-Marc; Jeannesson, Elise; Orozco-Barrios, Carlos Enrique; Martinez-Fong, Daniel; Daval, Jean-Luc; Guéant, Jean-Louis

    2009-01-01

    Vitamin B12 (cobalamin, Cbl) is indispensable for proper brain development and functioning, suggesting that it has neurotrophic effects beside its well-known importance in metabolism. The molecular basis of these effects remains hypothetical, one of the reasons being that no efficient cell model has been made available for investigating the consequences of B12 cellular deficiency in neuronal cells. Here, we designed an approach by stable transfection of NIE115 neuroblastoma cells to impose the anchorage of a chimeric B12-binding protein, transcobalamin-oleosin (TO) to the intracellular membrane. This model produced an intracellular sequestration of B12 evidenced by decreased methyl-Cbl and S-adenosylmethionine and increased homocysteine and methylmalonic acid concentrations. B12 deficiency affected the proliferation of NIE115 cells through an overall increase in catalytic protein phosphatase 2A (PP2A), despite its demethylation. It promoted cellular differentiation by improving initial outgrowth of neurites and, at the molecular level, by augmenting the levels of proNGF and p75NTR. The up-regulation of PP2A and pro-nerve growth factor (NGF) triggered changes in ERK1/2 and Akt, two signaling pathways that influence the balance between proliferation and neurite outgrowth. Compared with control cells, a 2-fold increase of p75NTR-regulated intramembraneous proteolysis (RIP) was observed in proliferating TO cells (P < 0.0001) that was associated with an increased expression of two tumor necrosis factor (TNF)-α converting enzyme (TACE) secretase enzymes, Adam 10 and Adam 17. In conclusion, our data show that B12 cellular deficiency produces a slower proliferation and a speedier differentiation of neuroblastoma cells through interacting signaling pathways that are related with increased expression of PP2A, proNGF, and TACE. PMID:19959661

  1. Binding Properties of the N-Acetylglucosamine and High-Mannose N-Glycan PP2-A1 Phloem Lectin in Arabidopsis[W

    PubMed Central

    Beneteau, Julie; Renard, Denis; Marché, Laurent; Douville, Elise; Lavenant, Laurence; Rahbé, Yvan; Dupont, Didier; Vilaine, Françoise; Dinant, Sylvie

    2010-01-01

    Phloem Protein2 (PP2) is a component of the phloem protein bodies found in sieve elements. We describe here the lectin properties of the Arabidopsis (Arabidopsis thaliana) PP2-A1. Using a recombinant protein produced in Escherichia coli, we demonstrated binding to N-acetylglucosamine oligomers. Glycan array screening showed that PP2-A1 also bound to high-mannose N-glycans and 9-acyl-N-acetylneuraminic sialic acid. Fluorescence spectroscopy-based titration experiments revealed that PP2-A1 had two classes of binding site for N,N′,N″-triacetylchitotriose, a low-affinity site and a high-affinity site, promoting the formation of protein dimers. A search for structural similarities revealed that PP2-A1 aligned with the Cbm4 and Cbm22-2 carbohydrate-binding modules, leading to the prediction of a β-strand structure for its conserved domain. We investigated whether PP2-A1 interacted with phloem sap glycoproteins by first characterizing abundant Arabidopsis phloem sap proteins by liquid chromatography-tandem mass spectrometry. Then we demonstrated that PP2-A1 bound to several phloem sap proteins and that this binding was not completely abolished by glycosidase treatment. As many plant lectins have insecticidal activity, we also assessed the effect of PP2-A1 on weight gain and survival in aphids. Unlike other mannose-binding lectins, when added to an artificial diet, recombinant PP2-A1 had no insecticidal properties against Acyrthosiphon pisum and Myzus persicae. However, at mid-range concentrations, the protein affected weight gain in insect nymphs. These results indicate the presence in PP2-A1 of several carbohydrate-binding sites, with potentially different functions in the trafficking of endogenous proteins or in interactions with phloem-feeding insects. PMID:20442276

  2. Compression regulates gene expression of chondrocytes through HDAC4 nuclear relocation via PP2A-dependent HDAC4 dephosphorylation.

    PubMed

    Chen, Chongwei; Wei, Xiaochun; Wang, Shaowei; Jiao, Qiang; Zhang, Yang; Du, Guoqing; Wang, Xiaohu; Wei, Fangyuan; Zhang, Jianzhong; Wei, Lei

    2016-07-01

    Biomechanics plays a critical role in the modulation of chondrocyte function. The mechanisms by which mechanical loading is transduced into intracellular signals that regulate chondrocyte gene expression remain largely unknown. Histone deacetylase 4 (HDAC4) is specifically expressed in chondrocytes. Mice lacking HDAC4 display chondrocyte hypertrophy, ectopic and premature ossification, and die early during the perinatal period. HDAC4 has a remarkable ability to translocate between the cell's cytoplasm and nucleus. It has been established that subcellular relocation of HDAC4 plays a critical role in chondrocyte differentiation and proliferation. However, it remains unclear whether subcellular relocation of HDAC4 in chondrocytes can be induced by mechanical loading. In this study, we first report that compressive loading induces HDAC4 relocation from the cytoplasm to the nucleus of chondrocytes via stimulation of Ser/Thr-phosphoprotein phosphatases 2A (PP2A) activity, which results in dephosphorylation of HDAC4. Dephosphorylated HDAC4 relocates to the nucleus to achieve transcriptional repression of Runx2 and regulates chondrocyte gene expression in response to compression. Our results elucidate the mechanism by which mechanical compression regulates chondrocyte gene expression through HDAC4 relocation from the cell's cytoplasm to the nucleus via PP2A-dependent HDAC4 dephosphorylation. PMID:27106144

  3. Sgo1 recruits PP2A to chromosomes to ensure sister chromatid bi-orientation during mitosis

    PubMed Central

    Eshleman, Heather D.; Morgan, David O.

    2014-01-01

    ABSTRACT Sister chromatid bi-orientation on the mitotic spindle is essential for proper chromosome segregation. Defects in bi-orientation are sensed and corrected to prevent chromosome mis-segregation and aneuploidy. This response depends on the adaptor protein Sgo1, which associates with pericentromeric chromatin in mitosis. The mechanisms underlying Sgo1 function and regulation are unclear. Here, we show that Sgo1 is an anaphase-promoting complex/cyclosome (APC/C) substrate in budding yeast (Saccharomyces cerevisiae), and that its mitotic destruction depends on an unusual D-box-related sequence motif near its C-terminus. We find that the removal of Sgo1 from chromosomes before anaphase is not dependent on its destruction, but rather on other mechanisms responsive to tension between sister chromatids. Additionally, we find that Sgo1 recruits the protein phosphatase 2A (PP2A) isoform containing Rts1 to the pericentromeric region prior to bi-orientation, and that artificial recruitment of Rts1 to this region of a single chromosome is sufficient to perform the function of Sgo1 on that chromosome. We conclude that in early mitosis, Sgo1 associates transiently with pericentromeric chromatin to promote bi-orientation, in large part by recruiting the Rts1 isoform of PP2A. PMID:25236599

  4. Maintenance of CSF arrest: A role for Cdc2 and PP2A-mediated regulation of Emi2

    PubMed Central

    Wu, Qiju; Guo, Yanxiang; Yamada, Ayumi; Perry, Jennifer A.; Wang, Michael Z.; Araki, Marito; Freel, Christopher D.; Tung, Jeffrey J.; Tang, Wanli; Margolis, Seth S.; Jackson, Peter K.; Yamano, Hiroyuki; Asano, Maki; Kornbluth, Sally

    2009-01-01

    Summary Background Vertebrate oocytes are arrested in metaphase II of meiosis prior to fertilization by cytostatic factor (CSF). CSF enforces a cell cycle arrest by inhibiting the anaphase promoting complex (APC), an E3 ubiquitin ligase that targets Cyclin B for degradation. Although Cyclin B synthesis is ongoing during CSF arrest, constant Cyclin B levels are maintained. To achieve this, oocytes allow continuous slow Cyclin B degradation, without eliminating the bulk of Cyclin B, which would induce release from CSF arrest. However, the mechanism that controls this continuous degradation is not understood. Results We report here the molecular details of a negative feedback loop wherein Cyclin B promotes its own destruction through Cdc2/Cyclin B-mediated phosphorylation and inhibition of the APC inhibitor, Emi2. Emi2 bound to the core APC and this binding was disrupted by Cdc2/Cyclin B, without affecting Emi2 protein stability. Cdc2 mediated phosphorylation of Emi2 was antagonized by PP2A, which could bind to Emi2 and promote Emi2-APC interactions. Conclusions Constant Cyclin B levels are maintained during a CSF arrest through the regulation of Emi2 activity. A balance between Cdc2 and PP2A controls Emi2 phosphorylation, which in turn controls the ability of Emi2 to bind to and inhibit the APC. This balance allows proper maintenance of Cyclin B levels and Cdc2 kinase activity during CSF arrest. PMID:17276914

  5. Antagonistic activities of the immunomodulator and PP2A-activating drug FTY720 (Fingolimod, Gilenya) in Jak2-driven hematologic malignancies.

    PubMed

    Oaks, Joshua J; Santhanam, Ramasamy; Walker, Christopher J; Roof, Steve; Harb, Jason G; Ferenchak, Greg; Eisfeld, Ann-Kathrin; Van Brocklyn, James R; Briesewitz, Roger; Saddoughi, Sahar A; Nagata, Kyosuke; Bittman, Robert; Caligiuri, Michael A; Abdel-Wahab, Omar; Levine, Ross; Arlinghaus, Ralph B; Quintas-Cardama, Alfonso; Goldman, John M; Apperley, Jane; Reid, Alistair; Milojkovic, Dragana; Ziolo, Mark T; Marcucci, Guido; Ogretmen, Besim; Neviani, Paolo; Perrotti, Danilo

    2013-09-12

    FTY720 (Fingolimod, Gilenya) is a sphingosine analog used as an immunosuppressant in multiple sclerosis patients. FTY720 is also a potent protein phosphatase 2A (PP2A)-activating drug (PAD). PP2A is a tumor suppressor found inactivated in different types of cancer. We show here that PP2A is inactive in polycythemia vera (PV) and other myeloproliferative neoplasms characterized by the expression of the transforming Jak2(V617F) oncogene. PP2A inactivation occurs in a Jak2(V617F) dose/kinase-dependent manner through the PI-3Kγ-PKC-induced phosphorylation of the PP2A inhibitor SET. Genetic or PAD-mediated PP2A reactivation induces Jak2(V617F) inactivation/downregulation and impairs clonogenic potential of Jak2(V617F) cell lines and PV but not normal CD34(+) progenitors. Likewise, FTY720 decreases leukemic allelic burden, reduces splenomegaly, and significantly increases survival of Jak2(V617F) leukemic mice without adverse effects. Mechanistically, we show that in Jak2(V617F) cells, FTY720 antileukemic activity requires neither FTY720 phosphorylation (FTY720-P) nor SET dimerization or ceramide induction but depends on interaction with SET K209. Moreover, we show that Jak2(V617F) also utilizes an alternative sphingosine kinase-1-mediated pathway to inhibit PP2A and that FTY720-P, acting as a sphingosine-1-phosphate-receptor-1 agonist, elicits signals leading to the Jak2-PI-3Kγ-PKC-SET-mediated PP2A inhibition. Thus, PADs (eg, FTY720) represent suitable therapeutic alternatives for Jak2(V617F) MPNs. PMID:23926298

  6. Phosphorylation/dephosphorylation of human SULT4A1: role of Erk1 and PP2A.

    PubMed

    Mitchell, Deanne J; Butcher, Neville J; Minchin, Rodney F

    2011-01-01

    SULT4A1 is a cytosolic sulfotransferase that shares little homology with other human sulfotransferases but is highly conserved between species. It is found in neurons located in several regions of the brain. Recently, the stability of SULT4A1 was shown to be regulated by Pin1, a peptidyl-prolyl cis-trans isomerase implicated in several neurodegenerative diseases. Since Pin1 binds preferentially to phosphoproteins, these findings suggested that SULT4A1 is post-translationally modified. In this study, we show that the Thr(11) residue of SULT4A1, which is involved in Pin1 binding is phosphorylated. MEK inhibition was shown to abolish Pin1 mediated degradation of SULT4A1 while in vitro phosphorylation assays using alanine substitution mutants of SULT4A1 demonstrated phosphorylation of Thr(11) by ERK1. We also show that dephosphorylation was catalyzed by the protein phosphatase 2A. The PP2A regulatory subunit, Bβ was identified from a yeast-2-hybrid screen of human brain cDNA as a SULT4A1 interacting protein. This was further confirmed by GST pull-downs and immunoprecipitation. Other members of the B subunit (αδγ) did not interact with SULT4A1. Taken together, these studies indicate that SULT4A1 stability is regulated by post-translational modification that involves the ERK pathway and PP2A. The phosphorylation of SULT4A1 allows interaction with Pin1, which then promotes degradation of the sulfotransferase. PMID:20920535

  7. Lapatinib inhibits CIP2A/PP2A/p-Akt signaling and induces apoptosis in triple negative breast cancer cells

    PubMed Central

    Liu, Chun-Yu; Hu, Ming-Hung; Hsu, Chia-Jung; Huang, Chun-Teng; Wang, Duen-Shian; Tsai, Wen-Chun; Chen, Yi-Ting; Lee, Chia-Han; Chu, Pei-Yi; Hsu, Chia-Chi; Chen, Ming-Huang; Shiau, Chung-Wai; Tseng, Ling-Ming; Chen, Kuen-Feng

    2016-01-01

    We tested the efficacy of lapatinib, a dual tyrosine kinase inhibitor which interrupts the HER2 and epidermal growth factor receptor (EGFR) pathways, in a panel of triple-negative breast cancer (TNBC) cells, and examined the drug mechanism. Lapatinib showed an anti-proliferative effect in HCC 1937, MDA-MB-468, and MDA-MB-231 cell lines. Lapatinib induced significant apoptosis and inhibited CIP2A and p-Akt in a dose and time-dependent manner in the three TNBC cell lines. Overexpression of CIP2A reduced lapatinib-induced apoptosis in MDA-MB-468 cells. In addition, lapatinib increased PP2A activity (in relation to CIP2A inhibition). Moreover, lapatinib-induced apoptosis and p-Akt downregulation was attenuated by PP2A antagonist okadaic acid. Furthermore, lapatinib indirectly decreased CIP2A transcription by disturbing the binding of Elk1 to the CIP2A promoter. Importantly, lapatinib showed anti-tumor activity in mice bearing MDA-MB-468 xenograft tumors, and suppressed CIP2A as well as p-Akt in these xenografted tumors. In summary, inhibition of CIP2A determines the effects of lapatinib-induced apoptosis in TNBC cells. In addition to being a dual tyrosine kinase inhibitor of HER2 and EGFR, lapatinib also inhibits CIP2A/PP2A/p-Akt signaling in TNBC cells. PMID:26824320

  8. PP2A Ligand ITH12246 Protects against Memory Impairment and Focal Cerebral Ischemia in Mice

    PubMed Central

    2013-01-01

    ITH12246 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate) is a 1,8-naphthyridine described to feature an interesting neuroprotective profile in in vitro models of Alzheimer’s disease. These effects were proposed to be due in part to a regulatory action on protein phosphatase 2A inhibition, as it prevented binding of its inhibitor okadaic acid. We decided to investigate the pharmacological properties of ITH12246, evaluating its ability to counteract the memory impairment evoked by scopolamine, a muscarinic antagonist described to promote memory loss, as well as to reduce the infarct volume in mice suffering phototrombosis. Prior to conducting these experiments, we confirmed its in vitro neuroprotective activity against both oxidative stress and Ca2+ overload-derived excitotoxicity, using SH-SY5Y neuroblastoma cells and rat hippocampal slices. Using a predictive model of blood-brain barrier crossing, it seems that the passage of ITH12246 is not hindered. Its potential hepatotoxicity was observed only at very high concentrations, from 0.1 mM. ITH12246, at the concentration of 10 mg/kg i.p., was able to improve the memory index of mice treated with scopolamine, from 0.22 to 0.35, in a similar fashion to the well-known Alzheimer’s disease drug galantamine 2.5 mg/kg. On the other hand, ITH12246, at the concentration of 2.5 mg/kg, reduced the phototrombosis-triggered infarct volume by 67%. In the same experimental conditions, 15 mg/kg melatonin, used as control standard, reduced the infarct volume by 30%. All of these findings allow us to consider ITH12246 as a new potential drug for the treatment of neurodegenerative diseases, which would act as a multifactorial neuroprotectant. PMID:23763493

  9. Ceramide Mediates Vascular Dysfunction in Diet-Induced Obesity by PP2A-Mediated Dephosphorylation of the eNOS-Akt Complex

    PubMed Central

    Zhang, Quan-Jiang; Holland, William L.; Wilson, Lloyd; Tanner, Jason M.; Kearns, Devin; Cahoon, Judd M.; Pettey, Dix; Losee, Jason; Duncan, Bradlee; Gale, Derrick; Kowalski, Christopher A.; Deeter, Nicholas; Nichols, Alexandrea; Deesing, Michole; Arrant, Colton; Ruan, Ting; Boehme, Christoph; McCamey, Dane R.; Rou, Janvida; Ambal, Kapil; Narra, Krishna K.; Summers, Scott A.; Abel, E. Dale; Symons, J. David

    2012-01-01

    Vascular dysfunction that accompanies obesity and insulin resistance may be mediated by lipid metabolites. We sought to determine if vascular ceramide leads to arterial dysfunction and to elucidate the underlying mechanisms. Pharmacological inhibition of de novo ceramide synthesis, using the Ser palmitoyl transferase inhibitor myriocin, and heterozygous deletion of dihydroceramide desaturase prevented vascular dysfunction and hypertension in mice after high-fat feeding. These findings were recapitulated in isolated arteries in vitro, confirming that ceramide impairs endothelium-dependent vasorelaxation in a tissue-autonomous manner. Studies in endothelial cells reveal that de novo ceramide biosynthesis induced protein phosphatase 2A (PP2A) association directly with the endothelial nitric oxide synthase (eNOS)/Akt/Hsp90 complex that was concurrent with decreased basal and agonist-stimulated eNOS phosphorylation. PP2A attenuates eNOS phosphorylation by preventing phosphorylation of the pool of Akt that colocalizes with eNOS and by dephosphorylating eNOS. Ceramide decreased the association between PP2A and the predominantly cytosolic inhibitor 2 of PP2A. We conclude that ceramide mediates obesity-related vascular dysfunction by a mechanism that involves PP2A-mediated disruption of the eNOS/Akt/Hsp90 signaling complex. These results provide important insight into a pathway that represents a novel target for reversing obesity-related vascular dysfunction. PMID:22586587

  10. Regulation of Beclin 1 Protein Phosphorylation and Autophagy by Protein Phosphatase 2A (PP2A) and Death-associated Protein Kinase 3 (DAPK3).

    PubMed

    Fujiwara, Nobuyuki; Usui, Tatsuya; Ohama, Takashi; Sato, Koichi

    2016-05-13

    Autophagy is an evolutionarily conserved intracellular degradation system that is involved in cell survival and activated in various diseases, including cancer. Beclin 1 is a central scaffold protein that assembles components for promoting or inhibiting autophagy. Association of Beclin 1 with its interacting proteins is regulated by the phosphorylation of Beclin 1 by various Ser/Thr kinases, but the Ser/Thr phosphatases that regulate these phosphorylation events remain unknown. Here we identify Ser-90 in Beclin 1 as a regulatory site whose phosphorylation is markedly enhanced in cells treated with okadaic acid, an inhibitor of protein phosphatase 2A (PP2A). Beclin 1 Ser-90 phosphorylation is induced in skeletal muscle tissues isolated from starved mice. The Beclin 1 S90A mutant blocked starvation-induced autophagy. We found association of PP2A B55α with Beclin 1, which dissociate by starvation. We also found that death-associated protein kinase 3 directly phosphorylates Beclin 1 Ser-90. We propose that physiological regulation of Beclin 1 Ser-90 phosphorylation by PP2A and death-associated protein kinase 3 controls autophagy. PMID:26994142

  11. Targeting of protein phosphatases PP2A and PP2B to the C-terminus of the L-type calcium channel Ca v1.2.

    PubMed

    Xu, Hui; Ginsburg, Kenneth S; Hall, Duane D; Zimmermann, Maike; Stein, Ivar S; Zhang, Mingxu; Tandan, Samvit; Hill, Joseph A; Horne, Mary C; Bers, Donald; Hell, Johannes W

    2010-12-01

    The L-type Ca(2+) channel Ca(v)1.2 forms macromolecular signaling complexes that comprise the β(2) adrenergic receptor, trimeric G(s) protein, adenylyl cyclase, and cAMP-dependent protein kinase (PKA) for efficient signaling in heart and brain. The protein phosphatases PP2A and PP2B are part of this complex. PP2A counteracts increase in Ca(v)1.2 channel activity by PKA and other protein kinases, whereas PP2B can either augment or decrease Ca(v)1.2 currents in cardiomyocytes depending on the precise experimental conditions. We found that PP2A binds to two regions in the C-terminus of the central, pore-forming α(1) subunit of Ca(v)1.2: one region spans residues 1795-1818 and the other residues 1965-1971. PP2B binds immediately downstream of residue 1971. Injection of a peptide that contained residues 1965-1971 and displaced PP2A but not PP2B from endogenous Ca(v)1.2 increased basal and isoproterenol-stimulated L-type Ca(2+) currents in acutely isolated cardiomyocytes. Together with our biochemical data, these physiological results indicate that anchoring of PP2A at this site of Ca(v)1.2 in the heart negatively regulates cardiac L-type currents, likely by counterbalancing basal and stimulated phosphorylation that is mediated by PKA and possibly other kinases. PMID:21053940

  12. PP2A inhibition with LB100 enhances cisplatin cytotoxicity and overcomes cisplatin resistance in medulloblastoma cells

    PubMed Central

    Maric, Dragan; Amable, Lauren; Hall, Matthew D.; Feldman, Gerald M.; Ray-Chaudhury, Abhik; Lizak, Martin J.; Vera, Juan-Carlos; Robison, R. Aaron; Zhuang, Zhengping; Heiss, John D.

    2016-01-01

    The protein phosphatase 2A (PP2A) inhibitor, LB100, has been shown in pre-clinical studies to be an effective chemo- and radio-sensitizer for treatment of various cancers. We investigated effects associated with LB100 treatment alone and in combination with cisplatin for medulloblastoma (MB) in vitro and in vivo in an intracranial xenograft model. We demonstrated that LB100 had a potent effect on MB cells. By itself, LB100 inhibited proliferation and induced significant apoptosis in a range of pediatric MB cell lines. It also attenuated MB cell migration, a pre-requirement for invasion. When used in combination, LB100 enhanced cisplatin-mediated cytotoxic effects. Cell viability in the presence of 1 uM cisplatin alone was 61% (DAOY), 100% (D341), and 58% (D283), but decreased with the addition of 2 μM of LB100 to 26% (DAOY), 67% (D341), and 27% (D283), (p < 0.005). LB100 suppressed phosphorylation of the STAT3 protein and several STAT3 downstream targets. Also, LB100 directly increased cisplatin uptake and overcame cisplatin-resistance in vitro. Finally, LB100 exhibited potent in vivo anti-neoplastic activity in combination with cisplatin in an intracranial xenograft model. PMID:26799670

  13. Cyclin B–Cdk1 inhibits protein phosphatase PP2A-B55 via a Greatwall kinase–independent mechanism

    PubMed Central

    Okumura, Eiichi; Morita, Atsushi; Wakai, Mizuho; Mochida, Satoru; Hara, Masatoshi

    2014-01-01

    Entry into M phase is governed by cyclin B–Cdk1, which undergoes both an initial activation and subsequent autoregulatory activation. A key part of the autoregulatory activation is the cyclin B–Cdk1–dependent inhibition of the protein phosphatase 2A (PP2A)–B55, which antagonizes cyclin B–Cdk1. Greatwall kinase (Gwl) is believed to be essential for the autoregulatory activation because Gwl is activated downstream of cyclin B–Cdk1 to phosphorylate and activate α-endosulfine (Ensa)/Arpp19, an inhibitor of PP2A-B55. However, cyclin B–Cdk1 becomes fully activated in some conditions lacking Gwl, yet how this is accomplished remains unclear. We show here that cyclin B–Cdk1 can directly phosphorylate Arpp19 on a different conserved site, resulting in inhibition of PP2A-B55. Importantly, this novel bypass is sufficient for cyclin B–Cdk1 autoregulatory activation. Gwl-dependent phosphorylation of Arpp19 is nonetheless necessary for downstream mitotic progression because chromosomes fail to segregate properly in the absence of Gwl. Such a biphasic regulation of Arpp19 results in different levels of PP2A-B55 inhibition and hence might govern its different cellular roles. PMID:24616226

  14. Discovery of a small molecule targeting SET-PP2A interaction to overcome BCR-ABLT315I mutation of chronic myeloid leukemia

    PubMed Central

    Zheng, Yan; Liu, Nan; Dai, Wen; Wang, Yang; Wang, Zongqiang; Yang, Yong; Chen, Yijun

    2015-01-01

    Despite the great success in using tyrosine kinase inhibitors (TKIs) to treat chronic myeloid leukemia (CML), the frequent development of multi-drug resistance, particularly the T315I mutation of BCR-ABL, remains a challenging issue. Enhancement of protein phosphatase 2A (PP2A) activity by dissociating its endogenous inhibitor SET is an effective approach to combat TKI-based resistance. Here, we report the identification of a novel 2-phenyloxypyrimidine compound TGI1002 to specifically disrupt SET-PP2A interaction. By binding to SET, TGI1002 inhibits SET-PP2A interaction and increases PP2A activity. In addition, knocking-down SET expression decreases tumor cell sensitivity to TGI1002. TGI1002 treatments also markedly increase dephosphorylation of BCR-ABL. Moreover, TGI1002 significantly inhibits tumor growth and prolongs survival of xenografted mice implanted with BaF3-p210T315I cells. These findings demonstrate that TGI1002 is a novel SET inhibitor with important therapeutic potential for the treatment of drug-resistant CML. PMID:25900240

  15. PhosphoTyrosyl Phosphatase Activator of Plasmodium falciparum: Identification of Its Residues Involved in Binding to and Activation of PP2A

    PubMed Central

    Vandomme, Audrey; Fréville, Aline; Cailliau, Katia; Kalamou, Hadidjatou; Bodart, Jean-François; Khalife, Jamal; Pierrot, Christine

    2014-01-01

    In Plasmodium falciparum (Pf), the causative agent of the deadliest form of malaria, a tight regulation of phosphatase activity is crucial for the development of the parasite. In this study, we have identified and characterized PfPTPA homologous to PhosphoTyrosyl Phosphatase Activator, an activator of protein phosphatase 2A which is a major phosphatase involved in many biological processes in eukaryotic cells. The PfPTPA sequence analysis revealed that five out of six amino acids involved in interaction with PP2A in human are conserved in P. falciparum. Localization studies showed that PfPTPA and PfPP2A are present in the same compartment of blood stage parasites, suggesting a possible interaction of both proteins. In vitro binding and functional studies revealed that PfPTPA binds to and activates PP2A. Mutation studies showed that three residues (V283, G292 and M296) of PfPTPA are indispensable for the interaction and that the G292 residue is essential for its activity. In P. falciparum, genetic studies suggested the essentiality of PfPTPA for the completion of intraerythrocytic parasite lifecycle. Using Xenopus oocytes, we showed that PfPTPA blocked the G2/M transition. Taken together, our data suggest that PfPTPA could play a role in the regulation of the P. falciparum cell cycle through its PfPP2A regulatory activity. PMID:24521882

  16. PP2A-mediated regulation of Ras signaling in G2 is essential for stable quiescence and normal G1 length

    PubMed Central

    Naetar, Nana; Soundarapandian, Velmurugan; Litovchick, Larisa; Goguen, Kelsey L.; Sablina, Anna A.; Bowman-Colin, Christian; Sicinski, Piotr; Hahn, William C.; DeCaprio, James A.; Livingston, David M.

    2014-01-01

    SUMMARY Quiescence (G0) allows cycling cells to reversibly cease proliferation. A decision to enter quiescence is suspected of occurring early in G1, before the restriction point, R. Surprisingly, we have identified G2 as an interval during which inhibition of the protein phosphatase, PP2A, results in failure to exhibit stable quiescence. This effect is accompanied by shortening of the ensuing G1. The PP2A subcomplex required for stable G0 contains the B56γ B subunit. Following PP2A inhibition in G2, aberrant overexpression of cyclin E occurs during mitosis and is responsible for overriding quiescence. Strikingly, suppression of Ras signaling re-establishes normal cyclin E levels during M and restores G0. These data point to PP2A-B56γ-driven Ras signaling-modulation in G2 as essential for suppressing aberrant cyclin E expression during mitosis and, thereby, achieving normal G0 control. Thus, G2 is an interval during which the length and growth factor dependence of the next G1 interval are established. PMID:24857551

  17. PP2A-mediated regulation of Ras signaling in G2 is essential for stable quiescence and normal G1 length.

    PubMed

    Naetar, Nana; Soundarapandian, Velmurugan; Litovchick, Larisa; Goguen, Kelsey L; Sablina, Anna A; Bowman-Colin, Christian; Sicinski, Piotr; Hahn, William C; DeCaprio, James A; Livingston, David M

    2014-06-19

    Quiescence (G0) allows cycling cells to reversibly cease proliferation. A decision to enter quiescence is suspected of occurring early in G1, before the restriction point (R). Surprisingly, we have identified G2 as an interval during which inhibition of the protein phosphatase PP2A results in failure to exhibit stable quiescence. This effect is accompanied by shortening of the ensuing G1. The PP2A subcomplex required for stable G0 contains the B56γ B subunit. After PP2A inhibition in G2, aberrant overexpression of cyclin E occurs during mitosis and is responsible for overriding quiescence. Strikingly, suppression of Ras signaling re-establishes normal cyclin E levels during M and restores G0. These data point to PP2A-B56γ-driven Ras signaling modulation in G2 as essential for suppressing aberrant cyclin E expression during mitosis and thereby achieving normal G0 control. Thus, G2 is an interval during which the length and growth factor dependence of the next G1 interval are established. PMID:24857551

  18. B55α PP2A Holoenzymes Modulate the Phosphorylation Status of the Retinoblastoma-related Protein p107 and Its Activation*

    PubMed Central

    Jayadeva, Girish; Kurimchak, Alison; Garriga, Judit; Sotillo, Elena; Davis, Anthony J.; Haines, Dale S.; Mumby, Marc; Graña, Xavier

    2010-01-01

    Pocket proteins negatively regulate transcription of E2F-dependent genes and progression through the G0/G1 transition and the cell cycle restriction point in G1. Pocket protein repressor activities are inactivated via phosphorylation at multiple Pro-directed Ser/Thr sites by the coordinated action of G1 and G1/S cyclin-dependent kinases. These phosphorylations are reversed by the action of two families of Ser/Thr phosphatases: PP1, which has been implicated in abrupt dephosphorylation of retinoblastoma protein (pRB) in mitosis, and PP2A, which plays a role in an equilibrium that counteracts cyclin-dependent kinase (CDK) action throughout the cell cycle. However, the identity of the trimeric PP2A holoenzyme(s) functioning in this process is unknown. Here we report the identification of a PP2A trimeric holoenzyme containing B55α, which plays a major role in restricting the phosphorylation state of p107 and inducing its activation in human cells. Our data also suggest targeted selectivity in the interaction of pocket proteins with distinct PP2A holoenzymes, which is likely necessary for simultaneous pocket protein activation. PMID:20663872

  19. PP2A(Cdc55)'s role in reductional chromosome segregation during achiasmate meiosis in budding yeast is independent of its FEAR function.

    PubMed

    Kerr, Gary W; Wong, Jin Huei; Arumugam, Prakash

    2016-01-01

    PP2A(Cdc55) is a highly conserved serine-threonine protein phosphatase that is involved in diverse cellular processes. In budding yeast, meiotic cells lacking PP2A(Cdc55) activity undergo a premature exit from meiosis I which results in a failure to form bipolar spindles and divide nuclei. This defect is largely due to its role in negatively regulating the Cdc Fourteen Early Anaphase Release (FEAR) pathway. PP2A(Cdc55) prevents nucleolar release of the Cdk (Cyclin-dependent kinase)-antagonising phosphatase Cdc14 by counteracting phosphorylation of the nucleolar protein Net1 by Cdk. CDC55 was identified in a genetic screen for monopolins performed by isolating suppressors of spo11Δ spo12Δ lethality suggesting that Cdc55 might have a role in meiotic chromosome segregation. We investigated this possibility by isolating cdc55 alleles that suppress spo11Δ spo12Δ lethality and show that this suppression is independent of PP2A(Cdc55)'s FEAR function. Although the suppressor mutations in cdc55 affect reductional chromosome segregation in the absence of recombination, they have no effect on chromosome segregation during wild type meiosis. We suggest that Cdc55 is required for reductional chromosome segregation during achiasmate meiosis and this is independent of its FEAR function. PMID:27455870

  20. A triangular connection between Cyclin G, PP2A and Akt1 in the regulation of growth and metabolism in Drosophila

    PubMed Central

    Fischer, Patrick; Preiss, Anette; Nagel, Anja C.

    2016-01-01

    ABSTRACT Size and weight control is a tightly regulated process, involving the highly conserved Insulin receptor/target of rapamycin (InR/TOR) signaling cascade. We recently identified Cyclin G (CycG) as an important modulator of InR/TOR signaling activity in Drosophila. cycG mutant flies are underweight and show a disturbed fat metabolism resembling TOR mutants. In fact, InR/TOR signaling activity is disturbed in cycG mutants at the level of Akt1, the central kinase linking InR and TORC1. Akt1 is negatively regulated by protein phosphatase PP2A. Notably the binding of the PP2A B′-regulatory subunit Widerborst (Wdb) to Akt1 is differentially regulated in cycG mutants, presumably by a direct interaction of CycG and Wdb. Since the metabolic defects of cycG mutant animals are abrogated by a concomitant loss of Wdb, CycG presumably influences Akt1 activity at the PP2A nexus. Here we show that Well rounded (Wrd), another B' subunit of PP2A in Drosophila, binds CycG similar to Wdb, and that its loss ameliorates some, but not all, of the metabolic defects of cycG mutants. We propose a model, whereby the binding of CycG to a particular B′-regulatory subunit influences the tissue specific activity of PP2A, required for the fine tuning of the InR/TOR signaling cascade in Drosophila. PMID:26980713

  1. T-type Ca2+ signalling regulates aldosterone-induced CREB activation and cell death through PP2A activation in neonatal cardiomyocytes

    PubMed Central

    Ferron, Laurent; Ruchon, Yann; Renaud, Jean-François; Capuano, Véronique

    2011-01-01

    Aims We have investigated Ca2+ signalling generated by aldosterone-induced T-type current (ICaT), the effects of ICaT in neonatal cardiomyocytes, and a putative role for ICaT in cardiomyocytes during cardiac pathology induced by stenosis in an adult rat. Methods and results Neonatal rat cardiomyocytes treated with aldosterone showed an increase in ICaT density, principally due to the upregulation of the T-type channel Cav3.1 (by 80%). Aldosterone activated cAMP-response element-binding protein (CREB), and this activation was enhanced by blocking ICaT or by inhibiting protein phosphatase 2A (PP2A) activity. Aldosterone induced PP2A activity, an induction that was prevented upon ICaT blockade. ICaT exerted a negative feedback regulation on the transcription of the Cav3.1 gene, and the activation of PP2A by ICaT led to increased levels of the pro-apoptotic markers caspase 9 and Bcl-xS and decreased levels of the anti-apoptotic marker Bcl-2. These findings were corroborated by flow cytometry analysis for apoptosis and necrosis. Similarly, in a rat model of cardiac disease, ICaT re-emergence was associated with a decrease in CREB activation and was correlated with increases in caspase 9 and Bcl-xS and a decrease in Bcl-2 levels. Conclusion Our findings establish PP2A/CREB as targets of ICaT-generated Ca2+ signalling and identify an important role for ICaT in cardiomyocyte cell death. PMID:21123217

  2. The PP2A Regulatory Subunit Tap46, a Component of the TOR Signaling Pathway, Modulates Growth and Metabolism in Plants[W

    PubMed Central

    Ahn, Chang Sook; Han, Jeong-A; Lee, Ho-Seok; Lee, Semi; Pai, Hyun-Sook

    2011-01-01

    Tap42/α4, a regulatory subunit of protein phosphatase 2A, is a downstream effector of the target of rapamycin (TOR) protein kinase, which regulates cell growth in coordination with nutrient and environmental conditions in yeast and mammals. In this study, we characterized the functions and phosphatase regulation of plant Tap46. Depletion of Tap46 resulted in growth arrest and acute plant death with morphological markers of programmed cell death. Tap46 interacted with PP2A and PP2A-like phosphatases PP4 and PP6. Tap46 silencing modulated cellular PP2A activities in a time-dependent fashion similar to TOR silencing. Immunoprecipitated full-length and deletion forms of Arabidopsis thaliana TOR phosphorylated recombinant Tap46 protein in vitro, supporting a functional link between Tap46 and TOR. Tap46 depletion reproduced the signature phenotypes of TOR inactivation, such as dramatic repression of global translation and activation of autophagy and nitrogen mobilization, indicating that Tap46 may act as a positive effector of TOR signaling in controlling those processes. Additionally, Tap46 silencing in tobacco (Nicotiana tabacum) BY-2 cells caused chromatin bridge formation at anaphase, indicating its role in sister chromatid segregation. These findings suggest that Tap46, in conjunction with associated phosphatases, plays an essential role in plant growth and development as a component of the TOR signaling pathway. PMID:21216945

  3. Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae.

    PubMed

    Petty, Emily L; Lafon, Anne; Tomlinson, Shannon L; Mendelsohn, Bryce A; Pillus, Lorraine

    2016-08-01

    Histone modifications direct chromatin-templated events in the genome and regulate access to DNA sequence information. There are multiple types of modifications, and a common feature is their dynamic nature. An essential step for understanding their regulation, therefore, lies in characterizing the enzymes responsible for adding and removing histone modifications. Starting with a dosage-suppressor screen in Saccharomyces cerevisiae, we have discovered a functional interaction between the acetyltransferase Gcn5 and the protein phosphatase 2A (PP2A) complex, two factors that regulate post-translational modifications. We find that RTS1, one of two genes encoding PP2A regulatory subunits, is a robust and specific high-copy suppressor of temperature sensitivity of gcn5∆ and a subset of other gcn5∆ phenotypes. Conversely, loss of both PP2A(Rts1) and Gcn5 function in the SAGA and SLIK/SALSA complexes is lethal. RTS1 does not restore global transcriptional defects in gcn5∆; however, histone gene expression is restored, suggesting that the mechanism of RTS1 rescue includes restoration of specific cell cycle transcripts. Pointing to new mechanisms of acetylation-phosphorylation cross-talk, RTS1 high-copy rescue of gcn5∆ growth requires two residues of H2B that are phosphorylated in human cells. These data highlight the potential significance of dynamic phosphorylation and dephosphorylation of these deeply conserved histone residues for cell viability. PMID:27317677

  4. Ca2+/calmodulin-stimulated PDE1 regulates the beta-catenin/TCF signaling through PP2A B56 gamma subunit in proliferating vascular smooth muscle cells

    PubMed Central

    Jeon, Kye-Im; Jono, Hirofumi; Miller, Clint L.; Cai, Yujun; Lim, Soyeon; Liu, Xuan; Gao, Pingjin; Abe, Jun-Ichi; Li, Jian-Dong; Yan, Chen

    2010-01-01

    The phenotypic change of vascular smooth muscle cells (VSMCs), from a “contractile” phenotype to “synthetic” phenotype, is crucial for pathogenic vascular remodeling in vascular diseases such as atherosclerosis and restenosis. Ca2+-calmodulin stimulated phosphodiesterase 1 (PDE1) isozymes, including PDE1A and PDE1C, play integral roles in regulating the proliferation of synthetic VSMCs. However, the underlying molecular mechanism(s) remain unknown. In this study, we explore the role and mechanism of PDE1 isoforms in regulating β-catenin/TCF signaling in VSMCs, a pathway important for vascular remodeling through promoting VSMC growth and survival. We found that inhibition of PDE1 activity markedly attenuated β-catenin/TCF signaling by down-regulating β-catenin protein. The effect of PDE1 inhibition on β-catenin protein reduction is exerted via promoting GSK3β activation, β-catenin phosphorylation, and subsequent β-catenin protein degradation. Moreover, PDE1 inhibition specifically upregulated phosphatase PP2A B56γ subunit gene expression, which is responsible for the effects of PDE1 inhibition on GSK3β and β-catenin/TCF signaling. Further more, the effect of PDE1 inhibition on β-catenin was specifically mediated by PDE1A but not PDE1C isozyme. Interestingly, in synthetic VSMCs PP2A B56γ, phospho-GSK3β, and phospho-β-catenin were all found in the nucleus, suggesting that PDE1A regulates nuclear β-catenin protein stability through the nuclear PP2A-GSK3β-β-catenin signaling axis. Taken together these findings provide direct evidence for the first time that PP2A B56γ is a critical mediator for PDE1A in the regulation of β-catenin signaling in proliferating VSMCs. PMID:21078118

  5. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach

    PubMed Central

    Kondo, Koyuki; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP) 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades. PMID:26690982

  6. par-1, Atypical pkc, and PP2A/B55 sur-6 Are Implicated in the Regulation of Exocyst-Mediated Membrane Trafficking in Caenorhabditis elegans

    PubMed Central

    Jiu, Yaming; Hasygar, Kiran; Tang, Lois; Liu, Yanbo; Holmberg, Carina I.; Bürglin, Thomas R.; Hietakangas, Ville; Jäntti, Jussi

    2013-01-01

    The exocyst is a conserved protein complex that is involved in tethering secretory vesicles to the plasma membrane and regulating cell polarity. Despite a large body of work, little is known how exocyst function is controlled. To identify regulators for exocyst function, we performed a targeted RNA interference (RNAi) screen in Caenorhabditis elegans to uncover kinases and phosphatases that genetically interact with the exocyst. We identified seven kinase and seven phosphatase genes that display enhanced phenotypes when combined with hypomorphic alleles of exoc-7 (exo70), exoc-8 (exo84), or an exoc-7;exoc-8 double mutant. We show that in line with its reported role in exocytotic membrane trafficking, a defective exoc-8 caused accumulation of exocytotic soluble NSF attachment protein receptor (SNARE) proteins in both intestinal and neuronal cells in C. elegans. Down-regulation of the phosphatase protein phosphatase 2A (PP2A) phosphatase regulatory subunit sur-6/B55 gene resulted in accumulation of exocytic SNARE proteins SNB-1 and SNAP-29 in wild-type and in exoc-8 mutant animals. In contrast, RNAi of the kinase par-1 caused reduced intracellular green fluorescent protein signal for the same proteins. Double RNAi experiments for par-1, pkc-3, and sur-6/B55 in C. elegans suggest a possible cooperation and involvement in postembryo lethality, developmental timing, as well as SNARE protein trafficking. Functional analysis of the homologous kinases and phosphatases in Drosophila median neurosecretory cells showed that atypical protein kinase C kinase and phosphatase PP2A regulate exocyst-dependent, insulin-like peptide secretion. Collectively, these results characterize kinases and phosphatases implicated in the regulation of exocyst function, and suggest the possibility for interplay between the par-1 and pkc-3 kinases and the PP2A phosphatase regulatory subunit sur-6 in this process. PMID:24192838

  7. par-1, atypical pkc, and PP2A/B55 sur-6 are implicated in the regulation of exocyst-mediated membrane trafficking in Caenorhabditis elegans.

