Science.gov

Sample records for 2a serotonin receptors

  1. 5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation

    PubMed Central

    Roth, Bryan L

    2011-01-01

    5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474

  2. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T.

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  3. Cannabinoid 2 receptor- and beta Arrestin 2-dependent upregulation of serotonin 2A receptors.

    PubMed

    Franklin, J M; Vasiljevik, T; Prisinzano, T E; Carrasco, G A

    2013-07-01

    Recent evidence suggests that cannabinoid receptor agonists may regulate serotonin 2A (5-HT(2A)) receptor neurotransmission in the brain, although no molecular mechanism has been identified. Here, we present experimental evidence that sustained treatment with a non-selective cannabinoid agonist (CP55,940) or selective CB2 receptor agonists (JWH133 or GP1a) upregulate 5-HT(2A) receptors in a neuronal cell line. Furthermore, this cannabinoid receptor agonist-induced upregulation of 5-HT(2A) receptors was prevented in cells stably transfected with either CB2 or β-Arrestin 2 shRNA lentiviral particles. Additionally, inhibition of clathrin-mediated endocytosis also prevented the cannabinoid receptor-induced upregulation of 5-HT(2A) receptors. Our results indicate that cannabinoid agonists might upregulate 5-HT(2A) receptors by a mechanism that requires CB2 receptors and β-Arrestin 2 in cells that express both CB2 and 5-HT(2A) receptors. 5-HT(2A) receptors have been associated with several physiological functions and neuropsychiatric disorders such as stress response, anxiety and depression, and schizophrenia. Therefore, these results might provide a molecular mechanism by which activation of cannabinoid receptors might be relevant to some cognitive and mood disorders in humans.

  4. Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice

    PubMed Central

    Morici, Juan F.; Ciccia, Lucia; Malleret, Gaël; Gingrich, Jay A.; Bekinschtein, Pedro; Weisstaub, Noelia V.

    2015-01-01

    Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a−/−) with wild type (htr2a+/+) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex. PMID:26779016

  5. Insights into the regulation of 5-HT2A serotonin receptors by scaffolding proteins and kinases.

    PubMed

    Allen, John A; Yadav, Prem N; Roth, Bryan L

    2008-11-01

    5-HT(2A) serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT(2A) serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT(2A) receptors and our recent studies suggest multiple scaffolds exist for 5-HT(2A) receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT(2A) receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT(2A) trafficking, targeting and signaling.

  6. Structure and variation of three canine genes involved in serotonin binding and transport: the serotonin receptor 1A gene (htr1A), serotonin receptor 2A gene (htr2A), and serotonin transporter gene (slc6A4).

    PubMed

    van den Berg, L; Kwant, L; Hestand, M S; van Oost, B A; Leegwater, P A J

    2005-01-01

    Aggressive behavior is the most frequently encountered behavioral problem in dogs. Abnormalities in brain serotonin metabolism have been described in aggressive dogs. We studied canine serotonergic genes to investigate genetic factors underlying canine aggression. Here, we describe the characterization of three genes of the canine serotonergic system: the serotonin receptor 1A and 2A gene (htr1A and htr2A) and the serotonin transporter gene (slc6A4). We isolated canine bacterial artificial chromosome clones containing these genes and designed oligonucleotides for genomic sequencing of coding regions and intron-exon boundaries. Golden retrievers were analyzed for DNA sequence variations. We found two nonsynonymous single nucleotide polymorphisms (SNPs) in the coding sequence of htr1A; one SNP close to a splice site in htr2A; and two SNPs in slc6A4, one in the coding sequence and one close to a splice site. In addition, we identified a polymorphic microsatellite marker for each gene. Htr1A is a strong candidate for involvement in the domestication of the dog. We genotyped the htr1A SNPs in 41 dogs of seven breeds with diverse behavioral characteristics. At least three SNP haplotypes were found. Our results do not support involvement of the gene in domestication.

  7. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine

    PubMed Central

    Bhattacharyya, Samarjit; Raote, Ishier; Bhattacharya, Aditi; Miledi, Ricardo; Panicker, Mitradas M.

    2006-01-01

    Serotonergic and dopaminergic systems, and their functional interactions, have been implicated in the pathophysiology of various CNS disorders. Here, we use recombinant serotonin (5-HT) 2A (5-HT2A) receptors to further investigate direct interactions between dopamine and 5-HT receptors. Previous studies in Xenopus oocytes showed that dopamine, although not the cognate ligand for the 5-HT2A receptor, acts as a partial-efficacy agonist. At micromolar concentrations, dopamine also acts as a partial-efficacy agonist on 5-HT2A receptors in HEK293 cells. Like 5-HT, dopamine also induces receptor-internalization in these cells, although at significantly higher concentrations than 5-HT. Interestingly, if the receptors are first sensitized or “primed” by subthreshold concentrations of 5-HT, then dopamine-induced internalization occurs at concentrations ≈10-fold lower than when dopamine is used alone. Furthermore, unlike 5-HT-mediated internalization, dopamine-mediated receptor internalization, alone, or after sensitization by 5-HT, does not depend on PKC. Dopamine-internalized receptors recycle to the surface at rates similar to those of 5-HT-internalized receptors. Our results suggest a previously uncharacterized role for dopamine in the direct activation and internalization of 5-HT2A receptors that may have clinical relevance to the function of serotonergic systems in anxiety, depression, and schizophrenia and also to the treatment of these disorders. PMID:17005723

  8. Sleep Deprivation Increases Cerebral Serotonin 2A Receptor Binding in Humans

    PubMed Central

    Elmenhorst, David; Kroll, Tina; Matusch, Andreas; Bauer, Andreas

    2012-01-01

    Study Objectives: Serotonin and its cerebral receptors play an important role in sleep-wake regulation. The aim of the current study is to investigate the effect of 24-h total sleep deprivation on the apparent serotonin 2A receptor (5-HT2AR) binding capacity in the human brain to test the hypothesis that sleep deprivation induces global molecular alterations in the cortical serotonergic receptor system. Design: Volunteers were tested twice with the subtype-selective radiotracer [18F]altanserin and positron emission tomography (PET) for imaging of 5-HT2ARs at baseline and after 24 h of sleep deprivation. [18F]Altanserin binding potentials were analyzed in 13 neocortical regions of interest. The efficacy of sleep deprivation was assessed by questionnaires, waking electroencephalography, and cognitive performance measurements. Setting: Sleep laboratory and neuroimaging center. Patients or Participants: Eighteen healthy volunteers. Interventions: Sleep deprivation. Measurements and Results: A total of 24 hours of sleep deprivation led to a 9.6% increase of [18F]altanserin binding on neocortical 5-HT2A receptors. Significant region-specific increases were found in the medial inferior frontal gyrus, insula, and anterior cingulate, parietal, sensomotoric, and ventrolateral prefrontal cortices. Conclusions: This study demonstrates that a single night of total sleep deprivation causes significant increases of 5-HT2AR binding potentials in a variety of cortical regions although the increase declines as sleep deprivation continued. It provides in vivo evidence that total sleep deprivation induces adaptive processes in the serotonergic system of the human brain. Citation: Elmenhorst D; Kroll T; Matusch A; Bauer A. Sleep Deprivation Increases Cerebral Serotonin 2A Receptor Binding in Humans. SLEEP 2012;35(12):1615-1623. PMID:23204604

  9. Lack of association between serotonin-2A receptor gene (HTR2A) polymorphisms and tardive dyskinesia in schizophrenia.

    PubMed

    Basile, V S; Ozdemir, V; Masellis, M; Meltzer, H Y; Lieberman, J A; Potkin, S G; Macciardi, F M; Petronis, A; Kennedy, J L

    2001-03-01

    Tardive dyskinesia (TD) is a disabling neurological side effect associated with long-term treatment with typical antipsychotics. Family studies and animal models lend evidence for hereditary predisposition to TD. The newer atypical antipsychotics pose a minimal risk for TD which is in part attributed to their ability to block the serotonin-2A (5-HT(2A)) receptor. 5-HT(2A) receptors were also identified in the basal ganglia; a brain region that plays a critical role in antipsychotic-induced movement disorders. We tested the significance of variation in the 5-HT(2A) receptor gene (HTR2A) in relation to the TD phenotype. Three polymorphisms in HTR2A, one silent (C102T), one that alters the amino acid sequence (his452tyr) and one in the promoter region (A-1437G) were investigated in 136 patients refractory or intolerant to treatment with typical antipsychotics and with a DSM-IIIR diagnosis of schizophrenia. We did not find any significant difference in allele, genotype or haplotype frequencies of polymorphisms in HTR2A among patients with or without TD (P > 0.05). Further analysis using the ANCOVA statistic with a continuous measure of the TD phenotype (Abnormal Involuntary Movement Scale (AIMS) score) found that the AIMS scores were not significantly influenced by HTR2A polymorphisms, despite controlling for potential confounders such as age, gender and ethnicity (P > 0.05). Theoretically, central serotonergic function can be subject to genetic control at various other mechanistic levels including the rate of serotonin synthesis (tryptophane hydroxylase gene), release, reuptake (serotonin transporter gene) and degradation (monoamine oxidase gene). Analyses of these other serotonergic genes are indicated. In summary, polymorphisms in HTR2A do not appear to influence the risk for TD. Further studies evaluating in tandem multiple candidate genes relevant for the serotonergic system are warranted to dissect the genetic basis of the complex TD phenotype.

  10. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations.

  11. Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    PubMed Central

    Koch, Uwe R.; Bischoff, Anna-Maria; Kron, Miriam; Bock, Nathalie; Manzke, Till

    2011-01-01

    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation. PMID:21789169

  12. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  13. Serotonin 2A Receptor Gene Polymorphism in Korean Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Cho, Soo-Churl; Kim, Boong-Nyun; Kim, Jae-Won; Yoo, Hee-Jeong; Hwang, Jun-Won; Cho, Dae-Yeon; Chung, Un-Sun; Park, Tae-Won

    2012-01-01

    Objective The purpose of this study was to investigate the association between the T102C polymorphism in the serotonin 2A receptor gene and attention-deficit/hyperactivity disorder (ADHD) in Korean patients. Methods A total of 189 Korean children with ADHD as well as both parents of the ADHD children and 150 normal children participated in this study. DNA was extracted from blood samples from all of the subjects, and genotyping was conducted. Based on the allele and genotype information obtained, case-control analyses were performed to compare the ADHD and normal children, and Transmission disequilibrium tests (TDTs) were used for family-based association testing (number of trios=113). Finally, according to the significant finding which was showed in the case-control analyses, the results of behavioral characterastics and neuropsychological test were compared between ADHD children with and without the C allele. Results In the case-control analyses, statistically significant differences were detected in the frequencies of genotypes containing the C allele (χ2=4.73, p=0.030). In the family-based association study, TDTs failed to detect linkage disequilibrium of the T102C polymorphism associated with ADHD children. In the ADHD children, both the mean reaction time and the standard deviation of the reaction time in the auditory continuous performance test were longer in the group with the C allele compared to the group without the C allele. Conclusion The results of this study suggest that there is a significant genetic association between the T102C polymorphism in the serotonin 2A receptor gene and ADHD in Korean children. PMID:22993527

  14. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing.

    PubMed

    Preller, Katrin H; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X

    2016-05-03

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses.

  15. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing

    PubMed Central

    Preller, Katrin H.; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X.

    2016-01-01

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses. PMID:27091970

  16. Serotonin Receptors in Hippocampus

    PubMed Central

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  17. 5-HT2A receptor antagonist M100907 reduces serotonin synthesis: An autoradiographic study

    PubMed Central

    Hasegawa, Shu; Fikre-Merid, Maraki; Diksic, Mirko

    2013-01-01

    The effects of the administration of the serotonin (5-HT)2A antagonist, M100907, on 5-HT synthesis rates, were evaluated using the α-[14C]methyl-L-tryptophan (α-MTrp) autoradiographic method. In the treatment study, M100907 (10 mg/kg) was injected intraperitoneally 30 min before the α-MTrp injection (30 μCi over 2 min). A single dose of M100907 caused a significant decrease in the synthesis in the anterior olfactory nucleus, accumbens nucleus, frontal cortex, sensory-motor cortex, cingulate cortex, medial caudate-putamen, dorsal thalamus, substantia nigra, inferior collicus, raphe magnus nucleus, superior olive, and raphe pallidus nucleus. These data suggest that the terminal 5-HT2A receptors are involved in the regulation of 5-HT synthesis in the entire brain. Further, 5-HT synthesis is likely regulated by the 5-HT2A antagonistic property of M100907 in the cortices, anterior olfactory nucleus, caudate putamen, and nucleus accumbens. PMID:22056993

  18. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    PubMed

    Lin, Olivia A; Karim, Zubair A; Vemana, Hari Priya; Espinosa, Enma V P; Khasawneh, Fadi T

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  19. Detection of new biased agonists for the serotonin 5-HT2A receptor: modeling and experimental validation.

    PubMed

    Martí-Solano, Maria; Iglesias, Alba; de Fabritiis, Gianni; Sanz, Ferran; Brea, José; Loza, M Isabel; Pastor, Manuel; Selent, Jana

    2015-04-01

    Detection of biased agonists for the serotonin 5-HT2A receptor can guide the discovery of safer and more efficient antipsychotic drugs. However, the rational design of such drugs has been hampered by the difficulty detecting the impact of small structural changes on signaling bias. To overcome these difficulties, we characterized the dynamics of ligand-receptor interactions of known biased and balanced agonists using molecular dynamics simulations. Our analysis revealed that interactions with residues S5.46 and N6.55 discriminate compounds with different functional selectivity. Based on our computational predictions, we selected three derivatives of the natural balanced ligand serotonin and experimentally validated their ability to act as biased agonists. Remarkably, our approach yielded compounds promoting an unprecedented level of signaling bias at the 5-HT2A receptor, which could help interrogate the importance of particular pathways in conditions like schizophrenia.

  20. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms

    PubMed Central

    Bhattacharyya, Samarjit; Puri, Sapna; Miledi, Ricardo; Panicker, Mitradas M.

    2002-01-01

    Serotonin (5-HT), a major neurotransmitter, has a large number of G protein-coupled receptors in mammals. On activation by exposure to their ligand, 5-HT2 receptor subtypes increase IP3 levels and undergo desensitization and internalization. To visualize the receptor in cells during these processes, we have constructed a 5-HT2A-enhanced GFP (SR2-GFP) fusion receptor. We show that this fusion receptor undergoes internalization on exposure to its natural ligand, 5-HT. Because 5-HT2A receptors activate the phospholipase C pathway, we studied the effect of protein kinase C (PKC) on the internalization process and found that activation of PKC by its specific activator phorbol 12-myristate 13-acetate, in the absence of 5-HT, leads to internalization of the receptor. Moreover, inhibition of PKC by its inhibitor sphingosine in the presence of 5-HT prevents the internalization process, suggesting that activation of PKC is sufficient and necessary for the internalization of 5-HT2A receptors. We also show that SR2-GFP recycles back to the plasma membrane after 5-HT-dependent internalization, suggesting a mechanism for resensitization. In addition, receptors that have been internalized on addition of phorbol 12-myristate 13-acetate in the absence of 5-HT also recycle to the surface, with a time course similar to that seen after activation of the receptors by 5-HT. Our study suggests that 5-HT2A receptors internalize and return to the surface after both serotonin- and PKC-mediated processes. This study reveals a role for PKC in receptor internalization and also shows that 5-HT2A receptors are recycled. PMID:12388782

  1. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder.

    PubMed

    Soloff, Paul H; Chiappetta, Laurel; Mason, Neale Scott; Becker, Carl; Price, Julie C

    2014-06-30

    Impulsivity and aggressiveness are personality traits associated with a vulnerability to suicidal behavior. Behavioral expression of these traits differs by gender and has been related to central serotonergic function. We assessed the relationships between serotonin-2A receptor function, gender, and personality traits in borderline personality disorder (BPD), a disorder characterized by impulsive-aggression and recurrent suicidal behavior. Participants, who included 33 BPD patients and 27 healthy controls (HC), were assessed for Axis I and II disorders with the Structured Clinical Interview for DSM-IV and the International Personality Disorders Examination, and with the Diagnostic Interview for Borderline Patients-Revised for BPD. Depressed mood, impulsivity, aggression, and temperament were assessed with standardized measures. Positron emission tomography with [(18)F]altanserin as ligand and arterial blood sampling was used to determine the binding potentials (BPND) of serotonin-2A receptors in 11 regions of interest. Data were analyzed using Logan graphical analysis, controlling for age and non-specific binding. Among BPD subjects, aggression, Cluster B co-morbidity, antisocial PD, and childhood abuse were each related to altanserin binding. BPND values predicted impulsivity and aggression in BPD females (but not BPD males), and in HC males (but not HC females.) Altanserin binding was greater in BPD females than males in every contrast, but it did not discriminate suicide attempters from non-attempters. Region-specific differences in serotonin-2A receptor binding related to diagnosis and gender predicted clinical expression of aggression and impulsivity. Vulnerability to suicidal behavior in BPD may be related to serotonin-2A binding through expression of personality risk factors.

