Science.gov

Sample records for 2a receptor gene

  1. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T.

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  2. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  3. Polymorphism in the Serotonin Receptor 2a (HTR2A) Gene as Possible Predisposal Factor for Aggressive Traits

    PubMed Central

    Banlaki, Zsofia; Elek, Zsuzsanna; Nanasi, Tibor; Szekely, Anna; Nemoda, Zsofia; Sasvari-Szekely, Maria; Ronai, Zsolt

    2015-01-01

    Aggressive manifestations and their consequences are a major issue of mankind, highlighting the need for understanding the contributory factors. Still, aggression-related genetic analyses have so far mainly been conducted on small population subsets such as individuals suffering from a certain psychiatric disorder or a narrow-range age cohort, but no data on the general population is yet available. In the present study, our aim was to identify polymorphisms in genes affecting neurobiological processes that might explain some of the inter-individual variation between aggression levels in the non-clinical Caucasian adult population. 55 single nucleotide polymorphisms (SNP) were simultaneously determined in 887 subjects who also filled out the self-report Buss-Perry Aggression Questionnaire (BPAQ). Single marker association analyses between genotypes and aggression scores indicated a significant role of rs7322347 located in the HTR2A gene encoding serotonin receptor 2a following Bonferroni correction for multiple testing (p = 0.0007) both for males and females. Taking the four BPAQ subscales individually, scores for Hostility, Anger and Physical Aggression showed significant association with rs7322347 T allele in themselves, while no association was found with Verbal Aggression. Of the subscales, relationship with rs7322347 was strongest in the case of Hostility, where statistical significance virtually equaled that observed with the whole BPAQ. In conclusion, this is the first study to our knowledge analyzing SNPs in a wide variety of genes in terms of aggression in a large sample-size non-clinical adult population, also describing a novel candidate polymorphism as predisposal to aggressive traits. PMID:25658328

  4. Gene expression and function of adenosine A(2A) receptor in the rat carotid body.

    PubMed

    Kobayashi, S; Conforti, L; Millhorn, D E

    2000-08-01

    The present study was undertaken to determine whether rat carotid bodies express adenosine (Ado) A(2A) receptors and whether this receptor is involved in the cellular response to hypoxia. Our results demonstrate that rat carotid bodies express the A(2A) and A(2B) Ado receptor mRNAs but not the A(1) or A(3) receptor mRNAs as determined by reverse transcriptase-polymerase chain reaction. In situ hybridization confirmed the expression of the A(2A) receptor mRNA. Immunohistochemical studies further showed that the A(2A) receptor is expressed in the carotid body and that it is colocalized with tyrosine hydroxylase in type I cells. Whole cell voltage-clamp studies using isolated type I cells showed that Ado inhibited the voltage-dependent Ca(2+) currents and that this inhibition was abolished by the selective A(2A) receptor antagonist ZM-241385. Ca(2+) imaging studies using fura 2 revealed that exposure to severe hypoxia induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in type I cells and that extracellularly applied Ado significantly attenuated the hypoxia-induced elevation of [Ca(2+)](i). Taken together, our findings indicate that A(2A) receptors are present in type I cells and that activation of A(2A) receptors modulates Ca(2+) accumulation during hypoxia. This mechanism may play a role in regulating intracellular Ca(2+) homeostasis and cellular excitability during hypoxia. PMID:10926550

  5. Serotonin 2A Receptor Gene Polymorphism in Korean Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Cho, Soo-Churl; Kim, Boong-Nyun; Kim, Jae-Won; Yoo, Hee-Jeong; Hwang, Jun-Won; Cho, Dae-Yeon; Chung, Un-Sun; Park, Tae-Won

    2012-01-01

    Objective The purpose of this study was to investigate the association between the T102C polymorphism in the serotonin 2A receptor gene and attention-deficit/hyperactivity disorder (ADHD) in Korean patients. Methods A total of 189 Korean children with ADHD as well as both parents of the ADHD children and 150 normal children participated in this study. DNA was extracted from blood samples from all of the subjects, and genotyping was conducted. Based on the allele and genotype information obtained, case-control analyses were performed to compare the ADHD and normal children, and Transmission disequilibrium tests (TDTs) were used for family-based association testing (number of trios=113). Finally, according to the significant finding which was showed in the case-control analyses, the results of behavioral characterastics and neuropsychological test were compared between ADHD children with and without the C allele. Results In the case-control analyses, statistically significant differences were detected in the frequencies of genotypes containing the C allele (χ2=4.73, p=0.030). In the family-based association study, TDTs failed to detect linkage disequilibrium of the T102C polymorphism associated with ADHD children. In the ADHD children, both the mean reaction time and the standard deviation of the reaction time in the auditory continuous performance test were longer in the group with the C allele compared to the group without the C allele. Conclusion The results of this study suggest that there is a significant genetic association between the T102C polymorphism in the serotonin 2A receptor gene and ADHD in Korean children. PMID:22993527

  6. Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression.

    PubMed

    Kang, Rhee-Hun; Choi, Myoung-Jin; Paik, Jong-Woo; Hahn, Sang-Woo; Lee, Min-Soo

    2007-01-01

    The 5-HTR2A gene is a candidate gene for influencing the clinical response to treatment with antidepressants. The purpose of this study was to determine the relationship between the -1438A/G polymorphism of the 5-HTR2A gene and the response to mirtazapine in a Korean population with major depressive disorder. Mirtazapine was administered for eight weeks to the 101 patients who completed the study, during which we evaluated the clinical outcome using repeated-measures ANCOVA. A main effect of genotype or an effect of genotype-time interactions on the decrease in HAMD score during the eight-week follow-up was not found, which suggests that the 5-HTR2A -1438A/G polymorphism does not affect the clinical outcome to mirtazapine administration. However, significant effects of genotype and allele carriers on the decrease in the sleep score over the eight weeks were found (genotype: F = 4.093, p = 0.017; allele: F = 4.371, p = 0.037), whereas no effect of genotype-time interactions on the decrease in the HAMD score over the eight-week follow-up was found. These observations suggest that the -1438A/G polymorphism on the sleep improvement at each time period revealed significant differences in the sleep scores after two weeks of mirtazapine administration. The sleep scores were lower for carriers of the A+ allele than of the A- allele after two weeks of mirtazapine administration (p = 0.041), which means that the -1438GG genotype is associated with less improvement in sleep, and suggests that the effect of mirtazapine on improving the sleep quality differs with the 5-HTR2A -1438A/G polymorphism within two weeks of mirtazapine treatment. In conclusion, although the -1438A/G polymorphism affects the sleep improvement resulting from the administration of mirtazapine to Korean patients with major depressive disorder, our results do not support the hypothesis that this polymorphism of the 5-HTR2A gene is involved in the therapeutic response to mirtazapine. PMID:18314859

  7. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).

    PubMed

    Aluru, Neelakanteswar; Karchner, Sibel I; Franks, Diana G; Nacci, Diane; Champlin, Denise; Hahn, Mark E

    2015-01-01

    Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off

  8. Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus)

    PubMed Central

    Aluru, Neelakanteswar; Karchner, Sibel I.; Franks, Diana G.; Nacci, Diane; Champlin, Denise; Hahn, Mark E.

    2014-01-01

    Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluations of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuble non-traditional model for this study, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for

  9. Serotonin receptor gene (HTR2A) T102C polymorphism modulates individuals’ perspective taking ability and autistic-like traits

    PubMed Central

    Gong, Pingyuan; Liu, Jinting; Blue, Philip R.; Li, She; Zhou, Xiaolin

    2015-01-01

    Previous studies have indicated that empathic traits, such as perspective taking, are associated with the levels of serotonin in the brain and with autism spectrum conditions. Inspired by the finding that the serotonin receptor 2A gene (HTR2A) modulates the availability of serotonin, this study investigated to what extent HTR2A modulates individuals’ perspective taking ability and autistic-like traits. To examine the associations of the functional HTR2A polymorphism T102C (rs6313) with individuals’ perspective taking abilities and autistic-like traits, we differentiated individuals according to this polymorphism and measured empathic and autistic-like traits with Interpersonal Reactivity Index (IRI) and Autism-Spectrum Quotient (AQ) scale in 523 Chinese people. The results indicated that this polymorphism was significantly associated with the scores on Perspective Taking and Personal Distress subscales of IRI, and Communication subscale of AQ. Individuals with a greater number of the C alleles were less likely to spontaneously adopt the point of view of others, more likely to be anxious when observing the pain endured by others, and more likely to have communication problems. Moreover, the genotype effect on communication problems was mediated by individuals’ perspective taking ability. These findings provide evidence that the HTR2A T102C polymorphism is a predictor of individual differences in empathic and autistic-like traits and highlight the role of the gene in the connection between perspective taking and autistic-like traits. PMID:26557070

  10. Family-based clinical associations and functional characterization of the serotonin 2A receptor gene (HTR2A) in autism spectrum disorder.

    PubMed

    Smith, Ryan M; Banks, Wesley; Hansen, Emily; Sadee, Wolfgang; Herman, Gail E

    2014-08-01

    The serotonin 2A receptor gene (HTR2A) harbors two functional single nucleotide polymorphisms (SNPs) that are frequent in populations of African and European descent; rs6311, which affects mRNA expression, and rs6314, which changes the amino acid sequence of the encoded protein and affects the signaling properties of the receptor. Multiple clinical associations support a role for these SNPs in cognitive and neuropsychiatric phenotypes, although studies in autism spectrum disorder (ASD) remain equivocal. Here, we tested transmission disequilibrium of rs6311 and rs6314 in a cohort of 158 ASD trios (simplex and multiplex), observing significant under-transmission of the minor "A" allele of rs6311 to offspring with ASD (permuted P = 0.0004). Consistent with our previous findings in the dorsolateral prefrontal cortex of unaffected individuals, rs6311/A decreases expression of HTR2A mRNA with an extended 5' untranslated region (UTR) in the frontopolar cortex in brain samples from 54 ASD patients and controls. Interpreting the clinical results in the context of our mRNA expression analysis, we speculate that any risk associated with rs6311 is conferred by greater expression of the long 5'UTR mRNA isoform. The current study corroborates earlier associations between rs6311 and ASD in a family study, supporting the hypothesis that rs6311 plays a modulatory role in ASD risk. PMID:24753316

  11. Hyperactivity in Childhood as a Predictor of School Performance in Elementary School: Modifying Effect of a Serotonin Receptor Gene (5-HTR2A)

    ERIC Educational Resources Information Center

    Pulkki-Raback, Laura; Pullmann, Helle; Hintsanen, Mirka; Alatupa, Saija; Ravaja, Niklas; Lehtimaki, Terho; Keltikangas-jarvinen, Liisa

    2010-01-01

    Introduction: Genes have been suggested to interact with predictors of school performance, but evidence is scarce. The purpose was to examine whether a hyperactive temperament leads to different school performance, depending on variability in a serotonin receptor gene (5-HTR2A). Method: The participants were a population-based sample of 909 girls…

  12. Expression of calcitonin gene-related peptide, adenosine A2a receptor and adenosine A1 receptor in experiment rat migraine models

    PubMed Central

    LU, WENXIAN; LI, BIN; CHEN, JINBO; SU, YIPENG; DONG, XIAOMENG; SU, XINYANG; GAO, LIXIANG

    2016-01-01

    A migraine is a disabling neurovascular disorder characterized by a unilateral throbbing headache that lasts from 4 to 72 h. The headache is often accompanied by nausea, vomiting, phonophobia and photophobia, and may be worsened by physical exercise. The trigeminovascular system (TVS) is speculated to have an important role in migraines, although the pathophysiology of this disorder remains to be elucidated. Trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis (TNC) are important components of the TVS. Several clinical cases have provided evidence for the involvement of the brainstem in migraine initiation. Electrical stimulation of the trigeminal ganglion (ESTG) in rats can activate TVS during a migraine attack. Calcitonin gene-related peptide (CGRP) is an important vasoactive compound produced following TVS activation. Numerous studies have revealed that adenosine and its receptors have an important role in pain transmission and regulation process. However, only a few studies have examined whether adenosine A2a receptor (A2aR) and adenosine A1 receptor (A1R) are involved in migraine and nociceptive pathways. In the present study, CGRP, A2aR and A1R expression levels were detected in the TG and TNC of ESTG models through reverse transcription-quantitative polymerase chain reaction and western blot analysis. Tianshu capsule (TSC), a type of Chinese medicine, was also used in the ESTG rat models to examine its influence on the three proteins. Results demonstrated that CGRP, A2aR and A1R mediated pain transmission and the regulation process during migraine and the expression of the three proteins was regulated by TSC. PMID:26998280

  13. Adenosine A(2A) receptor gene: evidence for association of risk variants with panic disorder and anxious personality.

    PubMed

    Hohoff, Christa; Mullings, Emma L; Heatherley, Sue V; Freitag, Christine M; Neumann, Lisa C; Domschke, Katharina; Krakowitzky, Petra; Rothermundt, Matthias; Keck, Martin E; Erhardt, Angelika; Unschuld, Paul G; Jacob, Christian; Fritze, Jürgen; Bandelow, Borwin; Maier, Wolfgang; Holsboer, Florian; Rogers, Peter J; Deckert, Jürgen

    2010-10-01

    Adenosine A(2A) receptors are suggested to play an important role in different brain circuits and pathways involved in anxiety reactions. A variant within the corresponding ADORA2A gene (rs5751876) increased the risk for panic disorder (PD), for elevated anxiety during challenge tests in healthy probands and for anxiety-related arousal in blood-injury phobia. These multiple effects may mirror a more general effect of the SNP on basic personality traits. In the present study we therefore aimed to replicate the original finding in a large PD sample and extend it by investigating an additional proband sample characterized for different anxiety-related personality scores. In addition, as rs5751876 is assumed not to be the disease variant itself but to be in linkage disequilibrium (LD) with the true functional polymorphism other SNPs of potentially functional relevance were identified by re-sequencing the whole gene including several newly identified regions of putative regulatory potential and analysed for their impact on PD and anxious personality. We were indeed able to replicate rs5751876 as risk factor for PD, particularly PD with agoraphobia. Rs5751876 and several other variants in high LD (rs5751862, rs2298383 and rs3761422) as well as the corresponding haplotypes were also associated with different anxiety-related personality scores (Bonferroni corrected P(all) < 0.05). Of these variants, rs2298383 shows functional potential based on in silico analyses and might therefore represent the true underlying causal variant. Our data provide further support for an important role of ADORA2A variants in the pathogenesis of anxiety disorders and anxious personality reflecting their potential as basic susceptibility factors. PMID:20334879

  14. Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells.

    PubMed

    Radu, Caius G; Nijagal, Amar; McLaughlin, Jami; Wang, Li; Witte, Owen N

    2005-02-01

    G2A, T cell death-associated gene 8 (TDAG8), ovarian cancer G protein-coupled receptor 1 (OGR1), and G protein-coupled receptor 4 (GPR4) form a group of structurally related G protein-coupled receptors (GPCRs) originally proposed to bind proinflammatory lipids. More recent studies have challenged the identification of lipid agonists for these GPCRs and have suggested that they function primarily as proton sensors. We compared the ability of these four receptors to modulate pH-dependent responses by using transiently transfected cell lines. In accordance with previously published reports, OGR1 was found to evoke strong pH-dependent responses as measured by inositol phosphate accumulation. We also confirmed the pH-dependent cAMP production by GPR4 and TDAG8. However, we found the activity of the human G2A receptor and its mouse homolog to be significantly less sensitive to pH fluctuations as measured by inositol phosphate and cAMP accumulation. Sequence homology analysis indicated that, with one exception, the histidine residues that were previously shown to be important for pH sensing by OGR1, GPR4, and TDAG8 were not conserved in the G2A receptor. We further addressed the pH-sensing properties of G2A and TDAG8 in a cellular context where these receptors are coexpressed. In thymocytes and splenocytes explanted from receptor-deficient mice, TDAG8 was found to be critical for pH-dependent cAMP production. In contrast, G2A was found to be dispensable for this process. We conclude that members of this GPCR group exhibit differential sensitivity to extracellular protons, and that expression of TDAG8 by immune cells may regulate responses in acidic microenvironments. PMID:15665078

  15. Lack of Association between the Serotonin Transporter (5-HTT) and Serotonin Receptor (5-HT2A) Gene Polymorphisms with Smoking Behavior among Malaysian Malays

    PubMed Central

    Rozak, Nur Iwani A; Ahmad, Imran; Gan, Siew Hua; Abu Bakar, Ruzilawati

    2014-01-01

    Abstract An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the polymerase chain reaction (PCR) and were classified as short (S) alleles or long (L) alleles. The 5HT2A genotypes were determined using PCR-restriction fragment length polymorphisms (PCR-RFLP). No significant differences in the distribution frequencies of the alleles were found between the smokers and the non-smokers for the 5-HTTLPR polymorphism (x2 = 0.72, P>0.05) or the 5HT2A polymorphism (x2 = 0.73, P>0.05). This is the first study conducted on Malaysian Malay males regarding the association of 5-HTTLPR and 5HT2A polymorphisms and smoking behavior. However, the genes were not found to be associated with smoking behavior in our population. PMID:25853073

  16. Lack of Association between the Serotonin Transporter (5-HTT) and Serotonin Receptor (5-HT2A) Gene Polymorphisms with Smoking Behavior among Malaysian Malays.

    PubMed

    Rozak, Nur Iwani A; Ahmad, Imran; Gan, Siew Hua; Abu Bakar, Ruzilawati

    2014-09-01

    An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the polymerase chain reaction (PCR) and were classified as short (S) alleles or long (L) alleles. The 5HT2A genotypes were determined using PCR-restriction fragment length polymorphisms (PCR-RFLP). No significant differences in the distribution frequencies of the alleles were found between the smokers and the non-smokers for the 5-HTTLPR polymorphism (x(2) = 0.72, P>0.05) or the 5HT2A polymorphism (x(2) = 0.73, P>0.05). This is the first study conducted on Malaysian Malay males regarding the association of 5-HTTLPR and 5HT2A polymorphisms and smoking behavior. However, the genes were not found to be associated with smoking behavior in our population. PMID:25853073

  17. The Secret Ingredient for Social Success of Young Males: A Functional Polymorphism in the 5HT2A Serotonin Receptor Gene

    PubMed Central

    Dijkstra, Jan Kornelis; Lindenberg, Siegwart; Zijlstra, Lieuwe; Bouma, Esther; Veenstra, René

    2013-01-01

    In adolescence, being socially successful depends to a large extent on being popular with peers. Even though some youths have what it takes to be popular, they are not, whereas others seem to have a secret ingredient that just makes the difference. In this study the G-allele of a functional polymorphism in the promotor region of the 5HT2A serotonin receptor gene (-G1438A) was identified as a secret ingredient for popularity among peers. These findings build on and extend previous work by Burt (2008, 2009). Tackling limitations from previous research, the role of the 5HT2A serotonin receptor gene was examined in adolescent males (N = 285; average age 13) using a unique sample of the TRAILS study. Carrying the G-allele enhanced the relation between aggression and popularity, particularly for those boys who have many female friends. This seems to be an “enhancer” effect of the G-allele whereby popularity relevant characteristics are made more noticeable. There is no “popularity gene”, as the G-allele by itself had no effect on popularity. PMID:23457454

  18. Culture as a mediator of gene-environment interaction: Cultural consonance, childhood adversity, a 2A serotonin receptor polymorphism, and depression in urban Brazil.

    PubMed

    Dressler, William W; Balieiro, Mauro C; Ferreira de Araújo, Luiza; Silva, Wilson A; Ernesto Dos Santos, José

    2016-07-01

    Research on gene-environment interaction was facilitated by breakthroughs in molecular biology in the late 20th century, especially in the study of mental health. There is a reliable interaction between candidate genes for depression and childhood adversity in relation to mental health outcomes. The aim of this paper is to explore the role of culture in this process in an urban community in Brazil. The specific cultural factor examined is cultural consonance, or the degree to which individuals are able to successfully incorporate salient cultural models into their own beliefs and behaviors. It was hypothesized that cultural consonance in family life would mediate the interaction of genotype and childhood adversity. In a study of 402 adult Brazilians from diverse socioeconomic backgrounds, conducted from 2011 to 2014, the interaction of reported childhood adversity and a polymorphism in the 2A serotonin receptor was associated with higher depressive symptoms. Further analysis showed that the gene-environment interaction was mediated by cultural consonance in family life, and that these effects were more pronounced in lower social class neighborhoods. The findings reinforce the role of the serotonergic system in the regulation of stress response and learning and memory, and how these processes in turn interact with environmental events and circumstances. Furthermore, these results suggest that gene-environment interaction models should incorporate a wider range of environmental experience and more complex pathways to better understand how genes and the environment combine to influence mental health outcomes. PMID:27270123

  19. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics

    PubMed Central

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-01-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype–phenotype relationships. PMID:25563748

  20. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  1. Association of the promoter polymorphism -1438G/A of the 5-HT2A receptor gene with behavioral impulsiveness and serotonin function in women with bulimia nervosa.

    PubMed

    Bruce, Kenneth R; Steiger, Howard; Joober, Ridha; Ng Ying Kin, N M K; Israel, Mimi; Young, Simon N

    2005-08-01

    Separate lines of research suggest that the functional alterations in the serotonin (5-HT) 2A receptor are associated with 5-HT tone, behavioral impulsiveness, and bulimia nervosa (BN). We explored the effect of allelic variations within the 5-HT2A receptor gene promoter polymorphism -1438G/A on trait impulsiveness and serotonin function in women with BN. Participants included women with BN having the A allele (i.e., AA homozygotes and AG heterozygotes, BNA+, N = 21); women with BN but without the A allele (i.e., GG homozygotes, BNGG, N = 12), and normal eater control women having the A allele (NEA+, N = 19) or without the A allele (NEGG; N = 9). The women were assessed for psychopathological tendencies and eating disorder symptoms, and provided blood samples for measurement of serial prolactin responses following oral administration of the post-synaptic partial 5-HT agonist meta-chlorophenylpiperazine (m-CPP). The BNGG group had higher scores than the other groups on self-report measures of non-planning and overall impulsiveness and had blunted prolactin response following m-CPP. The bulimic groups did not differ from each other on current eating symptoms or on frequencies of other Axis I mental disorders. Findings indicate that women with BN who are GG homozygotes on the -1438G/A promoter polymorphism are characterized by increased impulsiveness and lower sensitivity to post-synaptic serotonin activation. These findings implicate the GG genotype in the co-aggregation of impulsive behaviors and alterations of post-synaptic 5-HT functioning in women with BN. PMID:15999344

  2. Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells. A potential role in cell protection.

    PubMed

    Kobayashi, S; Millhorn, D E

    1999-07-16

    The purpose of this study was to examine the regulation of adenosine A2A receptor (A2AR) gene expression during hypoxia in pheochromocytoma (PC12) cells. Northern blot analysis revealed that the A2AR mRNA level was substantially increased after a 3-h exposure to hypoxia (5% O2), which reached a peak at 12 h. Immunoblot analysis showed that the A2AR protein level was also increased during hypoxia. Inhibition of de novo protein synthesis blocked A2AR induction by hypoxia. In addition, removal of extracellular free Ca2+, chelation of intracellular free Ca2+, and pretreatment with protein kinase C inhibitors prevented A2AR induction by hypoxia. Moreover, depletion of protein kinase C activity by prolonged treatment with phorbol 12-myristate 13-acetate significantly inhibited the hypoxic induction of A2AR. A2AR antagonists led to a significant enhancement of A2AR mRNA levels during hypoxia, whereas A2AR agonists caused down-regulation of A2AR expression during hypoxia. This suggests that A2AR regulates its own expression during hypoxia by feedback mechanisms. We further found that activation of A2AR enhances cell viability during hypoxia and also inhibits vascular endothelial growth factor expression in PC12 cells. Thus, increased expression of A2AR during hypoxia might protect cells against hypoxia and may act to inhibit hypoxia-induced angiogenic activity mediated by vascular endothelial growth factor. PMID:10400659

  3. DNA Hypermethylation of the Serotonin Receptor Type-2A Gene Is Associated with a Worse Response to a Weight Loss Intervention in Subjects with Metabolic Syndrome

    PubMed Central

    Perez-Cornago, Aurora; Mansego, Maria L.; Zulet, María Angeles; Martinez, José Alfredo

    2014-01-01

    Understanding the regulation of gene activities depending on DNA methylation has been the subject of much recent study. However, although polymorphisms of the HTR2A gene have been associated with both obesity and psychiatric disorders, the role of HTR2A gene methylation in these illnesses remains uncertain. The aim of this study was to evaluate the association of HTR2A gene promoter methylation levels in white blood cells (WBC) with obesity traits and depressive symptoms in individuals with metabolic syndrome (MetS) enrolled in a behavioural weight loss programme. Analyses were based on 41 volunteers (mean age 49 ± 1 year) recruited within the RESMENA study. Depressive symptoms (as determined using the Beck Depression Inventory), anthropometric and biochemical measurements were analysed at the beginning and after six months of weight loss treatment. At baseline, DNA from WBC was isolated and cytosine methylation in the HTR2A gene promoter was quantified by a microarray approach. In the whole-study sample, a positive association of HTR2A gene methylation with waist circumference and insulin levels was detected at baseline. Obesity measures significantly improved after six months of dietary treatment, where a lower mean HTR2A gene methylation at baseline was associated with major reductions in body weight, BMI and fat mass after the treatment. Moreover, mean HTR2A gene methylation at baseline significantly predicted the decrease in depressive symptoms after the weight loss treatment. In conclusion, this study provides newer evidence that hypermethylation of the HTR2A gene in WBC at baseline is significantly associated with a worse response to a weight-loss intervention and with a lower decrease in depressive symptoms after the dietary treatment in subjects with MetS. PMID:24959950

  4. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  5. Association of Polymorphisms within the Serotonin Receptor Genes 5-HTR1A, 5-HTR1B, 5-HTR2A and 5-HTR2C and Migraine Susceptibility in a Turkish Population

    PubMed Central

    Yücel, Yavuz; Coşkun, Salih; Cengiz, Beyhan; Özdemir, Hasan H.; Uzar, Ertuğrul; Çim, Abdullah; Camkurt, M. Akif; Aluclu, M. Ufuk

    2016-01-01

    Objective Migraine, a highly prevelant headache disorder, is regarded as a polygenic multifactorial disease. Serotonin (5-HT) and their respective receptors have been implicated in the patogenesis. Methods We investigated the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor gene polymorphisms and their association with migraine in Turkish patients. The rs6295, rs1300060, rs1228814, rs6311, rs6313, rs6314, rs6318, rs3813929 (−759C/T) and rs518147 polymorphisms were analyzed in 135 patients with migraine and 139 healthy subjects, using a BioMark 96.96 dynamic array system. Results We found no difference in the frequency of the analyzed eight out of nine polymorpisms between migraine and control groups. However, a significant association was found between the rs3813929 polymorphism in the promoter region of 5-HTR2C gene and migraine. Also, the allele of rs3813929 was more common in the migraine group. Conclusion This result suggests that the 5-HTR2C rs3813929 polymorphism can be a genetic risk factor for migraine in a Turkish population. PMID:27489378

  6. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  7. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  8. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory

    PubMed Central

    Orr, Anna G.; Hsiao, Edward C.; Wang, Max M.; Ho, Kaitlyn; Kim, Daniel H.; Wang, Xin; Guo, Weikun; Kang, Jing; Yu, Gui-Qiu; Adame, Anthony; Devidze, Nino; Dubal, Dena B.; Masliah, Eliezer; Conklin, Bruce R.; Mucke, Lennart

    2014-01-01

    Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer’s disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice, and increased the levels of Arc/Arg3.1, an immediate-early gene required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Similar to humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss. PMID:25622143

  9. Desensitization of human CRF2(a) receptor signaling governed by agonist potency and βarrestin2 recruitment.

    PubMed

    Hauger, Richard L; Olivares-Reyes, J Alberto; Braun, Sandra; Hernandez-Aranda, Judith; Hudson, Christine C; Gutknecht, Eric; Dautzenberg, Frank M; Oakley, Robert H

    2013-09-10

    The primary goal was to determine agonist-specific regulation of CRF2(a) receptor function. Exposure of human retinoblastoma Y79 cells to selective (UCN2, UCN3 or stresscopins) and non-selective (UCN1 or sauvagine) agonists prominently desensitized CRF2(a) receptors in a rapid, concentration-dependent manner. A considerably slower rate and smaller magnitude of desensitization developed in response to the weak agonist CRF. CRF1 receptor desensitization stimulated by CRF, cortagine or stressin1-A had no effect on CRF2(a) receptor cyclic AMP signaling. Conversely, desensitization of CRF2(a) receptors by UCN2 or UCN3 did not cross-desensitize Gs-coupled CRF1 receptor signaling. In transfected HEK293 cells, activation of CRF2(a) receptors by UCN2, UCN3 or CRF resulted in receptor phosphorylation and internalization proportional to agonist potency. Neither protein kinase A nor casein kinases mediated CRF2(a) receptor phosphorylation or desensitization. Exposure of HEK293 or U2OS cells to UCN2 or UCN3 (100nM) produced strong βarrestin2 translocation and colocalization with membrane CRF2(a) receptors while CRF (1μM) generated only weak βarrestin2 recruitment. βarrestin2 did not internalize with the receptor, however, indicating that transient CRF2(a) receptor-arrestin complexes dissociate at or near the cell membrane. Since deletion of the βarrestin2 gene upregulated Gs-coupled CRF2(a) receptor signaling in MEF cells, a βarrestin2 mechanism restrains Gs-coupled CRF2(a) receptor signaling activated by urocortins. We further conclude that the rate and extent of homologous CRF2(a) receptor desensitization are governed by agonist-specific mechanisms affecting GRK phosphorylation, βarrestin2 recruitment, and internalization thereby producing unique signal transduction profiles that differentially affect the stress response. PMID:23820308

  10. Adenosine 2A receptors modulate reward behaviours for methamphetamine.

    PubMed

    Chesworth, Rose; Brown, Robyn M; Kim, Jee Hyun; Ledent, Catherine; Lawrence, Andrew J

    2016-03-01

    Addiction to methamphetamine (METH) is a global health problem for which there are no approved pharmacotherapies. The adenosine 2A (A2 A ) receptor presents a potential therapeutic target for METH abuse due to its modulatory effects on striatal dopamine and glutamate transmission. Notably, A2 A receptor signalling has been implicated in the rewarding effects of alcohol, cocaine and opiates; yet, the role of this receptor in METH consumption and seeking is essentially unknown. Therefore, the current study used A2 A knockout (KO) mice to assess the role of A2 A in behaviours relevant to METH addiction. METH conditioned place preference was absent in A2 A KO mice compared with wild-type (WT) littermates. Repeated METH treatment produced locomotor sensitization in both genotypes; however, sensitization was attenuated in A2 A KO mice in a dose-related manner. METH intravenous self-administration was intact in A2 A KO mice over a range of doses and schedules of reinforcement. However, the motivation to self-administer was reduced in A2 A KO mice. Regression analysis further supported the observation that the motivation to self-administer METH was reduced in A2 A KO mice even when self-administration was similar to WT mice. Sucrose self-administration was also reduced in A2 A KO mice but only at higher schedules of reinforcement. Collectively, these data suggest that A2 A signalling is critically required to integrate rewarding and motivational properties of both METH and natural rewards. PMID:25612195

  11. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  12. DIP2A functions as a FSTL1 receptor.

    PubMed

    Ouchi, Noriyuki; Asaumi, Yasuhide; Ohashi, Koji; Higuchi, Akiko; Sono-Romanelli, Saki; Oshima, Yuichi; Walsh, Kenneth

    2010-03-01

    FSTL1 is an extracellular glycoprotein whose functional significance in physiological and pathological processes is incompletely understood. Recently, we have shown that FSTL1 acts as a muscle-derived secreted factor that is up-regulated by Akt activation and ischemic stress and that FSTL1 exerts favorable actions on the heart and vasculature. Here, we sought to identify the receptor that mediates the cellular actions of FSTL1. We identified DIP2A as a novel FSTL1-binding partner from the membrane fraction of endothelial cells. Co-immunoprecipitation assays revealed a direct physical interaction between FSTL1 and DIP2A. DIP2A was present on the cell surface of endothelial cells, and knockdown of DIP2A by small interfering RNA reduced the binding of FSTL1 to cells. In cultured endothelial cells, knockdown of DIP2A by small interfering RNA diminished FSTL1-stimulated survival, migration, and differentiation into network structures and inhibited FSTL1-induced Akt phosphorylation. In cultured cardiac myocytes, ablation of DIP2A reduced the protective actions of FSTL1 on hypoxia/reoxygenation-induced apoptosis and suppressed FSTL1-induced Akt phosphorylation. These data indicate that DIP2A functions as a novel receptor that mediates the cardiovascular protective effects of FSTL1. PMID:20054002

  13. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: A translational approach.

    PubMed

    Qesseveur, Gaël; Petit, Anne Cécile; Nguyen, Hai Thanh; Dahan, Lionel; Colle, Romain; Rotenberg, Samuel; Seif, Isabelle; Robert, Pauline; David, Denis; Guilloux, Jean-Philippe; Gardier, Alain M; Verstuyft, Céline; Becquemont, Laurent; Corruble, Emmanuelle; Guiard, Bruno P

    2016-06-01

    Pharmacological studies have yielded valuable insights into the role of the serotonin 2A (5-HT2A) receptor in major depressive disorder (MDD) and antidepressant drugs (ADs) response. However, it is still unknown whether genetic variants in the HTR2A gene affect the therapeutic outcome of ADs and the mechanism underlying the regulation of such response remains poorly described. In this context, a translational human-mouse study offers a unique opportunity to address the possibility that variations in the HTR2A gene may represent a relevant marker to predict the efficacy of ADs. In a first part of this study, we investigated in depressed patients the effect of three HTR2A single nucleotide polymorphisms (SNPs), selected for their potential functional consequences on 5-HT2A receptor (rs6313, rs6314 and rs7333412), on response and remission rates after 3 months of antidepressant treatments. We also explored the consequences of the constitutive genetic inactivation of the 5-HT2A receptor (i.e. in 5-HT2A(-/-) mice) on the activity of acute and prolonged administration of SSRIs. Our clinical data indicate that GG patients for the rs7333412 SNP were less prone to respond to ADs than AA/AG patients. In the preclinical study, we demonstrated that the 5-HT2A receptor exerts an inhibitory influence on the neuronal activity of the serotonergic system after acute administration of SSRIs. However, while the chronic administration of the SSRIs escitalopram or fluoxetine elicited a progressive increased in the firing rate of 5-HT neurons in 5-HT2A(+/+) mice, it failed to do so in 5-HT2A(-/-) mutants. These electrophysiological impairments were associated with a decreased ability of the chronic administration of fluoxetine to stimulate hippocampal plasticity and to produce antidepressant-like activities. Genetic loss of the 5-HT2A receptor compromised the activity of chronic treatment with SSRIs, making this receptor a putative marker to predict ADs response. PMID:26764241

  14. Presynaptic adenosine A2A receptors dampen cannabinoid CB1 receptor-mediated inhibition of corticostriatal glutamatergic transmission

    PubMed Central

    Ferreira, S G; Gonçalves, F Q; Marques, J M; Tomé, Â R; Rodrigues, R J; Nunes-Correia, I; Ledent, C; Harkany, T; Venance, L; Cunha, R A; Köfalvi, A

    2015-01-01

    Background and Purpose Both cannabinoid CB1 and adenosine A2A receptors (CB1 receptors and A2A receptors) control synaptic transmission at corticostriatal synapses, with great therapeutic importance for neurological and psychiatric disorders. A postsynaptic CB1−A2A receptor interaction has already been elucidated, but the presynaptic A2A receptor-mediated control of presynaptic neuromodulation by CB1 receptors remains to be defined. Because the corticostriatal terminals provide the major input to the basal ganglia, understanding the interactive nature of converging neuromodulation on them will provide us with novel powerful tools to understand the physiology of corticostriatal synaptic transmission and interpret changes associated with pathological conditions. Experimental Approach Pharmacological manipulation of CB1 and A2A receptors was carried out in brain nerve terminals isolated from rats and mice, using flow synaptometry, immunoprecipitation, radioligand binding, ATP and glutamate release measurement. Whole-cell patch-clamp recordings were made in horizontal corticostriatal slices. Key Results Flow synaptometry showed that A2A receptors were extensively co-localized with CB1 receptor-immunopositive corticostriatal terminals and A2A receptors co-immunoprecipitated CB1 receptors in these purified terminals. A2A receptor activation decreased CB1 receptor radioligand binding and decreased the CB1 receptor-mediated inhibition of high-K+-evoked glutamate release in corticostriatal terminals. Accordingly, A2A receptor activation prevented CB1 receptor-mediated paired-pulse facilitation and attenuated the CB1 receptor-mediated inhibition of synaptic transmission in glutamatergic synapses of corticostriatal slices. Conclusions and Implications Activation of presynaptic A2A receptors dampened CB1 receptor-mediated inhibition of corticostriatal terminals. This constitutes a thus far unrecognized mechanism to modulate the potent CB1 receptor-mediated presynaptic

  15. 5-Hydroxytryptamine-induced bladder hyperactivity via the 5-HT2A receptor in partial bladder outlet obstruction in rats.

    PubMed

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-04-01

    We investigated the effects of partial bladder outlet obstruction (BOO) on the function and gene expression of 5-hydroxytryptamine (5-HT) receptor subtypes in rat bladder. Isometric contractions of the isolated bladders from sham-operated control and BOO rats were examined. The contractile responses to 5-HT were significantly increased in BOO rat bladder strips, while the responses to KCl, carbachol, or phenylephrine were not different from the control. The 5-HT-induced hypercontraction in BOO rat bladder strips was inhibited by ketanserin, a 5-HT(2A) receptor antagonist. The contractile responses to 5-HT in bladder strips were not affected by urothelium removal from the intact bladder. The gene expression of 5-HT receptor subtypes in the bladders was analyzed by RT-PCR. The mRNA expression of the 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(4), and 5-HT(7) receptors was detected in both the control and BOO rat bladders. Quantitative RT-PCR analysis showed there was a significant increase of 5-HT(2A) receptor mRNA in the BOO rat bladder compared with the control bladder. On the other hand, the gene expression of the 5-HT(4) receptor was not changed in the BOO rat bladder. These results suggest that the increased contractile responses to 5-HT in BOO rat bladder may be partly caused by 5-HT(2A) receptor upregulation in the detrusor smooth muscles. PMID:23344575

  16. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints. PMID:27262111

  17. CRISPLD2: a novel NSCLP candidate gene.

    PubMed

    Chiquet, Brett T; Lidral, Andrew C; Stal, Samuel; Mulliken, John B; Moreno, Lina M; Arcos-Burgos, Mauricio; Arco-Burgos, Mauricio; Valencia-Ramirez, Consuelo; Blanton, Susan H; Hecht, Jacqueline T

    2007-09-15

    Non-syndromic cleft lip with or without cleft palate (NSCLP) results from the complex interaction between genes and environmental factors. Candidate gene analysis and genome scans have been employed to identify the genes contributing to NSCLP. In this study, we evaluated the 16q24.1 chromosomal region, which has been identified by multiple genome scans as an NSCLP region of interest. Two candidate genes were found in the region: interferon regulatory factor 8 (IRF8) and cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2). Initially, Caucasian and Hispanic NSCLP multiplex families and simplex parent-child trios were genotyped for single nucleotide polymorphisms (SNPs) in both IRF8 and CRISPLD2. CRISPLD2 was subsequently genotyped in a data set comprised of NSCLP families from Colombia, South America. Linkage disequilibrium analysis identified a significant association between CRISPLD2 and NSCLP in both our Caucasian and Hispanic NSCLP cohorts. SNP rs1546124 and haplotypes between rs1546124 and either rs4783099 or rs16974880 were significant in the Caucasian multiplex population (P=0.01, P=0.002 and P=0.001, respectively). An altered transmission of CRISPLD2 SNPs rs8061351 (P=0.02) and rs2326398 (P=0.06) was detected in the Hispanic population. No association was found between CRISPLD2 and our Colombian population or IRF8 and NSCLP. In situ hybridization showed that CRISPLD2 is expressed in the mandible, palate and nasopharynx regions during craniofacial development at E13.5-E17.5, respectively. Altogether, these data suggest that genetic variation in CRISPLD2 has a role in the etiology of NSCLP. PMID:17616516

  18. CRISPLD2: a novel NSCLP candidate gene

    PubMed Central

    Chiquet, Brett T.; Lidral, Andrew C.; Stal, Samuel; Mulliken, John B.; Moreno, Lina M.; Arco-Burgos, Mauricio; Valencia-Ramirez, Consuelo; Blanton, Susan H.; Hecht, Jacqueline T.

    2013-01-01

    Non-syndromic cleft lip with or without cleft palate (NSCLP) results from the complex interaction between genes and environmental factors. Candidate gene analysis and genome scans have been employed to identify the genes contributing to NSCLP. In this study, we evaluated the 16q24.1 chromosomal region, which has been identified by multiple genome scans as an NSCLP region of interest. Two candidate genes were found in the region: interferon regulatory factor 8 (IRF8) and cysteine-rich secretory protein LCCL domain containing 2 (CRISPLD2). Initially, Caucasian and Hispanic NSCLP multiplex families and simplex parent–child trios were genotyped for single nucleotide polymorphisms (SNPs) in both IRF8 and CRISPLD2. CRISPLD2 was subsequently genotyped in a data set comprised of NSCLP families from Colombia, South America. Linkage disequilibrium analysis identified a significant association between CRISPLD2 and NSCLP in both our Caucasian and Hispanic NSCLP cohorts. SNP rs1546124 and haplotypes between rs1546124 and either rs4783099 or rs16974880 were significant in the Caucasian multiplex population (P = 0.01, P = 0.002 and P = 0.001, respectively). An altered transmission of CRISPLD2 SNPs rs8061351 (P = 0.02) and rs2326398 (P = 0.06) was detected in the Hispanic population. No association was found between CRISPLD2 and our Colombian population or IRF8 and NSCLP. In situ hybridization showed that CRISPLD2 is expressed in the mandible, palate and nasopharynx regions during craniofacial development at E13.5–E17.5, respectively. Altogether, these data suggest that genetic variation in CRISPLD2 has a role in the etiology of NSCLP. PMID:17616516

  19. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  20. Androgen receptor gene polymorphism in zebra species

    PubMed Central

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-01-01

    Androgen receptor genes (AR) have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ) in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species. PMID:26236645

  1. Clinical significance of topoisomerase 2A expression and gene change in operable invasive breast cancer.

    PubMed

    Qiao, Jiang-Hua; Jiao, De-Chuang; Lu, Zhen-Duo; Yang, Sen; Liu, Zhen-Zhen

    2015-09-01

    This study aims to investigate clinical significance of topoisomerase 2A (TOP2A) expression and TOP2A gene change in operable invasive breast cancer. This is a retrospective analysis, which includes 256 patients diagnosed as operable invasive breast cancer. All postoperational waxed specimens were subjected to resectioning for staining. Estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), KI-67, TOP2A expression, and TOP2A gene changes were detected by immunohistochemistry (IHC) and fluorescent in situ hybridization technique (FISH), respectively. Correlation between TOP2A expression and clinicopathological characteristics was also investigated. Effects of TOP2A protein or gene changes on survival rate were detected. Results indicated that 165 were TOP2A positive (64.5 %), and 31 were gene amplification positive (12.1 %). Positive rate of TOP2A expression showed significant correlations with ER, KI-67, and HER-2. The difference of 5-year overall survival (OS) between TOP2A-positive and TOP2A-negative groups did not reach statistical significance (OS: P = 0.321, 85.9 vs. 79.6 %; disease-free survival [DFS]: P = 0.247, 83.3 vs. 75.3 %). Five-year OS in TOP2A amplification group was 68.8 %, which is lower than deficiency and control group (P > 0.05). Subgroup analysis showed no significant differences of OS and DFS either between TOP2A-positive and TOP2A-negative groups or between TOP2A amplification and control group in population of patients with HER-2 amplification, triple negative breast cancer, or hormone-positive breast cancer. In conclusion, positive rate of TOP2A expression correlates significantly with ER, KI-67, and HER-2. However, prognostic significance of either TOP2A expression or TOP2A gene changes in breast cancer and its various subtypes is limited. PMID:25846735

  2. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    SciTech Connect

    Watanabe, Kanako; Kanno, Takeshi; Oshima, Tadayuki; Miwa, Hiroto; Tashiro, Chikara; Nishizaki, Tomoyuki

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression of the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.

  3. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation.

    PubMed

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-09-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  4. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation

    PubMed Central

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-01-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  5. TOP2A RNA Expression and Recurrence in Estrogen Receptor-Positive Breast Cancer

    PubMed Central

    Sparano, Joseph A.; Goldstein, Lori J.; Davidson, Nancy E.; Sledge, George W.; Gray, Robert

    2016-01-01

    The purpose of this study is to evaluate the relationship between TOP2A RNA expression and recurrence in patients with operable estrogen receptor (ER) positive breast cancer. We evaluated TOP2A expression in a pooled analysis of 4 independent data sets with gene expression data including 752 patients with early stage, ER-positive, HER2-negative breast cancer, most of whom received either no adjuvant therapy or endocrine therapy without chemotherapy. We also used an algorithm to simulate the Oncotype DX Recurrence Score (simRS) and the proliferation component of the Recurrence Score (simPS). Results are expressed as the hazard ratio (HR) for estimates of the effect of a one standard deviation increase in the value of the log gene expression (x + 1SD vs. x) as a continuous function. TOP2A expression was significantly associated with recurrence (HR 1.56, p<0.0001), and after adjustment for simRS (HR 1.26, p=0.003). TOP2A correlated somewhat with simRS (0.45), but more strongly with simPS (0.69). For those with an intermediate simRS, high TOP2A expression (above the median) was associated with significantly higher relapse rates at five years (HR 1.82, p=0.007). TOP2A expression provides prognostic information in patients with ER-positive, HER2-negative breast cancer, a population known to have low incidence of TOP2A gene alterations. These findings confirm prior reports indicating that TOP2A expression provides prognostic information in ER-positive breast cancer. TOP2A expression may also be useful for identifying those with an intermediate RS who are more likely to relapse, although additional validation in datasets including measured rather than simulated RS will be required. PMID:22706628

  6. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine.

    PubMed

    Murakami, Naoka; Yokomizo, Takehiko; Okuno, Toshiaki; Shimizu, Takao

    2004-10-01

    G2A (from G2 accumulation) is a G-protein-coupled receptor (GPCR) that regulates the cell cycle, proliferation, oncogenesis, and immunity. G2A shares significant homology with three GPCRs including ovarian cancer GPCR (OGR1/GPR68), GPR4, and T cell death-associated gene 8 (TDAG8). Lysophosphatidylcholine (LPC) and sphingosylphosphorylcholine (SPC) were reported as ligands for G2A and GPR4 and for OGR1 (SPC only), and a glycosphingolipid psychosine was reported as ligand for TDAG8. As OGR1 and GPR4 were reported as proton-sensing GPCRs (Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., Hofstetter, H., Wolf, R. M., and Seuwen, K. (2003) Nature 425, 93-98), we evaluated the proton-sensing function of G2A. Transient expression of G2A caused significant activation of the zif 268 promoter and inositol phosphate (IP) accumulation at pH 7.6, and lowering extracellular pH augmented the activation only in G2A-expressing cells. LPC inhibited the pH-dependent activation of G2A in a dose-dependent manner in these assays. Thus, G2A is another proton-sensing GPCR, and LPC functions as an antagonist, not as an agonist, and regulates the proton-dependent activation of G2A. PMID:15280385

  7. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  8. Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation.