    PubMed

    Jiu, Yaming; Hasygar, Kiran; Tang, Lois; Liu, Yanbo; Holmberg, Carina I; Bürglin, Thomas R; Hietakangas, Ville; Jäntti, Jussi

    2014-01-01

    The exocyst is a conserved protein complex that is involved in tethering secretory vesicles to the plasma membrane and regulating cell polarity. Despite a large body of work, little is known how exocyst function is controlled. To identify regulators for exocyst function, we performed a targeted RNA interference (RNAi) screen in Caenorhabditis elegans to uncover kinases and phosphatases that genetically interact with the exocyst. We identified seven kinase and seven phosphatase genes that display enhanced phenotypes when combined with hypomorphic alleles of exoc-7 (exo70), exoc-8 (exo84), or an exoc-7;exoc-8 double mutant. We show that in line with its reported role in exocytotic membrane trafficking, a defective exoc-8 caused accumulation of exocytotic soluble NSF attachment protein receptor (SNARE) proteins in both intestinal and neuronal cells in C. elegans. Down-regulation of the phosphatase protein phosphatase 2A (PP2A) phosphatase regulatory subunit sur-6/B55 gene resulted in accumulation of exocytic SNARE proteins SNB-1 and SNAP-29 in wild-type and in exoc-8 mutant animals. In contrast, RNAi of the kinase par-1 caused reduced intracellular green fluorescent protein signal for the same proteins. Double RNAi experiments for par-1, pkc-3, and sur-6/B55 in C. elegans suggest a possible cooperation and involvement in postembryo lethality, developmental timing, as well as SNARE protein trafficking. Functional analysis of the homologous kinases and phosphatases in Drosophila median neurosecretory cells showed that atypical protein kinase C kinase and phosphatase PP2A regulate exocyst-dependent, insulin-like peptide secretion. Collectively, these results characterize kinases and phosphatases implicated in the regulation of exocyst function, and suggest the possibility for interplay between the par-1 and pkc-3 kinases and the PP2A phosphatase regulatory subunit sur-6 in this process. PMID:24192838

  8. Functional Crosstalk between the PP2A and SUMO Pathways Revealed by Analysis of STUbL Suppressor, razor 1-1

    PubMed Central

    Nie, Minghua; Prudden, John; Schaffer, Lana; Head, Steven; Boddy, Michael N.

    2016-01-01

    Posttranslational modifications (PTMs) provide dynamic regulation of the cellular proteome, which is critical for both normal cell growth and for orchestrating rapid responses to environmental stresses, e.g. genotoxins. Key PTMs include ubiquitin, the Small Ubiquitin-like MOdifier SUMO, and phosphorylation. Recently, SUMO-targeted ubiquitin ligases (STUbLs) were found to integrate signaling through the SUMO and ubiquitin pathways. In general, STUbLs are recruited to target proteins decorated with poly-SUMO chains to ubiquitinate them and drive either their extraction from protein complexes, and/or their degradation at the proteasome. In fission yeast, reducing or preventing the formation of SUMO chains can circumvent the essential and DNA damage response functions of STUbL. This result indicates that whilst some STUbL "targets" have been identified, the crucial function of STUbL is to antagonize SUMO chain formation. Herein, by screening for additional STUbL suppressors, we reveal crosstalk between the serine/threonine phosphatase PP2A-Pab1B55 and the SUMO pathway. A hypomorphic Pab1B55 mutant not only suppresses STUbL dysfunction, but also mitigates the phenotypes associated with deletion of the SUMO protease Ulp2, or mutation of the STUbL cofactor Rad60. Together, our results reveal a novel role for PP2A-Pab1B55 in modulating SUMO pathway output, acting in parallel to known critical regulators of SUMOylation homeostasis. Given the broad evolutionary functional conservation of the PP2A and SUMO pathways, our results could be relevant to the ongoing attempts to therapeutically target these factors. PMID:27398807

  9. Rapamycin ameliorates cadmium-induced activation of MAPK pathway and neuronal apoptosis by preventing mitochondrial ROS inactivation of PP2A.

    PubMed

    Xu, Chong; Wang, Xiaoxue; Zhu, Yu; Dong, Xiaoqing; Liu, Chunxiao; Zhang, Hai; Liu, Lei; Huang, Shile; Chen, Long

    2016-06-01

    Cadmium (Cd) is a highly toxic metal that affects the central nervous system. Recently we have demonstrated that inhibition of mTOR by rapamycin rescues neuronal cells from Cd-poisoning. Here we show that rapamycin inhibited Cd-induced mitochondrial ROS-dependent neuronal apoptosis. Intriguingly, rapamycin remarkably blocked phosphorylation of JNK, Erk1/2 and p38 in neuronal cells induced by Cd, which was strengthened by co-treatment with Mito-TEMPO. Inhibition of JNK and Erk1/2 by SP600125 and U0126, respectively, potentiated rapamycin's prevention from Cd-induced apoptosis. Consistently, over-expression of dominant negative c-Jun or MKK1 also potently improved the inhibitory effect of rapamycin on Cd neurotoxicity. Furthermore, pretreatment with SP600125 or U0126, or expression of dominant negative c-Jun or MKK1 enhanced the inhibitory effects of rapamycin or Mito-TEMPO on Cd-induced ROS. Further investigation found that co-treatment with Mito-TEMPO/rapamycin more effectively rescued cells by preventing Cd inactivation of PP2A than treatment with rapamycin or Mito-TEMPO alone. Over-expression of wild-type PP2A reinforced rapamycin or Mito-TEMPO suppression of activated JNK and Erk1/2 pathways, as well as ROS production and apoptosis in neuronal cells in response to Cd. The findings indicate that rapamycin ameliorates Cd-evoked neuronal apoptosis by preventing mitochondrial ROS inactivation of PP2A, thereby suppressing activation of JNK and Erk1/2 pathways. Our results underline that rapamycin may have a potential in preventing Cd-induced oxidative stress and neurodegenerative diseases. PMID:26805420

  10. Functional Crosstalk between the PP2A and SUMO Pathways Revealed by Analysis of STUbL Suppressor, razor 1-1.

    PubMed

    Nie, Minghua; Arner, Emily; Prudden, John; Schaffer, Lana; Head, Steven; Boddy, Michael N

    2016-07-01

    Posttranslational modifications (PTMs) provide dynamic regulation of the cellular proteome, which is critical for both normal cell growth and for orchestrating rapid responses to environmental stresses, e.g. genotoxins. Key PTMs include ubiquitin, the Small Ubiquitin-like MOdifier SUMO, and phosphorylation. Recently, SUMO-targeted ubiquitin ligases (STUbLs) were found to integrate signaling through the SUMO and ubiquitin pathways. In general, STUbLs are recruited to target proteins decorated with poly-SUMO chains to ubiquitinate them and drive either their extraction from protein complexes, and/or their degradation at the proteasome. In fission yeast, reducing or preventing the formation of SUMO chains can circumvent the essential and DNA damage response functions of STUbL. This result indicates that whilst some STUbL "targets" have been identified, the crucial function of STUbL is to antagonize SUMO chain formation. Herein, by screening for additional STUbL suppressors, we reveal crosstalk between the serine/threonine phosphatase PP2A-Pab1B55 and the SUMO pathway. A hypomorphic Pab1B55 mutant not only suppresses STUbL dysfunction, but also mitigates the phenotypes associated with deletion of the SUMO protease Ulp2, or mutation of the STUbL cofactor Rad60. Together, our results reveal a novel role for PP2A-Pab1B55 in modulating SUMO pathway output, acting in parallel to known critical regulators of SUMOylation homeostasis. Given the broad evolutionary functional conservation of the PP2A and SUMO pathways, our results could be relevant to the ongoing attempts to therapeutically target these factors. PMID:27398807

  11. Hypoxia increases transepithelial electrical conductance and reduces occludin at the plasma membrane in alveolar epithelial cells via PKC-ζ and PP2A pathway.

    PubMed

    Caraballo, Juan Carlos; Yshii, Cecilia; Butti, Maria L; Westphal, Whitney; Borcherding, Jennifer A; Allamargot, Chantal; Comellas, Alejandro P

    2011-04-01

    During pulmonary edema, the alveolar space is exposed to a hypoxic environment. The integrity of the alveolar epithelial barrier is required for the reabsorption of alveolar fluid. Tight junctions (TJ) maintain the integrity of this barrier. We set out to determine whether hypoxia creates a dysfunctional alveolar epithelial barrier, evidenced by an increase in transepithelial electrical conductance (G(t)), due to a decrease in the abundance of TJ proteins at the plasma membrane. Alveolar epithelial cells (AEC) exposed to mild hypoxia (Po(2) = 50 mmHg) for 30 and 60 min decreased occludin abundance at the plasma membrane and significantly increased G(t). Other cell adhesion molecules such as E-cadherin and claudins were not affected by hypoxia. AEC exposed to hypoxia increased superoxide, but not hydrogen peroxide (H(2)O(2)). Overexpression of superoxide dismutase 1 (SOD1) but not SOD2 prevented the hypoxia-induced G(t) increase and occludin reduction in AEC. Also, overexpression of catalase had a similar effect as SOD1, despite not detecting any increase in H(2)O(2) during hypoxia. Blocking PKC-ζ and protein phosphatase 2A (PP2A) prevented the hypoxia-induced occludin reduction at the plasma membrane and increase in G(t). In summary, we show that superoxide, PKC-ζ, and PP2A are involved in the hypoxia-induced increase in G(t) and occludin reduction at the plasma membrane in AEC. PMID:21257729

  12. A novel PP2A enhancer induces caspase-independent apoptosis of MKN28 gastric cancer cells with high MEK activity.

    PubMed

    Tsuchiya, Ayako; Kanno, Takeshi; Shimizu, Tadashi; Nakao, Syuhei; Tanaka, Akito; Tabata, Chiharu; Nakano, Takashi; Nishizaki, Tomoyuki

    2014-05-28

    The newly synthesized phosphatidylinositol (PI) derivative 1,2-O-bis-[8-{2-(2-pentyl-cyclopropylmethyl)-cyclopropyl}-octanoyl]-sn-glycero-3-phosphatidyl-D-1-inositol (diDCP-LA-PI) significantly enhanced protein phosphatase 2A (PP2A) activity in the cell-free assay. This prompted to assess the antitumor effect of diDCP-LA-PI. diDCP-LA-PI attenuated phosphorylation of mitogen-activated protein kinase (MAPK) kinase (MEK) in Lu65 human lung cancer and MKN28 human gastric cancer cells with high MEK activity. diDCP-LA-PI reduced cell viability in Lu65 and MKN28 cells, but otherwise such effect was not found in 786-O human renal cancer and HUH-7 human hepatoma cells with relatively low MEK activity. For Lu65 and MKN28 cells diDCP-LA-PI increased terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells, but no significant activation of caspase-3, -8, or -9 was obtained. For MKN28 cells diDCP-LA-PI-induced reduction of MEK phosphorylation and cell viability was prevented by knocking-down PP2Ac. Taken together, these results indicate that diDCP-LA-PI induces caspase-independent apoptosis of Lu65 and MKN28 human cancer cells, for the latter cells by suppressing MEK activity through PP2A-catalyzed dephosphorylation. PMID:24508028

  13. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells

    PubMed Central

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-01-01

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323

  14. Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis

    PubMed Central

    Margolis, Seth S.; Perry, Jennifer A.; Forester, Craig M.; Nutt, Leta K.; Guo, Yanxiang; Jardim, Melanie J.; Thomenius, Michael J.; Freel, Christopher D.; Darbandi, Rashid; Ahn, Jung-Hyuck; Arroyo, Jason D.; Wang, Xiao-Fan; Shenolikar, Shirish; Nairn, Angus C.; Dunphy, William G.; Hahn, William C.; Virshup, David M.; Kornbluth, Sally

    2009-01-01

    Summary DNA-responsive checkpoints prevent cell cycle progression following DNA damage or replication inhibition. The mitotic activator Cdc25 is suppressed by checkpoints through inhibitory phosphorylation at Ser287 (Xenopus numbering) and docking of 14-3-3. S287 phosphorylation is a major locus of G2/M checkpoint control, though several checkpoint-independent kinases can phosphorylate this site. We reported previously that mitotic entry requires 14-3-3 removal and S287 dephosphorylation. We show here that DNA-responsive checkpoints activate PP2A/B56δ phosphatase complexes to dephosphorylate Cdc25 at a site (T138) whose phosphorylation is required for 14-3-3 release. However, phosphorylation of T138 is not sufficient for 14-3-3 release from Cdc25. Rather, our data suggest that creation of a 14-3-3 “sink”, consisting of phosphorylated 14-3-3-binding intermediate filament proteins, coupled with reduced Cdc25-14-3-3 affinity, contribute to Cdc25 activation. These observations identify PP2A/B56δ as a central checkpoint effector, and suggest a mechanism for controlling 14-3-3 interactions to promote mitosis. PMID:17110335

  15. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells.

    PubMed

    Liu, Chen-Chi; Lin, Shih-Pei; Hsu, Han-Shui; Yang, Shung-Haur; Lin, Chiu-Hua; Yang, Muh-Hwa; Hung, Mien-Chie; Hung, Shih-Chieh

    2016-01-01

    Targeting tumour-initiating cells (TICs) would lead to new therapies to cure cancer. We previously demonstrated that TICs have the capacity to survive under suspension conditions, while other cells undergo anoikis. Here we show that TICs exhibit increased phosphorylation levels of S727STAT3 because of PP2A inactivation. Collagen 17 gene expression is upregulated in a STAT3-dependent manner, which also stabilizes laminin 5 and engages cells to form hemidesmosome-like junctions in response. Blocking the PP2A-S727STAT3-collagen 17 pathway inhibits the suspension survival of TICs and their ability to form tumours in mice, while activation of the same pathway increases the suspension survival and tumour-initiation capacities of bulk cancer cells. The S727STAT3 phosphorylation levels correlate with collagen 17 expression in colon tumour samples, and correlate inversely with survival. Finally, this signalling axis enhances the ability of TIC to form tumours in mouse models of malignant lung cancer pleural effusion and spontaneous colon cancer metastasis. PMID:27306323

  16. Combination treatment with triptolide and hydroxycamptothecin synergistically enhances apoptosis in A549 lung adenocarcinoma cells through PP2A-regulated ERK, p38 MAPKs and Akt signaling pathways.

    PubMed

    Meng, Guanmin; Wang, Wei; Chai, Kequn; Yang, Suwen; Li, Fangqiong; Jiang, Kai

    2015-03-01

    Lung cancer is the leading cause of cancer death worldwide. Recently, two plant-derived drugs triptolide (TP) and hydroxycamptothecin (HCPT) both have shown broad-spectrum anticancer activities. Our previous study documented that combination treatment with these two drugs acted more effectively than mono-therapy, however, the molecular basis underlying the synergistic cytotoxicity remains poorly understood. In this study, we aimed to clarify the molecular mechanism of TP/HCPT anticancer effect in A549 lung adenocarcinoma cells, by investigating the involvement of phosphatase 2A (PP2A) and PP2A-regulated mitogen-activated protein kinases (MAPKs) and Akt signaling pathways. The results showed that TP and HCPT synergistically exerted cytotoxicity in the growth of A549 cells. Combinatorial TP/HCPT treatment significantly enhanced the activation of caspase-3 and -9, Bax/Bcl-2 ratio, release of cytochrome c from mitochondrial and subsequent apoptosis. While the Akt survival pathway was inhibited, ERK and p38 MAPKs were dramatically activated. Furthermore, the activity of PP2A was significantly augmented. Regulation of p38, ERK and Akt by PP2A was demonstrated, by using a specific PP2A inhibitor okadaic acid (OA). Finally, pharmacological inhibitors OA, SB203580, SP600125 and PD98059 confirm the role of PP2A and its substrates ERK, p38 MAPK and Akt in mediating TP/HCPT-induced apoptosis. Taken together, this study provides the first evidence for a synergistic TP/HCPT anticancer activity in A549 cells and also supports a critical role of PP2A and PP2A-regulated signaling pathways, providing new insight into the mode of action of TP/HCPT in cancer therapy. PMID:25573072

  17. Combination treatment with triptolide and hydroxycamptothecin synergistically enhances apoptosis in A549 lung adenocarcinoma cells through PP2A-regulated ERK, p38 MAPKs and Akt signaling pathways

    PubMed Central

    MENG, GUANMIN; WANG, WEI; CHAI, KEQUN; YANG, SUWEN; LI, FANGQIONG; JIANG, KAI

    2015-01-01

    Lung cancer is the leading cause of cancer death worldwide. Recently, two plant-derived drugs triptolide (TP) and hydroxycamptothecin (HCPT) both have shown broad-spectrum anticancer activities. Our previous study documented that combination treatment with these two drugs acted more effectively than mono-therapy, however, the molecular basis underlying the synergistic cytotoxicity remains poorly understood. In this study, we aimed to clarify the molecular mechanism of TP/HCPT anticancer effect in A549 lung adenocarcinoma cells, by investigating the involvement of phosphatase 2A (PP2A) and PP2A-regulated mitogen-activated protein kinases (MAPKs) and Akt signaling pathways. The results showed that TP and HCPT synergistically exerted cytotoxicity in the growth of A549 cells. Combinatorial TP/HCPT treatment significantly enhanced the activation of caspase-3 and -9, Bax/Bcl-2 ratio, release of cytochrome c from mitochondrial and subsequent apoptosis. While the Akt survival pathway was inhibited, ERK and p38 MAPKs were dramatically activated. Furthermore, the activity of PP2A was significantly augmented. Regulation of p38, ERK and Akt by PP2A was demonstrated, by using a specific PP2A inhibitor okadaic acid (OA). Finally, pharmacological inhibitors OA, SB203580, SP600125 and PD98059 confirm the role of PP2A and its substrates ERK, p38 MAPK and Akt in mediating TP/HCPT-induced apoptosis. Taken together, this study provides the first evidence for a synergistic TP/HCPT anti-cancer activity in A549 cells and also supports a critical role of PP2A and PP2A-regulated signaling pathways, providing new insight into the mode of action of TP/HCPT in cancer therapy. PMID:25573072

  18. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells.

    PubMed

    Zhao, Qingxia; Zhao, Ming; Parris, Amanda B; Xing, Ying; Yang, Xiaohe

    2016-09-01

    Genistein is a soy isoflavone with phytoestrogen and tyrosine kinase inhibitory properties. High intake of soy/genistein has been associated with reduced breast cancer risk. Despite the advances in genistein-mediated antitumor studies, the underlying mechanisms remain unclear. In the present study, we investigated genistein-induced regulation of the cancerous inhibitor of protein phosphatase 2A (CIP2A), a novel oncogene frequently overexpressed in breast cancer, and its functional impact on genistein-induced growth inhibition and apoptosis. We demonstrated that genistein induced downregulation of CIP2A in MCF-7-C3 and T47D breast cancer cells, which was correlated with its growth inhibition and apoptotic activities. Overexpression of CIP2A attenuated, whereas CIP2A knockdown sensitized, genistein-induced growth inhibition and apoptosis. We further showed that genistein-induced downregulation of CIP2A involved both transcriptional suppression and proteasomal degradation. In particular, genistein at higher concentrations induced concurrent downregulation of E2F1 and CIP2A. Overexpression of E2F1 attenuated genistein-induced downregulation of CIP2A mRNA, indicating the role of E2F1 in genistein-induced transcriptional suppression of CIP2A. Taken together, our results identified CIP2A as a functional target of genistein and demonstrated that modulation of E2F1-mediated transcriptional regulation of CIP2A contributes to its downregulation. These data advance our understanding of genistein-induced growth inhibition and apoptosis, and support further investigation on CIP2A as a therapeutic target of relevant anticancer agents. PMID:27574003

  19. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells

    PubMed Central

    Zhao, Qingxia; Zhao, Ming; Parris, Amanda B.; Xing, Ying; Yang, Xiaohe

    2016-01-01

    Genistein is a soy isoflavone with phytoestrogen and tyrosine kinase inhibitory properties. High intake of soy/genistein has been associated with reduced breast cancer risk. Despite the advances in genistein-mediated antitumor studies, the underlying mechanisms remain unclear. In the present study, we investigated genistein-induced regulation of the cancerous inhibitor of protein phosphatase 2A (CIP2A), a novel oncogene frequently overexpressed in breast cancer, and its functional impact on genistein-induced growth inhibition and apoptosis. We demonstrated that genistein induced downregulation of CIP2A in MCF-7-C3 and T47D breast cancer cells, which was correlated with its growth inhibition and apoptotic activities. Overexpression of CIP2A attenuated, whereas CIP2A knockdown sensitized, genistein-induced growth inhibition and apoptosis. We further showed that genistein-induced downregulation of CIP2A involved both transcriptional suppression and proteasomal degradation. In particular, genistein at higher concentrations induced concurrent downregulation of E2F1 and CIP2A. Overexpression of E2F1 attenuated genistein-induced downregulation of CIP2A mRNA, indicating the role of E2F1 in genistein-induced transcriptional suppression of CIP2A. Taken together, our results identified CIP2A as a functional target of genistein and demonstrated that modulation of E2F1-mediated transcriptional regulation of CIP2A contributes to its downregulation. These data advance our understanding of genistein-induced growth inhibition and apoptosis, and support further investigation on CIP2A as a therapeutic target of relevant anticancer agents.

  20. Colony-stimulating factor-1 (CSF-1) receptor-mediated macrophage differentiation in myeloid cells: a role for tyrosine 559-dependent protein phosphatase 2A (PP2A) activity.

    PubMed Central

    McMahon, K A; Wilson, N J; Marks, D C; Beecroft, T L; Whitty, G A; Hamilton, J A; Csar, X F

    2001-01-01

    M1 myeloid cells transfected with the wild-type (WT) colony-stimulating factor-1 (CSF-1) receptor (CSF-1R; M1/WT cells) undergo CSF-1-dependent macrophage differentiation. By mutation studies, we have provided prior evidence that tyrosine 559 in the CSF-1R cytoplasmic domain governs the Src-dependent differentiation pathway. Further components of this pathway were then sought. We report that the extent of CSF-1-mediated tyrosine phosphorylation of protein phosphatase 2A (PP2A), and the associated loss of its activity were reduced in M1 cells transfected with the CSF-1R with a tyrosine-to-phenylalanine mutation at position 559 (M1/559 cells), compared with the corresponding responses in CSF-1-treated M1/WT cells. This evidence for an involvement of a reduction in PP2A activity in the differentiation process was supported by the restoration of the defect in the CSF-1-mediated differentiation of M1/559 cells by the addition of the PP2A inhibitor, okadaic acid. It was also found that the degree of activation of extracellular-signal-regulated kinase (ERK) activities by CSF-1 was reduced in M1/559 cells, suggesting their involvement in the differentiation process. These data suggest that PP2A and ERK form part of the Src-dependent signal-transduction cascade governing CSF-1-mediated macrophage differentiation in M1 cells. PMID:11513742

  1. Inhibition of Protein Phosphatase 2A (PP2A) Prevents Mcl-1 Protein Dephosphorylation at the Thr-163/Ser-159 Phosphodegron, Dramatically Reducing Expression in Mcl-1-amplified Lymphoma Cells*

    PubMed Central

    Nifoussi, Shanna K.; Ratcliffe, Nora R.; Ornstein, Deborah L.; Kasof, Gary; Strack, Stefan; Craig, Ruth W.

    2014-01-01

    Abundant, sustained expression of prosurvival Mcl-1 is an important determinant of viability and drug resistance in cancer cells. The Mcl-1 protein contains PEST sequences (enriched in proline, glutamic acid, serine, and threonine) and is normally subject to rapid turnover via multiple different pathways. One of these pathways involves a phosphodegron in the PEST region, where Thr-163 phosphorylation primes for Ser-159 phosphorylation by glycogen synthase kinase-3. Turnover via this phosphodegron-targeted pathway is reduced in Mcl-1-overexpressing BL41-3 Burkitt lymphoma and other cancer cells; turnover is further slowed in the presence of phorbol ester-induced ERK activation, resulting in Mcl-1 stabilization and an exacerbation of chemoresistance. The present studies focused on Mcl-1 dephosphorylation, which was also found to profoundly influence turnover. Exposure of BL41-3 cells to an inhibitor of protein phosphatase 2A (PP2A), okadaic acid, resulted in a rapid increase in phosphorylation at Thr-163 and Ser-159, along with a precipitous decrease in Mcl-1 expression. The decline in Mcl-1 expression preceded the appearance of cell death markers and was not slowed in the presence of phorbol ester. Upon exposure to calyculin A, which also potently inhibits PP2A, versus tautomycin, which does not, only the former increased Thr-163/Ser-159 phosphorylation and decreased Mcl-1 expression. Mcl-1 co-immunoprecipitated with PP2A upon transfection into CHO cells, and PP2A/Aα knockdown recapitulated the increase in Mcl-1 phosphorylation and decrease in expression. In sum, inhibition of PP2A prevents Mcl-1 dephosphorylation and results in rapid loss of this prosurvival protein in chemoresistant cancer cells. PMID:24939844

  2. Low-dose endothelial monocyte-activating polypeptide-II increases permeability of blood-tumor barrier via a PKC-ζ/PP2A-dependent signaling mechanism.

    PubMed

    Li, Zhen; Liu, Yun-Hui; Liu, Xiao-Bai; Xue, Yi-Xue; Wang, Ping; Liu, Li-Bo

    2015-02-15

    Our previous study demonstrated that low-dose endothelial monocyte-activating polypeptide-II (EMAP-II) induces blood-tumor barrier (BTB) opening via the RhoA/Rho kinase/protein kinase C (PKC)-α/β signaling pathway and that PKC-ζ is involved in this process via other mechanisms. In the present study, using an in vitro BTB model, we detected the exact signaling mechanisms by which PKC-ζ activation affects EMAP-II-induced BTB hyperpermeability. Our results showed that three types of serine/threonine (Ser/Thr) protein phosphatases (PPs), namely PP1, PP2A, and PP2B, were expressed by rat brain microvascular endothelial cells (RBMECs). There was an interaction between PKC-ζ and PP2A in RBMECs. In addition, EMAP-II induced a significant increase in both the expression and the activity of PP2A in RBMECs. Inhibition of PKC-ζ with PKC-ζ pseudosubstrate inhibitor (PKC-ζ-PI) completely blocked EMAP-II-induced PP2A activation. Conversely, inhibition of PP2A with okadaic acid (OA) had no effect on EMAP-II-induced PKC-ζ activation. Like PKC-ζ-PI, OA partially prevented EMAP-II-induced BTB hyperpermeability and occludin redistribution in RBMECs. Neither PKC-ζ-PI nor OA affected EMAP-II-induced phosphorylation of myosin light chain and redistribution of actin cytoskeleton in RBMECs. Taken together, our present study demonstrated that low-dose EMAP-II increases BTB permeability by activating the PKC-ζ/PP2A signaling pathway, which consequently leads to the disruption of TJs and impairment of endothelial barrier function. PMID:25592443

  3. Mitochondrial reactive oxygen species perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of PP2A in lowdose irradiated human fibroblasts

    PubMed Central

    Shimura, Tsutomu; Sasatani, Megumi; Kamiya, Kenji; Kawai, Hidehiko; Inaba, Yohei; Kunugita, Naoki

    2016-01-01

    Here we investigated the cellular response of normal human fibroblasts to repeated exposure to low-dose radiation. In contrast to acute single radiation, low-dose fractionated radiation (FR) with 0.01 Gy/fraction or 0.05 Gy/fraction for 31 days increased in mitochondrial mass, decreased cellular levels of the antioxidant glutathione and caused persistent accumulation of mitochondrial reactive oxygen species (ROS). Excess ROS promoted oxidative inactivation of protein phosphatase PP2A which in turn led to disruption of normal negative feed-back control of AKT/cyclin D1 signaling in cells treated with long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 causes growth retardation, cellular senescence and genome instability in low-dose irradiated cells. Thus, loss of redox control and subsequently elevated levels of ROS perturb signal transduction as a result of oxidative stress. Our study highlights a specific role of mitochondrial ROS in perturbation of AKT/cyclin D1 cell cycle signaling after low-dose long-term FR. The antioxidants N-acetyl-L-cysteine, TEMPO and mitochondrial-targeted antioxidant Mito-TEMPO provided protection against the harmful cell cycle perturbations induced by low-dose long-term FR. PMID:26657292

  4. Notch1 Receptor Regulates AKT Protein Activation Loop (Thr308) Dephosphorylation through Modulation of the PP2A Phosphatase in Phosphatase and Tensin Homolog (PTEN)-null T-cell Acute Lymphoblastic Leukemia Cells*

    PubMed Central

    Hales, Eric C.; Orr, Steven M.; Larson Gedman, Amanda; Taub, Jeffrey W.; Matherly, Larry H.

    2013-01-01

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr308 phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr308 phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr308 phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr308 by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr172 and p70S6K-Thr389, both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K. PMID:23788636

  5. Neuroprotective effects of donepezil against Aβ42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3β and nAChRs activity.

    PubMed

    Noh, Min-Young; Koh, Seong H; Kim, Sung-Min; Maurice, Tangui; Ku, Sae-Kwang; Kim, Seung H

    2013-11-01

    The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase-3β (GSK-3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid-beta (Aβ)42-induced neuronal toxicity model of Alzheimer's disease. In Aβ42-induced toxic conditions, each PP2A and GSK-3β activity measured at different times showed time-dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre-treatment showed dose-dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK-3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42-induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK-3β and nAChRs activity would partially contribute to its effects. We investigated neuroprotective mechanisms of donepezil against Aβ42 toxicity: Donepezil increased neuronal viability with reduced p-tau by enhancing PP2A activity. Despite of blocked PP2A activity, donepezil showed additional recovering effect on neuronal viability, which findings led us to assume that additional

  6. PP2A mediates diosmin p53 activation to block HA22T cell proliferation and tumor growth in xenografted nude mice through PI3K-Akt-MDM2 signaling suppression.

    PubMed

    Dung, Tran Duc; Day, Cecilia Hsuan; Binh, Truong Viet; Lin, Chih-Hsueh; Hsu, Hsi-Hsien; Su, Cheng-Chuan; Lin, Yueh-Min; Tsai, Fuu-Jen; Kuo, Wei-Wen; Chen, Li-Mien; Huang, Chih-Yang

    2012-05-01

    Hepatocellular carcinoma is a common type of cancer with poor prognosis. This study examines the in vitro and in vivo mechanisms of diosmin on human hepato-cellular carcinoma HA22T cell proliferation inhibition. HA22T cells were treated with different diosmin concentrations and analyzed with Western blot analysis, MTT assay, wound healing, flow cytometry, siRNA transfection assays and co-immuno-precipitation assay. The HA22T-implanted xeno-graft nude mice model was applied to confirm the cellular effects. Diosmin showed strong HA22T cell viability inhibition in a dose dependent manner and significantly reduced the cell proliferative proteins as well as inducing cell cycle arrest in the G2/M phase through p53 activation and PI3K-Akt-MDM2 signaling pathway inhibition. However, protein phosphatase 2A (PP2A) siRNA or PP2A inhibitor totally reversed the diosmin effects. The HA22T-implanted nude mice model further confirmed that diosmin inhibited HA22T tumor cell growth and down regulated the PI3K-Akt-MDM2 signaling and cell cycle regulating proteins, as well as activating PP2A and p53 proteins. Our findings indicate that HA22T cell proliferation inhibition and tumor growth suppression by diosmin are mediated through PP2A activation. PMID:22289577

  7. TLR2 ligation induces corticosteroid insensitivity in A549 lung epithelial cells: Anti-inflammatory impact of PP2A activators.

    PubMed

    Rahman, Md Mostafizur; Prabhala, Pavan; Rumzhum, Nowshin N; Patel, Brijeshkumar S; Wickop, Thomas; Hansbro, Philip M; Verrills, Nicole M; Ammit, Alaina J

    2016-09-01

    Corticosteroids are effective anti-inflammatory therapies widely utilized in chronic respiratory diseases. But these medicines can lose their efficacy during respiratory infection resulting in disease exacerbation. Further in vitro research is required to understand how infection worsens lung function control in order to advance therapeutic options to treat infectious exacerbation in the future. In this study, we utilize a cellular model of bacterial exacerbation where we pretreat A549 lung epithelial cells with the synthetic bacterial lipoprotein Pam3CSK4 (a TLR2 ligand) to mimic bacterial infection and tumor necrosis factor α (TNFα) to simulate inflammation. Under these conditions, Pam3CSK4 induces corticosteroid insensitivity; demonstrated by substantially reduced ability of the corticosteroid dexamethasone to repress TNFα-induced interleukin 6 secretion. We then explored the molecular mechanism responsible and found that corticosteroid insensitivity induced by bacterial mimics was not due to altered translocation of the glucocorticoid receptor into the nucleus, nor an impact on the NF-κB pathway. Moreover, Pam3CSK4 did not affect corticosteroid-induced upregulation of anti-inflammatory MAPK deactivating phosphatase-MKP-1. However, Pam3CSK4 can induce oxidative stress and we show that a proportion of the MKP-1 produced in response to corticosteroid in the context of TLR2 ligation was rendered inactive by oxidation. Thus to combat inflammation in the context of bacterial exacerbation we sought to discover effective strategies that bypassed this road-block. We show for the first time that known (FTY720) and novel (theophylline) activators of the phosphatase PP2A can serve as non-steroidal anti-inflammatory alternatives and/or corticosteroid-sparing approaches in respiratory inflammation where corticosteroid insensitivity exists. PMID:27477309

  8. Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells.

    PubMed

    Lee, Eun Ji; Park, Mi Kyung; Kim, Hyun Ji; Kim, Eun Ji; Kang, Gyeoung-Jin; Byun, Hyun Jung; Lee, Chang Hoon

    2016-06-01

    Sphingosylphosphorylcholine (SPC) is found at increased in the malignant ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments that contribute to the viscoelasticity of metastatic cancer cells. However, the detailed mechanism of SPC-induced K8 phosphorylation and reorganization is not clear. We observed that SPC dose-dependently reduced the expression of epithelial membrane protein 2 (EMP2) in lung cancer cells. Then, we examined the role of EMP2 in SPC-induced phosphorylation and reorganization of K8 in lung cancer cells. We found that SPC concentration-dependently reduced EMP2 in A549, H1299, and other lung cancer cells. This was verified at the mRNA level by RT-PCR and real-time PCR (qPCR), and intracellular variation through confocal microscopy. EMP2 gene silencing and stable lung cancer cell lines established using EMP2 lentiviral shRNA induced K8 phosphorylation and reorganization. EMP2 overexpression reduced K8 phosphorylation and reorganization. We also observed that SPC-induced loss of EMP2 induces phosphorylation of JNK and ERK via reduced expression of protein phosphatase 2A (PP2A). Loss of EMP2 induces ubiquitination of protein phosphatase 2A (PP2A). SPC induced caveolin-1 (cav-1) expression and EEA1 endosome marker protein but not cav-2. SPC treatment enhanced the binding of cav-1 and PP2A and lowered binding of PP2A and alpha4. Gene silencing of EMP2 increased and gene silencing of cav-1 reduced migration of A549 lung cancer cells. Overall, these results suggest that SPC induces EMP2 down-regulation which reduces the PP2A via ubiquitination induced by cav-1, which sequestered alpha4, leading to the activation of ERK and JNK. PMID:26876307

  9. PMC, a potent hydrophilic α-tocopherol derivative, inhibits NF-κB activation via PP2A but not IκBα-dependent signals in vascular smooth muscle cells

    PubMed Central

    Hsieh, Cheng-Ying; Hsiao, George; Hsu, Ming-Jen; Wang, Yi-Hsuan; Sheu, Joen-Rong

    2014-01-01

    The hydrophilic α-tocopherol derivative, 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro-inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)-γ. Treatment of LPS/IFN-γ-stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase-9 in a concentration-dependent manner. A reduction in LPS/IFN-γ-induced nuclear factor (NF)-κB activation was also observed in PMC-treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN-γ-activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase-1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A-selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC-mediated inhibition of iNOS expression, NF-κB-promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN-γ-stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC-mediated inhibition of NF-κB activity in LPS/IFN-γ-stimulated VSMCs occurs through the ROS-PP2A-p65 signalling cascade, an IKK-IκBα-independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory

  10. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth.

    PubMed

    Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen

    2015-09-01

    Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions. PMID:25972378

  11. Cancerous inhibitor of PP2A is targeted by natural compound celastrol for degradation in non-small-cell lung cancer

    PubMed Central

    Liu, Zi; Ma, Liang; Wen, Zhe-Sheng; Hu, Zheng; Wu, Fu-Qun; Li, Wei; Liu, Jinsong; Zhou, Guang-Biao

    2014-01-01

    Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein overexpressed and inversely associated with prognosis in lung and many other human cancers. It modulates phospho-Akt and stabilizes c-Myc, and is required for cell proliferation and malignant transformation, indicating that CIP2A may play an important role in carcinogenesis. We reported here that a small compound celastrol could induce a rapid degradation of CIP2A, through the ubiquitin–proteasome pathway with the carboxyl terminus of Hsp70-interacting protein (CHIP) as the E3 ligase. Celastrol directly bound CIP2A protein and promoted CIP2A–CHIP interaction, leading to subsequent degradation of CIP2A in non-small-cell lung cancer cells. Furthermore, celastrol effectively inhibited cell proliferation and induced apoptosis in non-small-cell lung cancer cells, whereas CIP2A silencing enhanced these effects. Celastrol also suppressed tumor growth in xenograft murine models. In addition, celastrol potentiated the inhibitory effect of cytotoxic agent cisplatin on lung cancer cells in vitro and in vivo via inhibition of CIP2A–Akt pathway. These data indicate that celastrol is a CIP2A-targeting agent that may have therapeutic potentials in lung cancer. PMID:24293411

  12. Protein Tyrosine Kinase Fyn Regulates TLR4-Elicited Responses on Mast Cells Controlling the Function of a PP2A-PKCα/β Signaling Node Leading to TNF Secretion.

    PubMed

    Martín-Ávila, Alejandro; Medina-Tamayo, Jaciel; Ibarra-Sánchez, Alfredo; Vázquez-Victorio, Genaro; Castillo-Arellano, Jorge Iván; Hernández-Mondragón, Alma Cristal; Rivera, Juan; Madera-Salcedo, Iris K; Blank, Ulrich; Macías-Silva, Marina; González-Espinosa, Claudia

    2016-06-15

    Mast cells produce proinflammatory cytokines in response to TLR4 ligands, but the signaling pathways involved are not fully described. In this study, the participation of the Src family kinase Fyn in the production of TNF after stimulation with LPS was evaluated using bone marrow-derived mast cells from wild-type and Fyn-deficient mice. Fyn(-/-) cells showed higher LPS-induced secretion of preformed and de novo-synthesized TNF. In both cell types, TNF colocalized with vesicle-associated membrane protein (VAMP)3-positive compartments. Addition of LPS provoked coalescence of VAMP3 and its interaction with synaptosomal-associated protein 23; those events were increased in the absence of Fyn. Higher TNF mRNA levels were also observed in Fyn-deficient cells as a result of increased transcription and greater mRNA stability after LPS treatment. Fyn(-/-) cells also showed higher LPS-induced activation of TAK-1 and ERK1/2, whereas IκB kinase and IκB were phosphorylated, even in basal conditions. Increased responsiveness in Fyn(-/-) cells was associated with a lower activity of protein phosphatase 2A (PP2A) and augmented activity of protein kinase C (PKC)α/β, which was dissociated from PP2A and increased its association with the adapter protein neuroblast differentiation-associated protein (AHNAK, desmoyokin). LPS-induced PKCα/β activity was associated with VAMP3 coalescence in WT and Fyn-deficient cells. Reconstitution of MC-deficient Wsh mice with Fyn(-/-) MCs produced greater LPS-dependent production of TNF in the peritoneal cavity. Our data show that Fyn kinase is activated after TLR4 triggering and exerts an important negative control on LPS-dependent TNF production in MCs controlling the inactivation of PP2Ac and activation of PKCα/β necessary for the secretion of TNF by VAMP3(+) carriers. PMID:27183589

  13. PP2, a potent inhibitor of Src family kinases, protects against hippocampal CA1 pyramidal cell death after transient global brain ischemia.

    PubMed

    Hou, Xiao-Yu; Liu, Yong; Zhang, Guang-Yi

    2007-06-15

    It has been indicated that Src family protein tyrosine kinases (SrcPTKs) potentiate N-methyl-D-aspartate (NMDA) receptor function by phosphorylating NR2A subunits and that postsynaptic density protein 95 (PSD-95) facilitates this regulation. In this paper, we define the role of SrcPTKs in delayed neuronal damage following transient brain ischemia and explore the underlying mechanisms involved in this event. Transient global brain ischemia was induced by the four-vessel occlusion method. A specific Src family kinase inhibitor PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine) and a PP2 negative control PP3 (4-amino-7-phenylpyrazolo[3,4-d]pyramidine) were infused into rat cerebroventricule 30 min before occlusion. Hematoxylin and eosine staining showed that the number of surviving pyramidal neurons in rat hippocampal CA1 subfield increased markedly in PP2-treated rats comparing to PP3-treated groups after 5 days of reperfusion following ischemia. Additionally, immunoprecipitation and immunoblot analysis revealed that preadministration of PP2, but not PP3, attenuated not only the increased tyrosine phosphorylation of NR2A but also the enhanced interactions among Src, NR2A and PSD-95 induced by ischemia/reperfusion. In conclusion, SrcPTKs promote binding of the kinases and their substrate NR2A attributed to the scaffolding effect of PSD-95 during transient brain ischemia and reperfusion, which are responsible for the elevation of NR2A tyrosine phosphorylation and consequent delayed neuronal cell death. PMID:17556100

  14. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice

    PubMed Central

    Rahmini, Yasmeen; Ross, Ruth A.; Zhao, Zhenwen; Xu, Yan; Crabb, David W.