  2. Polymorphism in the Serotonin Receptor 2a (HTR2A) Gene as Possible Predisposal Factor for Aggressive Traits

    PubMed Central

    Banlaki, Zsofia; Elek, Zsuzsanna; Nanasi, Tibor; Szekely, Anna; Nemoda, Zsofia; Sasvari-Szekely, Maria; Ronai, Zsolt

    2015-01-01

    Aggressive manifestations and their consequences are a major issue of mankind, highlighting the need for understanding the contributory factors. Still, aggression-related genetic analyses have so far mainly been conducted on small population subsets such as individuals suffering from a certain psychiatric disorder or a narrow-range age cohort, but no data on the general population is yet available. In the present study, our aim was to identify polymorphisms in genes affecting neurobiological processes that might explain some of the inter-individual variation between aggression levels in the non-clinical Caucasian adult population. 55 single nucleotide polymorphisms (SNP) were simultaneously determined in 887 subjects who also filled out the self-report Buss-Perry Aggression Questionnaire (BPAQ). Single marker association analyses between genotypes and aggression scores indicated a significant role of rs7322347 located in the HTR2A gene encoding serotonin receptor 2a following Bonferroni correction for multiple testing (p = 0.0007) both for males and females. Taking the four BPAQ subscales individually, scores for Hostility, Anger and Physical Aggression showed significant association with rs7322347 T allele in themselves, while no association was found with Verbal Aggression. Of the subscales, relationship with rs7322347 was strongest in the case of Hostility, where statistical significance virtually equaled that observed with the whole BPAQ. In conclusion, this is the first study to our knowledge analyzing SNPs in a wide variety of genes in terms of aggression in a large sample-size non-clinical adult population, also describing a novel candidate polymorphism as predisposal to aggressive traits. PMID:25658328

  3. Serotonin receptor gene (HTR2A) T102C polymorphism modulates individuals’ perspective taking ability and autistic-like traits

    PubMed Central

    Gong, Pingyuan; Liu, Jinting; Blue, Philip R.; Li, She; Zhou, Xiaolin

    2015-01-01

    Previous studies have indicated that empathic traits, such as perspective taking, are associated with the levels of serotonin in the brain and with autism spectrum conditions. Inspired by the finding that the serotonin receptor 2A gene (HTR2A) modulates the availability of serotonin, this study investigated to what extent HTR2A modulates individuals’ perspective taking ability and autistic-like traits. To examine the associations of the functional HTR2A polymorphism T102C (rs6313) with individuals’ perspective taking abilities and autistic-like traits, we differentiated individuals according to this polymorphism and measured empathic and autistic-like traits with Interpersonal Reactivity Index (IRI) and Autism-Spectrum Quotient (AQ) scale in 523 Chinese people. The results indicated that this polymorphism was significantly associated with the scores on Perspective Taking and Personal Distress subscales of IRI, and Communication subscale of AQ. Individuals with a greater number of the C alleles were less likely to spontaneously adopt the point of view of others, more likely to be anxious when observing the pain endured by others, and more likely to have communication problems. Moreover, the genotype effect on communication problems was mediated by individuals’ perspective taking ability. These findings provide evidence that the HTR2A T102C polymorphism is a predictor of individual differences in empathic and autistic-like traits and highlight the role of the gene in the connection between perspective taking and autistic-like traits. PMID:26557070

  4. Serotonin receptor gene (HTR2A) T102C polymorphism modulates individuals' perspective taking ability and autistic-like traits.

    PubMed

    Gong, Pingyuan; Liu, Jinting; Blue, Philip R; Li, She; Zhou, Xiaolin

    2015-01-01

    Previous studies have indicated that empathic traits, such as perspective taking, are associated with the levels of serotonin in the brain and with autism spectrum conditions. Inspired by the finding that the serotonin receptor 2A gene (HTR2A) modulates the availability of serotonin, this study investigated to what extent HTR2A modulates individuals' perspective taking ability and autistic-like traits. To examine the associations of the functional HTR2A polymorphism T102C (rs6313) with individuals' perspective taking abilities and autistic-like traits, we differentiated individuals according to this polymorphism and measured empathic and autistic-like traits with Interpersonal Reactivity Index (IRI) and Autism-Spectrum Quotient (AQ) scale in 523 Chinese people. The results indicated that this polymorphism was significantly associated with the scores on Perspective Taking and Personal Distress subscales of IRI, and Communication subscale of AQ. Individuals with a greater number of the C alleles were less likely to spontaneously adopt the point of view of others, more likely to be anxious when observing the pain endured by others, and more likely to have communication problems. Moreover, the genotype effect on communication problems was mediated by individuals' perspective taking ability. These findings provide evidence that the HTR2A T102C polymorphism is a predictor of individual differences in empathic and autistic-like traits and highlight the role of the gene in the connection between perspective taking and autistic-like traits.

  5. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    PubMed Central

    Mohammadi, Rabie; Jahanshahi, Mehrdad; Jameie, Seyed Behnamedin

    2016-01-01

    Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of morphine and Conditioned Place Preference (CPP) on the density of 5-HT2A receptor in neurons of rat hippocampal formation. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: Our data showed that the maximum response was obtained with 2.5 mg/kg of morphine. The density of 5-HT2A receptor in different areas of the hippocampus increased significantly at sham-morphine and CPP groups (P<0.05). On the other hand, the CPP groups had more 5-HT2A receptors than sham-morphine groups and also the sham-morphine groups had more 5-HT2A receptors than the control groups. Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus. PMID:27563418

  6. Biochemical profile of YM992, a novel selective serotonin reuptake inhibitor with 5-HT2A receptor antagonistic activity.

    PubMed

    Hatanaka, K; Nomura, T; Hidaka, K; Takeuchi, H; Yatsugi, S; Fujii, M; Yamaguchi, T

    1996-01-01

    YM992, (S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride, exhibited the biochemical profile of a selective serotonin (5-HT) reuptake inhibitor (SSRI) with 5-HT2A receptor antagonistic activity. YM922 showed the same high affinity as fluoxetine against the 5-HT reuptake site (Ki = 21 nM) and a similar affinity to that of crazodone against the 5-HT2A receptor (Ki = 86 nM). In other receptor binding studies, an affinity for the adrenergic alpha 1 receptor (Ki = 200 nM) and 5-HT2C receptor (Ki = 680 nM) was observed. In a monoamine uptake study, YM992 showed a selective 5-HT uptake inhibition (IC50 = 0.15 microM), but only very weakly inhibited both noradrenaline (NA) and dopamine (DA) uptake (IC50 = 3.1 microM (NA), > 10 microM (DA)). YM992 was also found to potently inhibit the aggregation of human platelets (IC50 = 1.9 microM), revealing antagonistic activity for the 5-HT2A receptor in vitro. Enhanced serotonergic neurotransmission, in particular that mediated by the 5-HT1A receptor, has recently been reported to be important in the long-term treatment of depressive disorders with antidepressants. In addition, some 5-HT1A receptor-mediated responses are known to be potentiated by co-administration of 5-HT2A receptor antagonists. Thus, YM992, having both selective 5-HT reuptake inhibition and 5-HT2A antagonistic activity, might show potent therapeutic activity as a novel antidepressant in comparison with conventional SSRIs.

  7. Molecular dynamics of 5-HT1A and 5-HT2A serotonin receptors with methylated buspirone analogues

    NASA Astrophysics Data System (ADS)

    Bronowska, Agnieszka; Chilmonczyk, Zdzisław; Leś, Andrzej; Edvardsen, Øyvind; Østensen, Roy; Sylte, Ingebrigt

    2001-11-01

    In the present study experimentally determined ligand selectivity of three methylated buspirone analogues (denoted as MM2, MM5 and P55) towards 5-HT1A and 5-HT2A serotonin receptors was theoretically investigated on a molecular level. The relationships between the ligand structure and 5-HT1A and 5-HT2A receptor affinities were studied and the results were found to be in agreement with the available site-directed mutagenesis and binding affinity data. Molecular dynamics (MD) simulations of ligand-receptor complexes were performed for each investigated analogue, docked twice into the central cavity of 5-HT1A/5-HT2A, each time in a different orientation. Present results were compared with our previous theoretical results, obtained for buspirone and its non-methylated analogues. It was found that due to the presence of the methyl group in the piperazine ring the ligand position alters and the structure of the ligand-receptor complex is modified. Further, the positions of derivatives with pyrimidinyl aromatic moiety and quinolinyl moiety are significantly different at the 5-HT2A receptor. Thus, methylation of such derivatives alters the 3D structures of ligand-receptor complexes in different ways. The ligand-induced changes of the receptor structures were also analysed. The obtained results suggest, that helical domains of both receptors have different dynamical behaviour. Moreover, both location and topography of putative binding sites for buspirone analogues are different at 5-HT1A and 5-HT2A receptors.

  8. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

  9. Serotonin-2C and -2A Receptor Co-expression on Cells in the Rat Medial Prefrontal Cortex

    PubMed Central

    Nocjar, Christine; Alex, Katherine D; Sonneborn, Alex; Abbas, Atheir I; Roth, Bryan L; Pehek, Elizabeth A

    2015-01-01

    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a

  10. Adolescent anabolic-androgenic steroid exposure alters lateral anterior hypothalamic serotonin-2A receptors in aggressive male hamsters.

    PubMed

    Schwartzer, Jared J; Ricci, Lesley A; Melloni, Richard H

    2009-05-16

    Chronic anabolic-androgenic steroid (AAS) treatment during adolescence facilitates offensive aggression in male Syrian hamsters (Mesocricetus auratus). Serotonin (5-HT) modulates aggressive behavior and has been shown to be altered after chronic treatment with AAS. Furthermore, 5-HT type 2 receptors have been implicated in the control of aggression. For example, treatment with 5-HT(2A) receptor antagonists suppress the generation of the offensive aggressive phenotype. However, it is unclear whether these receptors are sensitive to adolescent AAS exposure. The current study assessed whether treatment with AAS throughout adolescence influenced the immunohistochemical localization of 5-HT(2A) in areas of the hamster brain implicated in the control of aggression. Hamsters were administered AAS (5.0 mg/kg) each day throughout adolescence, scored for offensive aggression, and then examined for differences in 5-HT(2A)-immunoreactivity (5-HT(2A)-ir). When compared with non-aggressive oil-treated controls, aggressive AAS-treated hamsters showed significant increases in 5-HT(2A)-ir fibers in the lateral portion of the anterior hypothalamus (LAH). Further analysis revealed that AAS treatment also produced a significant increase in the number of cells expressing 5-HT(2A)-ir in the LAH. Together, these results support a role for altered 5-HT(2A) expression and further implicate the LAH as a central brain region important in the control of adolescent AAS-induced offensive aggression.

  11. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  12. Involvement of local serotonin-2A but not serotonin-1B receptors in the reinforcing effects of ethanol within the posterior ventral tegmental area of female Wistar rats

    PubMed Central

    Ding, Zheng-Ming; Toalston, Jamie E.; Oster, Scott M.; McBride, William J.; Rodd, Zachary A.

    2010-01-01

    Rationale Previous studies indicated that ethanol could be self-infused into the posterior ventral tegmental area (p-VTA) and that activation of local serotonin-3 (5-HT3) receptors was involved. 5-HT1B and 5-HT2A receptors are involved in the effects of 5-HT and ethanol on VTA dopamine neurons. Objective The current study used the intracranial self-administration (ICSA) procedure to determine the involvement of local 5-HT1B and 5-HT2A receptors in the self-infusion of ethanol into the p-VTA. Materials and methods Female Wistar rats were implanted unilaterally with a guide cannula aimed at the p-VTA. Seven days after surgery, rats were placed into the two-lever operant conditioning chambers for ICSA tests. The tests consisted of four acquisition sessions with self-infusion of 200 mg% ethanol alone, two or three sessions with co-infusion of the 5-HT1B antagonist GR 55562 (10, 100, or 200 μM) or the 5-HT2A antagonist R-96544 (10, 100, or 200 μM) with 200 mg% ethanol, and one final session with 200 mg% ethanol alone. Results During the acquisition sessions, all rats readily self-infused ethanol and discriminated the active from inactive lever. Co-infusion of GR 55562, at all three doses, had no effect on the self-infusion of ethanol. In contrast, co-infusion of R-96544, at the two higher doses, attenuated responding on the active lever for ethanol infusion (p<0.05). Conclusion The results suggest that the reinforcing effects of ethanol within the p-VTA are modulated, at least in part, by activation of local 5-HT2A, but not 5-HT1B, receptors. PMID:19165471

  13. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    PubMed

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance

  14. Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice

    PubMed Central

    Nikmahzar, Emsehgol; Ghaemi, Amir; Naseri, Gholam Reza; Moharreri, Ali Reza; Lotfinia, Ahmad Ali

    2016-01-01

    The change of steroid levels may also exert different modulatory effects on the number and class of serotonin receptors present in the plasma membrane. The effects of chronic treatment of testosterone for anxiety were examined and expression of 5-HT2A serotonergic receptor, neuron, astrocyte, and dark neuron density in the hippocampus of gonadectomized male mice was determined. Thirty-six adult male NMRI mice were randomly divided into six groups: intact-no testosterone treatment (No T), gonadectomy (GDX)-No T, GDX-Vehicle, GDX-6.25 mg/kg testosterone (T), GDX-12.5 mg/kg T, and GDX-25 mg/kg T. Anxiety-related behavior was evaluated using elevated plus maze apparatus. The animals were anesthetized after 48 hours after behavioral testing, and decapitated and micron slices were prepared for immunohistochemical as well as histopathological assessment. Subcutaneous injection of testosterone (25 mg/kg) may induce anxiogenic-like behavior in male mice. In addition, immunohistochemical data reveal reduced expression of 5-HT2A serotonergic receptor after gonadectomy in all areas of the hippocampus. However, treatment with testosterone could increase the mean number of dark neurons as well as immunoreactive neurons in CA1 and CA3 area, dose dependently. The density of 5-HT2A receptor-immunoreactive neurons may play a crucial role in the induction of anxiety like behavior. As reduction in such receptor expression have shown to significantly enhance anxiety behaviors. However, replacement of testosterone dose dependently enhances the number of 5-HT2A receptor-immunoreactive neurons and interestingly also reduced anxiety like behaviors. PMID:28127501

  15. Escitalopram reduces attentional performance in anxious older adults with high-expression genetic variants at serotonin 2A and 1B receptors

    PubMed Central

    Lenze, Eric J.; Dixon, David; Nowotny, Petra; Lotrich, Francis E.; Doré, Peter M.; Pollock, Bruce G.; Hinrichs, Anthony L.; Butters, Meryl A.

    2014-01-01

    Older adults are among the most vulnerable to adverse cognitive effects of psychotropic medications and, therefore, the personalization of psychotropic treatment based on adverse drug reactions in this demographic is of great importance. We examined changes on neuropsychological tests of attention attributable to selective serotonin reuptake inhibitor (SSRI) treatment in anxious older adults. We also examined whether variation in serotonin receptor genes was associated with reduced attentional performance with SSRIs. We examined change from pre- to post-treatment in two attention measures – digit span and coding – in 133 adults aged ≥60 yr with generalized anxiety disorder in a 12-wk trial of escitalopram vs. placebo. We also examined attentional change in relation to genetic variability in four central serotonin receptors: the serotonin transporter and serotonin 1A, 2A and 1B receptors. Digit span scores were significantly lowered in patients receiving escitalopram relative to placebo, indicating reduced attentional performance attributable to the SSRI. Individuals with high-transcription variants in the receptors 5-HTR2A rs6311 and 5-HTR1B rs11568817 had greater reductions in attention with SSRI treatment compared to placebo. We conclude that SSRIs reduce attention in older adults, particularly in those with high-expression genetic variants at the serotonin 2A and 1B receptors. Analysing neuropsychological changes with SSRIs in relation to genetic variation in the serotonin system may be a useful strategy for detecting subgroups of older adults who are more susceptible to side-effects of SSRIs. These results, if confirmed, could lead to the personalization of SSRI use to reduce adverse neurocognitive effects. PMID:22717018

  16. Escitalopram reduces attentional performance in anxious older adults with high-expression genetic variants at serotonin 2A and 1B receptors.

    PubMed

    Lenze, Eric J; Dixon, David; Nowotny, Petra; Lotrich, Francis E; Doré, Peter M; Pollock, Bruce G; Hinrichs, Anthony L; Butters, Meryl A

    2013-03-01

    Older adults are among the most vulnerable to adverse cognitive effects of psychotropic medications and, therefore, the personalization of psychotropic treatment based on adverse drug reactions in this demographic is of great importance. We examined changes on neuropsychological tests of attention attributable to selective serotonin reuptake inhibitor (SSRI) treatment in anxious older adults. We also examined whether variation in serotonin receptor genes was associated with reduced attentional performance with SSRIs. We examined change from pre- to post-treatment in two attention measures - digit span and coding - in 133 adults aged ≥60 yr with generalized anxiety disorder in a 12-wk trial of escitalopram vs. placebo. We also examined attentional change in relation to genetic variability in four central serotonin receptors: the serotonin transporter and serotonin 1A, 2A and 1B receptors. Digit span scores were significantly lowered in patients receiving escitalopram relative to placebo, indicating reduced attentional performance attributable to the SSRI. Individuals with high-transcription variants in the receptors 5-HTR2A rs6311 and 5-HTR1B rs11568817 had greater reductions in attention with SSRI treatment compared to placebo. We conclude that SSRIs reduce attention in older adults, particularly in those with high-expression genetic variants at the serotonin 2A and 1B receptors. Analysing neuropsychological changes with SSRIs in relation to genetic variation in the serotonin system may be a useful strategy for detecting subgroups of older adults who are more susceptible to side-effects of SSRIs. These results, if confirmed, could lead to the personalization of SSRI use to reduce adverse neurocognitive effects.