    PubMed

    Golder, Francis J; Ranganathan, Lavanya; Satriotomo, Irawan; Hoffman, Michael; Lovett-Barr, Mary Rachael; Watters, Jyoti J; Baker-Herman, Tracy L; Mitchell, Gordon S

    2008-02-27

    Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine kinases, the Trk receptors. Thus, we hypothesized that A2a receptor agonists would elicit phrenic long-term facilitation by mimicking the effects of BDNF on TrkB receptors. Here we demonstrate that spinal A2a receptor agonists transactivate TrkB receptors in the rat cervical spinal cord near phrenic motoneurons, thus inducing long-lasting (hours) phrenic motor facilitation. A2a receptor activation increased phosphorylation and new synthesis of an immature TrkB protein, induced TrkB signaling through Akt, and strengthened synaptic pathways to phrenic motoneurons. RNA interference targeting TrkB mRNA demonstrated that new TrkB protein synthesis is necessary for A2a-induced phrenic motor facilitation. A2a receptor activation also increased breathing in unanesthetized rats, and improved breathing in rats with cervical spinal injuries. Thus, small, highly permeable drugs (such as adenosine receptor agonists) that transactivate TrkB receptors may provide an effective therapeutic strategy in the treatment of patients with ventilatory control disorders, such as obstructive sleep apnea, or respiratory insufficiency after spinal injury or during neurodegenerative diseases. PMID:18305238

  9. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  10. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  11. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  12. Identification of chemosensory receptor genes from vertebrate genomes.

    PubMed

    Niimura, Yoshihito

    2013-01-01

    Chemical senses are essential for the survival of animals. In vertebrates, mainly three different types of receptors, olfactory receptors (ORs), vomeronasal receptors type 1 (V1Rs), and vomeronasal receptors type 2 (V2Rs), are responsible for the detection of chemicals in the environment. Mouse or rat genomes contain >1,000 OR genes, forming the largest multigene family in vertebrates, and have >100 V1R and V2R genes as well. Recent advancement in genome sequencing enabled us to computationally identify nearly complete repertories of OR, V1R, and V2R genes from various organisms, revealing that the numbers of these genes are highly variable among different organisms depending on each species' living environment. Here I would explain bioinformatic methods to identify the entire repertoires of OR, V1R, and V2R genes from vertebrate genome sequences. PMID:24014356

  13. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  14. INSIGHTS INTO THE REGULATION OF 5-HT2A RECEPTORS BY SCAFFOLDING PROTEINS AND KINASES

    PubMed Central

    Allen, John A.; Yadav, Prem N.

    2008-01-01

    SUMMARY 5-HT2A serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT2A serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT2A receptors and our recent studies suggest multiple scaffolds exist for 5-HT2A receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT2A receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT2A trafficking, targeting and signaling. PMID:18640136

  15. Adenosine A2A receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC

    PubMed Central

    Brand, Frank; Klutz, Athena; Jacobson, Kenneth A.; Fredholm, Bertil B.; Schulte, Gunnar

    2009-01-01

    G protein-coupled receptors, such as the adenosine A2A receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A2A receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A2A (Ki = 149 ± 27 nM) as well as A3 receptors (Ki= 240 ± 160 nM) but not to adenosine A1 receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand’s functionality at adenosine A2A but not A2B receptors. In live cell imaging studies, Alexa488-APEC induced adenosine A2A receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A2A receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A2A receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC provided here showed that it provides a usefultool for tracing adenosine A2A receptors in vitro. PMID:18603240

  16. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

    PubMed Central

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  17. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors.

    PubMed

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  18. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  19. Recruitment of a Cytoplasmic Chaperone Relay by the A2A Adenosine Receptor*

    PubMed Central

    Bergmayr, Christian; Thurner, Patrick; Keuerleber, Simon; Kudlacek, Oliver; Nanoff, Christian; Freissmuth, Michael; Gruber, Christian W.

    2013-01-01

    The adenosine A2A receptor is a prototypical rhodopsin-like G protein-coupled receptor but has several unique structural features, in particular a long C terminus (of >120 residues) devoid of a palmitoylation site. It is known to interact with several accessory proteins other than those canonically involved in signaling. However, it is evident that many more proteins must interact with the A2A receptor, if the trafficking trajectory of the receptor is taken into account from its site of synthesis in the endoplasmic reticulum (ER) to its disposal by the lysosome. Affinity-tagged versions of the A2A receptor were expressed in HEK293 cells to identify interacting partners residing in the ER by a proteomics approach based on tandem affinity purification. The receptor-protein complexes were purified in quantities sufficient for analysis by mass spectrometry. We identified molecular chaperones (heat-shock proteins HSP90α and HSP70-1A) that interact with and retain partially folded A2A receptor prior to ER exit. Complex formation between the A2A receptor and HSP90α (but not HSP90β) and HSP70-1A was confirmed by co-affinity precipitation. HSP90 inhibitors also enhanced surface expression of the receptor in PC12 cells, which endogenously express the A2A receptor. Finally, proteins of the HSP relay machinery (e.g. HOP/HSC70-HSP90 organizing protein and P23/HSP90 co-chaperone) were recovered in complexes with the A2A receptor. These observations are consistent with the proposed chaperone/coat protein complex II exchange model. This posits that cytosolic HSP proteins are sequentially recruited to folding intermediates of the A2A receptor. Release of HSP90 is required prior to recruitment of coat protein complex II components. This prevents premature ER export of partially folded receptors. PMID:23965991

  20. Characterization of the promoter of human CRTh2, a prostaglandin D{sub 2} receptor

    SciTech Connect

    Quapp, Russell; Madsen, Norman; Cameron, Lisa

    2007-11-30

    Chemoattractant-receptor homologous molecule expressed on Th2 cells (CRTh2) is a receptor for prostaglandin (PG)D{sub 2}, a lipid mediator involved in allergic inflammation. CRTh2 is expressed by Th2 cells, eosinophils and basophils and PDG{sub 2}-CRTh2 signaling induces calcium mobilization, cell migration and expression of the Th2 cytokines IL-4, IL-5, and IL-13. Despite the role of CRTh2 in allergic inflammation, transcriptional regulation of this gene has not been studied. Here, we demonstrated that a reporter construct of the CRTh2 promoter was induced following T cell stimulation. This activity could be further enhanced by over-expression of GATA-3, but not NFAT2 or STAT6. Electromobility shift assay demonstrated GATA-3 binding to a probe from the CRTh2 promoter. This study provides the first detailed analysis of transcriptional regulation of the human CRTh2 promoter. These findings may help identify strategies to attenuate expression of this gene and influence the maintenance and proliferation of Th2 cells in allergic inflammation.

  1. Multiple human D sub 5 dopamine receptor genes: A functional receptor and two pseudogenes

    SciTech Connect

    Grandy, D.K.; Yuan Zhang; Bouvier, C.; Qunyong Zhou; Johnson, R.A.; Allen, L.; Buck, K.; Bunzow, J.R.; Salon, J.; Civelli, O. )

    1991-10-15

    Three genes closely related to the D{sub 1} dopamine receptor were identified in the human genome. One of the genes lacks introns and encodes a functional human dopamine receptor, D{sub 5}, whose deduced amino acid sequence is 49% identical to that of the human D{sub 1} receptor. Compared with the human D{sub 1} dopamine receptor, the D{sub 5} receptor displayed a higher affinity for dopamine and was able to stimulate a biphasic rather than a monophasic intracellular accumulation of cAMP. Neither of the other two genes was able to direct the synthesis of a receptor. nucleotide sequence analysis revealed that these two genes are 98% identical to each other and 95% identical to the D{sub 5} sequence. Relative to the D{sub 5} sequence, both contain insertions and deletions that result in several in-frame termination codons. Premature termination of translation is the most likely explanation for the failure of these genes to produce receptors in COS-7 and 293 cells even though their messages are transcribed. The authors conclude that the two are pseudogenes. Blot hybridization experiments performed on rat genomic DNA suggest that there is one D{sub 5} gene in this species and that the pseudogenes may be the result of a relatively recent evolutionary event.

  2. Nucleus tractus solitarii A(2a) adenosine receptors inhibit cardiopulmonary chemoreflex control of sympathetic outputs.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2014-02-01

    Previously we have shown that stimulation of inhibitory A1 adenosine receptors located in the nucleus tractus solitarii (NTS) attenuates cardiopulmonary chemoreflex (CCR) evoked inhibition of renal, adrenal and lumbar sympathetic nerve activity and reflex decreases in arterial pressure and heart rate. Activation of facilitatory A2a adenosine receptors, which dominate over A1 receptors in the NTS, contrastingly alters baseline activity of regional sympathetic outputs: it decreases renal, increases adrenal and does not change lumbar nerve activity. Considering that NTS A2a receptors may facilitate release of inhibitory transmitters we hypothesized that A2a receptors will act in concert with A1 receptors differentially inhibiting regional sympathetic CCR responses (adrenal>lumbar>renal). In urethane/chloralose anesthetized rats (n=38) we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of serotonin 5HT3 receptor agonist, phenylbiguanide, (1-8μg/kg) before and after selective stimulation, blockade or combined blockade and stimulation of NTS A2a adenosine receptors (microinjections into the NTS of CGS-21680 0.2-20pmol/50nl, ZM-241385 40pmol/100nl or ZM-241385+CGS-21680, respectively). We found that stimulation of A2a adenosine receptors uniformly inhibited the regional sympathetic and hemodynamic reflex responses and this effect was abolished by the selective blockade of NTS A2a receptors. This indicates that A2a receptor triggered inhibition of CCR responses and the contrasting shifts in baseline sympathetic activity are mediated via different mechanisms. These data implicate that stimulation of NTS A2a receptors triggers unknown inhibitory mechanism(s) which in turn inhibit transmission in the CCR pathway when adenosine is released into the NTS during severe hypotension. PMID:24216055

  3. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy.

    PubMed

    Laurent, C; Burnouf, S; Ferry, B; Batalha, V L; Coelho, J E; Baqi, Y; Malik, E; Mariciniak, E; Parrot, S; Van der Jeugd, A; Faivre, E; Flaten, V; Ledent, C; D'Hooge, R; Sergeant, N; Hamdane, M; Humez, S; Müller, C E; Lopes, L V; Buée, L; Blum, D

    2016-01-01

    Consumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer's disease (AD) in humans and mitigates both amyloid and Tau burden in transgenic mouse models. However, the impact of selective A2AR blockade on the progressive development of AD-related lesions and associated memory impairments has not been investigated. In the present study, we removed the gene encoding A2AR from THY-Tau22 mice and analysed the subsequent effects on both pathological (Tau phosphorylation and aggregation, neuro-inflammation) and functional impairments (spatial learning and memory, hippocampal plasticity, neurotransmitter profile). We found that deleting A2ARs protect from Tau pathology-induced deficits in terms of spatial memory and hippocampal long-term depression. These effects were concomitant with a normalization of the hippocampal glutamate/gamma-amino butyric acid ratio, together with a global reduction in neuro-inflammatory markers and a decrease in Tau hyperphosphorylation. Additionally, oral therapy using a specific A2AR antagonist (MSX-3) significantly improved memory and reduced Tau hyperphosphorylation in THY-Tau22 mice. By showing that A2AR genetic or pharmacological blockade improves the pathological phenotype in a Tau transgenic mouse model, the present data highlight A2A receptors as important molecular targets to consider against AD and Tauopathies. PMID:25450226

  4. Reengineering the Collision Coupling and Diffusion Mode of the A2A-adenosine Receptor

    PubMed Central

    Keuerleber, Simon; Thurner, Patrick; Gruber, Christian W.; Zezula, Jürgen; Freissmuth, Michael

    2012-01-01

    The A2A-adenosine receptor undergoes restricted collision coupling with its cognate G protein Gs and lacks a palmitoylation site at the end of helix 8 in its intracellular C terminus. We explored the hypothesis that there was a causal link between the absence of a palmitoyl moiety and restricted collision coupling by introducing a palmitoylation site. The resulting mutant A2A-R309C receptor underwent palmitoylation as verified by both mass spectrometry and metabolic labeling. In contrast to the wild type A2A receptor, the concentration-response curve for agonist-induced cAMP accumulation was shifted to the left with increasing expression levels of A2A-R309C receptor, an observation consistent with collision coupling. Single particle tracking of quantum dot-labeled receptors confirmed that wild type and mutant A2A receptor differed in diffusivity and diffusion mode; agonist activation resulted in a decline in mean square displacement of both receptors, but the drop was substantially more pronounced for the wild type receptor. In addition, in the agonist-bound state, the wild type receptor was frequently subject to confinement events (estimated radius 110 nm). These were rarely seen with the palmitoylated A2A-R309C receptor, the preferred diffusion mode of which was a random walk in both the basal and the agonist-activated state. Taken together, the observations link restricted collision coupling to diffusion limits imposed by the absence of a palmitoyl moiety in the C terminus of the A2A receptor. The experiments allowed for visualizing local confinement of an agonist-activated G protein-coupled receptor in an area consistent with the dimensions of a lipid raft. PMID:23071116

  5. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C.

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  6. Adenosine A2a receptors and O2 sensing in development

    PubMed Central

    2011-01-01

    Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O2 sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5′-nucleotidase and the resulting activation of adenosine A2A receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A2A receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A2A receptors mediate hypoxic inhibition of breathing and rapid eye movements. A2A receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A2A receptors play virtually no role in O2 sensing by the carotid bodies, but brain A2A receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A2A receptors have been implicated in O2 sensing by carotid glomus cells, while central A2A receptors likely blunt hypoxic hyperventilation. In conclusion, A2A receptors are crucially involved in the transduction mechanisms of O2 sensing in fetal carotid bodies and brains. Postnatally, central A2A receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O2 sensing in carotid chemoreceptors, particularly in developing lambs. PMID:21677265

  7. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    PubMed Central

    Mohammadi, Rabie; Jahanshahi, Mehrdad; Jameie, Seyed Behnamedin

    2016-01-01

    Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of morphine and Conditioned Place Preference (CPP) on the density of 5-HT2A receptor in neurons of rat hippocampal formation. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: Our data showed that the maximum response was obtained with 2.5 mg/kg of morphine. The density of 5-HT2A receptor in different areas of the hippocampus increased significantly at sham-morphine and CPP groups (P<0.05). On the other hand, the CPP groups had more 5-HT2A receptors than sham-morphine groups and also the sham-morphine groups had more 5-HT2A receptors than the control groups. Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus. PMID:27563418

  8. NMDA receptor gene variations as modifiers in Huntington disease: a replication study.

    PubMed

    Saft, Carsten; Epplen, Jörg T; Wieczorek, Stefan; Landwehrmeyer, G Bernhard; Roos, Raymund A C; de Yebenes, Justo Garcia; Dose, Matthias; Tabrizi, Sarah J; Craufurd, David; Arning, Larissa

    2011-01-01

    Several candidate modifier genes which, in addition to the pathogenic CAG repeat expansion, influence the age at onset (AO) in Huntington disease (HD) have already been described. The aim of this study was to replicate association of variations in the N-methyl D-aspartate receptor subtype genes GRIN2A and GRIN2B in the "REGISTRY" cohort from the European Huntington Disease Network (EHDN). The analyses did replicate the association reported between the GRIN2A rs2650427 variation and AO in the entire cohort. Yet, when subjects were stratified by AO subtypes, we found nominally significant evidence for an association of the GRIN2A rs1969060 variation and the GRIN2B rs1806201 variation. These findings further implicate the N-methyl D-aspartate receptor subtype genes as loci containing variation associated with AO in HD. PMID:21989477

  9. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  10. 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori

    PubMed Central

    Wang, Yuancheng; Wang, Feng; Wang, Riyuan; Zhao, Ping; Xia, Qingyou

    2015-01-01

    Fundamental and applied studies of silkworms have entered the functional genomics era. Here, we report a multi-gene expression system (MGES) based on 2A self-cleaving peptide (2A), which regulates the simultaneous expression and cleavage of multiple gene targets in the silk gland of transgenic silkworms. First, a glycine-serine-glycine spacer (GSG) was found to significantly improve the cleavage efficiency of 2A. Then, the cleavage efficiency of six types of 2As with GSG was analyzed. The shortest porcine teschovirus-1 2A (P2A-GSG) exhibited the highest cleavage efficiency in all insect cell lines that we tested. Next, P2A-GSG successfully cleaved the artificial human serum albumin (66 kDa) linked with human acidic fibroblast growth factor (20.2 kDa) fusion genes and vitellogenin receptor fragment (196 kD) of silkworm linked with EGFP fusion genes, importantly, vitellogenin receptor protein was secreted to the outside of cells. Furthermore, P2A-GSG successfully mediated the simultaneous expression and cleavage of a DsRed and EGFP fusion gene in silk glands and caused secretion into the cocoon of transgenic silkworms using our sericin1 expression system. We predicted that the MGES would be an efficient tool for gene function research and innovative research on various functional silk materials in medicine, cosmetics, and other biomedical areas. PMID:26537835

  11. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) modulates co-operation between myocyte enhancer factor 2A (MEF2A) and thyroid hormone receptor-retinoid X receptor.

    PubMed Central

    De Luca, Antonio; Severino, Anna; De Paolis, Paola; Cottone, Giuliano; De Luca, Luca; De Falco, Maria; Porcellini, Antonio; Volpe, Massimo; Condorelli, Gianluigi

    2003-01-01

    Thyroid hormone receptors (TRs) and members of the myocyte enhancer factor 2 (MEF2) family are involved in the regulation of muscle-specific gene expression during myogenesis. Physical interaction between these two factors is required to synergistically activate gene transcription. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) interacting with transcription factors is able to increase their activity on target gene promoters. We investigated the role of p300 in regulating the TR-MEF2A complex. To this end, we mapped the regions of these proteins involved in physical interactions and we evaluated the expression of a chloramphenicol acetyltransferase (CAT) reporter gene in U2OS cells under control of the alpha-myosin heavy chain promoter containing the thyroid hormone response element (TRE). Our results suggested a role of p300/CBP in mediating the transactivation effects of the TR-retenoid X receptor (RxR)-MEF2A complex. Our findings showed that the same C-terminal portion of p300 binds the N-terminal domains of both TR and MEF2A, and our in vivo studies demonstrated that TR, MEF2A and p300 form a ternary complex. Moreover, by the use of CAT assays, we demonstrated that adenovirus E1A inhibits activation of transcription by TR-RxR-MEF2A-p300 but not by TR-RxR-MEF2A. Our data suggested that p300 can bind and modulate the activity of TR-RxR-MEF2A at TRE. In addition, it is speculated that p300 might modulate the activity of the TR-RxR-MEF2A complex by recruiting a hypothetical endogenous inhibitor which may act like adenovirus E1A. PMID:12371907

  12. Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link?

    PubMed Central

    2015-01-01

    5-Hydroxytryptamine 2A receptors (5-HT2A-Rs) are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses. PMID:25852551

  13. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.

    PubMed

    Singh, Bijay; Maharjan, Sushila; Kim, You-Kyoung; Jiang, Tai; Islam, Mohammad Ariful; Kang, Sang-Kee; Cho, Myung-Haing; Choi, Yun-Jaie; Cho, Chong-Su

    2014-11-01

    Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational

  14. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice

    PubMed Central

    Degl'Innocenti, Andrea

    2016-01-01

    Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a

  15. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1.

    PubMed

    Chatterjee, Bandana; Echchgadda, Ibtissam; Song, Chung Seog

    2005-01-01

    SULT2A1 is a sulfo-conjugating phase II enzyme expressed at very high levels in the liver and intestine, the two major first-pass metabolic tissues, and in the steroidogenic adrenal tissue. SULT2A1 acts preferentially on the hydroxysteroids dehydroepiandrosterone, testosterone/dihydrotestosterone, and pregnenolone and on cholesterol-derived amphipathic sterol bile acids. Several therapeutic drugs and other xenobiotics, which include xenoestrogens, are also sulfonated by this cytosolic steroid/bile acid sulfotransferase. Nonsteroid nuclear receptors with key roles in the metabolism and detoxification of endobiotics and xenobiotics, such as bile acid-activated farnesoid X receptor, xenobiotic-activated pregnane X receptor and constitutive androstane receptor, and lipid-activated peroxisome proliferator-activated receptor-alpha, mediate transcription induction of SULT2A1 in the enterohepatic system. The ligand-activated vitamin D receptor (VDR) is another nuclear receptor that stimulates SULT2A1 transcription, and the regulatory elements in human, mouse, and rat promoters directing this induction have been characterized. Given that bile acid sulfonation is catalyzed exclusively by SULT2A1 and that the 3alpha-sulfate of the highly toxic lithocholic acid is a major excretory metabolite in humans, we speculate that a role for the VDR pathway in SULT2A1 expression may have emerged to shield first-pass tissues from the cytotoxic effects of a bile acid overload arising from disrupted sterol homeostasis triggered by endogenous and exogenous factors. PMID:16399349

  16. Btn2a2, a T cell immunomodulatory molecule coregulated with MHC class II genes

    PubMed Central

    Sarter, Kerstin; Leimgruber, Elisa; Gobet, Florian; Agrawal, Vishal; Dunand-Sauthier, Isabelle; Barras, Emmanuèle; Mastelic-Gavillet, Béatris; Kamath, Arun; Fontannaz, Paola; Guéry, Leslie; Duraes, Fernanda do Valle; Lippens, Carla; Ravn, Ulla; Santiago-Raber, Marie-Laure; Magistrelli, Giovanni; Fischer, Nicolas; Siegrist, Claire-Anne; Hugues, Stéphanie

    2016-01-01

    Evidence has recently emerged that butyrophilins, which are members of the extended B7 family of co-stimulatory molecules, have diverse functions in the immune system. We found that the human and mouse genes encoding butyrophilin-2A2 (BTN2A2) are regulated by the class II trans-activator and regulatory factor X, two transcription factors dedicated to major histocompatibility complex class II expression, suggesting a role in T cell immunity. To address this, we generated Btn2a2-deficient mice. Btn2a2−/− mice exhibited enhanced effector CD4+ and CD8+ T cell responses, impaired CD4+ regulatory T cell induction, potentiated antitumor responses, and exacerbated experimental autoimmune encephalomyelitis. Altered immune responses were attributed to Btn2a2 deficiency in antigen-presenting cells rather than T cells or nonhematopoietic cells. These results provide the first genetic evidence that BTN2A2 is a co-inhibitory molecule that modulates T cell–mediated immunity. PMID:26809444

  17. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  18. Polymorphism of FCGR2A, FCGR2C, and FCGR3B Genes in the Pathogenesis of Sarcoidosis.

    PubMed

    Typiak, M; Rębała, K; Dudziak, M; Słomiński, J M; Dubaniewicz, A

    2016-01-01

    We have previously presented evidence that the polymorphism of the FCGR3A gene, encoding the receptor for Fc fragment of immunoglobulin G IIIa (FcγRIIIa) plays a role in the enhancement of circulating immune complexes (CIs) with the occurrence of Mycobacterium tuberculosis heat shock proteins in patients with sarcoidosis (SA). The immunocomplexemia might be caused by decreased affinity of CIs to Fcγ receptors, with the subsequently decreased receptor clearance by immune cells. In the present study we examined whether the polymorphisms of other related genes (FCGR2A, FCGR2C, FCGR3B) encoding other activatory Fcγ receptors, could have a similar effect. To this end, we genotyped 124 patients with sarcoidosis and 148 healthy volunteers using polymerase chain reaction with sequence-specific primers. We revealed a significant decrease in the percentage of the FCGR2A and FCGR2C variants that ensure effective CIs clearance, with a concomitant increase of less functional variants of these genes in Stages I/II, compared with Stages III/IV of SA. There was no aberration in FCGR3B allele/genotype frequencies. We conclude that the FCGR2A and FCGR2C polymorphisms may also contribute to immunocomplexemia present in SA. The assessment of FCGR genes could become a tool in presaging a clinical course of sarcoidosis and in its personalized therapy. PMID:26801149

  19. Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene.

    PubMed

    Hirata, M; Kakizuka, A; Aizawa, M; Ushikubi, F; Narumiya, S

    1994-11-01

    Prostanoid receptors belong to the family of G protein-coupled receptors with seven transmembrane domains. By taking advantage of nucleotide sequence homology among the prostanoid receptors, we have isolated and identified a cDNA fragment and its gene encoding a mouse prostaglandin (PG) D receptor by reverse transcription polymerase chain reaction and gene cloning. This gene codes for a polypeptide of 357 amino acids, with a calculated molecular weight of 40,012. The deduced amino acid sequence has a high degree of similarity with the mouse PGI receptor and the EP2 subtype of the PGE receptor, which together form a subgroup of the prostanoid receptors. Chinese hamster ovary cells stably expressing the gene showed a single class of binding sites for [#H]PGD2 with a Kd of 40 nM. This binding was displaced by unlabeled ligands in the following order: PGD2 > BW 245C (a PGD agonist) > BW A868C (a PGD antagonist) > STA2 (a thromboxane A2 agonist). PGE2, PGF2 alpha, and iloprost showed little displacement activity at concentrations up to 10 microM. PGD2 and BW 245C also increased cAMP levels in Chinese hamster ovary cells expressing the receptor, in a concentration-dependent manner. BW A868C showed a partial agonist activity in the cAMP assay. Northern blotting analysis with mouse poly(A)+ RNA identified a major mRNA species of 3.5 kb that was most abundantly expressed in the ileum, followed by lung, stomach, and uterus. PMID:7972033

  20. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  1. 5-HT2A receptor activation is necessary for CO2-induced arousal.

    PubMed

    Buchanan, Gordon F; Smith, Haleigh R; MacAskill, Amanda; Richerson, George B

    2015-07-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT(2A) receptors dose-dependently blocked CO2-induced arousal. The 5-HT(2C) receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1b(f/f/p)) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT(2A), but not 5-HT(2C), receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT(2A) receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  2. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  3. Expression of serotonin receptor genes in cranial ganglia.

    PubMed

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  4. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  5. Chemosensory receptor genes in the Oriental tobacco budworm Helicoverpa assulta.

    PubMed

    Xu, W; Papanicolaou, A; Liu, N-Y; Dong, S-L; Anderson, A

    2015-04-01

    The Oriental tobacco budworm (Helicoverpa assulta) is a specialist herbivore moth and its larvae feed on Solanaceous plants. (Z)-9-hexadecenal (Z9-16: Ald) is the major sex pheromone component in H. assulta but the specific pheromone receptor (PR) against Z9-16: Ald has not yet been identified. In the present study, we integrated transcriptomic, bioinformatic and functional characterization approaches to investigate the chemosensory receptor genes of H. assulta. We identified seven potential PRs with 44 olfactory receptors, 18 gustatory receptors and 24 ionotropic receptors, which were further studied by in silico gene expression profile, phylogenetic analysis, reverse transcription PCR and calcium imaging assays. The candidate PR, HassOR13, showed a strong response to the minor sex pheromone component, (Z)-11-hexadecenal, but not the major component, Z9-16: Ald, in calcium imaging assays. This study provides the molecular basis for comparative studies of chemosensory receptors between H. assulta and other Helicoverpa species and will advance our understanding of the evolution and function of Lepidoptera insect chemosensation. PMID:25430896

  6. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  7. Serotonin 2A receptors contribute to the regulation of risk-averse decisions

    PubMed Central

    Macoveanu, Julian; Rowe, James B; Hornboll, Bettina; Elliott, Rebecca; Paulson, Olaf B; Knudsen, Gitte M; Siebner, Hartwig R

    2013-01-01

    Pharmacological studies point to a role of the neurotransmitter serotonin (5-HT) in regulating the preference for risky decisions, yet the functional contribution of specific 5-HT receptors remains to be clarified. We used pharmacological fMRI to investigate the role of the 5-HT2A receptors in processing negative outcomes and regulating risk-averse behavior. During fMRI, twenty healthy volunteers performed a gambling task under two conditions: with or without blocking the 5-HT2A receptors. The volunteers repeatedly chose between small, likely rewards and large, unlikely rewards. Choices were balanced in terms of expected utility and potential loss. Acute blockade of the 5-HT2A receptors with ketanserin made participants more risk-averse. Ketanserin selectively reduced the neural response of the frontopolar cortex to negative outcomes that were caused by low-risk choices and were associated with large missed rewards. In the context of normal 5-HT2A receptor function, ventral striatum displayed a stronger response to low-risk negative outcomes in risk-taking as opposed to risk-averse individuals. This (negative) correlation between the striatal response to low-risk negative outcomes and risk-averse choice behavior was abolished by 5-HT2A receptor blockade. The results provide the first evidence for a critical role of 5-HT2A receptor function in regulating risk-averse behavior. We suggest that the 5-HT2A receptor system facilitates risk-taking behavior by modulating the outcome evaluation of “missed” reward. These results have implications for understanding the neural basis of abnormal risk-taking behavior, for instance in pathological gamblers. PMID:23810974

  8. Selection for genes encoding secreted proteins and receptors.

    PubMed Central

    Klein, R D; Gu, Q; Goddard, A; Rosenthal, A

    1996-01-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states. Images Fig. 1 PMID:8692953

  9. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  10. Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders.

    PubMed

    Hodgson, Robert A; Bedard, Paul J; Varty, Geoffrey B; Kazdoba, Tatiana M; Di Paolo, Therese; Grzelak, Michael E; Pond, Annamarie J; Hadjtahar, Abdallah; Belanger, Nancy; Gregoire, Laurent; Dare, Aurelie; Neustadt, Bernard R; Stamford, Andrew W; Hunter, John C

    2010-10-01

    Parkinson's Disease (PD) and Extrapyramidal Syndrome (EPS) are movement disorders that result from degeneration of the dopaminergic input to the striatum and chronic inhibition of striatal dopamine D(2) receptors by antipsychotics, respectively. Adenosine A(2A) receptors are selectively localized in the basal ganglia, primarily in the striatopallidal ("indirect") pathway, where they appear to operate in concert with D(2) receptors and have been suggested to drive striatopallidal output balance. In cases of dopaminergic hypofunction, A(2A) receptor activation contributes to the overdrive of the indirect pathway. A(2A) receptor antagonists, therefore, have the potential to restore this inhibitor imbalance. Consequently, A(2A) receptor antagonists have therapeutic potential in diseases of dopaminergic hypofunction such as PD and EPS. Targeting the A(2A) receptor may also be a way to avoid the issues associated with direct dopamine agonists. Recently, preladenant was identified as a potent and highly selective A(2A) receptor antagonist, and has produced a significant improvement in motor function in rodent models of PD. Here we investigate the effects of preladenant in two primate movement disorder models. In MPTP-treated cynomolgus monkeys, preladenant (1 or 3 mg/kg; PO) improved motor ability and did not evoke any dopaminergic-mediated dyskinetic or motor complications. In Cebus apella monkeys with a history of chronic haloperidol treatment, preladenant (0.3-3.0 mg/kg; PO) delayed the onset of EPS symptoms evoked by an acute haloperidol challenge. Collectively, these data support the use of preladenant for the treatment of PD and antipsychotic-induced movement disorders. PMID:20655910

  11. α(2A) adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction.

    PubMed

    Chen, Yunjia; Peng, Yin; Che, Pulin; Gannon, Mary; Liu, Yin; Li, Ling; Bu, Guojun; van Groen, Thomas; Jiao, Kai; Wang, Qin

    2014-12-01

    Accumulation of amyloid β (Aβ) peptides in the brain is the key pathogenic factor driving Alzheimer's disease (AD). Endocytic sorting of amyloid precursor protein (APP) mediated by the vacuolar protein sorting (Vps10) family of receptors plays a decisive role in controlling the outcome of APP proteolytic processing and Aβ generation. Here we report for the first time to our knowledge that this process is regulated by a G protein-coupled receptor, the α(2A) adrenergic receptor (α(2A)AR). Genetic deficiency of the α(2A)AR significantly reduces, whereas stimulation of this receptor enhances, Aβ generation and AD-related pathology. Activation of α(2A)AR signaling disrupts APP interaction with a Vps10 family receptor, sorting-related receptor with A repeat (SorLA), in cells and in the mouse brain. As a consequence, activation of α(2A)AR reduces Golgi localization of APP and concurrently promotes APP distribution in endosomes and cleavage by β secretase. The α(2A)AR is a key component of the brain noradrenergic system. Profound noradrenergic dysfunction occurs consistently in patients at the early stages of AD. α(2A)AR-promoted Aβ generation provides a novel mechanism underlying the connection between noradrenergic dysfunction and AD. Our study also suggests α(2A)AR as a previously unappreciated therapeutic target for AD. Significantly, pharmacological blockade of the α(2A)AR by a clinically used antagonist reduces AD-related pathology and ameliorates cognitive deficits in an AD transgenic model, suggesting that repurposing clinical α(2A)R antagonists would be an effective therapeutic strategy for AD. PMID:25404298

  12. Interleukin-1 receptor antagonist gene therapy for arthritis.

    PubMed

    Krishnan, B R

    1999-08-01

    Rheumtatoid arthritis (RA) is a crippling, autoimmune disease, and is characterized by inflammation and destruction of joint tissue. Interleukin-1 (IL-1) has been identified as a key pro-inflammatory cytokine responsible for inflammation. One of the mechanisms of regulation of activity of IL-1 is IL-1 receptor antagonist (IL-1ra)-mediated: IL-1RA competes with IL-1 for binding to the IL-1 receptor. Significant progress has been made in the potential application of IL-1ra gene therapyfor the treatment of arthritis. Various vectors have been tested for the delivery of the IL-1ra gene to the intra-articular region. Recent studies in humans have provided encouraging prospects for IL-1ra-mediated arthritis gene therapy. PMID:11713759

  13. Cervical spinal cord injury upregulates ventral spinal 5-HT2A receptors.

    PubMed

    Fuller, David D; Baker-Herman, Tracy L; Golder, Francis J; Doperalski, Nicholas J; Watters, Jyoti J; Mitchell, Gordon S

    2005-02-01

    Following chronic C2 spinal hemisection (C2HS), crossed spinal pathways to phrenic motoneurons exhibit a slow, spontaneous increase in efficacy by a serotonin (5-HT)-dependent mechanism associated with 5-HT2A receptor activation. Further, the spontaneous appearance of cross-phrenic activity following C2HS is accelerated and enhanced by exposure to chronic intermittent hypoxia (CIH). We hypothesized that chronic C2HS would increase 5-HT and 5-HT2A receptor expression in ventral cervical spinal segments containing phrenic motoneurons. In addition, we hypothesized that CIH exposure would further increase 5-HT and 5-HT2A receptor density in this region. Control, sham-operated, and C2HS Sprague-Dawley rats were studied following normoxia or CIH (11% O2-air; 5-min intervals; nights 7-14 post-surgery). At 2 weeks post-surgery, ventral spinal gray matter extending from C4 and C5 was isolated ipsilateral and contralateral to C2HS. Neither C2HS nor CIH altered 5-HT concentration measured with an ELISA on either side of the spinal cord. However, 5-HT2A receptor expression assessed with immunoblots increased in ipsilateral gray matter following C2HS, an effect independent of CIH. Immunocytochemistry revealed increased 5-HT2A receptor expression on identified phrenic motoneurons (p<0.05), as well as in the surrounding gray matter. Contralateral to injury, 5-HT2A receptor expression was elevated in CIH, but not normoxic C2HS rats (p<0.05). Our data are consistent with the hypothesis that spontaneous increase in 5-HT2A receptor expression on or near phrenic motoneurons contributes to strengthened crossed-spinal synaptic pathways to phrenic motoneurons following C2HS. PMID:15716627

  14. Thermostabilisation of an agonist-bound conformation of the human adenosine A(2A) receptor.

    PubMed

    Lebon, Guillaume; Bennett, Kirstie; Jazayeri, Ali; Tate, Christopher G

    2011-06-10

    The adenosine A(2A) receptor (A(2A)R) is a G-protein-coupled receptor that plays a key role in transmembrane signalling mediated by the agonist adenosine. The structure of A(2A)R was determined recently in an antagonist-bound conformation, which was facilitated by the T4 lysozyme fusion in cytoplasmic loop 3 and the considerable stabilisation conferred on the receptor by the bound inverse agonist ZM241385. Unfortunately, the natural agonist adenosine does not sufficiently stabilise the receptor for the formation of diffraction-quality crystals. As a first step towards determining the structure of A(2A)R bound to an agonist, the receptor was thermostabilised by systematic mutagenesis in the presence of the bound agonist [(3)H]5'-N-ethylcarboxamidoadenosine (NECA). Four thermostabilising mutations were identified that when combined to give mutant A(2A)R-GL26, conferred a greater than 200-fold decrease in its rate of unfolding compared to the wild-type receptor. Pharmacological analysis suggested that A(2A)R-GL26 is stabilised in an agonist-bound conformation because antagonists bind with up to 320-fold decreased affinity. None of the thermostabilising mutations are in the ZM241385 binding pocket, suggesting that the mutations affect ligand binding by altering the conformation of the receptor rather than through direct interactions with ligands. A(2A)R-GL26 shows considerable stability in short-chain detergents, which has allowed its purification and crystallisation. PMID:21501622

  15. Identification of Significant Association and Gene-Gene Interaction of GABA Receptor Subunit Genes in Autism

    PubMed Central

    Ma, D. Q.; Whitehead, P. L.; Menold, M. M.; Martin, E. R.; Ashley-Koch, A. E.; Mei, H.; Ritchie, M. D.; DeLong, G. R.; Abramson, R. K.; Wright, H. H.; Cuccaro, M. L.; Hussman, J. P.; Gilbert, J. R.; Pericak-Vance, M. A.

    2005-01-01

    Autism is a common neurodevelopmental disorder with a significant genetic component. Existing research suggests that multiple genes contribute to autism and that epigenetic effects or gene-gene interactions are likely contributors to autism risk. However, these effects have not yet been identified. Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, has been implicated in autism etiology. Fourteen known autosomal GABA receptor subunit genes were studied to look for the genes associated with autism and their possible interactions. Single-nucleotide polymorphisms (SNPs) were screened in the following genes: GABRG1, GABRA2, GABRA4, and GABRB1 on chromosome 4p12; GABRB2, GABRA6, GABRA1, GABRG2, and GABRP on 5q34-q35.1; GABRR1 and GABRR2 on 6q15; and GABRA5, GABRB3, and GABRG3 on 15q12. Intronic and/or silent mutation SNPs within each gene were analyzed in 470 white families with autism. Initially, SNPs were used in a family-based study for allelic association analysis—with the pedigree disequilibrium test and the family-based association test—and for genotypic and haplotypic association analysis—with the genotype-pedigree disequilibrium test (geno-PDT), the association in the presence of linkage (APL) test, and the haplotype family-based association test. Next, with the use of five refined independent marker sets, extended multifactor-dimensionality reduction (EMDR) analysis was employed to identify the models with locus joint effects, and interaction was further verified by conditional logistic regression. Significant allelic association was found for markers RS1912960 (in GABRA4; P = .01) and HCV9866022 (in GABRR2; P = .04). The geno-PDT found significant genotypic association for HCV8262334 (in GABRA2), RS1912960 and RS2280073 (in GABRA4), and RS2617503 and RS12187676 (in GABRB2). Consistent with the allelic and genotypic association results, EMDR confirmed the main effect at RS1912960 (in GABRA4). EMDR also identified a

  16. No association of primary Sjögren's syndrome with Fcγ receptor gene variants.

    PubMed

    Haldorsen, K; Appel, S; Le Hellard, S; Bruland, O; Brun, J G; Omdal, R; Kristjansdottir, G; Theander, E; Fernandes, C P D; Kvarnström, M; Eriksson, P; Rönnblom, L; Herlenius, M W; Nordmark, G; Jonsson, R; Bolstad, A I

    2013-06-01

    The genetic background of primary Sjögren's syndrome (pSS) is partly shared with systemic lupus erythematosus (SLE). Immunoglobulin G Fc receptors are important for clearance of immune complexes. Fcγ receptor variants and gene deletion have been found to confer SLE risk. In this study, four Fcγ receptor single-nucleotide polymorphisms (SNPs) and one copy number variation (CNV) were studied. Swedish and Norwegian pSS patients (N=527) and controls (N=528) were genotyped for the Fcγ receptor gene variant FCGR2A H131R (rs1801274) by the Illumina GoldenGate assay. FCGR3A F158V (rs396991) was analysed in 488 patients and 485 controls, FCGR3B rs447536 was analysed in 471 patients and 467 controls, and FCGR3B rs448740 was analysed in 478 cases and 455 controls, using TaqMan SNP genotyping assays. FCGR3B CNV was analysed in 124 patients and 139 controls using a TaqMan copy number assay. None of the SNPs showed any association with pSS. Also, no FCGR3B CNV association was detected. The lack of association of pSS with Fcγ receptor gene variants indicates that defective immune complex clearance may not be as important in pSS pathogenesis as in SLE, and may point to important differences between SLE and pSS. PMID:23552400

  17. Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice.

    PubMed

    Morici, Juan F; Ciccia, Lucia; Malleret, Gaël; Gingrich, Jay A; Bekinschtein, Pedro; Weisstaub, Noelia V

    2015-01-01

    Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a (-/-)) with wild type (htr2a (+/+)) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex. PMID:26779016

  18. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  19. CRDB: database of chemosensory receptor gene families in vertebrate.

    PubMed

    Dong, Dong; Jin, Ke; Wu, Xiaoli; Zhong, Yang

    2012-01-01

    Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates. PMID:22393364

  20. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    ERIC Educational Resources Information Center

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  1. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    PubMed Central

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  2. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses.

    PubMed

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC's effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  3. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    PubMed

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y

    2011-09-01

    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  4. Killer cell immunoglobulin like receptor gene association with tuberculosis.

    PubMed

    Pydi, Satya Sudheer; Sunder, Sharada Ramaseri; Venkatasubramanian, Sambasivan; Kovvali, Srinivas; Jonnalagada, Subbanna; Valluri, Vijaya Lakshmi

    2013-01-01

    NK cells are vital components of innate immune system and are the first cells which come into picture mediating resistance against intracellular pathogens. NK cell cytotoxicity is modulated by a wide variety of cell surface receptors that recognize and respond towards infected cells. Activation of NK cells are controlled by both inhibitory and activating receptors, encoded by KIR genes and bind to HLA ligands. Not much is known about KIR genes and their influence on the pathogenesis with M. tuberculosis infection. Our study aimed at detecting the presence of 14 KIR genes, their distribution and their association with tuberculosis. Total 77 different genotype combinations were observed which belonged to B-haplotype. Fifteen genotypes were similar to those reported in other world populations while remaining 62 were unique to this study group. Inhibitory genes KIR3DL1, KIR2DL3 and activating genes KIR2DS1, KIR2DS5 conferred susceptibility towards TB either individually or in haplotype combinations. The complimentary MHC ligands need to be tested for the functional relevance of the associated genes. PMID:23073291

  5. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko; Nishio, Hiroaki

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  6. Involvement of adenosine A2A receptors in depression and anxiety.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Kanda, Tomoyuki

    2014-01-01

    When administered to normal healthy patients, a nonselective adenosine A1/A2A antagonist, caffeine, tended to improve anxiety and depression at low doses and to exacerbate anxiety at high doses. Caffeine also appears to enhance anxiety-related symptoms in patients with panic disorder, and A2A receptor-deficient mice have been reported to exhibit higher anxiety-like behaviors, as well as a lower incidence of depression-like behaviors. Some selective A2A antagonists were reported to ameliorate anxiety-like behaviors in rodents, while others did not affect these behaviors. In addition, most A2A antagonists showed inhibitory effects on depression-like behaviors. The mechanisms underlying the relationship between A2A receptor antagonists and anxiety and depression remain unclear at the present time, although many studies have produced hypotheses. Given that a selective A2A receptor antagonist has recently become available for use in humans, research on the role of A2A receptors in the treatment of mental illness should progress in the near future. PMID:25175973

  7. Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus.

    PubMed

    Rombo, Diogo M; Newton, Kathryn; Nissen, Wiebke; Badurek, Sylvia; Horn, Jacqueline M; Minichiello, Liliana; Jefferys, John G R; Sebastiao, Ana M; Lamsa, Karri P

    2015-05-01

    Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2A R enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2A R has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2A R activation alters the synaptic excitation - inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2A R promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high-frequency electrical stimulation. Our results revealed selective synapse- and cell type specific adenosine A2A R effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2A R's facilitatory effect on cortical network activity. PMID:25402014

  8. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    PubMed Central

    Ettrup, Anders; da Cunha-Bang, Sophie; McMahon, Brenda; Lehel, Szabolcs; Dyssegaard, Agnete; Skibsted, Anine W; Jørgensen, Louise M; Hansen, Martin; Baandrup, Anders O; Bache, Søren; Svarer, Claus; Kristensen, Jesper L; Gillings, Nic; Madsen, Jacob; Knudsen, Gitte M

    2014-01-01

    [11C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT2A) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [11C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT2A receptors with [11C]Cimbi-36 PET. The two-tissue compartment model using arterial input measurements provided the most optimal quantification of cerebral [11C]Cimbi-36 binding. Reference tissue modeling was feasible as it induced a negative but predictable bias in [11C]Cimbi-36 PET outcome measures. In five subjects, pretreatment with the 5-HT2A receptor antagonist ketanserin before a second PET scan significantly decreased [11C]Cimbi-36 binding in all cortical regions with no effects in cerebellum. These results confirm that [11C]Cimbi-36 binding is selective for 5-HT2A receptors in the cerebral cortex and that cerebellum is an appropriate reference tissue for quantification of 5-HT2A receptors in the human brain. Thus, we here describe [11C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT2A receptors in the human brain. PMID:24780897

  9. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    PubMed

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder. PMID:27296644

  10. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  11. The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells.

    PubMed

    Kudlacek, Oliver; Just, Herwig; Korkhov, Vladimir M; Vartian, Nina; Klinger, Markus; Pankevych, Halyna; Yang, Qiong; Nanoff, Christian; Freissmuth, Michael; Boehm, Stefan

    2003-07-01

    The adenosine A(2A) receptor and the dopamine D(2) receptor are prototypically coupled to G(s) and G(i)/G(o), respectively. In striatal intermediate spiny neurons, these receptors are colocalized in dendritic spines and act as mutual antagonists. This antagonism has been proposed to occur at the level of the receptors or of receptor-G protein coupling. We tested this model in PC12 cells which endogenously express A(2A) receptors. The human D(2) receptor was introduced into PC12 cells by stable transfection. A(2A)-agonist-mediated inhibition of D(2) agonist binding was absent in PC12 cell membranes but present in HEK293 cells transfected as a control. However, in the resulting PC12 cell lines, the action of the D(2) agonist quinpirole depended on the expression level of the D(2) receptor: at low and high receptor levels, the A(2A)-agonist-induced elevation of cAMP was enhanced and inhibited, respectively. Forskolin-stimulated cAMP formation was invariably inhibited by quinpirole. The effects of quinpirole were abolished by pretreatment with pertussis toxin. A(2A)-receptor-mediated cAMP formation was inhibited by other G(i)/G(o)-coupled receptors that were either endogenously present (P(2y12)-like receptor for ADP) or stably expressed after transfection (A(1) adenosine, metabotropic glutamate receptor-7A). Similarly, voltage activated Ca(2+) channels were inhibited by the endogenous P(2Y) receptor and by the heterologously expressed A(1) receptor but not by the D(2) receptor. These data indicate functional segregation of signaling components. Our observations are thus compatible with the proposed model that D(2) and A(2A) receptors are closely associated, but they highlight the fact that this interaction can also support synergism. PMID:12784121

  12. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.

    PubMed

    Ye, Libin; Van Eps, Ned; Zimmer, Marco; Ernst, Oliver P; Prosser, R Scott

    2016-05-12

    Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the β2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease. PMID:27144352

  13. The Role of The A2A Receptor in Cell Apoptosis Caused by MDMA

    PubMed Central

    Soleimani, Mansooreh; Katebi, Majid; Alizadeh, Akram; Mohammadzadeh, Farzaneh; Mehdizadeh, Mehdi

    2012-01-01

    Objective: Ecstasy, also known as 3, 4-methylenedioxymethamphetamine (MDMA), is a psychoactive recreational hallucinogenic substance and a major worldwide recreational drug. There are neurotoxic effects observed in laboratory animals and humans following MDMA use. MDMA causes apoptosis in neurons of the central nervous system (CNS). Withdrawal signs are attenuated by treatment with the adenosine receptor (A2A receptor). This study reports the effects of glutamyl cysteine synthetase (GCS), as an A2A receptor agonist, and succinylcholine (SCH), as an A2A receptor antagonist, on Sprague Dawley rats, both in the presence and absence of MDMA. Materials and Methods: In this experimental study, we used seven groups of Sprague Dawley rats (200-250 g each). Each group was treated with daily intraperitoneal (IP) injections for a period of one week, as follows: i. MDMA (10 mg/kg); ii. GCS (0.3 mg/kg); iii. SCH (0.3 mg/kg); iv. GCS + SCH (0.3 mg/kg each); v. MDMA (10 mg/kg) + GCS (0.3 mg/kg); vi. MDMA (10 mg/kg) + SCH (0.3 mg/kg); and vi. normal saline (1 cc/kg) as the sham group. Bax (apoptotic protein) and Bcl-2 (anti-apoptotic protein) expressions were evaluated by striatum using RT-PCR and Western blot analysis. Results: There was a significant increase in Bax protein expression in the MDMA+SCH group and a significant decrease in Bcl-2 protein expression in the MDMA+SCH group (p<0.05). Conclusion: A2A receptors have a role in the apoptotic effects of MDMA via the Bax and Bcl-2 pathways. An agonist of this receptor (GCS) decreases the cytotoxcity of MDMA, while the antagonist of this receptor (SCH) increases its cytotoxcity. PMID:23508639

  14. [BCL1 POLYMORPHISM OF GLUCOCORTICOID RECEPTOR GENE AND RESPIRATORY DISEASES].