    2012-01-01

    Our previous data showed the inhibitory effect of ethanol on AMP-activated protein kinase phosphorylation, which appears to be mediated, in part, through increased levels of hepatic ceramide and activation of protein phosphatase 2A (Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Am J Physiol Gastrointest Liver Physiol 298: G1004–G1012, 2010). The effect of ethanol on AMP-activated protein kinase phosphorylation was reversed by imipramine, suggesting that the generation of ceramide via acid sphingomyelinase (ASMase) is stimulated by ethanol. In this study, we determined the effects of imipramine on the development of hepatic steatosis, the generation of ceramide, and downstream effects of ceramide on inflammatory, insulin, and apoptotic signaling pathways, in ethanol-fed mice. The effect of ethanol and imipramine (10 μg/g body wt ip) on ceramide levels, as well as inflammatory, insulin, and apoptotic signaling pathways, was studied in C57BL/6J mice fed the Lieber-DeCarli diet. Ethanol-fed mice developed the expected steatosis, and cotreatment with imipramine for the last 2 wk of ethanol feeding resulted in improvement in hepatic steatosis. Ethanol feeding for 4 wk induced impaired glucose tolerance compared with controls, and this was modestly improved with imipramine treatment. There was a significant decrease in total ceramide concentrations in response to imipramine in ethanol-fed mice treated with and without imipramine (287 ± 11 vs. 348 ± 12 pmol/mg tissue). The magnitude and specificity of inhibition on each ceramide species differed. A significant decrease was observed for C16 (28 ± 3 vs. 33 ± 2 pmol/mg tissue) and C24 (164 ± 9 vs. 201 ± 4 pmol/mg tissue) ceramide. Ethanol feeding increased the levels of the phosphorylated forms of ERK slightly and increased phospho-p38 and phospho-JNK substantially. The levels of phospho-p38 and phospho-JNK were reduced by treatment with imipramine. The activation of ASMase and

  15. Basal protein phosphatase 2A activity restrains cytokine expression: role for MAPKs and tristetraprolin.

    PubMed

    Rahman, Md Mostafizur; Rumzhum, Nowshin N; Morris, Jonathan C; Clark, Andrew R; Verrills, Nicole M; Ammit, Alaina J

    2015-01-01

    PP2A is a master controller of multiple inflammatory signaling pathways. It is a target in asthma; however the molecular mechanisms by which PP2A controls inflammation warrant further investigation. In A549 lung epithelial cells in vitro we show that inhibition of basal PP2A activity by okadaic acid (OA) releases restraint on MAPKs and thereby increases MAPK-mediated pro-asthmatic cytokines, including IL-6 and IL-8. Notably, PP2A inhibition also impacts on the anti-inflammatory protein - tristetraprolin (TTP), a destabilizing RNA binding protein regulated at multiple levels by p38 MAPK. Although PP2A inhibition increases TTP mRNA expression, resultant TTP protein builds up in the hyperphosphorylated inactive form. Thus, when PP2A activity is repressed, pro-inflammatory cytokines increase and anti-inflammatory proteins are rendered inactive. Importantly, these effects can be reversed by the PP2A activators FTY720 and AAL(s), or more specifically by overexpression of the PP2A catalytic subunit (PP2A-C). Moreover, PP2A plays an important role in cytokine expression in cells stimulated with TNFα; as inhibition of PP2A with OA or PP2A-C siRNA results in significant increases in cytokine production. Collectively, these data reveal the molecular mechanisms of PP2A regulation and highlight the potential of boosting the power of endogenous phosphatases as novel anti-inflammatory strategies to combat asthmatic inflammation. PMID:25985190

  16. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.

    PubMed Central

    Janssens, V; Goris, J

    2001-01-01

    Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon. PMID:11171037

  17. Metabolic Control of Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII)-mediated Caspase-2 Suppression by the B55β/Protein Phosphatase 2A (PP2A)*

    PubMed Central

    Huang, Bofu; Yang, Chih-Sheng; Wojton, Jeffrey; Huang, Nai-Jia; Chen, Chen; Soderblom, Erik J.; Zhang, Liguo; Kornbluth, Sally

    2014-01-01

    High levels of metabolic activity confer resistance to apoptosis. Caspase-2, an apoptotic initiator, can be suppressed by high levels of nutrient flux through the pentose phosphate pathway. This metabolic control is exerted via inhibitory phosphorylation of the caspase-2 prodomain by activated Ca2+/calmodulin-dependent protein kinase II (CaMKII). We show here that this activation of CaMKII depends, in part, on dephosphorylation of CaMKII at novel sites (Thr393/Ser395) and that this is mediated by metabolic activation of protein phosphatase 2A in complex with the B55β targeting subunit. This represents a novel locus of CaMKII control and also provides a mechanism contributing to metabolic control of apoptosis. These findings may have implications for metabolic control of the many CaMKII-controlled and protein phosphatase 2A-regulated physiological processes, because both enzymes appear to be responsive to alterations in glucose metabolized via the pentose phosphate pathway. PMID:25378403

  18. Mutations in the Saccharomyces Cerevisiae Type 2a Protein Phosphatase Catalytic Subunit Reveal Roles in Cell Wall Integrity, Actin Cytoskeleton Organization and Mitosis

    PubMed Central

    Evans, DRH.; Stark, MJR.

    1997-01-01

    Temperature-sensitive mutations were generated in the Saccharomyces cerevisiae PPH22 gene that, together with its homologue PPH21, encode the catalytic subunit of type 2A protein phosphatase (PP2A). At the restrictive temperature (37°), cells dependent solely on pph22(ts) alleles for PP2A function displayed a rapid arrest of proliferation. Ts(-) pph22 mutant cells underwent lysis at 37°, showing an accompanying viability loss that was suppressed by inclusion of 1 M sorbitol in the growth medium. Ts(-) pph22 mutant cells also displayed defects in bud morphogenesis and polarization of the cortical actin cytoskeleton at 37°. PP2A is therefore required for maintenance of cell integrity and polarized growth. On transfer from 24° to 37°, Ts(-) pph22 mutant cells accumulated a 2N DNA content indicating a cell cycle block before completion of mitosis. However, during prolonged incubation at 37°, many Ts(-) pph22 mutant cells progressed through an aberrant nuclear division and accumulated multiple nuclei. Ts(-) pph22 mutant cells also accumulated aberrant microtubule structures at 37°, while under semi-permissive conditions they were sensitive to the microtubule-destabilizing agent benomyl, suggesting that PP2A is required for normal microtubule function. Remarkably, the multiple defects of Ts(-) pph22 mutant cells were suppressed by a viable allele (SSD1-v1) of the polymorphic SSD1 gene. PMID:9071579

  19. Structural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A

    SciTech Connect

    Xing,Y.; Li, Z.; Chen, Y.; Stock, J.; Jeffrey, P.; Shi, Y.

    2008-01-01

    Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that plays a role in many biological processes. Reversible carboxyl methylation of the PP2A catalytic subunit is an essential regulatory mechanism for its function. Demethylation and negative regulation of PP2A is mediated by a PP2A-specific methylesterase PME-1, which is conserved from yeast to humans. However, the underlying mechanism of PME-1 function remains enigmatic. Here we report the crystal structures of PME-1 by itself and in complex with a PP2A heterodimeric core enzyme. The structures reveal that PME-1 directly binds to the active site of PP2A and that this interaction results in the activation of PME-1 by rearranging the catalytic triad into an active conformation. Strikingly, these interactions also lead to inactivation of PP2A by evicting the manganese ions that are required for the phosphatase activity of PP2A. These observations identify a dual role of PME-1 that regulates PP2A activation, methylation, and holoenzyme assembly in cells.

  20. Protein phosphatase 2A dysfunction in Alzheimer’s disease

    PubMed Central

    Sontag, Jean-Marie; Sontag, Estelle

    2014-01-01

    Protein phosphatase 2A (PP2A) is a large family of enzymes that account for the majority of brain Ser/Thr phosphatase activity. While PP2A enzymes collectively modulate most cellular processes, sophisticated regulatory mechanisms are ultimately responsible for ensuring isoform-specific substrate specificity. Of particular interest to the Alzheimer’s disease (AD) field, alterations in PP2A regulators and PP2A catalytic activity, subunit expression, methylation and/or phosphorylation, have been reported in AD-affected brain regions. “PP2A” dysfunction has been linked to tau hyperphosphorylation, amyloidogenesis and synaptic deficits that are pathological hallmarks of this neurodegenerative disorder. Deregulation of PP2A enzymes also affects the activity of many Ser/Thr protein kinases implicated in AD. This review will more specifically discuss the role of the PP2A/Bα holoenzyme and PP2A methylation in AD pathogenesis. The PP2A/Bα isoform binds to tau and is the primary tau phosphatase. Its deregulation correlates with increased tau phosphorylation in vivo and in AD. Disruption of PP2A/Bα-tau protein interactions likely contribute to tau deregulation in AD. Significantly, alterations in one-carbon metabolism that impair PP2A methylation are associated with increased risk for sporadic AD, and enhanced AD-like pathology in animal models. Experimental studies have linked deregulation of PP2A methylation with down-regulation of PP2A/Bα, enhanced phosphorylation of tau and amyloid precursor protein, tau mislocalization, microtubule destabilization and neuritic defects. While it remains unclear what are the primary events that underlie “PP2A” dysfunction in AD, deregulation of PP2A enzymes definitely affects key players in the pathogenic process. As such, there is growing interest in developing PP2A-centric therapies for AD, but this may be a daunting task without a better understanding of the regulation and function of specific PP2A enzymes. PMID:24653673

  1. Identification of protein phosphatase 2A as an interacting protein of leucine-rich repeat kinase 2.

    PubMed

    Athanasopoulos, Panagiotis S; Jacob, Wright; Neumann, Sebastian; Kutsch, Miriam; Wolters, Dirk; Tan, Eng K; Bichler, Zoë; Herrmann, Christian; Heumann, Rolf

    2016-06-01

    Mutations in the gene coding for the multi-domain protein leucine-rich repeat kinase 2 (LRRK2) are the leading cause of genetically inherited Parkinson's disease (PD). Two of the common found mutations are the R1441C and G2019S. In this study we identified protein phosphatase 2A (PP2A) as an interacting partner of LRRK2. We were able to demonstrate that the Ras of complex protein (ROC) domain is sufficient to interact with the three subunits of PP2A in human neuroblastoma SH-SY5Y cells and in HeLa cells. The alpha subunit of PP2A is interacting with LRRK2 in the perinuclear region of HeLa cells. Silencing the catalytic subunit of PP2A by shRNA aggravated cellular degeneration induced by the pathogenic R1441C-LRRK2 mutant expressed in neuroblastoma SH-SY5Y cells. A similar enhancement of apoptotic nuclei was observed by downregulation of the catalytic subunit of PP2A in cultured cortical cells derived from neurons overexpressing the pathogenic mutant G2019S-LRRK2. Conversely, pharmacological activation of PP2A by sodium selenate showed a partial neuroprotection from R1441C-LRRK2-induced cellular degeneration. All these data suggest that PP2A is a new interacting partner of LRRK2 and reveal the importance of PP2A as a potential therapeutic target in PD. PMID:26894577

  2. Visualization of Subunit Interactions and Ternary Complexes of Protein Phosphatase 2A in Mammalian Cells

    PubMed Central

    Mo, Shu-Ting; Chiang, Shang-Ju; Lai, Tai-Yu; Cheng, Yu-Ling; Chung, Cheng-En; Kuo, Spencer C. H.; Reece, Kelie M.; Chen, Yung-Cheng; Chang, Nan-Shan; Wadzinski, Brian E.; Chiang, Chi-Wu

    2014-01-01

    Protein phosphatase 2A (PP2A) is a ubiquitous phospho-serine/threonine phosphatase that controls many diverse cellular functions. The predominant form of PP2A is a heterotrimeric holoenzyme consisting of a scaffolding A subunit, a variable regulatory B subunit, and a catalytic C subunit. The C subunit also associates with other interacting partners, such as α4, to form non-canonical PP2A complexes. We report visualization of PP2A complexes in mammalian cells. Bimolecular fluorescence complementation (BiFC) analysis of PP2A subunit interactions demonstrates that the B subunit plays a key role in directing the subcellular localization of PP2A, and confirms that the A subunit functions as a scaffold in recruiting the B and C subunits to form a heterotrimeric holoenzyme. BiFC analysis also reveals that α4 promotes formation of the AC core dimer. Furthermore, we demonstrate visualization of specific ABC holoenzymes in cells by combining BiFC and fluorescence resonance energy transfer (BiFC-FRET). Our studies not only provide direct imaging data to support previous biochemical observations on PP2A complexes, but also offer a promising approach for studying the spatiotemporal distribution of individual PP2A complexes in cells. PMID:25536081

  3. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development

    PubMed Central

    Beier, Anna; Krisp, Christoph; Wolters, Dirk A.

    2016-01-01

    ABSTRACT The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora. Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. PMID:27329756

  4. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    PubMed

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart. PMID:26198358

  5. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    NASA Astrophysics Data System (ADS)

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.

  6. Structure of the Protein Phosphatase 2A Holoenzyme

    SciTech Connect

    Xu,Y.; Xing, Y.; Chen, Y.; Chao, Y.; Lin, Z.; Fan, E.; Yu, J.; Strack, S.; Jeffrey, P.; Shi, Y.

    2006-01-01

    Protein Phosphatase 2A (PP2A) plays an essential role in many aspects of cellular physiology. The PP2A holoenzyme consists of a heterodimeric core enzyme, which comprises a scaffolding subunit and a catalytic subunit, and a variable regulatory subunit. Here we report the crystal structure of the heterotrimeric PP2A holoenzyme involving the regulatory subunit B'/B56/PR61. Surprisingly, the B'/PR61 subunit has a HEAT-like (huntingtin-elongation-A subunit-TOR-like) repeat structure, similar to that of the scaffolding subunit. The regulatory B'/B56/PR61 subunit simultaneously interacts with the catalytic subunit as well as the conserved ridge of the scaffolding subunit. The carboxyterminus of the catalytic subunit recognizes a surface groove at the interface between the B'/B56/PR61 subunit and the scaffolding subunit. Compared to the scaffolding subunit in the PP2A core enzyme, formation of the holoenzyme forces the scaffolding subunit to undergo pronounced conformational rearrangements. This structure reveals significant ramifications for understanding the function and regulation of PP2A.

  7. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    SciTech Connect

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  8. Whole Genome Sequencing Identifies a Deletion in Protein Phosphatase 2A That Affects Its Stability and Localization in Chlamydomonas reinhardtii

    PubMed Central

    Lin, Huawen; Miller, Michelle L.; Granas, David M.; Dutcher, Susan K.

    2013-01-01

    Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating. PMID:24086163

  9. Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam.

    PubMed

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M; Iqbal, Khalid

    2014-01-21

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr(307) and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr(307) in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr(307). These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5-PP2A complex, and its phosphorylation at Tyr(307) by Src. PMID:24395787

  10. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam

    PubMed Central

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M.; Iqbal, Khalid

    2014-01-01

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr307 and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr307 in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr307. These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5–PP2A complex, and its phosphorylation at Tyr307 by Src. PMID:24395787

  11. The Protein Phosphatase 2A Regulatory Subunit B56γ Mediates Suppression of T Cell Receptor (TCR)-induced Nuclear Factor-κB (NF-κB) Activity*

    PubMed Central

    Breuer, Rebecca; Becker, Michael S.; Brechmann, Markus; Mock, Thomas; Arnold, Rüdiger; Krammer, Peter H.

    2014-01-01

    NF-κB is an important transcription factor in the immune system, and aberrant NF-κB activity contributes to malignant diseases and autoimmunity. In T cells, NF-κB is activated upon TCR stimulation, and signal transduction to NF-κB activation is triggered by a cascade of phosphorylation events. However, fine-tuning and termination of TCR signaling are only partially understood. Phosphatases oppose the role of kinases by removing phosphate moieties. The catalytic activity of the protein phosphatase PP2A has been implicated in the regulation of NF-κB. PP2A acts in trimeric complexes in which the catalytic subunit is promiscuous and the regulatory subunit confers substrate specificity. To understand and eventually target NF-κB-specific PP2A functions it is essential to define the regulatory PP2A subunit involved. So far, the regulatory PP2A subunit that mediates NF-κB suppression in T cells remained undefined. By performing a siRNA screen in Jurkat T cells harboring a NF-κB-responsive luciferase reporter, we identified the PP2A regulatory subunit B56γ as negative regulator of NF-κB in TCR signaling. B56γ was strongly up-regulated upon primary human T cell activation, and B56γ silencing induced increased IκB kinase (IKK) and IκBα phosphorylation upon TCR stimulation. B56γ silencing enhanced NF-κB activity, resulting in increased NF-κB target gene expression including the T cell cytokine IL-2. In addition, T cell proliferation was increased upon B56γ silencing. These data help to understand the physiology of PP2A function in T cells and the pathophysiology of diseases involving PP2A and NF-κB. PMID:24719332

  12. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy

    PubMed Central

    Deng, Yuanjun; Guo, Yanyan; Liu, Ping; Zeng, Rui; Ning, Yong; Pei, Guangchang; Li, Yueqiang; Chen, Meixue; Guo, Shuiming; Li, Xiaoqing; Han, Min; Xu, Gang

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis. PMID:26805394

  13. Suppression of Scant Identifies Endos as a Substrate of Greatwall Kinase and a Negative Regulator of Protein Phosphatase 2A in Mitosis

    PubMed Central

    Rangone, Hélène; Wegel, Eva; Gatt, Melanie K.; Yeung, Eirene; Flowers, Alexander; Debski, Janusz; Dadlez, Michal; Janssens, Veerle; Carpenter, Adelaide T. C.; Glover, David M.

    2011-01-01

    Protein phosphatase 2A (PP2A) plays a major role in dephosphorylating the targets of the major mitotic kinase Cdk1 at mitotic exit, yet how it is regulated in mitotic progression is poorly understood. Here we show that mutations in either the catalytic or regulatory twins/B55 subunit of PP2A act as enhancers of gwlScant, a gain-of-function allele of the Greatwall kinase gene that leads to embryonic lethality in Drosophila when the maternal dosage of the mitotic kinase Polo is reduced. We also show that heterozygous mutant endos alleles suppress heterozygous gwlScant; many more embryos survive. Furthermore, heterozygous PP2A mutations make females heterozygous for the strong mutation polo11 partially sterile, even in the absence of gwlScant. Heterozygosity for an endos mutation suppresses this PP2A/polo11 sterility. Homozygous mutation or knockdown of endos leads to phenotypes suggestive of defects in maintaining the mitotic state. In accord with the genetic interactions shown by the gwlScant dominant mutant, the mitotic defects of Endos knockdown in cultured cells can be suppressed by knockdown of either the catalytic or the Twins/B55 regulatory subunits of PP2A but not by the other three regulatory B subunits of Drosophila PP2A. Greatwall phosphorylates Endos at a single site, Ser68, and this is essential for Endos function. Together these interactions suggest that Greatwall and Endos act to promote the inactivation of PP2A-Twins/B55 in Drosophila. We discuss the involvement of Polo kinase in such a regulatory loop. PMID:21852956

  14. The Ubiquitin E3 Ligase NOSIP Modulates Protein Phosphatase 2A Activity in Craniofacial Development

    PubMed Central

    Hoffmeister, Meike; Prelle, Carola; Küchler, Philipp; Kovacevic, Igor; Moser, Markus; Müller-Esterl, Werner; Oess, Stefanie

    2014-01-01

    Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. PMID:25546391

  15. Role of protein phosphatase 2A in the regulation of mitogen-activated protein kinase activity in ventricular cardiomyocytes.

    PubMed

    Braconi Quintaje, S; Church, D J; Rebsamen, M; Valloton, M B; Hemmings, B A; Lang, U

    1996-04-25

    Incubation of cultured, neonatal rat ventricular cardiomyocytes with 100 nM phorbol 12-myristate-13-acetate (PMA) induced a transient suppression of PP2A activity at 5 min, an effect that was reversed after 15 min of exposure to PMA. This inactivation was correlated with a transient increase in the phosphorylation level of the catalytic subunit of PP2A (193 +/- 38% of control levels at 5 min). Simultaneously to the transient inactivation of PP2A, we observed a rapid and reversible phosphorylation of 42-kDa MAP kinase (474 +/- 65% of control levels at 5 min, and 316 +/- 44% at 15 min) in cardiomyocytes treated with PMA. This transient phosphorylation was accompanied by a transient increase in cytosolic MAP kinase activity (209 +/- 17% of control values at 5 min and 125 +/- 7% at 15 min). Okadaic acid (1 microM ) completely blocked the decrease in the phosphorylation level and activity of MAP kinase occurring after 5 min of exposure to PMA. These data demonstrate that PP2A inactivation and MAP kinase activation are very strongly correlated in cardiomyocytes, indicating that PP2A plays a negative modulatory role in the regulation of MAP kinase activity. PMID:8629997

  16. Physical association of GPR54 C-terminal with protein phosphatase 2A

    SciTech Connect

    Evans, Barry J.; Wang Zixuan; Mobley, La'Tonya; Khosravi, Davood; Fujii, Nobutaka; Navenot, Jean-Marc; Peiper, Stephen C.

    2008-12-26

    KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.

  17. Structural basis of protein phosphatase 2A stable latency

    PubMed Central

    Jiang, Li; Stanevich, Vitali; Satyshur, Kenneth A; Kong, Mei; Watkins, Guy R.; Wadzinski, Brian E.; Sengupta, Rituparna; Xing, Yongna

    2013-01-01

    The catalytic subunit of protein phosphatase 2A (PP2Ac) is stabilized in a latent form by α4, a regulatory protein essential for cell survival and biogenesis of all PP2A complexes. Here we report the structure of α4 bound to the N-terminal fragment of PP2Ac. This structure suggests that α4 binding to the full-length PP2Ac requires local unfolding near the active site, which perturbs the scaffold subunit binding site at the opposite surface via allosteric relay. These changes stabilize an inactive conformation of PP2Ac and convert oligomeric PP2A complexes to the α4 complex upon perturbation of the active site. The PP2Ac–α4 interface is essential for cell survival and sterically hinders a PP2A ubiquitination site, important for the stability of cellular PP2Ac. Our results show that α4 is a scavenger chaperone that binds to and stabilizes partially folded PP2Ac for stable latency, and reveal a mechanism by which α4 regulates cell survival, and biogenesis and surveillance of PP2A holoenzymes. PMID:23591866

  18. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    SciTech Connect

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.; E-mail: andy.blakely@vanderbilt.edu

    2005-08-05

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH{sub 2}-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.

  19. Nuclear Export and Centrosome Targeting of the Protein Phosphatase 2A Subunit B56α

    PubMed Central

    Flegg, Cameron P.; Sharma, Manisha; Medina-Palazon, Cahora; Jamieson, Cara; Galea, Melanie; Brocardo, Mariana G.; Mills, Kate; Henderson, Beric R.

    2010-01-01

    Protein phosphatase (PP) 2A is a heterotrimeric enzyme regulated by specific subunits. The B56 (or B′/PR61/PPP2R5) class of B-subunits direct PP2A or its substrates to different cellular locations, and the B56α, -β, and -ϵ isoforms are known to localize primarily in the cytoplasm. Here we studied the pathways that regulate B56α subcellular localization. We detected B56α in the cytoplasm and nucleus, and at the nuclear envelope and centrosomes, and show that cytoplasmic localization is dependent on CRM1-mediated nuclear export. The inactivation of CRM1 by leptomycin B or by siRNA knockdown caused nuclear accumulation of ectopic and endogenous B56α. Conversely, CRM1 overexpression shifted B56α to the cytoplasm. We identified a functional nuclear export signal at the C terminus (NES; amino acids 451–469), and site-directed mutagenesis of the NES (L461A) caused nuclear retention of full-length B56α. Active NESs were identified at similar positions in the cytoplasmic B56-β and ϵ isoforms, but not in the nuclear-localized B56-δ or γ isoforms. The transient expression of B56α induced nuclear export of the PP2A catalytic (C) subunit, and this was blocked by the L461A NES mutation. In addition, B56α co-located with the PP2A active (A) subunit at centrosomes, and its centrosome targeting involved sequences that bind to the A-subunit. Fluorescence Recovery after Photobleaching (FRAP) assays revealed dynamic and immobile pools of B56α-GFP, which was rapidly exported from the nucleus and subject to retention at centrosomes. We propose that B56α can act as a PP2A C-subunit chaperone and regulates PP2A activity at diverse subcellular locations. PMID:20378546

  20. Protein phosphatase 2A is associated in an inactive state with microtubules through 2A1-specific interaction with tubulin.

    PubMed Central

    Hiraga, A; Tamura, S

    2000-01-01

    Protein phosphatase (PP) 2A1, a trimer composed of A-, B- and C-subunits in the PP2A family, has been regarded as a principal form localizing at microtubules (MT), but PP2A2, the dimer of A- and C-subunits, has not. Substantiating the claim, the present work shows that the PP2A1 but not PP2A2, both isolated from bovine extract, largely associated with the purified preparation of MT. Furthermore, PP2A1 was found to bind purifiedtubulin polymerized by taxol. The presence of MT associated proteins with purified tubulin hardly affected the binding of PP2A1 to the tubulin. In addition, PP2A1 activity towards glycogen phosphorylase, a probably unphysiological but good substrate, was similarly inhibited by MT proteins and purified tubulin, which accounts for > or =85% of MT proteins, with their IC(50) of about 0.15 mg/ml. In contrast, the inhibition of PP2A2 was about 40% with 1 mg/ml MT proteins and 20% with 0.8 mg/ml tubulin, consistent with its weak association with MT. Therefore, the association with and resultant inhibition by MT proteins of PP2A1 is largely effected by the binding of PP2A1 to tubulin molecule. Moreover, PP2A1 isolated from MT has higher affinity for polymerized MT proteins than has PP2A1 from the postmicrotubule supernatant. The MT PP2A1 has also higher sensitivity to the inhibition by tubulin and MT proteins than has the supernatant PP2A1 (IC(50): 0.1-0.2 mg/ml vs. 0.3-0.6 mg/ml), demonstrating the importance of its association with polymerized tubulin. PMID:10677363

  1. Overexpression of AtPTPA in Arabidopsis increases protein phosphatase 2A activity by promoting holoenzyme formation and ABA negatively affects holoenzyme formation

    PubMed Central

    Chen, Jian; Zhu, Xunlu; Shen, Guoxin; Zhang, Hong

    2015-01-01

    AtPTPA is a critical regulator for the holoenzyme assembling of protein phosphatase 2A (PP2A) in Arabidopsis. Characterization of AtPTPA improves our understanding of the function and regulation of PP2A in eukaryotes. Further analysis of AtPTPA-overexpressing plants indicates that AtPTPA increases PP2A activity by promoting PP2A's AC dimer formation, thereby holoenzyme assembling. Plant hormone abscisic acid (ABA) reduces PP2A enzyme activity by negatively affects PP2A's AC dimer formation. Therefore, AtPTPA is a positive factor that promotes PP2A holoenzyme assembly, and ABA is a negative factor that prevents PP2A holoenzyme assembly. PMID:26633567

  2. Protein phosphatase 2A is expressed in response to colony-stimulating factor 1 in macrophages and is required for cell cycle progression independently of extracellular signal-regulated protein kinase activity.

    PubMed Central

    Wilson, N J; Moss, S T; Csar, X F; Ward, A C; Hamilton, J A

    1999-01-01

    Colony-stimulating factor 1 (CSF-1) is required for the development of monocytes/macrophages from progenitor cells and for the survival and activation of mature macrophages. The receptor for CSF-1 is the product of the c-fms proto-oncogene, which, on binding ligand, can stimulate a mitogenic response in the appropriate cells. To investigate which genes are regulated in response to CSF-1-stimulation in murine bone-marrow-derived macrophages (BMM), we employed mRNA differential display reverse transcriptase-mediated PCR to identify cDNA species induced by CSF-1. Both Northern and Western blot analyses confirmed the increased expression of one of the cDNA species identified as coding for the catalytic subunit of protein phosphatase 2A (PP2A), an observation not previously reported during the response to a growth factor. To determine the significance of the increased expression of PP2A in response to CSF-1, the PP2A inhibitor okadaic acid (OA) was added to CSF-1-treated BMM and found to inhibit DNA synthesis in a dose-dependent manner. Further analysis with flow cytometry in the presence of OA led to the novel conclusion that PP2A activity is critical for CSF-1-driven BMM cell cycle progression in both early G1 and S phases. Surprisingly, in the light of previous studies with other cells, the PP2A-dependent proliferation could be dissociated from activation by extracellular signal-regulated protein kinase (ERK) in macrophages because OA did not affect either the basal or CSF-1-induced ERK activity in BMM. Two-dimensional SDS/PAGE analysis of lysates of 32P-labelled BMM, which had been treated with CSF-1 in the presence or absence of OA, identified candidate substrates for PP2A. PMID:10215588

  3. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    NASA Technical Reports Server (NTRS)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  4. The variable subunit associated with protein phosphatase 2A0 defines a novel multimember family of regulatory subunits.

    PubMed Central

    Zolnierowicz, S; Van Hoof, C; Andjelković, N; Cron, P; Stevens, I; Merlevede, W; Goris, J; Hemmings, B A

    1996-01-01

    Two protein phosphatase 2A (PP2A) holoenzymes were isolated from rabbit skeletal muscle containing, in addition to the catalytic and PR65 regulatory subunits, proteins of apparent molecular masses of 61 and 56 kDa respectively. Both holoenzymes displayed low basal phosphorylase phosphatase activity, which could be stimulated by protamine to an extent similar to that of previously characterized PP2A holoenzymes. Protein micro-sequencing of tryptic peptides derived from the 61 kDa protein, termed PR61, yielded 117 residues of amino acid sequence. Molecular cloning by enrichment of specific mRNAs, followed by reverse transcription-PCR and cDNA library screening, revealed that this protein exists in multiple isoforms encoded by at least three genes, one of which gives rise to several splicing variants. Comparisons of these sequences with the available databases identified one more human gene and predicted another based on a rabbit cDNA-derived sequence, thus bringing the number of genes encoding PR61 family members to five. Peptide sequences derived from PR61 corresponded to the deduced amino acid sequences of either alpha or beta isoforms, indicating that the purified PP2A preparation was a mixture of at least two trimers. In contrast, the 56 kDa subunit (termed PR56) seems to correspond to the epsilon isoform of PR61. Several regulatory subunits of PP2A belonging to the PR61 family contain consensus sequences for nuclear localization and might therefore target PP2A to nuclear substrates. PMID:8694763

  5. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  6. Protein phosphatase 2A regulatory subunits perform distinct functional roles in the maize pathogen Fusarium verticillioides.

    PubMed

    Shin, Joon-Hee; Kim, Jung-Eun; Malapi-Wight, Martha; Choi, Yoon-E; Shaw, Brian D; Shim, Won-Bo

    2013-06-01

    Fusarium verticillioides is a pathogen of maize causing ear rot and stalk rot. The fungus also produces fumonisins, a group of mycotoxins linked to disorders in animals and humans. A cluster of genes, designated FUM genes, plays a key role in the synthesis of fumonisins. However, our understanding of the regulatory mechanism of fumonisin biosynthesis is still incomplete. We have demonstrated previously that Cpp1, a protein phosphatase type 2A (PP2A) catalytic subunit, negatively regulates fumonisin production and is involved in cell shape maintenance. In general, three PP2A subunits, structural A, regulatory B and catalytic C, make up a heterotrimer complex to perform regulatory functions. Significantly, we identified two PP2A regulatory subunits in the F. verticillioides genome, Ppr1 and Ppr2, which are homologous to Saccharomyces cerevisiae Cdc55 and Rts1, respectively. In this study, we hypothesized that Ppr1 and Ppr2 are involved in the regulation of fumonisin biosynthesis and/or cell development in F. verticillioides, and generated a series of mutants to determine the functional role of Ppr1 and Ppr2. The PPR1 deletion strain (Δppr1) resulted in drastic growth defects, but increased microconidia production. The PPR2 deletion mutant strain (Δppr2) showed elevated fumonisin production, similar to the Δcpp1 strain. Germinating Δppr1 conidia formed abnormally swollen cells with a central septation site, whereas Δppr2 showed early hyphal branching during conidia germination. A kernel rot assay showed that the mutants were slow to colonize kernels, but this is probably a result of growth defects rather than a virulence defect. Results from this study suggest that two PP2A regulatory subunits in F. verticillioides carry out distinct roles in the regulation of fumonisin biosynthesis and fungal development. PMID:23452277

  7. Ceramide-Initiated Protein Phosphatase 2A Activation Contributes to Arterial Dysfunction In Vivo.

    PubMed

    Bharath, Leena P; Ruan, Ting; Li, Youyou; Ravindran, Anindita; Wan, Xin; Nhan, Jennifer Kim; Walker, Matthew Lewis; Deeter, Lance; Goodrich, Rebekah; Johnson, Elizabeth; Munday, Derek; Mueller, Robert; Kunz, David; Jones, Deborah; Reese, Van; Summers, Scott A; Babu, Pon Velayutham Anandh; Holland, William L; Zhang, Quan-Jiang; Abel, E Dale; Symons, J David

    2015-11-01

    Prior studies have implicated accumulation of ceramide in blood vessels as a basis for vascular dysfunction in diet-induced obesity via a mechanism involving type 2 protein phosphatase (PP2A) dephosphorylation of endothelial nitric oxide synthase (eNOS). The current study sought to elucidate the mechanisms linking ceramide accumulation with PP2A activation and determine whether pharmacological inhibition of PP2A in vivo normalizes obesity-associated vascular dysfunction and limits the severity of hypertension. We show in endothelial cells that ceramide associates with the inhibitor 2 of PP2A (I2PP2A) in the cytosol, which disrupts the association of I2PP2A with PP2A leading to its translocation to the plasma membrane. The increased association between PP2A and eNOS at the plasma membrane promotes dissociation of an Akt-Hsp90-eNOS complex that is required for eNOS phosphorylation and activation. A novel small-molecule inhibitor of PP2A attenuated PP2A activation, prevented disruption of the Akt-Hsp90-eNOS complex in the vasculature, preserved arterial function, and maintained normal blood pressure in obese mice. These findings reveal a novel mechanism whereby ceramide initiates PP2A colocalization with eNOS and demonstrate that PP2A activation precipitates vascular dysfunction in diet-induced obesity. Therapeutic strategies targeted to reducing PP2A activation might be beneficial in attenuating vascular complications that exist in the context of type 2 diabetes, obesity, and conditions associated with insulin resistance. PMID:26253611

  8. Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts.

    PubMed Central

    Clarke, P R; Hoffmann, I; Draetta, G; Karsenti, E

    1993-01-01

    We have examined the roles of type-1 (PP-1) and type-2A (PP-2A) protein-serine/threonine phosphatases in the mechanism of activation of p34cdc2/cyclin B protein kinase in Xenopus egg extracts. p34cdc2/cyclin B is prematurely activated in the extracts by inhibition of PP-2A by okadaic acid but not by specific inhibition of PP-1 by inhibitor-2. Activation of the kinase can be blocked by addition of the purified catalytic subunit of PP-2A at a twofold excess over the activity in the extract. The catalytic subunit of PP-1 can also block kinase activation, but very high levels of activity are required. Activation of p34cdc2/cyclin B protein kinase requires dephosphorylation of p34cdc2 on Tyr15. This reaction is catalysed by cdc25-C phosphatase that is itself activated by phosphorylation. We show that, in interphase extracts, inhibition of PP-2A by okadaic acid completely blocks cdc25-C dephosphorylation, whereas inhibition of PP-1 by specific inhibitors has no effect. This indicates that a type-2A protein phosphatase negatively regulates p34cdc2/cyclin B protein kinase activation primarily by maintaining cdc25-C phosphatase in a dephosphorylated, low activity state. In extracts containing active p34cdc2/cyclin B protein kinase, dephosphorylation of cdc25-C is inhibited, whereas the activity of PP-2A (and PP-1) towards other substrates is unaffected. We propose that this specific inhibition of cdc25-C dephosphorylation is part of a positive feedback loop that also involves direct phosphorylation and activation of cdc25-C by p34cdc2/cyclin B. Dephosphorylation of cdc25-C is also inhibited when cyclin A-dependent protein kinase is active, and this may explain the potentiation of p34cdc2/cyclin B protein kinase activation by cyclin A. In extracts supplemented with nuclei, the block on p34cdc2/cyclin B activation by unreplicated DNA is abolished when PP-2A is inhibited or when stably phosphorylated cdc25-C is added, but not when PP-1 is specifically inhibited. This suggests

  9. B′-protein phosphatase 2A is a functional binding partner of delta-retroviral integrase

    PubMed Central

    Maertens, Goedele N.

    2016-01-01

    To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is identified as a functional IN binding partner exclusive to δ-retroviruses, including human T cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) and bovine leukaemia virus (BLV). PP2A is a heterotrimer composed of a scaffold, catalytic and one of any of four families of regulatory subunits, and the interaction is specific to the B′ family of the regulatory subunits. B′-PP2A and HTLV-1 IN display nuclear co-localization, and the B′ subunit stimulates concerted strand transfer activity of δ-retroviral INs in vitro. The protein–protein interaction interface maps to a patch of highly conserved residues on B′, which when mutated render B′ incapable of binding to and stimulating HTLV-1 and -2 IN strand transfer activity. PMID:26657642

  10. B'-protein phosphatase 2A is a functional binding partner of delta-retroviral integrase.

    PubMed

    Maertens, Goedele N

    2016-01-01

    To establish infection, a retrovirus must insert a DNA copy of its RNA genome into host chromatin. This reaction is catalysed by the virally encoded enzyme integrase (IN) and is facilitated by viral genus-specific host factors. Herein, cellular serine/threonine protein phosphatase 2A (PP2A) is identified as a functional IN binding partner exclusive to δ-retroviruses, including human T cell lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) and bovine leukaemia virus (BLV). PP2A is a heterotrimer composed of a scaffold, catalytic and one of any of four families of regulatory subunits, and the interaction is specific to the B' family of the regulatory subunits. B'-PP2A and HTLV-1 IN display nuclear co-localization, and the B' subunit stimulates concerted strand transfer activity of δ-retroviral INs in vitro. The protein-protein interaction interface maps to a patch of highly conserved residues on B', which when mutated render B' incapable of binding to and stimulating HTLV-1 and -2 IN strand transfer activity. PMID:26657642

  11. Protein Phosphatase 2A Holoenzyme Is Targeted to Peroxisomes by Piggybacking and Positively Affects Peroxisomal β-Oxidation1[OPEN

    PubMed Central

    Kataya, Amr R.A.; Heidari, Behzad; Hagen, Lars; Kommedal, Roald; Slupphaug, Geir; Lillo, Cathrine

    2015-01-01

    The eukaryotic, highly conserved serine (Ser)/threonine-specific protein phosphatase 2A (PP2A) functions as a heterotrimeric complex composed of a catalytic (C), scaffolding (A), and regulatory (B) subunit. In Arabidopsis (Arabidopsis thaliana), five, three, and 17 genes encode different C, A, and B subunits, respectively. We previously found that a B subunit, B′θ, localized to peroxisomes due to its C-terminal targeting signal Ser-Ser-leucine. This work shows that PP2A C2, C5, andA2 subunits interact and colocalize with B′θ in peroxisomes. C and A subunits lack peroxisomal targeting signals, and their peroxisomal import depends on B′θ and appears to occur by piggybacking transport. B′θ knockout mutants were impaired in peroxisomal β-oxidation as shown by developmental arrest of seedlings germinated without sucrose, accumulation of eicosenoic acid, and resistance to protoauxins indole-butyric acid and 2,4-dichlorophenoxybutyric acid. All of these observations strongly substantiate that a full PP2A complex is present in peroxisomes and positively affects β-oxidation of fatty acids and protoauxins. PMID:25489022

  12. Identification of Glu-519 as the catalytic nucleophile in beta-mannosidase 2A from Cellulomonas fimi.

    PubMed Central

    Stoll, D; He, S; Withers, S G; Warren, R A

    2000-01-01

    Incubation of the beta-mannosidase Man2A from Cellulomonas fimi with 2-deoxy-2-fluoro-beta-D-mannosyl fluoride (2FMan beta F) resulted in time-dependent inactivation of the enzyme (inactivation rate constant k(i)=0.57 min(-1), dissociation constant for the inactivator K(i)=0.41 mM) through the accumulation of a covalent 2-deoxy-2-fluoro-alpha-D-mannosyl-beta-mannosidase 2A (2FMan-Man2A) enzyme intermediate, as observed by electrospray ionization mass spectrometry. The stoichiometry of inactivation was 1:1. Removal of excess inactivator and regeneration of active enzyme by transglycosylation of the covalently attached inhibitor to gentiobiose [Glc beta(1-6)Glc] demonstrated that the covalent intermediate was catalytically competent. Comparison by MS of the peptic digests of 2FMan-Man2A with peptic digests of native Man2A revealed a peptide of m/z 1520 that was unique to 2FMan-Man2A, and one of m/z 1036.5 that was unique to a Man2A peptide. Their sequences, determined by collision-induced fragmentation, were CSEFGFQGPPTW and FGFQGPPTW, corresponding to residues 517-528 and 520-528 of Man2A respectively. The difference in mass of 483.5 between the two peptides equals the sum of the masses of the tripeptide CSE plus that of 2-fluoromannose. It was concluded that in 2FMan-Man2A, the 2-fluoromannose esterified to Glu-519 blocks hydrolysis of the Glu-519-Phe-520 peptide bond, and that Glu-519 is the catalytic nucleophile in this enzyme. This residue is conserved in all members of family 2 of the glycosyl hydrolases. This represents the first ever labelling and identification of an active-site nucleophile in a beta-mannosidase. PMID:11042141

  13. Theoretical models of catalytic domains of protein phosphatases 1 and 2A with Zn2+ and Mn2+ metal dications and putative bioligands in their catalytic centers.