  17. Gender, personality, and serotonin-2A receptor binding in healthy subjects

    PubMed Central

    Soloff, Paul H.; Price, Julie C.; Mason, Neale Scott; Becker, Carl; Meltzer, Carolyn C.

    2009-01-01

    The vulnerability to mood disorders, impulsive-aggression, eating disorders, and suicidal behavior varies greatly with gender, and may reflect gender differences in central serotonergic function. We investigated the relationships of gender, mood, impulsivity, aggression and temperament to 5HT2A receptor binding in 21 healthy subjects using [18F]altanserin and PET neuro-imaging. Binding potentials in pre-defined Regions of Interest (ROI) were calculated using the Logan graphical method, corrected for partial volume effects, and compared by gender with age co-varied. SPM analysis was used for voxel level comparisons. Altanserin binding (BPp) was greater in male than female subjects in 9 ROIs: hippocampus (HIP) and Lt. HIP, lateral orbital frontal cortex (LOF) and Lt.LOF, left medial frontal cortex (Lt.MFC), left medial temporal cortex (Lt. MTC), left occipital cortex (Lt. OCC), thalamus (THL) and Lt. THL. Differences in Lt. HIP and Lt. MTL remained significant after Bonferroni correction. Gender differences were noted in the co-variation of psychological traits with BPp values in specific ROIs. Among males alone, aggression was negatively correlated with BPp values in Lt. LOF and Lt. MFC, and Suspiciousness positively correlated in LOF, Lt. LOF and Lt. MFC. Among female subjects alone, Negativism was positively correlated with BPp values in HIP, and Verbal Hostility in Lt. HIP. Altanserin binding in Lt. MTC was positively correlated with Persistence, with no significant gender effect. Gender differences in 5HT2A receptor function in specific ROIs may mediate expression of psychological characteristics such as aggression, suspiciousness and negativism. Future studies of 5HT2A receptor function and its relationship to behavior should control for gender. PMID:19959344

  18. Lower cortical serotonin 2A receptors in major depressive disorder, suicide and in rats after administration of imipramine.

    PubMed

    Dean, Brian; Tawadros, Nahed; Seo, Myoung Suk; Jeon, Won Je; Everall, Ian; Scarr, Elizabeth; Gibbons, Andrew

    2014-06-01

    We have attempted to replicate studies showing higher levels of serotonin 2A receptors (HTR2A) in the cortex of people with mood disorders and to determine the effects of treating rats with antidepressant drugs on levels of that receptor. In situ [3H]ketanserin binding and autoradiography was used to measure levels of HTR2A in Brodmann's area (BA) 46 and 24 from people with major depressive disorders (MDD, n = 16), bipolar disorders (BD, n = 14) and healthy controls (n = 14) as well as the central nervous system (CNS) of rats (20 per treatment arm) treated for 10 or 28 d with fluoxetine (10 mg/kg/d) or imipramine (20 mg/kg/d). Compared with controls, HTR2A were lower in BA 24, but not BA 46, from people with MDD (p = 0.005); HTR2A were not changed in BD. Levels of HTR2A were lower in BA 24 (p = 0.007), but not BA 46, from people who had died by suicide. Finally, levels of HTR2A were lower in the CNS of rats treated with imipramine, but not fluoxetine, for 28 d, but not 10 d. From our current and previous data we conclude cortical HTR2A are lower in schizophrenia, MDD, people with mood disorders who died by suicide, rats treated with some antipsychotic or some antidepressant drugs. As levels of cortical HTR2A can be affected by the aetiologies of different disorders and mechanisms of action of different drugs, a better understanding of how such changes can occur needs to be elucidated.

  19. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors.

    PubMed

    Carter, Olivia L; Burr, David C; Pettigrew, John D; Wallis, Guy M; Hasler, Felix; Vollenweider, Franz X

    2005-10-01

    Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were tested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 microg/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggesting a primary involvement of the 5-HT1A receptor in the observed deficit. Based on physiological and pharmacological data, we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.

  20. Hyperactivity in Childhood as a Predictor of School Performance in Elementary School: Modifying Effect of a Serotonin Receptor Gene (5-HTR2A)

    ERIC Educational Resources Information Center

    Pulkki-Raback, Laura; Pullmann, Helle; Hintsanen, Mirka; Alatupa, Saija; Ravaja, Niklas; Lehtimaki, Terho; Keltikangas-jarvinen, Liisa

    2010-01-01

    Introduction: Genes have been suggested to interact with predictors of school performance, but evidence is scarce. The purpose was to examine whether a hyperactive temperament leads to different school performance, depending on variability in a serotonin receptor gene (5-HTR2A). Method: The participants were a population-based sample of 909 girls…

  1. Converging translational evidence for the involvement of the serotonin 2A receptor gene in major depressive disorder.

    PubMed

    Petit, Anne-Cécile; Quesseveur, Gaël; Gressier, Florence; Colle, Romain; David, Denis J; Gardier, Alain M; Ferreri, Florian; Lépine, Jean-Pierre; Falissard, Bruno; Verstuyft, Céline; Guiard, Bruno P; Corruble, Emmanuelle

    2014-10-03

    An association between serotonin 2A receptor (5-HT2AR), encoded by HTR2A gene, and major depressive disorder (MDD) has been suggested. Here, we combined preclinical and ecological clinical approaches to explore the impact of impaired 5-HT2AR-mediated transmission on MDD or anxio-depressive-like phenotype in mice. Htr2a knock-out mice (Htr2a(-/-)) and wild-type mice were compared for the ability of chronic corticosterone to elicit some anxio-depressive-like phenotype in three behavioral paradigms (elevated plus maze, tail suspension test and splash test). Accordingly, two single nucleotide polymorphisms of the HTR2A gene (rs6314 ie His452Tyr and rs6313 ie 102C/T), which specific allelic variants may decrease 5-HT2AR-mediated transmission (as in Htr2a(-/-)mice), were studied in a sample of 485 Caucasian patients with MDD. In response to chronic corticosterone exposure, Htr2a(-/-) mice displayed more pronounced anxiodepressive-like phenotype than wild-type mice, as shown by a significant higher "emotionality score" (p<0.01). In patients, the C allele of rs6313 was more frequent in depressed patients (p=0.019) and was also associated with a more severe major depressive episode (p=0.03). This translational and ecological study involving constitutive Htr2a(-/-) knock-out mice and related SNPs in depressed patients suggests that a lower neurotransmission at the 5-HT2AR may favor the susceptibility and severity of MDE. It also suggests that specific allelic variants of the rs6313 and rs6314 may reduce 5-HT2AR-mediated transmission.

  2. Serotonin 2A Receptors, Citalopram and Tryptophan-Depletion: a Multimodal Imaging Study of their Interactions During Response Inhibition

    PubMed Central

    Macoveanu, Julian; Hornboll, Bettina; Elliott, Rebecca; Erritzoe, David; Paulson, Olaf B; Siebner, Hartwig; Knudsen, Gitte M; Rowe, James B

    2013-01-01

    Poor behavioral inhibition is a common feature of neurological and psychiatric disorders. Successful inhibition of a prepotent response in ‘NoGo' paradigms requires the integrity of both the inferior frontal gyrus (IFG) and the serotonergic system. We investigated individual differences in serotonergic regulation of response inhibition. In 24 healthy adults, we used 18F-altanserin positron emission tomography to assess cerebral 5-HT2A receptors, which have been related to impulsivity. We then investigated the impact of two acute manipulations of brain serotonin levels on behavioral and neural correlates of inhibition using intravenous citalopram and acute tryptophan depletion during functional magnetic resonance imaging. We adapted the NoGo paradigm to isolate effects on inhibition per se as opposed to other aspects of the NoGo paradigm. Successful NoGo inhibition was associated with greater activation of the right IFG compared to control trials with alternative responses, indicating that the IFG is activated with inhibition in NoGo trials rather than other aspects of invoked cognitive control. Activation of the left IFG during NoGo trials was greater with citalopram than acute tryptophan depletion. Moreover, with the NoGo-type of response inhibition, the right IFG displayed an interaction between the type of serotonergic challenge and neocortical 5-HT2A receptor binding. Specifically, acute tryptophan depletion (ATD) produced a relatively larger NoGo response in the right IFG in subjects with low 5-HT2A BPP but reduced the NoGo response in those with high 5-HT2A BPP. These links between serotonergic function and response inhibition in healthy subjects may help to interpret serotonergic abnormalities underlying impulsivity in neuropsychiatric disorders. PMID:23303045

  3. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats.

    PubMed

    Zaniewska, Magdalena; Alenina, Natalia; Wydra, Karolina; Fröhler, Sebastian; Kuśmider, Maciej; McCreary, Andrew C; Chen, Wei; Bader, Michael; Filip, Małgorzata

    2015-08-01

    We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5

  4. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    PubMed

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control.

  5. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

    PubMed

    Narla, Chakravarthi; Dunn, Henry A; Ferguson, Stephen S G; Poulter, Michael O

    2015-01-01

    The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.

  6. Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Ásgeirsdóttir, Herborg N; Cohen, Sarah J; Munchow, Alcira H; Barrera, Mercy P; Stackman, Robert W

    2013-01-01

    Excessive fear is a hallmark of several emotional and mental disorders such as phobias and panic disorders. Considerable attention is focused on defining the neurobiological mechanisms of the extinction of conditioned fear memory in an effort to identify mechanisms that may hold clinical significance for remediating aberrant fear memory. Serotonin modulates the acquisition and retention of conditioned emotional memory, and the serotonin 2A receptor (5HT2AR) may be one of the postsynaptic targets mediating such effects. Here we tested the hypothesis that the 5HT2AR regulates the consolidation and extinction of fear memory in male C57BL/6J mice. The influence of 5HT2ARs on memory consolidation was further confirmed with a novel object recognition task. With a trace fear conditioning paradigm, administration of the 5HT2AR agonist TCB-2 (1.0 mg/kg, i.p.) before the extinction test facilitated the acquisition of extinction of fear memory as compared to vehicle treatment. In contrast, administration of the 5HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) delayed the acquisition of extinction of fear memory. Further, the post-conditioning administration of TCB-2 enhanced contextual and cued fear memory, possibly by facilitating the consolidation of fear memory. Administration of TCB-2 also facilitated the acquisition of extinction of fear memory in delay fear conditioned mice. Stimulation or blockade of 5HT2ARs did not affect the encoding or retrieval of conditioned fear memory. Finally, administration of TCB-2 right after training in an object recognition task enhanced the consolidation of object memory. These results suggest that stimulation of 5HT2ARs facilitates the consolidation and extinction of trace and delay cued fear memory and the consolidation of object memory. Blocking the 5HT2AR impairs the acquisition of fear memory extinction. The results support the view that serotonergic activation of the 5HT2AR provides an important modulatory influence on circuits

  7. Binding of [(3)H]lysergic acid diethylamide to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults.

    PubMed

    Sigurdh, J; Spigset, O; Allard, P; Mjörndal, T; Hägglöf, B

    1999-11-01

    Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.

  8. Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression.

    PubMed

    Kang, Rhee-Hun; Choi, Myoung-Jin; Paik, Jong-Woo; Hahn, Sang-Woo; Lee, Min-Soo

    2007-01-01

    The 5-HTR2A gene is a candidate gene for influencing the clinical response to treatment with antidepressants. The purpose of this study was to determine the relationship between the -1438A/G polymorphism of the 5-HTR2A gene and the response to mirtazapine in a Korean population with major depressive disorder. Mirtazapine was administered for eight weeks to the 101 patients who completed the study, during which we evaluated the clinical outcome using repeated-measures ANCOVA. A main effect of genotype or an effect of genotype-time interactions on the decrease in HAMD score during the eight-week follow-up was not found, which suggests that the 5-HTR2A -1438A/G polymorphism does not affect the clinical outcome to mirtazapine administration. However, significant effects of genotype and allele carriers on the decrease in the sleep score over the eight weeks were found (genotype: F = 4.093, p = 0.017; allele: F = 4.371, p = 0.037), whereas no effect of genotype-time interactions on the decrease in the HAMD score over the eight-week follow-up was found. These observations suggest that the -1438A/G polymorphism on the sleep improvement at each time period revealed significant differences in the sleep scores after two weeks of mirtazapine administration. The sleep scores were lower for carriers of the A+ allele than of the A- allele after two weeks of mirtazapine administration (p = 0.041), which means that the -1438GG genotype is associated with less improvement in sleep, and suggests that the effect of mirtazapine on improving the sleep quality differs with the 5-HTR2A -1438A/G polymorphism within two weeks of mirtazapine treatment. In conclusion, although the -1438A/G polymorphism affects the sleep improvement resulting from the administration of mirtazapine to Korean patients with major depressive disorder, our results do not support the hypothesis that this polymorphism of the 5-HTR2A gene is involved in the therapeutic response to mirtazapine.

  9. mRNA Expression and DNA Methylation Analysis of Serotonin Receptor 2A (HTR2A) in the Human Schizophrenic Brain

    PubMed Central

    Cheah, Sern-Yih; Lawford, Bruce R.; Young, Ross McD.; Morris, Charles P.; Voisey, Joanne

    2017-01-01

    Serotonin receptor 2A (HTR2A) is an important signalling factor implicated in cognitive functions and known to be associated with schizophrenia. The biological significance of HTR2A in schizophrenia remains unclear as molecular analyses including genetic association, mRNA expression and methylation studies have reported inconsistent results. In this study, we examine HTR2A expression and methylation and the interaction with HTR2A polymorphisms to identify their biological significance in schizophrenia. Subjects included 25 schizophrenia and 25 control post-mortem brain samples. Genotype and mRNA data was generated by transcriptome sequencing. DNA methylation profiles were generated for CpG sites within promoter-exon I region. Expression, genotype and methylation data were examined for association with schizophrenia. HTR2A mRNA levels were reduced by 14% (p = 0.006) in schizophrenia compared to controls. Three CpG sites were hypermethylated in schizophrenia (cg5 p = 0.028, cg7 p = 0.021, cg10 p = 0.017) and HTR2A polymorphisms rs6314 (p = 0.008) and rs6313 (p = 0.026) showed genetic association with schizophrenia. Differential DNA methylation was associated with rs6314 and rs6313. There was a strong correlation between HTR2A DNA methylation and mRNA expression. The results were nominally significant but did not survive the rigorous Benjamini-Hochberg correction for multiple testing. Differential HTR2A expression in schizophrenia in our study may be the result of the combined effect of multiple differentially methylated CpG sites. Epigenetic HTR2A regulation may alter brain function, which contributes to the development of schizophrenia. PMID:28054990

  10. mRNA Expression and DNA Methylation Analysis of Serotonin Receptor 2A (HTR2A) in the Human Schizophrenic Brain.

    PubMed

    Cheah, Sern-Yih; Lawford, Bruce R; Young, Ross McD; Morris, Charles P; Voisey, Joanne

    2017-01-04

    Serotonin receptor 2A (HTR2A) is an important signalling factor implicated in cognitive functions and known to be associated with schizophrenia. The biological significance of HTR2A in schizophrenia remains unclear as molecular analyses including genetic association, mRNA expression and methylation studies have reported inconsistent results. In this study, we examine HTR2A expression and methylation and the interaction with HTR2A polymorphisms to identify their biological significance in schizophrenia. Subjects included 25 schizophrenia and 25 control post-mortem brain samples. Genotype and mRNA data was generated by transcriptome sequencing. DNA methylation profiles were generated for CpG sites within promoter-exon I region. Expression, genotype and methylation data were examined for association with schizophrenia. HTR2A mRNA levels were reduced by 14% (p = 0.006) in schizophrenia compared to controls. Three CpG sites were hypermethylated in schizophrenia (cg5 p = 0.028, cg7 p = 0.021, cg10 p = 0.017) and HTR2A polymorphisms rs6314 (p = 0.008) and rs6313 (p = 0.026) showed genetic association with schizophrenia. Differential DNA methylation was associated with rs6314 and rs6313. There was a strong correlation between HTR2A DNA methylation and mRNA expression. The results were nominally significant but did not survive the rigorous Benjamini-Hochberg correction for multiple testing. Differential HTR2A expression in schizophrenia in our study may be the result of the combined effect of multiple differentially methylated CpG sites. Epigenetic HTR2A regulation may alter brain function, which contributes to the development of schizophrenia.

  11. Serotonin receptors involved in antidepressant effects.

    PubMed

    Artigas, Francesc

    2013-01-01

    The neurotransmitter serotonin (5-hdroxytryptamine; 5-HT) has been implicated in the pathophysiology and treatment of major depression since the serendipitous discovery of antidepressant drugs in the 1950s. However, despite the generalised use of serotonin-enhancing drugs, such as the selective serotonin reuptake inhibitors (SSRIs) and the dual serotonin and norepinephrine reuptake inhibitors (SNRIs), the exact neurobiological mechanisms involved in the therapeutic action of these drugs are poorly understood. Better knowledge of these mechanisms may help to identify new therapeutic targets and to overcome the two main limitations of current treatments: reduced efficacy and slowness of action. Here I review the preclinical and clinical evidence supporting the involvement of different 5-HT receptors in the therapeutic action of antidepressant drugs. Presynaptic 5-HT(1A) and 5-HT(1B) autoreceptors play a major detrimental role in antidepressant treatments, as their activation by the excess of the active (extracellular) 5-HT fraction produced by serotonin transporter (SERT) blockade reduces presynaptic serotonergic function. Conversely, stimulation of postsynaptic 5-HT(1A) receptors in corticolimbic networks appears beneficial for the antidepressant action. The 5-HT(2) receptor family is also involved as 5-HT(2A/2C) receptor blockade improves the antidepressant action of SSRIs, and recent data suggest that 5-HT(2B) receptor activation enhances serotonergic activity. Less is known from the rest of postsynaptic 5-HT receptors. However, 5-HT(3) receptor blockade augments the 5-HT increase evoked by SERT inhibition, and 5-HT(4) receptor activation may have antidepressant effects on its own. Finally, blockade of 5-HT(6) and 5-HT(7) receptors appears also to augment the antidepressant effects of SERT inhibition.