    PubMed

    Prystupa, L N; Garbuzova, V Yu; Kmyta, V V

    2015-01-01

    The article analyses the results of investigating the connection between BCL1-polymorphism of glucocorticoid receptor gene and respiratory diseases. Its role in increasing sensitivity to glucocorticoids is proved here. The authors investigated the association of Bcl1 polymorphism with predisposition to bronchial asthma, chronic obstructive pulmonary disease, with the nicotine addiction degree and with progressing disorders of pulmonary function in cystic fibrosis. PMID:26118026

  15. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer.

    PubMed

    Carroll, J S

    2016-07-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  16. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background WC1 co-receptors belong to the scavenger receptor cysteine-rich superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ '' T cells. Our previous study identified partial sequences for 13 different WC1 genes by annota...

  17. Association of adenosine receptor gene polymorphisms and in vivo adenosine A1 receptor binding in the human brain.

    PubMed

    Hohoff, Christa; Garibotto, Valentina; Elmenhorst, David; Baffa, Anna; Kroll, Tina; Hoffmann, Alana; Schwarte, Kathrin; Zhang, Weiqi; Arolt, Volker; Deckert, Jürgen; Bauer, Andreas

    2014-12-01

    Adenosine A1 receptors (A1ARs) and the interacting adenosine A2A receptors are implicated in neurological and psychiatric disorders. Variants within the corresponding genes ADORA1 and ADORA2A were shown associated with pathophysiologic alterations, particularly increased anxiety. It is unknown so far, if these variants might modulate the A1AR distribution and availability in different brain regions. In this pilot study, the influence of ADORA1 and ADORA2A variants on in vivo A1AR binding was assessed with the A1AR-selective positron emission tomography (PET) radioligand [(18)F]CPFPX in brains of healthy humans. Twenty-eight normal control subjects underwent PET procedures to calculate the binding potential BPND of [(18)F]CPFPX in cerebral regions and to assess ADORA1 and ADORA2A single nucleotide polymorphism (SNP) effects on regional BPND data. Our results revealed SNPs of both genes associated with [(18)F]CPFPX binding to the A1AR. The strongest effects that withstood even Bonferroni correction of multiple SNP testing were found in non-smoking subjects (N=22) for ADORA2A SNPs rs2236624 and rs5751876 (corr. Pall<0.05). SNP alleles previously identified at risk for increased anxiety like the rs5751876 T-allele corresponded to consistently higher A1AR availability in all brain regions. Our data indicate for the first time that variation of A1AR availability was associated with ADORA SNPs. The finding of increased A1AR availability in regions of the fear network, particularly in ADORA2A risk allele carriers, strongly warrants evaluation and replication in further studies including individuals with increased anxiety. PMID:24943643

  18. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation

    PubMed Central

    Stilling, Roman M; Rönicke, Raik; Benito, Eva; Urbanke, Hendrik; Capece, Vincenzo; Burkhardt, Susanne; Bahari-Javan, Sanaz; Barth, Jonas; Sananbenesi, Farahnaz; Schütz, Anna L; Dyczkowski, Jerzy; Martinez-Hernandez, Ana; Kerimoglu, Cemil; Dent, Sharon YR; Bonn, Stefan; Reymann, Klaus G; Fischer, Andre

    2014-01-01

    Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone-modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K-acetyltransferase 2a (Kat2a)—a HAT that has not been studied for its role in memory function so far—shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long-term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation. PMID:25024434

  19. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

    PubMed Central

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-01-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  20. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection.

    PubMed

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-08-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP(-/-) MEF cells, and quite substantially decreased in TRIF(-/-) MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP(-/-) MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  1. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study

    PubMed Central

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Plenge, Per; Klein, Anders Bue; Westin, Jenny E.; Fog, Karina

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [3H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  2. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression. PMID:27579212

  3. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    PubMed Central

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  4. The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase.

    PubMed

    Guenebeaud, Céline; Goldschneider, David; Castets, Marie; Guix, Catherine; Chazot, Guillaume; Delloye-Bourgeois, Céline; Eisenberg-Lerner, Avital; Shohat, Galit; Zhang, Mingjie; Laudet, Vincent; Kimchi, Adi; Bernet, Agnès; Mehlen, Patrick

    2010-12-22

    The UNC5H dependence receptors promote apoptosis in the absence of their ligand, netrin-1, and this is important for neuronal and vascular development and for limitation of cancer progression. UNC5H2 (also called UNC5B) triggers cell death through the activation of the serine-threonine protein kinase DAPk. While performing a siRNA screen to identify genes implicated in UNC5H-induced apoptosis, we identified the structural subunit PR65β of the holoenzyme protein phosphatase 2A (PP2A). We show that UNC5H2/B recruits a protein complex that includes PR65β and DAPk and retains PP2A activity. PP2A activity is required for UNC5H2/B-induced apoptosis, since it activates DAPk by triggering its dephosphorylation. Moreover, netrin-1 binding to UNC5H2/B prevents this effect through interaction of the PP2A inhibitor CIP2A to UNC5H2/B. Thus we show here that, in the absence of netrin-1, recruitment of PP2A to UNC5H2/B allows the activation of DAPk via a PP2A-mediated dephosphorylation and that this mechanism is involved in angiogenesis regulation. PMID:21172653

  5. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism. PMID:25910812

  6. Cannabinoid Receptor 1 Gene Association With Nicotine Dependence

    PubMed Central

    Chen, Xiangning; Williamson, Vernell S.; An, Seon-Sook; Hettema, John M.; Aggen, Steven H.; Neale, Michael C.; Kendler, Kenneth S.

    2009-01-01

    Context The endogenous cannabinoid system has been implicated in drug addiction in animal models. The cannabinoid receptor 1 (CNR1) gene is 1 of the 2 receptors expressed in the brain. It has been reported to be associated with alcoholism and multiple drug abuse and dependence. Objective To test the hypothesis that the CNR1 gene is associated with nicotine dependence. Design Genotype-phenotype association study. Ten single-nucleotide polymorphisms were genotyped in the CNR1 gene in 2 independent samples. For the first sample (n=688), a 3-group case-control design was used to test allele association with smoking initiation and nicotine dependence. For the second sample (n = 961), association was assessed with scores from the Fagerström Test for Nicotine Dependence (FTND). Settings Population samples selected from the Mid-Atlantic Twin Registry. Participants White patients aged 18 to 65 years who met the criteria of inclusion. Main Outcome Measures Fagerström Tolerance Questionnaire and FTND scores. Results Significant single-marker and haplotype associations were found in both samples, and the associations were female specific. Haplotype 1-1-2 of markers rs2023239-rs12720071-rs806368 was associated with nicotine dependence and FTND score in the 2 samples (P<.001 and P = .009, respectively). Conclusion Variants and haplotypes in the CNR1 gene may alter the risk for nicotine dependence, and the associations are likely sex specific. PMID:18606954

  7. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs. PMID:23195622

  8. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  9. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC. PMID:25914158

  10. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    SciTech Connect

    Chen, Yue; Zhang, Shunfen; Zhou, Tianyan; Huang, Chaoqun; McLaughlin, Alicia; Chen, Guangping

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ► Liver X receptor α mediated genistein induction of hSULT2A1 in Hep G2 cells. ► LXRα and RXRα dimerization further activated this induction. ► Western blot results agreed well with luciferase reporter gene assay results. ► LXRs gene silencing significantly decreased hSULT2A1 expression. ► ChIP analysis suggested that genistein enhances hLXRα binding to the hSULT2A1 promoter.

  11. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  12. AB46. Screening and identification for the target genes of androgen receptor in mouse Sertoli cells

    PubMed Central

    Gui, Yaoting; Mou, Lisha; Zhang, Qiaoxia; Yang, Lihua; Wang, Yadong; Cai, Zhiming

    2014-01-01

    Androgen and androgen receptor (AR) play important roles in spermatogenesis, yet detailed androgen/AR signals in Sertoli cells remain unclear. To identify AR target genes in Sertoli cells, we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR) and their littermate wild-type (WT) mice. Digital gene expression analysis identified 2,276 genes downregulated and 2,865 genes upregulated in the S-AR mice testis compared to WT ones. To further nail down the difference within Sertoli cells, we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells. Interestingly, additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing ten times more androgen sensitivity than TM4 cells. In the condition where maximal androgen response was demonstrated, we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone. Among these genes, 603 androgen-/AR-regulated genes, including 164 up-regulated and 439 down-regulated, were found in both S-AR mice testis and TM4/AR cells. Ubiquitin-conjugating enzyme E2B (Ube2b) is one of the regulated genes from the digital gene expression analysis. The expression of UBE2B was decreased in the testes of the S-AR mice analyzed by quantitative RT-PCR (qRT-PCR) and immunofluorescence. The up-regulation of Ube2b gene by testosterone was further demonstrated by Western blot and qRT-PCR in TM4 cells. Moreover, luciferase assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation assay validated that the ligand-bound AR activated Ube2b transcription via directly binding to the androgen-responsive element of the Ube2b promoter. In vitro analyses showed that testosterone increased UBE2B expression and activated H2A

  13. Synthesis and biological evaluation of 4-nitroindole derivatives as 5-HT2A receptor antagonists.

    PubMed

    Hayat, Faisal; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Rhim, Hyewhon; Park, Woo-Kyu; Choo, Hea-Young Park

    2015-03-15

    A novel series of 4-nitroindole sulfonamides containing a methyleneamino-N,N-dimethylformamidine were prepared. The binding of these compounds to 5-HT2A and 5-HT2C was evaluated, and most of the compounds showed IC50 values of less than 1μM, and exhibited high selectivity for the 5-HT2C receptor. However, little selectivity was observed in the functional assay for 5-HT6 receptors. The computational modeling studies further validated the biological results and also demonstrated a reasonable correlation between the activity of compounds and the mode of superimposition with specified pharmacophoric features. PMID:25684421

  14. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  15. Role of constitutive androstane receptor in Toll-like receptor-mediated regulation of gene expression of hepatic drug-metabolizing enzymes and transporters.

    PubMed

    Shah, Pranav; Guo, Tao; Moore, David D; Ghose, Romi

    2014-01-01

    Impairment of drug disposition in the liver during inflammation has been attributed to downregulation of gene expression of drug-metabolizing enzymes (DMEs) and drug transporters. Inflammatory responses in the liver are primarily mediated by Toll-like receptors (TLRs). We have recently shown that activation of TLR2 or TLR4 by lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively, leads to the downregulation of gene expression of DMEs/transporters. However, the molecular mechanism underlying this downregulation is not fully understood. The xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), regulate the expression of DMEs/transporter genes. Downregulation of DMEs/transporters by LTA or LPS was associated with reduced expression of PXR and CAR genes. To determine the role of CAR, we injected CAR(+/+) and CAR(-/-) mice with LTA or LPS, which significantly downregulated (~40%-60%) RNA levels of the DMEs, cytochrome P450 (Cyp)3a11, Cyp2a4, Cyp2b10, uridine diphosphate glucuronosyltransferase 1a1, amine N-sulfotransferase, and the transporter, multidrug resistance-associated protein 2, in CAR(+/+) mice. Suppression of most of these genes was attenuated in LTA-treated CAR(-/-) mice. In contrast, LPS-mediated downregulation of these genes was not attenuated in CAR(-/-) mice. Induction of these genes by mouse CAR activator 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene was sustained in LTA- but not in LPS-treated mice. Similar observations were obtained in humanized CAR mice. We have replicated these results in primary hepatocytes as well. Thus, LPS can downregulate DME/transporter genes in the absence of CAR, whereas the effect of LTA on these genes is attenuated in the absence of CAR, indicating the potential involvement of CAR in LTA-mediated downregulation of DME/transporter genes. PMID:24194512

  16. Epigenetic regulation of the formyl peptide receptor 2 gene.

    PubMed

    Simiele, Felice; Recchiuti, Antonio; Patruno, Sara; Plebani, Roberto; Pierdomenico, Anna Maria; Codagnone, Marilina; Romano, Mario

    2016-10-01

    Lipoxin (LX) A4, a main stop signal of inflammation, exerts potent bioactions by activating a specific G protein-coupled receptor, termed formyl peptide receptor 2 and recently renamed ALX/FPR2. Knowledge of the regulatory mechanisms that drive ALX/FPR2 gene expression is key for the development of innovative anti-inflammatory pharmacology. Here, we examined chromatin patterns of the ALX/FPR2 gene. We report that in MDA-MB231 breast cancer cells, the ALX/FPR2 gene undergoes epigenetic silencing characterized by low acetylation at lysine 27 and trimethylation at lysine 4, associated with high methylation at lysine 27 of histone 3. This pattern, which is consistent with transcriptionally inaccessible chromatin leading to low ALX/FPR2 mRNA and protein expression, is reversed in polymorphonuclear leukocytes that express high ALX/FPR2 levels. Activation of p300 histone acetyltransferase and inhibition of DNA methyltransferase restored chromatin accessibility and significantly increased ALX/FPR2 mRNA transcription and protein levels in MDA-MB231 cells, as well as in pulmonary artery endothelial cells. In both cells types, changes in the histone acetylation/methylation status enhanced ALX/FPR2 signaling in response to LXA4. Collectively, these results uncover unappreciated epigenetic regulation of ALX/FPR2 expression that can be exploited for innovative approaches to inflammatory disorders. PMID:27424221

  17. Study of Toll-like receptor gene loci in sarcoidosis

    PubMed Central

    Schürmann, M; Kwiatkowski, R; Albrecht, M; Fischer, A; Hampe, J; Müller-Quernheim, J; Schwinger, E; Schreiber, S

    2008-01-01

    Sarcoidosis is a multi-factorial systemic disease of granulomatous inflammation. Current concepts of the aetiology include interactions of unknown environmental triggers with an inherited susceptibility. Toll-like receptors (TLRs) are main components of innate immunity and therefore TLR genes are candidate susceptibility genes in sarcoidosis. Ten members of the human TLR gene family have been identified and mapped to seven chromosomal segments. The aim of this study was to investigate all known TLR gene loci for genetic linkage with sarcoidosis and to follow positive signals with different methods. We analysed linkage of TLR gene loci to sarcoidosis by use of closely flanking microsatellite markers in 83 families with 180 affected siblings. We found significant linkage between sarcoidosis and markers of the TLR4 gene locus on chromosome 9q (non-parametric linkage score 2·63, P = 0·0043). No linkage was found for the remaining TLR gene loci. We subsequently genotyped 1203 sarcoidosis patients from 997 families, 1084 relatives and 537 control subjects for four single nucleotide polymorphisms of TLR4, including Asp299Gly and Thr399Ile. This genotype data set was studied by case–control comparisons and transmission disequilibrium tests, but showed no significant results. In summary, TLR4 − w ith significant genetic linkage results − appears to be the most promising member of the TLR gene family for further investigation in sarcoidosis. However, our results do not confirm the TLR4 polymorphisms Asp299Gly and Thr399Ile as susceptibility markers. Our results rather point to another as yet unidentified variant within or close to TLR4 that might confer susceptibility to sarcoidosis. PMID:18422738

  18. The human gene for neurotrophic tyrosine kinase receptor type 2 (NTRK2) is located on chromosome 9 but is not the familial dysautonomia gene

    SciTech Connect

    Slaugenhaupt, S.A. |; Liebert, C.B.; Lucente, D.E.

    1995-02-10

    The neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene is a member of the trk family of tyrosine protein kinases, which encode receptors for the nerve growth factor-related proteins known as neurotrophins. The neurotrophins and their receptors have long been considered candidate genes for familial dysautonomia (FD), a hereditary sensory neuropathy resulting from the congenital loss of both sensory and autonomic neurons. The DYS gene has recently been mapped to human chromosome 9q31-q33, and therefore we set out to determine the chromosomal localization of the candidate gene NTRK2. A mouse trkB probe was hybridized to both somatic cell hybrids containing human chromosome 9 and a human chromosome 9 flow-sorted cosmid library. The human homologue of trkB, NTRK2, was assigned to chromosome 9. To localize the NTRK2 gene further, a dinucleotide repeat polymorphism was identified within a cosmid that contains NTRK2 exon sequences. This marker was genotyped in the CEPH reference pedigrees and places the NTRK2 gene near D9S1 on the proximal long arm of human chromosome 9. The NTRK2 gene is located approximately 22 cm proximal to DYS and shows several recombinants in disease families. Therefore, the NTRK2 gene can now be excluded as a candidate gene for familial dysautonomia. 18 refs., 1 fig.

  19. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    PubMed

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. PMID:26905951

  20. Diverse growth hormone receptor gene mutations in Laron syndrome

    SciTech Connect

    Berg, M.A.; Francke, U. ); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. ); Chernausek, S. ); Guevara-Aguirre, J. ); Hopp, M. ); Rosenbloom, A.; Argente, J. ); Toledo, S.P.A. )

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  1. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    PubMed

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  2. Killer cell immunoglobulin-like receptor gene association with cryptorchidism.

    PubMed

    Niepiekło-Miniewska, Wanda; Kuśnierczyk, Piotr; Havrylyuk, Anna; Kamieniczna, Marzena; Nakonechnyy, Andrij; Chopyak, Valentyna; Kurpisz, Maciej

    2015-12-01

    Cryptorchidism is a condition where a testis persists in the abdominal cavity. Thus, due to elevated temperature we may expect induction of aberrant immune reactions depending on genetic constitution of individual. This may be reflected by development of anti-sperm antibodies (ASA) in cryptorchid males. Also, natural killer (NK) cells which belong to innate immunity may control adaptive immunity. Therefore, the gene system encoding polymorphic NK cell immunoglobulin receptors (KIRs) has been studied. 109 prepubertal boys with cryptorchidism and 136 ethnically matched young male donors were selected to study NK cell KIRs. DNA was isolated using automatic Maxwell(®) system from the peripheral venous blood drawn onto anticoagulant. Olerup SSP KIR Genotyping kit including Taq polymerase was used for detection of KIR genes. Human leukocyte antigen-C (HLA-C) groups, C1 and C2 were established using a Olerup SSP KIR HLA Ligand kit. KIR2DL2 (killer immunoglobulin-like receptor two-domain long 2) and KIR2DS2 (killer immunoglobulin-like receptor two-domain short 2) genes were less frequent in patients than in control individuals (corrected p values: 0.0110 and 0.0383, respectively). However, no significant differences were observed between ASA-positive and ASA-negative patients, or between bilateral or unilateral cryptorchidism. No association between KIR ligands C1 and C2, alone or together with KIR2DL2, was found. However, the results suggest that KIR2DL2+/KIR2DS2+ genotype may be, to some extent, protective against cryptorchidism. PMID:26679162

  3. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss

    PubMed Central

    Temperley, Nicholas D; Berlin, Sofia; Paton, Ian R; Griffin, Darren K; Burt, David W

    2008-01-01

    Background Toll-like receptors (TLRs) perform a vital role in disease resistance through their recognition of pathogen associated molecular patterns (PAMPs). Recent advances in genomics allow comparison of TLR genes within and between many species. This study takes advantage of the recently sequenced chicken genome to determine the complete chicken TLR repertoire and place it in context of vertebrate genomic evolution. Results The chicken TLR repertoire consists of ten genes. Phylogenetic analyses show that six of these genes have orthologs in mammals and fish, while one is only shared by fish and three appear to be unique to birds. Furthermore the phylogeny shows that TLR1-like genes arose independently in fish, birds and mammals from an ancestral gene also shared by TLR6 and TLR10. All other TLRs were already present prior to the divergence of major vertebrate lineages 550 Mya (million years ago) and have since been lost in certain lineages. Phylogenetic analysis shows the absence of TLRs 8 and 9 in chicken to be the result of gene loss. The notable exception to the tendency of gene loss in TLR evolution is found in chicken TLRs 1 and 2, each of which underwent gene duplication about 147 and 65 Mya, respectively. Conclusion Comparative phylogenetic analysis of vertebrate TLR genes provides insight into their patterns and processes of gene evolution, with examples of both gene gain and gene loss. In addition, these comparisons clarify the nomenclature of TLR genes in vertebrates. PMID:18241342

  4. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    PubMed

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development. PMID:25986534

  5. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  6. Evolution of galanin receptor genes: insights from the deuterostome genomes.

    PubMed

    Liu, Z; Xu, Y; Wu, L; Zhang, S

    2010-08-01

    Galanin exerts its biological activities through three different G protein-coupled receptors, Galr1, Galr2 and Galr3. To obtain insights into the evolution of Galrs, we searched the genomes of the deuterostomes by extensive BLAST survey and phylogenetic analyses. The Galr2 and Galr3 share similar genomic structures, and most of them are composed of 2 exons and 1 intron. However, most of Galr1 are composed of 3 extrons and 2 introns. We did not detect the typical Galr genes in the genomic databases of invertebrate deutserotomes, but three Galr1/Alstr homologs and two Galr1/Gpr151 homologs in amphioxus, two Galr1/Gpr151 homologs in sea squirt and one Galr1/Gpr151 homologs in sea urchin were identified. It is highly possible that the Galr genes in vertebrates may evolve from the homologous genes of Galr1/Alstr/Gpr151 in invertebrate deuterostomes. We also proposed that Galr3 genes were the products of Galr2 duplication during evolution, while Galr2 genes may evolve from Galr1. PMID:20476798

  7. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  8. Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells.

    PubMed

    Baki, Lia; Fribourg, Miguel; Younkin, Jason; Eltit, Jose Miguel; Moreno, Jose L; Park, Gyu; Vysotskaya, Zhanna; Narahari, Adishesh; Sealfon, Stuart C; Gonzalez-Maeso, Javier; Logothetis, Diomedes E

    2016-05-01

    We previously reported that co-expression of the Gi-coupled metabotropic glutamate receptor 2 (mGlu2R) and the Gq-coupled serotonin (5-HT) 2A receptor (2AR) in Xenopus oocytes (Fribourg et al. Cell 147:1011-1023, 2011) results in inverse cross-signaling, where for either receptor, strong agonists suppress and inverse agonists potentiate the signaling of the partner receptor. Importantly, through this cross-signaling, the mGlu2R/2AR heteromer integrates the actions of psychedelic and antipsychotic drugs. To investigate whether mGlu2R and 2AR can cross-signal in mammalian cells, we stably co-expressed them in HEK293 cells along with the GIRK1/GIRK4 channel, a reporter of Gi and Gq signaling activity. Crosstalk-positive clones were identified by Fura-2 calcium imaging, based on potentiation of 5-HT-induced Ca(2+) responses by the inverse mGlu2/3R agonist LY341495. Cross-signaling from both sides of the complex was confirmed in representative clones by using the GIRK channel reporter, both in whole-cell patch-clamp and in fluorescence assays using potentiometric dyes, and further established by competition binding assays. Notably, only 25-30 % of the clones were crosstalk-positive. The crosstalk-positive phenotype correlated with (a) increased colocalization of the two receptors at the cell surface, (b) lower density of mGlu2R binding sites and higher density of 2AR binding sites in total membrane preparations, and (c) higher ratios of mGlu2R/2AR normalized surface protein expression. Consistent with our results in Xenopus oocytes, a combination of ligands targeting both receptors could elicit functional crosstalk in a crosstalk-negative clone. Crosstalk-positive clones can be used in high-throughput assays for identification of antipsychotic drugs targeting this receptor heterocomplex. PMID:26780666

  9. Reactivation of apolipoprotein II gene transcription by cycloheximide reveals two steps in the deactivation of estrogen receptor-mediated transcription.

    PubMed

    Sensel, M G; Binder, R; Lazier, C B; Williams, D L

    1994-03-01

    In this report, we describe apolipoprotein II (apoII) gene expression in cell lines derived by stable expression of the chicken estrogen receptor in LMH chicken hepatoma cells. In cell lines expressing high levels of receptor (LMH/2A), apoII gene expression is increased by estrogen 300-fold compared with levels in the receptor-deficient parent LMH line. LMH/2A cells show apoII mRNA induction and turnover kinetics similar to those in chicken liver. Inhibition of protein synthesis with cycloheximide (CHX) or puromycin following estrogen withdrawal superinduces apoII mRNA without affecting apoII mRNA stability. Superinduction is due to an estrogen-independent reactivation of apoII gene transcription. The apoII gene can be reactivated by CHX for up to 24 h following hormone withdrawal, suggesting that the gene is in a repressed yet transcriptionally competent state. These results reveal two distinct events necessary for termination of estrogen receptor-mediated transcription. The first event, removal of hormone, is sufficient to stop transcription when translation is ongoing. The second event is revealed by the CHX-induced superinduction of apoII mRNA following hormone withdrawal. This superinduction suggests that deactivation of estrogen receptor-mediated transcription requires a labile protein. Furthermore, reactivation of apoII gene expression by CHX and estrogen is additive, suggesting that estrogen is unable to overcome repression completely. Thus, a labile protein may act to repress estrogen receptor-mediated transcription of the apoII gene. PMID:8114707

  10. [Adenosine A2A receptor as a drug target for treatment of sepsis].

    PubMed

    Sivak, K V; Vasin, A V; Egorov, V V; Tsevtkov, V B; Kuzmich, N N; Savina, V A; Kiselev, O I

    2016-01-01

    Sepsis is a generalized infection accompanied by response of the body that manifests in a clinical and laboratory syndrome, namely, in the systemic inflammatory response syndrome (SIRS) from the organism to the infection. Although sepsis is a widespread and life-threatening disease, the assortment of drugs for its treatment is mostly limited by antibiotics. Therefore, the search for new cellular targets for drug therapy of sepsis is an urgent task of modern medicine and pharmacology. One of the most promising targets is the adenosine A(2A) receptor (A(2A)AR). The activation of this receptor, which is mediated by extracellular adenosine, manifests in almost all types of immune cells (lymphocytes, monocytes, macrophages, and dendritic cells) and results in reducing the severity of inflammation and reperfusion injury in various tissues. The activation of adenosine A(2A) receptor inhibits the proliferation of T cells and production of proinflammatory cytokines, which contributes to the activation of the synthesis of anti-inflammatory cytokines, thereby suppressing the systemic response. For this reason, various selective A(2A)AR agonists and antagonists may be considered to be drug candidates for sepsis pharmacotherapy. Nevertheless, they remain only efficient ligands and objects of pre-clinical and clinical trials. This review examines the molecular mechanisms of inflammatory response in sepsis and the structure and functions of A(2A)AR and its role in the pathogenesis of sepsis, as well as examples of using agonists and antagonists of this receptor for the treatment of SIRS and sepsis. PMID:27239843

  11. Role of adenosine A1 and A2A receptors in the alcohol withdrawal syndrome.

    PubMed

    Kaplan, G B; Bharmal, N H; Leite-Morris, K A; Adams, W R

    1999-10-01

    The role of adenosine receptor-mediated signaling was examined in the alcohol withdrawal syndrome. CD-1 mice received a liquid diet containing ethanol (6.7%, v/v) or a control liquid diet that were abruptly discontinued after 14 days of treatment. Mice consuming ethanol showed a progressive increase in signs of intoxication throughout the drinking period. Following abrupt discontinuation of ethanol diet, mice demonstrated reversible signs of handling-induced hyperexcitability that were maximal between 5-8 h. Withdrawing mice received treatment with adenosine receptor agonists at the onset of peak withdrawal (5.5 h) and withdrawal signs were blindly rated (during withdrawal hours 6 and 7). Adenosine A1-receptor agonist R-N6(phenylisopropyl)adenosine (0.15 and 0.3 mg/ kg) reduced withdrawal signs 0.5 and 1.5 h after drug administration in a dose-dependent fashion. Adenosine A2A-selective agonist 2-p-(2-carboxyethyl)phenylethyl-amino-5'-N-ethylcarboxamidoadenosine (0.3 mg/kg) reduced withdrawal signs at both time points. In ethanol-withdrawing mice, there were significant decreases in adenosine transporter sites in striatum without changes in cortex or cerebellum. In ethanol-withdrawing mice, there were no changes in adenosine A1 and A2A receptor concentrations in cortex, striatum, or cerebellum. There appears to be a role for adenosine A1 and A2A receptors in the treatment of the ethanol withdrawal syndrome. Published by Elsevier Science Inc. PMID:10548160

  12. First evidence for functional vomeronasal 2 receptor genes in primates.

    PubMed

    Hohenbrink, Philipp; Mundy, Nicholas I; Zimmermann, Elke; Radespiel, Ute

    2013-02-23

    Two classes of vomeronasal receptor genes, V1R and V2R, occur in vertebrates. Whereas, V1R loci are found in a wide variety of mammals, including primates, intact V2R genes have thus far only been described in rodents and marsupials. In primates, the V2R repertoire has been considered degenerate. Here, we identify for the first time two intact V2R loci in a strepsirrhine primate, the grey mouse lemur (Microcebus murinus), and demonstrate their expression in the vomeronasal organ. Putatively functional orthologues are present in two other strepsirrhines, whereas, both loci are pseudogenes in a range of anthropoid species. The functional significance of the loci is unknown, but positive selection on one of them is consistent with an adaptive role in pheromone detection. Finally, conservation of V2R loci in strepsirrhines is notable, given their high diversity and role in MUP and MHC detection in rodents. PMID:23269843

  13. Key Modulatory Role of Presynaptic Adenosine A2A Receptors in Cortical Neurotransmission to the Striatal Direct Pathway

    PubMed Central

    Quiroz, César; Luján, Rafael; Uchigashima, Motokazu; Simoes, Ana Patrícia; Lerner, Talia N.; Borycz, Janusz; Kachroo, Anil; Canas, Paula M.; Orru, Marco; Schwarzschild, Michael A.; Rosin, Diane L.; Kreitzer, Anatol C.; Cunha, Rodrigo A.; Watanabe, Masahiko; Ferré, Sergi

    2010-01-01

    Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel anti-parkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional functionally significant segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of cortico-striatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders. PMID:19936569

  14. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing.

    PubMed

    Preller, Katrin H; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X

    2016-05-01

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses. PMID:27091970

  15. Evolution of Dopamine Receptor Genes of the D1 Class in Vertebrates

    PubMed Central

    Yamamoto, Kei; Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2013-01-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D1 dopamine receptor genes. First, we show that D1C and D1D receptor sequences are encoded by orthologous genes. Second, the previously identified Cypriniform D1X sequence is a teleost-specific paralog of the D1B sequences found in all groups of jawed vertebrates. Third, zebrafish and several sauropsid species possess an additional D1-like gene, which is likely to form another orthology group of vertebrate ancestral genes, which we propose to name D1E. Ancestral jawed vertebrates are thus likely to have possessed four classes of D1 receptor genes—D1A, D1B(X), D1C(D), and D1E—which arose from large-scale gene duplications. The D1C receptor gene would have been secondarily lost in the mammalian lineage, whereas the D1E receptor gene would have been lost independently in several lineages of modern vertebrates. The D1A receptors are well conserved throughout jawed vertebrates, whereas sauropsid D1C receptors have rapidly diverged, to the point that they were misidentified as D1D. The functional significance of the D1C receptor loss is not known. It is possible that the function may have been substituted with D1A or D1B receptors in mammals, following the disappearance of D1C receptors in these species. PMID:23197594

  16. Vitamin D receptor gene polymorphisms in breast cancer.

    PubMed

    Buyru, Nur; Tezol, Ayda; Yosunkaya-Fenerci, Elif; Dalay, Nejat

    2003-12-31

    Breast cancer is the leading cause of cancer death among women around the world and its incidence is annually increasing. The vitamin D receptor (VDR) gene is a member of the nuclear receptor superfamily, which is expressed in breast tissue and known to modulate the rate of cell proliferation. Association between the VDR gene polymorphisms and cancer development has been suggested by several studies. However, the relationship between VDR polymorphisms and breast cancer is controversial and has not been confirmed by all studies. The purpose of this study was to investigate the genotype frequencies and association of the VDR Bsm I and Taq I polymorphisms with breast cancer in Turkish patients. In this study, 78 patients with breast cancer and 27 healthy individuals were enrolled. The prevalence of the VDR Taq I and Bsm I alleles and the genotype frequencies in patients with breast cancer was similar to that in the normal population. Our data indicate that no significant differences exist between the patients and control subjects. PMID:14749534

  17. The dopamine D3 receptor gene and posttraumatic stress disorder.

    PubMed

    Wolf, Erika J; Mitchell, Karen S; Logue, Mark W; Baldwin, Clinton T; Reardon, Annemarie F; Aiello, Alison; Galea, Sandro; Koenen, Karestan C; Uddin, Monica; Wildman, Derek; Miller, Mark W

    2014-08-01

    The dopamine D3 receptor (DRD3) gene has been implicated in schizophrenia, autism, and substance use-disorders and is related to emotion reactivity, executive functioning, and stress-responding, processes impaired in posttraumatic stress disorder (PTSD). The aim of this candidate gene study was to evaluate DRD3 polymorphisms for association with PTSD. The discovery sample was trauma-exposed White, non-Hispanic U.S. veterans and their trauma-exposed intimate partners (N = 491); 60.3% met criteria for lifetime PTSD. The replication sample was 601 trauma-exposed African American participants living in Detroit, Michigan; 23.6% met criteria for lifetime PTSD. Genotyping was based on high-density bead chips. In the discovery sample, 4 single nucleotide polymorphisms (SNPs), rs2134655, rs201252087, rs4646996, and rs9868039, showed evidence of association with PTSD and withstood correction for multiple testing. The minor alleles were associated with reduced risk for PTSD (OR range = 0.59 to 0.69). In the replication sample, rs2251177, located 149 base pairs away from the most significant SNP in the discovery sample, was nominally associated with PTSD in men (OR = 0.32). Although the precise role of the D3 receptor in PTSD is not yet known, its role in executive functioning and emotional reactivity, and the sensitivity of the dopamine system to environmental stressors could potentially explain this association. PMID:25158632

  18. The Dopamine D3 Receptor Gene and Posttraumatic Stress Disorder

    PubMed Central

    Wolf, Erika J.; Mitchell, Karen S.; Logue, Mark W.; Baldwin, Clinton T.; Reardon, Annemarie F.; Aiello, Alison; Galea, Sandro; Koenen, Karestan C.; Uddin, Monica; Wildman, Derek; Miller, Mark W.

    2014-01-01

    The dopamine D3 receptor (DRD3) gene has been implicated in schizophrenia, autism, and substance use-disorders and is related to emotion reactivity, executive functioning, and stress-responding, processes impaired in posttraumatic stress disorder (PTSD). This aim of this candidate gene study was to evaluate DRD3 polymorphisms for association with PTSD. The discovery sample was trauma-exposed white, non-Hispanic veterans and their trauma-exposed intimate partners (N = 491); 60% met criteria for lifetime PTSD. The replication sample was 601 trauma-exposed African American participants; 24% met criteria for lifetime PTSD. Genotyping was based on high-density bead chips. In the discovery sample, four single nucleotide polymorphisms (SNPs), rs2134655, rs201252087, rs4646996, and rs9868039, showed evidence of association with PTSD and withstood correction for multiple testing. The minor alleles were associated with reduced risk for PTSD (odds ratio range: 0.59 – 0.69). In the replication sample, rs2251177, located 149 base pairs away from the most significant SNP in the discovery sample, was nominally associated with PTSD in men (odds ratio: 0.32). Although the precise role of the D3 receptor in PTSD is not yet known, its role in executive functioning and emotional reactivity, and the sensitivity of the dopamine system to environmental stressors, could potentially explain this association. PMID:25158632

  19. Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas

    SciTech Connect

    Russo, D.; Arturi, F.; Filetti, S.

    1996-04-01

    Forty-four thyroid autonomously hyperfunctioning adenomas were analyzed to assess the frequency of mutations occurring in the TSH receptor (TSHR). PCR-amplified fragments encompassing the entire exon 10 of the TSHR gene were obtained from the genomic DNA extracted from the tumors and their adjacent normal tissues and were examined by direct nucleotide sequencing. Point mutations were found in 9 of 44 adenomas examined (20%). One mutation occurred in codon 619 (Asp to Gly), four in codon 623 (three were Ala to Ser, one Ala to substitution), two in codon 632 (both Thr to Ile), and two in codon 633 (Asp to Tyr or His). All the alterations were located in a part of the gene coding for an area including the third intracellular loop and the sixth transmembrane domain of the TSH receptor. All mutations were somatic and heterozygotic, and none was simultaneous with alterations of ras or gsp oncogenes. Thus, our data show that in our series of 44 hyperfunctioning thyroid adenomas, a somatic mutation of the TSHR, responsible for the constitutive activation of the cAMP pathway, occurs in 20% of the tumors. 28 refs., 2 tabs.

  20. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy.

    PubMed

    Uzefovsky, F; Shalev, I; Israel, S; Edelman, S; Raz, Y; Mankuta, D; Knafo-Noam, A; Ebstein, R P

    2015-01-01

    Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions. PMID:25476609

  1. Decreased frontal serotonin 5-HT 2a receptor binding index in deliberate self-harm patients.

    PubMed

    Audenaert, K; Van Laere, K; Dumont, F; Slegers, G; Mertens, J; van Heeringen, C; Dierckx, R A

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy) propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or 123I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT2a receptors

  2. Induction of murine adenosine A(2A) receptor expression by LPS: analysis of the 5' upstream promoter.

    PubMed

    Elson, G; Eisenberg, M; Garg, C; Outram, S; Ferrante, C J; Hasko, G; Leibovich, S J

    2013-04-01

    Non-activated macrophages express low levels of A(2A)Rs and lipopolysaccharides (LPS) upregulates A(2A)R expression in an NF-κB-dependent manner. The murine A(2A)R gene is encoded by three exons, m1, m2 and m3. Exons m2 and m3 are conserved, while m1 encodes the 5' untranslated UTR. Three m1 variants have been defined, m1A, m1B and m1C, with m1C being farthest from the transcriptional start site. LPS upregulates A(2A)Rs in primary murine peritoneal and bone-marrow-derived macrophages and RAW264.7 cells by selectively splicing m1C to m2, through a promoter located upstream of m1C. We have cloned ∼1.6 kb upstream of m1C into pGL4.16(luc2CP/Hygro) promoterless vector. This construct in RAW 264.7 cells responds to LPS, and adenosine receptor agonists augmented LPS responsiveness. The NF-κB inhibitors BAY-11 and triptolide inhibited LPS-dependent induction. Deletion of a key proximal NF-κB site (402-417) abrogated LPS responsiveness, while deletion of distal NF-κB and C/EBPβ sites did not. Site-directed mutagenesis of CREB (309-320), STAT1 (526-531) and AP2 (566-569) sites had little effect on LPS and adenosine receptor agonist responsiveness; however, mutation of a second STAT1 site (582-588) abrogated this responsiveness. Further analysis of this promoter should provide valuable insights into regulation of A(2A)R expression in macrophages in response to inflammatory stimuli. PMID:23328845

  3. α2A adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction

    PubMed Central

    Chen, Yunjia; Peng, Yin; Che, Pulin; Gannon, Mary; Liu, Yin; Li, Ling; Bu, Guojun; van Groen, Thomas; Jiao, Kai; Wang, Qin

    2014-01-01

    Accumulation of amyloid β (Aβ) peptides in the brain is the key pathogenic factor driving Alzheimer’s disease (AD). Endocytic sorting of amyloid precursor protein (APP) mediated by the vacuolar protein sorting (Vps10) family of receptors plays a decisive role in controlling the outcome of APP proteolytic processing and Aβ generation. Here we report for the first time to our knowledge that this process is regulated by a G protein-coupled receptor, the α2A adrenergic receptor (α2AAR). Genetic deficiency of the α2AAR significantly reduces, whereas stimulation of this receptor enhances, Aβ generation and AD-related pathology. Activation of α2AAR signaling disrupts APP interaction with a Vps10 family receptor, sorting-related receptor with A repeat (SorLA), in cells and in the mouse brain. As a consequence, activation of α2AAR reduces Golgi localization of APP and concurrently promotes APP distribution in endosomes and cleavage by β secretase. The α2AAR is a key component of the brain noradrenergic system. Profound noradrenergic dysfunction occurs consistently in patients at the early stages of AD. α2AAR-promoted Aβ generation provides a novel mechanism underlying the connection between noradrenergic dysfunction and AD. Our study also suggests α2AAR as a previously unappreciated therapeutic target for AD. Significantly, pharmacological blockade of the α2AAR by a clinically used antagonist reduces AD-related pathology and ameliorates cognitive deficits in an AD transgenic model, suggesting that repurposing clinical α2AR antagonists would be an effective therapeutic strategy for AD. PMID:25404298

  4. Role of extracellular cysteine residues in the adenosine A2A receptor.

    PubMed

    De Filippo, Elisabetta; Namasivayam, Vigneshwaran; Zappe, Lukas; El-Tayeb, Ali; Schiedel, Anke C; Müller, Christa E

    2016-06-01

    The G protein-coupled A2A adenosine receptor represents an important drug target. Crystal structures and modeling studies indicated that three disulfide bonds are formed between ECL1 and ECL2 (I, Cys71(2.69)-Cys159(45.43); II, Cys74(3.22)-Cys146(45.30), and III, Cys77(3.25)-Cys166(45.50)). However, the A2BAR subtype appears to require only disulfide bond III for proper function. In this study, each of the three disulfide bonds in the A2AAR was disrupted by mutation of one of the cysteine residues to serine. The mutant receptors were stably expressed in Chinese hamster ovary cells and analyzed in cyclic adenosine monophosphate (cAMP) accumulation and radioligand binding studies using structurally diverse agonists: adenosine, NECA, CGS21680, and PSB-15826. Results were rationalized by molecular modeling. The observed effects were dependent on the investigated agonist. Loss of disulfide bond I led to a widening of the orthosteric binding pocket resulting in a strong reduction in the potency of adenosine, but not of NECA or 2-substituted nucleosides. Disruption of disulfide bond II led to a significant reduction in the agonists' efficacy indicating its importance for receptor activation. Disulfide bond III disruption reduced potency and affinity of the small adenosine agonists and NECA, but not of the larger 2-substituted agonists. While all the three disulfide bonds were essential for high potency or efficacy of adenosine, structural modification of the nucleoside could rescue affinity or efficacy at the mutant receptors. At present, it cannot be excluded that formation of the extracellular disulfide bonds in the A2AAR is dynamic. This might add another level of G protein-coupled receptor (GPCR) modulation, in particular for the cysteine-rich A2A and A2BARs. PMID:26969588

  5. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates

    PubMed Central

    Niimura, Yoshihito

    2007-01-01

    The numbers of functional olfactory receptor (OR) genes in humans and mice are about 400 and 1,000 respectively. In both humans and mice, these genes exist as genomic clusters and are scattered over almost all chromosomes. The difference in the number of genes between the two species is apparently caused by massive inactivation of OR genes in the human lineage and a substantial increase of OR genes in the mouse lineage after the human–mouse divergence. Compared with mammals, fishes have a much smaller number of OR genes. However, the OR gene family in fishes is much more divergent than that in mammals. Fishes have many different groups of genes that are absent in mammals, suggesting that the mammalian OR gene family is characterized by the loss of many group genes that existed in the ancestor of vertebrates and the subsequent expansion of specific groups of genes. Therefore, this gene family apparently changed dynamically depending on the evolutionary lineage and evolved under the birth-and-death model of evolution. Study of the evolutionary changes of two gene families for vomeronasal receptors and two gene families for taste receptors, which are structurally similar, but remotely related to OR genes, showed that some of the gene families evolved in the same fashion as the OR gene family. It appears that the number and types of genes in chemosensory receptor gene families have evolved in response to environmental needs, but they are also affected by fortuitous factors. PMID:16607462

  6. Prognostication of prostate cancer based on TOP2A protein and gene assessment: TOP2A in prostate cancer

    PubMed Central

    2013-01-01

    Background TOP2A encodes for topoisomerase IIα, a nuclear enzyme that controls DNA topological structure and cell cycle progression. This enzyme is a marker of cell proliferation in normal and neoplastic tissues; however, little information is available about its expression in prostate cancer (PCa). Methods Immunohistochemistry (IHC) was automated using mouse monoclonal antibody against TOP2A (clone SWT3D1; DAKO, Carpenteria, CA, USA) at dilution 1:800 and Flex Plus detection system in autostainer 48Ultra (DAKO). FISH was performed using TOP2A (17q21)/ CEP17 probe kit (Kreateck Biotechnology, San Diego, CA, USA). Biochemical and pathological data from 193 patients with PCa were retrieved for the analysis, whose significance was considered when p < 0.05. Also, fractal analysis was performed in a subset of 20 randomly selected cases. Results TOP2A protein expression correlated with higher Gleason scores and higher levels of preoperative PSA (p = 0.018 and p = 0.011). Patients with higher levels of TOP2A presented shorter biochemical recurrence-free survival (BRFS) (p = 0.001). In multivariate analysis, we found that TOP2A remained an independent prognostic factor of BRFS, with a relative risk of 1.98 (p = 0.001; 95% CI, 1.338–2.93); thus, cases that expressed high levels of this enzyme had a shorter BRFS compared with TOP2A-negative or TOP2A-low cases. No alterations in TOP2A gene status nor correlation between FISH and IHC results were observed. Concerning fractal analysis, patients who expressed higher levels of TOP2A have angiolymphatic invasion and presented higher Gleason scores (p = 0.033 and p = 0.025, respectively). Also, patients with higher expression of TOP2A presented shorter BRFS (p = 0.001). Conclusions This is the first study to perform TOP2A protein and gene digital assessment and fractal analysis in association with BRFS in a large series of PCa. Also, we show that TOP2A gene copy number alterations are not observed

  7. NKG2A Complexed with CD94 Defines a Novel Inhibitory Natural Killer Cell Receptor

    PubMed Central

    Brooks, Andrew G.; Posch, Phillip E.; Scorzelli, Christopher J.; Borrego, Francisco; Coligan, John E.