    PubMed

    Woźniak-Celmer, E; Ołdziej, S; Ciarkowski, J

    2001-01-01

    The oligomeric metalloenzymes protein phosphatases dephosphorylate OH groups of Ser/Thr or Tyr residues of proteins whose actions depend on the phosphorus signal. The catalytic units of Ser/Thr protein phosphatases 1, 2A and 2B (PP1c, PP2Ac and PP2Bc, respectively), which exhibit about 45% sequence similarity, have their active centers practically identical. This feature strongly suggests that the unknown structure of PP2Ac could be successfully homology-modeled from the known structures of PP1c and/or PP2Bc. Initially, a theoretical model of PP1c was built, including a phosphate and a metal dication in its catalytic site. The latter was modeled, together with a structural hydroxyl anion, as a triangular pseudo-molecule (Zno or Mno), composed of two metal cations (double Zn2+ or Mn2+, respectively) and the OH- group. To the free PP1c two inhibitor sequences R29RRRPpTPAMLFR40 of DARPP-32 and R30RRRPpTPATLVLT42 of Inhibitor-1, and two putative substrate sequences LRRApSVA and QRRQRKpRRTI were subsequently docked. In the next step, a free PP2Ac model was built via homology re-modeling of the PP1c template and the same four sequences were docked to it. Thus, together, 20 starting model complexes were built, allowing for combination of the Zno and Mno pseudo-molecules, free enzymes and the peptide ligands docked in the catalytic sites of PP1c and PP2Ac. All models were subsequently subjected to 250-300 ps molecular dynamics using the AMBER 5.0 program. The equilibrated trajectories of the final 50 ps were taken for further analyses. The theoretical models of PP1c complexes, irrespective of the dication type, exhibited increased mobilities in the following residue ranges: 195-200, 273-278, 287-209 for the inhibitor sequences and 21-25, 194-200, 222-227, 261, 299-302 for the substrate sequences. Paradoxically, the analogous PP2Ac models appeared much more stable in similar simulations, since only their "prosegment" residues 6-10 and 14-18 exhibited an increased mobility

  14. Modification of the Catalytic Function of Human Hydroxysteroid Sulfotransferase hSULT2A1 by Formation of Disulfide Bonds

    PubMed Central

    Qin, Xiaoyan; Teesch, Lynn M.

    2013-01-01

    The human cytosolic sulfotransferase hSULT2A1 catalyzes the sulfation of a broad range of xenobiotics, as well as endogenous hydroxysteroids and bile acids. Reversible modulation of the catalytic activity of this enzyme could play important roles in its physiologic functions. Whereas other mammalian sulfotransferases are known to be reversibly altered by changes in their redox environment, this has not been previously shown for hSULT2A1. We have examined the hypothesis that the formation of disulfide bonds in hSULT2A1 can reversibly regulate the catalytic function of the enzyme. Three thiol oxidants were used as model compounds to investigate their effects on homogeneous preparations of hSULT2A1: glutathione disulfide, 5,5′-dithiobis(2-nitrobenzoic acid), and 1,1’-azobis(N,N-dimethylformamide) (diamide). Examination of the effects of disulfide bond formation with these agents indicated that the activity of the enzyme is reversibly altered. Studies on the kinetics of the hSULT2A1-catalyzed sulfation of dehydroepiandrosterone (DHEA) showed the effects of disulfide bond formation on the substrate inhibition characteristics of the enzyme. The effects of these agents on the binding of substrates and products, liquid chromatography-mass spectrometry identification of the disulfides formed, and structural modeling of the modified enzyme were examined. Our results indicate that conformational changes at cysteines near the nucleotide binding site affect the binding of both the nucleotide and DHEA to the enzyme, with the specific effects dependent on the structure of the resulting disulfide. Thus, the formation of disulfide bonds in hSULT2A1 is a potentially important reversible mechanism for alterations in the rates of sulfation of both endogenous and xenobiotic substrates. PMID:23444386

  15. Unfolding-resistant translocase targeting: a novel mechanism for outer mitochondrial membrane localization exemplified by the Bbeta2 regulatory subunit of protein phosphatase 2A.

    PubMed

    Dagda, Ruben K; Barwacz, Chris A; Cribbs, J Thomas; Strack, Stefan

    2005-07-22

    Heterotrimeric serine/threonine protein phosphatase 2A (PP2A) consists of scaffolding (A), catalytic (C), and variable (B, B', and B'') subunits. Variable subunits dictate subcellular localization and substrate specificity of the PP2A holoenzyme. The Bbeta regulatory subunit gene is mutated in spinocerebellar ataxia type 12, and one of its splice variants, Bbeta2, targets PP2A to mitochondria to promote apoptosis in PC12 cells (Dagda, R. K., Zaucha, J. A., Wadzinski, B. E., and Strack, S. (2003) J. Biol. Chem. 278, 24976-24985). Here, we report that Bbeta2 is localized to the outer mitochondrial membrane by a novel mechanism, combining a cryptic mitochondrial import signal with a structural arrest domain. Scanning mutagenesis demonstrates that basic and hydrophobic residues mediate mitochondrial association and the proapoptotic activity of Bbeta2. When fused to green fluorescent protein, the N terminus of Bbeta2 acts as a cleavable mitochondrial import signal. Surprisingly, full-length Bbeta2 is not detectably cleaved and is retained at the outer mitochondrial membrane, even though it interacts with the TOM22 import receptor, as shown by luciferase complementation in intact cells. Mutations that open the C-terminal beta-propeller of Bbeta2 facilitate mitochondrial import, indicating that this rigid fold acts as a stop-transfer domain by resisting the partial unfolding step prerequisite for matrix translocation. Because hybrids of prototypical import and beta-propeller domains recapitulate this behavior, we predict the existence of other similarly localized proteins and a selection against highly stable protein folds in the mitochondrial matrix. This unfolding-resistant targeting to the mitochondrial translocase is necessary but not sufficient for the proapoptotic activity of Bbeta2, which also requires association with the rest of the PP2A holoenzyme. PMID:15923182

  16. Identification and Characterization of an Alternatively Spliced Isoform of the Human Protein Phosphatase 2Aα Catalytic Subunit*

    PubMed Central

    Migueleti, Deivid L. S.; Smetana, Juliana H. C.; Nunes, Hugo F.; Kobarg, Jörg; Zanchin, Nilson I. T.

    2012-01-01

    PP2A is the main serine/threonine-specific phosphatase in animal cells. The active phosphatase has been described as a holoenzyme consisting of a catalytic, a scaffolding, and a variable regulatory subunit, all encoded by multiple genes, allowing for the assembly of more than 70 different holoenzymes. The catalytic subunit can also interact with α4, TIPRL (TIP41, TOR signaling pathway regulator-like), the methyl-transferase LCMT-1, and the methyl-esterase PME-1. Here, we report that the gene encoding the catalytic subunit PP2Acα can generate two mRNA types, the standard mRNA and a shorter isoform, lacking exon 5, which we termed PP2Acα2. Higher levels of the PP2Acα2 mRNA, equivalent to the level of the longer PP2Acα mRNA, were detected in peripheral blood mononuclear cells that were left to rest for 24 h. After this time, the peripheral blood mononuclear cells are still viable and the PP2Acα2 mRNA decreases soon after they are transferred to culture medium, showing that generation of the shorter isoform depends on the incubation conditions. FLAG-tagged PP2Acα2 expressed in HEK293 is catalytically inactive. It displays a specific interaction profile with enhanced binding to the α4 regulatory subunit, but no binding to the scaffolding subunit and PME-1. Consistently, α4 out-competes PME-1 and LCMT-1 for binding to both PP2Acα isoforms in pulldown assays. Together with molecular modeling studies, this suggests that all three regulators share a common binding surface on the catalytic subunit. Our findings add important new insights into the complex mechanisms of PP2A regulation. PMID:22167190

  17. An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator.

    PubMed Central

    Longin, Sari; Jordens, Jan; Martens, Ellen; Stevens, Ilse; Janssens, Veerle; Rondelez, Evelien; De Baere, Ivo; Derua, Rita; Waelkens, Etienne; Goris, Jozef; Van Hoof, Christine

    2004-01-01

    We have described recently the purification and cloning of PP2A (protein phosphatase 2A) leucine carboxylmethyltransferase. We studied the purification of a PP2A-specific methylesterase that co-purifies with PP2A and found that it is tightly associated with an inactive dimeric or trimeric form of PP2A. These inactive enzyme forms could be reactivated as Ser/Thr phosphatase by PTPA (phosphotyrosyl phosphatase activator of PP2A). PTPA was described previously by our group as a protein that stimulates the in vitro phosphotyrosyl phosphatase activity of PP2A; however, PP2A-specific methyltransferase could not bring about the activation. The PTPA activation could be distinguished from the Mn2+ stimulation observed with some inactive forms of PP2A, also found associated with PME-1 (phosphatase methylesterase 1). We discuss a potential new function for PME-1 as an enzyme that stabilizes an inactivated pool of PP2A. PMID:14748741

  18. Structure of a Protein Phosphatase 2A Holoenzyme: Insights into B55-Mediated Tau Dephosphorylation

    SciTech Connect

    Xu, Y.; Chen, Y; Zhang, P; Jeffrey, P; Shi, Y

    2008-01-01

    Protein phosphatase 2A (PP2A) regulates many essential aspects of cellular physiology. Members of the regulatory B/B55/PR55 family are thought to play a key role in the dephosphorylation of Tau, whose hyperphosphorylation contributes to Alzheimer's disease. The underlying mechanisms of the PP2A-Tau connection remain largely enigmatic. Here, we report the complete reconstitution of a Tau dephosphorylation assay and the crystal structure of a heterotrimeric PP2A holoenzyme involving the regulatory subunit B?. We show that B? specifically and markedly facilitates dephosphorylation of the phosphorylated Tau in our reconstituted assay. The B? subunit comprises a seven-bladed ? propeller, with an acidic, substrate-binding groove located in the center of the propeller. The ? propeller latches onto the ridge of the PP2A scaffold subunit with the help of a protruding ? hairpin arm. Structure-guided mutagenesis studies revealed the underpinnings of PP2A-mediated dephosphorylation of Tau.

  19. Protein Phosphatase 2A as a Therapeutic Target in Acute Myeloid Leukemia

    PubMed Central

    Arriazu, Elena; Pippa, Raffaella; Odero, María D.

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous malignant disorder of hematopoietic progenitor cells in which several genetic and epigenetic aberrations have been described. Despite progressive advances in our understanding of the molecular biology of this disease, the outcome for most patients is poor. It is, therefore, necessary to develop more effective treatment strategies. Genetic aberrations affecting kinases have been widely studied in AML; however, the role of phosphatases remains underexplored. Inactivation of the tumor-suppressor protein phosphatase 2A (PP2A) is frequent in AML patients, making it a promising target for therapy. There are several PP2A inactivating mechanisms reported in this disease. Deregulation or specific post-translational modifications of PP2A subunits have been identified as a cause of PP2A malfunction, which lead to deregulation of proliferation or apoptosis pathways, depending on the subunit affected. Likewise, overexpression of either SET or cancerous inhibitor of protein phosphatase 2A, endogenous inhibitors of PP2A, is a recurrent event in AML that impairs PP2A activity, contributing to leukemogenesis progression. Interestingly, the anticancer activity of several PP2A-activating drugs (PADs) depends on interaction/sequestration of SET. Preclinical studies show that pharmacological restoration of PP2A activity by PADs effectively antagonizes leukemogenesis, and that these drugs have synergistic cytotoxic effects with conventional chemotherapy and kinase inhibitors, opening new possibilities for personalized treatment in AML patients, especially in cases with SET-dependent inactivation of PP2A. Here, we review the role of PP2A as a druggable tumor suppressor in AML. PMID:27092295

  20. Catalytic Asymmetric Synthesis of Dihydropyrido[1,2-a]indoles from Nitrones and Allenoates.

    PubMed

    Pace, Wiktoria H; Mo, Dong-Liang; Reidl, Tyler W; Wink, Donald J; Anderson, Laura L

    2016-08-01

    An asymmetric method for the synthesis of dihydropyrido[1,2-a]indoles from mixtures of nitrones and allenoates has been developed. This transformation showcases the use of squaramide catalysis in a complicated cascade system that has been shown to be highly sensitive to reaction conditions and substituent effects. The new method provides access to enantiomerically enriched dihydropyridoindoles from modular, non-indole reagents. The optimization and scope of the new transformation is discussed in addition to initial mechanistic experiments that indicate the role of the catalyst. PMID:27346675

  1. The role of protein phosphatase 2A in regulating Wnt signaling and apoptosis

    NASA Astrophysics Data System (ADS)

    Li, Xinghai

    Protein phosphatase 2A (PP2A) is a major serine/threonine-specific phosphatase and regulates a significant array of cellular events. This dissertation primarily describes the novel role of PP2A in Wnt signaling and apoptosis. First, PP2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. PP2A is required for β- catenin degradation in vitro. A PP2A heterotrimer containing A, C, and B56 subunits was co- immunoprecipitated with axin. A, C, and B56 subunits each have ventralizing ability in Xenopus embryos. B56 was epistatically positioned downstream of GSK3β and axin but upstream of β-catenin. Second, B56-targeted PP2A is required for survival and protects from apoptosis in Drosophila. Loss of A, C, or B56 subunits by RNA interference (RNAi) induced apoptosis in S2 cells, which requires the presence of specific caspases. Epistasis analysis placed B56-targeted PP2A functionally upstream of Apaf-1, Reaper and Hid, and p53. Loss of B56-targeted PP2A in Drosophila embryos by RNAi resulted in abortion of embryo development and this phenotype was rescued by co-RNAi of Drice. Third, two conserved domains in B subunits mediate binding to the A subunit of PP2A. B subunits have no detectable sequence homology among different families. In vitro expression of a series of B56α fragments identified two distinct domains that independently bound to the A subunit. Sequence alignment of these A subunit-binding domains recognized conserved residues in B/PR55 and B'/PR72 family members that serve a similar function. Fourth, to examine whether the B56β gene within 11q12 is a tumor suppressor mutated in neuroblastoma, the DNA and RNA samples from neuroblastoma patients and cell lines were analyzed and no mutations were identified in the coding regions of the B56β gene. Finally, to identify novel regulatory subunits of PP2A in S. cerevisiae , biochemical approaches for purifying PP2A-associated novel regulators were undertaken. Although the A and C subunit complex in the

  2. Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification.

    PubMed

    Karaïskou, A; Jessus, C; Brassac, T; Ozon, R

    1999-11-01

    The auto-catalytic activation of the cyclin-dependent kinase Cdc2 or MPF (M-phase promoting factor) is an irreversible process responsible for the entry into M phase. In Xenopus oocyte, a positive feed-back loop between Cdc2 kinase and its activating phosphatase Cdc25 allows the abrupt activation of MPF and the entry into the first meiotic division. We have studied the Cdc2/Cdc25 feed-back loop using cell-free systems derived from Xenopus prophase-arrested oocyte. Our findings support the following two-step model for MPF amplification: during the first step, Cdc25 acquires a basal catalytic activity resulting in a linear activation of Cdc2 kinase. In turn Cdc2 partially phosphorylates Cdc25 but no amplification takes place; under this condition Plx1 kinase and its activating kinase, Plkk1 are activated. However, their activity is not required for the partial phosphorylation of Cdc25. This first step occurs independently of PP2A or Suc1/Cks-dependent Cdc25/Cdc2 association. On the contrary, the second step involves the full phosphorylation and activation of Cdc25 and the initiation of the amplification loop. It depends both on PP2A inhibition and Plx1 kinase activity. Suc1-dependent Cdc25/Cdc2 interaction is required for this process. PMID:10523510

  3. Phospholipase C-related catalytically inactive protein (PRIP) regulates lipolysis in adipose tissue by modulating the phosphorylation of hormone-sensitive lipase.

    PubMed

    Okumura, Toshiya; Harada, Kae; Oue, Kana; Zhang, Jun; Asano, Satoshi; Hayashiuchi, Masaki; Mizokami, Akiko; Tanaka, Hiroto; Irifune, Masahiro; Kamata, Nobuyuki; Hirata, Masato; Kanematsu, Takashi

    2014-01-01

    Phosphorylation of hormone-sensitive lipase (HSL) and perilipin by protein kinase A (PKA) promotes the hydrolysis of lipids in adipocytes. Although activation of lipolysis by PKA has been well studied, inactivation via protein phosphatases is poorly understood. Here, we investigated whether phospholipase C-related catalytically inactive protein (PRIP), a binding partner for protein phosphatase 1 and protein phosphatase 2A (PP2A), is involved in lipolysis by regulating phosphatase activity. PRIP knockout (PRIP-KO) mice displayed reduced body-fat mass as compared with wild-type mice fed with standard chow ad libitum. Most other organs appeared normal, suggesting that mutant mice had aberrant fat metabolism in adipocytes. HSL in PRIP-KO adipose tissue was highly phosphorylated compared to that in wild-type mice. Starvation of wild-type mice or stimulation of adipose tissue explants with the catabolic hormone, adrenaline, translocated both PRIP and PP2A from the cytosol to lipid droplets, but the translocation of PP2A was significantly reduced in PRIP-KO adipocytes. Consistently, the phosphatase activity associated with lipid droplet fraction in PRIP-KO adipocytes was significantly reduced and was independent of adrenaline stimulation. Lipolysis activity, as assessed by measurement of non-esterified fatty acids and glycerol, was higher in PRIP-KO adipocytes. When wild-type adipocytes were treated with a phosphatase inhibitor, they showed a high lipolysis activity at the similar level to PRIP-KO adipocytes. Collectively, these results suggest that PRIP promotes the translocation of phosphatases to lipid droplets to trigger the dephosphorylation of HSL and perilipin A, thus reducing PKA-mediated lipolysis. PMID:24945349

  4. Protein phosphatase 2A activity is required for functional adherent junctions in endothelial cells.

    PubMed

    Kása, Anita; Czikora, István; Verin, Alexander D; Gergely, Pál; Csortos, Csilla

    2013-09-01

    Reversible Ser/Thr phosphorylation of cytoskeletal and adherent junction (AJ) proteins has a critical role in the regulation of endothelial cell (EC) barrier function. We have demonstrated earlier that protein phosphatase 2A (PP2A) activity is important in EC barrier integrity. In the present work, macro- and microvascular EC were examined and we provided further evidence on the significance of PP2A in the maintenance of EC cytoskeleton and barrier function with special focus on the Bα (regulatory) subunit of PP2A. Immunofluorescent staining revealed that the inhibition of PP2A results in changes in the organization of EC cytoskeleton as microtubule dissolution and actin re-arrangement were detected. Depletion of Bα regulatory subunit of PP2A had similar effect on the cytoskeleton structure of the cells. Furthermore, transendothelial electric resistance measurements demonstrated significantly slower barrier recovery of Bα depleted EC after thrombin treatment. AJ proteins, VE-cadherin and β-catenin, were detected along with Bα in pull-down assay. Also, the inhibition of PP2A (by okadaic acid or fostriecin) or depletion of Bα caused β-catenin translocation from the membrane to the cytoplasm in parallel with its phosphorylation on Ser552. In conclusion, our data suggest that the A/Bα/C holoenzyme form of PP2A is essential in EC barrier integrity both in micro- and macrovascular EC. PMID:23721711

  5. Restricted Protein Phosphatase 2A Targeting by Merkel Cell Polyomavirus Small T Antigen

    PubMed Central

    Kwun, Hyun Jin; Shuda, Masahiro; Camacho, Carlos J.; Gamper, Armin M.; Thant, Mamie; Chang, Yuan

    2015-01-01

    ABSTRACT Merkel cell polyomavirus (MCV) is a newly discovered human cancer virus encoding a small T (sT) oncoprotein. We performed MCV sT FLAG-affinity purification followed by mass spectroscopy (MS) analysis, which identified several protein phosphatases (PP), including PP2A A and C subunits and PP4C, as potential cellular interacting proteins. PP2A targeting is critical for the transforming properties of nonhuman polyomaviruses, such as simian virus 40 (SV40), but is not required for MCV sT-induced rodent cell transformation. We compared similarities and differences in PP2A binding between MCV and SV40 sT. While SV40 sT coimmunopurified with subunits PP2A Aα and PP2A C, MCV sT coimmunopurified with PP2A Aα, PP2A Aβ, and PP2A C. Scanning alanine mutagenesis at 29 sites across the MCV sT protein revealed that PP2A-binding domains lie on the opposite molecular surface from a previously described large T stabilization domain (LSD) loop that binds E3 ligases, such as Fbw7. MCV sT-PP2A interactions can be functionally distinguished by mutagenesis from MCV sT LSD-dependent 4E-BP1 hyperphosphorylation and viral DNA replication enhancement. MCV sT has a restricted range for PP2A B subunit substitution, inhibiting only the assembly of B56α into the phosphatase holoenzyme. In contrast, SV40 sT inhibits the assembly of B55α, B56α and B56ε into PP2A. We conclude that MCV sT is required for Merkel cell carcinoma growth, but its in vitro transforming activity depends on LSD interactions rather than PP2A targeting. IMPORTANCE Merkel cell polyomavirus is a newly discovered human cancer virus that promotes cancer, in part, through expression of its small T (sT) oncoprotein. Animal polyomavirus sT oncoproteins have been found to cause experimental tumors by blocking the activities of a group of phosphatases called protein phosphatase 2A (PP2A). Our structural analysis reveals that MCV sT also displaces the B subunit of PP2A to inhibit PP2A activity. MCV sT, however, only

  6. Curcumin treatment recovery the decrease of protein phosphatase 2A subunit B induced by focal cerebral ischemia in Sprague-Dawley rats

    PubMed Central

    Shah, Fawad-Ali; Park, Dong-Ju; Gim, Sang-Ah

    2015-01-01

    Curcumin provides various biological effects through its anti-inflammatory and antioxidant properties. Moreover, curcumin exerts a neuroprotective effect against ischemic condition-induced brain damage. Protein phosphatase 2A (PP2A) is a ubiquitous serine and threonine phosphatase with various cell functions and broad substrate specificity. Especially PP2A subunit B plays an important role in nervous system. This study investigated whether curcumin regulates PP2A subunit B expression in focal cerebral ischemia. Cerebral ischemia was induced surgically by middle cerebral artery occlusion (MCAO). Adult male rats were injected with either vehicle or curcumin (50 mg/kg) 1 h after MCAO and cerebral cortex tissues were isolated 24 h after MCAO. A proteomics study, reverse transverse-PCR and Western blot analyses were performed to examine PP2A subunit B expression levels. We identified a reduction in PP2A subunit B expression in MCAO-operated animals using a proteomic approach. However, curcumin treatment prevented injury-induced reductions in PP2A subunit B levels. Reverse transverse-PCR and Western blot analyses confirmed that curcumin treatment attenuated the injury-induced reduction in PP2A subunit B levels. These findings can suggest that the possibility that curcumin maintains levels of PP2A subunit B in response to cerebral ischemia, which likely contributes to the neuroprotective function of curcumin in cerebral ischemic injury. PMID:26472966

  7. The repair of gamma-radiation-induced DNA damage is inhibited by microcystin-LR, the PP1 and PP2A phosphatase inhibitor.

    PubMed

    Lankoff, A; Bialczyk, J; Dziga, D; Carmichael, W W; Gradzka, I; Lisowska, H; Kuszewski, T; Gozdz, S; Piorun, I; Wojcik, A

    2006-01-01

    The genotoxic activity of microcystin-LR (MC-LR) is a matter of debate. MC-LR is known to be a phosphatase inhibitor and it may be expected that it is involved in the regulation of the activity of DNA-dependent protein kinase (DNA-PK), the key enzyme involved in the repair of radiation-induced DNA damage. We studied the effect of MC-LR on the repair capacity of radiation-induced DNA damage in human lymphocytes and human glioblastoma cell lines MO59J and MO59K. A dose of 0.5 microg/ml of MC-LR was chosen because it induced very little early apoptosis which gives no false positive results in the comet assay. Human lymphocytes in G0-phase of the cell cycle were pre-treated with MC-LR for 3 h and irradiated with 2 Gy of gamma radiation. The kinetics of DNA repair was assessed by the comet assay. In addition the frequencies of chromosomal aberrations were analysed. The pre-treatment with MC-LR inhibited the repair of radiation-induced damage and lead to enhanced frequencies of chromosomal aberrations including dicentric chromosomes. The results of a split-dose experiment, where cells were exposed to two 1.5 Gy doses of radiation separated by 3 h with or without MC-LR, confirmed that the toxin increased the frequency of dicentric chromosomes. We also determined the effect of MC-LR and ionizing radiation on the frequency of gamma-H2AX foci. The pre-treatment with MC-LR resulted in reduced numbers of gamma-H2AX foci in irradiated cells. In order to elucidate the impact of MC-LR on DNA-PK we examined the kinetics of DNA repair in human glioblastoma MO59J and MO59K cells. Both cell lines were exposed to 10 Gy of X-rays and DNA repair was analysed by the comet assay. A strong inhibitory effect was observed in the MO59K but not in the MO59J cells. These results indicate that DNA-PK might be involved in DNA repair inhibition by MC-LR. PMID:16434448

  8. Structural and biochemical characterization of human PR70 in isolation and in complex with the scaffolding subunit of protein phosphatase 2A.

    PubMed

    Dovega, Rebecca; Tsutakawa, Susan; Quistgaard, Esben M; Anandapadamanaban, Madhanagopal; Löw, Christian; Nordlund, Pär

    2014-01-01

    Protein Phosphatase 2A (PP2A) is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A) subunit, a catalytic (C) subunit and various regulatory (B) subunits. Here we report a 2.0 Å crystal structure of the free B''/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B''/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B''/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B'' containing holoenzymes. PMID:25007185

  9. SET antagonist enhances the chemosensitivity of non-small cell lung cancer cells by reactivating protein phosphatase 2A

    PubMed Central

    Hung, Man-Hsin; Wang, Cheng-Yi; Chen, Yen-Lin; Chu, Pei-Yi; Hsiao, Yung-Jen; Tai, Wei-Tien; Chao, Ting-Ting; Yu, Hui-Chuan; Shiau, Chung-Wai; Chen, Kuen-Feng

    2016-01-01

    SET is known as a potent PP2A inhibitor, however, its oncogenic role including its tumorigenic potential and involvement in the development of chemoresistance in non-small cell lung cancer (NSCLC) has not yet been fully discussed. In present study, we investigated the oncogenic role of SET by SET-knockdown and showed that SET silencing impaired cell growth rate, colony formation and tumor sphere formation in A549 cells. Notably, silencing SET enhanced the pro-apoptotic effects of paclitaxel, while ectopic expression of SET diminished the sensitivity of NSCLC cells to paclitaxel. Since the SET protein was shown to affect chemosensitivity, we next examined whether combining a novel SET antagonist, EMQA, sensitized NSCLC cells to paclitaxel. Both the in vitro and in vivo experiments suggested that EMQA and paclitaxel combination treatment was synergistic. Importantly, we found that downregulating p-Akt by inhibiting SET-mediated protein phosphatase 2A (PP2A) inactivation determined the pro-apoptotic effects of EMQA and paclitaxel combination treatment. To dissect the critical site for EMQA functioning, we generated several truncated SET proteins. By analysis of the effects of EMQA on the binding affinities of different truncated SET proteins to PP2A-catalytic subunits, we revealed that the 227–277 amino-acid sequence is critical for EMQA-induced SET inhibition. Our findings demonstrate the critical role of SET in NSCLC, particularly in the development of chemoresistance. The synergistic effects of paclitaxel and the SET antagonist shown in current study encourage further validation of the clinical potential of this combination. PMID:26575017

  10. Effects of light and the regulatory B-subunit composition of protein phosphatase 2A on the susceptibility of Arabidopsis thaliana to aphid (Myzus persicae) infestation

    PubMed Central

    Rasool, Brwa; Karpinska, Barbara; Konert, Grzegorz; Durian, Guido; Denessiouk, Konstantin; Kangasjärvi, Saijaliisa; Foyer, Christine H.

    2014-01-01

    The interactions between biotic and abiotic stress signaling pathways are complex and poorly understood but protein kinase/phosphatase cascades are potentially important components. Aphid fecundity and susceptibility to Pseudomonas syringae infection were determined in the low light-grown Arabidopsis thaliana wild type and in mutant lines defective in either the protein phosphatase (PP)2A regulatory subunit B'γ (gamma; pp2a-b'γ) or B'ζ (zeta; pp2a-b'ζ1-1 and pp2a-b'ζ 1-2) and in gamma zeta double mutants (pp2a-b'γζ) lacking both subunits. All the mutants except for pp2a-b'ζ 1-1 had significantly lower leaf areas than the wild type. Susceptibility to P. syringae was similar in all genotypes. In contrast, aphid fecundity was significantly decreased in the pp2a-b'γ mutant relative to the wild type but not in the pp2a-b'γζ double mutant. A high light pre-treatment, which led to a significant increase in rosette growth in all mutant lines but not in the wild type, led to a significant decrease in aphid fecundity in all genotypes. The high light pre-treatment abolished the differences in aphid resistance observed in the pp2a-b'γ mutant relative to the wild type. The light and CO2 response curves for photosynthesis were changed in response to the high light pre-treatment, but the high light effects were similar in all genotypes. These data demonstrate that a pre-exposure to high light and the composition of B-subunits on the trimeric PP2A holoenzymes are important in regulating plant resistance to aphids. The functional specificity for the individual regulatory B-subunits may therefore limit aphid colonization, depending on the prevailing abiotic stress environment. PMID:25191331

  11. Structural and Biochemical Insights into the Regulation of Protein Phosphatase 2A by Small t Antigen of SV40

    SciTech Connect

    Chen,Y.; Xu, Y.; Bao, Q.; Xing, Y.; Li, Z.; Lin, Z.; Stock, J.; Jeffrey, P.; Shi, Y.

    2007-01-01

    The small t antigen (ST) of DNA tumor virus SV40 facilitates cellular transformation by disrupting the functions of protein phosphatase 2A (PP2A) through a poorly defined mechanism. The crystal structure of the core domain of SV40 ST bound to the scaffolding subunit of human PP2A reveals that the ST core domain has a novel zinc-binding fold and interacts with the conserved ridge of HEAT repeats 3-6, which overlaps with the binding site for the B' (also called PR61 or B56) regulatory subunit. ST has a lower binding affinity than B' for the PP2A core enzyme. Consequently, ST does not efficiently displace B' from PP2A holoenzymes in vitro. Notably, ST inhibits PP2A phosphatase activity through its N-terminal J domain. These findings suggest that ST may function mainly by inhibiting the phosphatase activity of the PP2A core enzyme, and to a lesser extent by modulating assembly of the PP2A holoenzymes.

  12. Cytoplasmic SET induces tau hyperphosphorylation through a decrease of methylated phosphatase 2A

    PubMed Central

    2014-01-01

    Background The neuronal cytoplasmic localization of SET, an inhibitor of the phosphatase 2A (PP2A), results in tau hyperphosphorylation in the brains of Alzheimer patients through mechanisms that are still not well defined. Results We used primary neurons and mouse brain slices to show that SET is translocated to the cytoplasm in a manner independent of both its cleavage and over-expression. The localization of SET in the cytoplasm, either by the translocation of endogenous SET or by internalization of the recombinant full-length SET protein, induced tau hyperphosphorylation. Cytoplasmic recombinant full-length SET in mouse brain slices induced a decrease of PP2A activity through a decrease of methylated PP2A levels. The levels of methylated PP2A were negatively correlated with tau hyperphosphorylation at Ser-202 but not with the abnormal phosphorylation of tau at Ser-422. Conclusions The presence of full-length SET in the neuronal cytoplasm is sufficient to impair PP2A methylation and activity, leading to tau hyperphosphorylation. In addition, our data suggest that tau hyperphosphorylation is regulated by different mechanisms at distinct sites. The translocation of SET to the neuronal cytoplasm, the low activity of PP2A, and tau hyperphosphorylation are associated in the brains of Alzheimer patients. Our data show a link between the translocation of SET in the cytoplasm and the decrease of methylated PP2A levels leading to a decrease of PP2A activity and tau hyperphosphorylation. This chain of events may contribute to the pathogenesis of Alzheimer disease. PMID:24981783

  13. Phosphorylated protein phosphatase 2A determines poor outcome in patients with metastatic colorectal cancer

    PubMed Central

    Cristóbal, I; Manso, R; Rincón, R; Caramés, C; Zazo, S; del Pulgar, T G; Cebrián, A; Madoz-Gúrpide, J; Rojo, F; García-Foncillas, J

    2014-01-01

    Background: Protein phosphatase 2A (PP2A) is a tumour suppressor frequently inactivated in human cancer and its tyrosine-307 phosphorylation has been reported as a molecular inhibitory mechanism. Methods: Expression of phosphorylated PP2A (p-PP2A) was evaluated in 250 metastatic colorectal cancer (CRC) patients. Chi-square, Kaplan–Meier and Cox analyses were used to determine correlations with clinical and molecular parameters and impact on clinical outcomes. Results: High p-PP2A levels were found in 17.2% cases and were associated with ECOG performance status (P=0.001) and presence of synchronous metastasis at diagnosis (P=0.035). This subgroup showed substantially worse overall survival (OS) (median OS, 6.0 vs 26.2 months, P<0.001) and progression-free survival (PFS) (median PFS, 3.8 vs 13.3 months, P<0.001). The prognostic impact of p-PP2A was particularly evident in patients aged <70 years (P<0.001). Multivariate analysis revealed that p-PP2A retained its prognostic impact for OS (hazard ratio 2.7; 95% confidence interval, 1.8–4.1; P<0.001) and PFS (hazard ratio 3.0; 95% confidence interval, 1.8–5.0; P<0.001). Conclusions: Phosphorylated PP2A is an alteration that determines poor outcome in metastatic CRC and represents a novel potential therapeutic target in this disease, thus enabling to define a subgroup of patients who could benefit from future treatments based on PP2A activators. PMID:25003662

  14. B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability

    PubMed Central

    Houge, Gunnar; Haesen, Dorien; Vissers, Lisenka E.L.M.; Mehta, Sarju; Parker, Michael J.; Wright, Michael; Vogt, Julie; McKee, Shane; Tolmie, John L.; Cordeiro, Nuno; Kleefstra, Tjitske; Willemsen, Marjolein H.; Reijnders, Margot R.F.; Berland, Siren; Hayman, Eli; Lahat, Eli; Brilstra, Eva H.; van Gassen, Koen L.I.; Zonneveld-Huijssoon, Evelien; de Bie, Charlotte I.; Hoischen, Alexander; Eichler, Evan E.; Holdhus, Rita; Steen, Vidar M.; Døskeland, Stein Ove; Hurles, Matthew E.; FitzPatrick, David R.; Janssens, Veerle

    2015-01-01

    Here we report inherited dysregulation of protein phosphatase activity as a cause of intellectual disability (ID). De novo missense mutations in 2 subunits of serine/threonine (Ser/Thr) protein phosphatase 2A (PP2A) were identified in 16 individuals with mild to severe ID, long-lasting hypotonia, epileptic susceptibility, frontal bossing, mild hypertelorism, and downslanting palpebral fissures. PP2A comprises catalytic (C), scaffolding (A), and regulatory (B) subunits that determine subcellular anchoring, substrate specificity, and physiological function. Ten patients had mutations within a highly conserved acidic loop of the PPP2R5D-encoded B56δ regulatory subunit, with the same E198K mutation present in 6 individuals. Five patients had mutations in the PPP2R1A-encoded scaffolding Aα subunit, with the same R182W mutation in 3 individuals. Some Aα cases presented with large ventricles, causing macrocephaly and hydrocephalus suspicion, and all cases exhibited partial or complete corpus callosum agenesis. Functional evaluation revealed that mutant A and B subunits were stable and uncoupled from phosphatase activity. Mutant B56δ was A and C binding–deficient, while mutant Aα subunits bound B56δ well but were unable to bind C or bound a catalytically impaired C, suggesting a dominant-negative effect where mutant subunits hinder dephosphorylation of B56δ-anchored substrates. Moreover, mutant subunit overexpression resulted in hyperphosphorylation of GSK3β, a B56δ-regulated substrate. This effect was in line with clinical observations, supporting a correlation between the ID degree and biochemical disturbance. PMID:26168268

  15. Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A

    NASA Technical Reports Server (NTRS)

    Jackson, K.; Soll, D.; Evans, M. L. (Principal Investigator)

    1999-01-01

    The heterotrimeric protein phosphatase 2A (PP2A) is a component of multiple signaling pathways in eukaryotes. Disruption of PP2A activity in Arabidopsis is known to alter auxin transport and growth response pathways. We demonstrated that the regulatory subunit A of an Arabidopsis PP2A interacts with a novel cyclophilin, ROC7. The gene for this cyclophilin encodes a protein that contains a unique 30-amino acid extension at the N-terminus, which distinguishes the gene product from all previously identified Arabidopsis cyclophilins. Altered forms of ROC7 cyclophilin with mutations in the conserved DENFKL domain did not bind to PP2A. Unlike protein phosphatase 2B, PP2A activity in Arabidopsis extracts was not affected by the presence of the cyclophilin-binding molecule cyclosporin. The ROC7 transcript was expressed to high levels in all tissues tested. Expression of an ROC7 antisense transcript gave rise to increased root growth. These results indicate that cyclophilin may have a role in regulating PP2A activity, by a mechanism that differs from that employed for cyclophilin regulation of PP2B.

  16. Chlorinated Biphenyl Quinones and Phenyl-2,5-benzoquinone Differentially Modify the Catalytic Activity of Human Hydroxysteroid Sulfotransferase hSULT2A1

    PubMed Central

    Qin, Xiaoyan; Lehmler, Hans-Joachim; Teesch, Lynn M.; Robertson, Larry W.; Duffel, Michael W.

    2013-01-01

    Human hydroxysteroid sulfotransferase (hSULT2A1) catalyzes the sulfation of a broad range of environmental chemicals, drugs, and other xenobiotics in addition to endogenous compounds that include hydroxysteroids and bile acids. Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and oxidized metabolites of PCBs may play significant roles in the etiology of their adverse health effects. Quinones derived from oxidative metabolism of PCBs (PCB-quinones) react with nucleophilic sites in proteins and also undergo redox cycling to generate reactive oxygen species. This, along with the sensitivity of hSULT2A1 to oxidative modification at cysteine residues led us to hypothesize that electrophilic PCB-quinones react with hSULT2A1 to alter its catalytic function. Thus, we examined the effects of four phenylbenzoquinones on the ability of hSULT2A1 to catalyze the sulfation of the endogenous substrate, dehydroepiandrosterone (DHEA). The quinones studied were 2′-chlorophenyl-2,5-benzoquinone (2′-Cl-BQ), 4′-chlorophenyl-2,5-benzoquinone (4′-Cl-BQ), 4′-chlorophenyl-3,6-dichloro-2,5-benzoquinone (3,6,4′-triCl-BQ), and phenyl-2,5-benzoquinone (PBQ). At all concentrations examined, pretreatment of hSULT2A1 with the PCB-quinones decreased catalytic activity of hSULT2A1. Pretreatment with low concentrations of PBQ, however, increased the catalytic activity of the enzyme, while higher concentrations inhibited catalysis. A decrease in substrate inhibition with DHEA was seen following preincubation of hSULT2A1 with all of the quinones. Proteolytic digestion of the enzyme followed by LC/MS analysis indicated PCB-quinone- and PBQ-adducts at Cys55 and Cys199, as well as oxidation products at methionines in the protein. Equilibrium binding experiments and molecular modeling suggested that changes due to these modifications may affect the nucleotide binding site and the entrance to the sulfuryl acceptor binding site of hSULT2A1. PMID:24059442

  17. Photo-catalytic oxidation of cyclohexane over TiO2: a novel interpretation of temperature dependent performance.

    PubMed

    Almeida, Ana Rita; Berger, Rob; Moulijn, Jacob A; Mul, Guido

    2011-01-28

    The rate of cyclohexane photo-catalytic oxidation to cyclohexanone over anatase TiO(2) was studied at temperatures between 23 and 60 °C by in situ ATR-FTIR spectroscopy, and the kinetic parameters were estimated using a microkinetic model. At low temperatures, surface cyclohexanone formation is limited by cyclohexane adsorption due to unfavorable desorption of H(2)O, rather than previously proposed slow desorption of the product cyclohexanone. Up to 50 °C, the activation energy for photocatalytic cyclohexanone formation is zero, while carboxylates are formed with an activation energy of 18.4 ± 3.3 kJ mol(-1). Above 50 °C, significant (thermal) oxidation of cyclohexanone contributes to carboxylate formation. The irreversibly adsorbed carboxylates lead to deactivation of the catalyst, and are most likely the predominant cause of the non-Arrhenius behavior at relatively high reaction temperatures, rather than cyclohexane adsorption limitations. The results imply that elevating the reaction temperature of photocatalytic cyclohexane oxidation reduces selectivity, and is not a means to suppress catalyst deactivation. PMID:21152664

  18. Roles of phosphotase 2A in nociceptive signal processing

    PubMed Central

    2013-01-01

    Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules. PMID:24010880

  19. Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes.

    PubMed

    Tan, Xin L; Wright, David K; Liu, Shijie; Hovens, Christopher; O'Brien, Terence J; Shultz, Sandy R

    2016-09-01

    Mild traumatic brain injuries may result in cumulative brain damage and neurodegenerative disease. To date, there is no pharmaceutical intervention known to prevent these consequences. Hyperphosphorylated tau has been associated in this process, and protein phosphatase 2A 55 kDa regulatory B subunit (PP2A/PR55) - the major tau phosphatase - is decreased after a brain insult. Sodium selenate up-regulates PP2A/PR55 and dephosphorylates tau, and may hold promise as a treatment in the mild brain injury setting. Here we investigated sodium selenate treatment in rats given repeated mild traumatic brain injuries. Rats were given three mild fluid percussion injuries or three sham-injuries, and treated with sodium selenate (1 mg/kg/day) or saline-vehicle for three months before undergoing behavioral testing, MRI, and post-mortem analysis of brain tissue. Repeated mild traumatic brain injuries increased the phosphorylation of tau and decreased PP2A/PR55, whilst inducing brain atrophy and cognitive and sensorimotor deficits. Sodium selenate treatment increased PP2A/PR55, and decreased tau phosphorylation, brain damage, and cognitive and motor impairments in rats given repeated mild traumatic brain injuries. Our findings implicate PP2A/PR55 and tau as important mechanisms in the pathophysiological aftermath of repeated mild brain traumas, and support sodium selenate as a novel and translatable treatment for these common injuries. PMID:27163189

  20. Protein Phosphatase 2A Inhibition with LB100 Enhances Radiation-Induced Mitotic Catastrophe and Tumor Growth Delay in Glioblastoma.