  12. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder.

  13. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  14. The Fabric of Meaning and Subjective Effects in LSD-Induced States Depend on Serotonin 2A Receptor Activation.

    PubMed

    Preller, Katrin H; Herdener, Marcus; Pokorny, Thomas; Planzer, Amanda; Kraehenmann, Rainer; Stämpfli, Philipp; Liechti, Matthias E; Seifritz, Erich; Vollenweider, Franz X

    2017-02-06

    A core aspect of the human self is the attribution of personal relevance to everyday stimuli enabling us to experience our environment as meaningful [1]. However, abnormalities in the attribution of personal relevance to sensory experiences are also critical features of many psychiatric disorders [2, 3]. Despite their clinical relevance, the neurochemical and anatomical substrates enabling meaningful experiences are largely unknown. Therefore, we investigated the neuropharmacology of personal relevance processing in humans by combining fMRI and the administration of the mixed serotonin (5-HT) and dopamine receptor (R) agonist lysergic acid diethylamide (LSD), well known to alter the subjective meaning of percepts, with and without pretreatment with the 5-HT2AR antagonist ketanserin. General subjective LSD effects were fully blocked by ketanserin. In addition, ketanserin inhibited the LSD-induced attribution of personal relevance to previously meaningless stimuli and modulated the processing of meaningful stimuli in cortical midline structures. These findings point to the crucial role of the 5-HT2AR subtype and cortical midline regions in the generation and attribution of personal relevance. Our results thus increase our mechanistic understanding of personal relevance processing and reveal potential targets for the treatment of psychiatric illnesses characterized by alterations in personal relevance attribution.

  15. The secret ingredient for social success of young males: a functional polymorphism in the 5HT2A serotonin receptor gene.

    PubMed

    Dijkstra, Jan Kornelis; Lindenberg, Siegwart; Zijlstra, Lieuwe; Bouma, Esther; Veenstra, René

    2013-01-01

    In adolescence, being socially successful depends to a large extent on being popular with peers. Even though some youths have what it takes to be popular, they are not, whereas others seem to have a secret ingredient that just makes the difference. In this study the G-allele of a functional polymorphism in the promotor region of the 5HT2A serotonin receptor gene (-G1438A) was identified as a secret ingredient for popularity among peers. These findings build on and extend previous work by Burt (2008, 2009). Tackling limitations from previous research, the role of the 5HT2A serotonin receptor gene was examined in adolescent males (N = 285; average age 13) using a unique sample of the TRAILS study. Carrying the G-allele enhanced the relation between aggression and popularity, particularly for those boys who have many female friends. This seems to be an "enhancer" effect of the G-allele whereby popularity relevant characteristics are made more noticeable. There is no "popularity gene", as the G-allele by itself had no effect on popularity.

  16. Two Distinct Central Serotonin Receptors with Different Physiological Functions

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Lebovitz, Richard M.; Snyder, Solomon H.

    1981-05-01

    Two distinct serotonin (5-hydroxytryptamine) receptors designated serotonin 1 and serotonin 2 bind tritium-labeled serotonin and tritium-labeled spiroperidol, respectively. Drug potencies at serotonin 2 sites, but not at serotonin 1 sites, predict their effects on the ``serotonin behavioral syndrome,'' indicating that serotonin 2 sites mediate these behaviors. The limited correlation of drug effects with regulation by guanine nucleotides suggests that serotonin 1 sites might be linked to adenylate cyclase. Drug specificities of serotonin-elicited synaptic inhibition and excitation may reflect serotonin 1 and serotonin 2 receptor interactions, respectively.

  17. Prophylactic and therapeutic effects of acute systemic injections of EMD 281014, a selective serotonin 2A receptor antagonist on anxiety induced by predator stress in rats.

    PubMed

    Adamec, Robert; Creamer, Katherine; Bartoszyk, Gerd D; Burton, Paul

    2004-11-03

    We examined the effect of the selective serotonin 2A (5-HT(2A)) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbon itrile HCl (EMD 281014) [Bartoszyk, G.D., van Amsterdam, C., Bottcher, H., Seyfried, C.A., 2003. EMD 281014, a new selective serotonin 5-HT2A receptor antagonist. Eur. J. Pharmacol. 473, 229-230.] on change in affect following predator stress. Predator stress involved a 5 min unprotected exposure of rats to a domestic cat. Behavioral effects of stress were evaluated with hole board, plus maze, light/dark box and acoustic startle tests 1 week after stress. Predator stress increased anxiety-like behavior in the plus maze, light/dark box, and elevated response to acoustic startle. EMD 281014 (0.001, 0.01, 0.1, 1 or 10 mg/kg) and vehicle injection (ip) occurred either 10 min after predator stress (prophylactic testing), or 90 min prior to behavioral testing for the effects of predator stress (therapeutic testing 1 week after predator stress). In prophylactic testing, EMD 281014 prevented stress potentiation of startle in a dose dependent manner, though the most effective doses were midrange (0.01 and 0.1 mg/kg). Prophylactic administration of EMD 281014 also prevented stress-induced increase of open arm avoidance in the plus maze in a clear dose dependent manner (from 0.01 mg/kg onward). In therapeutic testing, EMD 281014 had no clear drug dependent effects on stress elevation of startle or on behavior of stressed rats in the elevated plus maze. Finally, EMD 281014 did not block the effects of stress on behavior in the light/dark box when given prophylactically or therapeutically. Findings implicate 5-HT(2A) receptors in initiation of some but not all lasting changes in anxiety-like behavior following predator stress. Potential clinical significance of findings are discussed.

  18. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance.

    PubMed

    Baeken, Chris; Bossuyt, Axel; De Raedt, Rudi

    2014-02-28

    Although the serotonergic system has been implicated in healthy as well as in pathological emotional states, knowledge about its involvement in personality is limited. Earlier research on this topic suggests that post-synaptic 5-HT2A receptors could be involved in particular in frontal cortical areas. In drug-naïve healthy individuals, we examined the relationship between these 5-HT2A receptors and the temperament dimension harm avoidance (HA) using 123I-5-I-R91150 single photon emission computed tomography (SPECT). HA is a personality feature closely related to stress, anxiety and depression proneness, and it is thought to be mediated by the serotonergic system. We focused on the prefrontal cortices as these regions are frequently implicated in cognitive processes related to a variety of affective disorders. We found a positive relationship between dorsal prefrontal cortical (DPFC) 5-HT2A receptor binding indices (BI) and individual HA scores. Further, our results suggest that those individuals with a tendency to worry or to ruminate are particularly prone to display significantly higher 5-HT2A receptor BI in the left DPFC. Although we only examined psychologically healthy individuals, this relationship suggests a possible vulnerability for affective disorders.

  19. Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System

    PubMed Central

    Fink, Latham HL; Anastasio, Noelle C; Fox, Robert G; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-01-01

    Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([3H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system. PMID:25666313

  20. Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression.

    PubMed

    Dawson, Neil; Ferrington, Linda; Lesch, Klaus-Peter; Kelly, Paul A T

    2011-01-01

    Variation in the human serotonin transporter gene (hSERT; 5-HTT) resulting in a life-long alteration in SERT function influences anxiety and the risk of developing affective disorders. The mechanisms underlying the influence of the hSERT gene on these phenotypes remain unclear but may involve altered 5-HT receptor function. Here we characterise the cerebral metabolic response to 5-HT(2A/C) receptor activation in two transgenic mouse models of altered SERT function, SERT knock-out (SERT KO) and hSERT over-expressing (hSERT OE) mice, to test the hypothesis that genetically mediated variability in SERT expression alters 5-HT(2A/C) function. We found that a constitutive increase in SERT expression (hSERT OE) enhanced, whereas a constitutive decrease in SERT expression (SERT KO) attenuated, 5-HT(2A/C) function. Therefore, altered 5-HT(2A/C) receptor functioning in response to hSERT gene variation may contribute to its influence on affective phenotypes.

  1. Familial risk for mood disorder and the personality risk factor, neuroticism, interact in their association with frontolimbic serotonin 2A receptor binding.

    PubMed

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David; Baaré, William; Holst, Klaus Kähler; Mortensen, Erik Lykke; Arfan, Haroon; Madsen, Jacob; Jernigan, Terry L; Kessing, Lars Vedel; Knudsen, Gitte Moos

    2010-04-01

    Life stress is a robust risk factor for later development of mood disorders, particularly for individuals at familial risk. Likewise, scoring high on the personality trait neuroticism is associated with an increased risk for mood disorders. Neuroticism partly reflects stress vulnerability and is positively correlated to frontolimbic serotonin 2A (5-HT(2A)) receptor binding. Here, we investigate whether neuroticism interacts with familial risk in relation to frontolimbic 5-HT(2A) receptor binding. Twenty-one healthy twins with a co-twin history of mood disorder and 16 healthy twins without a co-twin history of mood disorder were included. They answered self-report personality questionnaires and underwent [(18)F]altanserin positron emission tomography. We found a significant interaction between neuroticism and familial risk in predicting the frontolimbic 5-HT(2A) receptor binding (p=0.026) in an analysis adjusting for age and body mass index. Within the high-risk group only, neuroticism and frontolimbic 5-HT(2A) receptor binding was positively associated (p=0.0037). In conclusion, our data indicate that familial risk and neuroticism interact in their relation to frontolimbic 5-HT(2A) receptor binding. These findings point at a plausible neurobiological link between genetic and personality risk factors and vulnerability to developing mood disorders. It contributes to our understanding of why some people at high risk develop mood disorders while others do not. We speculate that an increased stress reactivity in individuals at high familial risk for mood disorders might enhance the effect of neuroticism in shaping the impact of potential environmental stress and thereby influence serotonergic neurotransmission.

  2. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    PubMed

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.

  3. Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice.

    PubMed

    Lairez, O; Cognet, T; Schaak, S; Calise, D; Guilbeau-Frugier, C; Parini, A; Mialet-Perez, J

    2013-06-01

    Serotonin, in addition to its fundamental role as a neurotransmitter, plays a critical role in the cardiovascular system, where it is thought to be involved in the development of cardiac hypertrophy and failure. Indeed, we recently found that mice with deletion of monoamine oxidase A had enhanced levels of blood and cardiac 5-HT, which contributed to exacerbation of hypertrophy in a model of experimental pressure overload. 5-HT2A receptors are expressed in the heart and mediate a hypertrophic response to 5-HT in cardiac cells. However, their role in cardiac remodeling in vivo and the signaling pathways associated are not well understood. In the present study, we evaluated the effect of a selective 5-HT2A receptor antagonist, M100907, on the development of cardiac hypertrophy induced by transverse aortic constriction (TAC). Cardiac 5-HT2A receptor expression was transiently increased after TAC, and was recapitulated in cardiomyocytes, as observed with 5-HT2A in situ labeling by immunohistochemistry. Selective blockade of 5-HT2A receptors prevented the development of cardiac hypertrophy, as measured by echocardiography, cardiomyocyte area and heart weight-to-body weight ratio. Interestingly, activation of calmodulin kinase (CamKII), which is a core mechanism in cardiac hypertrophy, was reduced in cardiac samples from M100907-treated TAC mice compared to vehicle-treated mice. In addition, phosphorylation of histone deacetylase 4 (HDAC4), a downstream partner of CamKII was significantly diminished in M100907-treated TAC mice. Thus, our results show that selective blockade of 5-HT2A receptors has beneficial effect in the development of cardiac hypertrophy through inhibition of the CamKII/HDAC4 pathway.

  4. Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians.

    PubMed

    Schosser, Alexandra; Fuchs, Karoline; Scharl, Theresa; Schloegelhofer, Monika; Kindler, Jochen; Mossaheb, Nilufar; Kaufmann, Rainer M; Leisch, Friedrich; Kasper, Siegfried; Sieghart, Werner; Aschauer, Harald N

    2010-03-01

    We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.

  5. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.

  6. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    PubMed Central

    2009-01-01

    Background Position emission tomography (PET) imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR) binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. Results The average difference in the binding potential (BPND) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. Conclusion We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples. PMID:19580676

  7. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics

    PubMed Central

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-01-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype–phenotype relationships. PMID:25563748

  8. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure.

    PubMed

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo; Rydbirk, Rasmus; Olesen, Mikkel Vestergaard; Hay-Schmidt, Anders; Pakkenberg, Bente; Aznar, Susana

    2017-03-02

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT2AR activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT2AR blockade does not seem to affect the amygdala-striatal projection.

  9. Blockade of Serotonin 5-HT2A Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice

    PubMed Central

    Pang, Gang; Wu, Xian; Tao, Xinrong; Mao, Ruoying; Liu, Xueke; Zhang, Yong-Mei; Li, Guangwu; Stackman, Robert W.; Dong, Liuyi; Zhang, Gongliang

    2016-01-01

    The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate – even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. Highlights (i) Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization. (ii) Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice. (iii) Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex. PMID:28082900

  10. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    PubMed

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  11. Use of LC/MS to assess brain tracer distribution in preclinical, in vivo receptor occupancy studies: dopamine D2, serotonin 2A and NK-1 receptors as examples.

    PubMed

    Chernet, Eyassu; Martin, Laura J; Li, Dominic; Need, Anne B; Barth, Vanessa N; Rash, Karen S; Phebus, Lee A

    2005-12-12

    High performance liquid chromatography combined with either single quad or triple quad mass spectral detectors (LC/MS) was used to measure the brain distribution of receptor occupancy tracers targeting dopamine D2, serotonin 5-HT2A and neurokinin NK-1 receptors using the ligands raclopride, MDL-100907 and GR205171, respectively. All three non-radiolabeled tracer molecules were easily detectable in discrete rat brain areas after intravenous doses of 3, 3 and 30 microg/kg, respectively. These levels showed a differential brain distribution caused by differences in receptor density, as demonstrated by the observation that pretreatment with compounds that occupy these receptors reduced this differential distribution in a dose-dependent manner. Intravenous, subcutaneous and oral dose-occupancy curves were generated for haloperidol at the dopamine D2 receptor as were oral curves for the antipsychotic drugs olanzapine and clozapine. In vivo dose-occupancy curves were also generated for orally administered clozapine, olanzapine and haloperidol at the cortical 5-HT2A binding site. In vivo occupancy at the striatal neurokinin NK-1 binding site by various doses of orally administered MK-869 was also measured. Our results demonstrate the utility of LC/MS to quantify tracer distribution in preclinical brain receptor occupancy studies.

  12. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  13. Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents

    PubMed Central

    Fantegrossi, William E.; Reissig, Chad J.; Katz, Elyse B.; Yarosh, Haley L.; Rice, Kenner C.; Winter, Jerrold C.

    2008-01-01

    N,N-dipropyltryptamine (DPT) is a synthetic tryptamine hallucinogen which has been used psychotherapeutically in humans, but has been studied preclinically only rarely. In the present studies, DPT was tested in a drug-elicited head twitch assay in mice, and in rats trained to discriminate lysergic acid diethylamide (LSD), N,N-dimethyl-4-phosphoryloxytryptamine (psilocybin), or 3,4-methylenedioxymethamphetamine (MDMA). A separate group of rats was also trained to recognize DPT itself as a discriminative stimulus, and in all cases, the behavioral effects of DPT were challenged with the selective serotonin (5-HT)2A antagonist M100907, the 5-HT1A selective antagonist WAY-100635, or their combination. In the head twitch assay, DPT elicited dose-dependent effects, producing a biphasic dose-effect curve. WAY-100635 produced a parallel rightward shift in the dose-effect curve for head twitches, indicative of surmountable antagonism, but the antagonist effects of M100907 were functionally insurmountable. DPT produced partial to full substitution when tested in rats trained to discriminate LSD, psilocybin or MDMA, and served as a discriminative stimulus. In all cases, the antagonist effects of M100907 were more profound than were those of WAY-100635. DPT is thus active in two rodent models relevant to 5-HT2 agonist activity. The effectiveness with which M100907 antagonizes the behavioral actions of this compound strongly suggests that the 5-HT2A receptor is an important site of action for DPT, but the modulatory actions of WAY-100635 also imply a 5-HT1A-mediated component to the actions of this compound. PMID:17905422

  14. Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5-HT(2A) receptor antagonism on the firing activity of norepinephrine neurons.