    1997-01-01

    CD94 is a C-type lectin expressed by natural killer (NK) cells and a subset of T cells. Blocking studies using anti-CD94 mAbs have suggested that it is a receptor for human leukocyte antigen class I molecules. CD94 has recently been shown to be a 26-kD protein covalently associated with an unidentified 43-kD protein(s). This report shows that NKG2A, a 43-kD protein, is covalently associated with CD94 on the surface of NK cells. Cell surface expression of NKG2A is dependent on the association with CD94 as glycosylation patterns characteristic of mature proteins are found only in NKG2A that is associated with CD94. Analysis of NK cell clones showed that NKG2A was expressed in all NK cell clones whose CD16-dependent killing was inhibited by cross-linking CD94. The induction of an inhibitory signal is consistent with the presence of two immunoreceptor tyrosine-based inhibitory motifs (V/LXYXXL) on the cytoplasmic domain of NKG2A. Similar motifs are found on Ly49 and killer cell inhibitory receptors, which also transmit negative signals to NK cells. PMID:9034158

  8. UBXN2A regulates nicotinic receptor degradation by modulating the E3 ligase activity of CHIP.

    PubMed

    Teng, Yanfen; Rezvani, Khosrow; De Biasi, Mariella

    2015-10-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) containing the α3 subunit are known for their prominent role in normal ganglionic transmission while their involvement in the mechanisms underlying nicotine addiction and smoking-related disease has been emerging only in recent years. The amount of information available on the maturation and trafficking of α3-containing nAChRs is limited. We previously showed that UBXN2A is a p97 adaptor protein that facilitates the maturation and trafficking of α3-containing nAChRs. Further investigation of the mechanisms of UBXN2A actions revealed that the protein interacts with CHIP (carboxyl terminus of Hsc70 interacting protein), whose ubiquitin E3 ligase activity regulates the degradation of several disease-related proteins. We show that CHIP displays E3 ligase activity toward the α3 nAChR subunit and contributes to its ubiquitination and subsequent degradation. UBXN2A interferes with CHIP-mediated ubiquitination of α3 and protects the nicotinic receptor subunit from endoplasmic reticulum associated degradation (ERAD). UBXN2A also cross-talks with VCP/p97 and HSC70/HSP70 proteins in a complex where α3 is likely to be targeted by CHIP. Overall,we identify CHIP as an E3 ligase for α3 and UBXN2A as a protein that may efficiently regulate the stability of CHIP's client substrates. PMID:26265139

  9. Clinical/pharmacological aspect of adenosine A2A receptor antagonist for dyskinesia.

    PubMed

    Kanda, Tomoyuki; Uchida, Shin-ichi

    2014-01-01

    Dopamine replacement therapy using the dopamine precursor, l-3,4-dihydroxyphenylalanine (l-DOPA), with a peripheral dopa decarboxylase inhibitor is the most effective treatment currently available for the symptoms of Parkinson's disease (PD). However, the long-term use of dopaminergic therapies for PD is often limited by the development of motor response complications, such as dyskinesia. Adenosine A2A receptors are a promising nondopaminergic target for the treatment of PD. The treatment of motor response complications involves combinations of regular and controlled release L-DOPA, perhaps with the addition of a COMT inhibitor or the use of a longer-acting dopamine agonist. However, when dyskinesia is already established, the increase in dopaminergic load produced by the addition of a dopamine agonist can result in an increase in the severity and duration of dyskinesia. Currently, there are no well-tolerated antidyskinesia agents available. Amantadine, which may exert its effects through the inhibition of N-methyl-D-aspartate (NMDA) receptors, shows some effects on established dyskinesia. Dyskinesia has a negative impact on the quality of life of patients, sometimes being more disabling than PD itself. Although some patients prefer experiencing dyskinesia than being in the OFF state and unable to move, alternative, more effective therapies are still required for severe disabling dyskinesia to afford patients an improved quality of life while in the ON state. The mechanisms causing and maintaining the dyskinesia have not been clarified. The application of a nondopaminergic approach to modify the basal ganglial activity would be helpful to better understand and treat dyskinesia. The use of an adenosine A2A receptor may provide one such approach. In this literature review, we will summarize the current knowledge from both clinical and nonclinical studies on the effects of adenosine A2A receptor blockade on dyskinesia. PMID:25175964

  10. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  11. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    PubMed

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  12. Receptor protein kinase gene encoded at the self-incompatibility locus

    DOEpatents

    Nasrallah, June B.; Nasrallah, Mikhail E.; Stein, Joshua

    1996-01-01

    Described herein is a S receptor kinase gene (SRK), derived from the S locus in Brassica oleracea, having a extracellular domain highly similar to the secreted product of the S-locus glycoprotein gene.

  13. MicroRNA signatures predict dysregulated vitamin D receptor and calcium pathways status in limb girdle muscle dystrophies (LGMD) 2A/2B.

    PubMed

    Aguennouz, M; Lo Giudice, C; Licata, N; Rodolico, C; Musumeci, O; Fanin, M; Migliorato, A; Ragusa, M; Macaione, V; Di Giorgio, R M; Angelini, C; Toscano, A

    2016-08-01

    miRNA expression profile and predicted pathways involved in selected limb-girdle muscular dystrophy (LGMD)2A/2B patients were investigated. A total of 187 miRNAs were dysregulated in all patients, with six miRNAs showing opposite regulation in LGMD2A versus LGMD2B patients. Silico analysis evidence: (1) a cluster of the dysregulated miRNAs resulted primarily involved in inflammation and calcium metabolism, and (2) two genes predicted as controlled by calcium-assigned miRNAs (Vitamin D Receptor gene and Guanine Nucleotide Binding protein beta polypeptide 1gene) showed an evident upregulation in LGMD2B patients, in accordance with miRNA levels. Our data support alterations in calcium pathway status in LGMD 2A/B, suggesting myofibre calcium imbalance as a potential therapeutic target. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27558075

  14. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival

    PubMed Central

    Mancao, Christoph

    2007-01-01

    Many cells latently infected with Epstein-Barr virus (EBV), including certain virus-associated tumors, express latent membrane protein 2A (LMP2A), suggesting an important role for this protein in viral latency and oncogenesis. LMP2A mimics B-cell receptor signaling but can also act as a decoy receptor blocking B-cell receptor (BCR) activation. Studies of peripheral B cells have not resolved this apparent contradiction because LMP2A seems to be dispensable for EBV-induced transformation of these B cells in vitro. We show here that LMP2A is essential for growth transformation of germinal center B cells, which do not express the genuine BCR because of deleterious somatic hypermutations in their immunoglobulin genes. BCR-positive (BCR+) and BCR-negative (BCR−) B cells are readily transformed with a recombinant EBV encoding a conditional, floxed LMP2A allele, but the survival and continued proliferation of both BCR+ and BCR− B cells is strictly dependent on LMP2A. These findings indicate that LMP2A has potent, distinct antiapoptotic and/or transforming characteristics and point to its role as an indispensable BCR mimic in certain B cells from which human B-cell tumors such as Hodgkin lymphoma originate. PMID:17682125

  15. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    PubMed

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L; Folch, Josep M; Rodríguez, M Carmen; Ovilo, Cristina; Silió, Luis; Fernández, Ana I

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  16. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  17. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  18. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    PubMed

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  19. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer

    PubMed Central

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I.; Lluís, Carme; Cortés, Antoni; Volkow, Nora D.; Schiffmann, Serge N.; Ferré, Sergi; Casadó, Vicent

    2015-01-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  20. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    PubMed

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-01

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888

  1. Is MSH2 a breast cancer susceptibility gene?

    PubMed

    Wong, Ee Ming; Tesoriero, Andrea A; Pupo, Gulietta M; McCredie, Margaret R E; Giles, Graham G; Hopper, John L; Mann, Graham J; Goldgar, David E; Southey, Melissa C

    2008-01-01

    Mutations in the DNA mismatch repair gene MSH2 lead to increased replication error and microsatellite instability and account for a substantial proportion of hereditary non-polyposis colorectal cancer (Lynch syndrome). A recent international collaborative genome-wide linkage scan (GWS) for breast cancer susceptibility loci found some evidence for there being a breast cancer susceptibility gene in a genomic region on chromosome 2p close to MSH2. We sought to investigate the possibility that mutations in MSH2 might explain the multiple cases of breast cancer in some families that were included in the international GWS. DNA samples from the affected probands of 59 multiple-case breast cancer families, many of whom gave LOD scores >0.5 in the MSH2 region, were screened for large genomic alterations in MSH2 via the Multiplex Ligation-dependent Probe Amplification (MLPA) assay and for coding region mutations via exonic sequencing. Several of the families also contained cases of colorectal cancer in addition to breast cancer and had been included in the GWS that had identified a positive LOD score on chromosome 2p. Using MLPA, c.1236C > T was identified in one proband but this variant was not predicted to create an alternate acceptor/donor site within exon 7 MSH2 using in silico analyses. A c.1734T > C was identified in a second proband via exonic sequencing but testing of the variant in other family members did not support segregation of this variant with disease. Extensive screening of 59 multiple-case breast cancer families did not identify any coding region mutations or larger genomic alterations in MSH2 that might implicate MSH2 as a breast cancer susceptibility gene. PMID:17922223

  2. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis.

    PubMed

    Rucci, Nadia; Capulli, Mattia; Piperni, Sara Gemini; Cappariello, Alfredo; Lau, Patrick; Frings-Meuthen, Petra; Heer, Martina; Teti, Anna

    2015-02-01

    Mechanical loading represents a crucial factor in the regulation of skeletal homeostasis. Its reduction causes loss of bone mass, eventually leading to osteoporosis. In a previous global transcriptome analysis performed in mouse calvarial osteoblasts subjected to simulated microgravity, the most upregulated gene compared to unit gravity condition was Lcn2, encoding the adipokine Lipocalin 2 (LCN2), whose function in bone metabolism is poorly known. To investigate the mechanoresponding properties of LCN2, we evaluated LCN2 levels in sera of healthy volunteers subjected to bed rest, and found a significant time-dependent increase of this adipokine compared to time 0. We then evaluated the in vivo LCN2 regulation in mice subjected to experimentally-induced mechanical unloading by (1) tail suspension, (2) muscle paralysis by botulin toxin A (Botox), or (3) genetically-induced muscular dystrophy (MDX mice), and observed that Lcn2 expression was upregulated in the long bones of all of them, whereas physical exercise counteracted this increase. Mechanistically, in primary osteoblasts transfected with LCN2-expression-vector (OBs-Lcn2) we observed that Runx2 and its downstream genes, Osterix and Alp, were transcriptionally downregulated, and alkaline phosphatase (ALP) activity was less prominent versus empty-vector transduced osteoblasts (OBs-empty). OBs-Lcn2 also exhibited an increase of the Rankl/Opg ratio and IL-6 mRNA, suggesting that LCN2 could link poor differentiation of osteoblasts to enhanced osteoclast stimulation. In fact, incubation of purified mouse bone marrow mononuclear cells with conditioned media from OBs-Lcn2 cultures, or their coculture with OBs-Lcn2, improved osteoclastogenesis compared to OBs-empty, whereas treatment with recombinant LCN2 had no effect. In conclusion, our data indicate that LCN2 is a novel osteoblast mechanoresponding gene and that its regulation could be central to the pathological response of the bone tissue to low mechanical forces

  3. Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists*

    PubMed Central

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-01-01

    The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of

  4. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists.

    PubMed

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-05-01

    The serotonin 5-HT(2A) receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT(2A) receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT(2A) receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT(2A) agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser(280)) located in the third intracellular loop of the 5-HT(2A) receptor, a region important for its desensitization. The specific phosphorylation of Ser(280) by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT(2A) receptors at Ser(280) in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser(280) to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased

  5. C5L2: a controversial receptor of complement anaphylatoxin, C5a.

    PubMed

    Li, Rui; Coulthard, Liam G; Wu, M C L; Taylor, Stephen M; Woodruff, Trent M

    2013-03-01

    C5a is the paramount proinflammatory mediator of the complement cascade, and has been previously thought to act only through a single, G-protein-coupled, C5a receptor (C5aR; also termed CD88). In 2000, a second C5a receptor, C5L2 (previously known as GPR77), was discovered; yet, despite 12 yr of intensive research, its biological, or pathophysiological, function is both enigmatic and controversial. Unlike C5aR, this receptor does not couple to G proteins, and early studies promoted the hypothesis that C5L2 functions as a decoy receptor. However, recent data have provided other evidence for more complicated and conflicting interactions between C5L2 and other inflammatory mediators. C5L2 has been recently demonstrated to physically interact with both C5aR and β-arrestin to negatively regulate C5aR signaling toward an anti-inflammatory manner, and to reduce pathology, in several disease models in vivo. In direct contrast, other groups have demonstrated that C5L2 stimulation caused release of HMGB1 both in vitro and in vivo, and enhanced pathology in sepsis models, suggesting a clear proinflammatory signaling role. These astoundingly contradictory data challenge our precepts and complicate the foundational bases for the possible targeting of C5L2 as a therapeutic option in inflammatory disease. C5L2 may be the great masquerader in complement biology; its function dependent on the cell type, species, and disease context. Because of these unusual and unforeseen complexities, we present the current state of knowledge on C5L2 structure, expression and, most controversially, its putative functions.-Li, R., Coulthard, L.G., Wu, M. C. L., Taylor, S. M., Woodruff, T. M. C5L2: a controversial receptor of complement anaphylatoxin, C5a. PMID:23239822

  6. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio).

    PubMed

    Ma, Zhiyuan; Yu, Yijun; Tang, Song; Liu, Hongling; Su, Guanyong; Xie, Yuwei; Giesy, John P; Hecker, Markus; Yu, Hongxia

    2015-12-01

    As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane×receptor (P×R)) pathways at 120hpf. Exposure to 0.5μM TBOEP significantly (p<0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were affected by TBOEP at the concentrations studied. Receptor-mediated responses (in vivo) and mammalian cell lines receptor binding assay (in vitro) combined with published information suggest that TBOEP can modulate receptor-mediated, endocrine process (in vivo/in vitro), particularly ER and MR. PMID:26562049

  7. Period-2: a tumor suppressor gene in breast cancer.

    PubMed

    Xiang, Shulin; Coffelt, Seth B; Mao, Lulu; Yuan, Lin; Cheng, Qi; Hill, Steven M

    2008-01-01

    Previous reports have suggested that the ablation of the Period 2 gene (Per 2) leads to enhanced development of lymphoma and leukemia in mice. Employing immunoblot analyses, we have demonstrated that PER 2 is endogenously expressed in human breast epithelial cell lines but is not expressed or is expressed at significantly reduced level in human breast cancer cell lines. Expression of PER 2 in MCF-7 breast cancer cells significantly inhibited the growth of MCF-7 human breast cancer cells, and, when PER 2 was co-expressed with the Crytochrome 2 (Cry 2) gene, an even greater growth-inhibitory effect was observed. The inhibitory effect of PER 2 on breast cancer cells was also demonstrated by its suppression of the anchorage-independent growth of MCF-7 cells as evidenced by the reduced number and size of colonies. A corresponding blockade of MCF-7 cells in the G1 phase of the cell cycle was also observed in response to the expression of PER 2 alone or in combination with CRY 2. Expression of PER 2 also induced apoptosis of MCF-7 breast cancer cells as demonstrated by an increase in PARP [poly (ADP-ribose) polymerase] cleavage. Finally, our studies demonstrate that PER 2 expression in MCF-7 breast cancer cells is associated with a significant decrease in the expression of cyclin D1 and an up-regulation of p53 levels. PMID:18334030

  8. Period-2: a tumor suppressor gene in breast cancer

    PubMed Central

    Xiang, Shulin; Coffelt, Seth B; Mao, Lulu; Yuan, Lin; Cheng, Qi; Hill, Steven M

    2008-01-01

    Previous reports have suggested that the ablation of the Period 2 gene (Per 2) leads to enhanced development of lymphoma and leukemia in mice. Employing immunoblot analyses, we have demonstrated that PER 2 is endogenously expressed in human breast epithelial cell lines but is not expressed or is expressed at significantly reduced level in human breast cancer cell lines. Expression of PER 2 in MCF-7 breast cancer cells significantly inhibited the growth of MCF-7 human breast cancer cells, and, when PER 2 was co-expressed with the Crytochrome 2 (Cry 2) gene, an even greater growth-inhibitory effect was observed. The inhibitory effect of PER 2 on breast cancer cells was also demonstrated by its suppression of the anchorage-independent growth of MCF-7 cells as evidenced by the reduced number and size of colonies. A corresponding blockade of MCF-7 cells in the G1 phase of the cell cycle was also observed in response to the expression of PER 2 alone or in combination with CRY 2. Expression of PER 2 also induced apoptosis of MCF-7 breast cancer cells as demonstrated by an increase in PARP [poly (ADP-ribose) polymerase] cleavage. Finally, our studies demonstrate that PER 2 expression in MCF-7 breast cancer cells is associated with a significant decrease in the expression of cyclin D1 and an up-regulation of p53 levels. PMID:18334030

  9. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    ERIC Educational Resources Information Center

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  10. Variants in the vitamin D receptor gene and asthma

    PubMed Central

    Wjst, Matthias

    2005-01-01

    Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR), single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049), while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018). An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children. PMID:15651992

  11. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity

    PubMed Central

    MacFarlane, P.M.; Vinit, S.; Mitchell, G.S.

    2011-01-01

    Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: 1) whether serotonin 2A and/or 2B (5-HT2a/b) receptors are expressed in identified phrenic motor neurons, and 2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3 × 6µl injections, 5 min intervals) of a 5-HT2a (DOI) or 5-HT2b (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 minutes post-injection for both receptor subtypes. 5-HT2a and 5-HT2b receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2a and 5-HT2b receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and DPI) blocked 5-HT2b, but not 5-HT2a-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity. PMID:21223996

  12. Models for antigen receptor gene rearrangement: CDR3 length.

    PubMed

    Saada, Ravit; Weinberger, Moran; Shahaf, Gitit; Mehr, Ramit

    2007-06-01

    Despite the various processing steps involved in V(D)J recombination, which could potentially introduce many biases in the length distribution of complementarity determining region 3 (CDR3) segments, the observed CDR3 length distributions for complete repertoires are very close to a normal-like distribution. This raises the question of whether this distribution is simply a result of the random steps included in the process of gene rearrangement, or has been optimized during evolution. We have addressed this issue by constructing a simulation of gene rearrangement, which takes into account the DNA modification steps included in the process, namely hairpin opening, nucleotide additions, and nucleotide deletions. We found that the near-Gaussian- shape of CDR3 length distribution can only be obtained under a relatively narrow set of parameter values, and thus our model suggests that specific biases govern the rearrangement process. In both B-cell receptor (BCR) heavy chain and T-cell receptor beta chain, we obtained a Gaussian distribution using identical parameters, despite the difference in the number and the lengths of the D segments. Hence our results suggest that these parameters most likely reflect the optimal conditions under which the rearrangement process occurs. We have subsequently used the insights gained in this study to estimate the probability of occurrence of two exactly identical BCRs over the course of a human lifetime. Whereas identical rearrangements of the heavy chain are highly unlikely to occur within one human lifetime, for the light chain we found that this probability is not negligible, and hence the light chain CDR3 alone cannot serve as an indicator of B-cell clonality. PMID:17404591

  13. Progesterone receptor gene variants and risk of endometrial cancer

    PubMed Central

    O'Mara, Tracy A.; Fahey, Paul; Ferguson, Kaltin; Marquart, Louise; Lambrechts, Diether; Despierre, Evelyn; Vergote, Ignace; Amant, Frederic; Hall, Per; Liu, Jianjun; Czene, Kamila; Rebbeck, Timothy R.; Ahmed, Shahana; Dunning, Alison M.; Gregory, Catherine S.; Shah, Mitul; Webb, Penelope M.; Spurdle, Amanda B.

    2011-01-01

    Prolonged excessive estrogen exposure unopposed by progesterone is widely accepted to be a risk factor for endometrial cancer development. The physiological function of progesterone is dependent upon the presence of its receptor [progesterone receptor (PGR)] and several studies have reported single nucleotide polymorphisms (SNPs) in the PGR gene to be associated with endometrial cancer risk. We sought to confirm the associations with endometrial cancer risk previously reported for four different PGR polymorphisms. A maximum of 2888 endometrial cancer cases and 4483 female control subjects from up to three studies were genotyped for four PGR polymorphisms (rs1042838, rs10895068, rs11224561 and rs471767). Logistic regression with adjustment for age, study, ethnicity and body mass index was performed to calculate odds ratios (ORs) and associated 95% confidence intervals (CIs) and P-values. Of the four SNPs investigated, only rs11224561 in the 3′ region of the PGR gene was found to be significantly associated with endometrial cancer risk. The A allele of the rs11224561 SNP was associated with increased risk of endometrial cancer (OR per allele 1.31; 95% CI 1.12–1.53, P = 0.001, adjusted for age and study), an effect of the same magnitude and direction as reported previously. We have validated the endometrial cancer risk association with a tagSNP in the 3′ untranslated region of PGR previously reported in an Asian population. Replication studies will be required to refine the risk estimate and to establish if this, or a correlated SNP, is the underlying causative variant. PMID:21148628

  14. Optimizing T-cell receptor gene therapy for hematologic malignancies.

    PubMed

    Morris, Emma C; Stauss, Hans J

    2016-06-30

    Recent advances in genetic engineering have enabled the delivery of clinical trials using patient T cells redirected to recognize tumor-associated antigens. The most dramatic results have been seen with T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19, a differentiation antigen expressed in B cells and B lineage malignancies. We propose that antigen expression in nonmalignant cells may contribute to the efficacy of T-cell therapy by maintaining effector function and promoting memory. Although CAR recognition is limited to cell surface structures, T-cell receptors (TCRs) can recognize intracellular proteins. This not only expands the range of tumor-associated self-antigens that are amenable for T-cell therapy, but also allows TCR targeting of the cancer mutagenome. We will highlight biological bottlenecks that potentially limit mutation-specific T-cell therapy and may require high-avidity TCRs that are capable of activating effector function when the concentrations of mutant peptides are low. Unexpectedly, modified TCRs with artificially high affinities function poorly in response to low concentration of cognate peptide but pose an increased safety risk as they may respond optimally to cross-reactive peptides. Recent gene-editing tools, such as transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats, provide a platform to delete endogenous TCR and HLA genes, which removes alloreactivity and decreases immunogenicity of third-party T cells. This represents an important step toward generic off-the-shelf T-cell products that may be used in the future for the treatment of large numbers of patients. PMID:27207802

  15. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice.

    PubMed

    Abdus-Saboor, Ishmail; Al Nufal, Mohammed J; Agha, Maha V; Ruinart de Brimont, Marion; Fleischmann, Alexander; Shykind, Benjamin M

    2016-04-25

    Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice. PMID:27040780

  16. Melanoma risk is associated with vitamin D receptor gene polymorphisms.

    PubMed

    Zeljic, Katarina; Kandolf-Sekulovic, Lidija; Supic, Gordana; Pejovic, Janko; Novakovic, Marijan; Mijuskovic, Zeljko; Magic, Zvonko

    2014-06-01

    Previous studies have reported that vitamin D receptor (VDR) gene polymorphisms are associated with the occurrence of various cancers, including melanoma. The aim of the current study was to investigate the association of VDR gene polymorphisms with melanoma risk, clinicopathological characteristics, and vitamin D levels. The study group included 117 patients (84 patients with superficial spreading melanoma and 33 patients with nodular melanoma). The control group included 122 sex-matched and age-matched healthy-blood donors of the same ethnicity. VDR gene polymorphisms FokI, EcoRV, TaqI, and ApaI were genotyped by real-time PCR. In 60 patients, the total 25-hydroxyvitamin D levels were evaluated in serum samples by direct chemiluminescence. Associations among parameters were considered to be significant if the P value was less than 0.05. Significant differences in the frequencies of VDR genotypes were observed between cases and the control group for FokI and TaqI polymorphisms (P<0.0001; P=0.005, respectively). Heterozygous Ff as well as mutant FF genotypes of the FokI polymorphism were associated with increased melanoma risk compared with the wild-type form [odds ratio (OR)=3.035, P=0.003; OR=9.276, P<0.0001, respectively]. A significantly increased melanoma risk was observed for the heterozygous Tt (OR=2.302, P=0.011) and the mutated variant tt (OR=3.697, P=0.003) of the TaqI polymorphism in comparison with the wild-type genotype. None of the polymorphisms studied was associated with clinicopathological characteristics and vitamin D serum level. Our results suggest that FokI and TaqI polymorphisms in the VDR gene may be considered as potential biomarkers for melanoma susceptibility. Low vitamin D levels in melanoma patients indicate the need for vitamin D supplementation. PMID:24638155

  17. Association between the vitamin D receptor gene polymorphism and osteoporosis

    PubMed Central

    Wu, Ju; Shang, De-Peng; Yang, Sheng; Fu, Da-Peng; Ling, Hao-Yi; Hou, Shuang-Shuang; Lu, Jian-Min

    2016-01-01

    The influence of the vitamin D receptor (VDR) gene for the risk of osteoporosis remains to be elucidated. The aim of the present study was to understand the distribution of various single-nucleotide polymorphisms (SNPs) within the VDR gene and its association with the risk of osteoporosis. In total, 378 subjects without a genetic relationship were recruited to the study between January 2013 and July 2015. The subjects were divided into three groups, which were the normal (n=234), osteoporosis (n=65) and osteoporosis with osteoporotic fracture (n=79) groups. Three pertinent SNPs of the VDR gene rs17879735 (ApaI, Allele A/a, SNP C>A) were examined with polymerase chain reaction-restriction fragment length polymorphism. The bone mineral density (BMD) of the lumbar spine (L2-L4), femoral neck, Ward's and Tro was measured using dual-energy X-ray absorptiometry. The distributions of genotype frequencies aa, AA and Aa were 48.68, 42.86 and 8.46%, separately. Following analysis of each site, BMD, body mass index (BMI) and age, BMD for each site was negatively correlated with age (P<0.01) and positively correlated with BMI (P<0.01). Correction analysis revealed that there were significant differences in the Ward's triangle BMD among each genotype (P<0.05), in which the aa genotype exhibited the lower BMD (P<0.05). No significant difference was identified among the different genotypes in the occurrence of osteoporosis with osteoporotic fracture (P>0.05). In conclusion, these indicated that the VDR gene ApaI polymorphisms had an important role in the osteoporosis risk. PMID:27446548

  18. Adenosine A2A receptor-mediated control of pilocarpine-induced tremulous jaw movements is Parkinson's disease-associated GPR37 receptor-dependent.

    PubMed

    Gandía, Jorge; Morató, Xavier; Stagljar, Igor; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2015-07-15

    GPR37, also known as parkin associated endothelin-like receptor (Pael-R), is an orphan GPCR that aggregates intracellularly in a juvenile form of Parkinson's disease. However, little is known about the function of this orphan receptor. Here, using a model for parkisonian tremor, the pilocarpine-induced tremulous jaw movements (TJMs), we show that the deletion of GPR37 attenuated the TJMs in response to this cholinomimetic. Interestingly, the control that adenosine A2A receptor exerted over TJMs was lost in the absence of GPR37, thus pointing to a pivotal role of this orphan receptor in the adenosinergic control of parkinsonian tremor. PMID:25862943

  19. Liver X Receptor alpha Mediated Genistein Induction of Human Dehydroepiandrosterone Sulfotransferase (hSULT2A1) in Hep G2 Cells

    PubMed Central

    Chen, Yue; Zhang, Shunfen; Zhou, Tianyan; Huang, Chaoqun; McLaughlin, Alicia; Chen, Guangping

    2013-01-01

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. PMID:23352501

  20. Physical origins of remarkable thermostabilization by an octuple mutation for the adenosine A2a receptor

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yuta; Ogino, Takahiro; Yasuda, Satoshi; Takamuku, Yuuki; Murata, Takeshi; Kinoshita, Masahiro

    2016-07-01

    It was experimentally showed that the thermal stability of a membrane protein, the adenosine A2a receptor, was remarkably enhanced by an octuple mutation. Here we theoretically prove that the energy decrease arising from the formation of protein intramolecular hydrogen bonds and the solvent-entropy gain upon protein folding are made substantially larger by the mutation, leading to the remarkable enhancement. The solvent is formed by hydrocarbon groups constituting nonpolar chains of the lipid bilayer within a membrane. The mutation modifies geometric characteristics of the structure so that the solvent crowding can be reduced to a larger extent when the protein folds.

  1. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs. PMID

  2. Ischaemic skeletal muscle hyperaemia in the anaesthetized cat: no contribution of A2A adenosine receptors.

    PubMed Central

    Poucher, S M

    1997-01-01

    1. The present study investigated the contribution of the A2A adenosine receptor subtype to the functional hyperaemia response evoked by muscle contraction in anaesthetized cats when muscle blood flow was limited. 2. Application of a stenosis reduced the hindlimb blood flow at rest from 9.67 +/- 1.80 to 5.53 +/- 0.91 ml min(-1) (kg body mass)(-1) and during muscle contraction from 36.80 +/- 2.55 to 11.11 +/- 1.19 ml min(-1) (kg body mass)(-1) (P < 0.001). The force produced by the extensor digitorum longus and tibialis anterior (EDL-TA) muscle groups was also reduced, from 9.66 +/- 0.56 to 4.10 +/- 0.4 N (kg muscle mass)(-1) (P < 0.01). 3. The selective A2A adenosine receptor antagonist ZM241385 (3 mg kg(-1), I.V.) had no effect upon the hindlimb vascular conductance or muscle contraction responses in the presence of the flow-limiting stenosis. 4. In contrast, in the absence of the flow restriction the vascular conductance response was reduced by 27.5 +/- 5.0% (P < 0.05), whilst the isometric force produced by the EDL-TA muscle group was unaffected (pre- vs. post-contraction, 5.8 +/- 0.8 vs. 4.6 +/- 1.0 N (kg muscle mass)(-1) contraction). Oxygen consumption by the contracting hindlimb muscles was maintained (1.71 +/- 0.25 vs. 1.69 +/- 0.26 ml min(-1) (kg body mass)(-1)) by an increase in the oxygen extraction (51.9 +/- 4.9 vs. 66.2 +/- 6.1%; P< 0.01). 5. These results confirm previous data showing that adenosine, acting at the A2A receptor subtype, can contribute up to 30% of the functional hyperaemia response in the hindlimb of anaesthetized cats under free flow conditions. However, when blood flow is limited by a stenosis, antagonism of the A2A adenosine receptor does not affect functional hyperaemia. Images Figure 1 PMID:9097944

  3. Liver X Receptor Gene Polymorphisms in Tuberculosis: Effect on Susceptibility

    PubMed Central

    Liu, Li-rong; Yue, Jun; Zhao, Yan-lin; Xiao, He-ping

    2014-01-01

    Objectives The Liver X receptors (LXRs), Liver X receptor A (LXRA) and Liver X receptor B (LXRB), regulate lipid metabolism and antimicrobial response. LXRs have a crucial role in the control of Mycobacterium tuberculosis (M.tb). Lacking LXRs mice is more susceptibility to infection M.tb, developing higher bacterial burdens and an increase in the size and number of granulomatous lesions. We aimed to assess the associations between single nucleotide polymorphisms (SNPs) in LXRs and risk of tuberculosis. Methods We sequenced the LXRs genes to detect SNPs and to examine genotypic frequencies in 600 patients and 620 healthy controls to investigate for associations with tuberculosis (TB) in the Chinese Han population. DNA re-sequencing revealed eight common variants in the LXRs genes. Results The G allele of rs1449627 and the T allele of rs1405655 demonstrated an increased risk of developing TB (p<0.001, p = 0.002), and the T allele of rs3758673, the T allele of rs2279238, and the C allele of rs1449626 in LXRA and the C allele of rs17373080, the G allele of rs2248949, and the C allele of rs1052677 in LXRB were protective against TB patients compared to healthy controls (p = 0.0002, p = 0.006, p<0.001, p = 0.004, p = 0.008, p = 0.003, respectively). All SNP genotypes were significantly associated with TB. An estimation of the frequencies of haplotypes revealed two potential risk haplotypes,GGCG in LXRB (p = 0.004,) and TTCG in LXRA (p<0.001, p = 0.004). Moreover, three protective haplotypes, TTAT and CCAT in LXRA and CATC in LXRB, were significantly “protective” (p = 0.008, p<0.001, p = 0.031) for TB. Furthermore, we determined that the LXRs SNPs were nominally associated with the clinical pattern of disease. Conclusions Our study data supported that LXRs play a fundamental role in the genetic susceptibility to TB and to different clinical patterns of disease. Thus, further investigation is required in larger populations and in

  4. Localization of the A{sub 3} adenosine receptor gene (ADORA3) to human chromosome 1p

    SciTech Connect

    Monitto, C.L.; Levitt, R.C.; Holroyd, K.J.

    1995-04-10

    Adenosine modulates important physiologic functions involving the cardiovascular system, brain, kidneys, lungs, GI tract, and immune system. To date four adenosine receptors have been identified: A{sub 1}, A{sub 2a}, A{sub 2b}, and A{sub 3}. Activation of these receptors results in inhibition (A{sub 1} and A{sub 3}) or stimulation (A{sub 2a} and A{sub 2b}) of intracellular adenyl cyclase activity, stimulation of K{sup +} flux, inhibition of Ca{sup 2+} flux, and modulation of inositol phospholipid turnover. A{sub 3} receptors have been identified and sequenced in the testes, brain, lung, liver, kidney, and heart of various species, including the rat, mouse, and human. A{sub 3} receptor activation is responsible for release of inflammatory mediators from mast cells, which can cause allergic bronchoconstriction. In addition, they can produce systemic vasodilation and locomotor depression via activation of A{sub 3} receptors in the brain. Given the potential importance of A{sub 3} receptor activity in the pathogenesis of pulmonary, cardiovascular, and central nervous system disease states, we set out to localize the human A{sub 3} adenosine receptor gene (ADORA3). 9 refs., 1 fig.

  5. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents.

    PubMed

    Preti, Delia; Baraldi, Pier Giovanni; Moorman, Allan R; Borea, Pier Andrea; Varani, Katia

    2015-07-01

    Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD. PMID:25821194

  6. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression.

    PubMed

    Visser, Anniek K D; Ettrup, Anders; Klein, Anders B; van Waarde, Aren; Bosker, Fokko J; Meerlo, Peter; Knudsen, Gitte M; de Boer, Sietse F

    2015-04-01

    Individual differences in coping style emerge as a function of underlying variability in the activation of a mesocorticolimbic brain circuitry. Particularly serotonin seems to play an important role. For this reason, we assessed serotonin-2A receptor (5-HT2A R) binding in the brain of rats with different coping styles. We compared proactive and reactive males of two rat strains, Wild-type Groningen (WTG) and Roman high- and low avoidance (RHA, RLA). 5-HT2A R binding in (pre)frontal cortex (FC) and hippocampus was investigated using a radiolabeled antagonist ([(3) H]MDL-100907) and agonist ([(3) H]Cimbi-36) in binding assays. No differences in 5-HT2A R binding were observed in male animals with different coping styles. [(3) H]MDL-100907 displayed a higher specific-to-nonspecific binding ratio than [(3) H]Cimbi-36. Our findings suggest that in these particular rat strains, 5-HT2A R binding is not an important molecular marker for coping style. Because neither an antagonist nor an agonist tracer showed any binding differences, it is unlikely that the affinity state of the 5-HT2A R is co-varying with levels of aggression or active avoidance in WTG, RHA and RLA. PMID:25684736

  7. Expression, binding, and signaling properties of CRF2(a) receptors endogenously expressed in human retinoblastoma Y79 cells: passage-dependent regulation of functional receptors.

    PubMed

    Gutknecht, Eric; Hauger, Richard L; Van der Linden, Ilse; Vauquelin, Georges; Dautzenberg, Frank M

    2008-02-01

    Endogenous expression of the corticotropin-releasing factor type 2a receptor [CRF2(a)] but not CRF2(b) and CRF2(c) was observed in higher passage cultures of human Y79 retinoblastoma cells. Functional studies further demonstrated an increase in CRF2(a) mRNA and protein levels with higher passage numbers (> 20 passages). Although the CRF1 receptor was expressed at higher levels than the CRF2(a) receptor, both receptors were easily distinguishable from one another by selective receptor ligands. CRF(1)-preferring or non-selective agonists such as CRF, urocortin 1 (UCN1), and sauvagine stimulated cAMP production in Y79 to maximal responses of approximately 100 pmoles/10(5) cells, whereas the exclusive CRF2 receptor-selective agonists UCN2 and 3 stimulated cAMP production to maximal responses of approximately 25-30 pmoles/10(5) cells. UCN2 and 3-mediated cAMP stimulation was potently blocked by the approximately 300-fold selective CRF2 antagonist antisauvagine (IC50 = 6.5 +/- 1.6 nmol/L), whereas the CRF(1)-selective antagonist NBI27914 only blocked cAMP responses at concentrations > 10 microL. When the CRF(1)-preferring agonist ovine CRF was used to activate cAMP signaling, NBI27914 (IC50 = 38.4 +/- 3.6 nmol/L) was a more potent inhibitor than antisauvagine (IC50 = 2.04 +/- 0.2 microL). Finally, UCN2 and 3 treatment potently and rapidly desensitized the CRF2 receptor responses in Y79 cells. These data demonstrate that Y79 cells express functional CRF1 and CRF2a receptors and that the CRF2(a) receptor protein is up-regulated during prolonged culture. PMID:17976162

  8. Protein Phosphatase 2A Regulates Interleukin-2 Receptor Complex Formation and JAK3/STAT5 Activation*

    PubMed Central

    Ross, Jeremy A.; Cheng, Hanyin; Nagy, Zsuzsanna S.; Frost, Jeffrey A.; Kirken, Robert A.

    2010-01-01

    Reversible protein phosphorylation plays a key role in interleukin-2 (IL-2) receptor-mediated activation of Janus tyrosine kinase 3 (JAK3) and signal transducer and activator of transcription 5 (STAT5) in lymphocytes. Although the mechanisms governing IL-2-induced tyrosine phosphorylation and activation of JAK3/STAT5 have been extensively studied, the role of serine/threonine phosphorylation in controlling these effectors remains to be elucidated. Using phosphoamino acid analysis, JAK3 and STAT5 were determined to be serine and tyrosine-phosphorylated in response to IL-2 stimulation of the human natural killer-like cell line, YT. IL-2 stimulation also induced serine/threonine phosphorylation of IL-2Rβ, but not IL-2Rγ. To investigate the regulation of serine/threonine phosphorylation in IL-2 signaling, the roles of protein phosphatase 1 (PP1) and 2A (PP2A) were examined. Inhibition of phosphatase activity by calyculin A treatment of YT cells resulted in a significant induction of serine phosphorylation of JAK3 and STAT5, and serine/threonine phosphorylation of IL-2Rβ. Moreover, inhibition of PP2A, but not PP1, diminished IL-2-induced tyrosine phosphorylation of IL-2Rβ, JAK3, and STAT5, and abolished STAT5 DNA binding activity. Serine/threonine phosphorylation of IL-2Rβ by a staurosporine-sensitive kinase also blocked its association with JAK3 and IL-2Rγ in YT cells. Taken together, these data indicate that serine/threonine phosphorylation negatively regulates IL-2 signaling at multiple levels, including receptor complex formation and JAK3/STAT5 activation, and that this regulation is counteracted by PP2A. These findings also suggest that PP2A may serve as a therapeutic target for modulating JAK3/STAT5 activation in human disease. PMID:19923221

  9. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A

    SciTech Connect

    Lin, Y.-L.; Wang, Y.-H.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-11-17

    The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63 bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18 bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region.

  10. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    PubMed Central

    Chu, Uyen B.; Mavlyutov, Timur A.; Chu, Ming-Liang; Yang, Huan; Schulman, Amanda; Mesangeau, Christophe; McCurdy, Christopher R.; Guo, Lian-Wang; Ruoho, Arnold E.

    2015-01-01

    The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes. PMID:26870805

  11. Expression of the human ABCC6 gene is induced by retinoids through the retinoid X receptor

    SciTech Connect

    Ratajewski, Marcin; Bartosz, Grzegorz; Pulaski, Lukasz . E-mail: lpulaski@cbm.pan.pl

    2006-12-01

    Mutations in the human ABCC6 gene are responsible for the disease pseudoxanthoma elasticum, although Physiological function or substrate of the gene product (an ABC transporter known also as MRP6) is not known. We found that the expression of this gene in cells of hepatic origin (where this gene is predominantly expressed in the body) is significantly upregulated by retinoids, acting as agonists of the retinoid X receptor (RXR) rather than the retinoid A receptor (RAR). The direct involvement of this nuclear receptor in the transcriptional regulation of ABCC6 gene expression was confirmed by transient transfection and chromatin immunoprecipitation assays. This constitutes the first direct proof of previously suggested involvement of nuclear hormone receptors in ABCC6 gene expression and the first identification of a transcription factor which may be relevant to regulation of ABCC6 level in tissues and in some PXE patients.

  12. Leptin receptor gene polymorphisms in severely pre-eclamptic women.

    PubMed

    Rigó, János; Szendei, György; Rosta, Klára; Fekete, Andrea; Bögi, Krisztina; Molvarec, Attila; Rónai, Zsolt; Vér, Agota

    2006-09-01

    Variants of the leptin receptor gene (LEPR) may modulate the effect of elevated serum leptin levels in pre-eclampsia. The aim of our study was to evaluate the LEPR gene polymorphisms Lys109Arg (A109G) and Gln223Arg (A223G) in severely pre-eclamptic women. In a case-control study, we analyzed blood samples from 124 severely pre-eclamptic patients and 107 healthy control women by the polymerase chain reaction-restriction fragment length polymorphism method. The Pearson chi2 test was used to estimate odds ratios (OR) and 95% confidence intervals (CI). The association was adjusted for maternal age, pre-pregnancy body mass index and primiparity with logistic regression analysis. Pregnant women with the LEPR 223G allele (223A/G or 223G/G genotype) had almost double the risk of developing severe pre-eclampsia compared with patients with the 223A/A genotype (adjusted OR = 1.92, 95% CI: 1.07-3.41). Genotype variants of LEPR A109G alone did not affect the risk of severe pre-eclampsia. Haplotype estimation of A109G and A223G polymorphisms of the LEPR gene revealed that the G-A haplotype versus other pooled haplotypes was significantly less common in the pre-eclamptic group (p < 0.01), while the G-G haplotype versus others was overrepresented among severely pre-eclamptic patients (p < 0.01), compared with controls. In conclusion, our data indicate that LEPR A223G polymorphism may individually modify the risk of severe pre-eclampsia. PMID:17071538

  13. Olfactory Receptor Gene Polymorphisms and Nonallergic Vasomotor Rhinitis

    PubMed Central

    Bernstein, Jonathan A.; Zhang, Ge; Jin, Li; Abbott, Carol; Nebert, Daniel W.

    2009-01-01

    We sought a genotype-phenotype association: between single-nucleotide polymorphisms (SNPs) in olfactory receptor (OR) genes from the two largest OR gene clusters and odor-triggered nonallergic vasomotor rhinitis (nVMR). In the initial pedigree screen, using transmission disequilibrium test (TDT) analysis, six SNPs showed “significant” p-values between 0.0449 and 0.0043. In a second case-control population, the previously identified six SNPs did not re-emerge, whereas four new SNPs showed p-values between 0.0490 and 0.0001. Combining both studies, none of the SNPs in the TDT analysis survived the Bonferroni correction. In the population study, one SNP showed an empirical p-value of 0.0066 by shuffling cases and controls with 105 replicates; however, the p-value for this SNP was 0.83 in the pedigree study. This study emphasizes that underpowered studies having p-values between <0.05 and 0.0001 should be regarded as inconclusive and require further replication before concluding the study is “informative.” However, we believe that our hypothesis that an association between OR genotypes and the nVMR phenotype remains feasible. Future studies using either a genomewide association study of all OR gene-pseudogene regions throughout the genome—at the current recommended density of 2.5 to 5 kb per tag SNP—or studies incorporating microarray analyses of the entire “OR genome” in well-characterized nVMR patients are required. PMID:18446592

  14. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia.

    PubMed

    Villar-Menéndez, Izaskun; Díaz-Sánchez, Sara; Blanch, Marta; Albasanz, José Luis; Pereira-Veiga, Thais; Monje, Alfonso; Planchat, Luis Maria; Ferrer, Isidre; Martín, Mairena; Barrachina, Marta

    2014-04-01

    Schizophrenia (SZ) is a mental disorder of unknown origin. Some scientific evidence seems to indicate that SZ is not a single disease entity, since there are patient groups with clear symptomatic, course and biomarker differences. SZ is characterized by a hyperdopaminergic state related to high dopamine D2 receptor activity. It has also been proposed that there is a hypoadenosynergic state. Adenosine is a nucleoside widely distributed in the organism with neuromodulative and neuroprotective activity in the central nervous system. In the brain, the most abundant adenosine receptors are A1R and A2AR. In the present report, we characterize the presence of both receptors in human postmortem putamens of patients suffering SZ with real time TaqMan PCR, western blotting and radioligand binding assay. We show that A1R levels remain unchanged with respect to age-matched controls, whereas nearly fifty percent of patients have reduced A2AR, at the transcriptional and translational levels. Moreover, we describe how DNA methylation plays a role in the pathological A2AR levels with the bisulfite-sequencing technique. In fact, an increase in 5-methylcytosine percentage in the 5' UTR region of ADORA2A was found in those SZ patients with reduced A2AR levels. Interestingly, there was a relationship between the A2A/β-actin ratio and motor disturbances as assessed with some items of the PANSS, AIMS and SAS scales. Therefore, there may be a subgroup of SZ patients with reduced striatal A2AR levels accompanied by an altered motor phenotype. PMID:24433848

  15. Localization of sulfonylurea receptor subunits, SUR2A and SUR2B, in rat heart.

    PubMed

    Zhou, Ming; He, Hui-Jing; Suzuki, Ryoji; Liu, Ke-Xiang; Tanaka, Osamu; Sekiguchi, Masaki; Itoh, Hideaki; Kawahara, Katsumasa; Abe, Hiroshi

    2007-08-01

    To understand the possible functions and subcellular localizations of sulfonylurea receptors (SURs) in cardiac muscle, polyclonal anti-SUR2A and anti-SUR2B antisera were raised. Immunoblots revealed both SUR2A and SUR2B expression in mitochondrial fractions of rat heart and other cellular fractions such as microsomes and cell membranes. Immunostaining detected ubiquitous expression of both SUR2A and SUR2B in rat heart in the atria, ventricles, interatrial and interventricular septa, and smooth muscles and endothelia of the coronary arteries. Electron microscopy revealed SUR2A immunoreactivity in the cell membrane, endoplasmic reticulum (ER), and mitochondria. SUR2B immunoreactivity was mainly localized in the mitochondria as well as in the ER and cell membrane. Thus, SUR2A and SUR2B are not only the regulatory subunits of sarcolemmal K(ATP) channels but may also function as regulatory subunits in mitochondrial K(ATP) channels and play important roles in cardioprotection. PMID:17438353

  16. α2A adrenergic receptors highly expressed in mesoprefrontal dopamine neurons.