    PubMed

    Gordon, Ira K; Lu, Jie; Graves, Christian A; Huntoon, Kristin; Frerich, Jason M; Hanson, Ryan H; Wang, Xiaoping; Hong, Christopher S; Ho, Winson; Feldman, Michael J; Ikejiri, Barbara; Bisht, Kheem; Chen, Xiaoyuan S; Tandle, Anita; Yang, Chunzhang; Arscott, W Tristram; Ye, Donald; Heiss, John D; Lonser, Russell R; Camphausen, Kevin; Zhuang, Zhengping

    2015-07-01

    Protein phosphatase 2A (PP2A) is a tumor suppressor whose function is lost in many cancers. An emerging, though counterintuitive, therapeutic approach is inhibition of PP2A to drive damaged cells through the cell cycle, sensitizing them to radiotherapy. We investigated the effects of PP2A inhibition on U251 glioblastoma cells following radiation treatment in vitro and in a xenograft mouse model in vivo. Radiotherapy alone augmented PP2A activity, though this was significantly attenuated with combination LB100 treatment. LB100 treatment yielded a radiation dose enhancement factor of 1.45 and increased the rate of postradiation mitotic catastrophe at 72 and 96 hours. Glioblastoma cells treated with combination LB100 and radiotherapy maintained increased γ-H2AX expression at 24 hours, diminishing cellular repair of radiation-induced DNA double-strand breaks. Combination therapy significantly enhanced tumor growth delay and mouse survival and decreased p53 expression 3.68-fold, compared with radiotherapy alone. LB100 treatment effectively inhibited PP2A activity and enhanced U251 glioblastoma radiosensitivity in vitro and in vivo. Combination treatment with LB100 and radiation significantly delayed tumor growth, prolonging survival. The mechanism of radiosensitization appears to be related to increased mitotic catastrophe, decreased capacity for repair of DNA double-strand breaks, and diminished p53 DNA-damage response pathway activity. PMID:25939762

  1. Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice

    PubMed Central

    Sontag, Jean-Marie; Wasek, Brandi; Taleski, Goce; Smith, Josephine; Arning, Erland; Sontag, Estelle; Bottiglieri, Teodoro

    2014-01-01

    Common functional polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, a key enzyme in folate and homocysteine metabolism, influence risk for a variety of complex disorders, including developmental, vascular, and neurological diseases. MTHFR deficiency is associated with elevation of homocysteine levels and alterations in the methylation cycle. Here, using young and aged Mthfr knockout mouse models, we show that mild MTHFR deficiency can lead to brain-region specific impairment of the methylation of Ser/Thr protein phosphatase 2A (PP2A). Relative to wild-type controls, decreased expression levels of PP2A and leucine carboxyl methyltransferase (LCMT1) were primarily observed in the hippocampus and cerebellum, and to a lesser extent in the cortex of young null Mthfr−/− and aged heterozygous Mthfr+/− mice. A marked down regulation of LCMT1 correlated with the loss of PP2A/Bα holoenzymes. Dietary folate deficiency significantly decreased LCMT1, methylated PP2A and PP2A/Bα levels in all brain regions examined from aged Mthfr+/+ mice, and further exacerbated the regional effects of MTHFR deficiency in aged Mthfr+/− mice. In turn, the down regulation of PP2A/Bα was associated with enhanced phosphorylation of Tau, a neuropathological hallmark of Alzheimer’s disease (AD). Our findings identify hypomethylation of PP2A enzymes, which are major CNS phosphatases, as a novel mechanism by which MTHFR deficiency and Mthfr gene-diet interactions could lead to disruption of neuronal homeostasis, and increase the risk for a variety of neuropsychiatric disorders, including age-related diseases like sporadic AD. PMID:25202269

  2. Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice.

    PubMed

    Sontag, Jean-Marie; Wasek, Brandi; Taleski, Goce; Smith, Josephine; Arning, Erland; Sontag, Estelle; Bottiglieri, Teodoro

    2014-01-01

    Common functional polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, a key enzyme in folate and homocysteine metabolism, influence risk for a variety of complex disorders, including developmental, vascular, and neurological diseases. MTHFR deficiency is associated with elevation of homocysteine levels and alterations in the methylation cycle. Here, using young and aged Mthfr knockout mouse models, we show that mild MTHFR deficiency can lead to brain-region specific impairment of the methylation of Ser/Thr protein phosphatase 2A (PP2A). Relative to wild-type controls, decreased expression levels of PP2A and leucine carboxyl methyltransferase (LCMT1) were primarily observed in the hippocampus and cerebellum, and to a lesser extent in the cortex of young null Mthfr (-/-) and aged heterozygous Mthfr (+/-) mice. A marked down regulation of LCMT1 correlated with the loss of PP2A/Bα holoenzymes. Dietary folate deficiency significantly decreased LCMT1, methylated PP2A and PP2A/Bα levels in all brain regions examined from aged Mthfr (+/+) mice, and further exacerbated the regional effects of MTHFR deficiency in aged Mthfr (+/-) mice. In turn, the down regulation of PP2A/Bα was associated with enhanced phosphorylation of Tau, a neuropathological hallmark of Alzheimer's disease (AD). Our findings identify hypomethylation of PP2A enzymes, which are major CNS phosphatases, as a novel mechanism by which MTHFR deficiency and Mthfr gene-diet interactions could lead to disruption of neuronal homeostasis, and increase the risk for a variety of neuropsychiatric disorders, including age-related diseases like sporadic AD. PMID:25202269

  3. Force-inhibiting effect of Ser/Thr protein phosphatase 2A inhibitors on bovine ciliary muscle.

    PubMed

    Ishida, Minori; Takeya, Kosuke; Miyazu, Motoi; Yoshida, Akitoshi; Takai, Akira

    2015-01-01

    Ciliary muscle is a smooth muscle characterized by a rapid response to muscarinic receptor stimulation and sustained contraction. Although it is evident that these contractions are Ca2+-dependent, detailed molecular mechanisms are still unknown. In order to elucidate the role of Ser/Thr protein phosphatase 2A (PP2A) in ciliary muscle contraction, we examined the effects of okadaic acid and other PP2A inhibitors on contractions induced by carbachol (CCh) and ionomycin in bovine ciliary muscle strips (BCM). Okadaic acid inhibited ionomycin-induced contraction, while it did not cause significant changes in CCh-induced contraction. Fostriecin showed similar inhibitory effects on the contraction of BCM. On the other hand, rubratoxin A inhibited both ionomycin- and CCh-induced contractions. These results indicated that PP2A was involved at least in ionomycin-induced Ca2+-dependent contraction, and that BCM had a unique regulatory mechanism in CCh-induced contraction. PMID:26727726

  4. Estimation of the rate constants associated with the inhibitory effect of okadaic acid on type 2A protein phosphatase by time-course analysis.

    PubMed Central

    Takai, A; Ohno, Y; Yasumoto, T; Mieskes, G

    1992-01-01

    As is often the case with tightly binding inhibitors, okadaic acid produces its inhibitory effect on type 2A protein phosphatase (PP2A) in a time-dependent manner. We measured the rate constants associated with the binding of okadaic acid to PP2A by analysing the time-course of the reduction of the p-nitrophenyl phosphate (pNPP) phosphatase activity of the enzyme after application of okadaic acid. The rate constants for dissociation of okadaic acid from PP2A were also estimated from the time-course of the recovery of the activity from inhibition by okadaic acid after addition of a mouse IgG1 monoclonal antibody raised against the inhibitor. Our results show that the rate constants for the binding of okadaic acid and PP2A are of the order of 10(7) M-1.s-1, a typical value for reactions involving relatively large molecules, whereas those for their dissociation are in the range 10(-4)-10(-3) s-1. The very low values of the latter seems to be the determining factor for the exceedingly high affinity of okadaic acid for PP2A. The dissociation constants for the interaction of okadaic acid with the free enzyme and the enzyme-substrate complex, estimated as the ratio of the rate constants, are both in the range 30-40 pM, in agreement with the results of previous dose-inhibition analyses. PMID:1329723

  5. The role of Saccharomyces cerevisiae type 2A phosphatase in the actin cytoskeleton and in entry into mitosis.

    PubMed Central

    Lin, F C; Arndt, K T

    1995-01-01

    We have prepared a temperature-sensitive Saccharomyces cerevisiae type 2A phosphatase (PP2A) mutant, pph21-102. At the restrictive temperature, the pph21-102 cells arrested predominantly with small or aberrant buds, and their actin cytoskeleton and chitin deposition were abnormal. The involvement of PP2A in bud growth may be due to the role of PP2A in actin distribution during the cell cycle. Moreover, after a shift to the non-permissive temperature, the pph21-102 cells were blocked in G2 and had low activity of Clb2-Cdc28 kinase. Expression of Clb2 from the S.cerevisiae ADH promoter in pph21-102 cells was able to partially bypass the G2 arrest in the first cell cycle, but was not able to stimulate passage through a second mitosis. These cells had higher total amounts of Clb2-Cdc28 kinase activity, but the Clb2-normalized specific activity was lower in the pph21-102 cells compared with wild-type cells. Unlike wild-type strains, a PP2A-deficient strain was sensitive to the loss of MIH1, which is a homolog of the Schizosaccharomyces pombe mitotic inducer cdc25+. Furthermore, the cdc28F19 mutation cured the synthetic defects of a PP2A-deficient strain containing a deletion of MIH1. These results suggest that PP2A is required during G2 for the activation of Clb-Cdc28 kinase complexes for progression into mitosis. Images PMID:7796803

  6. Inhibition of specific binding of okadaic acid to protein phosphatase 2A by microcystin-LR, calyculin-A and tautomycin: method of analysis of interactions of tight-binding ligands with target protein.

    PubMed Central

    Takai, A; Sasaki, K; Nagai, H; Mieskes, G; Isobe, M; Isono, K; Yasumoto, T

    1995-01-01

    Several groups have reported that okadaic acid (OA) and some other tight-binding protein phosphatase inhibitors including microcystin-LR (MCLR), calyculin-A and tautomycin prevent each other from binding to protein phosphatase 2A (PP2A). In this paper, we have introduced an improved procedure for examining to what extent the affinity of an enzyme for a labelled tight-binding ligand is reduced by binding of an unlabelled tight-binding, ligand to the enzyme. Using this procedure, we have analysed the dose-dependent reduction of PP2A binding of [24-3H]OA by addition of OA, MCLR, calyculin-A and tautomycin. The results indicate that the binding of the unlabelled inhibitors to the PP2A molecule causes a dramatic (10(6)-10(8)-fold) increase in the dissociation constant associated with the interaction of [24-3H]OA and PP2A. This suggests that OA and the other inhibitors bind to PP2A in a mutually exclusive manner. The protein phosphatase inhibitors may share the same binding site on the PP2A molecule. We have also measured values of the dissociation constant (Ki) for the interaction of these toxins with protein phosphatase 1 (PP1). For MCLR and calyculin-A, the ratio of the Ki value obtained for PP1 to that for PP2A was in the range 4-9, whereas it was 0.01-0.02 for tautomycin. The value of tautomycin is considerably smaller than that (0.4) calculated from previously reported Ki values. PMID:7702557

  7. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants.

    PubMed

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  8. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants

    PubMed Central

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  9. Histone Chaperone NAP1 Mediates Sister Chromatid Resolution by Counteracting Protein Phosphatase 2A

    PubMed Central

    Kan, Tsung-Wai; Chalkley, Gillian E.; Sap, Karen; Bezstarosti, Karel; Demmers, Jeroen A.; Ozgur, Zeliha; van Ijcken, Wilfred F. J.; Verrijzer, C. Peter

    2013-01-01

    Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis. PMID:24086141

  10. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling

    PubMed Central

    Kauko, Otto; Laajala, Teemu Daniel; Jumppanen, Mikael; Hintsanen, Petteri; Suni, Veronika; Haapaniemi, Pekka; Corthals, Garry; Aittokallio, Tero; Westermarck, Jukka; Imanishi, Susumu Y.

    2015-01-01

    Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays. PMID:26278961

  11. Acute administration of L-dopa induces changes in methylation metabolites, reduced protein phosphatase 2A methylation and hyperphosphorylation of Tau protein in mouse brain

    PubMed Central

    Bottiglieri, Teodoro; Arning, Erland; Wasek, Brandi; Nunbhakdi-Craig, Viyada; Sontag, Jean-Marie; Sontag, Estelle

    2012-01-01

    Folate deficiency and hypomethylation have been implicated in a number of age-related neurodegenerative disorders including dementia and Parkinson’s disease (PD). Levodopa (L-dopa) therapy in PD patients has been shown to cause an increase in plasma total homocysteine (tHcy) as well as depleting cellular concentrations of the methyl donor, S-adenosylmethionine (SAM), and increasing the demethylated product S-adenosylhomocysteine (SAH). Modulation of the cellular SAM/SAH ratio can influence activity of methyltransferase enzymes including leucine carboxyl methyltransferase (LCMT1), that specifically methylates Ser/Thr protein phosphatase 2A (PP2A), a major Tau phosphatase. Here we show in human SH-SY5Y cells and dopaminergic neurons, and in wild type mice that L-dopa results in a reduced SAM/SAH ratio that is associated with hypomethylation of PP2A and increased phosphorylation of Tau (p-Tau) at the Alzheimer disease-like PHF-1 phosphoepitope. The effect of L-dopa on PP2A and p-Tau was exacerbated in cells exposed to folate deficiency. In the folate deficient mouse model, L-dopa resulted in a marked depletion of SAM and increase in SAH in various brain regions with parallel down regulation of PP2A methylation and increased Tau phosphorylation. L-dopa also enhanced demethylated PP2A amounts in the liver. These findings reveal a novel mechanism involving methylation-dependent pathways in which L-dopa induces PP2A hypomethylation and increases Tau phosphorylation, which may be potentially detrimental to neuronal cells. PMID:22764226

  12. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors

    NASA Astrophysics Data System (ADS)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  13. Regioselective, Solvent- and Metal-Free Chalcogenation of Imidazo[1,2-a]pyridines by Employing I2 /DMSO as the Catalytic Oxidation System.

    PubMed

    Rafique, Jamal; Saba, Sumbal; Rosário, Alisson R; Braga, Antonio L

    2016-08-01

    Highly efficient molecular-iodine-catalyzed chalcogenations (S and Se) of imidazo[1,2-a]pyridines were achieved by using diorganoyl dichalcogenides under solvent-free conditions. This approach afforded the desired products that had been chalcogenated regioselectively at the C3 position in up to 96 % yield by using DMSO as an oxidant, in the absence of a metal catalyst, and under an inert atmosphere. This mild, green approach allowed the preparation of different types of chalcogenated imidazo[1,2-a]pyridines with structural diversity. Furthermore, the current protocol was also extended to other N-heterocyclic cores. PMID:27388454

  14. Cucurbitacin B reverses multidrug resistance by targeting CIP2A to reactivate protein phosphatase 2A in MCF-7/adriamycin cells.

    PubMed

    Cai, Fen; Zhang, Liang; Xiao, Xiangling; Duan, Chao; Huang, Qiuyue; Fan, Chunsheng; Li, Jian; Liu, Xuewen; Li, Shan; Liu, Ying

    2016-08-01

    Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a human oncoprotein that is overexpressed in various tumors. A previous study found that CIP2A expression is associated with doxorubicin (Dox) resistance. In the present study, we investigated whether cucurbitacin B (CuB), a natural anticancer compound found in Cucurbitaceae, reversed multidrug resistance (MDR) and downregulated CIP2A expression in MCF-7/Adriamycin (MCF-7/Adr) cells, a human breast multidrug-resistant cancer cell line. CuB treatment significantly suppressed MCF-7/Adr cell proliferation, and reversed Dox resistance. CuB treatment also induced caspase-dependent apoptosis, decreased phosphorylation of Akt (pAkt). The suppression of pAkt was mediated through CuB-induced activation of protein phosphatase 2A (PP2A). Furthermore, CuB activated PP2A through the suppression of CIP2A. Silencing CIP2A enhanced CuB-induced growth inhibition, apoptosis and MDR inhibition in MCF-7/Adr cells. In conclusion, we found that enhancement of PP2A activity by inhibition of CIP2A promotes the reversal of MDR induced by CuB. PMID:27350399

  15. Multiple effects of protein phosphatase 2A on nutrient-induced signalling in the yeast Saccharomyces cerevisiae.

    PubMed

    Sugajska, E; Swiatek, W; Zabrocki, P; Geyskens, I; Thevelein, J M; Zolnierowicz, S; Wera, S

    2001-05-01

    The trehalose-degrading enzyme trehalase is activated upon addition of glucose to derepressed cells or in response to nitrogen source addition to nitrogen-starved glucose-repressed yeast (Saccharomyces cerevisiae) cells. Trehalase activation is mediated by phosphorylation. Inactivation involves dephosphorylation, as trehalase protein levels do not change upon multiple activation/inactivation cycles. Purified trehalase can be inactivated by incubation with protein phosphatase 2A (PP2A) in vitro. To test whether PP2A was involved in trehalase inactivation in vivo, we overexpressed the yeast PP2A isoform Pph22. Unexpectedly, the moderate (approximately threefold) overexpression of Pph22 that we obtained increased basal trehalase activity and rendered this activity unresponsive to the addition of glucose or a nitrogen source. Concomitant with higher basal trehalase activity, cells overexpressing Pph22 did not store trehalose efficiently and were heat sensitive. After the addition of glucose or of a nitrogen source to starved cells, Pph22-overexpressing cells showed a delayed exit from stationary phase, a delayed induction of ribosomal gene expression and constitutive repression of stress-regulated element-controlled genes. Deletion of the SCH9 gene encoding a protein kinase involved in nutrient-induced signal transduction restored glucose-induced trehalase activation in Pph22-overexpressing cells. Taken together, our results indicate that yeast PP2A overexpression leads to the activation of nutrient-induced signal transduction pathways in the absence of nutrients. PMID:11401708

  16. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection.

    PubMed

    Côme, Christophe; Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H; Ollert, Markus W; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  17. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    PubMed Central

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  18. Differential regulation of Cdc2 and Aurora-A in Xenopus oocytes: a crucial role of phosphatase 2A.

    PubMed

    Maton, Gilliane; Lorca, Thierry; Girault, Jean-Antoine; Ozon, René; Jessus, Catherine

    2005-06-01

    The success of cell division relies on the activation of its master regulator Cdc2-cyclin B, and many other kinases controlling cellular organization, such as Aurora-A. Most of these kinase activities are regulated by phosphorylation. Despite numerous studies showing that okadaic acid-sensitive phosphatases regulate both Cdc2 and Aurora-A activation, their identity has not yet been established in Xenopus oocytes and the importance of their regulation has not been evaluated. Using an oocyte cell-free system, we demonstrate that PP2A depletion is sufficient to lead to Cdc2 activation, whereas Aurora-A activation depends on Cdc2 activity. The activity level of PP1 does not affect Cdc2 kinase activation promoted by PP2A removal. PP1 inhibition is also not sufficient to lead to Aurora-A activation in the absence of active Cdc2. We therefore conclude that in Xenopus oocytes, PP2A is the key phosphatase that negatively regulates Cdc2 activation. Once this negative regulator is removed, endogenous kinases are able to turn on the activator Cdc2 system without any additional stimulation. In contrast, Aurora-A activation is indirectly controlled by Cdc2 activity independently of either PP2A or PP1. This strongly suggests that in Xenopus oocytes, Aurora-A activation is mainly controlled by the specific stimulation of kinases under the control of Cdc2 and not by downregulation of phosphatase. PMID:15923661

  19. Ahnak protein activates protein kinase C (PKC) through dissociation of the PKC-protein phosphatase 2A complex.

    PubMed

    Lee, In Hye; Lim, Hee Jung; Yoon, Suhyeon; Seong, Je Kyung; Bae, Duk Soo; Rhee, Sue Goo; Bae, Yun Soo

    2008-03-01

    We have previously reported that central repeated units (CRUs) of Ahnak act as a scaffolding protein networking phospholipase Cgamma and protein kinase C (PKC). Here, we demonstrate that an Ahnak derivative consisting of four central repeated units binds and activates PKC-alpha in a phosphatidylserine/1,2-dioleoyl-sn-glycerol-independent manner. Moreover, NIH3T3 cells expressing the 4 CRUs of Ahnak showed enhanced c-Raf, MEK, and Erk phosphorylation in response to phorbol 12-myristate 13-acetate (PMA) compared with parental cells. To evaluate the effect of loss-of-function of Ahnak in cell signaling, we investigated PKC activation and Raf phosphorylation in embryonic fibroblast cells (MEFs) of the Ahnak knock-out (Ahnak(-/-)) mouse. Membrane translocation of PKC-alpha and phosphorylation of Raf in response to PMA or platelet-derived growth factor were decreased in Ahnak null MEF cells compared with wild type MEFs. Several lines of evidence suggest that PKC-alpha activity is regulated through association with protein phosphatase 2A (PP2A). A co-immunoprecipitation assay indicated that the association of PKC-alpha with PP2A was disrupted in NIH3T3 cells expressing 4 CRUs of Ahnak in response to PMA. Consistently, Ahnak null MEF cells stimulated by PMA showed enhanced PKC-PP2A complex formation, and add-back expression of Ahnak into Ahnak null MEF cells abolished the PKC-PP2A complex formation in response to PMA. These data indicate that Ahnak potentiates PKC activation through inhibiting the interaction of PKC with PP2A. PMID:18174170

  20. Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time – joint functions among B'η subfamily members

    PubMed Central

    Kataya, Amr RA; Heidari, Behzad; Lillo, Cathrine

    2015-01-01

    Protein phosphatase 2A (PP2A) is a heterotrimeric complex comprising a catalytic, scaffolding, and regulatory subunit. The regulatory subunits are essential for substrate specificity and localization of the complex and are classified into B/B55, B', and B” non-related families in higher plants. In Arabidopsis thaliana, the close paralogs B'η, B'θ, B'γ, and B'ζ were further classified into a subfamily of B' called B'η. Here we present results that consolidate the evidence for a role of the B'η subfamily in regulation of innate immunity, energy metabolism and flowering time. Proliferation of the virulent Pseudomonas syringae in B'θ knockout mutant decreased in comparison with wild type plants. Additionally, B'θ knockout plants were delayed in flowering, and this phenotype was supported by high expression of FLC (FLOWERING LOCUS C). B'ζ knockout seedlings showed growth retardation on sucrose-free medium, indicating a role for B'ζ in energy metabolism. This work provides insight into functions of the B'η subfamily members, highlighting their regulation of shared physiological traits while localizing to distinct cellular compartments. PMID:26039486

  1. Catalytic reactor

    DOEpatents

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  2. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice.

    PubMed

    Lecca, Salvatore; Pelosi, Assunta; Tchenio, Anna; Moutkine, Imane; Lujan, Rafael; Hervé, Denis; Mameli, Manuel

    2016-03-01

    The lateral habenula (LHb) encodes aversive signals, and its aberrant activity contributes to depression-like symptoms. However, a limited understanding of the cellular mechanisms underlying LHb hyperactivity has precluded the development of pharmacological strategies to ameliorate depression-like phenotypes. Here we report that an aversive experience in mice, such as foot-shock exposure (FsE), induces LHb neuronal hyperactivity and depression-like symptoms. This occurs along with increased protein phosphatase 2A (PP2A) activity, a known regulator of GABAB receptor (GABABR) and G protein-gated inwardly rectifying potassium (GIRK) channel surface expression. Accordingly, FsE triggers GABAB1 and GIRK2 internalization, leading to rapid and persistent weakening of GABAB-activated GIRK-mediated (GABAB-GIRK) currents. Pharmacological inhibition of PP2A restores both GABAB-GIRK function and neuronal excitability. As a consequence, PP2A inhibition ameliorates depression-like symptoms after FsE and in a learned-helplessness model of depression. Thus, GABAB-GIRK plasticity in the LHb represents a cellular substrate for aversive experience. Furthermore, its reversal by PP2A inhibition may provide a novel therapeutic approach to alleviate symptoms of depression in disorders that are characterized by LHb hyperactivity. PMID:26808347

  3. Organocatalysis in heterocyclic synthesis: DABCO as a mild and efficient catalytic system for the synthesis of a novel class of quinazoline, thiazolo [3,2-a]quinazoline and thiazolo[2,3-b] quinazoline derivatives

    PubMed Central

    2013-01-01

    Background There are only limited publications devoted to the synthesis of especially thiazolo[3,2-a]quinazoline which involved reaction of 2-mercaptopropargyl quinazolin-4-one with various aryl iodides catalyzed by Pd-Cu or by condensation of 2-mercapto-4-oxoquinazoline with chloroacetic acid, inspite of this procedure was also reported in the literature to afford the thiazolo [2,3-b] quinazoline. So the multistep synthesis of the thiazolo[3,2-a]- quinazoline suffered from some flaws and in this study we have synthesized a novel class of thiazoloquinazolines by a simple and convenient method involving catalysis by 1,4-diazabicyclo[2.2.2]octane (DABCO). Results A new and convenient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a-i was established through the reaction between methyl-2-(2-thio-cyanatoacetamido)benzoate (4) and a variety of arylidene malononitriles 8a-i in the presence of DABCO as a mild and efficient catalytic system via a Michael type addition reaction and a mechanism for formation of the products observed is proposed. Moreover 4 was converted to ethyl-2-[(4-oxo-3,4-dihydroquinazolin-2-yl)thio]acetate (10) upon reflux in ethanol containing DABCO as catalyst. The latter was reacted with aromatic aldehydes and dimethylformamide dimethylacetal (DMF-DMA) to afford a mixture of two regioselectively products with identical percentage yield, these two products were identified as thiazolo[3,2-a]quinazoline 9,13 and thiazolo[2,3-b]quinazoline 11,12 derivatives respectively. The structure of the compounds prepared in this study was elucidated by different spectroscopic tools of analyses also the X-ray single crystal technique was employed in this study for structure elucidation, Z/E potential isomerism configuration determination and to determine the regioselectivity of the reactions. Conclusion A simple and efficient one-pot synthesis of a novel class of 2-arylidene-2H-thiazolo[3,2-a]quinazoline-1,5-diones 9a

  4. Novel effects of FTY720 on perinuclear reorganization of keratin network induced by sphingosylphosphorylcholine: Involvement of protein phosphatase 2A and G-protein-coupled receptor-12.

    PubMed

    Park, Mi Kyung; Park, Soyeun; Kim, Hyun Ji; Kim, Eun Ji; Kim, So Yeon; Kang, Gyeoung Jin; Byun, Hyun Jung; Kim, Sang Hee; Lee, Ho; Lee, Chang Hoon

    2016-03-15

    Sphingosylphosphorylcholine (SPC) evokes perinuclear reorganization of keratin 8 (K8) filaments and regulates the viscoelasticity of metastatic cancer cells leading to enhanced migration. Few studies have addressed the compounds modulating the viscoelasticity of metastatic cancer cells. We studied the effects of sphingosine (SPH), sphingosine 1-phosphate (S1P), FTY720 and FTY720-phosphate (FTY720P) on SPC-induced K8 phosphorylation and reorganization using Western blot and confocal microscopy, and also evaluated the elasticity of PANC-1 cells by atomic force microscopy. FTY720, FTY720P, SPH, and S1P concentration-dependently inhibited SPC-evoked phosphorylation and reorganization of K8, and migration of PANC-1 cells. SPC triggered reduction and narrow distribution of elastic constant K and conversely, FTY720 blocked them. A common upstream regulator of JNK and ERK, protein phosphatase 2A (PP2A) expression was reduced by SPC, but was restored by FTY720 and FTY72P. Butyryl forskolin, a PP2A activator, suppressed SPC-induced K8 phosphorylation and okadaic acid, a PP2A inhibitor, induced K8 phosphorylation. Gene silencing of PP2A also led to K8 phosphorylation, reorganization and migration. We also investigated the involvement of GPR12, a high-affinity SPC receptor, in SPC-evoked keratin phosphorylation and reorganization. GPR12 siRNA suppressed the SPC-triggered phosphorylation and reorganization of K8. GPR12 overexpression stimulated keratin phosphorylation and reorganization even without SPC. FTY720 and FTY720P suppressed the GPR12-induced phosphorylation and reorganization of K8. The collective data indicates that FTY720 and FTY720P suppress SPC-induced phosphorylation and reorganization of K8 in PANC-1 cells by restoring the expression of PP2A via GPR12. These findings might be helpful in the development of compounds that modulate the viscoelasticity of metastatic cancer cells and various SPC actions. PMID:26872988

  5. Induction of p53-Independent Apoptosis by the Adenovirus E4orf4 Protein Requires Binding to the Bα Subunit of Protein Phosphatase 2A

    PubMed Central

    Marcellus, Richard C.; Chan, Helen; Paquette, Denis; Thirlwell, Sarah; Boivin, Dominique; Branton, Philip E.

    2000-01-01

    Previous studies have indicated that the E4orf4 protein of human adenovirus type 2 (Ad2) induces p53-independent apoptosis. We believe that this process may play a role in cell death and viral spread at the final stages of productive infection. E4orf4 may also be of therapeutic value in treating some diseases, including cancer, through its ability to induce apoptosis when expressed individually. The only previously identified biochemical function of E4orf4 is its ability to associate with the Bα subunit of protein phosphatase 2A (PP2A). We have used a genetic approach to determine the role of such interactions in E4orf4-induced cell death. E4orf4 deletion mutants were of only limited value, as all were highly defective. We found that E4orf4 proteins from most if not all adenovirus serotypes induced cell death, and thus point mutations were introduced that converted the majority of highly conserved residues to alanines. Such mutants were used to correlate Bα-subunit binding, association with PP2A activity, and cell killing following the transfection of appropriate cDNAs into p53-null H1299 or C33A cells. The results indicated that binding of the Bα subunit is essential for induction of cell death, as every mutant that failed to bind efficiently was totally defective for cell killing. This class of mutations (class I) largely involved residues between amino acids 51 and 89. Almost all E4orf4 mutant proteins that associated with PP2A killed cancer cells at high levels; however, several mutants that associated with significant levels of PP2A were defective for killing (class II). Thus, binding of E4orf4 to PP2A is essential for induction of p53-independent apoptosis, but E4orf4 may possess one or more additional functions required for cell killing. PMID:10933694

  6. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  7. Protein Phosphatase 2A Regulates Interleukin-2 Receptor Complex Formation and JAK3/STAT5 Activation*

    PubMed Central

    Ross, Jeremy A.; Cheng, Hanyin; Nagy, Zsuzsanna S.; Frost, Jeffrey A.; Kirken, Robert A.

    2010-01-01

    Reversible protein phosphorylation plays a key role in interleukin-2 (IL-2) receptor-mediated activation of Janus tyrosine kinase 3 (JAK3) and signal transducer and activator of transcription 5 (STAT5) in lymphocytes. Although the mechanisms governing IL-2-induced tyrosine phosphorylation and activation of JAK3/STAT5 have been extensively studied, the role of serine/threonine phosphorylation in controlling these effectors remains to be elucidated. Using phosphoamino acid analysis, JAK3 and STAT5 were determined to be serine and tyrosine-phosphorylated in response to IL-2 stimulation of the human natural killer-like cell line, YT. IL-2 stimulation also induced serine/threonine phosphorylation of IL-2Rβ, but not IL-2Rγ. To investigate the regulation of serine/threonine phosphorylation in IL-2 signaling, the roles of protein phosphatase 1 (PP1) and 2A (PP2A) were examined. Inhibition of phosphatase activity by calyculin A treatment of YT cells resulted in a significant induction of serine phosphorylation of JAK3 and STAT5, and serine/threonine phosphorylation of IL-2Rβ. Moreover, inhibition of PP2A, but not PP1, diminished IL-2-induced tyrosine phosphorylation of IL-2Rβ, JAK3, and STAT5, and abolished STAT5 DNA binding activity. Serine/threonine phosphorylation of IL-2Rβ by a staurosporine-sensitive kinase also blocked its association with JAK3 and IL-2Rγ in YT cells. Taken together, these data indicate that serine/threonine phosphorylation negatively regulates IL-2 signaling at multiple levels, including receptor complex formation and JAK3/STAT5 activation, and that this regulation is counteracted by PP2A. These findings also suggest that PP2A may serve as a therapeutic target for modulating JAK3/STAT5 activation in human disease. PMID:19923221

  8. A Novel Interaction of the Catalytic Subunit of Protein Phosphatase 2A with the Adaptor Protein CIN85 Suppresses Phosphatase Activity and Facilitates Platelet Outside-in αIIbβ3 Integrin Signaling.

    PubMed

    Khatlani, Tanvir; Pradhan, Subhashree; Da, Qi; Shaw, Tanner; Buchman, Vladimir L; Cruz, Miguel A; Vijayan, K Vinod

    2016-08-12

    The transduction of signals generated by protein kinases and phosphatases are critical for the ability of integrin αIIbβ3 to support stable platelet adhesion and thrombus formation. Unlike kinases, it remains unclear how serine/threonine phosphatases engage the signaling networks that are initiated following integrin ligation. Because protein-protein interactions form the backbone of signal transduction, we searched for proteins that interact with the catalytic subunit of protein phosphatase 2A (PP2Ac). In a yeast two-hybrid study, we identified a novel interaction between PP2Ac and an adaptor protein CIN85 (Cbl-interacting protein of 85 kDa). Truncation and alanine mutagenesis studies revealed that PP2Ac binds to the P3 block ((396)PAIPPKKPRP(405)) of the proline-rich region in CIN85. The interaction of purified PP2Ac with CIN85 suppressed phosphatase activity. Human embryonal kidney 293 αIIbβ3 cells overexpressing a CIN85 P3 mutant, which cannot support PP2Ac binding, displayed decreased adhesion to immobilized fibrinogen. Platelets contain the ∼85 kDa CIN85 protein along with the PP2Ac-CIN85 complex. A myristylated cell-permeable peptide derived from residues 395-407 of CIN85 protein (P3 peptide) disrupted the platelet PP2Ac-CIN85 complex and decreased αIIbβ3 signaling dependent functions such as platelet spreading on fibrinogen and thrombin-mediated fibrin clot retraction. In a phospho-profiling study P3 peptide treated platelets also displayed decreased phosphorylation of several signaling proteins including Src and GSK3β. Taken together, these data support a role for the novel PP2Ac-CIN85 complex in supporting integrin-dependent platelet function by dampening the phosphatase activity. PMID:27334924

  9. Protein Phosphatase 2A Mediates Oxidative Stress Induced Apoptosis in Osteoblasts.

    PubMed

    Huang, Chong-xin; Lv, Bo; Wang, Yue

    2015-01-01

    Osteoporosis is one of the most common bone diseases, which is characterized by a systemic impairment of bone mass and fragility fractures. Age-related oxidative stress is highly associated with impaired osteoblastic dysfunctions and subsequent osteoporosis. In osteoblasts (bone formation cells), reactive oxygen species (ROS) are continuously generated and further cause lipid peroxidation, protein damage, and DNA lesions, leading to osteoblastic dysfunctions, dysdifferentiations, and apoptosis. Although much progress has been made, the mechanism responsible for oxidative stress induced cellular alternations and osteoblastic toxicity is still not fully elucidated. Here, we demonstrate that protein phosphatase 2A (PP2A), a major protein phosphatase in mammalian cells, mediates oxidative stress induced apoptosis in osteoblasts. Our results showed that lipid peroxidation products (4-HNE) may induce dramatic oxidative stress, inflammatory reactions, and apoptosis in osteoblasts. These oxidative stress responses may ectopically activate PP2A phosphatase activity, which may be mediated by inactivation of AKT/mTOR pathway. Moreover, inhibition of PP2A activity by okadaic acid might partly prevent osteoblastic apoptosis under oxidative conditions. These findings may reveal a novel mechanism to clarify the role of oxidative stress for osteoblastic apoptosis and provide new possibilities for the treatment of related bone diseases, such as osteoporosis. PMID:26538836

  10. Protein Phosphatase 2A Mediates Oxidative Stress Induced Apoptosis in Osteoblasts

    PubMed Central

    Huang, Chong-xin; Lv, Bo; Wang, Yue

    2015-01-01

    Osteoporosis is one of the most common bone diseases, which is characterized by a systemic impairment of bone mass and fragility fractures. Age-related oxidative stress is highly associated with impaired osteoblastic dysfunctions and subsequent osteoporosis. In osteoblasts (bone formation cells), reactive oxygen species (ROS) are continuously generated and further cause lipid peroxidation, protein damage, and DNA lesions, leading to osteoblastic dysfunctions, dysdifferentiations, and apoptosis. Although much progress has been made, the mechanism responsible for oxidative stress induced cellular alternations and osteoblastic toxicity is still not fully elucidated. Here, we demonstrate that protein phosphatase 2A (PP2A), a major protein phosphatase in mammalian cells, mediates oxidative stress induced apoptosis in osteoblasts. Our results showed that lipid peroxidation products (4-HNE) may induce dramatic oxidative stress, inflammatory reactions, and apoptosis in osteoblasts. These oxidative stress responses may ectopically activate PP2A phosphatase activity, which may be mediated by inactivation of AKT/mTOR pathway. Moreover, inhibition of PP2A activity by okadaic acid might partly prevent osteoblastic apoptosis under oxidative conditions. These findings may reveal a novel mechanism to clarify the role of oxidative stress for osteoblastic apoptosis and provide new possibilities for the treatment of related bone diseases, such as osteoporosis. PMID:26538836

  11. Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): An oncoprotein with many hands

    PubMed Central

    De, Pradip; Carlson, Jennifer; Leyland-Jones, Brian; Dey, Nandini

    2014-01-01

    Oncoprotein CIP2A a Cancerous Inhibitor of PP2A forms an “oncogenic nexus” by virtue of its control on PP2A and MYC stabilization in cancer cells. The expression and prognostic function of CIP2A in different solid tumors including colorectal carcinoma, head & neck cancers, gastric cancers, lung carcinoma, cholangiocarcinoma, esophageal cancers, pancreatic carcinoma, brain cancers, breast carcinoma, bladder cancers, ovarian carcinoma, renal cell carcinomas, tongue cancers, cervical carcinoma, prostate cancers, and oral carcinoma as well as a number of hematological malignancies are just beginning to emerge. Herein, we reviewed the recent progress in our understanding of (1) how an “oncogenic nexus” of CIP2A participates in the tumorigenic transformation of cells and (2) how we can prospect/view the clinical relevance of CIP2A in the context of cancer therapy. The review will try to understand the role of CIP2A (a) as a biomarker in cancers and evaluate the prognostic value of CIP2A in different cancers (b) as a therapeutic target in cancers and (c) in drug response and developing chemo-resistance in cancers. PMID:25015035

  12. Oncogenic nexus of cancerous inhibitor of protein phosphatase 2A (CIP2A): an oncoprotein with many hands.

    PubMed

    De, Pradip; Carlson, Jennifer; Leyland-Jones, Brian; Dey, Nandini

    2014-07-15

    Oncoprotein CIP2A a Cancerous Inhibitor of PP2A forms an "oncogenic nexus" by virtue of its control on PP2A and MYC stabilization in cancer cells. The expression and prognostic function of CIP2A in different solid tumors including colorectal carcinoma, head and neck cancers, gastric cancers, lung carcinoma, cholangiocarcinoma, esophageal cancers, pancreatic carcinoma, brain cancers, breast carcinoma, bladder cancers, ovarian carcinoma, renal cell carcinomas, tongue cancers, cervical carcinoma, prostate cancers, and oral carcinoma as well as a number of hematological malignancies are just beginning to emerge. Herein, we reviewed the recent progress in our understanding of (1) how an "oncogenic nexus" of CIP2A participates in the tumorigenic transformation of cells and (2) how we can prospect/view the clinical relevance of CIP2A in the context of cancer therapy. The review will try to understand the role of CIP2A (a) as a biomarker in cancers and evaluate the prognostic value of CIP2A in different cancers (b) as a therapeutic target in cancers and (c) in drug response and developing chemo-resistance in cancers. PMID:25015035

  13. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A.

    PubMed

    Wong, Pui-Mun; Feng, Yan; Wang, Junru; Shi, Rong; Jiang, Xuejun

    2015-01-01

    Autophagy is a cellular catabolic process critical for cell viability and homoeostasis. Inhibition of mammalian target of rapamycin (mTOR) complex-1 (mTORC1) activates autophagy. A puzzling observation is that amino acid starvation triggers more rapid autophagy than pharmacological inhibition of mTORC1, although they both block mTORC1 activity with similar kinetics. Here we find that in addition to mTORC1 inactivation, starvation also causes an increase in phosphatase activity towards ULK1, an mTORC1 substrate whose dephosphorylation is required for autophagy induction. We identify the starvation-stimulated phosphatase for ULK1 as the PP2A-B55α complex. Treatment of cells with starvation but not mTORC1 inhibitors triggers dissociation of PP2A from its inhibitor Alpha4. Furthermore, pancreatic ductal adenocarcinoma cells, whose growth depends on high basal autophagy, possess stronger basal phosphatase activity towards ULK1 and require ULK1 for sustained anchorage-independent growth. Taken together, concurrent mTORC1 inactivation and PP2A-B55α stimulation fuel ULK1-dependent autophagy. PMID:26310906

  14. cAMP-stimulated protein phosphatase 2A activity associated with muscle A kinase-anchoring protein (mAKAP) signaling complexes inhibits the phosphorylation and activity of the cAMP-specific phosphodiesterase PDE4D3.

    PubMed

    Dodge-Kafka, Kimberly L; Bauman, Andrea; Mayer, Nicole; Henson, Edward; Heredia, Lorena; Ahn, Jung; McAvoy, Thomas; Nairn, Angus C; Kapiloff, Michael S

    2010-04-01

    The concentration of the second messenger cAMP is tightly controlled in cells by the activity of phosphodiesterases. We have previously described how the protein kinase A-anchoring protein mAKAP serves as a scaffold for the cAMP-dependent protein kinase PKA and the cAMP-specific phosphodiesterase PDE4D3 in cardiac myocytes. PKA and PDE4D3 constitute a negative feedback loop whereby PKA-catalyzed phosphorylation and activation of PDE4D3 attenuate local cAMP levels. We now show that protein phosphatase 2A (PP2A) associated with mAKAP complexes is responsible for reversing the activation of PDE4D3 by catalyzing the dephosphorylation of PDE4D3 serine residue 54. Mapping studies reveal that a C-terminal mAKAP domain (residues 2085-2319) binds PP2A. Binding to mAKAP is required for PP2A function, such that deletion of the C-terminal domain enhances both base-line and forskolin-stimulated PDE4D3 activity. Interestingly, PP2A holoenzyme associated with mAKAP complexes in the heart contains the PP2A targeting subunit B56delta. Like PDE4D3, B56delta is a PKA substrate, and PKA phosphorylation of mAKAP-bound B56delta enhances phosphatase activity 2-fold in the complex. Accordingly, expression of a B56delta mutant that cannot be phosphorylated by PKA results in increased PDE4D3 phosphorylation. Taken together, our findings demonstrate that PP2A associated with mAKAP complexes promotes PDE4D3 dephosphorylation, serving both to inhibit PDE4D3 in unstimulated cells and also to mediate a cAMP-induced positive feedback loop following adenylyl cyclase activation and B56delta phosphorylation. In general, PKA.PP2A.mAKAP complexes exemplify how protein kinases and phosphatases may participate in molecular signaling complexes to dynamically regulate localized intracellular signaling. PMID:20106966

  15. Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: differences in expression, subunit interaction, and evolution.