    PubMed

    Szabo, Steven T; Blier, Pierre

    2002-09-01

    YM992 [(S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride] is a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) and a potent 5-HT(2A) antagonist. The aim of the present study was to assess, using in vivo extracellular unitary recordings, the effect of acute and sustained administration of YM992 (40 mg kg(-1) day(-1) s.c., using osmotic minipumps) on the spontaneous firing activity of locus coeruleus (LC) norepinephrine (NE) neurons. Acute intravenous injection of YM992 (4 mg kg(-1)) significantly decreased NE neuron firing activity by 29% and blocked the inhibitory effect of a subsequent injection of the 5-HT(2) agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride]. A 2-day treatment with YM992 decreased the firing rate of NE neurons by 66%, whereas a partial recovery was observed after a 7-day treatment and a complete one after a 21-day treatment. Following the injection of the alpha(2)-adrenoceptor antagonist idazoxan (1 mg kg(-1) i.v.), NE neuron firing was equalized in controls and 2-day YM992-treated rats. This put into evidence an increased degree of activation of alpha(2)-adrenergic autoreceptors in the treated rats. The suppressant effect of the alpha(2)-adrenoceptor agonist clonidine was significantly decreased in long-term YM992-treated rats. The recovery of LC firing activity after long-term YM992 administration could thus be explained by a decreased sensitivity of alpha(2)-adrenergic autoreceptors. Sustained SSRI administration leads to a gradual reduction of the firing activity of NE neurons during long-term administration, whereas YM992 produced opposite effects. The exact basis for the increased synaptic availability of NE by YM992 remains to be elucidated. This NE activity, resulting from 5-HT reuptake inhibition plus 5-HT(2A) receptor antagonism, might confer additional benefits in affective and anxiety disorders.

  15. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation.

  16. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  17. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors.

    PubMed

    Qi, Yi-Xiang; Huang, Jia; Li, Meng-Qi; Wu, Ya-Su; Xia, Ren-Ying; Ye, Gong-Yin

    2016-03-14

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution.

  18. Effects of chronic fluoxetine treatment on catalepsy and the immune response in mice with a genetic predisposition to freezing reactions: the roles of types 1A and 2A serotonin receptors and the tph2 and SERT genes.

    PubMed

    Tikhonova, M A; Alperina, E L; Tolstikova, T G; Bazovkina, D V; Di, V Y; Idova, G V; Kulikov, A V; Popova, N K

    2010-06-01

    ASC (Antidepressant-Sensitive Catalepsy) mice, bred for a high predisposition to catalepsy, are characterized by depression-like behavior and decreased immune responses. Chronic administration of fluoxetine, which is a selective serotonin reuptake inhibitor antidepressant widely used in clinical practice, to mice of this strain weakened catalepsy and normalized the number of rosette-forming cells in the spleen. In mice of the parental cataleptic strain CBA/Lac, fluoxetine had no effect on the level of catalepsy or the immune response. Analysis of the effects of fluoxetine on the functional activity of 5-HT(1A) and 5-HT(2A) receptors, and the expression of 5-HT(1A) receptor genes in the frontal cortex and midbrain and 5-HT(2A) receptors in the frontal cortex, as well as the tryptophan hydroxylase-2 and the serotonin transporter genes in the midbrain showed that the antidepressant had no effect on these parameters in ASC mice, but decreased the functional activity of 5-HT(2A) receptors in CBA/Lac mice. The possibility that the actions of fluoxetine on catalepsy and the immune response in mice with depression-like states are mediated via other serotoninergic mechanisms is discussed.

  19. Cognition-induced modulation of serotonin in the orbitofrontal cortex: a controlled cross-over PET study of a delayed match-to-sample task using the 5-HT2a receptor antagonist [18F]altanserin.

    PubMed

    Hautzel, Hubertus; Müller, Hans-Wilhelm; Herzog, Hans; Grandt, Rüdiger

    2011-10-01

    Behavioral and cellular studies indicate that serotonin interacting with the 5-HT2a receptor (5-HT2aR) is involved in cognitive processes supporting working memory (WM). However, 5-HT receptor neuroimaging studies directly relating WM-induced neuronal activations to concomitant changes in the availability of 5-HT receptors as a functional measure for serotonin release are lacking. This controlled cross-over PET study aimed to identify brain regions with WM-induced changes in the binding potential (BP(nd)) of the 5-HT2aR antagonist [(18)F]altanserin. Ten young males underwent a delayed match-to-sample task using photographs of faces and a control task. The BP(nd)s for both conditions were calculated by applying Ichise's noninvasive plot. Statistics were performed with the SPM toolbox statistical nonparametric mapping (SnPM3) particularly suited for analyzing whole-brain PET data in an exploratory way. A higher BP(nd) for [(18)F]altanserin during WM versus control was found in the orbitofrontal cortex (OFC) pointing towards an increased [(18)F]altanserin/5-HT2aR interaction in OFC while BP(nd) decreases during WM were not found. Furthermore, no BP(nd) changes in regions known from functional neuroimaging studies to be more specifically involved in WM were identified. These findings may suggest that the increased [(18)F]altanserin BP(nd) under WM challenge and hence the increased availability of 5-HT2aR reflects a decrease in local OFC serotonin. As the OFC plays a prominent role in decision-making and supports cognitive processes related to the central executive functions of WM it might be modulated by the serotoninergic system via the 5-HT2aR in order to support and optimize basic cognitive functions.

  20. Ozone Exposure Alters Serotonin and Serotonin Receptor Expression in the Developing Lung

    PubMed Central

    Van Winkle, Laura S.

    2013-01-01

    Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease. PMID:23570994

  1. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  2. Targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors for developing effective antipsychotics: synthesis, biological characterization, and behavioral studies.

    PubMed

    Brindisi, Margherita; Butini, Stefania; Franceschini, Silvia; Brogi, Simone; Trotta, Francesco; Ros, Sindu; Cagnotto, Alfredo; Salmona, Mario; Casagni, Alice; Andreassi, Marco; Saponara, Simona; Gorelli, Beatrice; Weikop, Pia; Mikkelsen, Jens D; Scheel-Kruger, Jorgen; Sandager-Nielsen, Karin; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2014-11-26

    Combination of dopamine D3 antagonism, serotonin 5-HT1A partial agonism, and antagonism at 5-HT2A leads to a novel approach to potent atypical antipsychotics. Exploitation of the original structure-activity relationships resulted in the identification of safe and effective antipsychotics devoid of extrapyramidal symptoms liability, sedation, and catalepsy. The potential atypical antipsychotic 5bb was selected for further pharmacological investigation. The distribution of c-fos positive cells in the ventral striatum confirmed the atypical antipsychotic profile of 5bb in agreement with behavioral rodent studies. 5bb administered orally demonstrated a biphasic effect on the MK801-induced hyperactivity at dose levels not able to induce sedation, catalepsy, or learning impairment in passive avoidance. In microdialysis studies, 5bb increased the dopamine efflux in the medial prefrontal cortex. Thus, 5bb represents a valuable lead for the development of atypical antipsychotics endowed with a unique pharmacological profile for addressing negative symptoms and cognitive deficits in schizophrenia.

  3. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding.

  4. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation.

  5. Current status of positron emission tomography radiotracers for serotonin receptors in humans.

    PubMed

    Zimmer, Luc; Le Bars, Didier

    2013-01-01

    Serotonin (5-HT) neurotransmission plays a key modulatory role in the brain. This system is critical for pathophysiological processes and many drug treatments for brain disorders interact with its 14 subtypes of receptors. Positron emission tomography (PET) is a unique tool for the study of the living brain in translational studies from animal models to patients in neurology or psychiatry. This short review is intended to cover the current status of PET radioligands used for imaging human brain 5-HT receptors. Here, we describe the available PET radioligands for the 5-HT1A , 5-HT1B , 5-HT2A , 5-HT4 and 5-HT6 receptors. Finally, we highlight the future challenges for a functional PET imaging of serotonin receptors, including the research towards specific PET radiotracers for yet unexplored serotonin receptors, the need of radiotracers for endogenous serotonin level measurement and the contribution of agonist radiotracers for functional imaging of 5-HT neurotransmission.

  6. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity.

    PubMed

    Anastasio, Noelle C; Stutz, Sonja J; Fink, Latham H L; Swinford-Jackson, Sarah E; Sears, Robert M; DiLeone, Ralph J; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-07-15

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally relevant mechanism underlying motor impulsivity.

  7. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity

    PubMed Central

    Anastasio, Noelle C.; Stutz, Sonja J.; Fink, Latham H. L.; Swinford-Jackson, Sarah E.; Sears, Robert M; DiLeone, Ralph J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2016-01-01

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally-relevant mechanism underlying motor impulsivity. PMID:26120876

  8. Extensive Rigid Analogue Design Maps the Binding Conformation of Potent N-Benzylphenethylamine 5-HT2A Serotonin Receptor Agonist Ligands

    PubMed Central

    2012-01-01

    Based on the structure of the superpotent 5-HT2A agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation. (S,S)-9b also displayed 124-fold selectivity for the 5-HT2A over the 5-HT2C receptor, making it the most selective 5-HT2A receptor agonist ligand currently known. PMID:23336049

  9. Serotonin receptors in suicide victims with major depression.

    PubMed

    Stockmeier, C A; Dilley, G E; Shapiro, L A; Overholser, J C; Thompson, P A; Meltzer, H Y

    1997-02-01

    Serotonin1A (5-HT1A) and serotonin2A (5-HT2A) receptors in the brain have been implicated in the pathophysiology of suicide. Brain samples were collected at autopsy from suicide victims with a current episode of major depression and matched comparison subjects who died of natural or accidental causes. Retrospective psychiatric assessments were collected from knowledgeable informants for all suicide victims and most of the comparison subjects. Psychiatric diagnoses were determined according to DSM-III-R criteria. Any subjects with current psychoactive substance use disorders were excluded. Quantitative receptor autoradiography was used in serial sections of the right prefrontal cortex (area 10) and hippocampus to measure the binding of [3H]8-hydroxy-2-(di-n-propyl)-aminotetralin ([3H]8-OH-DPAT) to 5-HT1A receptors and [3H]ketanserin to 5-HT2A receptors. Analysis of covariance was used to compare control subjects and suicide victims with major depression. The age of subjects, the time from death to freezing the tissue (postmortem interval), and the storage time of tissues in the freezer were used as covariates in the analyses. There were no significant differences between suicide victims with major depression and comparison subjects in 5-HT1A or 5-HT2A receptors in area 10 of the right prefrontal cortex or the hippocampus. The current results suggest that the number of 5-HT1A and 5-HT2A receptors in the right prefrontal cortex (area 10) or hippocampus are not different in suicide victims with major depression.

  10. Effects of the serotonin 5-HT2A and 5-HT2C receptor ligands on the discriminative stimulus effects of nicotine in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Przegaliński, Edmund; Filip, Malgorzata

    2007-10-01

    The present study tested the hypothesis that serotonergic (5-HT) 5-HT2A or 5-HT2C receptors or their pharmacological stimulation modulated the discriminative stimulus effects of nicotine in male Wistar rats. To this end the selective 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M100,907; 0.5-1 mg/kg, i.p.), the functional 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 0.1-1 mg/kg, s.c.), the selective 5-HT2C receptor antagonist 6-chloro-5-methyl-1-{[2-(2-methylpyrid-3-yloxy)pyrid-5-yl]carbamoyl}indoline (SB 242,084; 0.25-1 mg/kg, i.p.) and the 5-HT2C receptor agonists (S)-2-chloro-5-fluoro-indol-1-yl)-1-methylethylamine fumarate (Ro 60-0175; 0.3-1 mg/kg, s.c.) and (7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole (WAY 163,909; 0.75-1.5 mg/kg, i.p.) were used. Additionally, the effects of the selective alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA; 0.01 mg/kg, s.c.) were investigated. In rats trained to discriminate (-)-nicotine (0.4 mg/kg, s.c.) from saline in a two-lever, water-reinforced fixed ratio 10 task, substitutions were not observed with 5-HT2 receptor ligands (<32% nicotine-lever responding), conversely 5-IA induced a full substitution (100% nicotine-lever responding). In combination studies, fixed doses of M100,907 (0.5-1 mg/kg) or SB 242,084 (0.25-1 mg/kg) did not alter the dose-response curve of nicotine, while DOI (0.3 mg/kg), Ro 60-0175 (1 mg/kg) and WAY 163,909 (1 and 1.5 mg/kg) attenuated the discriminative stimulus effects of nicotine. The decrease in the expression of the discriminative stimulus effects of nicotine produced by DOI was blocked by M100,907 (1 mg/kg), but not by SB 242,084 (1 mg/kg), while that evoked by Ro 60-0175 or WAY 163,909 was blocked by SB 242,084 (1 mg/kg), but not by M100,907 (1 mg/kg). Further studies showed that

  11. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    PubMed

    Viñals, Xavier; Moreno, Estefanía; Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I; McCormick, Peter J; Maldonado, Rafael; Robledo, Patricia

    2015-07-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  12. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  13. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  14. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    SciTech Connect

    Brann, M.R.

    1985-12-31

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor.

  15. Modulation of anxiety by cortical serotonin 1A receptors

    PubMed Central

    Piszczek, Lukasz; Piszczek, Agnieszka; Kuczmanska, Joanna; Audero, Enrica; Gross, Cornelius T.

    2015-01-01

    Serotonin (5-HT) plays an important role in the modulation of behavior across animal species. The serotonin 1A receptor (Htr1a) is an inhibitory G-protein coupled receptor that is expressed both on serotonin and non-serotonin neurons in mammals. Mice lacking Htr1a show increased anxiety behavior suggesting that its activation by serotonin has an anxiolytic effect. This outcome can be mediated by either Htr1a population present on serotonin (auto-receptor) or non-serotonin neurons (hetero-receptor), or both. In addition, both transgenic and pharmacological studies have shown that serotonin acts on Htr1a during development to modulate anxiety in adulthood, demonstrating a function for this receptor in the maturation of anxiety circuits in the brain. However, previous studies have been equivocal about which Htr1a population modulates anxiety behavior, with some studies showing a role of Htr1a hetero-receptor and others implicating the auto-receptor. In particular, cell-type specific rescue and suppression of Htr1a expression in either forebrain principal neurons or brainstem serotonin neurons reached opposite conclusions about the role of the two populations in the anxiety phenotype of the knockout. One interpretation of these apparently contradictory findings is that the modulating role of these two populations depends on each other. Here we use a novel Cre-dependent inducible allele of Htr1a in mice to show that expression of Htr1a in cortical principal neurons is sufficient to modulate anxiety. Together with previous findings, these results support a hetero/auto-receptor interaction model for Htr1a function in anxiety. PMID:25759645

  16. Binding of [3H]paroxetine to serotonin uptake sites and of [3H]lysergic acid diethylamide to 5-HT2A receptors in platelets from women with premenstrual dysphoric disorder during gonadotropin releasing hormone treatment.

    PubMed

    Bixo, M; Allard, P; Bäckström, T; Mjörndal, T; Nyberg, S; Spigset, O; Sundström-Poromaa, I

    2001-08-01

    Changes in serotonergic parameters have been reported in psychiatric conditions such as depression but also in the premenstrual dysphoric disorder (PMDD). In addition, hormonal effects on serotonergic activity have been established. In the present study, binding of [3H]paroxetine to platelet serotonin uptake sites and binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors were studied in patients with PMDD treated with a low dose of a gonadotropin releasing hormone (GnRH) agonist (buserelin) or placebo and compared to controls. The PMDD patients were relieved of premenstrual symptoms like depression and irritability during buserelin treatment. The number of [3H]paroxetine binding sites (Bmax) were significantly higher in the follicular phase in untreated PMDD patients compared to controls. When treated with buserelin the difference disappeared. No differences in [3H]LSD binding between the three groups were shown. The present study demonstrated altered platelet [3H]paroxetine binding characteristics in women with PMDD compared to controls. Furthermore, [3H]paroxetine binding was affected by PMDD treatment with a low dose of buserelin. The results are consistent with the hypothesis that changes in serotonergic transmission could be a trait in the premenstrual dysphoric disorder.

  17. Impact of the -1438G>a polymorphism in the serotonin 2A receptor gene on anthropometric profile and obesity risk: a case-control study in a Spanish Mediterranean population.

    PubMed

    Sorlí, José V; Francés, Francesc; González, José I; Guillén, Marisa; Portolés, Olga; Sabater, Antonio; Coltell, Oscar; Corella, Dolores

    2008-01-01

    Research into the genetic factors that regulate food intake is arousing great interest. The polymorphism -1438G>A in the serotonin 2A receptor or 5-hydroxytriptamine (5-HT) type 2A receptor (5-HTR2A) gene has been associated with alterations in food intake such as anorexia and bulimia. However, its association with obesity has not been studied to the same extent. Our aim, therefore, was to estimate the association between the -1438G>A polymorphism and obesity risk and related anthropometric variables in a Spanish Mediterranean population. A case-control study including 303 cases and 606 controls paired by gender and age was undertaken. The association between the -1438G>A polymorphism and obesity and other anthropometric measures was studied. No association with obesity risk was observed. However, when only the obese group was analyzed, it was observed that AA subjects presented a lower body mass index (BMI) than G allele carriers (35.2+/-5.3 kg/m2 vs 37.5+/-7.8 kg/m2; P=0.039). Moreover, significant differences were also obtained in waist perimeter that was lower in AA subjects compared to G allele carriers (105+/-11 cm vs 112+/-17 cm; P=0.011). In conclusion, although the -1438G>A polymorphism is not a relevant marker for obesity risk, this variant may play a role in determining BMI in obese subjects.