    PubMed

    Castelli, M Paola; Spiga, Saturnino; Perra, Andrea; Madeddu, Camilla; Mulas, Giovanna; Ennas, M Grazia; Gessa, Gian Luigi

    2016-09-22

    α2 adrenoreceptors (α2-ARs) play a key role in the control of noradrenaline and dopamine release in the medial prefrontal cortex (mPFC). Here, using UV-laser microdissection-based quantitative mRNA expression in individual neurons we show that in hTH-GFP rats, a transgenic line exhibiting intense and specific fluorescence in dopaminergic (DA) neurons, α2A adrenoreceptor (α2A-AR) mRNA is expressed at high and low levels in DA cells in the ventral tegmental area (VTA) and substantia nigra compacta (SNc), respectively. Confocal microscopy fluorescence immunohistochemistry revealed that α2A-AR immunoreactivity colocalized with tyrosine hydroxylase (TH) in nearly all DA cells in the VTA and SNc, both in hTH-GFP rats and their wild-type Sprague-Dawley (SD) counterparts. α2A-AR immunoreactivity was also found in DA axonal projections to the mPFC and dorsal caudate in the hTH-GFP and in the anterogradely labeled DA axonal projections from VTA to mPFC in SD rats. Importantly, the α2A-AR immunoreactivity localized in the DA cells of VTA and in their fibers in the mPFC was much higher than that in DA cells of SNc and their fibers in dorsal caudate, respectively. The finding that α2A-ARs are highly expressed in the cell bodies and axons of mesoprefrontal dopaminergic neurons provides a morphological basis to the vast functional evidence that somatodendritic and nerve-terminal α2A-AR receptors control dopaminergic activity and dopamine release in the prefrontal cortex. This finding raises the question whether α2A-ARs might function as autoreceptors in the mesoprefrontal dopaminergic neurons, replacing the lack of D2 autoreceptors. PMID:27365174

  17. Computational study of the binding modes of caffeine to the adenosine A2A receptor.

    PubMed

    Liu, Yuli; Burger, Steven K; Ayers, Paul W; Vöhringer-Martinez, Esteban

    2011-12-01

    Using the recently solved crystal structure of the human adenosine A(2A) receptor, we applied MM/PBSA to compare the binding modes of caffeine with those of the high-affinity selective antagonist ZM241385. MD simulations were performed in the environment of the lipid membrane bilayer. Four low-energy binding modes of caffeine-A(2A) were found, all of which had similar energies. Assuming an equal contribution of each binding mode of caffeine, the computed binding free energy difference between caffeine and ZM241385 is -2.4 kcal/mol, which compares favorably with the experimental value, -3.6 kcal/mol. The configurational entropy contribution of -0.9 kcal/mol from multiple binding modes of caffeine helps explain how a small molecule like caffeine can compete with a significantly larger molecule, ZM241385, which can form many more interactions with the receptor. We also performed residue-wise energy decomposition and found that Phe168, Leu249, and Ile274 contribute most significantly to the binding modes of caffeine and ZM241385. PMID:21970461

  18. The A2A adenosine receptor rescues neuritogenesis impaired by p53 blockage via KIF2A, a kinesin family member.

    PubMed

    Sun, Chung-Nan; Chuang, Hsiu-Chun; Wang, Jiz-Yuh; Chen, Si-Ying; Cheng, Ya-Yun; Lee, Chien-Fei; Chern, Yijuang

    2010-07-01

    The A2A adenosine receptor (A2AR) is a G-protein-coupled receptor. We previously reported that the C terminus of the A2AR binds to translin-associated protein X (TRAX) and modulates nerve growth factor (NGF)-evoked neurite outgrowth in PC12 cells. Herein, we show that neuritogenesis of primary hippocampal neurons requires p53 because blockage of p53 suppressed neurite outgrowth. The impaired neuritogenesis caused by p53 blockage was rescued by activation of the A2AR (designated the A2A rescue effect) in a TRAX-dependent manner. Importantly, suppression of a TRAX-interacting protein (kinesin heavy chain member 2A, KIF2A) inhibited the A2A rescue effect, whereas overexpression of KIF2A caused a rescue effect. Expression of a KIF2A fragment (KIF2A514), which disturbed the interaction between KIF2A and TRAX, blocked the rescue effect. Transient colocalization of TRAX and KIF2A was detected in the nucleus of PC12 cells upon NGF treatment. These data suggest that functional interaction between KIF2A and TRAX is critical for the A2A rescue effect. Moreover, p53 blockage during NGF treatment prevented the redistribution of KIF2A from the nucleus to the cytoplasmic region. Expression of a nuclear-retained KIF2A variant (NLS-KIF2A) did not rescue the impaired neurite outgrowth as did the wild-type KIF2A. Therefore, redistribution of KIF2A to the cytoplasmic fraction is a prerequisite for neurite outgrowth. Collectively, we demonstrate that KIF2A functions downstream of p53 to mediate neuritogenesis of primary hippocampal neurons and PC12 cells. Stimulation of the A2AR rescued neuritogenesis impaired by p53 blockage via an interaction between TRAX and KIF2A. PMID:20506231

  19. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT. PMID:9768567

  20. A1-, A2A- and A3-subtype adenosine receptors modulate intraocular pressure in the mouse

    PubMed Central

    Avila, Marcel Y; Stone, Richard A; Civan, Mortimer M

    2001-01-01

    Despite the potential importance of the mouse in studying the pharmacology of aqueous dynamics, measurement of intraocular pressure (IOP) in its very small eye has been problematic. Utilizing a novel servo-null electrophysiologic approach recently applied to the mouse, we have identified a diversity of adenosine-receptor mechanisms in modulating IOP in this species. We report the first evidence that A3 receptors increase IOP in any species, and verify in the mouse reports with larger mammals that A1 receptors lower and A2A receptors increase IOP. PMID:11564641

  1. Identification of Putative Chemosensory Receptor Genes from the Athetis dissimilis Antennal Transcriptome

    PubMed Central

    Dong, Junfeng; Song, Yueqin; Li, Wenliang; Shi, Jie; Wang, Zhenying

    2016-01-01

    Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads. PMID:26812239

  2. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.

    PubMed

    Wissmann, Melanie; Yin, Na; Müller, Judith M; Greschik, Holger; Fodor, Barna D; Jenuwein, Thomas; Vogler, Christine; Schneider, Robert; Günther, Thomas; Buettner, Reinhard; Metzger, Eric; Schüle, Roland

    2007-03-01

    Posttranslational modifications of histones, such as methylation, regulate chromatin structure and gene expression. Recently, lysine-specific demethylase 1 (LSD1), the first histone demethylase, was identified. LSD1 interacts with the androgen receptor and promotes androgen-dependent transcription of target genes by ligand-induced demethylation of mono- and dimethylated histone H3 at Lys 9 (H3K9) only. Here, we identify the Jumonji C (JMJC) domain-containing protein JMJD2C as the first histone tridemethylase regulating androgen receptor function. JMJD2C interacts with androgen receptor in vitro and in vivo. Assembly of ligand-bound androgen receptor and JMJD2C on androgen receptor-target genes results in demethylation of trimethyl H3K9 and in stimulation of androgen receptor-dependent transcription. Conversely, knockdown of JMJD2C inhibits androgen-induced removal of trimethyl H3K9, transcriptional activation and tumour cell proliferation. Importantly, JMJD2C colocalizes with androgen receptor and LSD1 in normal prostate and in prostate carcinomas. JMJD2C and LSD1 interact and both demethylases cooperatively stimulate androgen receptor-dependent gene transcription. In addition, androgen receptor, JMJD2C and LSD1 assemble on chromatin to remove methyl groups from mono, di and trimethylated H3K9. Thus, our data suggest that specific gene regulation requires the assembly and coordinate action of demethylases with distinct substrate specificities. PMID:17277772

  3. Identification of Putative Chemosensory Receptor Genes from the Athetis dissimilis Antennal Transcriptome.

    PubMed

    Dong, Junfeng; Song, Yueqin; Li, Wenliang; Shi, Jie; Wang, Zhenying

    2016-01-01

    Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads. PMID:26812239

  4. α2A-Adrenergic Receptors Filter Parabrachial Inputs to the Bed Nucleus of the Stria Terminalis

    PubMed Central

    Flavin, Stephanie A.; Matthews, Robert T.; Wang, Qin; Muly, E. Chris

    2014-01-01

    α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress–reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α2A-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2. Here we provide immunoelectron microscopic data showing that many asymmetric axosomatic synapses in the BNST contain α2A-ARs. Further, we examined optically evoked glutamate release ex vivo in BNST from mice with virally delivered channelrhodopsin2 (ChR2) expression in PBN. In BNST from these animals, ChR2 partially colocalized with CGRP, and activation generated EPSCs in dorsal anterolateral BNST neurons that elicited two cell-type-specific outcomes: (1) feedforward inhibition or (2) an EPSP that elicited firing. We found that the α2A-AR agonist guanfacine selectively inhibited this PBN input to the BNST, preferentially reducing the excitatory response in ex vivo mouse brain slices. To begin to assess the overall impact of α2A-AR control of this PBN input on BNST excitatory transmission, we used a Thy1-COP4 mouse line with little postsynaptic ChR2 expression nor colocalization of ChR2 with CGRP in the BNST. In slices from these mice, we found that guanfacine enhanced, rather than suppressed, optogenetically initiated excitatory drive in BNST. Thus, our study reveals distinct actions of PBN afferents within the BNST and suggests that α2A-AR agonists may filter excitatory transmission in the BNST by inhibiting a component of the PBN input while enhancing the actions of other inputs. PMID:25009265

  5. α(2A)-adrenergic receptors filter parabrachial inputs to the bed nucleus of the stria terminalis.

    PubMed

    Flavin, Stephanie A; Matthews, Robert T; Wang, Qin; Muly, E Chris; Winder, Danny G

    2014-07-01

    α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress-reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α(2A)-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2. Here we provide immunoelectron microscopic data showing that many asymmetric axosomatic synapses in the BNST contain α(2A)-ARs. Further, we examined optically evoked glutamate release ex vivo in BNST from mice with virally delivered channelrhodopsin2 (ChR2) expression in PBN. In BNST from these animals, ChR2 partially colocalized with CGRP, and activation generated EPSCs in dorsal anterolateral BNST neurons that elicited two cell-type-specific outcomes: (1) feedforward inhibition or (2) an EPSP that elicited firing. We found that the α(2A)-AR agonist guanfacine selectively inhibited this PBN input to the BNST, preferentially reducing the excitatory response in ex vivo mouse brain slices. To begin to assess the overall impact of α(2A)-AR control of this PBN input on BNST excitatory transmission, we used a Thy1-COP4 mouse line with little postsynaptic ChR2 expression nor colocalization of ChR2 with CGRP in the BNST. In slices from these mice, we found that guanfacine enhanced, rather than suppressed, optogenetically initiated excitatory drive in BNST. Thus, our study reveals distinct actions of PBN afferents within the BNST and suggests that α(2A)-AR agonists may filter excitatory transmission in the BNST by inhibiting a component of the PBN input while enhancing the actions of other inputs. PMID:25009265

  6. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    PubMed Central

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Background Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. Methods RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Results Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Conclusion Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue. PMID:12559052

  7. Serotonin-2C and -2A Receptor Co-expression on Cells in the Rat Medial Prefrontal Cortex

    PubMed Central

    Nocjar, Christine; Alex, Katherine D; Sonneborn, Alex; Abbas, Atheir I; Roth, Bryan L; Pehek, Elizabeth A

    2015-01-01

    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a

  8. Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL.

    PubMed

    Tremblay, Mathieu; Herblot, Sabine; Lecuyer, Eric; Hoang, Trang

    2003-04-11

    The expression of the pT alpha gene is required for effective selection, proliferation, and survival of beta T-cell receptor (beta TCR)-expressing immature thymocytes. Here, we have identified two phylogenetically conserved E-boxes within the pT alpha enhancer sequence that are required for optimal enhancer activity and for its stage-specific activity in immature T cells. We have shown that the transcription factors E2A and HEB associate with high affinity to these E-boxes. Moreover, we have identified pT alpha as a direct target of E2A-HEB heterodimers in immature thymocytes because they specifically occupy the enhancer in vivo. In these cells, pT alpha mRNA levels are determined by the presence of one or two functional E2A or HEB alleles. Furthermore, E2A/HEB transcriptional activity is repressed by heterodimerization with SCL, a transcription factor that is turned off in differentiating thymocytes exactly at a stage when pT alpha is up-regulated. Taken together, our observations suggest that the dosage of E2A, HEB, and SCL determines pT alpha gene expression in immature T cells. PMID:12566462

  9. Identification of cooperative genes for E2A-PBX1 to develop acute lymphoblastic leukemia.

    PubMed

    Sera, Yasuyuki; Yamasaki, Norimasa; Oda, Hideaki; Nagamachi, Akiko; Wolff, Linda; Inukai, Takeshi; Inaba, Toshiya; Honda, Hiroaki

    2016-07-01

    E2A-PBX1 is a chimeric gene product detected in t(1;19)-bearing acute lymphoblastic leukemia (ALL) with B-cell lineage. To investigate the leukemogenic process, we generated conditional knock-in (cKI) mice for E2A-PBX1, in which E2A-PBX1 is inducibly expressed under the control of the endogenous E2A promoter. Despite the induced expression of E2A-PBX1, no hematopoietic disease was observed, strongly suggesting that additional genetic alterations are required to develop leukemia. To address this possibility, retroviral insertional mutagenesis was used. Virus infection efficiently induced T-cell, B-cell, and biphenotypic ALL in E2A-PBX1 cKI mice. Inverse PCR identified eight retroviral common integration sites, in which enhanced expression was observed in the Gfi1, Mycn, and Pim1 genes. In addition, it is of note that viral integration and overexpression of the Zfp521 gene was detected in one tumor with B-cell lineage; we previously identified Zfp521 as a cooperative gene with E2A-HLF, another E2A-involving fusion gene with B-lineage ALL. The cooperative oncogenicity of E2A-PBX1 with overexpressed Zfp521 in B-cell tumorigenesis was indicated by the finding that E2A-PBX1 cKI, Zfp521 transgenic compound mice developed B-lineage ALL. Moreover, upregulation of ZNF521, the human counterpart of Zfp521, was found in several human leukemic cell lines bearing t(1;19). These results indicate that E2A-PBX1 cooperates with additional gene alterations to develop ALL. Among them, enhanced expression of ZNF521 may play a clinically relevant role in E2A fusion genes to develop B-lineage ALL. PMID:27088431

  10. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity

    PubMed Central

    Miller, Mark W.; Sperbeck, Emily; Robinson, Meghan E.; Sadeh, Naomi; Wolf, Erika J.; Hayes, Jasmeet P.; Logue, Mark; Schichman, Steven A.; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR*D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  11. Genetic manipulation to analyze pheromone responses: knockouts of multiple receptor genes.

    PubMed

    Ishii, Tomohiro

    2013-01-01

    Gene targeting in the mouse is an essential technique to study gene function in vivo. Multigene families encoding vomeronasal receptor (VR) type 1 and type 2 consist of ~300 intact genes, which are clustered at multiple loci in the mouse genome. To understand the function of VRs and neurons expressing a particular VR in vivo, individual endogenous receptor genes can be manipulated by conventional gene targeting to create loss-of-function mutations or to visualize neurons and their axons expressing the VR. Multiple receptor genes in a cluster can also be deleted simultaneously by chromosome engineering, allowing analysis of function of a particular VR subfamily. Here, we describe protocols for conventional gene targeting and chromosome engineering for deleting a large genomic region in mouse embryonic stem (ES) cells. PMID:24014359

  12. Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson’s disease

    PubMed Central

    Armentero, Marie Therese; Pinna, Annalisa; Ferré, Sergi; Lanciego, José Luis; Müller, Christa E.; Franco, Rafael

    2011-01-01

    Several selective antagonists for adenosine A2A receptors (A2AR) are currently under evaluation in clinical trials (phases I to III) to treat Parkinson’s disease, and they will probably soon reach the market. The usefulness of these antagonists has been deduced from studies demonstrating functional interactions between dopamine D2 and adenosine A2A receptors in the basal ganglia. At present it is believed that A2AR antagonists can be used in combination with the dopamine precursor L-DOPA to minimize the motor symptoms of Parkinson’s patients. However, a considerable body of data indicates that in addition to ameliorating motor symptoms, adenosine A2AR antagonists may also prevent neurodegeneration. Despite these promising indications, one further issue must be considered in order to develop fully optimized anti-parkinsonian drug therapy, namely the existence of receptor (hetero)dimers/oligomers of G protein-coupled receptors, a topic currently the focus of intense debate within the scientific community. Dopamine D2 receptors (D2Rs) expressed in the striatum are known to form heteromers with A2A adenosine receptors. Thus, the development of heteromer-specific A2A receptor antagonists represents a promising strategy for the identification of more selective and safer drugs. PMID:21810444

  13. Neuronal Ablation of p-Akt at Ser473 Leads to Altered 5-HT1A/2A Receptor Function

    PubMed Central

    Saunders, Christine; Siuta, Michael; Robertson, Sabrina D.; Davis, Adeola R.; Sauer, Jennifer; Matthies, Heinrich J.G.; Gresch, Paul J.; Airey, David; Lindsley, Craig W.; Schetz, John A.; Niswender, Kevin D.

    2014-01-01

    The serotonergic system regulates a wide range of behavior, including mood and impulsivity, and its dysregulation has been associated with mood disorders, autism spectrum disorder, and addiction. Diabetes is a risk factor for these conditions. Insulin resistance in the brain is specifically associated with susceptibility to psychostimulant abuse. Here, we examined whether phosphorylation of Akt, a key regulator of the insulin signaling pathway, controls serotonin (5-HT) signaling. To explore how impairment in Akt function regulates 5-HT homeostasis, we used a brain-specific rictor knockout (KO) mouse model of impaired neuronal phosphorylation of Akt at Ser473. Cortical 5-HT1A and 5-HT2A receptor binding was significantly elevated in rictor KO mice. Concomitant with this elevated receptor expression, the 5-HT1A receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) led to an increased hypothermic response in rictor KO mice. The increased cortical 5-HT1A receptor density was associated with higher 5-HT1A receptor levels on the cortical cell surface. In contrast, rictor KO mice displayed significantly reduced head-twitch response (HTR) to the 5-HT2A/C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), with evidence of impaired 5-HT2A/C receptor signaling. In vitro, pharmacological inhibition of Akt significantly increased 5-HT1A receptor expression and attenuated DOI-induced 5-HT2A receptor signaling, thereby lending credence to the observed in vivo cross-talk between neuronal Akt signaling and 5-HT receptor regulation. These data reveal that defective central Akt function alters 5-HT signaling as well as 5-HT-associated behaviors, demonstrating a novel role for Akt in maintaining neuronal 5-HT receptor function. PMID:24090638

  14. Allelic association of human dopamine D sub 2 receptor gene in alcoholism

    SciTech Connect

    Blum, K.; Sheridan, P.J.; Montgomery, A.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H. ); Noble, E.P.; Ritchie, T.; Cohn, J.B. )

    1990-04-18

    In a blinded experiment, the authors report the first allelic association of the dopamine D{sub 2} receptor gene in alcoholism. From 70 brain samples of alcoholics and nonalcoholics, DNA was digested with restriction endonucleases and probed with a clone that contained the entire 3{prime} coding exon, the polyadenylation signal, and approximately 16.4 kilobases of noncoding 3{prime} sequence of the human dopamine D{sub 2} receptor gene ({lambda}hD2G1). In the present samples, the presence of A1 allele of the dopamine D{sub 2} receptor gene correctly classified 77% of alcoholics, and its absence classified 72% of nonalcoholics. The polymorphic pattern of this receptor gene suggests that a gene that confers susceptibility to at least one form of alcoholism is located on the q22-q23 region of chromosome 11.

  15. Regulation of human hepatic hydroxysteroid sulfotransferase gene expression by the peroxisome proliferator-activated receptor alpha transcription factor.

    PubMed

    Fang, Hai-Lin; Strom, Stephen C; Cai, Hongbo; Falany, Charles N; Kocarek, Thomas A; Runge-Morris, Melissa

    2005-04-01

    Human hydroxysteroid sulfotransferase or (HUMAN)SULT2A1 catalyzes the sulfonation of procarcinogen xenobiotics, hydroxysteroids, and bile acids and plays a dynamic role in hepatic cholesterol homeostasis. The treatment of primary cultured human hepatocytes with a peroxisome proliferator-activated receptor alpha (PPARalpha)-activating concentration of ciprofibrate (10(-) (4) M) increased (HUMAN)SULT2A1 mRNA, immunoreactive protein, and enzymatic activity levels by approximately 2-fold. By contrast, expression of (RAT)SULT2A3, the rat counterpart to (HUMAN)SULT2A1, was induced by treatment of primary hepatocyte cultures with an activator of the pregnane X receptor, but not PPARalpha. In HepG2 cells, transient transfection analyses of luciferase reporter constructs containing upstream regions of the (HUMAN)SULT2A1 gene implicated a candidate peroxisome proliferator response element (PPRE) at nucleotides (nt) -5949 to -5929 relative to the transcription start site. Site-directed mutagenesis and electrophoretic mobility shift assay studies confirmed that this distal PPRE (dPPRE), a direct repeat nuclear receptor motif containing one intervening nt, represented a functional PPRE. Chromatin immunoprecipitation analysis indicated that the (HUMAN)SULT2A1 dPPRE was also a functional element in the context of the human genome. These data support a major role for the PPARalpha transcription factor in the regulation of hepatic (HUMAN)SULT2A1. Results also indicate that important species differences govern the transactivation of SULT2A gene transcription by nuclear receptors. PMID:15635043

  16. Glucocorticoids down-regulate beta 1-adrenergic-receptor expression by suppressing transcription of the receptor gene.

    PubMed Central

    Kiely, J; Hadcock, J R; Bahouth, S W; Malbon, C C

    1994-01-01

    The expression of beta 2-adrenergic receptors is up-regulated by glucocorticoids. In contrast, beta 1-adrenergic receptors display glucocorticoid-induced down-regulation. In rat C6 glioma cells, which express both of these subtypes of beta-adrenergic receptors, the synthetic glucocorticoid dexamethasone stimulates no change in the total beta-adrenergic receptor content, but rather shifts the beta 1:beta 2 ratio from 80:20 to 50:50. Radioligand binding and immunoblotting demonstrate a sharp decline in beta 1-adrenergic receptor expression. Metabolic labelling of cells with [35S]-methionine in tandem with immunoprecipitation by beta 1-adrenergic-receptor-specific antibodies reveals a sharp decline in the synthesis of the receptor within 48 h for cells challenged with glucocorticoid. Steady-state levels of beta 1-adrenergic-receptor mRNA declined from 0.47 to 0.26 amol/microgram of total cellular RNA within 2 h of dexamethasone challenge, as measured by DNA-excess solution hybridization. The stability of receptor mRNA was not influenced by glucocorticoid; the half-lives of the beta 1- and beta 2-subtype mRNAs were 1.7 and 1.5 h respectively. Nuclear run-on assays revealed the basis for the down-regulation of receptor expression, i.e. a sharp decline in the relative rate of transcription for the beta 1-adrenergic-receptor gene in nuclei from dexamethasone-treated as compared with vehicle-treated cells. These data demonstrate transcriptional suppression as a molecular explanation for glucocorticoid-induced down-regulation of beta 1-adrenergic receptors. Images Figure 1 Figure 2 Figure 6 PMID:8092990

  17. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer.

    PubMed

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D

    2016-05-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson's disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other's effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'. PMID:26051403

  18. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  19. Localization of the adenosine A1 receptor subtype gene (ADORA1) to chromosome 1q32.1

    SciTech Connect

    Townsend-Nicholson, A.; Schofield, P.R.; Baker, E.

    1995-03-20

    Adenosine, acting through its receptors, exerts effects on almost all organ systems, influencing a diversity of physiological responses, including the inhibition of neurotransmitter release, the modulation of cardiac rhythmicity and contractility, and the potentiation of IgE-dependent mediator release. Adenosine receptors belong to the G protein-coupled receptor superfamily, a class of cell-surface receptors that, when activated, couple to a heterotrimeric G protein complex to effect signal transduction. Molecular cloning and subsequent pharmacological and biochemical analyses have led to the identification of four different subtypes of adenosine receptor. The A3 receptor has been localized to chromosome 3 in the mouse by interspecific backcross analysis, suggesting a human chromosomal localization of 1p13 from known mouse-human linkage homologies. We have previously mapped the A2b adenosine receptor subtype to chromosome 17p11.2-p12 using fluorescence in situ hybridization (FISH) and PCR-based screening of somatic cell hybrid DNAs. A previous report has concluded that the Al and A2a receptor subtypes are localized on chromosome 22q11.2-q13.1 and 11q11-q13, respectively, but conflicts with that of MacCollin et al., who have mapped the A2a gene to chromosome 22. In this report, we show that the human A1 adenosine receptor subtype does not map to chromosome 22q11.2-q13.1, but is instead localized on chromosome 1q32. 13 refs., 1 fig.

  20. Differential regulation of interleukin-8 gene transcription by death receptor 3 (DR3) and type I TNF receptor (TNFRI).

    PubMed

    Su, Wenlynn B; Chang, Ying-Hsin; Lin, Wan-Wan; Hsieh, Shie-Liang

    2006-02-01

    TL1A induces interleukin-8 (IL-8) secretion in human peripheral blood monocyte-derived macrophage in a dose- and time-dependent manner. Overexpression of its cognate receptor DR3 can induce a higher amount of IL-8 protein secretion than that induced by TNFRI even though both receptors activate IL-8 gene transcription in a similar fashion. The underlying mechanism for the regulation of the IL-8 gene transcription by DR3 has not been investigated yet. Here, we used HEK293 cells as a model system to dissect the possible signaling components that are involved in the regulation of DR3-mediated IL-8 gene expression. Although both DR3 and TNFRI activated TRAF2 and NF-kappaB to induce IL-8 gene transcription, the kinase cascades that transduce signals for DR3- and TNFRI-induced IL-8 gene transcription are different. The axis TAK1/ASK1-MKK4/MKK7-JNK2 is responsible for DR3-mediated IL-8 gene expression whereas the axis ASK1-MKK4-JNK1/JNK2/p38MAPK is the choice for TNFRI-mediated activation of IL-8 gene expression. This indicates that the downstream signaling pathways of DR3 and TNFRI for IL-8 secretion are divergent even though both receptors contain death-domain and induce IL-8 secretion via TRAF2. PMID:16324699

  1. Targeting human melanoma neoantigens by T cell receptor gene therapy.

    PubMed

    Leisegang, Matthias; Kammertoens, Thomas; Uckert, Wolfgang; Blankenstein, Thomas

    2016-03-01

    In successful cancer immunotherapy, T cell responses appear to be directed toward neoantigens created by somatic mutations; however, direct evidence that neoantigen-specific T cells cause regression of established cancer is lacking. Here, we generated T cells expressing a mutation-specific transgenic T cell receptor (TCR) to target different immunogenic mutations in cyclin-dependent kinase 4 (CDK4) that naturally occur in human melanoma. Two mutant CDK4 isoforms (R24C, R24L) similarly stimulated T cell responses in vitro and were analyzed as therapeutic targets for TCR gene therapy. In a syngeneic HLA-A2-transgenic mouse model of large established tumors, we found that both mutations differed dramatically as targets for TCR-modified T cells in vivo. While T cells expanded efficiently and produced IFN-γ in response to R24L, R24C failed to induce an effective antitumor response. Such differences in neoantigen quality might explain why cancer immunotherapy induces tumor regression in some individuals, while others do not respond, despite similar mutational load. We confirmed the validity of the in vivo model by showing that the melan-A-specific (MART-1-specific) TCR DMF5 induces rejection of tumors expressing analog, but not native, MART-1 epitopes. The described model allows identification of those neoantigens in human cancer that serve as suitable T cell targets and may help to predict clinical efficacy. PMID:26808500

  2. Association study of dopamine D3 receptor gene and schizophrenia

    SciTech Connect

    Kennedy, J.L.; Billett, E.A.; Macciardi, F.M.

    1995-12-18

    Several groups have reported an association between schizophrenia and the MscI polymorphism in the first exon of the dopamine D3 receptor gene (DRD3). We studied this polymorphism using a North American sample (117 patients plus 188 controls) and an Italian sample (97 patients plus 64 controls). In the first part of the study, we compared allele frequencies of schizophrenia patients and unmatched controls and observed a significant difference in the total sample (P = 0.01). The second part of the study involved a case control approach in which each schizophrenia patient was matched to a control of the same sex, and of similar age and ethnic background. The DRD3 allele frequencies of patients and controls revealed no significant difference between the two groups in the Italian (N = 53) or the North American (N = 54) matched populations; however, when these two matched samples were combined, a significant difference was observed (P = 0.026). Our results suggest that the MscI polymorphism may be associated with schizophrenia in the populations studied. 32 refs., 2 tabs.

  3. Penguins reduced olfactory receptor genes common to other waterbirds

    PubMed Central

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  4. Penguins reduced olfactory receptor genes common to other waterbirds.

    PubMed

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  5. Ultraviolet B suppresses vitamin D receptor gene expression in keratinocytes.

    PubMed

    Courtois, S J; Segaert, S; Degreef, H; Bouillon, R; Garmyn, M

    1998-05-01

    Keratinocytes not only produce vitamin D3 in response to ultraviolet B light (UVB) and convert 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D) but also possess the vitamin D receptor (VDR) and respond to 1,25(OH)2D. We characterized the regulation of the expression of the VDR gene in primary human keratinocytes following UVB irradiation. We report a marked dose-dependent down-regulation of the VDR mRNA and protein within a few hours after irradiation. This occurs independently of de novo protein synthesis and is not due to a change in the half-life of the VDR mRNA. Interestingly, treatment of the cells with sodium salicylate, caffeic acid phenethyl ester and tosylphenylchloromethylketone inhibited this down-regulation. Our results strongly suggest the existence of a feedback mechanism in that UVB initiates vitamin D synthesis in keratinocytes and at the same time limits VDR abundance. They also provide a rational explanation for the reported lack of any additive effect between 1,25(OH)2D and UVB phototherapy in the treatment of psoriasis. PMID:9600069

  6. The vitamin D receptor gene is associated with Alzheimer's disease.

    PubMed

    Lehmann, Donald J; Refsum, Helga; Warden, Donald R; Medway, Christopher; Wilcock, Gordon K; Smith, A David

    2011-10-24

    Vitamin D may have a role in brain function. Low levels have been frequently associated with cognitive decline and may contribute to diseases of the nervous system. The vitamin D receptor (VDR) is widely expressed in human brain. Vitamin D appears to be neuroprotective and may regulate inflammation in the brain. We examined two VDR polymorphisms, Apa1 and Taq1. We used DNA from 255 Alzheimer's disease (AD) cases and 260 cognitively screened elderly controls from the longitudinal cohort of the Oxford Project to Investigate Memory and Ageing (OPTIMA). The presence of each of the linked alleles, Apa1 T and Taq1 G, was associated with the risk of AD, particularly in people <75 years old: odds ratios ≥3.0 and p≤0.005. We also found preliminary evidence of interactions associated with AD between these polymorphisms and two other genes involved in the regulation of inflammation, interleukin-10 (IL10) and dopamine β-hydroxylase (DBH): synergy factors ≥3.4, uncorrected p<0.05. These associations are biologically plausible and are consistent with a role for vitamin D in AD. Nevertheless, we consider this to be a hypothesis-generating study, which needs to be replicated in a larger dataset. PMID:21911036

  7. Food Cravings, Food Addiction, and a Dopamine-Resistant (DRD2 A1) Receptor Polymorphism in Asian American College Students

    PubMed Central

    Yeh, Joanna; Trang, Amy; Henning, Susanne M; Wilhalme, Holly; Carpenter, Catherine; Heber, David; Li, Zhaoping

    2016-01-01

    Background/Objectives In an era where obesity remains an important public health concern, food addiction has emerged as a possible contributor to obesity. The DRD2 gene is the most studied polymorphism. The aim of this study was to investigate a relationship between food craving and food addiction questionnaires, body composition measurements, and a dopamine-resistant receptor polymorphism (DRD2 A1) among healthy Asian Americans. Subjects/Methods A total of 84 Asian American college students were recruited. Participants underwent body composition measurement via bioelectrical impedance, answered subjective questionnaires, and had blood drawn for genotyping. Results Among Asian American college students, there was no difference in body composition (BMI, percent body fat) between the A1 (A1A1 or A1A2) and A2 (A2A2) groups. There were statistically significant differences in food cravings of carbohydrates and fast food on the Food Craving Inventory between the A1 and A2 groups (p=0.03), but not for sugar or fat. Among female Asian college students, there was also a difference on the Power of Food questionnaire (p=0.04), which was not seen among males. 13 out of 55 females also had > 30% body fat at a BMI of 21.4 to 28.5 kg/m2. Conclusion Greater carbohydrate and fast food craving was associated with the DRD2 A1 versus A2 allele among Asian Americans. Further studies examining the ability of dopamine agonists to affect food craving and to reduce body fat in Asian American are warranted. More studies in food addiction among obese Asian Americans are needed with careful definition of obesity, specifically for Asian women. PMID:27222427

  8. Adenosine A(1), A(2a), A(2b), and A(3) receptors in hematopoiesis. 1. Expression of receptor mRNA in four mouse hematopoietic precursor cells.

    PubMed

    Streitová, D; Sefc, L; Savvulidi, F; Pospísil, M; Holá, J; Hofer, M

    2010-01-01

    Four mouse bone marrow or thymus cell populations, namely granulopoietic/monocytopoietic, erythropoietic, B-lymphopoietic, and T-lymphopoietic precursor cells have been assayed by RT-PCR technique for the presence and relative amounts of adenosine A(1), A(2a), A(2b), and A(3) receptor mRNA. It has been found that (i) all four populations studied express all four adenosine receptor subtypes, (ii) the A(1), receptor is the least expressed in all populations studied, (iii) the A(3) receptor is markedly expressed in the populations of granulopoietic/monocytopoietic and erythropoietic cells, (iv) the A(2a) receptor is markedly expressed in the populations of B-lymphopoietic and T-lymphopoietic cells, and v) the A(2b) receptor does not predominate in any of the precursor cells studied. Our data offer a new possibility for the assessment of the readiness of these cells to respond, by receptor-mediated mechanisms, to adenosine or its analogs present in the tissues as a result of endogenous processes and/or following their administration. PMID:19249907

  9. Low frontal serotonin 2A receptor binding is a state marker for schizophrenia?

    PubMed

    Rasmussen, Hans; Frokjaer, Vibe G; Hilker, Rikke W; Madsen, Jacob; Anhøj, Simon; Oranje, Bob; Pinborg, Lars H; Glenthøj, Birte; Knudsen, Gitte M

    2016-07-01

    Here we imaged serotonin 2A receptor (5-HT2AR) binding in a very rare population of monozygotic twins discordant for schizophrenia to provide insight into trait and state components in brain 5-HT2AR patterns. In four twin pairs not medicated with drugs that target 5-HT2AR, frontal 5-HT2AR binding was consistently lower (33%) in schizophrenic- relative to their healthy co-twins. Our results strongly imply low frontal 5-HT2AR availability as a state feature of schizophrenia. If replicated, ideally in a larger sample also including dizygotic twin pairs and drug-naïve patients, this finding critically advance our understanding of the complex pathophysiology of schizophrenia. PMID:27179966

  10. Identification and Expression Analysis of Putative Chemosensory Receptor Genes in Microplitis mediator by Antennal Transcriptome Screening

    PubMed Central

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Gu, Shao-Hua; Li, Rui-Jun; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-01-01

    Host-seeking, ovipositional behavior and mating of insects are controlled mainly by odor perception through sensory organs such as antennae. Antennal chemoreception is extremely important for insect survival. Several antennal chemosensory receptors are involved in mediating the odor detection in insects, especially the odorant receptors (ORs) and ionotropic receptors (IRs), to ensure the specificity of the olfactory sensory neuron responses. In the present study, we identified the chemosensory receptor gene repertoire of the parasitoid wasp Microplitis mediator, a generalist endoparasitoid that infests more than 40 types of Lepidopterous larvae and is widely distributed in the Palaearctic region. By transcriptome sequencing of male and female antennae we identified 60 candidate odorant receptors, six candidate ionotropic receptors and two gustatory receptors in M. mediator. The full-length sequences of these putative chemosensory receptor genes were obtained by using the rapid amplification of cDNA ends PCR (RACE-PCR) method. We also conducted reverse transcription PCR (RT-PCR) combined with real-time quantitative PCR (qPCR) for investigating the expression profiles of these chemosensory receptor genes in olfactory and non-olfactory tissues. The tissue- and sex-biased expression patterns may provide insights into the roles of the chemosensory receptor in M. mediator. Our findings support possible future study of the chemosensory behavior of M. mediator at the molecular level. PMID:26078716

  11. Overexpression of the beta 1 thyroid receptor induces differentiation in neuro-2a cells.

    PubMed Central

    Lebel, J M; Dussault, J H; Puymirat, J

    1994-01-01

    To determine the functions of the alpha 1 and beta 1 thyroid hormone receptors (TRs) in neural differentiation, we have established stable transfected neuronal cell lines (Neuro-2a) that overexpress either TR alpha 1 or TR beta 1. 3,5,3'-Triiodothyronine (T3) treatment of cells that overexpress TR beta 1 blocks proliferation by an arrest of cells in G0/G1 and induces morphological and functional differentiation of Neuro-2a cells as indicated by the marked increase in the number of perisomatal filopodia-like neurites and in acetylcholinesterase (AChE) activity. The effect on AChE activity was dose-dependent, and the time-course analysis reveals that this effect occurs after 24 hr of T3 treatment, with a maximal increase occurring after 48 hr of treatment. The increase of AChE activity is paralleled by an increase of AChE mRNAs. Last, we present evidence that shows that the effects of T3 on differentiation are independent of its effect on proliferation. T3 had no effect on the differentiation of Neuro-2a cells that overexpressed TR alpha 1. Our results indicate that TR beta 1 may play a key role in the effects of T3 in neuroblastoma cell differentiation. Images PMID:8146169

  12. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome.

    PubMed

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient's genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  13. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome

    PubMed Central

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient’s genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  14. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    PubMed

    Verbeurgt, Christophe; Wilkin, Françoise; Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  15. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  16. Adenosine A2A Receptor Activation Prevents Wear Particle-Induced Osteolysis

    PubMed Central

    Mediero, Aránzazu; Frenkel, Sally R.; Wilder, Tuere; He, Wenjie; Mazumder, Amitabha; Cronstein, Bruce N.

    2012-01-01

    Prosthesis loosening, associated with wear-particle–induced inflammation and osteoclast-mediated bone destruction, is a common cause for joint implant failure, leading to revision surgery. Adenosine A2A receptors (A2AR) mediate potent anti-inflammatory effects in many tissues and prevent osteoclast differentiation. We tested the hypothesis that an A2AR agonist could reduce osteoclast-mediated bone resorption in a murine calvaria model of wear-particle–induced bone resorption. C57Bl/6 and A2A knockout (A2ARKO) mice received ultrahigh-molecular weight polyethylene particles (UHMWPE) and were treated daily with either saline or the A2AR agonist CGS21680. After 2 weeks, micro-computed tomography of calvaria demonstrated that CGS21680 reduced particle-induced bone pitting and porosity in a dose-dependent manner, increasing cortical bone and bone volume compared to control mice. Histological examination demonstrated diminished inflammation after treatment with CGS21680. In A2AKO mice, CGS21680 did not affect osteoclast-mediated bone resorption or inflammation. Levels of bone-resorption markers receptor activator of nuclear factor-kB (RANK), RANK ligand (RANKL), cathepsin K, CD163, and osteopontin were reduced following CGS21680 treatment, together with a reduction in osteoclasts. Secretion of interleukin 1β (IL-1β) and TNFα was significantly decreased, whereas IL-10 was markedly increased in bone by CGS21680. These results in mice suggest that site-specific delivery of an adenosine A2AR agonist could enhance implant survival, delaying or eliminating the need for revision arthroplastic surgery. PMID:22623741

  17. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer

    SciTech Connect

    Krześlak, Anna; Forma, Ewa; Jóźwiak, Paweł; Szymczyk, Agnieszka; Bryś, Magdalena

    2013-05-01

    Metallothioneins (MTs) are highly conserved, small molecular weight, cysteine rich proteins. The major physiological functions of metallothioneins include homeostasis of essential metals Zn and Cu and protection against cytotoxicity of heavy metals. The aim of this study was to determine whether there is an association between the − 5 A/G single nucleotide polymorphism (SNP; rs28366003) in core promoter region and expression of metallothionein 2A (MT2A) gene and metal concentration in prostate cancer tissues. MT2A polymorphism was determined by the polymerase chain reaction–restriction fragment length polymorphism technique (PCR–RFLP) using 412 prostate cancer tissue samples. MT2A gene expression analysis was performed by real-time RT-PCR method. A significant association between rs28366003 genotype and MT2A expression level was found. The average mRNA level was found to be lower among minor allele carriers (the risk allele) than average expression among homozygotes for the major allele. Metal levels were analyzed by flamed atomic absorption spectrometer system. Highly statistically significant associations were detected between the SNP and Cd, Zn, Cu and Pb levels. The results of Spearman's rank correlation showed that the expressions of MT2A and Cu, Pb and Ni concentrations were negatively correlated. On the basis of the results obtained in this study, we suggest that SNP polymorphism may affect the MT2A gene expression in prostate and this is associated with some metal accumulation. - Highlights: • MT2A gene expression and metal content in prostate cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn, Cu and Pb levels • Negative correlation between MT2A gene expression and Cu, Pb and Ni levels.

  18. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    SciTech Connect

    Heiber, M.; Marchese, A.; O`Dowd, B.F.

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  19. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  20. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene.

    PubMed Central

    Le Moine, C; Normand, E; Bloch, B

    1991-01-01

    In situ hybridization experiments were performed in rat brain sections from normal and 6-hydroxydopamine-treated rats in order to map and identify the neurons expressing the D1 receptor gene in the striatum and the substantia nigra. Procedures of combined in situ hybridization, allowing the simultaneous detection of two mRNAs in the same section or in adjacent sections, were used to characterize the phenotypes of the neurons expressing the D1 receptor gene. D1 receptor mRNA was found in neurons all over the caudate-putamen, the accumbens nucleus, and the olfactory tubercle but not in the substantia nigra. In the caudate-putamen and accumbens nucleus, most of the neurons containing D1 receptor mRNA were characterized as medium-sized substance P neurons and distinct from those containing D2 receptor mRNA. Nevertheless, 15-20% of the substance P neurons did not contain D1 receptor mRNA. The neurons containing preproenkephalin A mRNA did not contain D1 receptor mRNA but contained D2 receptor mRNA. A small number of cholinergic and somatostatinergic neurons exhibited a weak reaction for D1 receptor mRNA. These results demonstrate that dopamine acts on efferent striatal neurons through expression of distinct receptors--namely, D1 and D2 in separate cell populations (substance P and preproenkephalin A neurons, respectively)--and can also act on nonprojecting neurons through D1 receptor expression. Images PMID:1827915

  1. Observations on the Evolution of the Melanocortin Receptor Gene Family: Distinctive Features of the Melanocortin-2 Receptor

    PubMed Central

    Dores, Robert M.

    2013-01-01

    The melanocortin receptors (MCRs) are a gene family in the rhodopsin class of G protein-coupled receptors. Based on the analysis of several metazoan genome databases it appears that the MCRs are only found in chordates. The presence of five genes in the family (i.e., mc1r, mc2r, mc3r, mc4r, mc5r) in representatives of the tetrapods indicates that the gene family is the result of two genome duplication events and one local gene duplication event during the evolution of the chordates. The MCRs are activated by melanocortin ligands (i.e., ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH) which are all derived from the polypeptide hormone/neuropeptide precursor, POMC, and as a result the functional evolution of the MCRs is intimately associated with the co-evolution of POMC endocrine and neuronal circuits. This review will consider the origin of the MCRs, and discuss the evolutionary relationship between MC2R, MC5R, and MC4R. In addition, this review will analyze the functional evolution of the mc2r gene in light of the co-evolution of the MRAP (Melanocortin-2 Receptor Accessory Protein) gene family. PMID:23596380

  2. Antidepressant, Antipsychotic, and Hallucinogen Drugs for the Treatment of Psychiatric Disorders: A Convergence at the Serotonin-2A Receptor.

    PubMed

    Howland, Robert H

    2016-07-01

    Antidepressant, atypical antipsychotic, and hallucinogen drugs mediate their actions in part by interactions with the serotonin-2A (5HT2A) receptor. Serotonergic hallucinogen drugs, such as psilocybin, bind most potently as agonists at the 5HT2A receptor, producing profound changes in perception, mood, and cognition. Some of these drugs have been or are currently being investigated in small Phase 2 studies for depression, alcoholism, smoking cessation, anxiety, and posttraumatic stress disorder. However, unlike the synergistic effects of combining antidepressant and atypical antipsychotic drugs, the potential therapeutic effects of hallucinogen drugs may be attenuated by the concurrent use of these medications because antidepressant and atypical antipsychotic drugs desensitize and/or down-regulate 5HT2A receptors. This finding has important implications for optimizing the potential therapeutic use of hallucinogen drugs in psychiatry. [Journal of Psychosocial Nursing and Mental Health Services, 54(7), 21-24.]. PMID:27362381

  3. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome.

    PubMed Central

    Blum, K; Sheridan, P J; Wood, R C; Braverman, E R; Chen, T J; Cull, J G; Comings, D E

    1996-01-01

    The dopaminergic system, and in particular the dopamine D2 receptor, has been profoundly implicated in reward mechanisms in the brain. Dysfunction of the D2 dopamine receptors leads to aberrant substance seeking behaviour (alcohol, drug, tobacco, and food) and other related behaviours (pathological gambling, Tourette's syndrome, and attention deficit hyperactivity disorder). We propose that variants of the D2 dopamine receptor gene are important common genetic determinants of the 'reward deficiency syndrome'. PMID:8774539

  4. Identification of microsatellite markers linked to the human leptin receptor gene on chromosome 1

    SciTech Connect

    Winick, J.D.; Friedman, J.M.; Stoffel, M.

    1996-08-15

    This report describes the localization of the human leptin receptor gene to human chromosome 1 using polymerase chain reaction of somatic cell hybrids. Leptin is a secreted protein important in the regulation of body weight. 16 refs., 1 fig.

  5. Season of Birth and Dopamine Receptor Gene Associations with Impulsivity, Sensation Seeking and Reproductive Behaviors

    PubMed Central

    Eisenberg, Dan T. A.; Campbell, Benjamin; MacKillop, James; Lum, J. Koji; Wilson, David S.

    2007-01-01

    Background Season of birth (SOB) has been associated with many physiological and psychological traits including novelty seeking and sensation seeking. Similar traits have been associated with genetic polymorphisms in the dopamine system. SOB and dopamine receptor genetic polymorphisms may independently and interactively influence similar behaviors through their common effects on the dopaminergic system. Methodology/Principal Findings Based on a sample of 195 subjects, we examined whether SOB was associated with impulsivity, sensation seeking and reproductive behaviors. Additionally we examined potential interactions of dopamine receptor genes with SOB for the same set of traits. Phenotypes were evaluated using the Sociosexual Orientation Inventory, the Barratt Impulsivity Scale, the Eysenck Impulsivity Questionnaire, the Sensation Seeking Scale, and the Delay Discounting Task. Subjects were also asked about their age at first sex as well as their desired age at the birth of their first child. The dopamine gene polymorphisms examined were Dopamine Receptor D2 (DRD2) TaqI A and D4 (DRD4) 48 bp VNTR. Primary analyses included factorial gender×SOB ANOVAs or binary logistic regression models for each dependent trait. Secondary analysis extended the factorial models by also including DRD2 and DRD4 genotypes as independent variables. Winter-born males were more sensation seeking than non-winter born males. In factorial models including both genotype and season of birth as variables, two previously unobserved effects were discovered: (1) a SOB×DRD4 interaction effect on venturesomeness and (2) a DRD2×DRD4 interaction effect on sensation seeking. Conclusion These results are consistent with past findings that SOB is related to sensation seeking. Additionally, these results provide tentative support for the hypothesis that SOB modifies the behavioral expression of dopaminergic genetic polymorphism. These findings suggest that SOB should be included in future studies of

  6. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. PMID:26621247

  7. Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits

    PubMed Central

    Sommer, Lauren M.; Cho, Hyuk; Choudhary, Madhusudan; Seeling, Joni M.

    2015-01-01

    Protein phosphatase 2A (PP2A) is an abundant serine/threonine phosphatase that functions as a tumor suppressor in numerous cell-cell signaling pathways, including Wnt, myc, and ras. The B56 subunit of PP2A regulates its activity, and is encoded by five genes in humans. B56 proteins share a central core domain, but have divergent amino- and carboxy-termini, which are thought to provide isoform specificity. We performed phylogenetic analyses to better understand the evolution of the B56 gene family. We found that B56 was present as a single gene in eukaryotes prior to the divergence of animals, fungi, protists, and plants, and that B56 gene duplication prior to the divergence of protostomes and deuterostomes led to the origin of two B56 subfamilies, B56αβε and B56γδ. Further duplications led to three B56αβε genes and two B56γδ in vertebrates. Several nonvertebrate B56 gene names are based on distinct vertebrate isoform names, and would best be renamed. B56 subfamily genes lack significant divergence within primitive chordates, but each became distinct in complex vertebrates. Two vertebrate lineages have undergone B56 gene loss, Xenopus and Aves. In Xenopus, B56δ function may be compensated for by an alternatively spliced transcript, B56δ/γ, encoding a B56δ-like amino-terminal region and a B56γ core. PMID:25950761

  8. Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species

    SciTech Connect

    Vanderhaeghen, P.; Schurmans, S.; Vassart, G.; Parmentier, M.

    1997-02-01

    Olfactory receptors constitute the largest family among G protein-coupled receptors, with up to 1000 members expected. We have previously shown that genes belonging to this family were expressed in the male germ line from both dog and human. We have subsequently demonstrated the presence of one of the corresponding olfactory receptor proteins during dog spermatogenesis and in mature sperm cells. In this study, we investigated whether the unexpected pattern of expression of olfactory receptors in the male germ line was conserved in other mammalian species. Using reverse transcription-PCR with primers specific for the olfactory receptor gene family, about 20 olfactory receptor cDNA fragments were cloned from the testis of each mammalian species tested. As a whole, they displayed no sequence specificity compared to other olfactory receptors, but highly homologous, possibly orthologous, genes were amplified from different species. Finally, their pattern of expression, as determined by RNase protection assay, revealed that many but not all of these receptors were expressed predominantly in testis. The male germ line from each mammalian species tested is thus characterized by a specific repertoire of olfactory receptors, which display a pattern of expression suggestive of their potential implication in the control of sperm maturation, migration, or fertilization. 34 refs., 4 figs., 1 tab.

  9. Olfactory receptor-like genes are located in the human major histocompatibility complex

    SciTech Connect

    Fan, W.; Liu, Y.C.; Parimoo, S.