    PubMed Central

    Zhou, Jin; Pham, Huong T; Ruediger, Ralf; Walter, Gernot

    2003-01-01

    Protein phosphatase 2A (PP2A) is very versatile owing to a large number of regulatory subunits and its ability to interact with numerous other proteins. The regulatory A subunit exists as two closely related isoforms designated Aalpha and Abeta. Mutations have been found in both isoforms in a variety of human cancers. Although Aalpha has been intensely studied, little is known about Abeta. We generated Abeta-specific antibodies and determined the cell cycle expression, subcellular distribution, and metabolic stability of Abeta in comparison with Aalpha. Both forms were expressed at constant levels throughout the cell cycle, but Aalpha was expressed at a much higher level than Abeta. Both forms were found predominantly in the cytoplasm, and both had a half-life of approx. 10 h. However, Aalpha and Abeta differed substantially in their expression patterns in normal tissues and in tumour cell lines. Whereas Aalpha was expressed at similarly high levels in all tissues and cell lines, Abeta expression varied greatly. In addition, in vivo studies with epitope-tagged Aalpha and Abeta subunits demonstrated that Abeta is a markedly weaker binder of regulatory B and catalytic C subunits than Aalpha. Construction of phylogenetic trees revealed that the conservation of Aalpha during the evolution of mammals is extraordinarily high in comparison with both Abeta and cytochrome c, suggesting that Aalpha is involved in more protein-protein interactions than Abeta. We also measured the binding of polyoma virus middle tumour antigen and simian virus 40 (SV40) small tumour antigen to Aalpha and Abeta. Whereas both isoforms bound polyoma virus middle tumour antigen equally well, only Aalpha bound SV40 small tumour antigen. PMID:12370081

  16. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes. PMID:25642796

  17. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling

    PubMed Central

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-01-01

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical–basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity. PMID:26888284

  18. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    PubMed

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-01

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity. PMID:26888284

  19. Knockdown of microRNA-195 contributes to protein phosphatase-2A inactivation in rats with chronic brain hypoperfusion.

    PubMed

    Liu, Cheng-Di; Wang, Qin; Zong, De-Kang; Pei, Shuang-Chao; Yan, Yan; Yan, Mei-Ling; Sun, Lin-Lin; Hao, Yang-Yang; Mao, Meng; Xing, Wen-Jing; Ren, Huan; Ai, Jing

    2016-09-01

    Reduction of protein phosphatase-2A (PP2A) activity is a common clinical feature of Alzheimer's disease and vascular dementia. In this study, we observed that chronic brain hypoperfusion induced by bilateral common carotid artery occlusion of rats led to PP2A inactivation based on the increase in tyrosine-307 phosphorylation and leucine-309 demethylation of PP2AC and the depression in PP2ABα. Knockdown of miR-195 using overexpression of its antisense molecule oligonucleotide (pre-AMO-miR-195) delivered by a lentivirus (lenti-pre-AMO-miR-195) increased tyrosine-307 phosphorylation and decreased both PP2ABα expression and leucine-309 methylation; these effects were prevented by the overexpression of miR-195 using lenti-pre-miR-195 and controlled by an increase in methylesterase (PME-1) and a decrease in leucine carboxyl methyltransferase-1. In vitro studies demonstrated that miR-195 regulated PME-1 expression by binding to the Ppme1 gene 3'-untranslated region (3'UTR) domain. Masking the miR-195 binding sites in the amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 genes prevented miR-195-induced leucine carboxyl methyltransferase-1 elevation. We concluded that the miR-195 downregulation in chronic brain hypoperfusion involved PP2A inactivity, which was mediated by the post-transcriptional regulation PME-1, APP, and β-site APP cleaving enzyme 1 expression. PMID:27459928

  20. Cross Talk between Wnt/β-Catenin and CIP2A/Plk1 Signaling in Prostate Cancer: Promising Therapeutic Implications.

    PubMed

    Cristóbal, Ion; Rojo, Federico; Madoz-Gúrpide, Juan; García-Foncillas, Jesús

    2016-06-15

    Aberrant activation of the Wnt/β-catenin pathway and polo-like kinase 1 (Plk1) overexpression represent two common events in prostate cancer with relevant functional implications. This minireview analyzes their potential therapeutic significance in prostate cancer based on their role as androgen receptor (AR) signaling regulators and the pivotal role of the tumor suppressor protein phosphatase 2A (PP2A) modulating these pathways. PMID:27090640

  1. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  2. Catalytic distillation structure

    DOEpatents

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  3. Catalytic cracking process

    DOEpatents

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  4. CIP2A oncoprotein controls cell growth and autophagy through mTORC1 activation

    PubMed Central

    Puustinen, Pietri; Rytter, Anna; Mortensen, Monika; Kohonen, Pekka; Moreira, José M.

    2014-01-01

    mTORC1 (mammalian target of rapamycin complex 1) integrates information regarding availability of nutrients and energy to coordinate protein synthesis and autophagy. Using ribonucleic acid interference screens for autophagy-regulating phosphatases in human breast cancer cells, we identify CIP2A (cancerous inhibitor of PP2A [protein phosphatase 2A]) as a key modulator of mTORC1 and autophagy. CIP2A associates with mTORC1 and acts as an allosteric inhibitor of mTORC1-associated PP2A, thereby enhancing mTORC1-dependent growth signaling and inhibiting autophagy. This regulatory circuit is reversed by ubiquitination and p62/SQSTM1-dependent autophagic degradation of CIP2A and subsequent inhibition of mTORC1 activity. Consistent with CIP2A’s reported ability to protect c-Myc against proteasome-mediated degradation, autophagic degradation of CIP2A upon mTORC1 inhibition leads to destabilization of c-Myc. These data characterize CIP2A as a distinct regulator of mTORC1 and reveals mTORC1-dependent control of CIP2A degradation as a mechanism that links mTORC1 activity with c-Myc stability to coordinate cellular metabolism, growth, and proliferation. PMID:24590173

  5. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    PubMed

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. PMID:26080028

  6. Fusarochromanone-induced reactive oxygen species results in activation of JNK cascade and cell death by inhibiting protein phosphatases 2A and 5

    PubMed Central

    Gu, Ying; Barzegar, Mansoureh; Chen, Xin; Wu, Yang; Shang, Chaowei; Mahdavian, Elahe; Salvatore, Brian A.; Jiang, Shanxiang; Huang, Shile

    2015-01-01

    Recent studies have shown that fusarochromanone (FC101), a mycotoxin, is cytotoxic in a variety of cell lines. However, the molecular mechanism underlying its cytotoxicity remains elusive. Here we found that FC101 induced cell death in COS7 and HEK293 cells in part by activating JNK pathway. This is evidenced by the findings that inhibition of JNK with SP600125 or expression of dominant negative c-Jun partially prevented FC101-induced cell death. Furthermore, we observed that FC101-activated JNK pathway was attributed to induction of reactive oxygen species (ROS). Pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger and antioxidant, suppressed FC101-induced activation of JNK and cell death. Moreover, we noticed that FC101 inhibited the serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5) in the cells, which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented FC101-induced activation of JNK and cell death. The results indicate that FC101-induced ROS inhibits PP2A and PP5, leading to activation of JNK pathway and consequently resulting in cell death. PMID:26517353

  7. Retinoic Acid Modulates Interferon-γ Production by Hepatic Natural Killer T Cells via Phosphatase 2A and the Extracellular Signal-Regulated Kinase Pathway

    PubMed Central

    Chang, Heng-Kwei

    2015-01-01

    Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668

  8. Nitric oxide modulates chromatin folding in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling.

    PubMed

    Illi, Barbara; Dello Russo, Claudio; Colussi, Claudia; Rosati, Jessica; Pallaoro, Michele; Spallotta, Francesco; Rotili, Dante; Valente, Sergio; Ragone, Gianluca; Martelli, Fabio; Biglioli, Paolo; Steinkuhler, Christian; Gallinari, Paola; Mai, Antonello; Capogrossi, Maurizio C; Gaetano, Carlo

    2008-01-01

    Nitric oxide (NO) modulates important endothelial cell (EC) functions and gene expression by a molecular mechanism which is still poorly characterized. Here we show that in human umbilical vein ECs (HUVECs) NO inhibited serum-induced histone acetylation and enhanced histone deacetylase (HDAC) activity. By immunofluorescence and Western blot analyses it was found that NO induced class II HDAC4 and 5 nuclear shuttling and that class II HDACs selective inhibitor MC1568 rescued serum-dependent histone acetylation above control level in NO-treated HUVECs. In contrast, class I HDACs inhibitor MS27-275 had no effect, indicating a specific role for class II HDACs in NO-dependent histone deacetylation. In addition, it was found that NO ability to induce HDAC4 and HDAC5 nuclear shuttling involved the activation of the protein phosphatase 2A (PP2A). In fact, HDAC4 nuclear translocation was impaired in ECs expressing small-t antigen and exposed to NO. Finally, in cells engineered to express a HDAC4-Flag fusion protein, NO induced the formation of a macromolecular complex including HDAC4, HDAC3, HDAC5, and an active PP2A. The present results show that NO-dependent PP2A activation plays a key role in class II HDACs nuclear translocation. PMID:17975112

  9. cAMP-stimulated Protein Phosphatase 2A Activity Associated with Muscle A Kinase-anchoring Protein (mAKAP) Signaling Complexes Inhibits the Phosphorylation and Activity of the cAMP-specific Phosphodiesterase PDE4D3*

    PubMed Central

    Dodge-Kafka, Kimberly L.; Bauman, Andrea; Mayer, Nicole; Henson, Edward; Heredia, Lorena; Ahn, Jung; McAvoy, Thomas; Nairn, Angus C.; Kapiloff, Michael S.

    2010-01-01

    The concentration of the second messenger cAMP is tightly controlled in cells by the activity of phosphodiesterases. We have previously described how the protein kinase A-anchoring protein mAKAP serves as a scaffold for the cAMP-dependent protein kinase PKA and the cAMP-specific phosphodiesterase PDE4D3 in cardiac myocytes. PKA and PDE4D3 constitute a negative feedback loop whereby PKA-catalyzed phosphorylation and activation of PDE4D3 attenuate local cAMP levels. We now show that protein phosphatase 2A (PP2A) associated with mAKAP complexes is responsible for reversing the activation of PDE4D3 by catalyzing the dephosphorylation of PDE4D3 serine residue 54. Mapping studies reveal that a C-terminal mAKAP domain (residues 2085–2319) binds PP2A. Binding to mAKAP is required for PP2A function, such that deletion of the C-terminal domain enhances both base-line and forskolin-stimulated PDE4D3 activity. Interestingly, PP2A holoenzyme associated with mAKAP complexes in the heart contains the PP2A targeting subunit B56δ. Like PDE4D3, B56δ is a PKA substrate, and PKA phosphorylation of mAKAP-bound B56δ enhances phosphatase activity 2-fold in the complex. Accordingly, expression of a B56δ mutant that cannot be phosphorylated by PKA results in increased PDE4D3 phosphorylation. Taken together, our findings demonstrate that PP2A associated with mAKAP complexes promotes PDE4D3 dephosphorylation, serving both to inhibit PDE4D3 in unstimulated cells and also to mediate a cAMP-induced positive feedback loop following adenylyl cyclase activation and B56δ phosphorylation. In general, PKA·PP2A·mAKAP complexes exemplify how protein kinases and phosphatases may participate in molecular signaling complexes to dynamically regulate localized intracellular signaling. PMID:20106966

  10. Theophylline Represses IL-8 Secretion from Airway Smooth Muscle Cells Independently of Phosphodiesterase Inhibition. Novel Role as a Protein Phosphatase 2A Activator.

    PubMed

    Patel, Brijeshkumar S; Rahman, Md Mostafizur; Rumzhum, Nowshin N; Oliver, Brian G; Verrills, Nicole M; Ammit, Alaina J

    2016-06-01

    Theophylline is an old drug experiencing a renaissance owing to its beneficial antiinflammatory effects in chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease. Multiple modes of antiinflammatory action have been reported, including inhibition of the enzymes that degrade cAMP-phosphodiesterase (PDE). Using primary cultures of airway smooth muscle (ASM) cells, we recently revealed that PDE4 inhibitors can potentiate the antiinflammatory action of β2-agonists by augmenting cAMP-dependent expression of the phosphatase that deactivates mitogen-activated protein kinase (MAPK)-MAPK phosphatase (MKP)-1. Therefore, the aim of this study was to address whether theophylline repressed cytokine production in a similar, PDE-dependent, MKP-1-mediated manner. Notably, theophylline did not potentiate cAMP release from ASM cells treated with the long-acting β2-agonist formoterol. Moreover, theophylline (0.1-10 μM) did not increase formoterol-induced MKP-1 messenger RNA expression nor protein up-regulation, consistent with the lack of cAMP generation. However, theophylline (at 10 μM) was antiinflammatory and repressed secretion of the neutrophil chemoattractant cytokine IL-8, which is produced in response to TNF-α. Because theophylline's effects were independent of PDE4 inhibition or antiinflammatory MKP-1, we then wished to elucidate the novel mechanisms responsible. We investigated the impact of theophylline on protein phosphatase (PP) 2A, a master controller of multiple inflammatory signaling pathways, and show that theophylline increases TNF-α-induced PP2A activity in ASM cells. Confirmatory results were obtained in A549 lung epithelial cells. PP2A activators have beneficial effects in ex vivo and in vivo models of respiratory disease. Thus, our study is the first to link theophylline with PP2A activation as a novel mechanism to control respiratory inflammation. PMID:26574643

  11. Role of "oncogenic nexus" of CIP2A in breast oncogenesis: how does it work?

    PubMed

    De, Pradip; Carlson, Jennifer H; Leyland-Jones, Brian; Dey, Nandini

    2015-01-01

    The CIP2A gene is an oncogene associated with solid and hematologic malignancies [1]. CIP2A protein is an oncoprotein and a potential cancer therapy target [2]. Literature shows that CIP2A inhibits the tumor suppressor protein PP2A [3] which downregulates phophorylation of AKT, a hallmark of cancers [4] and stabilizes the proto-oncogene, c-MYC in tumor cells [5], the comprehensive action of CIP2A and its functional interaction(s) with other oncoproteins and tumor suppressors is not clearly established. Recently we tried to put forward a contextual mode-of-action of CIP2A protein in a review which proposed that CIP2A influences oncogenesis via an "oncogenic nexus" [1]. In this review we critically evaluated the potential relevance of the mode-of-action of the "oncogenic nexus" of CIP2A in breast carcinogenesis and appraised the role of this nexus in different PAM50 luminal A, PAM50 luminal B, PAM50 HER2-enriched and PAM50 basal BC. This review has a novel approach. Here we have not only compiled and discussed the latest developments in this field but also presented data obtained from c-BioPortal and STRING10 in order to substantiate our view regarding the mode-of-action of the "oncogenic nexus" of CIP2A. We functionally correlated alterations of genes pertaining to the "oncogenic nexus" of CIP2A with protein-protein interactions between the different components of the nexus including (1) subunits of PP2A, (2) multiple transcription factors including MYC oncogene and (3) components of the PI3K-mTOR and the MAPK-ERK oncogenic pathways. Using these proteins as "input" to STRING10 we studied the association, Action view, at the highest Confidence level. OncoPrints (c-BioPortal) showed alterations (%) of regulatory subunits genes of PP2A (PPP2R1A and PPP2R1B) along with alterations of CIP2A in breast invasive carcinoma (TCGA, Nature 2012 & TCGA, Provisional). Similar genetic alterations of PP2A were also observed in samples of breast tumors at our Avera Research

  12. Catalytic distillation process

    DOEpatents

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  13. Catalytic distillation process

    DOEpatents

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  14. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  15. Catalytic distillation structure

    DOEpatents

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  16. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  17. Catalytic coherence transformations

    NASA Astrophysics Data System (ADS)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  18. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  19. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  20. Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancers by modulating CDC25C/CDK1 and homologous recombination repair

    PubMed Central

    Wei, Dongping; Parsels, Leslie A.; Karnak, David; Davis, Mary A.; Parsels, Joshua D.; Zhao, Lili; Maybaum, Jonathan; Lawrence, Theodore S.; Sun, Yi; Morgan, Meredith A.

    2013-01-01

    Purpose To identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer and thus improve survival, we performed an siRNA library screen in pancreatic cancer cells. We investigated PPP2R1A, a scaffolding subunit of protein phosphatase 2A (PP2A) as a lead radiosensitizing target. Experimental Design We determined the effect of PP2A inhibition by genetic (PPP2R1A siRNA) and pharmacological (LB100, a small molecule entering Phase I clinical trials) approaches on radiosensitization of Panc-1 and MiaPaCa-2 pancreatic cancer cells both in vitro and in vivo. Results PPP2R1A depletion by siRNA radiosensitized Panc-1 and MiaPaCa-2 cells, with radiation enhancement ratios of 1.4 (P<0.05). Likewise, LB100 produced similar radiosensitization in pancreatic cancer cells, but minimal radiosensitization in normal small intestinal cells. Mechanistically, PPP2R1A siRNA or LB100 caused aberrant CDK1 activation, likely resulting from accumulation of the active forms of PLK1 (pPLK1 T210) and CDC25C (pCDC25C T130). Furthermore, LB100 inhibited radiation-induced Rad51 focus formation and homologous recombination repair (HRR), ultimately leading to persistent radiation-induced DNA damage, as reflected by γH2AX expression. Finally, we identified CDC25C as a key PP2A substrate involved in LB100-mediated radiosensitization as depletion of CDC25C partially reversed LB100-mediated radiosensitization. In a mouse xenograft model of human pancreatic cancer, LB100 produced significant radiosensitization with minimal weight loss. Conclusions Collectively, our data demonstrate that PP2A inhibition radiosensitizes pancreatic cancer both in vitro and in vivo via activation of CDC25C/CDK1 and inhibition of HRR, and provide proof-of-concept evidence that PP2A is a promising target for the improvement of local therapy in pancreatic cancer. PMID:23780887

  1. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    SciTech Connect

    Eum, Sung Yong Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  2. Inhibition of Protein Phosphatase 2A: Focus on the Glutamatergic System.

    PubMed

    Zimmer, Eduardo R; Leuzy, Antoine; Souza, Diogo O; Portela, Luis V

    2016-08-01

    In a recent review published in Molecular Neurobiology, Kamat and colleagues (Mol Neurobiol. 2014 Dec;50(3):852-65) highlighted the cellular and molecular mechanisms involved in Okadaic acid (OKA)-induced neurotoxicity. In this review, the authors underline a wide range of pathological signaling pathways involved in OKA-induced neurotoxicity; however, the role of glutamate was only briefly described. We believe that the hyperactivation of the glutamatergic system is a key pathophysiological player in OKA-induced neurotoxicity and deserves serious attention. In this commentary, we propose an integrative model linking glutamate and PP2A and put forward some unanswered questions. PMID:26141124

  3. Catalytic hydrotreating process

    DOEpatents

    Karr, Jr., Clarence; McCaskill, Kenneth B.

    1978-01-01

    Carbonaceous liquids boiling above about 300.degree. C such as tars, petroleum residuals, shale oils and coal-derived liquids are catalytically hydrotreated by introducing the carbonaceous liquid into a reaction zone at a temperature in the range of 300.degree. to 450.degree. C and a pressure in the range of 300 to 4000 psig for effecting contact between the carbonaceous liquid and a catalytic transition metal sulfide in the reaction zone as a layer on a hydrogen permeable transition metal substrate and then introducing hydrogen into the reaction zone by diffusing the hydrogen through the substrate to effect the hydrogenation of the carbonaceous liquid in the presence of the catalytic sulfide layer.

  4. Catalytic membranes beckon

    SciTech Connect

    Caruana, C.M.

    1994-11-01

    Chemical engineers here and abroad are finding that the marriage of catalysts and membranes holds promise for faster and more specific reactions, although commercialization of this technology is several years away. Catalytic membrane reactors (CMRs) combine a heterogeneous catalyst and a permselective membrane. Reactions performed by CMRs provide higher yields--sometimes as much as 50% higher--because of better reaction selectivity--as opposed to separation selectivity. CMRs also can work at very high temperatures, using ceramic materials that would not be possible with organic membranes. Although the use of CMRs is not widespread presently, the development of new membranes--particularly porous ceramic and zeolite membranes--will increase the potential to improve yields of many catalytic processes. The paper discusses ongoing studies, metal and advanced materials for membranes, the need for continued research, hydrogen recovery from coal-derived gases, catalytic oxidation of sulfides, CMRs for water purification, and oxidative coupling of methane.

  5. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  6. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  7. Polymerized collagen inhibits fibroblast proliferation via a mechanism involving the formation of a beta1 integrin-protein phosphatase 2A-tuberous sclerosis complex 2 complex that suppresses S6K1 activity.

    PubMed

    Xia, Hong; Nho, Richard; Kleidon, Jill; Kahm, Judy; Henke, Craig A

    2008-07-18

    Polymerized type I collagen suppresses fibroblast proliferation. Previous studies have implicated inhibition of fibroblast proliferation with polymerized collagen-mediated suppression of S6K1, but the molecular mechanism of the critical negative feedback loop has not yet been fully elucidated. Here, we demonstrate that polymerized collagen suppresses G(1)/S phase transition and fibroblast proliferation by a novel mechanism involving the formation of a beta1 integrin-protein phosphatase 2A (PP2A)-tuberous sclerosis complex 2 (TSC2) complex that represses S6K1 activity. In response to fibroblast interaction with polymerized collagen, beta1 integrin forms a complex with PP2A that targets TSC2 as a substrate. PP2A represses the level of TSC2 phosphorylation and maintains TSC2 in an activated state. Activated TSC2 negatively regulates the downstream kinase S6K1 and inhibits G(1)/S transit. Knockdown of TSC2 enables fibroblasts to overcome the anti-proliferative properties of polymerized collagen. Furthermore, we show that this reduction in TSC2 and S6K1 phosphorylation occurs largely independent of Akt. Although S6K1 activity was markedly suppressed by polymerized collagen, we found that minimal changes in Akt activity occurred. We demonstrate that up-regulation of Akt by overexpression of constitutively active phosphatidylinositol 3-kinase p110 subunit had minor effects on TSC2 and S6K1 phosphorylation. These findings demonstrate that polymerized collagen represses fibroblast proliferation by a mechanism involving the formation of a beta1 integrin-PP2A-TSC2 complex that negatively regulates S6K1 and inhibits G(1)/S phase transition. PMID:18487611

  8. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    PubMed Central

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  9. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    PubMed

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  10. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis.

    PubMed Central

    Garbers, C; DeLong, A; Deruére, J; Bernasconi, P; Söll, D

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis. Images PMID:8641277

  11. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  12. Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6 (b2a2) mRNA.

    PubMed

    Kuwabara, T; Warashina, M; Tanabe, T; Tani, K; Asano, S; Taira, K

    1997-08-01

    With the eventual goal of developing a treatment for chronic myelogenous leukemia (CML), attempts have been made to design hammerhead ribozymes that can specifically cleave BCR-ABL fusion mRNA. In the case of L6 BCR-ABL fusion mRNA (b2a2 type; BCR exon 2 is fused to ABL exon 2), which has no effective cleavage sites for conventional hammerhead ribozymes near the BCR-ABL junction, it has proved very difficult to cleave the chimeric mRNA specifically. Several hammerhead ribozymes with relatively long junction-recognition sequences have poor substrate-specificity. Therefore, we explored the possibility of using newly selected DNA enzymes that can cleave RNA molecules with high activity to cleave L6 BCR-ABL fusion (b2a2) mRNA. In contrast to the results with the conventional ribozymes, the newly designed DNA enzymes, having higher flexibility for selection of cleavage sites, were able to cleave this chimeric RNA molecule specifically at sites close to the junction. Cleavage occurred only within the abnormal BCR-ABL mRNA, without any cleavage of the normal ABL or BCR mRNA. Thus, these chemically synthesized DNA enzymes seem to be potentially useful for application in vivo , especially for the treatment of CML, if we can develop exogenous delivery strategies. PMID:9224607

  13. Hollow fiber catalytic membranes

    SciTech Connect

    Ma, Yi Hua; Moser, W.; Shelekhin, A.; Pien, Shyhing

    1993-09-01

    The objective of the present research is to investigate the possibility of the enhancement of the H{sub 2}S thermal decomposition in the IGCC system by employing the hollow fiber catalytic membrane reactor. To accomplish the objective, the following major components in the analysis of the high temperature membrane reactor must be investigated: high-temperature stability of the porous glass membrane; catalytic properties of MoS{sub 2} and of the porous glass membrane; catalytic decomposition of H{sub 2}S in a packed bed reactor; catalytic decomposition of 100%, 8.6%, and 1.1% H{sub 2}S gas mixtures in the membrane reactor. The study has been shown that the conversion of the H{sub 2}S can be increased in the packed bed membrane reactor compared to the equilibrium conversion on the shell side. The development of a mathematical model for the proposed process is in progress. The model will enable optimization of the H{sub 2}S decomposition. These conditions include selectivity factors and pressure drop across the membrane.

  14. Monolithic catalytic igniters

    NASA Technical Reports Server (NTRS)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  15. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  16. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  17. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System

    PubMed Central

    Buonomo, Joseph A; Aldrich, Courtney C

    2015-01-01

    The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi’s azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction. PMID:26347115

  18. Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System.

    PubMed

    Buonomo, Joseph A; Aldrich, Courtney C

    2015-10-26

    The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi's azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction. PMID:26347115

  19. Role of “oncogenic nexus” of CIP2A in breast oncogenesis: how does it work?

    PubMed Central

    De, Pradip; Carlson, Jennifer H; Leyland-Jones, Brian; Dey, Nandini

    2015-01-01

    The CIP2A gene is an oncogene associated with solid and hematologic malignancies [1]. CIP2A protein is an oncoprotein and a potential cancer therapy target [2]. Literature shows that CIP2A inhibits the tumor suppressor protein PP2A [3] which downregulates phophorylation of AKT, a hallmark of cancers [4] and stabilizes the proto-oncogene, c-MYC in tumor cells [5], the comprehensive action of CIP2A and its functional interaction(s) with other oncoproteins and tumor suppressors is not clearly established. Recently we tried to put forward a contextual mode-of-action of CIP2A protein in a review which proposed that CIP2A influences oncogenesis via an “oncogenic nexus” [1]. In this review we critically evaluated the potential relevance of the mode-of-action of the “oncogenic nexus” of CIP2A in breast carcinogenesis and appraised the role of this nexus in different PAM50 luminal A, PAM50 luminal B, PAM50 HER2-enriched and PAM50 basal BC. This review has a novel approach. Here we have not only compiled and discussed the latest developments in this field but also presented data obtained from c-BioPortal and STRING10 in order to substantiate our view regarding the mode-of-action of the “oncogenic nexus” of CIP2A. We functionally correlated alterations of genes pertaining to the “oncogenic nexus” of CIP2A with protein-protein interactions between the different components of the nexus including (1) subunits of PP2A, (2) multiple transcription factors including MYC oncogene and (3) components of the PI3K-mTOR and the MAPK-ERK oncogenic pathways. Using these proteins as “input” to STRING10 we studied the association, Action view, at the highest Confidence level. OncoPrints (c-BioPortal) showed alterations (%) of regulatory subunits genes of PP2A (PPP2R1A and PPP2R1B) along with alterations of CIP2A in breast invasive carcinoma (TCGA, Nature 2012 & TCGA, Provisional). Similar genetic alterations of PP2A were also observed in samples of breast tumors at our

  20. HSP105 recruits protein phosphatase 2A to dephosphorylate β-catenin.

    PubMed

    Yu, Nancy; Kakunda, Michael; Pham, Victoria; Lill, Jennie R; Du, Pan; Wongchenko, Matthew; Yan, Yibing; Firestein, Ron; Huang, XiaoDong

    2015-04-01

    The Wnt/β-catenin pathway causes accumulation of β-catenin in the cytoplasm and its subsequent translocation into the nucleus to initiate the transcription of the target genes. Without Wnt stimulation, β-catenin forms a complex with axin (axis inhibitor), adenomatous polyposis coli (APC), casein kinase 1α (CK1α), and glycogen synthase kinase 3β (GSK3β) and undergoes phosphorylation-dependent ubiquitination. Phosphatases, such as protein phosphatase 2A (PP2A), interestingly, also are components of this degradation complex; therefore, a balance must be reached between phosphorylation and dephosphorylation. How this balance is regulated is largely unknown. Here we show that a heat shock protein, HSP105, is a previously unidentified component of the β-catenin degradation complex. HSP105 is required for Wnt signaling, since depletion of HSP105 compromises β-catenin accumulation and target gene transcription upon Wnt stimulation. Mechanistically, HSP105 depletion disrupts the integration of PP2A into the β-catenin degradation complex, favoring the hyperphosphorylation and degradation of β-catenin. HSP105 is overexpressed in many types of tumors, correlating with increased nuclear β-catenin protein levels and Wnt target gene upregulation. Furthermore, overexpression of HSP105 is a prognostic biomarker that correlates with poor overall survival in breast cancer patients as well as melanoma patients participating in the BRIM2 clinical study. PMID:25645927

  1. HSP105 Recruits Protein Phosphatase 2A To Dephosphorylate β-Catenin

    PubMed Central

    Yu, Nancy; Kakunda, Michael; Pham, Victoria; Lill, Jennie R.; Du, Pan; Wongchenko, Matthew; Yan, Yibing; Firestein, Ron

    2015-01-01

    The Wnt/β-catenin pathway causes accumulation of β-catenin in the cytoplasm and its subsequent translocation into the nucleus to initiate the transcription of the target genes. Without Wnt stimulation, β-catenin forms a complex with axin (axis inhibitor), adenomatous polyposis coli (APC), casein kinase 1α (CK1α), and glycogen synthase kinase 3β (GSK3β) and undergoes phosphorylation-dependent ubiquitination. Phosphatases, such as protein phosphatase 2A (PP2A), interestingly, also are components of this degradation complex; therefore, a balance must be reached between phosphorylation and dephosphorylation. How this balance is regulated is largely unknown. Here we show that a heat shock protein, HSP105, is a previously unidentified component of the β-catenin degradation complex. HSP105 is required for Wnt signaling, since depletion of HSP105 compromises β-catenin accumulation and target gene transcription upon Wnt stimulation. Mechanistically, HSP105 depletion disrupts the integration of PP2A into the β-catenin degradation complex, favoring the hyperphosphorylation and degradation of β-catenin. HSP105 is overexpressed in many types of tumors, correlating with increased nuclear β-catenin protein levels and Wnt target gene upregulation. Furthermore, overexpression of HSP105 is a prognostic biomarker that correlates with poor overall survival in breast cancer patients as well as melanoma patients participating in the BRIM2 clinical study. PMID:25645927

  2. Catalytic Antioxidants and Neurodegeneration

    PubMed Central

    Golden, Tamara R.

    2009-01-01

    Abstract Oxidative stress, resulting from mitochondrial dysfunction, excitotoxicity, or neuroinflammation, is implicated in numerous neurodegenerative conditions. Damage due to superoxide, hydroxyl radical, and peroxynitrite has been observed in diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as in acute conditions that lead to neuronal death, such as stroke and epilepsy. Antioxidant therapies to remove these toxic compounds have been of great interest in treating these disorders. Catalytic antioxidants mimic the activities of superoxide dismutase or catalase or both, detoxifying superoxide and hydrogen peroxide, and in some cases, peroxynitrite and other toxic species as well. Several compounds have demonstrated efficacy in in vitro and in animal models of neurodegeneration, leading to optimism that catalytic antioxidants may prove to be useful therapies in human disease. Antioxid. Redox Signal. 11, 555–569. PMID:18754709

  3. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  4. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  5. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  6. Catalytic combustion nears application

    SciTech Connect

    1994-11-01

    This article is a brief review of efforts to develope a catalytic combustion system with emissions levels less than 10 ppm. Two efforts are discussed: (1) tests by General Electric using a GE Frame 7E/9E and 7F/9F gas turbine, and (2) tests by AES using a Kawasaki M1A-13A industrial gas turbine. The latter also employs a heat recovery steam generator and produces 3 MWe and 28,000 lbm/hr of steam.

  7. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  8. The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification

    PubMed Central

    Brownlee, Christopher W.; Klebba, Joey E.; Buster, Daniel W.

    2011-01-01

    Centriole duplication is a tightly regulated process that must occur only once per cell cycle; otherwise, supernumerary centrioles can induce aneuploidy and tumorigenesis. Plk4 (Polo-like kinase 4) activity initiates centriole duplication and is regulated by ubiquitin-mediated proteolysis. Throughout interphase, Plk4 autophosphorylation triggers its degradation, thus preventing centriole amplification. However, Plk4 activity is required during mitosis for proper centriole duplication, but the mechanism stabilizing mitotic Plk4 is unknown. In this paper, we show that PP2A (Protein Phosphatase 2ATwins) counteracts Plk4 autophosphorylation, thus stabilizing Plk4 and promoting centriole duplication. Like Plk4, the protein level of PP2A’s regulatory subunit, Twins (Tws), peaks during mitosis and is required for centriole duplication. However, untimely Tws expression stabilizes Plk4 inappropriately, inducing centriole amplification. Paradoxically, expression of tumor-promoting simian virus 40 small tumor antigen (ST), a reported PP2A inhibitor, promotes centrosome amplification by an unknown mechanism. We demonstrate that ST actually mimics Tws function in stabilizing Plk4 and inducing centriole amplification. PMID:21987638

  9. Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review

    NASA Astrophysics Data System (ADS)

    Li, Yawei; Chan, Siew Hwa; Sun, Qiang

    2015-05-01

    The conversion of CO2 into fuels and useful chemicals has been intensively pursued for renewable, sustainable and green energy. However, due to the negative adiabatic electron affinity (EA) and large ionization potential (IP), the CO2 molecule is chemically inert, thus making the conversion difficult under normal conditions. Novel catalysts, which have high stability, superior efficiency and low cost, are urgently needed to facilitate the conversion. As the first step to design such catalysts, understanding the mechanisms involved in CO2 conversion is absolutely indispensable. In this review, we have summarized the recent theoretical progress in mechanistic studies based on density functional theory, kinetic Monte Carlo simulation, and microkinetics modeling. We focus on reaction channels, intermediate products, the key factors determining the conversion of CO2 in solid-gas interface thermocatalytic reduction and solid-liquid interface electrocatalytic reduction. Furthermore, we have proposed some possible strategies for improving CO2 electrocatalysis and also discussed the challenges in theory, model construction, and future research directions.

  10. Catalytic reforming methods

    DOEpatents

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  11. microRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells

    SciTech Connect

    Qiu, Mingning Liu, Lei Chen, Lieqian Tan, Guobin Liang, Ziji Wang, Kangning Liu, Jianjun Chen, Hege

    2014-09-12

    Highlights: • miR-183 was up-regulated in renal cancer tissues. • Inhibition of endogenous miR-183 suppressed renal cancer cell growth and metastasis. • miR-183 increased cell growth and metastasis. • miR-183 regulated renal cancer cell growth and metastasis via directly targeting tumor suppressor protein phosphatase 2A. - Abstract: The aim of this study was to investigate the function of miR-183 in renal cancer cells and the mechanisms miR-183 regulates this process. In this study, level of miR-183 in clinical renal cancer specimens was detected by quantitative real-time PCR. miR-183 was up- and down-regulated in two renal cancer cell lines ACHN and A498, respectively, and cell proliferation, Caspase 3/7 activity, colony formation, in vitro migration and invasion were measured; and then the mechanisms of miR-183 regulating was analyzed. We found that miR-183 was up-regulated in renal cancer tissues; inhibition of endogenous miR-183 suppressed in vitro cell proliferation, colony formation, migration, and invasion and stimulated Caspase 3/7 activity; up-regulated miR-183 increased cell growth and metastasis and suppressed Caspase 3/7 activity. We also found that miR-183 directly targeted tumor suppressor, specifically the 3′UTR of three subunits of protein phosphatase 2A (PP2A-Cα, PP2A-Cβ, and PP2A-B56-γ) transcripts, inhibiting their expression and regulated the downstream regulators p21, p27, MMP2/3/7 and TIMP1/2/3/4. These results revealed the oncogenes role of miR-183 in renal cancer cells via direct targeting protein phosphatase 2A.

  12. Catalytic considerations in temperature measurement.

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Crossman, G. R.; Chitnis, R. V.

    1972-01-01

    Literature discussing catalytic activity in platinum group temperature sensors is surveyed. Methods for the determination and/or elimination of catalytic activity are reported. A particular application of the literature is discussed in which it is possible to infer that a shielded platinum total temperature probe does not experience significant catalytic activity in the wake of a supersonic hydrogen burner, while a bare iridium plus rhodium, iridium thermocouple does. It is concluded that catalytic data corrections are restricted and that it is preferable to coat the temperature sensor with a noncatalytic coating. Furthermore, the desirability of transparent coatings is discussed.

  13. Novel Catalytic Membrane Reactors

    SciTech Connect

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  14. Catalytic cracking process

    SciTech Connect

    Gladrow, E.M.; Winter, W.E.

    1980-04-29

    The octane number of a cracked naphtha can be significantly improved in a catalytic cracking unit, without significant decrease in naphtha yield, by maintaining certain critical concentrations of metals on the catalyst, suitably by blending or adding a heavy metals-containing component to the gas oil feed. Suitably, in a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking reactor (Zone) at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regenerator (Regeneration zone) by burning coke off the catalyst, and catalyst is circulated between the reactor and regenerator, sufficient of a metals-containing heavy feedstock is admixed, intermittantly or continuously, with the gas oil feed to deposit metals on said catalyst and raise the metals-content of said catalyst to a level of from about 1500 to about 6000 parts per million, preferably from about 2500 to about 4000 parts per million expressed as equivalent nickel, base the weight of the catalyst, and said metals level is maintained on the catalyst throughout the operation by withdrawing high metals-containing catalyst and adding low metals-containing catalyst to the regenerator.

  15. Catalytic reactor with disposable cartridge

    NASA Technical Reports Server (NTRS)

    Mccullough, C. M.

    1973-01-01

    Catalytic reactor, disposable cartridge enclosing iron catalyst, acts as container for solid carbon formed by decomposition of carbon monoxide. Deposition of carbon in other parts of oxygen recovery system does not occur because of lack of catalytic activity; filters trap carbon particles and prevent their being transported outside reaction zone.

  16. Catalytic conversions of chlorodecalin

    SciTech Connect

    Takhistov, U.V.; Kovyazin, V.E.

    1985-10-01

    This paper studies catalytic conversions of chlorinated decahydronaphthalene (chlorodecalin), since the introduction of chlorine into the hydrocarbon molecule would facilitate formation of the original carbonium ion required for conversion to adamantane. Analysis of the fractions obtained showed that two main products are formed: the tricyclic hydrocarbon C/sub 10/H/sub 16/ and the bicyclic hydrocarbon C/sub 10/H/sub 16/. Therefore, the C/sub 10/H/sub 17/ cation formed by removal of chlorine from chlorodecalin, C/sub 10/H/sub 17/CI, undergoes changes in two directions: addition of hydride ions from other chlorodecalin molecules to form Decalin, and loss of a proton to give a tricyclic system of the adamantane weries and its isomer. Introduction of a substituent (chlorine) into the Decalin molecule made it possible to conduct the process at low temperatures.

  17. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  18. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  19. ``OPTICAL Catalytic Nanomotors''

    NASA Astrophysics Data System (ADS)

    Rosary-Oyong, Se, Glory

    D. Kagan, et.al, 2009:'' a motion-based chemical sensing involving fuel-driven nanomotors is demonstrated. The new protocol relies on the use of an optical microscope for tracking charge in the speed of nanowire motors in the presence of target analyte''. Synthetic nanomotors are propelled by catalytic decomposition of .. they do not require external electric, magnetic or optical fields as energy... Accompanying Fig 2.6(a) of optical micrograph of a partial monolayer of silica microbeads [J.Gibbs, 2011 ] retrieves WF Paxton:''rods were characterized by transmission electron & dark-field optical microscopy..'' & LF Valadares:''dimer due to the limited resolution of optical microscopy, however the result..'. Acknowledged to HE. Mr. Prof. SEDIONO M.P. TJONDRONEGORO.

  20. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  1. Oridonin inhibits gefitinib-resistant lung cancer cells by suppressing EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways.

    PubMed

    Xiao, Xiangling; He, Zhongwei; Cao, Wei; Cai, Fen; Zhang, Liang; Huang, Qiuyue; Fan, Chunsheng; Duan, Chao; Wang, Xiaobo; Wang, Jiu; Liu, Ying

    2016-06-01

    Oridonin (Ori), a diterpenoid compound extracted from traditional medicinal herbs, elicits antitumor effects on many cancer types. However, whether Ori can be used in gefitinib-resistant non-small cell lung cancer (NSCLC) cells remains unclear. This study investigated the antitumor activity and underlying mechanisms of Ori. Results demonstrated that this compound dose-dependently inhibited the proliferation, invasion, and migration of the gefitinib-resistant NSCLC cells in vitro. Ori also significantly downregulated the phosphorylation of EGFR, ERK, Akt, expression levels of matrix metalloproteinase-12 (MMP-12), and the cancerous inhibitor of protein phosphatase 2A (CIP2A). In addition, Ori upregulated protein phosphatase 2A (PP2A) activity of gefitinib-resistant NSCLC cells. Ori combined with docetaxel synergistically inhibited these cells. Ori also inhibited tumor growth in murine models. Immunohistochemistry results further revealed that Ori downregulated phospho-EGFR, MMP-12, and CIP2A in vivo. These findings indicated that Ori can inhibit the proliferation, invasion, and migration of gefitinib-resistant NSCLC cells by suppressing EGFR/ERK/MMP-12 and CIP2A/PP2A/Akt signaling pathways. Thus, Ori may be a novel effective candidate to treat gefitinib-resistant NSCLC. PMID:27082429

  2. Deregulation of Protein Phosphatase 2A and Hyperphosphorylation of τ Protein Following Onset of Diabetes in NOD Mice

    PubMed Central

    Papon, Marie-Amélie; El Khoury, Noura B.; Marcouiller, François; Julien, Carl; Morin, Françoise; Bretteville, Alexis; Petry, Franck R.; Gaudreau, Simon; Amrani, Abdelaziz; Mathews, Paul M.; Hébert, Sébastien S.; Planel, Emmanuel

    2013-01-01

    The histopathological hallmarks of Alzheimer disease (AD) include intraneuronal neurofibrillary tangles composed of abnormally hyperphosphorylated τ protein. Insulin dysfunction might influence AD pathology, as population-based and cohort studies have detected higher AD incidence rates in diabetic patients. But how diabetes affects τ pathology is not fully understood. In this study, we investigated the impact of insulin dysfunction on τ phosphorylation in a genetic model of spontaneous type 1 diabetes: the nonobese diabetic (NOD) mouse. Brains of young and adult female NOD mice were examined, but young NOD mice did not display τ hyperphosphorylation. τ phosphorylation at τ-1 and pS422 epitopes was slightly increased in nondiabetic adult NOD mice. At the onset of diabetes, τ was hyperphosphorylated at the τ-1, AT8, CP13, pS262, and pS422. A subpopulation of diabetic NOD mice became hypothermic, and τ hyperphosphorylation further extended to paired helical filament-1 and TG3 epitopes. Furthermore, elevated τ phosphorylation correlated with an inhibition of protein phosphatase 2A (PP2A) activity. Our data indicate that insulin dysfunction in NOD mice leads to AD-like τ hyperphosphorylation in the brain, with molecular mechanisms likely involving a deregulation of PP2A. This model may be a useful tool to address further mechanistic association between insulin dysfunction and AD pathology. PMID:22961084

  3. Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex1[W][OPEN

    PubMed Central

    Charpentier, Myriam; Sun, Jongho; Wen, Jiangqi; Mysore, Kirankumar S.; Oldroyd, Giles E.D.