  18. Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2013-12-02

    Olanzapine is widely used in treating multiple domains of schizophrenia symptoms but induces serious metabolic side-effects. Recent evidence has showed that co-treatment of betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for preventing olanzapine-induced weight gain/obesity, however it is not clear whether this co-treatment affects on the primary therapeutic receptor binding sites of olanzapine such as serotonergic 5-HT2A receptors (5-HT2AR) and dopaminergic D2 receptors (D2R). Therefore, this study investigated the effects of this co-treatment on 5-HT2AR, 5-HT transporter (5-HTT) and D2R bindings in various brain regions involved in antipsychotic efficacy. Female Sprague Dawley rats were administered orally (t.i.d.) with either olanzapine (1mg/kg), betahistine (2.7 mg/kg), olanzapine plus betahistine (O+B), or vehicle (control) for 2 weeks. Quantitative autoradiography was used to detect the density of [(3)H]ketanserin, [(3)H]paroxetine and [(3)H]raclopride binding site to 5-HT2AR, 5-HTT and D2R. Compared to the controls, olanzapine significantly decreased [(3)H]ketanserin bindings to 5-HT2AR in the prefrontal cortex, cingulate cortex, and nucleus accumbens. Similar changes in 5-HT2AR bindings in these nuclei were also observed in the O+B co-treatment group. Olanzapine also significantly decreased [(3)H]paroxetine binding to 5-HTT in the ventral tegmental area and substantia nigra, however, both olanzapine only and O+B co-treatment did not affect [(3)H]raclopride binding to D2R. The results confirmed the important role of 5-HT2AR in the efficacy of olanzapine, which is not influenced by the O+B co-treatment. Therefore, betahistine co-treatment would be an effective combination therapy to reduce olanzapine-induced weight gain side-effects without affecting olanzapine's actions on 5-HT2AR transmissions.

  19. Serotonin receptors in depression: from A to B

    PubMed Central

    Nautiyal, Katherine M.; Hen, René

    2017-01-01

    The role of serotonin in major depressive disorder (MDD) is the focus of accumulating clinical and preclinical research. The results of these studies reflect the complexity of serotonin signaling through many receptors, in a large number of brain regions, and throughout the lifespan. The role of the serotonin transporter in MDD has been highlighted in gene by environment association studies as well as its role as a critical player in the mechanism of the most effective antidepressant treatments – selective serotonin reuptake inhibitors. While the majority of the 15 known receptors for serotonin have been implicated in depression or depressive-like behavior, the serotonin 1A (5-HT 1A) and 1B (5-HT 1B) receptors are among the most studied. Human brain imaging and genetic studies point to the involvement of 5-HT 1A and 5-HT 1B receptors in MDD and the response to antidepressant treatment. In rodents, the availability of tissue-specific and inducible knockout mouse lines has made possible the identification of the involvement of 5-HT 1A and 5-HT 1B receptors throughout development and in a cell-type specific manner. This, and other preclinical pharmacology work, shows that autoreceptor and heteroreceptor populations of these receptors have divergent roles in modulating depression-related behavior as well as responses to antidepressants and also have different functions during early postnatal development compared to during adulthood. PMID:28232871

  20. The serotonin 5-HT7 receptors: two decades of research.

    PubMed

    Gellynck, Evelien; Heyninck, Karen; Andressen, Kjetil W; Haegeman, Guy; Levy, Finn Olav; Vanhoenacker, Peter; Van Craenenbroeck, Kathleen

    2013-10-01

    Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking.

  1. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors.

    PubMed

    Papesh, Melissa A; Hurley, Laura M

    2016-02-01

    The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.

  2. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  3. Extended characterisation of the serotonin 2A (5-HT2A) receptor-selective PET radiotracer 11C-MDL100907 in humans: quantitative analysis, test-retest reproducibility, and vulnerability to endogenous 5-HT tone

    PubMed Central

    Talbot, Peter S.; Slifstein, Mark; Hwang, Dah-Ren; Huang, Yiyun; Scher, Erica; Abi-Dargham, Anissa; Laruelle, Marc

    2011-01-01

    Introduction scanning properties and analytic methodology of the 5-HT2A receptor-selective positron emission tomography (PET) tracer 11C-MDL100907 have been partially characterised in previous reports. We present an extended characterisation in healthy human subjects. Methods 64 11C-MDL100907 PET scans with metabolite-corrected arterial input function were performed in 39 healthy adults (18–55 yr). 12 subjects were scanned twice (duration 150 min) to provide data on plasma analysis, model order estimation, and stability and test-retest characteristics of outcome measures. All other scans were 90 min duration. 3 subjects completed scanning at baseline and following 5-HT2A receptor antagonist medication (risperidone or ciproheptadine) to provide definitive data on the suitability of the cerebellum as reference region. 10 subjects were scanned under reduced 5-HT and control conditions using rapid tryptophan depletion to investigate vulnerability to competition with endogenous 5-HT. 13 subjects were scanned as controls in clinical protocols. Pooled data were used to analyze the relationship between tracer injected mass and receptor occupancy, and age-related decline in 5-HT2A receptors. Results optimum analytic method was a 2-tissue compartment model with arterial input function. However, basis function implementation of SRTM may be suitable for measuring between-group differences non-invasively and warrants further investigation. Scan duration of 90 minutes achieved stable outcome measures in all cortical regions except orbitofrontal which required 120 minutes. Binding potential (BPP and BPND) test-retest variability was very good (7–11%) in neocortical regions other than orbitofrontal, and moderately good (14–20%) in orbitofrontal cortex and medial temporal lobe. Saturation occupancy of 5-HT2A receptors by risperidone validates the use of the cerebellum as a region devoid of specific binding for the purposes of PET. We advocate a mass limit of 4.6 µg to remain

  4. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  5. Contractile response of bovine lateral saphenous vein to ergovaline serotonin2A a2A- and a2C-adrenergic receptor agonists relative to time off endophyte-infected tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has demonstrated differences in contractile responses to ergot alkaloids, serotonin (5HT), and adrenergic agonists by lateral saphenous veins collected from cattle that grazed either endophyte (Neotyphodium coenophialum)-infected or endophyte-free tall fescue (Lolium arundinaceum),...

  6. DNA Hypermethylation of the Serotonin Receptor Type-2A Gene Is Associated with a Worse Response to a Weight Loss Intervention in Subjects with Metabolic Syndrome

    PubMed Central

    Perez-Cornago, Aurora; Mansego, Maria L.; Zulet, María Angeles; Martinez, José Alfredo

    2014-01-01

    Understanding the regulation of gene activities depending on DNA methylation has been the subject of much recent study. However, although polymorphisms of the HTR2A gene have been associated with both obesity and psychiatric disorders, the role of HTR2A gene methylation in these illnesses remains uncertain. The aim of this study was to evaluate the association of HTR2A gene promoter methylation levels in white blood cells (WBC) with obesity traits and depressive symptoms in individuals with metabolic syndrome (MetS) enrolled in a behavioural weight loss programme. Analyses were based on 41 volunteers (mean age 49 ± 1 year) recruited within the RESMENA study. Depressive symptoms (as determined using the Beck Depression Inventory), anthropometric and biochemical measurements were analysed at the beginning and after six months of weight loss treatment. At baseline, DNA from WBC was isolated and cytosine methylation in the HTR2A gene promoter was quantified by a microarray approach. In the whole-study sample, a positive association of HTR2A gene methylation with waist circumference and insulin levels was detected at baseline. Obesity measures significantly improved after six months of dietary treatment, where a lower mean HTR2A gene methylation at baseline was associated with major reductions in body weight, BMI and fat mass after the treatment. Moreover, mean HTR2A gene methylation at baseline significantly predicted the decrease in depressive symptoms after the weight loss treatment. In conclusion, this study provides newer evidence that hypermethylation of the HTR2A gene in WBC at baseline is significantly associated with a worse response to a weight-loss intervention and with a lower decrease in depressive symptoms after the dietary treatment in subjects with MetS. PMID:24959950

  7. Association of serotonin transporter (SLC6A4) & receptor (5HTR1A, 5HTR2A) polymorphisms with response to treatment with escitalopram in patients with major depressive disorder: A preliminary study

    PubMed Central

    Basu, Aniruddha; Chadda, R.K.; Sood, Mamta; Kaur, Harpreet; Kukreti, Ritushree

    2015-01-01

    Background & objectives: Genetic factors have potential of predicting response to antidepressants in patients with major depressive disorder (MDD). In this study, an attempt was made to find an association between response to escitalopram in patients with MDD, and serotonin transporter (SLC6A4) and receptor (5HTR1A, 5HTR2A) polymorphisms. Methods: Fifty five patients diagnosed as suffering from MDD, were selected for the study. The patients were treated with escitalopram over a period of 6-8 wk. Severity of depression, response to treatment and side effects were assessed using standardised instruments. Genetic variations from HTR1A (rs6295), HTR2A (rs6311 and rs6313) and SLC6A4 (44 base-pair insertion/deletion at 5-HTTLPR) were genotyped. The genetic data of the responders and non-responders were compared to assess the role of genetic variants in therapeutic outcome. Results: Thirty six (65.5%) patients responded to treatment, and 19 (34.5%) had complete remission. No association was observed for genotype and allelic frequencies of single nucleotide polymorphisms (SNPs) among remitter/non-remitter and responder/non-responder groups, and six most common side-effects, except memory loss which was significantly associated with rs6311 (P =0.03). Interpretation & conclusions: No significant association was found between the SNPs analysed and response to escitalopram in patients with MDD though a significant association was seen between the side effect of memory loss and rs6311. Studies with larger sample are required to find out genetic basis of antidepressant response in Indian patients. PMID:26261165

  8. Involvement of serotonin receptor subtypes in the antidepressant-like effect of beta receptor agonist Amibegron (SR 58611A): an experimental study.

    PubMed

    Tanyeri, Pelin; Buyukokuroglu, Mehmet Emin; Mutlu, Oguz; Ulak, Güner; Yıldız Akar, Füruzan; Komsuoglu Celikyurt, Ipek; Erden, Bekir Faruk

    2013-04-01

    New therapeutic strategies against depression, with less side effects and thus greater efficacy in larger proportion of depressed patients, are needed. Amibegron (SR58611A) is the first selective β3 adrenergic agent that has been shown to possess a profile of antidepressant activity in rodents. To investigate the involvement of serotonin receptors in the effects of amibegron, we used the serotonin 5HT1A receptor antagonist WAY-100635 (WAY) or serotonin 5HT2A-2C receptor antagonist ketanserin or serotonin 5HT3 receptor antagonist ondansetron in mice forced swimming test (FST). The locomotor activity was evaluated by measuring the total distance moved in the apparatus and the speed of the animals in the open field test. Imipramine (30mg/kg) significantly reduced immobility time compared to vehicle-treated group while amibegron (5 and 10mg/kg) dose dependently reduced immobility time in the FST. WAY(0.1mg/kg), ondansetron (1mg/kg), ketanserin(5mg/kg) had no effect on immobility time in naive mice while all of the drugs partially and significantly reversed amibegron (10mg/kg) induced decreasement in the immobility time in FST. None of the drugs alter locomotor activity in the open field test. The antidepressant-like effect of amibegron in the FST seems to be mediated by an interaction with serotonin 5-HT1A, serotonin 5-HT2A-2C and serotonin 5-HT3 receptors.

  9. Toll-like receptors 2 and 4 exert opposite effects on the contractile response induced by serotonin in mouse colon: role of serotonin receptors.

    PubMed

    Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L

    2016-08-01

    What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2

  10. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    PubMed

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  11. The alpha2 adrenergic receptor antagonist idazoxan, but not the serotonin-2A receptor antagonist M100907, partially attenuated reward deficits associated with nicotine, but not amphetamine, withdrawal in rats.

    PubMed

    Semenova, Svetlana; Markou, Athina

    2010-10-01

    Based on phenomenological similarities between anhedonia (reward deficits) associated with drug withdrawal and the negative symptoms of schizophrenia, we showed previously that the atypical antipsychotic clozapine attenuated reward deficits associated with psychostimulant withdrawal. Antagonism of alpha(2) adrenergic and 5-HT(2A) receptors may contribute to these effects of clozapine. We investigated here whether blockade of alpha(2) or 5-HT(2A) receptors by idazoxan and M100907, respectively, would reverse anhedonic aspects of psychostimulant withdrawal. Idazoxan treatment facilitated recovery from spontaneous nicotine, but not amphetamine, withdrawal by attenuating reward deficits and increase the number of somatic signs. Thus, alpha(2) adrenoceptor blockade may have beneficial effects against nicotine withdrawal and may be involved in the effects of clozapine previously observed. M100907 worsened the anhedonia associated with nicotine and amphetamine withdrawal, suggesting that monotherapy with M100907 may exacerbate the expression of the negative symptoms of schizophrenia or nicotine withdrawal symptoms in people, including schizophrenia patients, attempting to quit smoking.

  12. Serotonin receptors contribute to the promnesic effects of P. olacoides (Marapuama).

    PubMed

    da Silva, Adriana Lourenço; Ferreira, Juliana G; da Silva Martins, Bárbara; Oliveira, Sabrina; Mai, Nathalia; Nunes, Domingos S; Elisabetsky, Elaine

    2008-09-03

    Nootropic, antioxidant, and neuroprotective properties have been shown in a standardized ethanol extract of Ptychopetalum olacoides (POEE), a medicinal plant traditionally used by the Amazonian elderly population. It has been revealed that POEE mechanisms of action include anticholinesterase effects, and involve beta-adrenergic and dopamine D(1) receptors. The purpose of this study was to verify the role of serotonin receptors in the promnesic effects of this standardized extract. The step-down task in mice and selective serotonin antagonists were used. The study reveals that POEE promnesic effects on short-term (acquisition, consolidation and retrieval) and long-term (retrieval) declarative aversive memories are increased by 5HT(2A) (but not 5HT(1A)) serotonin antagonists (spiperone and pindolol, respectively). The observed synergism between POEE and spiperone can be interpreted as the combined effects of two subeffective doses of two 5HT antagonists, or the known synergism between an acetylcholinesterase inhibitor (POEE) and a 5HT antagonist. In conclusion it is suggested that 5HT(2A) serotonin receptors are relevant for the promnesic effects of this extract, adding to its multiple mechanisms of action.

  13. Serotonin receptor modulators in the treatment of irritable bowel syndrome

    PubMed Central

    Fayyaz, Mohammad; Lackner, Jeffrey M

    2008-01-01

    The aim of this article is to review the pathophysiology and clinical role of serotonin receptor modulators used in the treatment of irritable bowel syndrome. Serotonin is an important monoamine neurotransmitter that plays a key role in the initiation of peristaltic and secretory refl exes, and in modulation of visceral sensations. Several serotonin receptor subtypes have been characterized, of which 5HT3, 5HT4, and 5HT1b are the most important for GI function. 5HT4 agonists (eg, tegaserod) potentiate peristalsis initiated by 5HT1 receptor stimulation. 5HT4 agonists are therefore useful in constipation predominant form of IBS and in chronic constipation. 5HT3 antagonists (Alosetron and Cilansetron) prevent the activation of 5HT3 receptors on extrinsic afferent neurons and can decrease the visceral pain associated with IBS. These agents also retard small intestinal and colonic transit, and are therefore useful in diarrhea-predominant IBS. Tegaserod has been demonstrated in several randomized, placebo controlled trials to relieve global IBS symptoms as well as individual symptoms of abdominal discomfort, number of bowel movements and stool consistency. Several randomized, controlled trials have shown that alosetron relieves pain, improves bowel function, and provides global symptom improvement in women with diarrhea-predominant irritable bowel syndrome. However, ischemic colitis and severe complications of constipation have been major concerns leading to voluntary withdrawal of Alosetron from the market followed by remarketing with a comprehensive risk management program. PMID:18728719

  14. Bivalent Ligands for the Serotonin 5-HT3 Receptor

    PubMed Central

    2011-01-01

    The serotonin 5-HT3 receptor is a ligand-gated ion channel, which by virtue of its pentameric architecture, can be considered to be an intriguing example of intrinsically multivalent biological receptors. This paper describes a general design approach to the study of multivalency in this multimeric ion channel. Bivalent ligands for 5-HT3 receptor have been designed by linking an arylpiperazine moiety to probes showing different functional features. Both homobivalent and heterobivalent ligands have shown 5-HT3 receptor affinity in the nanomolar range, providing evidence for the viability of our design approach. Moreover, the high affinity shown by homobivalent ligands suggests that bivalency is a promising approach in 5-HT3 receptor modulation and provides the rational basis for applying the concepts of multivalency to the study of 5-HT3 receptor function. PMID:24900351

  15. Altered coronary microvascular serotonin receptor expression after coronary artery bypass grafting utilizing cardiopulmonary bypass

    PubMed Central

    Robich, Michael P.; Araujo, Eugenio G.; Feng, Jun; Osipov, Robert M.; Clements, Richard T.; Bianchi, Cesario; Sellke, Frank W.