    1995-05-01

    The murine major histocompatibility complex (MHC) includes sequences that are responsible for haplotype-specific odor types that, in turn, influence mating preference. The authors report that there are several olfactory receptor genes or pseudogenes in the Class I region of the human MHC. At least one of these genes is intact, appears to encode an mRNA, and is quite homologous to a previously reported murine olfactory receptor. 14 refs., 4 figs.

  10. A2A adenosine receptor regulates the human blood brain barrier permeability

    PubMed Central

    Kim, Do-Geun; Bynoe, Margaret S.

    2015-01-01

    The blood brain barrier (BBB) symbolically represents the gateway to the central nervous system. It is a single layer of specialized endothelial cells that coats the central nervous system (CNS) vasculature and physically separates the brain environment from the blood constituents, to maintain the homeostasis of the CNS. However, this protective measure is a hindrance to the delivery of therapeutics to treat neurological diseases. Here, we show that activation of A2A adenosine receptor (AR) with an FDA-approved agonist potently permeabilizes an in vitro primary human brain endothelial barrier (hBBB) to the passage of chemotherapeutic drugs and T cells. T cell migration under AR signaling occurs primarily by paracellular transendothelial route. Permeabilization of the hBBB is rapid, time-dependent and reversible and is mediated by morphological changes in actin-cytoskeletal reorganization induced by RhoA signaling and a potent down-regulation of Claudin-5 and VE-Cadherin. Moreover, the kinetics of BBB permeability in mice closely overlaps with the permeability kinetics of the hBBB. These data suggest that activation of A2A AR is an endogenous mechanism that may be used for CNS drug delivery in human. PMID:25262373

  11. RAmy2A; a novel alpha-amylase-encoding gene in rice.

    PubMed

    Huang, N; Reinl, S J; Rodriguez, R L

    1992-02-15

    The structure and expression of the alpha-amylase-encoding gene, RAmy2A, are described. This only representative of the Amy2 subfamily in rice differs from other cereal alpha-amylase-encoding genes in several respects. It contains the largest introns of all the cereal alpha-amylase-encoding genes examined to date. Moreover, the second of three introns in this gene contains a long inverted repeat sequence that can potentially form a large and stable stem-loop structure in the unspliced RNA transcript. Finally, RAmy2A is constitutively expressed at very low levels in germinated seeds, root, etiolated leaves, immature seeds and callus. This is in marked contrast to the Amy2 genes of wheat and barley which are highly expressed in the aleurone layer of the germinated seeds. PMID:1541400

  12. CC chemokine receptor 5 gene polymorphisms in beryllium disease.

    PubMed

    Sato, H; Silveira, L; Spagnolo, P; Gillespie, M; Gottschall, E B; Welsh, K I; du Bois, R M; Newman, L S; Maier, L A

    2010-08-01

    CC chemokine receptor 5 (CCR5) is expressed on type-1 T-helper cells, which are involved in the pathogenesis of the granulomatous lung disease chronic beryllium disease (CBD). CCR5 gene (CCR5) polymorphisms are associated with sarcoidosis severity. The present study explores associations between CCR5 polymorphisms and CBD and its disease progression. Eight CCR5 polymorphisms were genotyped in CBD (n = 88), beryllium sensitisation (BeS; n = 86) and beryllium-exposed nondiseased controls (n = 173) using PCR with sequence-specific primers. Pulmonary function and bronchoalveolar lavage data were examined for associations with genotypes. There were no significant differences in genotype and allele frequency between CBD, BeS individuals and controls. In CBD, associations were found with decline in forced expiratory volume in 1 s and forced vital capacity and the CCR5 -3458 thymidine (T)T genotype (p<0.0001), and an increase in alveolar-arterial oxygen tension difference at rest (p = 0.003) and at maximum exercise (p = 0.01) and the -5663 adenine allele. Increased bronchoalveolar lavage lymphocyte numbers were associated with CCR5 -2459 guanine/-2135T (p = 0.01) only in the combined CBD and BeS group. This is the first study showing that CCR5 polymorphisms are associated with worsening pulmonary function over time in CBD, suggesting that CCR5 is important in the progression of pulmonary function in CBD. Further studies would be useful to clarify the mechanism whereby CCR5 polymorphisms affect progression of CBD. PMID:20075058

  13. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease.

    PubMed

    Tyebji, Shiraz; Saavedra, Ana; Canas, Paula M; Pliassova, Anna; Delgado-García, José M; Alberch, Jordi; Cunha, Rodrigo A; Gruart, Agnès; Pérez-Navarro, Esther

    2015-02-01

    Stimulation of dopamine D1 receptor (D1R) and adenosine A2A receptor (A2AR) increases cAMP-dependent protein kinase (PKA) activity in the brain. In Huntington's disease, by essentially unknown mechanisms, PKA activity is increased in the hippocampus of mouse models and patients and contributes to hippocampal-dependent cognitive impairment in R6 mice. Here, we show for the first time that D1R and A2AR density and functional efficiency are increased in hippocampal nerve terminals from R6/1 mice, which accounts for increased cAMP levels and PKA signaling. In contrast, PKA signaling was not altered in the hippocampus of Hdh(Q7/Q111) mice, a full-length HD model. In line with these findings, chronic (but not acute) combined treatment with D1R plus A2AR antagonists (SCH23390 and SCH58261, respectively) normalizes PKA activity in the hippocampus, facilitates long-term potentiation in behaving R6/1 mice, and ameliorates cognitive dysfunction. By contrast, chronic treatment with either D1R or A2AR antagonist alone does not modify PKA activity or improve cognitive dysfunction in R6/1 mice. Hyperactivation of both D1R and A2AR occurs in HD striatum and chronic treatment with D1R plus A2AR antagonists normalizes striatal PKA activity but it does not affect motor dysfunction in R6/1 mice. In conclusion, we show that parallel alterations in dopaminergic and adenosinergic signaling in the hippocampus contribute to increase PKA activity, which in turn selectively participates in hippocampal-dependent learning and memory deficits in HD. In addition, our results point to the chronic inhibition of both D1R and A2AR as a novel therapeutic strategy to manage early cognitive impairment in this neurodegenerative disease. PMID:25449908

  14. Identification of a new site in the S1 ligand binding region of the NMDA receptor NR2A subunit involved in receptor activation by glutamate.

    PubMed

    Lummis, Sarah C R; Fletcher, Elizabeth J; Green, Tim

    2002-03-01

    Activation of N-methyl-d-aspartate (NMDA) receptors requires the binding of both glutamate and glycine to independent sites on the receptor. These ligands bind to NR2 and NR1 subunits respectively. Ligand binding residues are located in two non-contiguous domains, S1 and S2, which have been implicated in glutamate binding in other ionotropic glutamate receptor subunits. To further define the amino acids through which glutamate activates the receptor, we generated single-site mutations to the NR2A subunit, and expressed them with wild type NR1 in HEK 293 cells. Using calcium imaging and whole cell patch clamp we determined glutamate and glycine potencies. Of the eight residues mutated we identified five (E413, K484, A508, G685 and G688), whose mutation leads to a large reduction (from 4- to 1000-fold) in glutamate potency, consistent with a role for these residues in receptor activation by glutamate. The potency of glycine was largely unchanged by these mutations. Thus our results extend the knowledge base of residues involved in NMDA receptor function and identifies a new site in S1, in the region of A508, that has a role in receptor activation by glutamate. PMID:11955515

  15. Striatal Pre- and Postsynaptic Profile of Adenosine A2A Receptor Antagonists

    PubMed Central

    Quiroz, César; Beaumont, Vahri; Goldberg, Steven R.; Lluís, Carme; Cortés, Antoni; Franco, Rafael; Casadó, Vicent; Canela, Enric I.; Ferré, Sergi

    2011-01-01

    Striatal adenosine A2A receptors (A2ARs) are highly expressed in medium spiny neurons (MSNs) of the indirect efferent pathway, where they heteromerize with dopamine D2 receptors (D2Rs). A2ARs are also localized presynaptically in cortico-striatal glutamatergic terminals contacting MSNs of the direct efferent pathway, where they heteromerize with adenosine A1 receptors (A1Rs). It has been hypothesized that postsynaptic A2AR antagonists should be useful in Parkinson's disease, while presynaptic A2AR antagonists could be beneficial in dyskinetic disorders, such as Huntington's disease, obsessive-compulsive disorders and drug addiction. The aim or this work was to determine whether selective A2AR antagonists may be subdivided according to a preferential pre- versus postsynaptic mechanism of action. The potency at blocking the motor output and striatal glutamate release induced by cortical electrical stimulation and the potency at inducing locomotor activation were used as in vivo measures of pre- and postsynaptic activities, respectively. SCH-442416 and KW-6002 showed a significant preferential pre- and postsynaptic profile, respectively, while the other tested compounds (MSX-2, SCH-420814, ZM-241385 and SCH-58261) showed no clear preference. Radioligand-binding experiments were performed in cells expressing A2AR-D2R and A1R-A2AR heteromers to determine possible differences in the affinity of these compounds for different A2AR heteromers. Heteromerization played a key role in the presynaptic profile of SCH-442416, since it bound with much less affinity to A2AR when co-expressed with D2R than with A1R. KW-6002 showed the best relative affinity for A2AR co-expressed with D2R than co-expressed with A1R, which can at least partially explain the postsynaptic profile of this compound. Also, the in vitro pharmacological profile of MSX-2, SCH-420814, ZM-241385 and SCH-58261 was is in accordance with their mixed pre- and postsynaptic profile. On the basis of their preferential

  16. Cloning of human genes encoding novel G protein-coupled receptors

    SciTech Connect

    Marchese, A.; Docherty, J.M.; Heiber, M.

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  17. Dopamine Receptor Gene Expression in Human Amygdaloid Nuclei: Elevated D4 Receptor mRNAs in Major Depression

    PubMed Central

    Xiang, Lianbin; Szebeni, Katalin; Szebeni, Attila; Klimek, Violetta; Stockmeier, Craig A; Karolewicz, Beata; Kalbfleisch, John; Ordway, Gregory A

    2008-01-01

    Previous findings from this laboratory demonstrating changes in dopamine (DA) transporter and D2 receptors in the amygdaloid complex of subjects with major depression indicate that disruption of dopamine neurotransmission to the amygdala may contribute to behavioral symptoms associated with depression. Quantitative real-time RT-PCR was used to investigate the regional distribution of gene expression of DA receptors in the human amygdala. In addition, relative levels of mRNA of DA receptors in the basal amygdaloid nucleus were measured postmortem in subjects with major depression and normal control subjects. All five subtypes of DA receptor mRNA were detected in all amygdaloid subnuclei, although D1, D2, and D4 receptor mRNAs were more abundant than D3 and D5 mRNAs by an order of magnitude. The highest level of D1 mRNA was found in the central nucleus, whereas D2 mRNA was the most abundant in the basal nucleus. Levels of D4 mRNA were highest in the basal and central nuclei. In the basal nucleus, amounts of D4, but not D1 or D2, mRNAs were significantly higher in subjects with major depression and depressed suicide victims, as compared to control subjects. These findings demonstrate that the D1, D2 and D4 receptors are the major subtypes of DA receptors in the human amygdala. Elevated DA receptor gene expression in depressive subjects further implicates altered dopaminergic transmission in the amygdala in depression. PMID:18371940

  18. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  19. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  20. 5-HT2A Receptors are Concentrated in Regions of the Human Infant Medulla Involved in Respiratory and Autonomic Control

    PubMed Central

    Paterson, David S.; Darnall, Ryan

    2009-01-01

    The serotonergic (5-HT) system in the human medulla oblongata is well-recognized to play an important role in the regulation of respiratory and autonomic function. In this study, using both immunocytochemistry (n=5) and tissue section autoradiography with the radioligand 125I-1-(2,5-dimethoxy-4-iodo-phenyl)2-aminopropane (n=7), we examine the normative development and distribution of the 5-HT2A receptor in the human medulla during the last part of gestation and first postnatal year when dramatic changes are known to occur in respiratory and autonomic control, in part mediated by the 5-HT2A receptor. High 5-HT2A receptor binding was observed in the dorsal motor nucleus of the vagus (preganglionic parasympathetic output) and hypoglossal nucleus (airway patency); intermediate binding was present in the nucleus of the solitary tract (visceral sensory input), gigantocellularis, intermediate reticular zone, and paragigantocellularis lateralis. Negligible binding was present in the raphé obscurus and arcuate nucleus. The pattern of 5-HT2A immunoreactivity paralleled that of binding density. By 15 gestational weeks, the relative distribution of the 5-HT2A receptor was similar to that in infancy. In all nuclei sampled, 5-HT2A receptor binding increased with age, with significant increases in the hypoglossal nucleus (p=0.027), principal inferior olive (p=0.044), and medial accessory olive (0.038). Thus, 5-HT2A receptors are concentrated in regions involved in autonomic and respiratory control in the human infant medulla, and their developmental profile changes over the first year of life in the hypoglossal nucleus critical to airway patency and the inferior olivary complex essential to cerebellar function. PMID:19213611

  1. Blockage of A2A and A3 adenosine receptors decreases the desensitization of human GABAA receptors microtransplanted to Xenopus oocytes

    PubMed Central

    Roseti, Cristina; Palma, Eleonora; Martinello, Katiuscia; Fucile, Sergio; Morace, Roberta; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonietta; Giangaspero, Felice; Aronica, Eleonora; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Cristalli, Gloria; Lambertucci, Catia; Marucci, Gabriella; Volpini, Rosaria; Limatola, Cristina; Eusebi, Fabrizio

    2009-01-01

    We previously found that the endogenous anticonvulsant adenosine, acting through A2A and A3 adenosine receptors (ARs), alters the stability of currents (IGABA) generated by GABAA receptors expressed in the epileptic human mesial temporal lobe (MTLE). Here we examined whether ARs alter the stability (desensitization) of IGABA expressed in focal cortical dysplasia (FCD) and in periglioma epileptic tissues. The experiments were performed with tissues from 23 patients, using voltage-clamp recordings in Xenopus oocytes microinjected with membranes isolated from human MTLE and FCD tissues or using patch-clamp recordings of pyramidal neurons in epileptic tissue slices. On repetitive activation, the epileptic GABAA receptors revealed instability, manifested by a large IGABA rundown, which in most of the oocytes (≈70%) was obviously impaired by the new A2A antagonists ANR82, ANR94, and ANR152. In most MTLE tissue-microtransplanted oocytes, a new A3 receptor antagonist (ANR235) significantly improved IGABA stability. Moreover, patch-clamped pyramidal neurons from human neocortical slices of periglioma epileptic tissues exhibited altered IGABA rundown on ANR94 treatment. Our findings indicate that antagonizing A2A and A3 receptors increases the IGABA stability in different epileptic tissues and suggest that adenosine derivatives may offer therapeutic opportunities in various forms of human epilepsy. PMID:19721003

  2. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    SciTech Connect

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. )

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  3. Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy.

    PubMed

    Hinrichs, Christian S

    2016-04-01

    Adoptive transfer of T cells genetically engineered to express a tumor-targeting chimeric antigen receptor (CAR) or T-cell receptor (TCR) can mediate cancer regression in some patients. CARs are synthetic single-chain proteins that use antibody domains to target cell surface antigens. TCRs are natural heterodimeric proteins that can target intracellular antigens through recognition of peptides bound to human leukocyte antigens. CARs have shown promise in B-cell malignancies and TCRs in melanoma, but neither approach has achieved clear success in an epithelial cancer. Treatment of epithelial cancers may be particularly challenging because of a paucity of target antigens expressed by carcinomas and not by important healthy tissues. In addition, epithelial cancers may be protected by inhibitory ligands and soluble factors in the tumor microenvironment. One strategy to overcome these negative regulators is to modulate expression of T-cell genes to enhance intrinsic T-cell function. Programmable nucleases, which can suppress inhibitory genes, and inducible gene expression systems, which can enhance stimulatory genes, are entering clinical testing. Other work is delineating whether control of genes for immune checkpoint receptors (e.g.,PDCD1, CTLA4) and cytokine and TCR signaling regulators (e.g.,CBLB, CISH, IL12, IL15) can increase the antitumor activity of therapeutic T cells.Clin Cancer Res; 22(7); 1559-64. ©2016 AACR. PMID:27037253

  4. Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Ng, Seng Kah; Higashimori, Haruki; Tolman, Michaela; Yang, Yongjie

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR(+/-)) significantly protect ESMN from SOD1G93A(+) astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS. PMID:25779930

  5. Inflammatory Lung Injury After Cardiopulmonary Bypass is Attenuated by Adenosine A2A Receptor Activation

    PubMed Central

    Lisle, Turner C; Gazoni, Leo M; Fernandez, Lucas G; Sharma, Ashish K; Bellizzi, Andrew M; Schifflett, Grant D; Laubach, Victor E; Kron, Irving L

    2008-01-01

    Objectives Cardiopulmonary bypass has been shown to exert an inflammatory response within the lung, often resulting in postoperative pulmonary dysfunction. Several studies have shown that adenosine A2A receptor (A2AR) activation attenuates lung ischemia-reperfusion injury, however the effect of A2AR activation on cardiopulmonary bypass-induced lung injury has not been studied. We hypothesized that specific A2AR activation by ATL313 would attenuate inflammatory lung injury following cardiopulmonary bypass. Methods Adult male Sprague-Dawley rats were randomly divided into three groups: 1) SHAM group (underwent cannulation+heparinization only); 2) CONTROL group (underwent 90-minutes of normothermic cardiopulmonary bypass with normal whole-blood priming solution; 3) ATL group (underwent 90-minutes of normothermic cardiopulmonary bypass with ATL313 added to the normal priming solution). Results There was significantly less pulmonary edema and lung injury in the ATL group compared to the CONTROL group. The ATL group had significant reductions in bronchoalveolar lavage interleukin-1, interleukin-6, interferon-γ and myeloperoxidase levels compared to the CONTROL group. Similarly, lung tissue interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly decreased in the ATL group compared to the CONTROL group. There was no significant difference between the SHAM and ATL groups in the amount of pulmonary edema, lung injury, or levels of pro-inflammatory cytokines. Conclusions The addition of a potent A2AR agonist to the normal priming solution prior to the initiation of CPB significantly protects the lung from the inflammatory effects of CPB and reduces the amount of lung injury. A2AR agonists could represent a new therapeutic strategy for reducing the potentially devastating consequences of the inflammatory response associated with CPB. Ultra-mini Abstract Pharmacologic activation of the adenosine A2A receptor during cardiopulmonary bypass resulted in

  6. Reelin influences the expression and function of dopamine D2 and serotonin 5-HT2A receptors: a comparative study.

    PubMed

    Varela, M J; Lage, S; Caruncho, H J; Cadavid, M I; Loza, M I; Brea, J

    2015-04-01

    Reelin is an extracellular matrix protein that plays a critical role in neuronal guidance during brain neurodevelopment and in synaptic plasticity in adults and has been associated with schizophrenia. Reelin mRNA and protein levels are reduced in various structures of post-mortem schizophrenic brains, in a similar way to those found in heterozygous reeler mice (HRM). Reelin is involved in protein expression in dendritic spines that are the major location where synaptic connections are established. Thus, we hypothesized that a genetic deficit in reelin would affect the expression and function of dopamine D2 and serotonin 5-HT2A receptors that are associated with the action of current antipsychotic drugs. In this study, D2 and 5-HT2A receptor expression and function were quantitated by using radioligand binding studies in the frontal cortex and striatum of HRM and wild-type mice (WTM). We observed increased expression (p<0.05) in striatum membranes and decreased expression (p<0.05) in frontal cortex membranes for both dopamine D2 and serotonin 5-HT2A receptors from HRM compared to WTM. Our results show parallel alterations of D2 and 5-HT2A receptors that are compatible with a possible hetero-oligomeric nature of these receptors. These changes are similar to changes described in schizophrenic patients and provide further support for the suitability of using HRM as a model for studying this disease and the effects of antipsychotic drugs. PMID:25637489

  7. Modulation of GluK2a subunit-containing kainate receptors by 14-3-3 proteins.

    PubMed

    Sun, Changcheng; Qiao, Haifa; Zhou, Qin; Wang, Yan; Wu, Yuying; Zhou, Yi; Li, Yong

    2013-08-23

    Kainate receptors (KARs) are one of the ionotropic glutamate receptors that mediate excitatory postsynaptic currents (EPSCs) with characteristically slow kinetics. Although mechanisms for the slow kinetics of KAR-EPSCs are not totally understood, recent evidence has implicated a regulatory role of KAR-associated proteins. Here, we report that decay kinetics of GluK2a-containing receptors is modulated by closely associated 14-3-3 proteins. 14-3-3 binding requires PKC-dependent phosphorylation of serine residues localized in the carboxyl tail of the GluK2a subunit. In transfected cells, 14-3-3 binding to GluK2a slows desensitization kinetics of both homomeric GluK2a and heteromeric GluK2a/GluK5 receptors. Moreover, KAR-EPSCs at mossy fiber-CA3 synapses decay significantly faster in the 14-3-3 functional knock-out mice. Collectively, these results demonstrate that 14-3-3 proteins are an important regulator of GluK2a-containing KARs and may contribute to the slow decay kinetics of native KAR-EPSCs. PMID:23861400

  8. Alcohol misuse in emerging adulthood: Association of dopamine and serotonin receptor genes with impulsivity-related cognition.

    PubMed

    Leamy, Talia E; Connor, Jason P; Voisey, Joanne; Young, Ross McD; Gullo, Matthew J

    2016-12-01

    Impulsivity predicts alcohol misuse and risk for alcohol use disorder. Cognition mediates much of this association. Genes also account for a large amount of variance in alcohol misuse, with dopamine and serotonin receptor genes of particular interest, because of their role in motivated behavior. The precise psychological mechanisms through which such genes confer risk is unclear. Trait impulsivity conveys risk for alcohol misuse by influencing two distinct domains of cognition: beliefs about the reinforcing effects of alcohol consumption (positive alcohol expectancy) and the perceived ability to resist it (drinking refusal self-efficacy). This study investigated the effect of the dopamine-related polymorphism in the DRD2/ANKK1 gene (rs1800497) and a serotonin-related polymorphism in the HTR2A gene (rs6313) on associations between impulsivity, cognition, and alcohol misuse in 120 emerging adults (18-21years). HTR2A predicted lower positive alcohol expectancy, higher refusal self-efficacy, and lower alcohol misuse. However, neither polymorphism moderated the linkages between impulsivity, cognition, and alcohol misuse. This is the first report of an association between HTR2A and alcohol-related cognition. Theoretically-driven biopsychosocial models have potential to elucidate the specific cognitive mechanisms through which distal risk factors like genes and temperament affect alcohol misuse in emerging adulthood. PMID:27399274

  9. Differential expression of the two types of histone H2A genes in wheat.

    PubMed

    Huh, G H; Matsuura, Y; Meshi, T; Iwabuchi, M

    1995-03-14

    Five histone H2A cDNA clones have been isolated from a wheat cDNA library. They were divided into two groups, termed type 1 and type 2, based on their deduced amino acid sequences and their gene expression patterns. Three type 1 clones had ORFs encoding proteins similar to angiosperm histone H2As known so far, whereas two type 2 clones encoded an identical protein, which was more similar to Norway spruce (gymnosperm) H2A than to the angiosperm H2As. The C-terminus of the type 2 H2A was shorter than that of the type 1 H2As and lacked the characteristic SPKK motif that is conserved in angiosperm H2As. Northern analysis revealed that the mRNA levels of the type 1 H2A genes were high in proliferating cells during germination and in various tissues of young seedlings, while the mRNA levels of the type 2 genes were high in non-proliferating cells in which the type 1 gene was poorly expressed. This result suggests that the expression of these two groups of H2A genes is differently regulated during development in wheat. PMID:7893754

  10. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    PubMed Central

    Kambere, Marijo B; Lane, Robert P

    2007-01-01

    The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system. PMID:17903278

  11. Adenosine (A)(2A)receptor modulation of nicotine-induced locomotor sensitization. A pharmacological and transgenic approach.

    PubMed

    Jastrzębska, Joanna; Nowak, Ewa; Smaga, Irena; Bystrowska, Beata; Frankowska, Małgorzata; Bader, Michael; Filip, Małgorzata; Fuxe, Kjell

    2014-06-01

    Preclinical evidence indicates an important role of adenosine (A)(2A) receptors in drug addiction while their therapeutic relevance is still a matter of debate. We examined the influence of the A(2A) receptor agonist CGS 21680 and the antagonist KW 6002 on nicotine sensitization and conditioned locomotor activity in adult (8-week old) male Sprague-Dawley rats (WT). Moreover, behavioral responses to nicotine were studied in rats overexpressing A(2A) receptors under the control of the neuronal specific enolase (NSE) promotor. Changes in the levels of dopamine, glutamate and γ-aminobutyric acid in wild type (WT) and NSEA(2A) rats were determined with using LC-MS. KW 6002 significantly enhanced expression of nicotine sensitization and conditioned locomotion, while CGS 21680 reduced all these effects in WT rats. A reduction of the expression of nicotine-evoked conditioned locomotor activity was also observed in the NSEA(2A) animals. The transgenic rats displayed a reduced basal tissue level of glutamate in the prefrontal cortex and hippocampus while dopamine basal levels in the nucleus accumbens were raised. Chronic nicotine treatment caused a significant reduction in the glutamate tissue level in the dorsal and ventral striatum, prefrontal cortex and cerebellum in wild type rats. In NSEA(2A) animals the same drug treatment instead produced a rise of glutamate levels in the hippocampus and dorsal striatum. Taken together, A(2A) receptor signaling in the rat brain can counteract locomotor sensitization and conditioned locomotion to nicotine which are related to nicotine reward-learning. It is suggested that treatment with A(2A) receptor agonists can help counteract the abuse actions of nicotine. PMID:24632528

  12. [Beta]-Adrenergic Receptor Activation Rescues Theta Frequency Stimulation-Induced LTP Deficits in Mice Expressing C-Terminally Truncated NMDA Receptor GluN2A Subunits

    ERIC Educational Resources Information Center

    Moody, Teena D.; Watabe, Ayako M.; Indersmitten, Tim; Komiyama, Noboru H.; Grant, Seth G. N.; O'Dell, Thomas J.

    2011-01-01

    Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term…

  13. Cloning of the cDNA and gene for a human D sub 2 dopamine receptor

    SciTech Connect

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O. ); Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C. )

    1989-12-01

    A clone encoding a human D{sub 2} dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D{sub 2} receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed.

  14. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  15. Expression of the transferrin receptor gene during the process of mononuclear phagocyte maturation

    SciTech Connect

    Hirata, T.; Bitterman, P.B.; Mornex, J.; Crystal, R.G.

    1986-02-15

    The expression of transferrin receptors by blood monocytes, human alveolar macrophages, and in vitro matured macrophages was evaluated by immunofluorescence, radioligand binding, and Northern analysis, using the monoclonal anti-human transferrin receptor antibody OKT9, (/sup 125/I)-labeled human transferrin and a (/sup 32/P)-labeled human transferrin receptor cDNA probe, respectively. By immunofluorescence, the majority of alveolar macrophages expressed transferrin receptors (86 +/- 3%). The radioligand binding assay demonstrated the affinity constant (K/sub a/) of the alveolar macrophage transferrin receptor was 4.4 +/- 0.7 x 10/sup 8/ M/sup -1/, and the number of receptors per cell was 4.4 +/- 1.2 x 10/sup 4/. In marked contrast, transferrin receptors were not present on the surface or in the cytoplasm of blood monocytes, the precursors of the alveolar macrophages. However, when monocytes were cultured in vitro and allowed to mature, > 80% expressed transferrin receptors by day 6, and the receptors could be detected by day 3. Consistent with these observations, a transferrin receptor mRNA with a molecular size of 4.9 kb was demonstrated in alveolar macrophages and in vitro matured macrophages but not in blood monocytes. Thus, although blood monocytes do not express the transferrin receptor gene, it is expressed by mature macrophages, an event that probably occurs relatively early in the process of monocyte differentiation to macrophages.

  16. Estrogen Receptor beta binds Sp1 and recruits a Corepressor Complex to the Estrogen Receptor alpha Gene Promoter

    PubMed Central

    Bartella, V; Rizza, P; Barone, I; Zito, D; Giordano, F; Giordano, C; Catalano, S; Mauro, L; Sisci, D; Panno, ML; Fuqua, SA; Andò, Sebastiano

    2015-01-01

    Human estrogen receptors (ERs) alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a prevalently expression of ER beta than ER alpha, which drastically increases during breast tumorogenesis. So, it is reasonable to assume how a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanism underlying the opposite role played by the two estrogen receptors on tumor cell growth remains to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of the ER beta down-regulated basal ER alpha promoter activity. Furthermore, side-directed mutagenesis and deletion analysis have revealed that the proximal GC-rich motifs at −223 and −214 is crucial for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interaction within the ER alpha promoter region and the recruitment of a corepressor complex containing NCoR/SMRT (nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor), accompanied by hypoacetylation of histone H4 and displacement of RNA polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effect of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus inhibiting ER alpha’s driving role on breast cancer cell growth. PMID:22622808

  17. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    PubMed

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  18. Graft versus host disease: New insights into A2A receptor agonist therapy.

    PubMed

    Jones, Karlie R; Kang, Elizabeth M

    2015-01-01

    Allogeneic transplantation can cure many disorders, including sickle cell disease, chronic granulomatous disease (CGD), severe combined immunodeficiency (SCID) and many types of cancers. However, there are several associated risks that can result in severe immunological reactions and, in some cases, death. Much of this morbidity is related to graft versus host disease (GVHD) [1]. GVHD is an immune mediated reaction in which donor T cells recognize the host as antigenically foreign, causing donor T cells to expand and attack host tissues. The current method of treating recent transplant patients with immunosuppressants to prevent this reaction has met with only partial success, emphasizing a need for new methods of GVHD treatment and prevention. Recently, a novel strategy has emerged targeting adenosine A2A receptors (A2AR) through the use of adenosine agonists. These agonists have been shown in vitro to increase the TGFβ-induced generation of FoxP3(+) regulatory T cells (Tregs) and in vivo to improve weight gain and mortality as well as inhibit the release of pro-inflammatory cytokines in GVHD murine models [2,3]. Positive results involving A2AR agonists in vitro and in vivo are promising, suggesting that A2AR agonists should be a part of the management of clinical GvHD. PMID:25709759

  19. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior.

    PubMed

    González-Maeso, Javier; Weisstaub, Noelia V; Zhou, Mingming; Chan, Pokman; Ivic, Lidija; Ang, Rosalind; Lira, Alena; Bradley-Moore, Maria; Ge, Yongchao; Zhou, Qiang; Sealfon, Stuart C; Gingrich, Jay A

    2007-02-01

    Hallucinogens, including mescaline, psilocybin, and lysergic acid diethylamide (LSD), profoundly affect perception, cognition, and mood. All known drugs of this class are 5-HT(2A) receptor (2AR) agonists, yet closely related 2AR agonists such as lisuride lack comparable psychoactive properties. Why only certain 2AR agonists are hallucinogens and which neural circuits mediate their effects are poorly understood. By genetically expressing 2AR only in cortex, we show that 2AR-regulated pathways on cortical neurons are sufficient to mediate the signaling pattern and behavioral response to hallucinogens. Hallucinogenic and nonhallucinogenic 2AR agonists both regulate signaling in the same 2AR-expressing cortical neurons. However, the signaling and behavioral responses to the hallucinogens are distinct. While lisuride and LSD both act at 2AR expressed by cortex neurons to regulate phospholipase C, LSD responses also involve pertussis toxin-sensitive heterotrimeric G(i/o) proteins and Src. These studies identify the long-elusive neural and signaling mechanisms responsible for the unique effects of hallucinogens. PMID:17270739

  20. Adenosine A2A receptor deficiency alleviates blast-induced cognitive dysfunction

    PubMed Central

    Ning, Ya-Lei; Yang, Nan; Chen, Xing; Xiong, Ren-Ping; Zhang, Xiu-Zhu; Li, Ping; Zhao, Yan; Chen, Xing-Yun; Liu, Ping; Peng, Yan; Wang, Zheng-Guo; Chen, Jiang-Fan; Zhou, Yuan-Guo

    2013-01-01

    Traumatic brain injury (TBI), particularly explosive blast-induced TBI (bTBI), has become the most prevalent injury among military personnel. The disruption of cognitive function is one of the most serious consequences of bTBI because its long-lasting effects prevent survivors fulfilling their active duty and resuming normal civilian life. However, the mechanisms are poorly understood and there is no treatment available. This study investigated the effects of adenosine A2A receptor (A2AR) on bTBI-induced cognitive deficit, and explored the underlying mechanisms. After being subjected to moderate whole-body blast injury, mice lacking the A2AR (A2AR knockout (KO)) showed less severity and shorter duration of impaired spatial reference memory and working memory than wild-type mice did. In addition, bTBI-induced cortical and hippocampal lesions, as well as proinflammatory cytokine expression, glutamate release, edema, cell loss, and gliosis in both early and prolonged phases of the injury, were significantly attenuated in A2AR KO mice. The results suggest that early injury and chronic neuropathological damages are important mechanisms of bTBI-induced cognitive impairment, and that the impairment can be attenuated by preventing A2AR activation. These findings suggest that A2AR antagonism is a potential therapeutic strategy for mild-to-moderate bTBI and consequent cognitive impairment. PMID:23921902

  1. Methodological considerations for the human platelet 5-HT2A receptor binding kinetic assay.

    PubMed

    Khait, V D; Huang, Y Y; Mann, J J

    1999-01-01

    Analysis of an extensive database of human platelet 5-HT2A receptor binding assays has been conducted in order to identify factors that may affect the assay results. Despite anecdotal reports that storage of frozen platelet pellets may affect 5-HT2A binding affinity and capacity, no quantitative study has been reported in the literature. Analysis of binding data for 373 frozen samples with a storage time up to three years is presented in this paper. It is shown that prolonged storage significantly decreases binding. The loss of binding capacity begins in the first six month of storage. Bmax declines by half after 17 month. The impact of storage time on the binding affinity is much smaller. There is only about 20% increase in the value of affinity K(D) during the half-life of Bmax. Differences in sample storage time may partly explain discrepancies in results between different research groups. Nonspecific binding due to binding to filter material diminishes accuracy and reliability of the binding assays as a result of a decrease in the ratio of specific to nonspecific ratio. A data analysis based on our suggested mathematical model shows that this effect depends on tissue concentration in test tube and becomes pronounced when the concentration is below 0.1 mg protein/ml (at 0.2 nM of ligand). Above 0.1 mg protein/ml, percentage of specific to total binding exceeds 65%, which is an acceptable level for the ratio. The majority of the binding studies reported in the literature employed a tissue concentration more than 0.5 mg/ml, well above the minimal limit sufficient for a reliable assay. However, development of microassays to conserve precious tissue must take the limit into consideration. PMID:10619369

  2. Identification of a null mutation in the human dopamine D4 receptor gene

    SciTech Connect

    Noethen, M.M.; Cichon, S.; Hebebrand, J.

    1994-09-01

    Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation in the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.

  3. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength.

    PubMed

    Segala, Elena; Guo, Dong; Cheng, Robert K Y; Bortolato, Andrea; Deflorian, Francesca; Doré, Andrew S; Errey, James C; Heitman, Laura H; IJzerman, Adriaan P; Marshall, Fiona H; Cooke, Robert M

    2016-07-14

    The association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized. PMID:27312113

  4. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    PubMed Central

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-01-01

    Context: Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. Evidence Acquisition: The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. Results: The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. Conclusions: In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association. PMID:26425125

  5. Positive and negative regulation of odor receptor gene choice in Drosophila by acj6.

    PubMed

    Bai, Lei; Goldman, Aaron L; Carlson, John R

    2009-10-14

    Little is known about how individual olfactory receptor neurons (ORNs) select, from among many odor receptor genes, which genes to express. Abnormal chemosensory jump 6 (Acj6) is a POU domain transcription factor essential for the specification of ORN identity and odor receptor (Or) gene expression in the Drosophila maxillary palp, one of the two adult olfactory organs. However, the mechanism by which Acj6 functions in this process has not been investigated. Here, we systematically examine the role of Acj6 in the maxillary palp and in a major subset of antennal ORNs. We define an Acj6 binding site by a reiterative in vitro selection process. The site is found upstream of Or genes regulated by Acj6, and Acj6 binds to the site in Or promoters. Mutational analysis shows that the site is essential for Or regulation in vivo. Surprisingly, a novel ORN class in acj6 adults is found to arise from ectopic expression of a larval Or gene, which is repressed in wild type via an Acj6 binding site. Thus, Acj6 acts directly in the process of receptor gene choice; it plays a dual role, positive and negative, in the logic of the process, and acts in partitioning the larval and adult receptor repertoires. PMID:19828808

  6. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD. PMID:23333599

  7. Comprehensive Gene Expression Analysis of Rice Aleurone Cells: Probing the Existence of an Alternative Gibberellin Receptor1

    PubMed Central

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-01-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  8. Elevated Resistin Gene Expression in African American Estrogen and Progesterone Receptor Negative Breast Cancer

    PubMed Central

    Vallega, Karin A.; Liu, NingNing; Myers, Jennifer S.; Yu, Kaixian; Sang, Qing-Xiang Amy

    2016-01-01

    Introduction African American (AA) women diagnosed with breast cancer are more likely to have aggressive subtypes. Investigating differentially expressed genes between patient populations may help explain racial health disparities. Resistin, one such gene, is linked to inflammation, obesity, and breast cancer risk. Previous studies indicated that resistin expression is higher in serum and tissue of AA breast cancer patients compared to Caucasian American (CA) patients. However, resistin expression levels have not been compared between AA and CA patients in a stage- and subtype-specific context. Breast cancer prognosis and treatments vary by subtype. This work investigates differential resistin gene expression in human breast cancer tissues of specific stages, receptor subtypes, and menopause statuses in AA and CA women. Methods Differential gene expression analysis was performed using human breast cancer gene expression data from The Cancer Genome Atlas. We performed inter-race resistin gene expression level comparisons looking at receptor status and stage-specific data between AA and CA samples. DESeq was run to test for differentially expressed resistin values. Results Resistin RNA was higher in AA women overall, with highest values in receptor negative subtypes. Estrogen-, progesterone-, and human epidermal growth factor receptor 2- negative groups showed statistically significant elevated resistin levels in Stage I and II AA women compared to CA women. In inter-racial comparisons, AA women had significantly higher levels of resistin regardless of menopause status. In whole population comparisons, resistin expression was higher among Stage I and III estrogen receptor negative cases. In comparisons of molecular subtypes, resistin levels were significant higher in triple negative than in luminal A breast cancer. Conclusion Resistin gene expression levels were significantly higher in receptor negative subtypes, especially estrogen receptor negative cases in AA

  9. Gene Expression Profiling in Limb-Girdle Muscular Dystrophy 2A

    PubMed Central

    Sáenz, Amets; Azpitarte, Margarita; Armañanzas, Rubén; Leturcq, France; Alzualde, Ainhoa; Inza, Iñaki; García-Bragado, Federico; De la Herran, Gaspar; Corcuera, Julián; Cabello, Ana; Navarro, Carmen; De la Torre, Carolina; Gallardo, Eduard; Illa, Isabel; de Munain, Adolfo López

    2008-01-01

    Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies. PMID:19015733

  10. Sarpogrelate, a 5-HT2A Receptor Antagonist, Protects the Retina From Light-Induced Retinopathy

    PubMed Central

    Tullis, Brandon E.; Ryals, Renee C.; Coyner, Aaron S.; Gale, Michael J.; Nicholson, Alex,; Ku, Cristy,; Regis, Dain,; Sinha, Wrik,; Datta, Shreya,; Wen, Yuquan,; Yang, Paul,; Pennesi, Mark E.

    2015-01-01

    Purpose To determine if sarpogrelate, a selective 5-HT2A receptor antagonist, is protective against light-induced retinopathy in BALB/c mice. Methods BALB/c mice were dosed intraperitoneally with 5, 15, 30, 40, or 50 mg/kg sarpogrelate 48, 24, and 0 hours prior to bright light exposure (10,000 lux) as well as 24 and 48 hours after exposure. Additionally, a single injection regimen was evaluated by injecting mice with 50 mg/kg sarpogrelate once immediately prior to light exposure. To investigate the potential for additive effects of serotonin receptor agents, a combination therapy consisting of sarpogrelate (15 mg/kg) and 8-OH-DPAT (1 mg/kg) was evaluated with the 5-day treatment regimen. Neuroprotection was characterized by the preservation of retinal thickness and function, measured by spectral-domain optical coherence tomography (SD-OCT) and electroretinography (ERG), respectively. Results Mice that were light damaged and injected with saline had significantly reduced outer retinal thickness, total retinal thickness, and ERG amplitudes compared with naïve mice. A 5-day administration of 15, 30, or 40 mg/kg of sarpogrelate was able to partially protect retinal morphology and full protection of retinal morphology was achieved with a 50 mg/kg dose. Both 15 and 30 mg/kg doses of sarpogrelate partially preserved retinal function measured by ERG, whereas 40 and 50 mg/kg doses fully preserved retinal function. Additionally, a single administration of 50 mg/kg sarpogrelate was able to fully preserve both retinal morphology and function. Administration of 15 mg/kg of sarpogrelate and 1 mg/kg of 8-OH-DPAT together demonstrated an additive effect and fully preserved retinal morphology. Conclusions A 5- or 1-day treatment with 50 mg/kg sarpogrelate can completely protect the retina of BALB/c mice from light-induced retinopathy. Partial protection can be achieved with lower doses starting at 15 mg/kg and protection increases in a dose-dependent manner. Treatment with low

  11. Widely distributed mutations in the COL2A1 gene produce achondrogenesis type II/hypochondrogenesis.

    PubMed

    Körkkö, J; Cohn, D H; Ala-Kokko, L; Krakow, D; Prockop, D J

    2000-05-15

    The COL2A1 gene was assayed for mutations in genomic DNA from 12 patients with achondrogenesis type II/hypochondrogenesis. The exons and flanking sequences of the 54 exons in the COL2A1 gene were amplified by a series of specific primers using PCR. The PCR products were scanned for mutations by conformation sensitive gel electrophoresis, and PCR products that generated heteroduplex bands were then sequenced. Mutations in the COL2A1 gene were found in all 12 patients. Ten of the mutations were single base substitutions that converted a codon for an obligate glycine to a codon for an amino acid with a bulkier side chain. One of the mutations was a change in a consensus RNA splice site. Another was an 18-base pair deletion of coding sequences. The results confirmed previous indications that conformation sensitive gel electrophoresis is highly sensitive for detection of mutations in large and complex genes. They also demonstrate that most, if not all, patients with achondrogenesis type II/hypochondrogenesis have mutations in the COL2A1 gene. PMID:10797431

  12. Sustained Suppression of Hyperalgesia during Latent Sensitization by μ-, δ-, and κ-opioid receptors and α2A Adrenergic Receptors: Role of Constitutive Activity

    PubMed Central

    Walwyn, Wendy M.; Chen, Wenling; Kim, Hyeyoung; Minasyan, Ani; Ennes, Helena S.; McRoberts, James A.

    2016-01-01

    Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery (“remission”) from inflammatory or neuropathic pain can be reversed by opioid antagonists. Therefore, this remission represents an opioid receptor-mediated suppression of a sustained hyperalgesic state. To identify the receptors involved, we induced latent sensitization in mice and rats by injecting complete Freund's adjuvant (CFA) in the hindpaw. In WT mice, responses to mechanical stimulation returned to baseline 3 weeks after CFA. In μ-opioid receptor (MOR) knock-out (KO) mice, responses did not return to baseline but partially recovered from peak hyperalgesia. Antagonists of α2A-adrenergic and δ-opioid receptors reinstated hyperalgesia in WT mice and abolished the partial recovery from hyperalgesia in MOR KO mice. In rats, antagonists of α2A adrenergic and μ-, δ-, and κ-opioid receptors reinstated hyperalgesia during remission from CFA-induced hyperalgesia. Therefore, these four receptors suppress hyperalgesia in latent sensitization. We further demonstrated that suppression of hyperalgesia by MORs was due to their constitutive activity because of the following: (1) CFA-induced hyperalgesia was reinstated by the MOR inverse agonist naltrexone (NTX), but not by its neutral antagonist 6β-naltrexol; (2) pro-enkephalin, pro-opiomelanocortin, and pro-dynorphin KO mice showed recovery from hyperalgesia and reinstatement by NTX; (3) there was no MOR internalization during remission; (4) MORs immunoprecipitated from the spinal cord during remission had increased Ser375 phosphorylation; and (5) electrophysiology recordings from dorsal root ganglion neurons collected during remission showed constitutive MOR inhibition of calcium channels. SIGNIFICANCE STATEMENT Chronic pain causes extreme suffering to millions of people, but its mechanisms remain to be unraveled. Latent

  13. Multimodality Imaging of Gene Transfer with a Receptor-Based Reporter Gene

    PubMed Central

    Chen, Ron; Parry, Jesse J.; Akers, Walter J.; Berezin, Mikhail Y.; El Naqa, Issam M.; Achilefu, Samuel; Edwards, W. Barry; Rogers, Buck E.

    2010-01-01

    Gene therapy trials have traditionally used tumor and tissue biopsies for assessing the efficacy of gene transfer. Non-invasive imaging techniques offer a distinct advantage over tissue biopsies in that the magnitude and duration of gene transfer can be monitored repeatedly. Human somatostatin receptor subtype 2 (SSTR2) has been used for the nuclear imaging of gene transfer. To extend this concept, we have developed a somatostatin receptor–enhanced green fluorescent protein fusion construct (SSTR2-EGFP) for nuclear and fluorescent multimodality imaging. Methods An adenovirus containing SSTR2-EGFP (AdSSTR2-EGFP) was constructed and evaluated in vitro and in vivo. SCC-9 human squamous cell carcinoma cells were infected with AdEGFP, AdSSTR2, or AdSSTR2-EGFP for in vitro evaluation by saturation binding, internalization, and fluorescence spectroscopy assays. In vivo biodistribution and nano-SPECT imaging studies were conducted with mice bearing SCC-9 tumor xenografts directly injected with AdSSTR2-EGFP or AdSSTR2 to determine the tumor localization of 111In-diethylenetriaminepentaacetic acid (DTPA)-Tyr3-octreotate. Fluorescence imaging was conducted in vivo with mice receiving intratumoral injections of AdSSTR2, AdSSTR2-EGFP, or AdEGFP as well as ex vivo with tissues extracted from mice. Results The similarity between AdSSTR2-EGFP and wild-type AdSSTR2 was demonstrated in vitro by the saturation binding and internalization assays, and the fluorescence emission spectra of cells infected with AdSSTR2-EGFP was almost identical to the spectra of cells infected with wild-type AdEGFP. Biodistribution studies demonstrated that the tumor uptake of 111In-DTPA-Tyr3-octreotate was not significantly different (P > 0.05) when tumors (n = 5) were injected with AdSSTR2 or AdSSTR2-EGFP but was significantly greater than the uptake in control tumors. Fluorescence was observed in tumors injected with AdSSTR2-EGFP and AdEGFP in vivo and ex vivo but not in tumors injected with AdSSTR2

  14. ADRA2A Germline Gene Polymorphism is Associated to the Severity, but not to the Risk, of Breast Cancer.

    PubMed

    Kaabi, Batoul; Belaaloui, Ghania; Benbrahim, Wassila; Hamizi, Kamel; Sadelaoud, Mourad; Toumi, Wided; Bounecer, Hocine

    2016-04-01

    Breast cancer (BC) prognosis and risk were associated to obesity, metabolic syndrome and type 2 diabetes mellitus. Two Single Nucleotide Polymorphisms (SNPs) of the adrenergic receptor-2a gene (ADRA2A): rs1800544 and rs553668, have been associated to these metabolic disorders. We investigated these SNPs in BC risk and prognosis. A total of 102 BC patients and 102 healthy controls were included. The rs1800544 and rs553668 were determined by real-time PCR. Genotypes and haplotypes frequencies between patients and controls, and for different clinico-pathologic parameters were compared. We found a significant association of rs1800544 GG genotype with young age at diagnosis, premenopausal status, higher tumor size, metastasis in lymph nodes, advanced TNM stages and higher Nottingham Prognosis Indicator (NPI) (p < 0.05). There was no association between rs1800544 and SBR stages, Her2, ER and PR statuses and the molecular classification. The rs553668 AA genotype was associated to young age at diagnosis and premenopausal status (p < 0.05). The haplotype GA was associated to the early age of diagnosis (p = 0.03), and the haplotype GG to higher tumor size, lymph node involvement, advanced TNM stages and Her2 positive status (p < 0.05). There was no polymorphism or haplotype association with BC risk (p > 0.05). ADRA2A polymorphism is associated with indicators BC poor prognosis but not with BC susceptibility. This is the first report suggesting that ADRA2A germline gene polymorphism could represent a predictor factor for BC outcome. Further investigation of other ADRA2A polymorphisms in BC risk or prognosis are needed and may lead to a genotype-based therapy. PMID:26563278

  15. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-12-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans.