    2014-01-01

    Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB′1. Mutations in PP2AB′1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB′1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB′1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization. PMID:25293963

  4. Unsteady catalytic processes and sorption-catalytic technologies

    NASA Astrophysics Data System (ADS)

    Zagoruiko, A. N.

    2007-07-01

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  5. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  6. Catalytic Mechanisms for Phosphotriesterases

    PubMed Central

    Bigley, Andrew N.; Raushel, Frank M.

    2012-01-01

    Phosphotriesters are one class of highly toxic synthetic compounds known as organophosphates. Wide spread usage of organophosphates as insecticides as well as nerve agents has lead to numerous efforts to identify enzymes capable of detoxifying them. A wide array of enzymes has been found to have phosphotriesterase activity including phosphotriesterase (PTE), methyl parathion hydrolase (MPH), organophosphorus acid anhydrolase (OPAA), diisopropylfluorophosphatase (DFP), and paraoxonase 1 (PON1). These enzymes differ widely in protein sequence and three-dimensional structure, as well as in catalytic mechanism, but they also share several common features. All of the enzymes identified as phosphotriesterases are metal-dependent hydrolases that contain a hydrophobic active site with three discrete binding pockets to accommodate the substrate ester groups. Activation of the substrate phosphorus center is achieved by a direct interaction between the phosphoryl oxygen and a divalent metal in the active site. The mechanistic details of the hydrolytic reaction differ among the various enzymes with both direct attack of a hydroxide as well as covalent catalysis being found. PMID:22561533

  7. Catalytic Membrane Sensors

    SciTech Connect

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  8. Catalytic Enantioselective Synthesis of Halocyclopropanes.

    PubMed

    Pons, Amandine; Ivashkin, Pavel; Poisson, Thomas; Charette, André B; Pannecoucke, Xavier; Jubault, Philippe

    2016-04-25

    A catalytic asymmetric synthesis of halocyclopropanes is described. The developed method is based on a carbenoid cyclopropanation of 2-haloalkenes with tert-butyl α-cyano-α-diazoacetate using a chiral rhodium catalyst that permits access to a broad range of highly functionalized chiral halocyclopropanes (F, Cl, Br, and I) in good yields, moderate diastereoselectivity, and excellent enantiomeric ratios. The reported methodology represents the first general catalytic enantioselective approach to halocyclopropanes. PMID:26945553

  9. An abnormal N-heterocyclic carbene based nickel complex for catalytic reduction of nitroarenes.

    PubMed

    Vijaykumar, Gonela; Mandal, Swadhin K

    2016-05-01

    Herein we report the synthesis of a nickel(ii) dichloro complex bearing an abnormal N-heterocyclic carbene (aNHC). The NiCl2(aNHC)2 complex has been used as an efficient catalyst for the reduction of nitroarenes with hydrosilanes to give aromatic amines in good to excellent yields. This catalytic protocol can tolerate functional groups such as halides, alkenes or nitriles. Furthermore, the longevity of the catalyst was tested in successive catalytic cycles, which indicates a sustained catalytic activity over multiple catalytic cycles. PMID:27041677

  10. Catalytic combustion with steam injection

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.; Tacina, R. R.

    1982-01-01

    The effects of steam injection on (1) catalytic combustion performance, and (2) the tendency of residual fuel to burn in the premixing duct upstream of the catalytic reactor were determined. A petroleum residual, no. 2 diesel, and a blend of middle and heavy distillate coal derived fuels were tested. Fuel and steam were injected together into the preheated airflow entering a 12 cm diameter catalytic combustion test section. The inlet air velocity and pressure were constant at 10 m/s and 600 kPa, respectively. Steam flow rates were varied from 24 percent to 52 percent of the air flow rate. The resulting steam air mixture temperatures varied from 630 to 740 K. Combustion temperatures were in the range of 1200 to 1400 K. The steam had little effect on combustion efficiency or emissions. It was concluded that the steam acts as a diluent which has no adverse effect on catalytic combustion performance for no. 2 diesel and coal derived liquid fuels. Tests with the residual fuel showed that upstream burning could be eliminated with steam injection rates greater than 30 percent of the air flow rate, but inlet mixture temperatures were too low to permit stable catalytic combustion of this fuel.

  11. Catalytic distillation water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  12. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation. PMID:27177932

  13. Catalytic Enantioselective Carboannulation with Allylsilanes

    PubMed Central

    Ball-Jones, Nicolas R.; Badillo, Joseph J.; Tran, Ngon T.; Franz, Annaliese K.

    2015-01-01

    The first catalytic asymmetric carboannulation with allylsilanes is presented. The enantioselective [3+2] annulation is catalyzed using a Sc(III)-indapybox complex with tetrakis-[3,5-bis(trifluoromethyl)phenyl]-borate (BArF) to enhance catalytic activity and control stereoselectivity. Functionalized cyclopentanes containing a quaternary carbon are derived from alkylidene oxindole, coumarin, and malonate substrates with high stereoselectivity. The enantioselective 1,4-conjugate addition and enantioselective lactone formation (via trapping of the β-silyl carbocation) is also described. PMID:25045133

  14. Catalytic enantioselective carboannulation with allylsilanes.

    PubMed

    Ball-Jones, Nicolas R; Badillo, Joseph J; Tran, Ngon T; Franz, Annaliese K

    2014-09-01

    The first catalytic asymmetric carboannulation with allylsilanes is presented. The enantioselective [3+2] annulation is catalyzed using a scandium(III)/indapybox complex with tetrakis-[3,5-bis(trifluoromethyl)phenyl]-borate (BArF) to enhance catalytic activity and control stereoselectivity. Functionalized cyclopentanes containing a quaternary carbon center are derived from alkylidene oxindole, coumarin, and malonate substrates with high stereoselectivity. The enantioselective 1,4-conjugate addition and enantioselective lactone formation (by trapping of the β-silyl carbocation) is also described. PMID:25045133

  15. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  16. CIP2A regulates cancer metabolism and CREB phosphorylation in non-small cell lung cancer.

    PubMed

    Peng, Bo; Lei, Ningjing; Chai, Yurong; Chan, Edward K L; Zhang, Jian-Ying

    2015-01-01

    The cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently characterized endogenous inhibitor of the phosphatase activity of protein phosphatase 2A (PP2A), which extends the half-life of oncogenic protein c-myc and promotes in vivo tumor growth. The function of CIP2A in cancer progression is still poorly understood. To uncover the underlying mechanism of CIP2A-mediated cell proliferation, we implemented a two-dimensional electrophoresis (2DE)-based proteomic approach to examine lung cancer cell H1299 with and without CIP2A. We found 47 proteins differentially expressed where 19 proteins were upregulated and 28 proteins were downregulated. These were categorized into functional groups such as metabolism (25%), transcriptional and translational control (23%), and the signaling pathway and protein degradation (20%). On one hand, we validate our proteomic work by measuring the metabolic change. The knockdown of CIP2A decreased the expression of LDH-A as well as the enzymatic activity, accompanying with a decreased lactate production, an increased NADH/NAD+ ratio and ROS production. On the other hand, we found that CIP2A may regulate CREB activity through bioinformatics analysis. Our following experiments showed that, CIP2A positively regulated the phosphorylation of CREB in response to the serum treatment. Therefore, our proteomic study suggested that CIP2A mediates cancer progression through the metabolic pathway and intracellular signaling cascade. PMID:25325377

  17. Catalytic oxidation of waste materials

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1977-01-01

    Aqueous stream of human waste is mixed with soluble ruthenium salts and is introduced into reactor at temperature where ruthenium black catalyst forms on internal surfaces of reactor. This provides catalytically active surface to convert oxidizable wastes into breakdown products such as water and carbon dioxide.

  18. Social Entrepreneurs and Catalytic Change.

    ERIC Educational Resources Information Center

    Waddock, Sandra A.; Post, James E.

    1991-01-01

    Social entrepreneurs are private citizens who play critical roles in bringing about catalytic changes in the public sector agenda and the perception of social issues. Factors that make their projects--such as the Partnership for a Drug-Free America and Earth Day--successful include problem complexity, credibility, and a commitment to a collective…

  19. Catalytically enhanced packed tower scrubbing

    SciTech Connect

    Stitt, E.H.; Taylor, F.J.; Kelly, K.

    1996-12-31

    An enhanced wet scrubbing process for the treatment of gas streams containing odours and low level VOC`s is presented. It comprises essentially a single scrubbing column and a fixed bed catalytic reactor through which the dilute alkaline bleach scrubbing liquor is recirculated. The process has significant cost advantages over conventional chemical scrubbing technology, and copes well with peaks in odour levels. Traditional bleach scrubbing, and the improvements in process chemistry and the flowsheet afforded by inclusion of the catalyst, are discussed. The catalyst enables many of the well known problems associated with bleach scrubbing to be overcome, and facilitates odour removal efficiencies of greater than 99% in a single column. Pilot plant data from trials on sewage treatment works are presented. These show clearly the ability of the catalytically enhanced process to achieve sulphide and odour removals in excess of 99% in the single column. Case studies of some of the existing commercial installations are given, indicating the wide range of applications, industries and scale of the installed units. Comparative data are presented, measured on a commercial unit for the conventional operation of a bleach scrubber, and with the retrofitted catalyst in use. These data show clearly the benefits of the catalytic process in terms of removal efficiencies; and hence by inference also in equipment size and costs. The catalytic process is also shown to achieve very high removal efficiencies of organo-sulphides in a single column. 8 refs., 3 figs., 10 tabs.

  20. CATALYTIC COMBUSTION COMPONENT AND SYSTEM PROTOTYPE DEVELOPMENT

    EPA Science Inventory

    The report gives results of a project to develop the components required for catalytic combustion system operation and evaluation. The systems investigated (firetube boiler, watertube boiler, and gas turbine), when integrated with the catalytic combustor, have potential for both ...

  1. Activation of Asparaginyl Endopeptidase Leads to Tau Hyperphosphorylation in Alzheimer Disease*

    PubMed Central

    Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Tung, Yunn Chyn; Liu, Fei; Iqbal, Khalid

    2013-01-01

    Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2PP2A. In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2PP2A is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2PP2A translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2PP2A, except when I2PP2A was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2PP2A, inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2PP2A-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target. PMID:23640887

  2. Memantine Attenuates Alzheimer’s Disease-Like Pathology and Cognitive Impairment

    PubMed Central

    Wang, Xiaochuan; Blanchard, Julie; Iqbal, Khalid

    2015-01-01

    Deficiency of protein phosphatase-2A is a key event in Alzheimer’s disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer’s disease brain. In the present study, we overexpressed I1PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1PP2A in Wistar rats. The I1PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer’s disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer’s disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer’s disease patients. PMID:26697860

  3. Catalytic combustion of residual fuels

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested using two grades of petroleum derived residual fuels at specified inlet air temperatures, pressures, and reference velocities. Combustion efficiencies greater than 99.5 percent were obtained. Steady state operation of the catalytic reactor required inlet air temperatures of at least 800 K. At lower inlet air temperatures, upstream burning in the premixing zone occurred which was probably caused by fuel deposition and accumulation on the premixing zone walls. Increasing the inlet air temperature prevented this occurrence. Both residual fuels contained about 0.5 percent nitrogen by weight. NO sub x emissions ranged from 50 to 110 ppm by volume at 15 percent excess O2. Conversion of fuel-bound nitrogen to NO sub x ranged from 25 to 50 percent.

  4. Vapor Phase Catalytic Ammonia Reduction

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.

  5. Catalytic asymmetric alkylation of acylsilanes.

    PubMed

    Rong, Jiawei; Oost, Rik; Desmarchelier, Alaric; Minnaard, Adriaan J; Harutyunyan, Syuzanna R

    2015-03-01

    The highly enantioselective addition of Grignard reagents to acylsilanes is catalyzed by copper diphosphine complexes. This transformation affords α-silylated tertiary alcohols in up to 97% yield and 98:2 enantiomeric ratio. The competing Meerwein-Ponndorf-Verley reduction is suppressed by the use of a mixture of Lewis acid additives. The chiral catalyst can be recovered as a copper complex and used repeatedly without any loss of catalytic activity. PMID:25403641

  6. Thermodynamics of catalytic nanoparticle morphology

    NASA Astrophysics Data System (ADS)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  7. Catalytic nanomotors: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Gibbs, John; Zhao, Yiping

    2011-06-01

    The fabrication of integrated nanomachinary systems can enable break-through applications in nanoelectronics, photonics, bioengineering, and drug delivery or disease treatment. Naturally occurring nanomotors are biological motor proteins powered by catalytic reactions, which convert the chemical energy from the environment into mechanical energy directly. It has been demonstrated recently that using a simple catalytic reaction and an asymmetric bimetallic nanorod, one can produce catalytic nanomotors that mimic the autonomous motions of bionanomotors. Yet the construction of artificial nanomachines remains a major contemporary challenge due to the lack of a flexible fabrication technique that can design the desired dynamic components. We use a design technique called dynamic shadowing growth that allows for the fabrication of a wide range of various geometries and the asymmetric placement of the catalyst is easily accomplished as well which is necessary for directed propulsion. Programming nanomotor behavior is possible through geometrically-focused design and by incorporating different materials into the nanomotor structure is a simple process as well. A propulsion mechanism based upon bubble ejection from the catalyst surface is introduced to explain the driving force, and the comparison of this driving mechanism with the self-electrophoresis mechanism is also studied. We have also successfully incorporated multiple parts to form complex nanomotor assemblies which exhibit motions not observed from individual parts by using magnetic interactions.

  8. Molecular genetic analysis of Rts1p, a B' regulatory subunit of Saccharomyces cerevisiae protein phosphatase 2A.

    PubMed

    Shu, Y; Yang, H; Hallberg, E; Hallberg, R

    1997-06-01

    The Saccharomyces cerevisiae gene RTS1 encodes a protein homologous to a variable B-type regulatory subunit of the mammalian heterotrimeric serine/threonine protein phosphatase 2A (PP2A). We present evidence showing that Rts1p assembles into similar heterotrimeric complexes in yeast. Strains in which RTS1 has been disrupted are temperature sensitive (ts) for growth, are hypersensitive to ethanol, are unable to grow with glycerol as their only carbon source, and accumulate at nonpermissive temperatures predominantly as large-budded cells with a 2N DNA content and a nondivided nucleus. This cell cycle arrest can be overcome and partial suppression of the ts phenotype of rts1-null cells occurs if the gene CLB2, encoding a Cdc28 kinase-associated B-type cyclin, is expressed on a high-copy-number plasmid. However, CLB2 overexpression has no suppressive effects on other aspects of the rts1-null phenotype. Expression of truncated forms of Rts1p can also partially suppress the ts phenotype and can fully suppress the inability of cells to grow on glycerol and the hypersensitivity of cells to ethanol. By contrast, the truncated forms do not suppress the accumulation of large-budded cells at high temperatures. Coexpression of truncated Rts1p and high levels of Clb2p fully suppresses the ts phenotype, indicating that the inhibition of growth of rts1-null cells at high temperatures is due to both stress-related and cell cycle-related defects. Genetic analyses show that the role played by Rts1p in PP2A regulation is distinctly different from that played by the other known variable B regulatory subunit, Cdc55p, a protein recently implicated in checkpoint control regulation. PMID:9154823

  9. Glutaminolysis Was Induced by TGF-β1 through PP2Ac Regulated Raf-MEK-ERK Signaling in Endothelial Cells.

    PubMed

    Guo, YanYan; Deng, YuanJun; Li, XiaoQing; Ning, Yong; Lin, XuePing; Guo, ShuiMing; Chen, MeiXue; Han, Min

    2016-01-01

    Vascular endothelial cells can survive under hypoxic and inflammatory conditions by alterations of the cellular energy metabolism. In addition to high rates of glycolysis, glutaminolysis is another important way of providing the required energy to support cellular sprouting in such situations. However, the exact mechanism in which endothelial cells upregulate glutaminolysis remains unclear. Here we demonstrated that protein phosphatase 2A (PP2A)-mediated Raf-MEK-ERK signaling was involved in glutaminolysis in endothelial cells. Using models of human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor-β1 (TGF-β1), we observed a dramatic induction in cellular glutamate levels accompanied by Raf-MEK-ERK activation. By addition of U0126, the specific inhibitor of MEK1/2, the expression of kidney-type glutaminase (KGA, a critical glutaminase in glutaminolysis) was significantly decreased. Moreover, inhibition of PP2A by okadaic acid (OA), a specific inhibitor of PP2A phosphatase activity or by depletion of its catalytic subunit (PP2Ac), led to a significant inactivation of Raf-MEK-ERK signaling and reduced glutaminolysis in endothelial cells. Taken together, these results indicated that PP2A-dependent Raf-MEK-ERK activation was involved in glutaminolysis and inhibition of PP2A signals was sufficient to block Raf-MEK-ERK pathway and reduced glutamine metabolism in endothelial cells. PMID:27612201

  10. Novel FTY720-Based Compounds Stimulate Neurotrophin Expression and Phosphatase Activity in Dopaminergic Cells

    PubMed Central

    2014-01-01

    α-Synuclein is a chaperone-like protein implicated in Parkinson’s disease (PD). Among α-synuclein’s normal functions is an ability to bind to and stimulate the activity of the protein phosphatase 2A (PP2A) catalytic subunit in vitro and in vivo. PP2A activity is impaired in PD and in dementia with Lewy Bodies in brain regions harboring α-synuclein aggregates. Using PP2A as the readout, we measured PP2A activity in response to α-synuclein, ceramides, and FTY720, and then on the basis of those results, we created new FTY720 compounds. We then measured the effects of those compounds in dopaminergic cells. In addition to stimulating PP2A, all three compounds stimulated the expression of brain derived neurotrophic factor and protected MN9D cells against tumor-necrosis-factor-α-associated cell death. FTY720-C2 appears to be more potent while FTY720-Mitoxy targets mitochondria. Importantly, FTY720 is already FDA approved for treating multiple sclerosis and is used clinically worldwide. Our findings suggest that FTY720 and our new FTY720-based compounds have considerable potential for treating synucleinopathies such as PD. PMID:25050165

  11. A sustainable catalytic pyrrole synthesis

    NASA Astrophysics Data System (ADS)

    Michlik, Stefan; Kempe, Rhett

    2013-02-01

    The pyrrole heterocycle is a prominent chemical motif and is found widely in natural products, drugs, catalysts and advanced materials. Here we introduce a sustainable iridium-catalysed pyrrole synthesis in which secondary alcohols and amino alcohols are deoxygenated and linked selectively via the formation of C-N and C-C bonds. Two equivalents of hydrogen gas are eliminated in the course of the reaction, and alcohols based entirely on renewable resources can be used as starting materials. The catalytic synthesis protocol tolerates a large variety of functional groups, which includes olefins, chlorides, bromides, organometallic moieties, amines and hydroxyl groups. We have developed a catalyst that operates efficiently under mild conditions.

  12. Molecular catalytic coal liquid conversion

    SciTech Connect

    Stock, L.M.; Yang, Shiyong

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  13. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  14. Modeling a Transient Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1985-01-01

    Transient model of monolith catalytic combustor presented in report done under NASA/DOE contract. Model assumes quasi-steady gas phase and thermally "thin" solid. In gas-phase treatment, several quasi-global chemical reactions assumed capable of describing CO and unburnt hydrocarbon emissions in fuel-lean operations. In steady-state computation presented, influence of selected operating and design parameters on minimum combustor length studied. When fast transient responses required, both steady and unsteady studies made to achieve meaningful compromise in design.

  15. Combined Electrolysis Catalytic Exchange (CECE)

    SciTech Connect

    Ellis, R.E.; Mills, T.K.; Rogers, M.L.

    1980-09-30

    Starting from an effort to control airborne emissions, the Mound tritium containment program has evolved to include development of the Combined Electrolysis Catalytic Exchange (CECE) process. This process separates tritiated aqueous streams into detritiated water and an enriched hydrogen stream that is suitable for use by other tritium recovery processes. Experimentation has shown that the process performs as predicted by bench-scale measurements, and that available process components exhibit acceptable resistance to damage by radiation from tritium exposure. Planned future efforts are concentrated on finalizing automatic control of the process and on developing feed treatment methods for the protection of process components.

  16. CATALYTIC CONVERSION OF HAZARDOUS AND TOXIC CHEMICALS: CATALYTIC HYDRODECHLORINATION OF POLYCHLORINATED PESTICIDES AND RELATED SUBSTANCES

    EPA Science Inventory

    A study has been undertaken of the catalytic conversion of chlorinated pesticides and other environmentally undesirable chlorinated materials into acceptable compounds. The results of this study show that chlorine can be catalytically removed and replaced by hydrogen to produce r...

  17. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2.

    PubMed

    Kim, Kimberly H; Kim, Woojin; Howard, Thomas P; Vazquez, Francisca; Tsherniak, Aviad; Wu, Jennifer N; Wang, Weishan; Haswell, Jeffrey R; Walensky, Loren D; Hahn, William C; Orkin, Stuart H; Roberts, Charles W M

    2015-12-01

    Human cancer genome sequencing has recently revealed that genes that encode subunits of SWI/SNF chromatin remodeling complexes are frequently mutated across a wide variety of cancers, and several subunits of the complex have been shown to have bona fide tumor suppressor activity. However, whether mutations in SWI/SNF subunits result in shared dependencies is unknown. Here we show that EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is essential in all tested cancer cell lines and xenografts harboring mutations of the SWI/SNF subunits ARID1A, PBRM1, and SMARCA4, which are several of the most frequently mutated SWI/SNF subunits in human cancer, but that co-occurrence of a Ras pathway mutation is correlated with abrogation of this dependence. Notably, we demonstrate that SWI/SNF-mutant cancer cells are primarily dependent on a non-catalytic role of EZH2 in the stabilization of the PRC2 complex, and that they are only partially dependent on EZH2 histone methyltransferase activity. These results not only reveal a shared dependency of cancers with genetic alterations in SWI/SNF subunits, but also suggest that EZH2 enzymatic inhibitors now in clinical development may not fully suppress the oncogenic activity of EZH2. PMID:26552009

  18. SWI/SNF mutant cancers depend upon catalytic and non–catalytic activity of EZH2

    PubMed Central

    Kim, Kimberly H.; Kim, Woojin; Howard, Thomas P.; Vazquez, Francisca; Tsherniak, Aviad; Wu, Jennifer N.; Wang, Weishan; Haswell, Jeffrey R.; Walensky, Loren D.; Hahn, William C.; Orkin, Stuart H.; Roberts, Charles W. M.

    2016-01-01

    Human cancer genome sequencing has recently revealed that genes encoding subunits of SWI/SNF chromatin remodeling complexes are frequently mutated across a wide variety of cancers, and several subunits of the complex have been shown to have bona fide tumor suppressor activity1. However, whether mutations in SWI/SNF subunits result in shared dependencies is unknown. Here we show that EZH2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2), is essential in all tested cancer cell lines and xenografts harboring mutations of the SWI/SNF subunits ARID1A, PBRM1, and SMARCA4, which are several of the most frequently mutated SWI/SNF subunits in human cancer but that co–occurrence of a Ras pathway mutation correlates with abrogation of this dependence. Surprisingly, we demonstrate that SWI/SNF mutant cancer cells are primarily dependent upon a non–catalytic role of EZH2 in stabilization of the PRC2 complex, and only partially dependent on EZH2 histone methyltransferase activity. These results not only reveal a shared dependency of cancers with genetic alterations in SWI/SNF subunits, but also suggest that EZH2 enzymatic inhibitors now in clinical development may not fully suppress the oncogenic activity of EZH2. PMID:26552009

  19. Catalytic conversion of light alkanes

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  20. Evolution of a Catalytic Mechanism.

    PubMed

    Rauwerdink, Alissa; Lunzer, Mark; Devamani, Titu; Jones, Bryan; Mooney, Joanna; Zhang, Zhi-Jun; Xu, Jian-He; Kazlauskas, Romas J; Dean, Antony M

    2016-04-01

    The means by which superfamilies of specialized enzymes arise by gene duplication and functional divergence are poorly understood. The escape from adaptive conflict hypothesis, which posits multiple copies of a gene encoding a primitive inefficient and highly promiscuous generalist ancestor, receives support from experiments showing that resurrected ancestral enzymes are indeed more substrate-promiscuous than their modern descendants. Here, we provide evidence in support of an alternative model, the innovation-amplification-divergence hypothesis, which posits a single-copied ancestor as efficient and specific as any modern enzyme. We argue that the catalytic mechanisms of plant esterases and descendent acetone cyanohydrin lyases are incompatible with each other (e.g., the reactive substrate carbonyl must bind in opposite orientations in the active site). We then show that resurrected ancestral plant esterases are as catalytically specific as modern esterases, that the ancestor of modern acetone cyanohydrin lyases was itself only very weakly promiscuous, and that improvements in lyase activity came at the expense of esterase activity. These observations support the innovation-amplification-divergence hypothesis, in which an ancestor gains a weak promiscuous activity that is improved by selection at the expense of the ancestral activity, and not the escape from adaptive conflict in which an inefficient generalist ancestral enzyme steadily loses promiscuity throughout the transition to a highly active specialized modern enzyme. PMID:26681154

  1. Acoustics of automotive catalytic converter assemblies

    NASA Astrophysics Data System (ADS)

    Dickey, Nolan S.; Selamet, Ahmet; Parks, Steve J.; Tallio, Kevin V.; Miazgowicz, Keith D.; Radavich, Paul M.

    2003-10-01

    In an automotive exhaust system, the purpose of the catalytic converter is to reduce pollutant emissions. However, catalytic converters also affect the engine and exhaust system breathing characteristics; they increase backpressure, affect exhaust system acoustic characteristics, and contribute to exhaust manifold tuning. Thus, radiated sound models should include catalytic converters since they can affect both the source characteristics and the exhaust system acoustic behavior. A typical catalytic converter assembly employs a ceramic substrate to carry the catalytically active noble metals. The substrate has numerous parallel tubes and is mounted in a housing with swelling mat or wire mesh around its periphery. Seals at the ends of the substrate can be used to help force flow through the substrate and/or protect the mat material. Typically, catalytic converter studies only consider sound propagation in the small capillary tubes of the substrate. Investigations of the acoustic characteristics of entire catalytic converter assemblies (housing, substrate, seals, and mat) do not appear to be available. This work experimentally investigates the acoustic behavior of catalytic converter assemblies and the contributions of the separate components to sound attenuation. Experimental findings are interpreted with respect to available techniques for modeling sound propagation in ceramic substrates.

  2. FEASIBILITY OF BURNING COAL IN CATALYTIC COMBUSTORS

    EPA Science Inventory

    The report gives results of a study, showing that pulverized coal can be burned in a catalytic combustor. Pulverized coal combustion in catalytic beds is markedly different from gaseous fuel combustion. Gas combustion gives uniform bed temperatures and reaction rates over the ent...

  3. Method of fabricating a catalytic structure

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  4. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  5. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  6. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalysts are presented.

  7. Catalytic ignition of hydrogen and oxygen propellants

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Green, James M.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen propellants. Shell 405 granular catalyst and a monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant temperature, and back pressure were varied parametrically in testing to determine the operational limits of the catalytic igniter. The test results show that the gaseous hydrogen and oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. A cyclic life of nearly 2000, 2 sec pulses at nominal operating conditions was demonstrated with the catalytic igniter. The results of the experimental program and the established operational limits for a catalytic igniter using the Shell 405 catalyst are presented.

  8. Silver nanocluster catalytic microreactors for water purification

    NASA Astrophysics Data System (ADS)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  9. Catalytic reactor with improved burner

    DOEpatents

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  10. Catalytic, enantioselective, vinylogous aldol reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R; Beutner, Gregory L

    2005-07-25

    In 1935, R. C. Fuson formulated the principle of vinylogy to explain how the influence of a functional group may be felt at a distant point in the molecule when this position is connected by conjugated double-bond linkages to the group. In polar reactions, this concept allows the extension of the electrophilic or nucleophilic character of a functional group through the pi system of a carbon-carbon double bond. This vinylogous extension has been applied to the aldol reaction by employing "extended" dienol ethers derived from gamma-enolizable alpha,beta-unsaturated carbonyl compounds. Since 1994, several methods for the catalytic, enantioselective, vinylogous aldol reaction have appeared, with which varying degrees of regio- (site), enantio-, and diastereoselectivity can be attained. In this Review, the current scope and limitations of this transformation, as well as its application in natural product synthesis, are discussed. PMID:15940727

  11. Electrochemical promotion of catalytic reactions

    NASA Astrophysics Data System (ADS)

    Imbihl, R.

    2010-05-01

    The electrochemical promotion of heterogeneously catalyzed reactions (EPOC) became feasible through the use of porous metal electrodes interfaced to a solid electrolyte. With the O 2- conducting yttrium stabilized zirconia (YSZ), the Na + conducting β″-Al 2O 3 (β-alumina), and several other types of solid electrolytes the EPOC effect has been demonstrated for about 100 reaction systems in studies conducted mainly in the mbar range. Surface science investigations showed that the physical basis for the EPOC effect lies in the electrochemically induced spillover of oxygen and alkali metal, respectively, onto the surface of the metal electrodes. For the catalytic promotion effect general concepts and mechanistic schemes were proposed but these concepts and schemes are largely speculative. Applying surface analytical tools to EPOC systems the proposed mechanistic schemes can be verified or invalidated. This report summarizes the progress which has been achieved in the mechanistic understanding of the EPOC effect.

  12. Catalytic decarbonylation of biosourced substrates.

    PubMed

    Ternel, Jérémy; Lebarbé, Thomas; Monflier, Eric; Hapiot, Frédéric

    2015-05-11

    Linear α-olefins (LAO) are one of the main targets in the field of surfactants, lubricants, and polymers. With the depletion of petroleum resources, the production of LAO from renewable feedstocks has gained increasing interest in recent years. In the present study, we demonstrated that Ir catalysts were suitable to decarbonylate a wide range of biosourced substrates under rather mild conditions (160 °C, 5 h reaction time) in the presence of potassium iodide and acetic anhydride. The resulting LAO were obtained with good conversion and selectivity provided that the purity of the substrate, the nature of the ligand, and the amounts of the additives were controlled accurately. The catalytic system could be recovered efficiently by using a Kugelrohr distillation apparatus and recycled. PMID:25855489

  13. APPARATUS FOR CATALYTICALLY COMBINING GASES

    DOEpatents

    Busey, H.M.

    1958-08-12

    A convection type recombiner is described for catalytically recombining hydrogen and oxygen which have been radiolytically decomposed in an aqueous homogeneous nuclear reactor. The device is so designed that the energy of recombination is used to circulate the gas mixture over the catalyst. The device consists of a vertical cylinder having baffles at its lower enda above these coarse screens having platinum and alumina pellets cemented thereon, and an annular passage for the return of recombined, condensed water to the reactor moderator system. This devicea having no moving parts, provides a simple and efficient means of removing the danger of accumulated hot radioactive, explosive gases, and restoring them to the moderator system for reuse.

  14. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  15. Non-catalytic recuperative reformer

    SciTech Connect

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  16. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    SciTech Connect

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure by combusting the

  17. Topological entropy of catalytic sets: Hypercycles revisited

    NASA Astrophysics Data System (ADS)

    Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno

    2012-02-01

    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

  18. Structure-based identification of catalytic residues

    PubMed Central

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-01-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z-scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: 1) optimizing the classifier to maximize a performance criterion that considers both type I and type II errors in the classification of catalytic and non-catalytic residues; 2) under-sampling non-catalytic residues before SVM training; and 3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets – one specifically designed by us to mimic the structural genomics scenario and three previously-evaluated datasets – our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/~meshi/functionPrediction. PMID:21491495

  19. Structure-based identification of catalytic residues.

    PubMed

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-06-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: (1) optimizing the classifier to maximize a performance criterion that considers both Type I and Type II errors in the classification of catalytic and non-catalytic residues; (2) under-sampling non-catalytic residues before SVM training; and (3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets, one specifically designed by us to mimic the structural genomics scenario and three previously evaluated datasets, our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to the evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/∼meshi/functionPrediction. PMID:21491495

  20. Catalytic conversion of cellulose to chemicals in ionic liquid.

    PubMed

    Tao, Furong; Song, Huanling; Chou, Lingjun

    2011-01-01

    A simple and effective route for the production of 5-hydroxymethyl furfural (HMF) and furfural from microcrystalline cellulose (MCC) has been developed. CoSO(4) in an ionic liquid, 1-(4-sulfonic acid) butyl-3-methylimidazolium hydrogen sulfate (IL-1), was found to be an efficient catalyst for the hydrolysis of cellulose at 150°C, which led to 84% conversion of MCC after 300min reaction time. In the presence of a catalytic amount of CoSO(4), the yields of HMF and furfural were up to 24% and 17%, respectively; a small amount of levulinic acid (LA) and reducing sugars (8% and 4%, respectively) were also generated. Dimers of furan compounds were detected as the main by-products through HPLC-MS, and with the help of mass spectrometric analysis, the components of gas products were methane, ethane, CO, CO(2,) and H(2). A mechanism for the CoSO(4)-IL-1 hydrolysis system was proposed and IL-1 was recycled for the first time, which exhibited favorable catalytic activity over five repeated runs. This catalytic system may be valuable to facilitate energy-efficient and cost-effective conversion of biomass into biofuels and platform chemicals. PMID:21092940

  1. Effect of Porosity on Surface Catalytic Efficiency

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Pallix, Joan; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    This paper describes the effect of surface porosity of thermal protection materials on surface catalytic efficiency using test data taken from both arc-jet and side-arm reactor facilities. Relative surface porosity of the samples varied from 6% to 50%. Surface porosity was measured using a flow apparatus and Bernoulli equation. The surface catalytic efficiency of the materials was calculated using aerothermodynamic, and kinetic theories. The catalytic efficiency of the materials are compared at surface temperatures between room temperature and 2500 F. The data are presented in the form of graphs and tables.

  2. Catalytic reaction in confined flow channel

    DOEpatents

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  3. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  4. Halogen Chemistry on Catalytic Surfaces.

    PubMed

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling. PMID:27131113

  5. Catalytic reactions in ionic liquids.

    PubMed

    Sheldon, R

    2001-12-01

    The chemical industry is under considerable pressure to replace many of the volatile organic compounds (VOCs) that are currently used as solvents in organic synthesis. The toxic and/or hazardous properties of many solvents, notably chlorinated hydrocarbons, combined with serious environmental issues, such as atmospheric emissions and contamination of aqueous effluents is making their use prohibitive. This is an important driving force in the quest for novel reaction media. Curzons and coworkers, for example, recently noted that rigorous management of solvent use is likely to result in the greatest improvement towards greener processes for the manufacture of pharmaceutical intermediates. The current emphasis on novel reaction media is also motivated by the need for efficient methods for recycling homogeneous catalysts. The key to waste minimisation in chemicals manufacture is the widespread substitution of classical 'stoichiometric' syntheses by atom efficient, catalytic alternatives. In the context of homogeneous catalysis, efficient recycling of the catalyst is a conditio sine qua non for economically and environmentally attractive processes. Motivated by one or both of the above issues much attention has been devoted to homogeneous catalysis in aqueous biphasic and fluorous biphasic systems as well as in supercritical carbon dioxide. Similarly, the use of ionic liquids as novel reaction media may offer a convenient solution to both the solvent emission and the catalyst recycling problem. PMID:12239988

  6. A review of tin oxide-based catalytic systems: Preparation, characterization and catalytic behavior

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.

    1987-01-01

    This paper reviews the important aspects of the preparation, characterization and catalytic behavior of tin oxide-based catalytic systems including doped tin oxide, mixed oxides which contain tin oxide, Pt supported on tin oxide and Pt/Sn supported on alumina. These systems have a broad range of applications and are continually increasing in importance. However, due to their complex nature, much remains to be understood concerning how they function catalytically.

  7. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  8. Catalytic Aminohalogenation of Alkenes and Alkynes

    PubMed Central

    Chemler, Sherry R.; Bovino, Michael T.

    2013-01-01

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review. PMID:23828735

  9. An Iron Reservoir to the Catalytic Metal

    PubMed Central

    Liu, Fange; Geng, Jiafeng; Gumpper, Ryan H.; Barman, Arghya; Davis, Ian; Ozarowski, Andrew; Hamelberg, Donald; Liu, Aimin

    2015-01-01

    The rubredoxin motif is present in over 74,000 protein sequences and 2,000 structures, but few have known functions. A secondary, non-catalytic, rubredoxin-like iron site is conserved in 3-hydroxyanthranilate 3,4-dioxygenase (HAO), from single cellular sources but not multicellular sources. Through the population of the two metal binding sites with various metals in bacterial HAO, the structural and functional relationship of the rubredoxin-like site was investigated using kinetic, spectroscopic, crystallographic, and computational approaches. It is shown that the first metal presented preferentially binds to the catalytic site rather than the rubredoxin-like site, which selectively binds iron when the catalytic site is occupied. Furthermore, an iron ion bound to the rubredoxin-like site is readily delivered to an empty catalytic site of metal-free HAO via an intermolecular transfer mechanism. Through the use of metal analysis and catalytic activity measurements, we show that a downstream metabolic intermediate can selectively remove the catalytic iron. As the prokaryotic HAO is often crucial for cell survival, there is a need for ensuring its activity. These results suggest that the rubredoxin-like site is a possible auxiliary iron source to the catalytic center when it is lost during catalysis in a pathway with metabolic intermediates of metal-chelating properties. A spare tire concept is proposed based on this biochemical study, and this concept opens up a potentially new functional paradigm for iron-sulfur centers in iron-dependent enzymes as transient iron binding and shuttling sites to ensure full metal loading of the catalytic site. PMID:25918158

  10. Chemical and catalytic properties of elemental carbon

    SciTech Connect

    Chang, S.G.; Brodzinsky, R.; Gundel, L.A.; Novakov, T.

    1980-10-01

    Elemental carbon particles resulting from incomplete combustion of fossil fuel are one of the major constituents of airborne particulate matter. These particles are a chemically and catalytically active material and can be an effective carrier for other toxic air pollutants through their adsorptive capability. The chemical, adsorptive, and catalytic behaviors of carbon particles depend very much on their crystalline structure, surface composition, and electronic properties. This paper discusses these properties and examines their relevance to atmospheric chemistry.

  11. Catalytic Radical Domino Reactions in Organic Synthesis

    PubMed Central

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  12. Correlation of Catalytic Rates With Solubility Parameters

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D.; England, Christopher

    1987-01-01

    Catalyst maximizes activity when its solubility parameter equals that of reactive species. Catalytic activities of some binary metal alloys at maximum when alloy compositions correspond to Hildebrand solubility parameters equal to those of reactive atomic species on catalyst. If this suggestive correlation proves to be general, applied to formulation of other mixed-metal catalysts. Also used to identify reactive species in certain catalytic reactions.

  13. Catalytic hydrogenation of carbon monoxide

    SciTech Connect

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  14. SOFC system with integrated catalytic fuel processing

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  15. VOC Destruction by Catalytic Combustion Microturbine

    SciTech Connect

    Tom Barton

    2009-03-10

    This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of

  16. Catalytic coal liquefaction. Final report

    SciTech Connect

    Weller, S W

    1981-01-01

    Monolith catalysts of MoO/sub 3/-CoO-Al/sub 2/O/sub 3/ were prepared and tested for coal liquefaction in a stirred autoclave. In general, the monolith catalysts were not as good as particulate catalysts prepared on Corning alumina supports. Measurement of O/sub 2/ chemisorption and BET surface area has been made on a series of Co/Mo/Al/sub 2/O/sub 3/ catalysts obtained from PETC. The catalysts were derived from Cyanamid 1442A and had been tested for coal liquefaction in batch autoclaves and continuous flow units. MoO/sub 3/-Al/sub 2/O/sub 3/ catalysts over the loading range 3.9 to 14.9 wt % MoO/sub 3/ have been studied with respect to BET surface (before and after reduction), O/sub 2/ chemisorption at -78/sup 0/C, redox behavior at 500/sup 0/C, and activity for cyclohexane dehydrogenation at 500/sup 0/C. In connection with the fate of tin catalysts during coal liquefaction, calculations have been made of the relative thermodynamic stability of SnCl/sub 2/, Sn, SnO/sub 2/, and SnS in the presence of H/sub 2/, HCl, H/sub 2/S and H/sub 2/O. Ferrous sulfate dispersed in methylnaphthalene has been shown to be reduced to ferrous sulfide under typical coal hydroliquefaction conditions (1 hour, 450/sup 0/C, 1000 psi initial p/sub H/sub 2//). This suggests that ferrous sulfide may be the common catalytic ingredient when either (a) ferrous sulfate impregnated on powdered coal, or (b) finely divided iron pyrite is used as the catalyst. Old research on impregnated ferrous sulfate, impregnated ferrous halides, and pyrite is consistent with this assumption. Eight Co/Mo/Al/sub 2/O/sub 3/ catalysts from commercial suppliers, along with SnCl/sub 2/, have been studied for the hydrotreating of 1-methylnaphthalene (1-MN) in a stirred autoclave at 450 and 500/sup 0/C.

  17. Telecom 2-A (TC2A)

    NASA Technical Reports Server (NTRS)

    Dulac, J.; Latour, J.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for Telecom 2-A (TC2A) are summarized. The Telecom 2-A will provide high-speed data link applications, telephone, and television service between France and overseas territories. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  18. Materials for high-temperature catalytic combustion

    SciTech Connect

    Ramesh, K.S.; Cox, J.L.; Parks, W.P. Jr.