    2009-01-01

    Objectives Evaluate the role of serotonin receptors 1B and 2A, thromboxane synthase and receptor and phospholipases A2 and C in response to cardiopulmonary bypass in patients. Methods Atrial tissue was harvested from patients before and after cardiopulmonary bypass with cardioplegia (n=13). Coronary microvessels were assessed for vasoactive response to serotonin with and without inhibitors of 5-HT1B and 5-HT2A receceptors, phospholipase A2 and C. Expression of 5-HT1B and 5-HT2A mRNA was determined by RT-PCR. Expression of 5-HT1B, 5-HT2A, Thromboxane A2 receptor and synthase protein was determined by immunoblotting and immunohistochemistry. Results Exposure of microvessels to serotonin elicited a 7.3 ± 2% relaxation response pre-bypass, changing to a strong contraction response of -19.2 ± 2% after bypass (p<0.001). Addition of either a specific 5-HT1B antagonist or inhibitor of PLA2 resulted in a significant decrease in the contractile response to -8.6 ±1% (p<0.001) and 2.8 ± 3% (p= 0.001), respectively. 5-HT1B receptor mRNA expression increased 1.82 ± 0.34 fold after bypass (p=0.044), while 5-HT2A mRNA expression did not change. 5-HT1B receptor, but not 5-HT2A, protein expression increased after bypass by 1.35 ± 0.7 fold (p=0.0413). Neither thromboxane synthase nor thromboxane receptor expression changed after bypass. Immunohistochemistry demonstrated 5-HT1B receptor increased mainly in the arterial smooth muscle. There was no appreciable difference in arterial expression of either thromboxane synthase or receptor. Conclusion These data indicate that 5-HT-induced vascular dysfunction after cardiopulmonary bypass with cardioplegia may be mediated by increased expression of 5-HT1B receptor and subsequent PLA2 activation in myocardial coronary smooth muscle. Mini Abstract The expression of 5-HT1B receptor protein and mRNA were increased in the atrial myocardium after cardioplegia and cardiopulmonary bypass (CP-CPB). Serotonin elicited a strong contraction

  16. The serotonin 5-HT3 receptor: a novel neurodevelopmental target.

    PubMed

    Engel, Mareen; Smidt, Marten P; van Hooft, Johannes A

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), next to being an important neurotransmitter, recently gained attention as a key-regulator of pre- and postnatal development in the mammalian central nervous system (CNS). Several receptors for 5-HT are expressed in the developing brain including a ligand-gated ion channel, the 5-HT3 receptor. Over the past years, evidence has been accumulating that 5-HT3 receptors are involved in the regulation of neurodevelopment by serotonin. Here, we review the spatial and temporal expression patterns of 5-HT3 receptors in the pre- and early postnatal rodent brain and its functional implications. First, 5-HT3 receptors are expressed on GABAergic interneurons in neocortex and limbic structures derived from the caudal ganglionic eminence. Mature inhibitory GABAergic interneurons fine-tune neuronal excitability and thus are crucial for the physiological function of the brain. Second, 5-HT3 receptors are expressed on specific glutamatergic neurons, Cajal-Retzius cells in the cortex and granule cells in the cerebellum, where they regulate morphology, positioning, and connectivity of the local microcircuitry. Taken together, the 5-HT3 receptor emerges as a potential key-regulator of network formation and function in the CNS, which could have a major impact on our understanding of neurodevelopmental disorders in which 5-HT plays a role.

  17. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    SciTech Connect

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.; Betz, Robin M.; Venkatakrishnan, A. J.; Levit, Anat; Lansu, Katherine; Schools, Zachary L.; Che, Tao; Nichols, David E.; Shoichet, Brian K.; Dror, Ron O.; Roth, Bryan L.

    2017-01-01

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.

  18. Effect of local anesthetics on serotonin1A receptor function.

    PubMed

    Rao, Bhagyashree D; Shrivastava, Sandeep; Chattopadhyay, Amitabha

    2016-12-01

    The fundamental mechanism behind the action of local anesthetics is still not clearly understood. Phenylethanol (PEtOH) is a constituent of essential oils with a pleasant odor and can act as a local anesthetic. In this work, we have explored the effect of PEtOH on the function of the hippocampal serotonin1A receptor, a representative neurotransmitter receptor belonging to the G protein-coupled receptor (GPCR) family. Our results show that PEtOH induces reduction in ligand binding to the serotonin1A receptor due to lowering of binding affinity, along with a concomitant decrease in the degree of G-protein coupling. Analysis of membrane order using the environment-sensitive fluorescent probe DPH revealed decrease in membrane order with increasing PEtOH concentration, as evident from reduction in rotational correlation time of the probe. Analysis of results obtained shows that the action of local anesthetics could be attributed to the combined effects of specific interaction of the receptor with anesthetics and alteration of membrane properties (such as membrane order). These results assume relevance in the perspective of anesthetic action and could be helpful to achieve a better understanding of the possible role of anesthetics in the function of membrane receptors.

  19. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET.

    PubMed

    Jovanovic, Hristina; Lundberg, Johan; Karlsson, Per; Cerin, Asta; Saijo, Tomoyuki; Varrone, Andrea; Halldin, Christer; Nordström, Anna-Lena

    2008-02-01

    Women and men differ in serotonin associated psychiatric conditions, such as depression, anxiety and suicide. Despite this, very few studies focus on sex differences in the serotonin system. Of the biomarkers in the serotonin system, serotonin(1A) (5-HT(1A)) receptor is implicated in depression, and anxiety and serotonin transporter (5-HTT) is a target for selective serotonin reuptake inhibitors, psychotropic drugs used in the treatment of these disorders. The objective of the present study was to study sex related differences in the 5-HT(1A) receptor and 5-HTT binding potentials (BP(ND)s) in healthy humans, in vivo. Positron emission tomography and selective radioligands [(11)C]WAY100635 and [(11)C]MADAM were used to evaluate binding potentials for 5-HT(1A) receptors (14 women and 14 men) and 5-HTT (8 women and 10 men). The binding potentials were estimated both on the level of anatomical regions and voxel wise, derived by the simplified reference tissue model and wavelet/Logan plot parametric image techniques respectively. Compared to men, women had significantly higher 5-HT(1A) receptor and lower 5-HTT binding potentials in a wide array of cortical and subcortical brain regions. In women, there was a positive correlation between 5-HT(1A) receptor and 5-HTT binding potentials for the region of hippocampus. Sex differences in 5-HT(1A) receptor and 5-HTT BP(ND) may reflect biological distinctions in the serotonin system contributing to sex differences in the prevalence of psychiatric disorders such as depression and anxiety. The result of the present study may help in understanding sex differences in drug treatment responses to drugs affecting the serotonin system.

  20. The Serotonin-6 Receptor as a Novel Therapeutic Target

    PubMed Central

    Yun, Hyung-Mun

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that is found in both the central and peripheral nervous systems. 5-HT mediates its diverse physiological responses through 7 different 5-HT receptor families: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors. Among them, the 5-HT6 receptor (5-HT6R) is the most recently cloned serotonin receptor and plays important roles in the central nervous system (CNS) and in the etiology of neurological diseases. Compared to other 5-HT receptors, the 5-HT6R has been considered as an attractive CNS therapeutic target because it is expressed exclusively in the CNS and has no known isoforms. This review evaluates in detail the role of the 5-HT6R in the physiology and pathophysiology of the CNS and the potential usefulness of 5-HT6R ligands in the development of therapeutic strategies for the treatment of CNS disorders. Preclinical studies provide support for the use of 5-HT6R ligands as promising medications to treat the cognitive dysfunction associated with Alzheimer's disease, obesity, depression, and anxiety. PMID:22355260

  1. Effect of dopamine and serotonin receptor antagonists on fencamfamine-induced abolition of latent inhibition.

    PubMed

    de Aguiar, Cilene Rejane Ramos Alves; de Aguiar, Marlison José Lima; DeLucia, Roberto; Silva, Maria Teresa Araujo

    2013-01-05

    The purpose of this investigation was to verify the role of dopamine and serotonin receptors in the effect of fencamfamine (FCF) on latent inhibition. FCF is a psychomotor stimulant with an indirect dopaminergic action. Latent inhibition is a model of attention. Latent inhibition is blocked by dopaminergic agents and facilitated by dopamine receptor agonists. FCF has been shown to abolish latent inhibition. The serotonergic system may also participate in the neurochemical mediation of latent inhibition. The selective dopamine D(1) receptor antagonist SCH 23390 (7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol), D(2) receptor antagonists pimozide (PIM) and methoclopramide (METH), and serotonin 5-HT(2A/C) receptor antagonist ritanserin (RIT) were used in the present study. Latent inhibition was evaluated using a conditioned emotional response procedure. Male Wistar rats that were water-restricted were subjected to a three-phase procedure: preexposure to a tone, tone-shock conditioning, and a test of the effect of the tone on licking frequency. All of the drugs were administered before the preexposure and conditioning phases. The results showed that FCF abolished latent inhibition, and this effect was clearly antagonized by PIM and METH and moderately attenuated by SCH 23390. At the doses used in the present study, RIT pretreatment did not affect latent inhibition and did not eliminate the effect of FCF, suggesting that the FCF-induced abolition of latent inhibition is not mediated by serotonin 5-HT(2A/C) receptors. These results suggest that the effect of FCF on latent inhibition is predominantly related to dopamine D(2) receptors and that dopamine D(2) receptors participate in attention processes.

  2. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands.

    PubMed

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-08-07

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.

  3. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    PubMed Central

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  4. 5-HT3 receptors antagonists reduce serotonin-induced scratching in mice.

    PubMed

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Mansouri, Parvin; Dehpour, Ahmad Reza

    2015-06-01

    Serotonin (5-hydroxytryptamine, 5-HT) acts as a pruritogen in humans and animals, but the mechanisms of action through that serotonin induces itch response have not been extensively discovered. In our study, we attempted to investigate the role of 5-HT3 receptors in scratching behavior due to intradermal serotonin injection. Intradermal injection of serotonin (14.1-235 nmol/site) into the nape of the neck of mice was performed to elicit itch. Scratching behavior was evaluated by measuring the number of bouts during 60 min after injection. We evaluated the effect of intraperitoneal pretreatment with ondansetron and tropisetron (0.1, 0.3, and 1 mg/kg) on itch induced by serotonin. Also, intradermal ondansetron and tropisetron at doses 50, 100, and 200 nmol/site were concurrently administrated with serotonin. Serotonin produced a significant enhancement in scratching at dose 141 nmol/site. Concurrent administration of ondansetron (50, 100, and 200 nmol/site) and tropisetron (100 and 200 nmol/site) with serotonin reduced scratching activity compared to the animals that only received serotonin. Also, pretreatment with intraperitoneal ondansetron and tropisetron (0.3 and 1 mg/kg) 30 min before serotonin attenuated the itch response. We showed that the scratching induced by intradermal serotonin is mediated by 5-HT3 receptors subtype. It can be concluded that 5-HT3 may play a role in mediating serotonin-associated itch responses, and we introduce 5-HT3 receptors as possible targets for antipruritic agents.

  5. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

    PubMed Central

    Blough, Bruce E.; Landavazo, Antonio; Decker, Ann M.; Partilla, John S.; Baumann, Michael H.; Rothman, Richard B.

    2014-01-01

    Rationale Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the United States. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin-2A (5-HT2A) receptors. Objectives This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Methods Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Results Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation. Conclusions All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines. PMID:24800892

  6. Serotonin receptor expression along the dorsal–ventral axis of mouse hippocampus

    PubMed Central

    Tanaka, Kenji F.; Samuels, Benjamin Adam; Hen, René

    2012-01-01

    Using in situ hybridization, we describe, for the first time, the profiles of expression of serotonin receptors (Htr/5-HTR) along the dorsal–ventral axis of mouse hippocampus. cRNA probes for most Htrs, excluding Htr6, were used. All hippocampal subregions and the entorhinal cortex cells providing input into the hippocampus were examined. The study shows that some, but not all, Htrs are expressed in the cells of the hippocampal circuitry. At both the subfield and the cell type levels, a somewhat overlapping pattern is observed. Four serotonin receptors, Htr1a, Htr2a, Htr2c and Htr7, display an expression pattern that changes along the dorsal–ventral axis of the hippocampus. Given the proposed functional differentiation of the hippocampus along its long axis, with the dorsal pole more involved in cognitive functions and the ventral pole more involved in mood and anxiety, our results suggest that serotonin receptors enriched in the ventral pole probably contribute to mood- and anxiety-related behaviours. PMID:22826340

  7. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    PubMed

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  8. Serotonin 5-HT7 Receptor in the Ventral Hippocampus Modulates the Retrieval of Fear Memory and Stress-Induced Defecation

    PubMed Central

    Yoshida, Takayuki; Konno, Kohtarou; Minami, Masabumi; Watanabe, Masahiko; Yoshioka, Mitsuhiro

    2016-01-01

    Background: Patients with posttraumatic stress disorder or panic disorder are often troubled by inappropriate retrieval of fear memory. Moreover, these disorders are often comorbid with irritable bowel syndrome. The main aim of the present study is to elucidate the involvement of hippocampal serotonergic systems in fear memory retrieval and stress-induced defecation. Methods and Results: Microinjection of serotonin7 receptor antagonist, but not other serotonin receptor antagonists (serotonin 1A, 2A, 2C, 3, 4, and 6), into the rat ventral hippocampus significantly suppressed the expression of freezing behavior, an index of fear memory retrieval, and decreased the amount of feces, an index of stress-induced defecation, in the contextual fear conditioning test. Electrophysiological data indicated that the serotonin7 receptor agonist increased the frequency of action potentials in the ventral hippocampal CA3 pyramidal neuron via the activation of the hyperpolarization-activated nonselective cation current Ih. Moreover, in situ hybridization demonstrated that Htr7 mRNA was abundantly expressed in the CA3 compared with other subregions of the hippocampus and that these Htr7 mRNA-positive cells coexpressed hyperpolarization-activated cyclic nucleotide-gated channel 2 and 4 mRNAs, which are components of the Ih channel. Conclusions: These results indicated that the released serotonin activates the serotonin7 receptor in the CA3 ventral hippocampus subregion, enhances the sensitivity to inputs via hyperpolarization-activated cyclic nucleotide 2 and 4 channels, and thereby facilitates fear memory retrieval. The serotonin7 receptor might be a target of drug development for the treatment of mental disorders involving fear memory and gastrointestinal problems. PMID:26647382

  9. High-throughput chemiluminometric genotyping of single nucleotide polymorphisms of histamine, serotonin, and adrenergic receptor genes.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-02-01

    Several pharmacogenetic studies are focused on the investigation of the relation between the efficacy of various antipsychotic agents (e.g., clozapine) and the genetic profile of the patient with an emphasis on genes that code for neurotransmitter receptors such as histamine, serotonin, and adrenergic receptors. We report a high-throughput method for genotyping of single nucleotide polymorphisms (SNPs) within the genes of histamine H2 receptor (HRH2), serotonin receptor (HTR2A1 and HTR2A2), and beta(3) adrenergic receptor (ADRB3). The method combines the high specificity of allele discrimination by oligonucleotide ligation reaction (OLR) and the superior sensitivity and simplicity of chemiluminometric detection in a microtiter well assay configuration. The genomic region that spans the locus of interest is first amplified by polymerase chain reaction (PCR). Subsequently, an oligonucleotide ligation reaction is performed using a biotinylated common probe and two allele-specific probes that are labeled at the 3' end with digoxigenin and fluorescein. The ligation products are immobilized in polystyrene wells via biotin-streptavidin interaction, and the hybrids are denatured. Detection is accomplished by the addition of alkaline phosphatase-conjugated anti-digoxigenin or anti-fluorescein antibodies in combination with a chemiluminogenic substrate. The ratio of the luminescence signals obtained from digoxigenin and fluorescein indicates the genotype of the sample. The method was applied successfully to the genotyping of 23 blood samples for all four SNPs. The results were in concordance with both PCR-restriction fragment length polymorphism analysis and sequencing.

  10. Serotonin receptor 3A controls interneuron migration into the neocortex

    PubMed Central

    Murthy, Sahana; Niquille, Mathieu; Hurni, Nicolas; Limoni, Greta; Frazer, Sarah; Chameau, Pascal; van Hooft, Johannes A.; Vitalis, Tania; Dayer, Alexandre

    2014-01-01

    Neuronal excitability has been shown to control the migration and cortical integration of reelin-expressing cortical interneurons (INs) arising from the caudal ganglionic eminence (CGE), supporting the possibility that neurotransmitters could regulate this process. Here we show that the ionotropic serotonin receptor 3A (5-HT3AR) is specifically expressed in CGE-derived migrating interneurons and upregulated while they invade the developing cortex. Functional investigations using calcium imaging, electrophysiological recordings and migration assays indicate that CGE-derived INs increase their response to 5-HT3AR activation during the late phase of cortical plate invasion. Using genetic loss-of-function approaches and in vivo grafts, we further demonstrate that the 5-HT3AR is cell autonomously required for the migration and proper positioning of reelin-expressing CGE-derived INs in the neocortex. Our findings reveal a requirement for a serotonin receptor in controlling the migration and laminar positioning of a specific subtype of cortical IN. PMID:25409778

  11. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    PubMed

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  12. [Effect of domestication of the silver fox on the main enzymes of serotonin metabolism and serotonin receptors].

    PubMed

    Popova, N K; Kulikov, A V; Avgustinovich, D F; Voĭtenko, N N; Trut, L N

    1997-03-01

    In silver foxes significant alterations in the activities of basic enzymes of neurotransmitter serotonin metabolism as well as in the densities of receptors caused by selection for the absence of the aggressive defensive reaction to man were demonstrated. In the midbrain and hypothalamus of animals selected for the absence of aggressive behavior, the activity of tryptophan hydroxylase, the key enzyme of serotonin biosynthesis, was found to be remarkably higher than in animals selected for highly aggressive behavior. Domesticated animals were characterized by low activity of the main enzyme of serotonin catabolism, monoamine oxidase type A, increased Michaelis constant km, and an unchanged maximum reaction rate (Vmax). No changes in the specific binding of [3H]-ketanserin and [3H]-8-OH-DPAT in the frontal cortex of domesticated foxes were revealed; however, in the hypothalamus, the low values of Bmax for the [3H]-8-OH-DPAT specific binding were observed, indicating the decreased density of the 5-HT1A receptors. It is assumed that the transformation of a wild aggressive animal into a domesticated one taking place during directional selection is caused by hereditary alterations favored by artificial selection in the activity of the main enzymes of serotonin metabolism and serotonin receptors.