  16. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia

    PubMed Central

    Drapkin, Paola T.; O’Riordan, Catherine R.; Yi, Su Min; Chiorini, John A.; Cardella, Jonathan; Zabner, Joseph; Welsh, Michael J.

    2000-01-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  17. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia.

    PubMed

    Drapkin, P T; O'Riordan, C R; Yi, S M; Chiorini, J A; Cardella, J; Zabner, J; Welsh, M J

    2000-03-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  18. Transcription factor assembly on the nicotinic receptor beta4 subunit gene promoter.

    PubMed

    Scofield, Michael D; Brüschweiler-Li, Lei; Mou, Zhongming; Gardner, Paul D

    2008-04-16

    Nicotinic acetylcholine receptors are involved in a plethora of fundamental biological processes ranging from muscle contraction to formation of memories. The receptors are pentameric proteins whose subunits are encoded by distinct genes. Subunit composition of a mature nicotinic receptor is governed in part by the transcriptional regulation of each subunit gene. Here, using chromatin immunoprecipitation assays, we report the interaction of the transcription factors Sp1, Sp3, c-Jun and Sox10 with the beta4 subunit gene promoter in neuronal-like cell lines and rodent brain tissue. Our results corroborate previous in-vitro data demonstrating that these transcription factors interact with the beta4 promoter. Taken together, these data suggest that Sp1, Sp3, c-Jun and Sox10 regulate expression of the beta4 subunit gene in the mammalian brain. PMID:18382288

  19. [Genetic Association of ADRA2A and ADRB3 Genes with Metabolic Syndrome among the Tatars].

    PubMed

    Kochetova, O V; Viktorova, T V; Mustafina, O E; Karpov, A A; Khusnutdinova, E K

    2015-07-01

    An association study was performed for genetic polymorphisms in ADRB3 (rs4994) and ADRA2A (rs1800544, rs553668) genes to estimate their effect on quantitative parameters, including glucose, insulin, and HOMA-IR index in women from the Tatar population of Russia. It has been shown that CT and CC are associated with metabolic syndrome and increased insulin. It was shown that ADRA2A (rs1800544) gene polymorphism was associated with high levels of insulin and an increased HOMA-IR index in GG- and GC-genotype carriers. PMID:26410938

  20. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain.

    PubMed

    Metaxas, Athanasios; Al-Hasani, Ream; Farshim, Pamela; Tubby, Kristina; Berwick, Amy; Ledent, Catherine; Hourani, Susanna; Kitchen, Ian; Bailey, Alexis

    2013-08-01

    Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors. PMID:23583933

  1. Two different forms of lethal chondrodysplasias caused by COL2A1 gene mutations

    SciTech Connect

    Winterpacht, A.; Hilbert, K.; Schwarze, U.

    1994-09-01

    Two bone dysplasia families seem to be due to mutations in the type II procollagen gene (COL2A1): the so-called spondyloepiphyseal dysplasia congenita (SEDC) group with achondrogenesis II, hypochondrogenesis, SEDC, osteoarthrosis and the Stickler-Kniest pattern that include different forms of Kniest and Stickler dysplasia. Both groups comprise a clinical spectrum ranging from lethal to mild. COL2A1-mutations have been identified in lethal forms of the SEDC family but not in lethal forms of the Stickler/Kniest group. We now report a COL2A-1 mutation in an additional case of hypochondrogenesis (patient S) and in a lethal case of Kniest dysplasia (patient B). We amplified all 54 exons of the COL2A1 gene in both patients and screened the PCR products for mutations by SSCP analysis and sequencing. In patient B, we identified an 18 bp deletion in exon 34 which removes 6 amino acids from the mature protein. In patient S, we were able to identify a two base pair exchange (GG to AT) in exon 31, which leads to the very unusual conversion of Gly to Ile. To our knowledge, this is the first report of a Gly to Ile conversion in the COL2A1 gene, and the first report of a COL2A1 gene mutation in a lethal form of Kniest dysplasia. On the basis of the known COL2A1 gene mutations and the genotype-phenotype correlations established so far, we provide molecular data (an in frame deletion in patient B and a Gly conversion in patient S) that support their clinical classification as Kniest dysplasia and hypochondrogenesis, respectively.

  2. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  3. Detection of new biased agonists for the serotonin 5-HT2A receptor: modeling and experimental validation.

    PubMed

    Martí-Solano, Maria; Iglesias, Alba; de Fabritiis, Gianni; Sanz, Ferran; Brea, José; Loza, M Isabel; Pastor, Manuel; Selent, Jana

    2015-04-01

    Detection of biased agonists for the serotonin 5-HT2A receptor can guide the discovery of safer and more efficient antipsychotic drugs. However, the rational design of such drugs has been hampered by the difficulty detecting the impact of small structural changes on signaling bias. To overcome these difficulties, we characterized the dynamics of ligand-receptor interactions of known biased and balanced agonists using molecular dynamics simulations. Our analysis revealed that interactions with residues S5.46 and N6.55 discriminate compounds with different functional selectivity. Based on our computational predictions, we selected three derivatives of the natural balanced ligand serotonin and experimentally validated their ability to act as biased agonists. Remarkably, our approach yielded compounds promoting an unprecedented level of signaling bias at the 5-HT2A receptor, which could help interrogate the importance of particular pathways in conditions like schizophrenia. PMID:25661038

  4. APORPHINOID ANTAGONISTS OF 5-HT2A RECEPTORS: FURTHER EVALUATION OF RING A SUBSTITUENTS AND THE SIZE OF RING C

    PubMed Central

    Ponnala, Shashikanth; Kapadia, Nirav; Navarro, Hernán A.; Harding, Wayne W.

    2014-01-01

    A series of ring A modified analogs of nantenine as well as structural variants in ring C were synthesized and evaluated for antagonist activity at 5-HT2A and α1A receptors. Halogenation improves 5-HT2A antagonist potency in molecules containing a C1 methoxyl/C2 methoxyl or C1 methoxyl/C2 hydroxyl moiety. Bromination or iodination (but not chlorination) with the latter moiety also significantly increased α1A antagonist potency. Homologation or contraction of ring C adversely affected antagonist activity at both receptors, implying that a six-membered ring C motif is beneficial for high antagonist potency at both receptors. Molecular docking studies suggest that the improved antagonist activity (by virtue of improved affinity) of C3 halogenated aporphines in this study, is attributable to favorable interactions with the C3 halogen and F339 and/or F340. PMID:24766771

  5. Brain receptor autoradiography with ( sup 3 H)-YM 09151-2: A ligand for labeling dopamine D-2 receptors

    SciTech Connect

    Unis, A.S.; Vincent, J.G.; Dillon, B. )

    1990-01-01

    Using the technique of in vitro receptor autoradioagraphy to slide-mounted tissue sections, the authors studied the suitability of ({sup 3}H)-YM-09151-2 as a ligand for labeling D-2 receptors in adult F344 rat brains. Specific ({sup 3}H)-YM-09151-2 binding accounted for 70-80% of the total bound ligand and reached equilibrium after a 60-90 minute incubation. Scatchard analysis revealed a K{sub d} of 626 pM. The apparent B{sub max} was 23.2 fmol/tissue section. Autoradiographs demonstrated high grain densities in the striatum and olfactory tubercle. Diffuse specific binding was also observed in the cortex.

  6. Genes encoding putative natural killer cell C-type lectin receptors in teleostean fishes

    PubMed Central

    Sato, Akie; Mayer, Werner E.; Overath, Peter; Klein, Jan

    2003-01-01

    Mammalian natural killer (NK) cells are cytotoxic lymphocytes that express receptors specific for MHC class I molecules. The NK cell receptors belong to two structurally unrelated families, the killer cell Ig-like receptors and the killer cell C-type lectin receptors. We describe a cDNA clone derived from the bony (cichlid) fish Paralabidochromis chilotes and show that it encodes a protein related to the CD94/NK cell group 2 (NKG2) subfamily of the killer cell C-type lectin receptors. The gene encoding this receptor in a related species, Oreochromis niloticus, has a similar structure to the human CD94/NKG2 genes and is a member of a multigene cluster that resembles the mammalian NK cell gene complex. Thus, the CD94/NKG2 subfamily of NK cell receptors must have arisen before the divergence of fish and tetrapods and may have retained its function (possibly monitoring the expression of MHC class I molecules) for >400 million years. PMID:12802013

  7. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance.

    PubMed

    Baeken, Chris; Bossuyt, Axel; De Raedt, Rudi

    2014-02-28

    Although the serotonergic system has been implicated in healthy as well as in pathological emotional states, knowledge about its involvement in personality is limited. Earlier research on this topic suggests that post-synaptic 5-HT2A receptors could be involved in particular in frontal cortical areas. In drug-naïve healthy individuals, we examined the relationship between these 5-HT2A receptors and the temperament dimension harm avoidance (HA) using 123I-5-I-R91150 single photon emission computed tomography (SPECT). HA is a personality feature closely related to stress, anxiety and depression proneness, and it is thought to be mediated by the serotonergic system. We focused on the prefrontal cortices as these regions are frequently implicated in cognitive processes related to a variety of affective disorders. We found a positive relationship between dorsal prefrontal cortical (DPFC) 5-HT2A receptor binding indices (BI) and individual HA scores. Further, our results suggest that those individuals with a tendency to worry or to ruminate are particularly prone to display significantly higher 5-HT2A receptor BI in the left DPFC. Although we only examined psychologically healthy individuals, this relationship suggests a possible vulnerability for affective disorders. PMID:24412555

  8. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    PubMed

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. PMID:26851736

  9. The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action.

    PubMed

    Xing, Hongyan; Vanderford, Nathan L; Sarge, Kevin D

    2008-11-01

    To maintain phenotypes of cell lineages, cells must 'remember' which genes were active before mitosis entry and transmit this information to their daughter cells so that expression patterns can be faithfully re-established in G1. This phenomenon is called gene bookmarking. However, during mitosis transcription ceases, most sequence-specific proteins dissociate from DNA and the chromatin is tightly compacted, making it difficult to understand how gene activity 'memory' is maintained through this stage of the cell cycle. A feature of gene bookmarking is that in mitotic cells, the promoters of formerly active genes lack compaction, but how compaction of these regions is inhibited is unknown. Here we show that during mitosis, TATA-binding protein (TBP), which remains bound to DNA during mitosis, recruits PP2A. TBP also interacts with condensin to allow efficient dephosphorylation and inactivation of condensin near these promoters to inhibit their compaction. Further, ChIP-on-chip data show that TBP is bound to many chromosomal sites during mitosis, and is higher in transcribed regions but low in regions containing pseudogenes and genes whose expression is tissue-restricted. These results suggest that TBP is involved not only in gene transcription during interphase but also in preserving the memory of gene activity through mitosis to daughter cells. PMID:18931662

  10. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance. PMID:23962444

  11. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    SciTech Connect

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven

    2015-06-05

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.

  12. Molecular Characterization of the Aphis gossypii Olfactory Receptor Gene Families

    PubMed Central

    Walker, William B.; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect. PMID:24971460

  13. Effects of ADORA2A gene variation and caffeine on prepulse inhibition: a multi-level risk model of anxiety.

    PubMed

    Gajewska, Agnieszka; Blumenthal, Terry D; Winter, Bernward; Herrmann, Martin J; Conzelmann, Annette; Mühlberger, Andreas; Warrings, Bodo; Jacob, Christian; Arolt, Volker; Reif, Andreas; Zwanzger, Peter; Pauli, Paul; Deckert, Jürgen; Domschke, Katharina

    2013-01-10

    The complex pathogenesis of anxiety and panic disorder in particular has been suggested to be influenced by genetic factors such as the adenosine A2A receptor gene (ADORA2A) 1976T>C polymorphism (rs5751876) as well as neuropsychological factors such as early information processing deficits. In 114 healthy individuals (males=57, females=57) controlled for anxiety sensitivity (AS), a multi-level risk model of the development of anxiety was applied: Genetic (ADORA2A 1976T>C variant) and biochemical (300 mg of caffeine citrate vs. placebo) factors were hypothesized to influence early information processing as measured by the prepulse inhibition/facilitation paradigm (stimulus onset asynchronies (SOAs) of 60, 120, 240, 480 and 2000ms between prepulses and startle stimuli). A fourfold interaction of genotype, intervention, gender, and SOAs was discerned. Stratification by SOAs revealed that at 120 ms and 240 ms SOAs in the caffeine condition, PPI was impaired in female ADORA2A 1976TT risk genotype carriers as compared to male ADORA2A 1976TT homozygotes, while no significant effects were observed in the ADORA2A 1976CC/CT non-risk genotype or placebo group. Only in high anxiety sensitive probands, a significant intervention effect was discerned with impaired prepulse facilitation (PPF) due to caffeine. The present results point to an impaired ability to selectively process very early information and to gate irrelevant sensory information, respectively, in female ADORA2A 1976TT homozygotes in response to caffeine, providing further evidence for the adenosinergic system to be involved in the pathogenesis of anxiety. PMID:22940476

  14. Regulation of the human thromboxane A2 receptor gene in human megakaryoblastic MEG-01 cells.

    PubMed

    Saffak, T; Schäfer, S; Haas, C; Nüsing, R M

    2003-11-01

    Thromboxane A(2) (TXA(2)) is an important mediator for platelet aggregation and blood vessel constriction. TXA(2) receptor (TP receptor) is expressed in different cell types including smooth muscle cells, endothelial cells and platelets. Expression level of TP receptor may modulate the action of TXA(2) on target cells. In megakaryoblastic MEG-01 cells, a cell line representing a model for platelet precursor cells, addition of phorbolester 12-O-tetradecanoylphorbol-13-acetate (TPA) caused an increase in transcriptional activity of TP receptor gene promoter. Within 20 h a rise in expression of TP receptor mRNA and protein was observed. The effect of TPA was concentration-dependent and was blocked by specific inhibitors of protein kinase C. Flow cytometry analysis indicated that the increase in TP receptor expression appeared to be one of the earliest events in the course of TPA-induced maturation of MEG-01 cells. Stimulation of the protein kinase A pathway by incubation with forskolin or IBMX caused a decrease in transcriptional activity. Promoter deletion experiments indicated that the responsive elements for protein kinase A and C are located upstream and downstream, respectively, of -700 bp of the TP receptor gene. These experiments indicate that the expression of the human thromboxane receptor is differently regulated in platelet precursor cells by the protein kinase A and C pathway. PMID:14580363

  15. Adenosine A2A receptor plays an important role in radiation-induced dermal injury.

    PubMed

    Perez-Aso, Miguel; Mediero, Aránzazu; Low, Yee Cheng; Levine, Jamie; Cronstein, Bruce N

    2016-01-01

    Ionizing radiation is a common therapeutic modality and following irradiation dermal changes, including fibrosis and atrophy, may lead to permanent changes. We have previously demonstrated that occupancy of A2A receptor (A2AR) stimulates collagen production, so we determined whether blockade or deletion of A2AR could prevent radiation-induced fibrosis. After targeted irradiation (40 Gy) of the skin of wild-type (WT) or A2AR knockout (A2ARKO) mice, the A2AR antagonist ZM241385 was applied daily for 28 d. In irradiated WT mice treated with the A2AR antagonist, there was a marked reduction in collagen content and skin thickness, and ZM241385 treatment reduced the number of myofibroblasts and angiogenesis. After irradiation, there is an increase in loosely packed collagen fibrils, which is significantly diminished by ZM241385. Irradiation also induced an increase in epidermal thickness, prevented by ZM241385, by increasing the number of proliferating keratinocytes. Similarly, in A2ARKO mice, the changes in collagen alignment, skin thickness, myofibroblast content, angiogenesis, and epidermal hyperplasia were markedly reduced following irradiation. Radiation-induced changes in the dermis and epidermis were accompanied by an infiltrate of T cells, which was prevented in both ZM241385-treated and A2ARKO mice. Radiation therapy is administered to a significant number of patients with cancer, and radiation reactions may limit this therapeutic modality. Our findings suggest that topical application of an A2AR antagonist prevents radiation dermatitis and may be useful in the prevention or amelioration of radiation changes in the skin. PMID:26415936

  16. Multi-Inhibitory Effects of A2A Adenosine Receptor Signaling on Neutrophil Adhesion Under Flow.

    PubMed

    Yago, Tadayuki; Tsukamoto, Hiroki; Liu, Zhenghui; Wang, Ying; Thompson, Linda F; McEver, Rodger P

    2015-10-15

    A2A adenosine receptor (A2AAR) signaling negatively regulates inflammatory responses in many disease models, but the detailed mechanisms remain unclear. We used the selective A2AAR agonist, ATL313, to examine how A2AAR signaling affects human and murine neutrophil adhesion under flow. Treating neutrophils with ATL313 inhibited selectin-induced, β2 integrin-dependent slow rolling and chemokine-induced, β2 integrin-dependent arrest on ICAM-1. ATL313 inhibited selectin-induced β2 integrin extension, which supports slow rolling, and chemokine-induced hybrid domain "swing-out," which supports arrest. Furthermore, ATL313 inhibited integrin outside-in signaling as revealed by reduced neutrophil superoxide production and spreading on immobilized anti-β2 integrin Ab. ATL313 suppressed selectin-triggered activation of Src family kinases (SFKs) and p38 MAPK, chemokine-triggered activation of Ras-related protein 1, and β2 integrin-triggered activation of SFKs and Vav cytoskeletal regulatory proteins. ATL313 activated protein kinase A and its substrate C-terminal Src kinase, an inhibitor of SFKs. Treating neutrophils with a protein kinase A inhibitor blocked the actions of ATL313. In vivo, ATL313-treated neutrophils rolled faster and arrested much less frequently in postcapillary venules of the murine cremaster muscle after TNF-α challenge. Furthermore, ATL313 markedly suppressed neutrophil migration into the peritoneum challenged with thioglycollate. ATL313 did not affect A2AAR-deficient neutrophils, confirming its specificity. Our findings provide new insights into the anti-inflammatory mechanisms of A2AAR signaling and the potential utility of A2AAR agonists in inflammatory diseases. PMID:26355151

  17. Delineation of gastric cancer subtypes by co-regulated expression of receptor tyrosine kinases and chemosensitivity genes.

    PubMed

    Li, Shu-Chun; Ma, Rong; Wu, Jian-Zhong; Xiao, Xia; Wu, Wei; Li, Gang; Chen, Bo; Sharma, Ashok; Bai, Shan; Dun, Bo-Ying; She, Jin-Xiong; Tang, Jin-Hai

    2015-01-01

    Chemotherapy plays a key role in improving disease-free survival and overall survival of gastric cancer (GC); however, response rates are variable and a non-negligible proportion of patients undergo toxic and costly chemotherapeutic regimens without a survival benefit. Several studies have shown the existence of GC subtypes which may predict survival and respond differently to chemotherapy. It is also known that the expression level of chemotherapy-related and target therapy-related genes correlates with response to specific antitumor drugs. Nevertheless, these genes have not been considered jointly to define GC subtypes. In this study, we evaluated seven genes known to influence chemotherapeutic response (ERCC1, BRCA1, RRM1, TUBB3, STMN1, TYMS and TOP2A) and five receptor tyrosine kinases (RTKs) (EGFR, ERBB2, PDGFRB, VEGFR1 and VEGFR2). We demonstrate significant heterogeneity of gene expression among GC patients and identified four GC subtypes using the expression profiles of eight genes in two co-regulation groups: chemosensitivity (BRCA1, STMN1, TYMS and TOP2A) and RTKs (EGFR, PDGFRB, VEGFR1 and VEGFR2). The results are of immediate translational value regarding GC diagnostics and therapeutics, as many of these genes are curently widely used in relevant clinical testing. PMID:26396673

  18. Delineation of gastric cancer subtypes by co-regulated expression of receptor tyrosine kinases and chemosensitivity genes

    PubMed Central

    Li, Shu-Chun; Ma, Rong; Wu, Jian-Zhong; Xiao, Xia; Wu, Wei; Li, Gang; Chen, Bo; Sharma, Ashok; Bai, Shan; Dun, Bo-Ying; She, Jin-Xiong; Tang, Jin-Hai

    2015-01-01

    Chemotherapy plays a key role in improving disease-free survival and overall survival of gastric cancer (GC); however, response rates are variable and a non-negligible proportion of patients undergo toxic and costly chemotherapeutic regimens without a survival benefit. Several studies have shown the existence of GC subtypes which may predict survival and respond differently to chemotherapy. It is also known that the expression level of chemotherapy-related and target therapy-related genes correlates with response to specific antitumor drugs. Nevertheless, these genes have not been considered jointly to define GC subtypes. In this study, we evaluated seven genes known to influence chemotherapeutic response (ERCC1, BRCA1, RRM1, TUBB3, STMN1, TYMS and TOP2A) and five receptor tyrosine kinases (RTKs) (EGFR, ERBB2, PDGFRB, VEGFR1 and VEGFR2). We demonstrate significant heterogeneity of gene expression among GC patients and identified four GC subtypes using the expression profiles of eight genes in two co-regulation groups: chemosensitivity (BRCA1, STMN1, TYMS and TOP2A) and RTKs (EGFR, PDGFRB, VEGFR1 and VEGFR2). The results are of immediate translational value regarding GC diagnostics and therapeutics, as many of these genes are curently widely used in relevant clinical testing. PMID:26396673

  19. Association of COL2A1 Gene Polymorphism with Degenerative Lumbar Scoliosis

    PubMed Central

    Hwang, Dae Woo; Lee, Sang Hoon; Kim, Jung Youn; Kim, Dong Hwan

    2014-01-01

    Background Degenerative lumbar scoliosis (DLS) progresses with aging after 50-60 years, and the genetic association of DLS remains largely unclear. In this study, the genetic association between collagen type II alpha 1 (COL2A1) gene and DLS was investigated. Methods COL2A1 gene polymorphism was investigated in DLS subjects compared to healthy controls to investigate the possibility of its association with COL2A1 gene. Based on a single nucleotide polymorphism (SNP) database, SNP (rs2276454) in COL2A1 were selected and genotyped using direct sequencing in 51 patients with DLS and 235 healthy controls. The SNP effects were analyzed using three models of codominant, dominant, and recessive. Logistic regression models were calculated for odds ratios (ORs) with 95% confidence intervals (CIs) and corresponding p-values, controlling age and gender as co-variables. Results SNP (rs2276454) in COL2A1 was significantly associated with the degenerative lumbar scoliosis in the codominant (OR, 1.90; 95% CI, 1.17 to 3.10; p = 0.008) and dominant models (OR, 3.58; 95% CI, 1.59 to 9.29; p = 0.001). Conclusions The results suggest that COL2A1 is associated with the risk of DLS in Korean population. PMID:25436060

  20. Characterization of lobulated fibers in limb girdle muscular dystrophy type 2A by gene expression profiling.

    PubMed

    Keira, Yoko; Noguchi, Satoru; Kurokawa, Rumi; Fujita, Masako; Minami, Narihiro; Hayashi, Yukiko K; Kato, Takashi; Nishino, Ichizo

    2007-04-01

    Limb girdle muscular dystrophy type 2A (LGMD2A) is caused by mutations in CAPN3, which encodes an intracellular cysteine protease. To elucidate the fundamental molecular changes that may be responsible for the pathological features of LGMD2A, we employed cDNA microarray analysis. We divided LGMD2A muscles into two groups according to specific pathological features: an early-stage group characterized by the presence of active necrosis and a regeneration process and a later-stage group characterized by the presence of lobulated fibers. After comparing the gene expression profiles of the two groups of LGMD2A muscles with control muscles, we identified 29 genes whose mRNA expression profiles were specifically altered in muscles with lobulated fibers. Interestingly, this group included genes that encode actin filament binding and regulatory proteins, such as gelsolin, PDZ and LIM domain 3 (PDLIM3) and troponin I1. Western blot analysis confirmed the upregulation of these proteins. From these results, we propose that abnormal increased expression of actin filament binding proteins may contribute to the changes of the intra-myofiber structures, observed in lobulated fibers in LGMD2A. PMID:17258832

  1. Differences in erythrocyte receptor specificity of different parts of the Plasmodium falciparum reticulocyte binding protein homologue 2a.

    PubMed

    Gunalan, Karthigayan; Gao, Xiaohong; Liew, Kingsley J L; Preiser, Peter R

    2011-08-01

    The Plasmodium falciparum reticulocyte-binding-like protein homologue (RH) and erythrocyte binding-like (EBL) protein families play important roles during invasion, though their exact roles are not clear. Both EBL and RH proteins are thought to directly bind different receptors on the surface of the erythrocyte, and the binding properties for a number of EBLs and RHs have been described. While P. falciparum RH1 (PfRH1) and PfRH4 have been shown to act directly in two alternative invasion pathways used by merozoites, the functions of PfRH2a and PfRH2b during invasion are less defined. Here, using monoclonal antibodies raised against a unique region of PfRH2a, we show that PfRH2a moves from the rhoptry neck to the moving junction during merozoite invasion. The movement of PfRH2a to the junction is independent of the invasion pathway used by the merozoite, suggesting an additional function of the protein that is independent of receptor binding. We further show that PfRH2a is processed both in the schizont and during invasion, resulting in proteins with different erythrocyte binding properties. Our findings suggest that PfRH2a and, most likely, the other members of the RH family, depending on their processing stage, can engage different receptors at different stages of the invasion process. PMID:21628513

  2. Massive losses of taste receptor genes in toothed and baleen whales.

    PubMed

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-06-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  3. Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales

    PubMed Central

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J.; Wang, Ding; Zhao, Huabin

    2014-01-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  4. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  5. 67-kDa laminin receptor-dependent protein phosphatase 2A (PP2A) activation elicits melanoma-specific antitumor activity overcoming drug resistance.

    PubMed

    Tsukamoto, Shuntaro; Huang, Yuhui; Umeda, Daisuke; Yamada, Shuhei; Yamashita, Shuya; Kumazoe, Motofumi; Kim, Yoonhee; Murata, Motoki; Yamada, Koji; Tachibana, Hirofumi

    2014-11-21

    The Ras/Raf/MEK/ERK pathway has been identified as a major, druggable regulator of melanoma. Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, resulting in constitutive melanoma hyperproliferation. A selective BRAF inhibitor showed remarkable clinical activity in patients with mutated BRAF. Unfortunately, most patients acquire resistance to the BRAF inhibitor, highlighting the urgent need for new melanoma treatment strategies. Green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) inhibits cell proliferation independently of BRAF inhibitor sensitivity, suggesting that increased understanding of the anti-melanoma activity of EGCG may provide a novel therapeutic target. Here, by performing functional genetic screening, we identified protein phosphatase 2A (PP2A) as a critical factor in the suppression of melanoma cell proliferation. We demonstrated that tumor-overexpressed 67-kDa laminin receptor (67LR) activates PP2A through adenylate cyclase/cAMP pathway eliciting inhibitions of oncoproteins and activation of tumor suppressor Merlin. Activating 67LR/PP2A pathway leading to melanoma-specific mTOR inhibition shows strong synergy with the BRAF inhibitor PLX4720 in the drug-resistant melanoma. Moreover, SET, a potent inhibitor of PP2A, is overexpressed on malignant melanoma. Silencing of SET enhances 67LR/PP2A signaling. Collectively, activation of 67LR/PP2A signaling may thus be a novel rational strategy for melanoma-specific treatment. PMID:25294877

  6. Adenosine A2A Receptor Up-Regulates Retinal Wave Frequency via Starburst Amacrine Cells in the Developing Rat Retina

    PubMed Central

    Huang, Pin-Chien; Hsiao, Yu-Tien; Kao, Shao-Yen; Chen, Ching-Feng; Chen, Yu-Chieh; Chiang, Chung-Wei; Lee, Chien-fei; Lu, Juu-Chin; Chern, Yijuang; Wang, Chih-Tien

    2014-01-01

    Background Developing retinas display retinal waves, the patterned spontaneous activity essential for circuit refinement. During the first postnatal week in rodents, retinal waves are mediated by synaptic transmission between starburst amacrine cells (SACs) and retinal ganglion cells (RGCs). The neuromodulator adenosine is essential for the generation of retinal waves. However, the cellular basis underlying adenosine's regulation of retinal waves remains elusive. Here, we investigated whether and how the adenosine A2A receptor (A2AR) regulates retinal waves and whether A2AR regulation of retinal waves acts via presynaptic SACs. Methodology/Principal Findings We showed that A2AR was expressed in the inner plexiform layer and ganglion cell layer of the developing rat retina. Knockdown of A2AR decreased the frequency of spontaneous Ca2+ transients, suggesting that endogenous A2AR may up-regulate wave frequency. To investigate whether A2AR acts via presynaptic SACs, we targeted gene expression to SACs by the metabotropic glutamate receptor type II promoter. Ca2+ transient frequency was increased by expressing wild-type A2AR (A2AR-WT) in SACs, suggesting that A2AR may up-regulate retinal waves via presynaptic SACs. Subsequent patch-clamp recordings on RGCs revealed that presynaptic A2AR-WT increased the frequency of wave-associated postsynaptic currents (PSCs) or depolarizations compared to the control, without changing the RGC's excitability, membrane potentials, or PSC charge. These findings suggest that presynaptic A2AR may not affect the membrane properties of postsynaptic RGCs. In contrast, by expressing the C-terminal truncated A2AR mutant (A2AR-ΔC) in SACs, the wave frequency was reduced compared to the A2AR-WT, but was similar to the control, suggesting that the full-length A2AR in SACs is required for A2AR up-regulation of retinal waves. Conclusions/Significance A2AR up-regulates the frequency of retinal waves via presynaptic SACs, requiring its full

  7. MicroRNA-16 is putatively involved in the NF-κB pathway regulation in ulcerative colitis through adenosine A2a receptor (A2aAR) mRNA targeting

    PubMed Central

    Tian, Ting; Zhou, Yu; Feng, Xiao; Ye, Shicai; Wang, Hao; Wu, Weiyun; Tan, Wenkai; Yu, Caiyuan; Hu, Juxiang; Zheng, Rong; Chen, Zonghao; Pei, Xinyu; Luo, Hesheng

    2016-01-01

    MicroRNAs (miRNAs) act as important post-transcriptional regulators of gene expression by targeting the 3′-untranslated region of their target genes. Altered expression of miR-16 is reported in human ulcerative colitis (UC), but its role in the development of the disease remains unclear. Adenosine through adenosine A2a receptor (A2aAR) could inhibit nuclear factor-kappaB (NF-κB) signaling pathway in inflammation. Here we identified overexpression of miR-16 and down-regulation of A2aAR in the colonic mucosa of active UC patients. We demonstrated that miR-16 negatively regulated the expression of the A2aAR at the post-transcriptional level. Furthermore, transfection of miR-16 mimics promoted nuclear translocation of NF-κB p65 protein and expression of pro-inflammatory cytokines, IFN-γ and IL-8 in colonic epithelial cells. Treatment with miR-16 inhibitor could reverse these effects in cells. The A2aAR-mediated effects of miR-16 on the activation of the NF-κB signaling pathway were confirmed by the A2aAR knockdown assay. Our results suggest that miR-16 regulated the immune and inflammatory responses, at least in part, by suppressing the expression of the A2aAR to control the activation of the NF-κB signaling pathway. PMID:27476546

  8. The role of the A(2A) adenosine receptor subtype in functional hyperaemia in the hindlimb of anaesthetized cats.

    PubMed Central

    Poucher, S M

    1996-01-01

    1. The present study was designed to investigate the contribution of the A(2A) adenosine receptor subtype in the functional hyperaemia response during muscle contraction. 2. In cats anaesthetized with sodium pentobarbitone and breathing spontaneously following tracheotomy, the left sciatic and femoral nerves were electrically stimulated at 3 Hz for 20 min to induce muscle contraction, and hindlimb blood flow was measured with a flow probe. The contribution of the A(2A) adenosine receptor subtype was assessed using ZM 241385, a potent and selective A(2A) adenosine receptor antagonist. 3. In a control group, the muscle isometric tension measured in the extensor digitorum longus-tibialis anterior muscle group was 6.64 +/- 0.66 kg (100 g muscle mass)(-1) and hindlimb vascular conductance was 0.22 +/- 0.03 ml mmHg(-1)(kg body mass)(-1) at 20 min of contraction. Administration of vehicle did not affect these parameters upon a second contraction period: 6.31 +/- 0.61 kg (100 g muscle mass)(-1) and 0.23 +/- 0.03 ml mmHg(-1) (kg body mass)(-1), respectively. Total hindlimb conductance during contraction was unaffected (5.5 +/- 3.7% decrease). 4. ZM 241385 (1.0 mg kg(-1)) did not alter the amount of force produced by the muscle at 20 min of contraction. Hindlimb conductance response was reduced by 27.1 +/- 4.8% following the A(2A) selective adenosine receptor antagonist, similar to that observed with the non-selective antagonist 8-phenyltheophylline. 5. These results show that adenosine acting at the A(2A) subtype receptor can contribute up to 30% of the functional hyperaemia response in the hindlimb of anaesthetized cats. PMID:9019545

  9. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    SciTech Connect

    Alvarez, Enrique; Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M.

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  10. A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32.

    PubMed

    Weis, J H; Morton, C C; Bruns, G A; Weis, J J; Klickstein, L B; Wong, W W; Fearon, D T

    1987-01-01

    The alternative or classical pathways for complement system component C3 may be triggered by microorganisms and antigen-antibody complexes. In particular, an activated fragment of C3, C3b, covalently attaches to microorganisms or antigen-antibody complexes, which in turn bind to the C3b receptor, also known as complement receptor 1. The genes encoding the proteins that constitute the C3-activating enzymes have been cloned and mapped to a "complement activation" locus in the major histocompatibility complex, and we demonstrate in this study such a locus on the long arm of chromosome 1 at band 1q32. PMID:3782802

  11. Deletion of striatal adenosine A(2A) receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning.

    PubMed

    Singer, Philipp; Wei, Catherine J; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K

    2013-04-01

    Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia, especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through (i) the antagonistic interaction with the dopamine D(2) receptor, and (ii) the regulation of glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance, the disturbance of which is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rs in the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI) - behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice, although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning - namely, conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs - a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia. PMID:23276608

  12. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    SciTech Connect

    Kim, Sangsoo Daniel; Antenos, Monica; Squires, E. James; Kirby, Gordon M.

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  13. Molecular Basis of Ligand Dissociation from the Adenosine A2A Receptor.

    PubMed

    Guo, Dong; Pan, Albert C; Dror, Ron O; Mocking, Tamara; Liu, Rongfang; Heitman, Laura H; Shaw, David E; IJzerman, Adriaan P

    2016-05-01

    How drugs dissociate from their targets is largely unknown. We investigated the molecular basis of this process in the adenosine A2Areceptor (A2AR), a prototypical G protein-coupled receptor (GPCR). Through kinetic radioligand binding experiments, we characterized mutant receptors selected based on molecular dynamic simulations of the antagonist ZM241385 dissociating from the A2AR. We discovered mutations that dramatically altered the ligand's dissociation rate despite only marginally influencing its binding affinity, demonstrating that even receptor features with little contribution to affinity may prove critical to the dissociation process. Our results also suggest that ZM241385 follows a multistep dissociation pathway, consecutively interacting with distinct receptor regions, a mechanism that may also be common to many other GPCRs. PMID:26873858

  14. Sulfotransferase genes: Regulation by nuclear receptors in response to xeno/endo-biotics

    PubMed Central

    Kodama, Susumu; Negishi, Masahiko

    2014-01-01

    Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures. PMID:24025090

  15. Form follows function - the three-dimensional structure of antigen receptor gene loci.

    PubMed

    Fugmann, Sebastian D

    2014-04-01

    Antigen receptor genes are assembled during lymphocyte development from individual gene segments by a somatic gene rearrangement process named V(D)J recombination. This process is tightly regulated to ensure the generation of an unbiased broad primary repertoire of immunoglobulins and T cell receptors, and to prevent aberrant recombination products that could initiate lymphomagenesis. One important mode of regulation that has recently been discovered for the immunoglobulin heavy chain (IGH) gene locus is the adoption of distinct three-dimensional structures of the locus. Changes in the spatial conformation are thought to ensure the appropriate access of the V(D)J recombinase machinery at each developmental stage, and the formation of extensive chromosome loops has been implicated in allowing equal access to widely dispersed gene elements. PMID:24549092

  16. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    PubMed

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development. PMID:24585212

  17. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency.

    PubMed

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    BACKGROUND Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. MATERIAL AND METHODS A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. RESULTS The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. CONCLUSIONS Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility. PMID:26915772

  18. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency

    PubMed Central

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    Backgrounds Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. Material/Methods A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. Results The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. Conclusions Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility. PMID:26915772

  19. MAPPING OF TOLL LIKE RECEPTOR (TLR) GENES IN RAINBOW TROUT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize conserved pathogen structures to induce innate immune effector molecules. In vertebrates, TLRs can distinguish among classes of pathogens and serve an important role in orchestrating the appropriate adaptive immune resp...

  20. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  1. Chx10 Consolidates V2a Interneuron Identity through Two Distinct Gene Repression Modes.

    PubMed

    Clovis, Yoanne M; Seo, So Yeon; Kwon, Ji-Sun; Rhee, Jennifer C; Yeo, Sujeong; Lee, Jae W; Lee, Seunghee; Lee, Soo-Kyung

    2016-08-01

    During development, two cell types born from closely related progenitor pools often express identical transcriptional regulators despite their completely distinct characteristics. This phenomenon implies the need for a mechanism that operates to segregate the identities of the two cell types throughout differentiation after initial fate commitment. To understand this mechanism, we investigated the fate specification of spinal V2a interneurons, which share important developmental genes with motor neurons (MNs). We demonstrate that the paired homeodomain factor Chx10 functions as a critical determinant for V2a fate and is required to consolidate V2a identity in postmitotic neurons. Chx10 actively promotes V2a fate, downstream of the LIM-homeodomain factor Lhx3, while concomitantly suppressing the MN developmental program by preventing the MN-specific transcription complex from binding and activating MN genes. This dual activity enables Chx10 to effectively separate the V2a and MN pathways. Our study uncovers a widely applicable gene regulatory principle for segregating related cell fates. PMID:27477290

  2. A network of autism linked genes stabilizes two pools of synaptic GABAA receptors

    PubMed Central

    Tong, Xia-Jing; Hu, Zhitao; Liu, Yu; Anderson, Dorian; Kaplan, Joshua M

    2015-01-01

    Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABAA receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABAA receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABAA receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. DOI: http://dx.doi.org/10.7554/eLife.09648.001 PMID:26575289

  3. A network of autism linked genes stabilizes two pools of synaptic GABA(A) receptors.

    PubMed

    Tong, Xia-Jing; Hu, Zhitao; Liu, Yu; Anderson, Dorian; Kaplan, Joshua M

    2015-01-01

    Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABA(A) receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABA(A) receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABA(A) receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD. PMID:26575289

  4. Identification of liver receptor homolog-1 as a novel regulator of apolipoprotein AI gene transcription.

    PubMed

    Delerive, Philippe; Galardi, Cristin M; Bisi, John E; Nicodeme, Edwige; Goodwin, Bryan

    2004-10-01

    The orphan nuclear receptor liver receptor homolog-1 (LRH-1) has been reported to play a role in bile acid biosynthesis and reverse cholesterol transport. In this study, we examined the role of LRH-1 in the regulation of the apolipoprotein AI (APOAI) gene. Using RNA interference and adenovirus-mediated overexpression, we show that LRH-1 directly regulates APOAI gene transcription. Transient transfection experiments and EMSAs revealed that LRH-1 directly regulates APOAI transcription by binding to an LRH-1 response element located in the proximal APOAI promoter region. Chromatin immunoprecipitation experiments revealed that LRH-1 binds to the human APO AI promoter in vivo. Finally, we show that the transcriptional repressor SHP (small heterodimer partner) suppressed APOAI gene expression by inhibiting LRH-1 transcriptional activity. Taken together, our results demonstrate that LRH-1 is a novel regulator of APOAI transcription and underscore the role of this receptor in cholesterol homeostasis. PMID:15218078

  5. Acquisition of a functional T cell receptor during T lymphocyte development is enforced by HEB and E2A transcription factors.

    PubMed

    Jones, Mary Elizabeth; Zhuang, Yuan

    2007-12-01

    The T cell receptor (TCR) is required for positive selection and the subsequent transition from the CD4(+)CD8(+) double-positive (DP) to the CD4(+) or CD8(+) single-positive (SP) stage of alphabeta T cell development. The molecular mechanism that maintains DP fate prior to the acquisition of a functional TCR is not clear. We have shown here that the structurally and functionally related transcription factors HEB and E2A work together to maintain DP fate and to control the DP to SP transition. Simultaneous deletion of HEB and E2A in DP thymocytes was sufficient for DP to SP transition independent of TCR. Loss of HEB and E2A allowed DP cells to bypass the requirement for TCR-mediated positive selection, downregulate DP-associated genes, and upregulate SP-specific genes. These results identify HEB and E2A as the gatekeepers that maintain cells at the DP stage of development until a functional alphabetaTCR is produced. PMID:18093538

  6. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression

    PubMed Central

    Meinel, Sandra; Ruhs, Stefanie; Schumann, Katja; Strätz, Nicole; Trenkmann, Kay; Schreier, Barbara; Grosse, Ivo; Keilwagen, Jens; Gekle, Michael; Grossmann, Claudia

    2013-01-01

    The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1–MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes. PMID:23821666

  7. Molecular cloning and functional analysis of Photobacterium damselae subsp. piscicida haem receptor gene.

    PubMed

    Naka, H; Hirono, I; Aoki, T

    2005-02-01

    A haem receptor gene from Photobacterium damselae subsp. piscicida (formerly known as Pasteurella piscicida) has been cloned, sequenced and analysed for its function. The gene, designated as pph, has an open reading frame consisting of 2154 bp, a predicted 718 amino acid residues and exists as a single copy. It is homologous with the haem receptors of Vibrio anguillarum hupA, V. cholerae hutA, V. mimicus mhuA and V. vulnificus hupA at 32.7, 32.7, 45.6 and 30.9%, respectively, and is highly conserved, consisting of a Phe-Arg-Ala-Pro sequence (FRAP), an iron transport related molecule (TonB) and a Asn-Pron-Asn-Leu sequence (NPNL), binding motifs associated with haem receptors. As a single gene knockout mutant P. damselae subsp. piscicida was able to bind haem in the absence of pph, suggesting that other receptors may be involved in its iron transport system. This study shows that the P. damselae subsp. piscicida pph belongs to the haem receptor family, is conserved and that its iron-binding system may involve more than one receptor. PMID:15705153

  8. SSRI augmentation of antipsychotic alters expression of GABA(A) receptor and related genes in PMC of schizophrenia patients.

    PubMed

    Silver, Henry; Susser, Ehud; Danovich, Lena; Bilker, Warren; Youdim, Moussa; Goldin, Vladimir; Weinreb, Orly

    2011-06-01

    Clinical studies have shown that negative symptoms of schizophrenia unresponsive to antipsychotic given alone can improve after augmentation with SSRI antidepressant. Laboratory investigations into the mechanism of this synergism showed that co-administration of SSRI and antipsychotic produces changes in GABA(A) receptor and related systems, which differ from the effects of each drug alone. To examine the clinical relevance of these findings, the current study examined the effects of SSRI augmentation treatment on GABA(A) receptor and related systems in schizophrenia patients. Schizophrenia patients with high levels of negative symptoms unresponsive to antipsychotic treatment received add-on fluvoxamine (100 mg/d). Blood was taken before and 1, 3 and 6 wk after adding fluvoxamine and peripheral mononuclear cells (PMC) isolated. RNA encoding for GABA(A)β3, 5-HT2A, and 5-HT7 receptors, PKCβ2, and brain-derived neurotrophic factor (BDNF) was assayed with real-time RT-PCR. Plasma BDNF protein was assayed using ELISA. Clinical symptoms were assessed with validated rating scales. We found significant increase in mRNA encoding for GABA(A)β3 and 5-HT2A, 5-HT7 receptors and BDNF and a reduction in PKCβ2 mRNA. Plasma BDNF protein concentrations were increased. There were significant correlations among the genes. Clinical symptoms improved significantly. mRNA expression of PKCβ2, 5-HT2A and 5-HT7 showed significant associations with clinical symptoms. Combined SSRI+antipsychotic treatment is associated with changes in GABA(A) receptor and in related signalling systems in patients. These changes may be part of the mechanism of clinically effective drug action and may prove to be biomarkers of pharmacological response. PMID:21208484

  9. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    PubMed Central

    2008-01-01

    Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs) showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains) and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events). RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate tetraploidizations forming a

  10. Dopamine D4 receptor gene polymorphism and personality traits in healthy volunteers.

    PubMed

    Persson, M L; Wasserman, D; Geijer, T; Frisch, A; Rockah, R; Michaelovsky, E; Apter, A; Weizman, A; Jönsson, E G; Bergman, H

    2000-01-01

    An association between long alleles of a variable number tandem repeat (VNTR) polymorphism in the dopamine receptor D4 gene and the extraversion related personality traits Excitement and Novelty Seeking has been reported in healthy subjects. In an attempt to replicate the previous findings, 256 healthy Caucasian volunteers were analysed for a potential relationship between the dopamine receptor D4 exon III VNTR polymorphism and Extraversion as assessed by the Revised Neo Personality Inventory (NEO PI-R). The present study did not yield evidence for an association between Extraversion and the dopamine receptor D4 polymorphism. PMID:11009073

  11. Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression

    PubMed Central

    Zou, Zhen; Saha, Tusar T.; Roy, Sourav; Shin, Sang Woon; Backman, Tyler W. H.; Girke, Thomas; White, Kevin P.; Raikhel, Alexander S.

    2013-01-01

    Juvenile hormone III (JH) plays a key role in regulating the reproduction of female mosquitoes. Microarray time-course analysis revealed dynamic changes in gene expression during posteclosion (PE) development in the fat body of female Aedes aegypti. Hierarchical clustering identified three major gene clusters: 1,843 early-PE (EPE) genes maximally expressed at 6 h PE, 457 mid-PE (MPE) genes at 24 h PE, and 1,815 late-PE (LPE) genes at 66 h PE. The RNAi microarray screen for the JH receptor Methoprene-tolerant (Met) showed that 27% of EPE and 40% of MPE genes were up-regulated whereas 36% of LPE genes were down-regulated in the absence of this receptor. Met repression of EPE and MPE and activation of LPE genes were validated by an in vitro fat-body culture experiment using Met RNAi. Sequence motif analysis revealed the consensus for a 9-mer Met-binding motif, CACGC/TGA/GT/AG. Met-binding motif variants were overrepresented within the first 300 bases of the promoters of Met RNAi–down-regulated (LPE) genes but not in Met RNAi–up-regulated (EPE) genes. EMSAs using a combination of mutational and anti-Met antibody supershift analyses confirmed the binding properties of the Met consensus motif variants. There was a striking temporal separation of expression profiles among major functional gene groups, with carbohydrate, lipid, and xenobiotics metabolism belonging to the EPE and MPE clusters and transcription and translation to the LPE cluster. This study represents a significant advancement in the understanding of the regulation of gene expression by JH and its receptor Met during female mosquito reproduction. PMID:23633570

  12. A region of the rat N-methyl-D-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters.

    PubMed

    Grant, E R; Guttmann, R P; Seifert, K M; Lynch, D R

    2001-09-01

    N-methyl-D-aspartate (NMDA) receptors are modulated by protein kinase C (PKC) in vivo and in heterologous expression systems. In heterologous expression systems, PKC-mediated modulation is subunit specific with NR2A-containing receptors being potentiated by phorbol 12-myristate 13-acetate (PMA), while NR2C-containing receptors are inhibited or unaffected. In the present study we have produced chimeric receptors containing NR2A and NR2C to define the components of NR2A which are sufficient for potentiation by PMA. Amino acids 1105-1400 of NR2A placed onto the C-terminus of NR2C at amino acid 1102 was the minimum region sufficient for producing a PMA-stimulated receptor. This suggests that this region contains structural determinants for PKC-mediated potentiation of NR2A receptors. PMID:11524145

  13. Generation of systemin signaling in tobacco by transformation with the tomato systemin receptor kinase gene

    PubMed Central

    Scheer, Justin M.; Pearce, Gregory; Ryan, Clarence A.