    1994-04-01

    Catalytic combustion systems for gas turbines must operate at temperatures of at least 1200{degrees}C. Support structure material must retain its integrity under prolonged exposure to high temperature, thermal cycling, and severe chemical conditions; and the material must be capable of being formed into thin sections. The performance requirements of a high-temperature stable ceramic support must be balanced with reasonable costs of preparation. An increasing number of materials have potential for successful exposure to high-temperature conditions. Two major problems of high-temperature catalyst systems are loss of surface area and catalytic activity. Incorporation of the catalytic component into the host lattice can circumvent this problem. Use of supporting active metal oxides on carrier materials with high thermal resistance appears to be a very promising way to make stable catalysts. The challenge will be to provide sufficient low-temperature activity and high-temperature stability; therefore, there exists a need to engineer catalytic materials for high-temperature combustion environments. Developments in catalytic materials and preparation procedures are reviewed. Future areas of research are discussed.

  19. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  20. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  1. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  2. Olefin fractionation and catalytic conversion system

    SciTech Connect

    Owen, H.; Hsia, C.H.; Wright, B.S.

    1989-05-23

    A continuous catalytic system is described for converting a fraction of olefinic feedstock comprising ethylene and C/sub 3/+ olefins to heavier liquid hydrocarbon product comprising: (a) means for prefractionating the olefinic feedstock to obtain a gaseous stream rich in ethylene and a liquid stream containing C/sub 3/+ olefin; (b) means for vaporizing and contacting the liquid stream from the prefractionating step with hydrocarbon conversion oligomerization catalyst in a catalytic reactor system to provide a heavier hydrocarbon effluent stream comprising distillate, gasoline and lighter hydrocarbons; (c) means for fractionating the effluent stream to recover distillate, gasoline and lighter hydrocarbon separately; (d) means for recycling at least a portion of the recovered gasoline as a liquid sorption stream to prefractionating step (a); and (e) means for further reacting the recycled gasoline together with sorbed C/sub 3/+ olefin in the catalytic reactor system of step (b).

  3. Controlling the catalytic aerobic oxidation of phenols.

    PubMed

    Esguerra, Kenneth Virgel N; Fall, Yacoub; Petitjean, Laurène; Lumb, Jean-Philip

    2014-05-28

    The oxidation of phenols is the subject of extensive investigation, but there are few catalytic aerobic examples that are chemo- and regioselective. Here we describe conditions for the ortho-oxygenation or oxidative coupling of phenols under copper (Cu)-catalyzed aerobic conditions that give rise to ortho-quinones, biphenols or benzoxepines. We demonstrate that each product class can be accessed selectively by the appropriate choice of Cu(I) salt, amine ligand, desiccant and reaction temperature. In addition, we evaluate the effects of substituents on the phenol and demonstrate their influence on selectivity between ortho-oxygenation and oxidative coupling pathways. These results create an important precedent of catalyst control in the catalytic aerobic oxidation of phenols and set the stage for future development of catalytic systems and mechanistic investigations. PMID:24784319

  4. Xylan-Degrading Catalytic Flagellar Nanorods.

    PubMed

    Klein, Ágnes; Szabó, Veronika; Kovács, Mátyás; Patkó, Dániel; Tóth, Balázs; Vonderviszt, Ferenc

    2015-09-01

    Flagellin, the main component of flagellar filaments, is a protein possessing polymerization ability. In this work, a novel fusion construct of xylanase A from B. subtilis and Salmonella flagellin was created which is applicable to build xylan-degrading catalytic nanorods of high stability. The FliC-XynA chimera when overexpressed in a flagellin deficient Salmonella host strain was secreted into the culture medium by the flagellum-specific export machinery allowing easy purification. Filamentous assemblies displaying high surface density of catalytic sites were produced by ammonium sulfate-induced polymerization. FliC-XynA nanorods were resistant to proteolytic degradation and preserved their enzymatic activity for a long period of time. Furnishing enzymes with self-assembling ability to build catalytic nanorods offers a promising alternative approach to enzyme immobilization onto nanostructured synthetic scaffolds. PMID:25966869

  5. The catalytic core of RNase P.

    PubMed Central

    Green, C J; Rivera-León, R; Vold, B S

    1996-01-01

    A deletion mutant of the catalytic RNA component of Escherichia coli RNase P missing residues 87-241 retains the ability to interact with the protein component to form a functional catalyst. The deletion of this phylogenetically conserved region significantly increases the Km, indicating that the deleted structures may be important for binding to the precursor tRNA substrate but not for the cleavage reaction. Under some reaction conditions, this RNase P deletion mutant can become a relatively non-specific nuclease, indicating that this RNA's catalytic center may be more exposed. The catalytic core of the RNase P is formed by less than one third of the 377 residues of the RNase P RNA. PMID:8628683

  6. Asymmetric catalytic transformations in supercritical carbon dioxide

    SciTech Connect

    Feng, Shaoguang; Tumas, W.; Gross, M.F.; Burk, M.J.

    1996-12-31

    Supercritical carbon dioxide can be a useful environmentally benign solvent for a wide range of catalytic reactions. We have been exploring the utility of supercritical carbon dioxide as a reaction medium for catalytic asymmetric transformations. We will present results on the asymmetric hydrogenation of prochiral olefins, ketones, and unsaturated acids by Rh and Ru catalysts containing chiral phosphine ligands using hydrogen or hydrogen transfer agents. We have found that asymmetric catalytic hydrogenation reactions of enamide esters work as well or better in CO{sub 2} than in conventional solvents. We have been able to effect high conversions and ee`s using hydrogen transfer systems such as HCOOH/NEt{sub 3}, We will discuss temperature, pressure and solvent density effects on selectivity and reactivity. Kinetic studies will also be presented in order to understand the enhanced enantioselectivity that we observed in SC CO{sub 2}.

  7. ADAR proteins: structure and catalytic mechanism.

    PubMed

    Goodman, Rena A; Macbeth, Mark R; Beal, Peter A

    2012-01-01

    Since the discovery of the adenosine deaminase (ADA) acting on RNA (ADAR) family of proteins in 1988 (Bass and Weintraub, Cell 55:1089-1098, 1988) (Wagner et al. Proc Natl Acad Sci U S A 86:2647-2651, 1989), we have learned much about their structure and catalytic mechanism. However, much about these enzymes is still unknown, particularly regarding the selective recognition and processing of specific adenosines within substrate RNAs. While a crystal structure of the catalytic domain of human ADAR2 has been solved, we still lack structural data for an ADAR catalytic domain bound to RNA, and we lack any structural data for other ADARs. However, by analyzing the structural data that is available along with similarities to other deaminases, mutagenesis and other biochemical experiments, we have been able to advance the understanding of how these fascinating enzymes function. PMID:21769729

  8. Temperature Modulation of a Catalytic Gas Sensor

    PubMed Central

    Brauns, Eike; Morsbach, Eva; Kunz, Sebastian; Baeumer, Marcus; Lang, Walter

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (<150 ms) was developed. Operation with modulated temperature allows analysis of the signal spectrum with advanced information content, based on the Arrhenius approach. Therefore, a high-precise electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal. PMID:25356643

  9. Mass transfer in composite catalytic membranes

    SciTech Connect

    Langhendries, G.; Claessens, R.; Baron, G.V.

    1996-12-31

    The partial oxidation of cyclohexane was studied in a composite polymer-zeolite catalytic membrane reactor. In a first step the equilibrium and mass transfer properties (swelling, diffusion and sorption) of dense composite membranes were examined. The swelling behavior of the crosslinked poly(dimethylsiloxane) network was determined for several solvents and related to the differences between the Hildebrand solubility parameters of solvent and polymer. Time lag experiments, which enable us to measure simultaneously diffusion and partition coefficients, were carried out on a dense poly(dimethylsiloxane) membrane. A mathematical model describing the mass transfer behavior of these catalytic membranes was derived and validated with experimental data. Mass transfer through composite catalytic membranes can be predicted using the properties of pure catalyst and polymer material, and a single tortuosity factor. 9 refs., 5 figs., 4 tabs.

  10. Catalytic nanomotors: fabrication, mechanism, and applications

    NASA Astrophysics Data System (ADS)

    Gibbs, John; Zhao, Yiping

    2011-03-01

    Catalytic nanomotors are nano-to-micrometer-sized actuators that carry an on-board catalyst and convert local chemical fuel in solution into mechanical work. The location of this catalyst as well as the geometry of the structure dictate the swimming behaviors exhibited. The nanomotors can occur naturally in organic molecules, combine natural and artificial parts to form hybrid nanomotors or be purely artificial. Fabrication techniques consist of template directed electroplating, lithography, physical vapor deposition, and other advanced growth methods. Various physical and chemical propulsion mechanisms have been proposed to explain the motion behaviors including diffusiophoresis, bubble propulsion, interfacial tension gradients, and self-electrophoresis. The control and manipulation based upon external fields, catalytic alloys, and motion control through thermal modulation are discussed as well. Catalytic nanomotors represent an exciting technological challenge with the end goal being practical functional nanomachines that can perform a variety of tasks at the nanoscale.

  11. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and

  12. Porous media for catalytic renewable energy conversion

    NASA Astrophysics Data System (ADS)

    Hotz, Nico

    2012-05-01

    A novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior. The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.

  13. A premixed hydrogen/oxygen catalytic igniter

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1989-01-01

    The catalytic ignition of hydrogen and oxygen propellants was studied using a premixing hydrogen/oxygen injector. The premixed injector was designed to eliminate problems associated with catalytic ignition caused by poor propellant mixing in the catalyst bed. Mixture ratio, mass flow rate, and propellant inlet temperature were varied parametrically in testing, and a pulse mode life test of the igniter was conducted. The results of the tests showed that the premixed injector eliminated flame flashback in the reactor and increased the life of the igniter significantly. The results of the experimental program and a comparison with data collected in a previous program are given.

  14. Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes.

    PubMed

    Coombs, John R; Morken, James P

    2016-02-18

    Terminal alkenes are readily available functional groups which appear in α-olefins produced by the chemical industry, and they appear in the products of many contemporary synthetic reactions. While the organic transformations that apply to alkenes are amongst the most studied reactions in all of chemical synthesis, the number of reactions that apply to nonactivated terminal alkenes in a catalytic enantioselective fashion is small in number. This Minireview highlights the cases where stereocontrol in catalytic reactions of 1-alkenes is high enough to be useful for asymmetric synthesis. PMID:26764019

  15. Continuous in vitro evolution of catalytic function.

    PubMed

    Wright, M C; Joyce, G F

    1997-04-25

    A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely. PMID:9110984

  16. Catalytic Wastewater Treatment Using Pillared Clays

    NASA Astrophysics Data System (ADS)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  17. Continuous in vitro evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Wright, M. C.; Joyce, G. F.

    1997-01-01

    A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.

  18. Janus droplet as a catalytic micromotor

    NASA Astrophysics Data System (ADS)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  19. Intensification of catalytic cracking process by addition of heavy catalytic gasoil

    SciTech Connect

    Serikov, P.Yu.; Zaitseva, N.P.; Smidovich, E.V.

    1987-11-01

    The addition of heavy catalytic gasoil to cat cracker feed as a means of reducing the formation of coke was investigated. A vacuum gasoil was used as the feedstock, and a lube oil solvent extract and heavy catalytic gasoil were used as the activating additives. Data showed that feedstocks with the highest kinetic stability had the lowest coke formation in cracking. Kinetic stability was determined by the viscometric method. Test results show that heavy catalytic gasoil has a greater effect on reducing coke yield than the extract used.

  20. Rapid Deployment of Rich Catalytic Combustion

    SciTech Connect

    Richard S. Tuthill

    2004-06-10

    The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

  1. Catalytic desulfurization of industrial waste gases

    SciTech Connect

    Dupin, Th.

    1985-07-30

    Industrial waste gases containing objectionable/polluting compounds of sulfur, e.g., H/sub 2/S, SO/sub 2/ and such organosulfur derivatives as COS, CS/sub 2/ and mercaptans, are catalytically desulfurized, e.g., by Claus process, employing an improved catalyst comprising titanium dioxide and calcium, barium, strontium or magnesium sulfate.

  2. Toward Facilitative Mentoring and Catalytic Interventions

    ERIC Educational Resources Information Center

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  3. Catalytic Converters Maintain Air Quality in Mines

    NASA Technical Reports Server (NTRS)

    2014-01-01

    At Langley Research Center, engineers developed a tin-oxide based washcoat to prevent oxygen buildup in carbon dioxide lasers used to detect wind shears. Airflow Catalyst Systems Inc. of Rochester, New York, licensed the technology and then adapted the washcoat for use as a catalytic converter to treat the exhaust from diesel mining equipment.

  4. DESTRUCTION OF AIR EMISSIONS USING CATALYTIC OXIDATION

    EPA Science Inventory

    The paper discusses key emission stream characteristics and hazardous air pollutant (HAP) characteristics that affect the applicability of catalytic oxidation as an air pollution control technique in which volatile organic compounds (VOCs) and vapor-phase air toxics in an air emi...

  5. Process for catalytically oxidizing cycloolefins, particularly cyclohexene

    DOEpatents

    Mizuno, Noritaka; Lyon, David K.; Finke, Richard G.

    1993-01-01

    This invention is a process for catalytically oxidizing cycloolefins, particularly cyclohexenes, to form a variety of oxygenates. The catalyst used in the process is a covalently bonded iridium-heteropolyanion species. The process uses the catalyst in conjunction with a gaseous oxygen containing gas to form 2-cyclohexen-1-ol and also 2-cyclohexen-1-one.

  6. Novel Metal Nanomaterials and Their Catalytic Applications.

    PubMed

    Wang, Jiaqing; Gu, Hongwei

    2015-01-01

    In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe₂O₃ nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts) and their new catalytic applications in our group, to establish heterogeneous catalytic system in "green" environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials' development that leads to new opportunities in nanocatalysis. PMID:26393550

  7. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  8. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...

  9. Catalytic processes for space station waste conversion

    NASA Technical Reports Server (NTRS)

    Schoonover, M. W.; Madsen, R. A.

    1986-01-01

    Catalytic techniques for processing waste products onboard space vehicles were evaluated. The goal of the study was the conversion of waste to carbon, wash water, oxygen and nitrogen. However, the ultimate goal is conversion to plant nutrients and other materials useful in closure of an ecological life support system for extended planetary missions. The resulting process studied involves hydrolysis at 250 C and 600 psia to break down and compact cellulose material, distillation at 100 C to remove water, coking at 450 C and atmospheric pressure, and catalytic oxidation at 450 to 600 C and atmospheric pressure. Tests were conducted with a model waste to characterize the hydrolysis and coking processes. An oxidizer reactor was sized based on automotive catalytic conversion experience. Products obtained from the hydrolysis and coking steps included a solid residue, gases, water condensate streams, and a volatile coker oil. Based on the data obtained, sufficient component sizing was performed to make a preliminary comparison of the catalytic technique with oxidation for processing waste for a six-man spacecraft. Wet oxidation seems to be the preferred technique from the standpoint of both component simplicity and power consumption.

  10. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  11. Architecture and function of metallopeptidase catalytic domains

    PubMed Central

    Cerdà-Costa, Núria; Gomis-Rüth, Francesc Xavier

    2014-01-01

    The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single-step reaction involving a solvent molecule, a general base/acid, and a mono-or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal-binding motif (HEXXH), which includes two metal-binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ∼130–270-residue catalytic domains, which are usually preceded by N-terminal pro-segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C-terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N-terminal subdomain spanning a five-stranded β-sheet, a backing helix, and an active-site helix. The latter contains most of the metal-binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C-terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met-turn—and a C-terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs. PMID:24596965

  12. Evolution of catalytic RNA in the laboratory

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F.

    1992-01-01

    We are interested in the biochemistry of existing RNA enzymes and in the development of RNA enzymes with novel catalytic function. The focal point of our research program has been the design and operation of a laboratory system for the controlled evolution of catalytic RNA. This system serves as working model of RNA-based life and can be used to explore the catalytic potential of RNA. Evolution requires the integration of three chemical processes: amplification, mutation, and selection. Amplification results in additional copies of the genetic material. Mutation operates at the level of genotype to introduce variability, this variability in turn being expressed as a range of phenotypes. Selection operates at the level of phenotype to reduce variability by excluding those individuals that do not conform to the prevailing fitness criteria. These three processes must be linked so that only the selected individuals are amplified, subject to mutational error, to produce a progeny distribution of mutant individuals. We devised techniques for the amplification, mutation, and selection of catalytic RNA, all of which can be performed rapidly in vitro within a single reaction vessel. We integrated these techniques in such a way that they can be performed iteratively and routinely. This allowed us to conduct evolution experiments in response to artificially-imposed selection constraints. Our objective was to develop novel RNA enzymes by altering the selection constraints in a controlled manner. In this way we were able to expand the catalytic repertoire of RNA. Our long-range objective is to develop an RNA enzyme with RNA replicase activity. If such an enzyme had the ability to produce additional copies of itself, then RNA evolution would operate autonomously and the origin of life will have been realized in the laboratory.

  13. Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus.

    PubMed

    Scorsato, Valéria; Lima, Tatiani B; Righetto, Germanna L; Zanchin, Nilson I T; Brandão-Neto, José; Sandy, James; Pereira, Humberto D'Muniz; Ferrari, Állan J R; Gozzo, Fabio C; Smetana, Juliana H C; Aparicio, Ricardo

    2016-01-01

    TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase's active site, providing a structural framework for the function of TIPRL in PP2A inhibition. PMID:27489114

  14. Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus

    PubMed Central

    Scorsato, Valéria; Lima, Tatiani B.; Righetto, Germanna L.; Zanchin, Nilson I. T.; Brandão-Neto, José; Sandy, James; Pereira, Humberto D’Muniz; Ferrari, Állan J. R.; Gozzo, Fabio C.; Smetana, Juliana H. C.; Aparicio, Ricardo

    2016-01-01

    TOR signaling pathway regulator-like (TIPRL) is a regulatory protein which inhibits the catalytic subunits of Type 2A phosphatases. Several cellular contexts have been proposed for TIPRL, such as regulation of mTOR signaling, inhibition of apoptosis and biogenesis and recycling of PP2A, however, the underlying molecular mechanism is still poorly understood. We have solved the crystal structure of human TIPRL at 2.15 Å resolution. The structure is a novel fold organized around a central core of antiparallel beta-sheet, showing an N-terminal α/β region at one of its surfaces and a conserved cleft at the opposite surface. Inside this cleft, we found a peptide derived from TEV-mediated cleavage of the affinity tag. We show by mutagenesis, pulldown and hydrogen/deuterium exchange mass spectrometry that this peptide is a mimic for the conserved C-terminal tail of PP2A, an important region of the phosphatase which regulates holoenzyme assembly, and TIPRL preferentially binds the unmodified version of the PP2A-tail mimetic peptide DYFL compared to its tyrosine-phosphorylated version. A docking model of the TIPRL-PP2Ac complex suggests that TIPRL blocks the phosphatase’s active site, providing a structural framework for the function of TIPRL in PP2A inhibition. PMID:27489114

  15. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues

    PubMed Central

    Ando, Hideaki; Hirose, Matsumi; Gainche, Laura; Kawaai, Katsuhiro; Bonneau, Benjamin; Ijuin, Takeshi; Itoh, Toshiki; Takenawa, Tadaomi; Mikoshiba, Katsuhiko

    2015-01-01

    Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2. PMID:26509711

  16. Catalytic asymmetric total synthesis of (-)-galanthamine and (-)-lycoramine.

    PubMed

    Li, Lei; Yang, Qiao; Wang, Yuan; Jia, Yanxing

    2015-05-18

    The catalytic asymmetric total syntheses of (-)-galanthamine (1) and (-)-lycoramine (2) have been achieved by using a conceptually new strategy featuring two metal-catalyzed reactions as the key steps. A new method for the construction of 3,4-fused benzofurans has been developed through a palladium-catalyzed intramolecular Larock annulation reaction, which was successfully applied to the construction of the ABD tricyclic skeleton of 1 and 2. To achieve the asymmetric synthesis of 1 and 2, a Sc(III)/N,N'-dioxide complex was used to catalyze the enantioselective conjugate addition of 3-alkyl-substituted benzofuranone to methyl vinyl ketone for the construction of a chiral quaternary carbon center. PMID:25847447

  17. Method and apparatus for a catalytic firebox reactor

    DOEpatents

    Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  18. Catalytic properties of the eukaryotic exosome.

    PubMed

    Chlebowski, Aleksander; Tomecki, Rafał; López, María Eugenia Gas; Séraphin, Bertrand; Dziembowski, Andrzej

    2010-01-01

    The eukaryotic exosome complex is built around the backbone of a 9-subunit ring similar to phosporolytic ribonucleases such as RNase PH and polynucleotide phosphorylase (PNPase). Unlike those enzymes, the ring is devoid of any detectable catalytic activities, with the possible exception of the plant version of the complex. Instead, the essential RNA decay capability is supplied by associated hydrolytic ribonucleases belonging to the Dis3 and Rrp6 families. Dis3 proteins are endowed with two different activities: the long known processive 3'-5' exonucleolytic one and the recently discovered endonucleolytic one. Rrp6 proteins are distributive exonucleases. This chapter will review the current knowledge about the catalytic properties of theses nucleases and their interplay within the exosome holocomplex. PMID:21618875

  19. Catalytic properties of the eukaryotic exosome.

    PubMed

    Chlebowski, Aleksander; Tomecki, Rafał; Gas López, María Eugenia; Séraphin, Bertrand; Dziembowski, Andrzej

    2011-01-01

    The eukaryotic exosome complex is built around the backbone of a 9-subunit ring similar to phosporolytic ribonucleases such as RNase PH and polynucleotide phosphorylase (PNPase). Unlike those enzymes, the ring is devoid of any detectable catalytic activities, with the possible exception of the plant version of the complex. Instead, the essential RNA decay capability is supplied by associated hydrolytic ribonucleases belonging to the Dis3 and Rrp6 families. Dis3 proteins are endowed with two different activities: the long known processive 3'-5' exonucleolytic one and the recently discovered endonucleolytic one. Rrp6 proteins are distributive exonucleases. This chapter will review the current knowledge about the catalytic properties of theses nucleases and their interplay within the exosome holocomplex. PMID:21713678

  20. From Catalytic Reaction Networks to Protocells

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko

    2013-12-01

    In spite of recent advances, there still remains a large gape between a set of chemical reactions and a biological cell. Here we discuss several theoretical efforts to fill in the gap. The topics cover (i) slow relaxation to equilibrium due to glassy behavior in catalytic reaction networks (ii) consistency between molecule replication and cell growth, as well as energy metabolism (iii) control of a system by minority molecules in mutually catalytic system, which work as a carrier of genetic information, and leading to evolvability (iv) generation of a compartmentalized structure as a cluster of molecules centered around the minority molecule, and division of the cluster accompanied by the replication of minority molecule (v) sequential, logical process over several states from concurrent reaction dynamics, by taking advantage of discreteness in molecule number.

  1. Catalytic, hollow, refractory spheres, conversions with them

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  2. Catalytic Asymmetric Synthesis of Chiral Allylic Esters

    PubMed Central

    Cannon, Jeffrey S.; Kirsch, Stefan F.; Overman, Larry E.

    2010-01-01

    A broadly useful catalytic enantioselective synthesis of branched allylic esters from prochiral (Z)-2-alkene-1-ols has been developed. The starting allylic alcohol is converted to its trichloroacetimidate intermediate by reaction with trichloroacetonitrile, either in situ or in a separate step, and this intermediate undergoes clean enantioselective SN2′ substitution with a variety of carboxylic acids in the presence of the palladium(II) catalyst (Rp,S)-di-μ -acetatobis[(η5-2-(2'-(4'-methylethyl)oxazolinyl)cyclopentadienyl,1-C,3'-N)(η4-tetraphenylcyclobutadiene)cobalt]dipalladium, (Rp,S)-[COP-OAc]2 or its enantiomer. The scope and limitations of this useful catalytic asymmetric allylic esterification are defined. PMID:15740118

  3. Catalytic gasification: Isotopic labeling and transient reaction

    SciTech Connect

    Saber, J.M.; Falconer, J.L.; Brown, L.F.

    1985-01-01

    Temperature-programmed reaction was used with labeled isotopes (/sup 13/C and /sup 18/O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO/sub 2//90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 K and 950 K, and in the presence of gaseous carbon dioxide, the complexes promoted carbon and oxygen exchange between the gas-phase CO/sub 2/ and the surface. Oxygen exchanged between the surface complexes; but carbon did not exchange between the carbonate and the carbon black. As the temperature rose, the complexes decomposed to produce carbon dioxide, and catalytic gasification then began. Elemental potassium formed, and the active catalyst appears to alternate between potassium metal and a potassium-oxygen-carbon complex.

  4. Catalytic combustion of coal-derived liquids

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.; Tacina, R. R.

    1981-01-01

    A noble metal catalytic reactor was tested with three grades of SRC 2 coal derived liquids, naphtha, middle distillate, and a blend of three parts middle distillate to one part heavy distillate. A petroleum derived number 2 diesel fuel was also tested to provide a direct comparison. The catalytic reactor was tested at inlet temperatures from 600 to 800 K, reference velocities from 10 to 20 m/s, lean fuel air ratios, and a pressure of 3 x 10 to the 5th power Pa. Compared to the diesel, the naphtha gave slightly better combustion efficiency, the middle distillate was almost identical, and the middle heavy blend was slightly poorer. The coal derived liquid fuels contained from 0.58 to 0.95 percent nitrogen by weight. Conversion of fuel nitrogen to NOx was approximately 75 percent for all three grades of the coal derived liquids.

  5. Preface: Challenges for Catalytic Exhaust Aftertreatment

    SciTech Connect

    Nova, Isabella; Epling, Bill; Peden, Charles HF

    2014-03-31

    This special issue of Catalysis Today continues the tradition established since the 18th NAM in Cancun, 2003, of publishing the highlights coming from these catalytic after-treatment technologies sessions, where this volume contains 18 papers based on oral and poster presentations of the 23rd NAM, 2013. The guest editors would like to thank all of the catalyst scientists and engineers who presented in the "Emission control" sessions, and especially the authors who contributed to this special issue of Catalysis Today.

  6. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality. PMID:24801125

  7. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  8. Catalytic anomeric aminoalkynylation of unprotected aldoses.

    PubMed

    Kimura, Yasuaki; Ito, Soichi; Shimizu, Yohei; Kanai, Motomu

    2013-08-16

    A copper(I)-catalyzed anomeric aminoalkynylation reaction of unprotected aldoses was realized. Use of an electron-deficient phosphine ligand, boric acid to stabilize the iminium intermediate, and a protic additive (IPA) to presumably enhance reversible carbohydrate-boron complexation were all essential for efficient conversion. The reaction proceeded well even with a natural disaccharide substrate, suggesting that the developed catalytic reaction could be useful for the synthesis of glycoconjugates with minimum use of protecting groups. PMID:23901780

  9. In vitro selection of catalytic RNAs

    NASA Technical Reports Server (NTRS)

    Chapman, K. B.; Szostak, J. W.

    1994-01-01

    In vitro selection techniques are poised to allow a rapid expansion of the study of catalysis by RNA enzymes (ribozymes). This truly molecular version of genetics has already been applied to the study of the structures of known ribozymes and to the tailoring of their catalytic activity to meet specific requirements of substrate specificity or reaction conditions. During the past year, in vitro selection has been successfully used to isolate novel RNA catalysts from random sequence pools.

  10. Catalytically induced electrokinetics for motors and micropumps.

    PubMed

    Paxton, Walter F; Baker, Paul T; Kline, Timothy R; Wang, Yang; Mallouk, Thomas E; Sen, Ayusman

    2006-11-22

    We have explored the role of electrokinetics in the spontaneous motion of platinum-gold nanorods suspended in hydrogen peroxide (H2O2) solutions that may arise from the bimetallic electrochemical decomposition of H2O2. The electrochemical decomposition pathway was confirmed by measuring the steady-state short-circuit current between platinum and gold interdigitated microelectrodes (IMEs) in the presence of H2O2. The resulting ion flux from platinum to gold implies an electric field in the surrounding solution that can be estimated from Ohm's Law. This catalytically generated electric field could in principle bring about electrokinetic effects that scale with the Helmholtz-Smoluchowski equation. Accordingly, we observed a linear relationship between bimetallic rod speed and the resistivity of the bulk solution. Previous observations relating a decrease in speed to an increase in ethanol concentration can be explained in terms of a decrease in current density caused by the presence of ethanol. Furthermore, we found that the catalytically generated electric field in the solution near a Pt/Au IME in the presence of H2O2 is capable of inducing electroosmotic fluid flow that can be switched on and off externally. We demonstrate that the velocity of the fluid flow in the plane of the IME is a function of the electric field, whether catalytically generated or applied from an external current source. Our findings indicate that the motion of PtAu nanorods in H2O2 is primarily due to a catalytically induced electrokinetic phenomenon and that other mechanisms, such as those related to interfacial tension gradients, play at best a minor role. PMID:17105298

  11. Catalytic process for manufacture of lubricating oils

    SciTech Connect

    Gorring, R.L.; La, P.R.

    1981-09-29

    A method is disclosed for converting an asphalt-free heavy hydrocarbon oil to high V.I. low pour point lube base stock and naphtha. The heavy oil is first catalytically dewaxed with a catalyst such as ni-zsm-5 and the dewaxed oil is then hydrocracked, or hydroconverted with a large pore zeolite catalyst such as dealuminized Y or zsm-20 associated with palladium. The V.I. is controlled by the severity of the hydroconversion step.

  12. Catalytic dehydroxylation of phenols. [Metal sulfides

    SciTech Connect

    Pieters, W.J.M.

    1984-05-29

    Phenolic compounds are dehydroxylated in the vapor phase by contacting with a reducing atmosphere substantially comprising hydrogen sulfide as the reducing agent in the presence of a sulfur-tolerant metal sulfide catalyst. The additional presence of hydrogen gas helps to desulfurize the catalyst and maintain catalytic activity. The process is useful in the treatment of phenolic naphtha fractions present in coal liquids, produced by pyrolysis or direct coal liquefaction.

  13. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  14. PME-1 protects ERK pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma

    PubMed Central

    Puustinen, Pietri; Junttila, Melissa R.; Vanhatupa, Sari; Sablina, Anna A.; Hector, Melissa E.; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C.; Westermarck, Jukka

    2010-01-01

    ERK/MAPK pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies, however the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A (PP2A) promotes basal ERK pathway activity, and is required for efficient growth factor response. Mechanistically PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and PKC. In malignant glioblastoma, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (N=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells, and suggest important functional role for PME-1 in the disease progression of human astrocytic gliomas. PMID:19293187

  15. Preconversion catalytic deoxygenation of phenolic functional groups

    SciTech Connect

    Kubiak, C.P.

    1991-01-01

    The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. A program of research for the catalytic deoxygenation of phenols, via a low energy mechanistic pathway that is based on the use of the CO/CO{sub 2} couple to remove phenolic oxygen atoms, is underway. We are focusing on systems which have significant promise as catalysts: Ir(triphos)OPh, (Pt(triphos)OPh){sup +} and Rh(triphos)OPh. Our studies of phenol deoxygenation focus on monitoring the reactions for the elementary processes upon which catalytic activity will depend: CO insertion into M-OPh bonds, CO{sub 2} elimination from aryloxy carbonyls {l brace}M-C(O)-O-Ph{r brace}, followed by formation of a coordinated benzyne intermediate.

  16. Vapor-Driven Propulsion of Catalytic Micromotors

    PubMed Central

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-01-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors. PMID:26285032

  17. Vapor-Driven Propulsion of Catalytic Micromotors.

    PubMed

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-01-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors. PMID:26285032

  18. Catalytic pyrolysis of olive mill wastewater sludge

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  19. Modeling coal chemistry: One electron catalytic reactions

    SciTech Connect

    Farcasiu, M.; Smith, C.; Hunter, E.A. )

    1991-01-01

    The complexity of the coal structure, in general, and of its organic part, in particular, prevents a rigorous study of coal chemistry. The use of model compounds with less complicated chemical structures to model specific reactions relevant to coal transformation into useful products is necessary and helpful. This is true, however, only if the modeling is properly applied and especially if the results are not excessively extrapolated to all aspects of coal reactivity. The emphasis on all catalytic routes in coal liquefaction has enhanced the interest in the study of the chemistry involved in heterogeneous catalytic reactions relevant to the first stage, solubilization, of coal. One of the important reactions associated with this first stage is the cleavage of carbon-carbon bonds linking aromatic rings with aliphatic moieties. In previous publications (1,2,3) we have used a model compound 4-(l-naphthylmethyl)bibenzyl (1) in which the bond linking the naphthalene ring to a methylene carbon can be selectively cleaved by specific catalysts (i.e. carbon materials, some iron catalysts) at temperatures at which thermal, free radical-initiated reactions, do not take place. Our data suggest that the above-mentioned catalytic cleavage is initiated by the ion radical of 1, with the unpaired electron localized in the naphthalene ring.

  20. Modeling coal chemistry: One electron catalytic reactions

    SciTech Connect

    Farcasiu, M.; Smith, C.; Hunter, E.A.

    1991-12-31

    The complexity of the coal structure, in general, and of its organic part, in particular, prevents a rigorous study of coal chemistry. The use of model compounds with less complicated chemical structures to model specific reactions relevant to coal transformation into useful products is necessary and helpful. This is true, however, only if the modeling is properly applied and especially if the results are not excessively extrapolated to all aspects of coal reactivity. The emphasis on all catalytic routes in coal liquefaction has enhanced the interest in the study of the chemistry involved in heterogeneous catalytic reactions relevant to the first stage, solubilization, of coal. One of the important reactions associated with this first stage is the cleavage of carbon-carbon bonds linking aromatic rings with aliphatic moieties. In previous publications (1,2,3) we have used a model compound 4-(l-naphthylmethyl)bibenzyl (1) in which the bond linking the naphthalene ring to a methylene carbon can be selectively cleaved by specific catalysts (i.e. carbon materials, some iron catalysts) at temperatures at which thermal, free radical-initiated reactions, do not take place. Our data suggest that the above-mentioned catalytic cleavage is initiated by the ion radical of 1, with the unpaired electron localized in the naphthalene ring.

  1. Demonstration of catalytic combustion with residual fuel

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1981-01-01

    An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

  2. Highly sensitive catalytic spectrophotometric determination of ruthenium

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  3. Probing catalytic rate enhancement during intramembrane proteolysis.

    PubMed

    Arutyunova, Elena; Smithers, Cameron C; Corradi, Valentina; Espiritu, Adam C; Young, Howard S; Tieleman, D Peter; Lemieux, M Joanne

    2016-09-01

    Rhomboids are ubiquitous intramembrane serine proteases involved in various signaling pathways. While the high-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed an active site comprised of a serine-histidine dyad and an extensive oxyanion hole, the molecular details of rhomboid catalysis were unclear because substrates are unknown for most of the family members. Here we used the only known physiological pair of AarA rhomboid with its psTatA substrate to decipher the contribution of catalytically important residues to the reaction rate enhancement. An MD-refined homology model of AarA was used to identify residues important for catalysis. We demonstrated that the AarA active site geometry is strict and intolerant to alterations. We probed the roles of H83 and N87 oxyanion hole residues and determined that substitution of H83 either abolished AarA activity or reduced the transition state stabilization energy (ΔΔG‡) by 3.1 kcal/mol; substitution of N87 decreased ΔΔG‡ by 1.6-3.9 kcal/mol. Substitution M154, a residue conserved in most rhomboids that stabilizes the catalytic general base, to tyrosine, provided insight into the mechanism of nucleophile generation for the catalytic dyad. This study provides a quantitative evaluation of the role of several residues important for hydrolytic efficiency and oxyanion stabilization during intramembrane proteolysis. PMID:27071148

  4. A revolution in micropower : the catalytic nanodiode.

    SciTech Connect

    Cross, Karen Charlene; Heller, Edwin J.; Figiel, Jeffrey James; Coker, Eric Nicholas; Creighton, James Randall; Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Coltrin, Michael Elliott; Pawlowski, Roger Patrick; Baucom, Kevin C.

    2010-11-01

    Our ability to field useful, nano-enabled microsystems that capitalize on recent advances in sensor technology is severely limited by the energy density of available power sources. The catalytic nanodiode (reported by Somorjai's group at Berkeley in 2005) was potentially an alternative revolutionary source of micropower. Their first reports claimed that a sizable fraction of the chemical energy may be harvested via hot electrons (a 'chemicurrent') that are created by the catalytic chemical reaction. We fabricated and tested Pt/GaN nanodiodes, which eventually produced currents up to several microamps. Our best reaction yields (electrons/CO{sub 2}) were on the order of 10{sup -3}; well below the 75% values first reported by Somorjai (we note they have also been unable to reproduce their early results). Over the course of this Project we have determined that the whole concept of 'chemicurrent', in fact, may be an illusion. Our results conclusively demonstrate that the current measured from our nanodiodes is derived from a thermoelectric voltage; we have found no credible evidence for true chemicurrent. Unfortunately this means that the catalytic nanodiode has no future as a micropower source.

  5. Catalytic site interactions in yeast OMP synthase.

    PubMed

    Hansen, Michael Riis; Barr, Eric W; Jensen, Kaj Frank; Willemoës, Martin; Grubmeyer, Charles; Winther, Jakob R

    2014-01-15

    The enigmatic kinetics, half-of-the-sites binding, and structural asymmetry of the homodimeric microbial OMP synthases (orotate phosphoribosyltransferase, EC 2.4.2.10) have been proposed to result from an alternating site mechanism in these domain-swapped enzymes [R.W. McClard et al., Biochemistry 45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal initial velocity plots. Replacement of Lys106, the postulated intersubunit communication device, produced intersecting lines in kinetic plots with a 2-fold reduction of kcat. Loop (R105G K109S H111G) and PRPP-binding motif (D131N D132N) mutant proteins, each without detectable enzymatic activity and ablated ability to bind PRPP, complemented to produce a heterodimer with a single fully functional active site showing intersecting initial velocity plots. Equilibrium binding of PRPP and orotidine 5'-monophosphate showed a single class of two binding sites per dimer in WT and K106S enzymes. Evidence here shows that the enzyme does not follow half-of-the-sites cooperativity; that interplay between catalytic sites is not an essential feature of the catalytic mechanism; and that parallel lines in steady-state kinetics probably arise from tight substrate binding. PMID:24262852

  6. Vapor-Driven Propulsion of Catalytic Micromotors

    NASA Astrophysics Data System (ADS)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  7. Deep catalytic cracking, maximize olefin production

    SciTech Connect

    Chapin, L.; Letzsch, W. )

    1994-01-01

    Recent environmental regulations coupled with lead phase out have shifted the focus of the FCC from that of an octane barrel machine to that of a light olefins generator. The light olefins are the necessary feedstock for premium reformulated gasoline (RFG) blending components such as MTBE, TAME and alkylate. The demand for these light olefins will impact the operation of the FCC and Steam Cracker (SC). There will be a need for economical olefin generating processing alternatives to supplement SC's for C[sub 3]= and FCC's for C[sub 3]= through C[sub 5]= RFG component feedstocks. To this end, Stone Webster has recently entered into an agreement with the Research Institute of Petroleum Processing (RIPP) and Sinopec International, both located in the People's Republic of China, to exclusively license RIPP's Deep Catalytic Cracking (DCC) technology outside of China. DCC is a newly developed catalytic cracking process for producing light olefins (C[sub 3]--C[sub 5]) from heavy feedstocks. DCC is a fluidized bed process for selectively cracking a variety of hydrocarbon feedstocks to light olefins. Unlike s steam cracker, the predominate products are propylenes and butylenes, the direct result of catalytic cracking rather than free radical thermal reactions. There are two distinct modes of DCC operation: maximum propylene (Type 1) and maximum iso-olefin production (Type 2). Each mode of operation employs a unique catalyst as well as reaction conditions.

  8. Modeling the Complete Catalytic Cycle of Aspartoacylase.

    PubMed

    Kots, Ekaterina D; Khrenova, Maria G; Lushchekina, Sofya V; Varfolomeev, Sergei D; Grigorenko, Bella L; Nemukhin, Alexander V

    2016-05-12

    The complete catalytic cycle of aspartoacylase (ASPA), a zinc-dependent enzyme responsible for cleavage of N-acetyl-l-aspartate, is characterized by the methods of molecular modeling. The reaction energy profile connecting the enzyme-substrate (ES) and the enzyme-product (EP) complexes is constructed by the quantum mechanics/molecular mechanics (QM/MM) method assisted by the molecular dynamics (MD) simulations with the QM/MM potentials. Starting from the crystal structure of ASPA complexed with the intermediate analogue, the minimum-energy geometry configurations and the corresponding transition states are located. The stages of substrate binding to the enzyme active site and release of the products are modeled by MD calculations with the replica-exchange umbrella sampling technique. It is shown that the first reaction steps, nucleophilic attack of a zinc-bound nucleophilic water molecule at the carbonyl carbon and the amide bond cleavage, are consistent with the glutamate-assisted mechanism hypothesized for the zinc-dependent hydrolases. The stages of formation of the products, acetate and l-aspartate, and regeneration of the enzyme are characterized for the first time. The constructed free energy diagram from the reactants to the products suggests that the enzyme regeneration, but not the nucleophilic attack of the catalytic water molecule, corresponds to the rate-determining stage of the full catalytic cycle of ASPA. PMID:27089954

  9. Catalytic applications of bio-inspired nanomaterials

    NASA Astrophysics Data System (ADS)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  10. Catalytic properties of single layers of transition metal sulfide catalytic materials

    SciTech Connect

    Chianelli, R.R.; Siadati, M.H.; De la Rosa, M.P.; Berhault, G.; Wilcoxon, J.P.; Bearden, R.; Abrams, B.L.

    2006-01-15

    Single layer transition metal sulfides (SLTMS) such as MoS{sub 2}, WS{sub 2}, and ReS{sub 2}, play an important role in catalytic processes such as the hydrofining of petroleum streams, and are involved in at least two of the slurry-catalyst hydroconversion processes that have been proposed for upgrading heavy petroleum feed and other sources of hydrocarbon fuels such as coal and shale oils. Additional promising catalytic applications of the SLTMS are on the horizon. The physical, chemical, and catalytic properties of these materials are reviewed in this report. Also discussed are areas for future research that promise to lead to advanced applications of the SLTMS.

  11. 3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein-protein interaction characteristics.

    PubMed

    Dahlström, Käthe M; Salminen, Tiina A

    2015-12-01

    Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A)