    2003-01-01

    The tomato systemin receptor, SR160, a plasma membrane-bound, leucine-rich repeat receptor kinase that signals systemic plant defense, and the brassinolide (BL) receptor, BRI1, that regulates developmental processes, have been shown recently to have identical amino acid sequences. We report herein that tobacco, a solanaceous species that does not express a systemin precursor gene nor responds to systemin, when transformed with the SR160 receptor gene, expresses the gene in suspension-cultured cells, evidenced by mRNA and protein analyses and photoaffinity-labeling experiments. Additionally, systemin induced an alkalinization response in the transgenic tobacco cells similar to that found in tomato cells, but not in WT cells. The gain in function in tobacco cells indicates that early steps of the systemin signaling pathway found in tomato are present in tobacco cells. A tomato line, cu-3, in which a mutation in the BRI1 gene has rendered the plant nonfunctional in BL signaling, exhibits a severely reduced response to systemin. In leaves of WT tomato plants, BL strongly and reversibly antagonized systemic signaling by systemin. The results suggest that the systemin-mediated systemic defense response may have evolved in some solanaceous species by co-opting the BRI1 receptor and associated components for defense signaling. PMID:12900501

  14. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation.

    PubMed Central

    Macke, J P; Hu, N; Hu, S; Bailey, M; King, V L; Brown, T; Hamer, D; Nathans, J

    1993-01-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, we have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser205-to-arg and glu793-to-asp, the biological significance of which is unknown. Images Figure 2 PMID:8213813

  15. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum

    PubMed Central

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid. PMID:27090020

  16. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    SciTech Connect

    Macke, J.P.; Nathans, J.; King, V.L. ); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. ); Brown, T. )

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  17. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum.

    PubMed

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid. PMID:27090020

  18. Localization of the receptor gene for type D simian retroviruses on human chromosome 19.

    PubMed Central

    Sommerfelt, M A; Williams, B P; McKnight, A; Goodfellow, P N; Weiss, R A

    1990-01-01

    Simian retrovirus (SRV) serotypes 1 to 5 are exogenous type D viruses causing immune suppression in macaque monkeys. These viruses exhibit receptor interference with each other, with two endogenous type D viruses of the langur (PO-1-Lu) and squirrel monkey, and with two type C retroviruses, feline endogenous virus (RD114/CCC) and baboon endogenous virus (BaEV), indicating that each utilizes the same cell surface receptor (M. A. Sommerfelt and R. A. Weiss, Virology 176:58-69, 1990). Vesicular stomatitis virus pseudotype particles bearing envelope glycoproteins of RD114, BaEV, and the seven SRV strains were employed to detect receptors expressed in human-rodent somatic cell hybrids segregating human chromosomes. The only human chromosome common to all the susceptible hybrids was chromosome 19. By using hybrids retaining different fragments of chromosome 19, a provisional subchromosomal localization of the receptor gene was made to 19q13.1-13.2. Antibodies previously reported to be specific to a BaEV receptor (L. Thiry, J. Cogniaux-Leclerc, R. Olislager, S. Sprecher-Goldberger, and P. Burkens, J. Virol. 48:697-708, 1983) did not block BaEV, RD114, or SRV pseudotypes or syncytia. Antibodies to known surface markers determined by genes mapped to chromosome 19 did not block virus-receptor interaction. The identity of the receptor remains to be determined. PMID:2173788

  19. Mammalian Lysine Histone Demethylase KDM2A Regulates E2F1-Mediated Gene Transcription in Breast Cancer Cells

    PubMed Central

    Rizwani, Wasia; Schaal, Courtney; Kunigal, Sateesh; Coppola, Domenico; Chellappan, Srikumar

    2014-01-01

    It is established that histone modifications like acetylation, methylation, phosphorylation and ubiquitination affect chromatin structure and modulate gene expression. Lysine methylation/demethylation on Histone H3 and H4 is known to affect transcription and is mediated by histone methyl transferases and histone demethylases. KDM2A/JHDM1A/FBXL11 is a JmjC-containing histone demethylase that targets mono- and dimethylated Lys36 residues of Histone H3; its function in breast cancer is not fully understood. Here we show that KDM2A is strongly expressed in myoepithelial cells (MEPC) in breast cancer tissues by immunohistochemistry. Ductal cells from ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) show positive staining for KDM2A, the expression decreases with disease progression to metastasis. Since breast MEPCs have tumor-suppressive and anti-angiogenic properties, we hypothesized that KDM2A could be contributing to some of these functions. Silencing KDM2A with small interfering RNAs demonstrated increased invasion and migration of breast cancer cells by suppressing a subset of matrix metalloproteinases (MMP-2, -9, -14 and -15), as seen by real-time PCR. HUVEC cells showed increased angiogenic tubule formation ability in the absence of KDM2A, with a concomitant increase in the expression of VEGF receptors, FLT-1 and KDR. KDM2A physically bound to both Rb and E2F1 in a cell cycle dependent manner and repressed E2F1 transcriptional activity. Chromatin immunoprecipitation (ChIP) assays revealed that KDM2A associates with E2F1-regulated proliferative promoters CDC25A and TS in early G-phase and dissociates in S-phase. Further, KDM2A could also be detected on MMP9, 14 and 15 promoters, as well as promoters of FLT1 and KDR. KDM2A could suppress E2F1-mediated induction of these promoters in transient transfection experiments. These results suggest a regulatory role for KDM2A in breast cancer cell invasion and migration, through the regulation of E2F1

  20. Improving lipoprotein profiles by liver-directed gene transfer of low density lipoprotein receptor gene in hypercholesterolaemia mice.

    PubMed

    Ou, Hailong; Zhang, Qinghai; Zeng, Jia

    2016-06-01

    The defect of low density lipoprotein receptor disturbs cholesterol metabolism and causes familial hypercholesterolaemia (FH). In this study, we directly delivered exogenous Ldlr gene into the liver of FH model mice (Ldlr(-/-)) by lentiviral gene transfer system. The results showed that the Ldlr gene controlled by hepatocyte-specific human thyroxine-binding globulin (TBG) promoter successfully and exclusively expressed in livers.We found that, although, the content of high density lipoprotein in serum was not significantly affected by the Ldlr gene expression, the serum low density lipoprotein level was reduced by 46%, associated with a 30% and 28% decrease in triglyceride and total cholesterol, respectively, compared to uninjected Ldlr(-/-) mice. Moreover, the TBG directed expression of Ldlr significantly decreased the lipid accumulation in liver and reduced plaque burden in aorta (32%). Our results indicated that the hepatocyte-specific expression of Ldlr gene strikingly lowered serum lipid levels and resulted in amelioration of hypercholesterolaemia. PMID:27350674

  1. Possible association between the prolactin receptor gene and callous-unemotional traits among aggressive children.

    PubMed

    Hirata, Yuko; Zai, Clement C; Nowrouzi, Behdin; Shaikh, Sajid A; Kennedy, James L; Beitchman, Joe H

    2016-02-01

    This study examined the possible association between prolactin (PRL) system genes and callous-unemotional (CU) traits in childhood-onset aggression. Two markers for the PRL peptide gene and three markers for the prolactin receptor (PRLR) gene were genotyped. The participants were assessed on the CU subscale using five items from the Antisocial Process Screening Device. Genotype analysis showed nominally significant results with PRLR_rs187490 (uncorrected P=0.01), with the GG genotype associated with higher CU scores. This is the first paper to evaluate the relationship of PRL system genes with CU traits in childhood-onset aggression. PMID:26513615

  2. Evidence for a previously unidentified upstream exon in the human oestrogen receptor gene.

    PubMed

    Keaveney, M; Klug, J; Dawson, M T; Nestor, P V; Neilan, J G; Forde, R C; Gannon, F

    1991-02-01

    The presence of a previously unidentified exon upstream of the originally described human oestrogen receptor (hOR) gene is demonstrated. This is shown to be spliced to the 5' untranslated region of the previously designated exon I. The resulting genomic structure of the human gene is thus in agreement with the structure of the mouse OR gene and highlights the conservation of an 18 amino acid upstream open-reading frame formed from the above splicing event. Taken in conjunction with previous publications this would suggest that the hOR gene is a complex transcriptional unit that contains two promoters. PMID:2015052

  3. An Indian girl with Fanconi-Bickel syndrome without SLC2A2 gene mutation

    PubMed Central

    Dayal, Devi; Dekate, Parag; Sharda, Sheetal; Das, Ashim; Attri, Savita

    2013-01-01

    Fanconi-Bickel syndrome is a rare autosomal-recessive disorder caused by defects in the facilitative glucose transporter 2 (GLUT2) gene. It is characterized by hepatorenal glycogen accumulation, tubular nephropathy and impaired utilization of glucose and galactose. In this communication, we present the case of a 5-year-old girl who presented with deforming rickets and massive hepatomegaly. Liver biopsy confirmed the diagnosis of glycogen storage disorder. However, the mutation of the SLC2A2 (GLUT2) gene was not found. Mutation negative patients with characteristic Fanconi-Bickel syndrome phenotype suggest additional underlying mechanisms that need exploration.

  4. Potential of GRID2 receptor gene for preventing TNF-induced neurodegeneration in autism.

    PubMed

    Kalkan, Zeynep; Durasi, İlknur Melis; Sezerman, Ugur; Atasever-Arslan, Belkis

    2016-05-01

    Autism is one of the most common subtypes of autism spectrum disorder (ASD). Recent studies suggested a relationship between immune-dependent coding genes and ASD, indicating that long term neuroimmunological anomalies affect brain development and synaptic transmission among neural networks. Furthermore, various studies focused on biomarker potential of TNF-α in autism. Ionotropic receptors are also studied as potential marker for autism since altered gene expression levels are observed in autistic patients. GRID2 is a candidate ionotropic receptor which is involved glutamate transfer. In this study, to propose TNF-α dependent cellular processes involved in autism aetiology in relation to GRID2 we performed a bioinformatic network analysis and identified potential pathways and genes that are involved in TNF-α induced changes at GRID2 receptor levels. As a result, we ascertained the GRID2 receptor gene as a candidate gene and further studied the association between GRID2 expression levels and TNF-induced neurodegeneration. Our bioinformatic analyses and experimental results revealed that TNF-α regulates GRID2 gene expression by activating Cdc42 and GOPC genes. Moreover, increased TNF-α levels leads to increase of caspase-3 protein levels triggering neuronal apoptosis leading to neuronal deficiency, which is one of the major symptoms of autism. The study is the first to show the role of TNF-α in regulation of GRID2 gene expression and its signalling pathway. As a result, GRID2 gene can be a suppressor in TNF-induced neurodegeneration which may help to understand the main factors leading to autism. PMID:27019035

  5. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A) suppressed during prolonged physical inactivity (sitting)

    PubMed Central

    2012-01-01

    Background Partly because of functional genomics, there has been a major paradigm shift from solely thinking of skeletal muscle as contractile machinery to an understanding that it can have roles in paracrine and endocrine functions. Physical inactivity is an established risk factor for some blood clotting disorders. The effects of inactivity during sitting are most alarming when a person develops the enigmatic condition in the legs called deep venous thrombosis (DVT) or “coach syndrome,” caused in part by muscular inactivity. The goal of this study was to determine if skeletal muscle expresses genes with roles in hemostasis and if their expression level was responsive to muscular inactivity such as occurs in prolonged sitting. Methods Microarray analyses were performed on skeletal muscle samples from rats and humans to identify genes associated with hemostatic function that were significantly expressed above background based on multiple probe sets with perfect and mismatch sequences. Furthermore, we determined if any of these genes were responsive to models of physical inactivity. Multiple criteria were used to determine differential expression including significant expression above background, fold change, and non-parametric statistical tests. Results These studies demonstrate skeletal muscle tissue expresses at least 17 genes involved in hemostasis. These include the fibrinolytic factors tetranectin, annexin A2, and tPA; the anti-coagulant factors TFPI, protein C receptor, PAF acetylhydrolase; coagulation factors, and genes necessary for the posttranslational modification of these coagulation factors such as vitamin K epoxide reductase. Of special interest, lipid phosphate phosphatase-1 (LPP1/PAP2A), a key gene for degrading prothrombotic and proinflammatory lysophospholipids, was suppressed locally in muscle tissue within hours after sitting in humans; this was also observed after acute and chronic physical inactivity conditions in rats, and exercise was

  6. Interactions between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice.

    PubMed

    Assem, Mahfoud; Schuetz, Erin G; Leggas, Markos; Sun, Daxi; Yasuda, Kazuto; Reid, Glen; Zelcer, Noam; Adachi, Masashi; Strom, Stephen; Evans, Ronald M; Moore, David D; Borst, Piet; Schuetz, John D

    2004-05-21

    The ABC transporter, Mrp4, transports the sulfated steroid DHEA-s, and sulfated bile acids interact with Mrp4 with high affinity. Hepatic Mrp4 levels are low, but increase under cholestatic conditions. We therefore inferred that up-regulation of Mrp4 during cholestasis is a compensatory mechanism to protect the liver from accumulation of hydrophobic bile acids. We determined that the nuclear receptor CAR is required to coordinately up-regulate hepatic expression of Mrp4 and an enzyme known to sulfate hydroxy-bile acids and steroids, Sult2a1. CAR activators increased Mrp4 and Sult2a1 expression in primary human hepatocytes and HepG2, a human liver cell line. Sult2a1 was down-regulated in Mrp4-null mice, further indicating an inter-relation between Mrp4 and Sult2a1 gene expression. Based on the hydrophilic nature of sulfated bile acids and the Mrp4 capability to transport sulfated steroids, our findings suggest that Mrp4 and Sult2a1 participate in an integrated pathway mediating elimination of sulfated steroid and bile acid metabolites from the liver. PMID:15004017

  7. Mutations in Melanocortin-3 Receptor Gene and Human Obesity.

    PubMed

    Yang, Z; Tao, Y-X

    2016-01-01

    The prevalence of obesity calls for novel therapeutic targets. The melanocortin-3 receptor (MC3R) has been increasingly recognized as an important regulator of energy homeostasis and MC3R has been intensively analyzed in molecular genetic studies for obesity-related traits. Twenty-seven MC3R mutations and two common polymorphic variants have been identified so far in different cohorts. The mutant MC3Rs demonstrate multiple defects in functional analysis and can be cataloged into different classes according to receptor life cycle based classification system. Although the pathogenic role of MC3R in human obesity remains controversial, recent findings in the noncanonical signaling pathway of MC3R mutants have provided new insights. Potential therapeutic strategies for obesity related to MC3R mutations are highlighted. PMID:27288827

  8. Identification and characterization of a ubiquitinconjugating enzyme UBE2A gene from lamprey.

    PubMed

    Chen, Liyong; Wu, Fenfang; Feng, Bo

    2016-02-01

    Ubiquitin-conjugating enzymes (E2s) play an important role in the mechanism of ubiquitin transfer. Although in most species many of these enzymes share high sequence and structural conservation, their existence and functions in the lamprey remain unknown. In this study, we identified and characterized a ubiquitin-conjugating enzyme (UBE2A)-like gene in lamprey. The gene, designated as LaUBE2A, contained a 456-bp open reading frame encoding a 152-amino acid protein with a typical UBC domain. Real-time PCR assay showed that LaUBE2A was expressed in various tissues of the adult lamprey, with higher levels in the leukocytes and muscle and lower levels in the skin and liver. The high conservation in amino acid sequence between LaUBE2A and UBE2As from Homo sapiens, Mus musculus, Cavia porcellus, and Alligator sinensi implied that the function of LaUBE2A may be similar to that of UBE2A. PMID:26463350

  9. E2a-Pbx1 induces aberrant expression of tissue-specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts.

    PubMed Central

    Fu, X; Kamps, M P

    1997-01-01

    The E2a-Pbx1 oncoprotein contains the transactivation domain of E2a joined to the DNA-binding homeodomain (HD) of Pbx1. In mice, E2a-Pbx1 transforms T lymphoblasts and fibroblasts and blocks myeloblast differentiation. Pbx1 and E2a-Pbx1 bind DNA as heterodimers with other HD proteins whose expression is tissue specific. While the transactivation domain of E2a is required for all forms of transformation, DNA binding by the Pbx1 HD is essential for blocking myeloblast differentiation but dispensable for fibroblast or T-lymphoblast transformation. These properties suggest (i) that E2a-Pbx1 causes cellular transformation by activating gene transcription, (ii) that transcription of E2a-Pbx1 target genes is normally regulated by ubiquitous Pbx proteins and tissue-specific partners, and (iii) that DNA-binding mutants of E2a-Pbx1 activate a subset of all gene targets. To test these predictions, genes induced in NIH 3T3 fibroblasts by E2a-Pbx1 were identified and examined for tissue- and stage-specific expression and their differential abilities to be upregulated by E2a-Pbx1 in NIH 3T3 fibroblasts and myeloblasts and by a DNA-binding mutant of E2a-Pbx1 in NIH 3T3 cells. Of 12 RNAs induced by E2a-Pbx1, 4 encoded known proteins (a J-C region of the immunoglobulin kappa light chain, natriuretic peptide receptor C, mitochondrial fumarase, and the 3',5'-cyclic nucleotide phosphodiesterase, PDE1A) and 5 encoded new proteins related to angiogenin, ion channels, villin, epidermal growth factor repeat proteins, and the human 2.19 gene product. Expression of many of these genes was tissue specific or developmentally regulated, and most were not expressed in fibroblasts, indicating that E2a-Pbx1 can induce ectopic expression of genes associated with lineage-specific differentiation. PMID:9032278

  10. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering.

    PubMed

    Li, Yun-He; Wu, Qing-Song; Huang, Xia; Liu, Sheng-Hui; Zhang, Hong-Na; Zhang, Zhi; Sun, Guang-Ming

    2016-01-01

    Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5' flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1-9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1-4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon. PMID:27252725

  11. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering

    PubMed Central

    Li, Yun-He; Wu, Qing-Song; Huang, Xia; Liu, Sheng-Hui; Zhang, Hong-Na; Zhang, Zhi; Sun, Guang-Ming

    2016-01-01

    Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5′ flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1–9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1–4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon. PMID:27252725

  12. The Transient Receptor Potential Channel TRPM8 Is Inhibited via the α2A Adrenoreceptor Signaling Pathway*

    PubMed Central

    Bavencoffe, Alexis; Gkika, Dimitra; Kondratskyi, Artem; Beck, Benjamin; Borowiec, Anne-Sophie; Bidaux, Gabriel; Busserolles, Jérôme; Eschalier, Alain; Shuba, Yaroslav; Skryma, Roman; Prevarskaya, Natalia

    2010-01-01

    The transient receptor potential channel melastatin member 8 (TRPM8) is expressed in sensory neurons, where it constitutes the main receptor of environmental innocuous cold (10–25 °C). Among several types of G protein-coupled receptors expressed in sensory neurons, Gi-coupled α2A-adrenoreceptor (α2A-AR), is known to be involved in thermoregulation; however, the underlying molecular mechanisms remain poorly understood. Here we demonstrated that stimulation of α2A-AR inhibited TRPM8 in sensory neurons from rat dorsal root ganglia (DRG). In addition, using specific pharmacological and molecular tools combined with patch-clamp current recordings, we found that in heterologously expressed HEK-293 (human embryonic kidney) cells, TRPM8 channel is inhibited by the Gi protein/adenylate cyclase (AC)/cAMP/protein kinase A (PKA) signaling cascade. We further identified the TRPM8 S9 and T17 as two key PKA phosphorylation sites regulating TRPM8 channel activity. We therefore propose that inhibition of TRPM8 through the α2A-AR signaling cascade could constitute a new mechanism of modulation of thermosensation in both physiological and pathological conditions. PMID:20110357

  13. The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression

    PubMed Central

    Beischlag, Timothy V.; Morales, J. Luis; Hollingshead, Brett D.; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription. PMID:18540824

  14. Differentiation of Murine Embryonic Stem Cells Induces Progesterone Receptor Gene Expression

    PubMed Central

    Sauter, Carley N.; McDermid, Rebecca L.; Weinberg, Amy L.; Greco, Tamara L.; Xu, Xiaojie; Murdoch, Fern E.; Fritsch, Michael K.

    2005-01-01

    The role of steroid hormone receptors in very early embryonic development remains unknown. Clearly, expression during organogenesis is important for tissue-specific development. However, progesterone receptor (PR) and estrogen receptors (ERα, ERβ), are expressed during early development through the blastocyst stage in mice and other species, and yet are not essential for embryonic viability. We have utilized the mouse embryonic stem (mES) cell model to investigate the regulated expression of these receptors during differentiation. Surprisingly, one of the earliest changes in gene expression in response to a differentiation signal observed is PR gene induction. It parallels the time course of expression for the patterning genes Hoxb1 and Hoxa5. Unexpectedly, PR gene expression is not regulated in an estrogen dependent manner by endogenous ERs or by transiently overexpressed ERα. Our results suggest a potentially novel mechanism of PR gene regulation within mES cells compared to adult tissues and the possibility of unique targets of PR action during early mES cell differentiation PMID:16223481

  15. The 5' region of the human thromboxane A(2) receptor gene.

    PubMed

    Saffak, T; Nüsing, R M

    2002-07-01

    Thromboxane is an important modulator of hemostasis and smooth muscle tonus and signals via G-protein-coupled thromboxane receptor. Previously, we characterized the TP receptor gene and suggested the presence of three promoter regions within the gene. The aim of the present study was to examine the regulation of transcriptional gene expression. By primer extension experiments the major transcription initiation site was shown to be a doublet at -160/165 bp upstream of the ATG codon in human megakaryoblastic MEG-01 cells, endothelial ECV 304 cells and in human myometrium smooth muscle cells. In the erythroleukemic HEL 1 cells transcription initiation site was identified at -10 bp. Transcriptional activity of the three 5'flanking regions of TP receptor gene representing the putative promoter regions was evaluated by transfection of MEG-01 cells with chimeric constructs containing luciferase gene-encoding sequence. Promoter region I displayed highest transcriptional activity and RT-PCR analysis confirmed the transcription of TP receptor mRNA driven by promoter I. Although, weak transcriptional activity was also observed regarding promoter region II, we were unable to amplify cDNA fragments representing promoter II-driven mRNA synthesis. Considering promoter region III, transcriptional activity was barely detectable. Various deletions of the 3.9 kb promoter I region revealed a size-dependent transcriptional activity. Further, for full activity a 'core' promoter corresponding to the region from -160/165 to -588 bp appeared to be necessary for full transcriptional activity of promoter 1. PMID:12213432

  16. Genetic variant in DIP2A gene is associated with developmental dyslexia in Chinese population.

    PubMed

    Kong, Rui; Shao, Shanshan; Wang, Jia; Zhang, Xiaohui; Guo, Shengnan; Zou, Li; Zhong, Rong; Lou, Jiao; Zhou, Jie; Zhang, Jiajia; Song, Ranran

    2016-03-01

    Increasing evidence suggests that there is a substantial heritable component including several risk loci and candidate genes for developmental dyslexia (DD). DIP2A has been identified to be partially deleted on chromosome region 21q22.3, which cosegregates with DD. And it fits into a theoretical molecular network of DD implicated in the development of DD. Compared with some DD candidate genes that have been extensively studied (e.g., DYX1C1, DCDC2, KIAA0319, and ROBO1), very little is known about the association between candidate gene DIP2A and DD susceptibility. And given the linguistic and genetic differences between Chinese and other Western populations, it is worthwhile validating the association of DIP2A in Chinese dyslexic children. Here, we investigated two genetic variants, selected by bioinformatics analysis, in DIP2A in a Chinese population with 409 dyslexic cases and 410 healthy controls. We observed a significantly increased DD risk associated with rs2255526 G allele (OR = 1.297, 95% CI = 1.036-1.623, Padjusted  = 0.023) and GG genotypes (OR = 1.833, 95% CI = 1.043-3.223, Padjusted  = 0.035), compared with their wild-type counterparts. In addition, it was marginally significantly associated with DD under the recessive model (OR = 1.677, 95% CI = 0.967-2.908, Padjusted  = 0.066) and the dominant model (OR = 1.314, 95% CI = 0.992-1.741, Padjusted  = 0.057). However, we found no evidence of an association of SNP rs16979358 with DD. In conclusion, this study showed that a genetic variant in the DIP2A gene was associated with increased DD risk in China. PMID:26452339

  17. Cell-specific expression of plant histone H2A genes.

    PubMed Central

    Koning, A J; Tanimoto, E Y; Kiehne, K; Rost, T; Comai, L

    1991-01-01

    Histone H2A is a component of eukaryotic chromatin whose expression has not been studied in plants. We isolated and characterized a tomato and a pea cDNA encoding histone H2A. We found that in tomato H2A is encoded by a small gene family and that both the pea and the tomato mRNAs are polyadenylated. Tomato H2A has 82% amino acid residue identity to pea H2A, 83% to wheat, and 65% to human and yeast H2A. Plant H2As differ from fungal and animal H2As in their amino-terminal and carboxy-terminal regions. Carboxy-terminal plant H2A regions contain the motif SPKK, a peptide implicated in binding of A/T-rich DNA regions. By using RNA gel blot analysis, we determined that the steady-state mRNA level of these genes was abundant in apices and early developing fruit and very low in mature tissues. In situ RNA hybridization showed strong spatial regulation because the mRNA was abundant in some cells and not detectable in others. In tomato shoot tips, H2A-expressing cells were distributed irregularly in or near meristems. In tomato or pea root tips, expressing cells were concentrated near the apex, and their distribution was consistent with that expected of cycling cells. Other H2A transcripts were found in nondividing cortical cells that are known to undergo endoduplication during the late maturation phase of primary development. PMID:1841722

  18. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms

    PubMed Central

    Leal, Walter S.; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S. B.; Ueira-Vieira, Carlos

    2013-01-01

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito’s main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, “plus-C” odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito. PMID:24167245

  19. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees

    SciTech Connect

    Coon, H.; Byerley, W.; Holik, J.; Hoff, M.; Myles-Worsley, M.; Plaetke, R. ); Lannfelt, L. ); Sokoloff, P.; Schwartz, J.C. ); Waldo, M.; Freedman, R. )

    1993-02-01

    Alterations in dopamine neurotransmission have been strongly implicated in the pathogenesis of schizophrenia for nearly 2 decades. Recently, the genes for five dopamine receptors have been cloned and characterized, and genetic and physical map information has become available. Using these five loci as candidate genes, the authors have tested for genetic linkage to schizophrenia in nine multigenerational families which include multiple affected individuals. In addition to testing conservative disease models, the have used a neurophysiological indicator variable, the P50 auditory evoked response. Deficits in gating of the P50 response have been shown to segregate with schizophrenia in this sample and may identify carriers of gene(s) predisposing for schizophrenia. Linkage results were consistently negative, indicating that a defect at any of the actual receptor sites is unlikely to be a major contributor to schizophrenia in the nine families studied. 47 refs., 1 fig., 4 tabs.

  20. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    PubMed Central

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  1. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits.

    PubMed

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2015-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  2. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    PubMed Central

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-01-01

    Background The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (~72%) compared with the chicken (~66%) and the zebra finch (~38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade). An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data supports recent

  3. Grb2, a Double-Edged Sword of Receptor Tyrosine Kinase Signaling

    PubMed Central

    Belov, Artur A.; Mohammadi, Moosa

    2013-01-01

    Receptor tyrosine kinases (RTKs) exhibit basal tyrosine phosphorylation and activity in the absence of ligand stimulation, which has been attributed to the “leaky” nature of tyrosine kinase autoinhibition and stochastic collisions of receptors in the membrane bilayer. This basal phosphorylation does not produce a signal of sufficient amplitude and intensity to manifest in a biological response and hence is considered to be a passive, futile process that does not have any biological function. This paradigm has now been challenged by a study showing that the basal phosphorylation of RTKs is a physiologically relevant process that is actively inhibited by the intracellular adaptor protein growth factor receptor-bound 2 (Grb2) and serves to “prime” receptors for a rapid response to ligand stimulation. Grb2 is conventionally known for playing positive roles in RTK signaling. The discovery of a negative regulatory role for Grb2 reveals that this adaptor acts as a double-edged sword in the regulation of RTK signaling. PMID:23131845

  4. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinshou; Ghani, Ayaz; Malik, Ahsan; Wilder, Tuere; Colegio, Oscar Rene; Flavell, Richard Anthony; Cronstein, Bruce Neil; Mehal, Wajahat Zafar

    2013-12-01

    Inflammasome pathways are important in chronic diseases; however, it is not known how the signalling is sustained after initiation. Inflammasome activation is dependent on stimuli such as lipopolysaccharide (LPS) and ATP that provide two distinct signals resulting in rapid production of interleukin (IL)-1β, with the lack of response to repeat stimulation. Here we report that adenosine is a key regulator of inflammasome activity, increasing the duration of the inflammatory response via the A2A receptor. Adenosine does not replace signals provided by stimuli such as LPS or ATP but sustains inflammasome activity via a cAMP/PKA/CREB/HIF-1α pathway. In the setting of the lack of IL-1β responses after previous exposure to LPS, adenosine can supersede this tolerogenic state and drive IL-1β production. These data reveal that inflammasome activity is sustained, after initial activation, by A2A receptor-mediated signalling.

  5. Cardioprotection of Controlled and Cardiac-Specific Over-Expression of A2A-Adenosine Receptor in the Pressure Overload

    PubMed Central

    Hamad, Eman A.; Zhu, Weizhong; Chan, Tung O.; Myers, Valerie; Gao, Erhe; Li, Xue; Zhang, Jin; Song, Jianliang; Zhang, Xue-Qian; Cheung, Joseph Y.; Koch, Walter; Feldman, Arthur M.

    2012-01-01

    Adenosine binds to three G protein-coupled receptors (R) located on the cardiomyocyte (A1-R, A2A-R and A3-R) and provides cardiac protection during both ischemic and load-induced stress. While the role of adenosine receptor-subtypes has been well defined in the setting of ischemia-reperfusion, far less is known regarding their roles in protecting the heart during other forms of cardiac stress. Because of its ability to increase cardiac contractility and heart rate, we hypothesized that enhanced signaling through A2A-R would protect the heart during the stress of transverse aortic constriction (TAC). Using a cardiac-specific and inducible promoter, we selectively over-expressed A2A-R in FVB mice. Echocardiograms were obtained at baseline, 2, 4, 8, 12, 14 weeks and hearts were harvested at 14 weeks, when WT mice developed a significant decrease in cardiac function, an increase in end systolic and diastolic dimensions, a higher heart weight to body weight ratio (HW/BW), and marked fibrosis when compared with sham-operated WT. More importantly, these changes were significantly attenuated by over expression of the A2A-R. Furthermore, WT mice also demonstrated marked increases in the hypertrophic genes β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF) – changes that are mediated by activation of the transcription factor GATA-4. Levels of the mRNAs encoding β-MHC, ANP, and GATA-4 were significantly lower in myocardium from A2A-R TG mice after TAC when compared with WT and sham-operated controls. In addition, three inflammatory factors genes encoding cysteine dioxygenase, complement component 3, and serine peptidase inhibitor, member 3N, were enhanced in WT TAC mice, but their expression was suppressed in A2A-R TG mice. A2A-R over-expression is protective against pressure-induced heart failure secondary to TAC. These cardioprotective effects are associated with attenuation of GATA-4 expression and inflammatory factors. The A2A-R may provide a novel new

  6. Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT2A Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation⊕

    PubMed Central

    Runyon, Scott P.; Mosier, Philip D.; Roth, Bryan L.; Glennon, Richard A.; Westkaemper, Richard B.

    2011-01-01

    The effects of 3-position substitution of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on 5-HT2A receptor affinity were determined and compared to a parallel series of DOB-like 1-(2,5-dimethoxyphenyl)-2-aminopropanes substituted at the 4-position. The results were interpreted within the context of 5-HT2A receptor models that suggest that members of the DOB-like series can bind to the receptor in two distinct modes that correlate with the compounds’ functional activity. Automated ligand docking and molecular dynamics suggest that all of the AMDA derivatives, the parent of which is a 5-HT2A antagonist, bind in a fashion analogous to that for the sterically demanding antagonist DOB-like compounds. The failure of the F3406.52L mutation to adversely affect the affinity of AMDA and the 3-bromo derivative is consistent with the proposed modes of orientation. Evaluation of ligand-receptor complex models suggest that a valine/threonine exchange between the 5-HT2A and D2 receptors may be the origin of selectivity for AMDA and two substituted derivatives. PMID:18847250

  7. Safety assessment of lepidopteran insect-protected transgenic rice with cry2A* gene.

    PubMed

    Zou, Shiying; Huang, Kunlun; Xu, Wentao; Luo, Yunbo; He, Xiaoyun

    2016-04-01

    Numerous genetically modified (GM) crops expressing proteins for insect resistance have been commercialized following extensive testing demonstrating that the foods obtained from them are as safe as that obtained from their corresponding non-GM varieties. In this paper, we report the outcome of safety studies conducted on a newly developed insect-resistant GM rice expressing the cry2A* gene by a subchronic oral toxicity study on rats. GM rice and non-GM rice were incorporated into the diet at levels of 30, 50, and 70% (w/w), No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. These results demonstrate that the GM rice with cry2A* gene is as safe for food as conventional non-GM rice. PMID:26581349

  8. Vitamin D receptor gene polymorphisms and steroid receptor status among Saudi women with breast cancer.

    PubMed

    Nemenqani, Dalal M; Karam, Rehab A; Amer, Mona G; Abd El Rahman, Tamer M

    2015-03-10

    The vitamin D receptor (VDR) is a mediator for the cellular effects of vitamin D and interacts with other cell signaling pathways that influence cancer development. We evaluated the associations of the FOK1 and Taq1 VDR polymorphisms and breast cancer risk and possible effect modification by steroid receptor status of the tumor. This case-control study includes 95 breast cancer patients and 100 age-matched controls. Genotyping for VDR FOK1 and Taq1 polymorphisms was performed using polymerase chain reaction-based restriction fragment length polymorphism. Level of 25(OH)D in serum was determined using ELISA. Immunohistochemical studies were performed for estrogen receptors (ER) and progesterone receptors (PR). The frequencies of ff genotype were significantly increased in the breast cancer group compared to the control group. Carriers of the f allele were significantly more likely to develop BC. We observed a statistically significant interaction for the Fok1 polymorphism and ER status. Our results demonstrated that FOK1 f. genotype and f allele have an important role in breast cancer risk in Saudi patients. PMID:25560187

  9. Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression.

    PubMed Central

    Rao, N K; Shi, G P; Chapman, H A

    1995-01-01

    Binding of urokinase to the glycolipid-anchored urokinase receptor (uPAR) has been implicated in macrophage differentiation. However, no biochemical markers of differentiation have yet been directly linked to uPAR occupancy. As extensive changes in proteolytic profile characterize monocytic differentiation, we have examined the role of uPAR occupancy on protease expression by differentiating phagocytes. Antibodies to either urokinase or to uPAR that prevent receptor binding inhibited induction of cathepsin B in cultured monocytes and both cathepsin B and 92-kD gelatinase mRNA and protein in phorbol diester-stimulated myeloid cells. Mannosamine, an inhibitor of glycolipid anchor assembly, also blocked protease expression. Anti-catalytic urokinase antibodies, excess inactive urokinase, or aprotinin had no effect, indicating that receptor occupancy per se regulated protease expression. Antibodies to the integrins CD11a and CD29 or to the glycolipid-anchored proteins CD14 and CD55 also had no effect. Protease induction was independent of matrix attachment. Antibodies to urokinase or uPAR affected neither the decrease in cathepsin G nor the increase in tumor necrosis factor-alpha in phorbol ester-stimulated cells. These data establish that uPAR is a multifunctional receptor, not only promoting pericellular proteolysis and matrix attachment, but also effecting cysteine- and metallo-protease expression during macrophage differentiation. Images PMID:7615819

  10. Identification of N-terminal receptor activity-modifying protein residues important for calcitonin gene-related peptide, adrenomedullin, and amylin receptor function.

    PubMed

    Qi, Tao; Christopoulos, George; Bailey, Richard J; Christopoulos, Arthur; Sexton, Patrick M; Hay, Debbie L

    2008-10-01

    Calcitonin-family receptors comprise calcitonin receptor-like receptor (CL) or calcitonin receptor and receptor activity-modifying protein (RAMP) pairings. Calcitonin gene-related peptide (CGRP) receptors are CL/RAMP1, whereas adrenomedullin (AM) receptors are CL/RAMP2 (AM1 receptor) or CL/RAMP3 (AM2 receptor). Amylin (Amy) receptors are RAMP hetero-oligomers with the calcitonin receptor (AMY1, AMY2, and AMY3, respectively). How RAMPs change G protein-coupled receptor pharmacology is not fully understood. We exploited sequence differences between RAMP1 and RAMP3 to identify individual residues capable of altering receptor pharmacology. Alignment of human RAMPs revealed eight residues that are conserved in RAMP2 and RAMP3 but are different in RAMP1. We hypothesized that residues in RAMP2 and RAMP3, but not RAMP1, are responsible for making CL/RAMP2 and CL/RAMP3 AM receptors. Using site-directed mutagenesis, we introduced individual RAMP3 residues into RAMP1 and vice versa in these eight positions. Mutant or wild-type RAMPs were transfected into Cos7 cells with CL or the insert-negative form of the calcitonin receptor [CT(a)]. Agonist-stimulated cAMP production and cell-surface expression of constructs were measured. Position 74 in RAMP1 and RAMP3 was critical for determining AM potency and affinity, and Phe93 in RAMP1 was an important contributor to alphaCGRP potency at CGRP receptors. Mutant RAMP/CT(a) receptor complexes displayed different phenotypes. It is noteworthy that RAMP1 S103N and W74E mutations led to enhanced rAmy potency, probably related to increased cell-surface expression of these complexes. This differs from the effect on CL-based receptors where expression was unchanged. Targeted substitution has emphasized the importance of position 74 in RAMP1/RAMP3 as a key determinant of AM pharmacology. PMID:18593822

  11. Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa

    PubMed Central

    García-García, Gema; Jaijo, Teresa; Aparisi, Maria J.; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M.

    2014-01-01

    Purpose The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. Methods The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. Results We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Conclusions Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures. PMID:25352746

  12. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    PubMed

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  13. Genetic basis of endocrine disease 4: The spectrum of mutations in the androgen receptor gene that causes androgen resistance

    SciTech Connect

    McPhaul, M.J.; Marcelli, M.; Zoppi, S.; Griffin, J.E.; Wilson, J.D. )

    1993-01-01

    Mutations in the androgen receptor gene cause phenotypic abnormalities of male sexual development that range from a female phenotype (complete testicular feminization) to that of undervirilized or infertile men. Using the tools of molecular biology, the authors have analyzed androgen receptor gene mutations in 31 unrelated subjects with androgen resistance syndromes. Most of the defects are due to nucleotide changes that cause premature termination codons or single amino acid substitutions within the open reading frame encoding the androgen receptor, and the majority of these substitutions are localized in three regions of the androgen receptor: the DNA-binding domain and two segments of the androgen-binding domain. Less frequently, partial or complete gene deletions have been identified. Functional studies and immunoblot assays of the androgen receptors in patients with androgen resistance indicate that in most cases the phenotypic abnormalities are the result of impairment of receptor function or decreases in receptor abundance or both. 34 refs., 2 figs.

  14. High-level expression in Saccharomyces cerevisiae enables isolation and spectroscopic characterization of functional human adenosine A2a receptor.

    PubMed

    O'Malley, Michelle A; Lazarova, Tzvetana; Britton, Zachary T; Robinson, Anne S

    2007-08-01

    The G-protein coupled receptors (GPCRs) are a class of membrane proteins that trigger cellular responses to external stimuli, and are believed to be targets for nearly half of all pharmaceutical drugs on the market. However, little is known regarding their folding and cellular interactions, as well as what factors are crucial for their activity. Further structural characterization of GPCRs has largely been complicated by problems with expression, purification, and preservation of activity in vitro. Previously, we have demonstrated high-level expression (approximately 4mg/L of culture) of functional human adenosine A(2)a receptor fused to a green fluorescent protein (A(2)aR-GFP) from Saccharomyces cerevisiae. In this work, we re-engineered A(2)aR with a purification tag, developed an adequate purification scheme, and performed biophysical characterization on purified receptors. Milligram amounts per liter of culture of A(2)aR and A(2)aR-GFP were functionally expressed in S. cerevisiae, with a C-terminal deca-histidine tag. Lysis procedures were developed for optimal membrane protein solubilization and recovery through monitoring fluorescence of A(2)aR-GFP-His(10). One-step purification of the protein was achieved through immobilized metal affinity chromatography. After initial solubilization in n-dodecyl-beta-d-maltoside (DDM), a combination of added cholesterol hemisuccinate (CHS) in 3-(3-cholamidopropyl)-dimethylammoniopropane sulfonate (CHAPS) was required to stabilize the functional state of the protein. Isolated A(2)aR under these conditions was found to be largely alpha-helical, and properly incorporated into a mixed-micelle environment. The A(2)a-His(10) receptor was purified in quantities of 6+/-2mg/L of culture, with ligand-binding yields of 1mg/L, although all protein bound to xanthine affinity resin. This represents the highest purified total and functional yields for A(2)aR yet achieved from any heterologous expression system. PMID:17591446

  15. Targeting the oncogenic Met receptor by antibodies and gene therapy.

    PubMed

    Vigna, E; Comoglio, P M

    2015-04-01

    The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field. PMID:24882574

  16. Somatostatin 2a receptors are not expressed on functionally identified respiratory neurons in the ventral respiratory column of the rat.

    PubMed

    Le, Sheng; Turner, Anita J; Parker, Lindsay M; Burke, Peter G; Kumar, Natasha N; Goodchild, Ann K; McMullan, Simon

    2016-05-01

    Microinjection of somatostatin (SST) causes site-specific effects on respiratory phase transition, frequency, and amplitude when microinjected into the ventrolateral medulla (VLM) of the anesthetized rat, suggesting selective expression of SST receptors on different functional classes of respiratory neurons. Of the six subtypes of SST receptor, somatostatin 2a (sst2a ) is the most prevalent in the VLM, and other investigators have suggested that glutamatergic neurons in the preBötzinger Complex (preBötC) that coexpress neurokinin-1 receptor (NK1R), SST, and sst2a are critical for the generation of respiratory rhythm. However, quantitative data describing the distribution of sst2a in respiratory compartments other than preBötC, or on functionally identified respiratory neurons, is absent. Here we examine the medullary expression of sst2a with particular reference to glycinergic/expiratory neurons in the Bötzinger Complex (BötC) and NK1R-immunoreactive/inspiratory neurons in the preBötC. We found robust sst2a expression at all rostrocaudal levels of the VLM, including a large proportion of catecholaminergic neurons, but no colocalization of sst2a and glycine transporter 2 mRNA in the BötC. In the preBötC 54% of sst2a -immunoreactive neurons were also positive for NK1R. sst2a was not observed in any of 52 dye-labeled respiratory interneurons, including seven BötC expiratory-decrementing and 11 preBötC preinspiratory neurons. We conclude that sst2a is not expressed on BötC respiratory neurons and that phasic respiratory activity is a poor predictor of sst2a expression in the preBötC. Therefore, sst2a is unlikely to underlie responses to BötC SST injection, and is sparse or absent on respiratory neurons identified by classical functional criteria. J. Comp. Neurol. 524:1384-1398, 2016. © 2015 Wiley Periodicals, Inc. PMID:26470751

  17. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    PubMed

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies. PMID:23840834

  18. Comparison of Lentiviral and Sleeping Beauty Mediated αβ T Cell Receptor Gene Transfer

    PubMed Central

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm’s tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies. PMID:23840834

  19. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  20. Affinity of Aporphines for the Human 5-HT2A Receptor: Insights from Homology Modeling and Molecular Docking Studies

    PubMed Central

    Pecic, Stevan; Makkar, Pooja; Chaudhary, Sandeep; Reddy, Boojala V.; Navarro, Hernan A.; Harding, Wayne W.

    2010-01-01

    Analogs of nantenine were docked into a modeled structure of the human 5-HT2A receptor using ICM Pro, GLIDE and GOLD docking methods. The resultant docking scores were used to correlate with observed in vitro apparent affinity (Ke) data. The GOLD docking algorithm when used with a homology model of 5-HT2A, based on a bovine rhodopsin template and built by the program MODELLER, gives results which are most in agreement with the in vitro results. Further analysis of the docking poses among members of a C1 alkyl series of nantenine analogs, indicate that they bind to the receptor in a similar orientation, but differently than nantenine. Besides an important interaction between the protonated nitrogen of the C1 alkyl analogs and residue Asp155, we identified Ser242, Phe234 and Gly238 as key residues responsible for the affinity of these compounds for the 5-HT2A receptor. Specifically, the ability of some of these analogs to establish a H-bond with Ser242 and hydrophobic interactions with Phe234 and Gly238 appears to explain their enhanced affinity as compared to nantenine. PMID:20621490

  1. Sequence and diversity of rabbit T-cell receptor gamma chain genes

    SciTech Connect

    Isono, T.; Kim, C.J.; Seto, A.

    1995-03-01

    The nucleotide sequences of one constant (C), six variable (V), and two joining (J) gene segments coding for the rabbit T-cell receptor gamma chain (Tcrg) were determined by directly sequencing fragments amplified by the cassette-ligation mediated polymerase chain reaction. The Tcrg-C gene segment did not encode a cysteine residue for connection to the Tcr delta chain in the connecting region, and two variant forms of the Tcrg-C gene segment were generated by alternative splicing, like the human Tcrg-C2 gene. Five of six rabbit Tcrg-V gene segments belonged to the same family and displayed similarity to five productive human Tcrg-V1 family genes as well as the mouse Tcrg-V5 gene. The remaining rabbit Tcrg-V gene segment displayed similarity to the human Tcrg-V3 gene. Both rabbit Tcrg-J gene segments displayed similarity to the human Tcrg-J2.1 and 2.3, respectively. These findings suggested that the genomic organization of rabbit Tcrg genes is more similar to that of human than of mouse Tcrg genes. 18 refs., 4 figs., 1 tab.

  2. Serotonin genes and attention deficit/hyperactivity disorder in a Brazilian sample: preferential transmission of the HTR2A 452His allele to affected boys.

    PubMed

    Guimarães, Ana Paula M; Zeni, Cristian; Polanczyk, Guilherme V; Genro, Julia P; Roman, Tatiana; Rohde, Luis A; Hutz, Mara H

    2007-01-01

    Attention-deficit hyperactivity disorder (ADHD) is one of the most common psychiatric disorders of childhood. The role of genetic factors in its etiology is strongly supported by family, adoption, and twin studies. Low serotonin activity has been associated in both animal and human studies with measures of impulsivity, aggression, and disinhibited behaviors, which make genes from the serotonin system reasonable candidates for ADHD susceptibility. In the present study, we investigated a polymorphism in the promoter region of the serotonin transporter (SLC6A4) and two polymorphisms (-1438 A > G and His452Tyr) in the serotonin 5-HTR2A receptor gene using family based association analyses in a sample of 243 Brazilian ADHD children and adolescents and their parents. No linkage disequilibrium between the two HTR2A polymorphisms was detected in this sample (P = 0.76). Considering several evidences from animal models for sexual dimorphism in serotonin genes expression, analyses were performed separately for the whole sample and for male probands. No evidences for biased transmissions of both HTR2A -1438 A > G and SLC6A4 polymorphisms to ADHD youths were observed. Preferential transmission of the HTR2A His452 allele was observed only in families with affected boys (P = 0.04). Our results suggest that findings from ADHD association studies for serotonin genes might be understood in the context of a gender effect, which may help to explain conflicting results in these association studies. PMID:16958038

  3. Characterization of Fpr-rs8, an atypical member of the mouse formyl peptide receptor gene family.

    PubMed

    Tiffany, H Lee; Gao, Ji-Liang; Roffe, Ester; Sechler, Joan M G; Murphy, Philip M

    2011-01-01