  13. Serotonin2C receptors and drug addiction: focus on cocaine.

    PubMed

    Devroye, Céline; Filip, Malgorzata; Przegaliński, Edmund; McCreary, Andrew C; Spampinato, Umberto

    2013-10-01

    This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human.

  14. Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958.

    PubMed

    Bishop, Christopher; Daut, Gregory S; Walker, Paul D

    2005-09-01

    While recent work has indicated that D1 receptor agonist-induced hyperlocomotion in DA-depleted rats is reduced by striatal 5-HT2 receptor antagonism, the 5-HT receptor(s) subtypes mediating these effects are not yet known. In the present study, we examined the influence(s) of striatal 5-HT2A and 5-HT2C receptors on locomotor behavior induced by D1 agonism in neonatal DA-depleted rats. On postnatal day 3, male Sprague-Dawley rats (n=68) were treated with either vehicle or 6-hydroxydopamine (6-OHDA; 60 microg) which produced >98% DA depletion. Sixty days later, all rats were fitted with bilateral striatal cannulae. A subset of control and 6-OHDA-lesioned rats (n=20) was tested for locomotor responses to striatal infusion of the D1 agonist SKF 82958 (0, 0.1, 1.0, 10 microg/side). The remaining rats (n=48) were tested for locomotor responses to intrastriatal SKF 82958 (2.0 microg/side) alone or in combination with the 5-HT2A- or 5-HT2C-preferring antagonists M100907 or RS102221 (0.1 or 1.0 microg/side), respectively. Intrastriatal SKF 82958 dose-dependently increased measures of motor activity within DA-depleted rats. This hyperlocomotor activity was suppressed by co-infusion of M100907, but not RS102221. These results indicate that DA depletion strengthens striatal 5-HT2A/D1 receptor interactions and suggest that 5-HT2A receptor antagonists may prove useful in reducing D1-related movements.

  15. Sulfonyl-containing modulators of serotonin 5-HT6 receptors and their pharmacophore models

    NASA Astrophysics Data System (ADS)

    Ivachtchenko, A. V.

    2014-05-01

    Data published in recent years on the synthesis of serotonin 5-HT6 receptor modulators are summarized. Modulators with high affinity for 5-HT6 receptors exhibiting different degrees of selectivity — from highly selective to semiselective and multimodal — are described. Clinical trial results are reported for the most promising serotonin 5-HT6 receptor modulators attracting special attention of medicinal chemists. The bibliography includes 128 references.

  16. [Serotonin and its receptors in the cardiovascular system].

    PubMed

    Nadeev, A D; Zharkikh, I L; Avdonin, P V; Goncharov, N V

    2014-01-01

    Serotonin in cardiovascular system plays an important role in blood coagulation, allergy, and inflammation, as well as in blood vessel tone regulation. In this review, the mechanisms of serotonin effects upon the cells of blood vessels are considered and the list of main agonists and antagonists is presented. The signaling pathways activated by serotonin and their interaction in normal and pathological states are described.

  17. Serotonin Transporter and Receptor Expression in Osteocytic MLO-Y4 Cells

    PubMed Central

    BLIZIOTES, M.; ESHLEMAN, A.; BURT-PICHAT, B.; ZHANG, X.-W.; HASHIMOTO, J.; WIREN, K.; CHENU, C.

    2006-01-01

    Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistry using antibodies for the 5-HTT, and the 5-HT1A and 5-HT2A receptors reveals expression of all three proteins in both osteoblasts and osteocytes in rat tibia. 5-HTT binding sites were demonstrated in the MLO-Y4 cells with nanomolar affinity for the stable cocaine analog [125I]RTI-55. Imipramine and fluoxetine, antagonists with specificity for 5-HTT, show the highest potency to antagonize [125I]RTI-55 binding in the MLO-Y4 cells. GBR-12935, a relatively selective dopamine transporter antagonist, had a much lower potency, as did desipramine, a selective norepinephrine transporter antagonist. The maximal [3H]5-HT uptake rate in MLO-Y4 cells was 2.85 pmol/15 min/well, with a Km value of 290 nM. Imipramine and fluoxetine inhibited specific [3H]5-HT uptake with IC50 values in the nanomolar range. 5-HT rapidly stimulated PGE2 release from MLO-Y4 cells; the EC50 for 5-HT was 0.1 μM, with a 3-fold increase seen at 60 min. The rate limiting enzyme for serotonin synthesis, tryptophan hydroxylase, is expressed in MLO-Y4 cells as well as osteoblastic MC3T3-E1 cells. Thus, osteocytes, as well as osteoblasts, are capable of 5-HT synthesis, and express functional receptor and transporter components of the 5-HT signal transduction system. PMID:16884969

  18. A new class of arylpiperazine derivatives: the library synthesis on SynPhase lanterns and biological evaluation on serotonin 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Pawłowski, Maciej; Martinez, Jean

    2004-01-01

    An efficient solid-supported method for the synthesis of a new class of arylpiperazine derivatives containing amino acid residues has been developed. A 72-membered library was synthesized on SynPhase Lanterns functionalized by a BAL linker. A one-pot cleavage/cyclization step of aspartic and glutamic acid derivatives yielded succinimide- and pyroglutamyl-containing ligands (chemsets 9 and 10). The library representatives under study showed different levels of affinity for 5-HT(1A) and 5-HT(2A) receptors (estimated K(i) = 24-4000 and 1-2130 nM, respectively). Several dual 5-HT(1A)/5-HT(2A) ligands were found, of which two (9(3,3) and 9(3,5)) displayed high 5-HT(2A) affinity comparable to that of the reference drug ritanserin. A set of individual fragment contributions for the prediction of 5-HT(1A) and 5-HT(2A) affinity of all the library members were defined on the basis of the Free-Wilson analysis of 26 compounds. An alkylarylpiperazine fragment had essentially the same impact on the affinity for both receptors, whereas different terminal amide fragments were preferred by 5-HT(1A) (chemset 17, R(2) = adamantyl) and 5-HT(2A) (chemset 9, R(2) = norborn-2-ylmethyl) binding sites.

  19. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor.

    PubMed

    Braden, Michael R; Nichols, David E

    2007-11-01

    We assessed the relative importance of two serine residues located near the top of transmembrane helix 5 of the human 5-HT(2A) receptor, comparing the wild type with S5.43(239)A or S5.46(242)A mutations. Using the ergoline lysergic acid diethylamide (LSD), and a series of substituted tryptamine and phenethylamine 5-HT(2A) receptor agonists, we found that Ser5.43(239) is more critical for agonist binding and function than Ser5.46(242). Ser5.43(239) seems to engage oxygen substituents at either the 4- or 5-position of tryptamine ligands and the 5-position of phenylalkylamine ligands. Even when a direct binding interaction cannot occur, our data suggest that Ser5.43(239) is still important for receptor activation. Polar ring-substituted tryptamine ligands also seem to engage Ser5.46(242), but tryptamines lacking such a substituent may adopt an alternate binding orientation that does not engage this residue. Our results are consistent with the role of Ser5.43(239) as a hydrogen bond donor, whereas Ser5.46(242) seems to serve as a hydrogen bond acceptor. These results are consistent with the functional topography and utility of our in silico-activated homology model of the h5-HT(2A) receptor. In addition, being more distal from the absolutely conserved Pro5.50, a strong interaction with Ser5.43(239) may be more effective in straightening the kink in helix 5, a feature that is possibly common to all type A GPCRs that have polar residues at position 5.43.

  20. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen

    PubMed Central

    Canal, Clinton E.; Olaghere da Silva, Uade B.; Gresch, Paul J.; Watt, Erin E.; Sanders-Bush, Elaine

    2010-01-01

    Rationale Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors. Objectives We tested for involvement of 5-HT2C receptors in the HTR induced by DOI. Results Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, Gαq or Gαi/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI. Conclusions We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors. PMID:20165943

  1. PET Tracers for Serotonin Receptors and Their Applications

    PubMed Central

    Kumar, J.S. Dileep; Mann, J. John

    2015-01-01

    Serotonin receptors (5-HTRs) are implicated in the pathophysiology of a variety of neuropsychiatric and neurodegenerative disorders and are also targets for drug therapy. In the CNS, most of these receptors are expressed in high abundance in specific brain regions reflecting their role in brain functions. Quantifying binding to 5-HTRs in vivo may permit assessment of physiologic and pathologic conditions, and monitoring disease progression, evaluating treatment response, and for investigating new treatment modalities. Positron emission tomography (PET) molecular imaging has the sensitivity to quantify binding of 5-HTRs in CNS disorders and to measure drug occupancy as part of a process of new drug development. Although research on PET imaging of 5-HTRs have been performed more than two decades, the successful radiotracers so far developed for human studies are limited to 5-HT1AR, 5-HT1BR, 5-HT2AR, 5-HT4R and 5-HT6R. Herein we review the development and application of radioligands for PET imaging of 5-HTRs in living brain. PMID:25360773

  2. Pharmacological profile of hypericum extract. Effect on serotonin uptake by postsynaptic receptors.

    PubMed

    Perovic, S; Müller, W E

    1995-11-01

    In the present study is is reported that the methanolic Hypericum extract LI 160 (Jarsin 300) exerts no protective effect against N-methyl-D-aspartate (NMDA-) or gp120- (from the HIV virus) induced cytotoxicity. Moreover, it is established that Hypericum extract causes no activation of arachidonic acid release from neurons activated by gp120; hence it displays no sensitization effect on the NMDA receptor channel. The main outcome of this study is the finding that Hypericum extract causes a 50% inhibition (IC50 value) of serotonin uptake by rat synaptosomes at a concentration of 6.2 microglml. Therefore it is concluded that the antidepressant activity of Hypericum extract is due to an inhibition of serotonin uptake by postsynaptic receptors. Future studies might focus on the effect of Hypericum extract on serotonin binding to neurons, serotonin storage in granules, the rate of synthesis of serotonin, and on the activity of monoamine oxidase.

  3. New arylpiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and dihydro[1,3]oxazolo[2,3-f]purinedione targeting the serotonin 5-HT1A /5-HT2A /5-HT7 and dopamine D2 receptors.

    PubMed

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Bucki, Adam; Kołaczkowski, Marcin; Pawłowski, Maciej; Satała, Grzegorz; Bojarski, Andrzej J; Partyka, Anna; Wesołowska, Anna; Pękala, Elżbieta; Słoczyńska, Karolina

    2015-04-01

    To obtain potential antidepressants and/or antipsychotics, a series of new long-chain arylpiperazine derivatives of 8-alkoxy-purine-2,6-dione (10-24) and dihydro[1,3]oxazolo[2,3-f]purinedione (30-34) were synthesized and their serotonin (5-HT1A , 5-HT2A , 5-HT6 , 5-HT7 ) and dopamine (D2 ) receptor affinities were determined. The study allowed the identification of some potent 5-HT1A /5-HT7 /D2 ligands with moderate affinity for 5-HT2A sites. The binding mode of representative compounds from both chemical classes (11 and 31) in the site of 5-HT1A receptor was analyzed in computational studies. In functional in vitro studies, the selected compounds 15 and 16 showed antagonistic properties for the evaluated receptors. 8-Methoxy-7-{4-[4-(2-methoxyphenyl)-piperazin-1-yl]-butyl}-1,3-dimethyl-purine-2,6-dione (15) showed a lack of activity in terms and under the conditions of the forced swim, four plate and amphetamine-induced hyperactivity tests in mice, probably as a result of its high first pass effect in the liver.

  4. Studies on rat intestinal epithelial cell receptors for serotonin and opiates.

    PubMed Central

    Gaginella, T S; Rimele, T J; Wietecha, M

    1983-01-01

    We have employed the receptor-ligand binding technique in an attempt to determine if specific binding sites (receptors) for serotonin and opiates are present on rat intestinal epithelial cell membranes. A wide variety of ligands for serotonin and opiate receptors bound to specific receptor sites in rat brain. However, the same ligands failed to bind in a specific (receptor-related) manner to isolated membranes of rat ileal and colonic cells. Additional washing of the tissue pellet (to remove soluble peptidases), pretreatment with p-chlorophenylalanine (to deplete endogenous serotonin), alteration of sodium concentration (to antagonize the effects of putative endogenous inhibitors of opiate ligand binding), changes in incubation time, temperature, tissue protein and tritiated ligand concentration failed to yield meaningful results with the enterocyte membranes. We conclude that, as assessed under the present conditions, serotonergic and opiate receptors are not present or are not accessible on rat intestinal epithelial cell membranes. PMID:6308215

  5. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons.

    PubMed

    Chenu, Franck; Shim, Stacey; El Mansari, Mostafa; Blier, Pierre

    2014-02-01

    Melatonin has been widely used for the management of insomnia, but is devoid of antidepressant effect in the clinic. In contrast, agomelatine which is a potent melatonin receptor agonist is an effective antidepressant. It is, however, a potent serotonin 2B (5-HT(2B)) and serotonin 2C (5-HT(2C)) receptor antagonist as well. The present study was aimed at investigating the in vivo effects of repeated administration of melatonin (40 mg/kg/day), the 5-HT(2C) receptor antagonist SB 242084 (0.5 mg/kg/day), the selective 5-HT(2B) receptor antagonist LY 266097 (0.6 mg/kg/day) and their combination on ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) serotonin (5-HT) firing activity. Administration of melatonin twice daily increased the number of spontaneously active DA neurons but left the firing of NE neurons unaltered. Long-term administration of melatonin and SB 242084, by themselves, had no effect on the firing rate and burst parameters of 5-HT and DA neurons. Their combination, however, enhanced only the number of spontaneously active DA neurons, while leaving the firing of 5-HT neurons unchanged. The addition of LY 266097, which by itself is devoid of effect, to the previous regimen increased for DA neurons the number of bursts per minute and the percentage of spikes occurring in bursts. In conclusion, the combination of melatonin receptor activation as well as 5-HT(2C) receptor blockade resulted in a disinhibition of DA neurons. When 5-HT(2B) receptors were also blocked, the firing and the bursting activity of DA neurons were both enhanced, thus reproducing the effect of agomelatine.

  6. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    PubMed Central

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  7. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    PubMed

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system.

  8. Attenuated methamphetamine-induced locomotor sensitization in serotonin transporter knockout mice is restored by serotonin 1B receptor antagonist treatment.

    PubMed

    Igari, Moe; Shen, Hao-Wei; Hagino, Yoko; Fukushima, Setsu; Kasahara, Yoshiyuki; Lesch, Klaus-Peter; Murphy, Dennis L; Hall, Frank Scott; Uhl, George R; Ikeda, Kazutaka; Yaegashi, Nobuo; Sora, Ichiro

    2015-02-01

    Repeated administration of methamphetamine (METH) enhances acute locomotor responses to METH administered in the same context, a phenomenon termed as 'locomotor sensitization'. Although many of the acute effects of METH are mediated by its influences on the compartmentalization of dopamine, serotonin systems have also been suggested to influence the behavioral effects of METH in ways that are not fully understood. The present experiments examined serotonergic roles in METH-induced locomotor sensitization by assessing: (a) the effect of serotonin transporter (SERT; Slc6A4) knockout (KO) on METH-induced locomotor sensitization; (b) extracellular monoamine levels in METH-treated animals as determined by in-vivo microdialysis; and (c) effects of serotonin (5-HT) receptor antagonists on METH-induced behavioral sensitization, with focus on effects of the 5-HT1B receptor antagonist SB 216641 and a comparison with the 5-HT2 receptor antagonist ketanserin. Repeated METH administration failed to induce behavioral sensitization in homozygous SERT KO (SERT-/-) mice under conditions that produced substantial sensitization in wild-type or heterozygous SERT KO (SERT+/-) mice. The selective 5-HT1B antagonist receptor SB 216641 restored METH-induced locomotor sensitization in SERT-/- mice, whereas ketanserin was ineffective. METH-induced increases in extracellular 5-HT (5-HTex) levels were substantially reduced in SERT-/- mice, although SERT genotype had no effect on METH-induced increases in extracellular dopamine. These experiments demonstrate that 5-HT actions, including those at 5-HT1B receptors, contribute to METH-induced locomotor sensitization. Modulation of 5-HT1B receptors might aid therapeutic approaches to the sequelae of chronic METH use.

  9. A Characterization of the Manduca sexta Serotonin Receptors in the Context of Olfactory Neuromodulation

    PubMed Central

    Dacks, Andrew M.; Reale, Vincenzina; Pi, Yeli; Zhang, Wujie; Dacks, Joel B.; Nighorn, Alan J.; Evans, Peter D.

    2013-01-01

    Neuromodulation, the alteration of individual neuron response properties, has dramatic consequences for neural network function and is a phenomenon observed across all brain regions and taxa. However, the mechanisms underlying neuromodulation are made complex by the diversity of neuromodulatory receptors expressed within a neural network. In this study we begin to examine the receptor basis for serotonergic neuromodulation in the antennal lobe of Manduca sexta. To this end we cloned all four known insect serotonin receptor types from Manduca (the Ms5HTRs). We used phylogenetic analyses to classify the Ms5HTRs and to establish their relationships to other insect serotonin receptors, other insect amine receptors and the vertebrate serotonin receptors. Pharmacological assays demonstrated that each Ms5HTR was selective for serotonin over other endogenous amines and that serotonin had a similar potency at all four Ms5HTRs. The pharmacological assays also identified several agonists and antagonists of the different Ms5HTRs. Finally, we found that the Ms5HT1A receptor was expressed in a subpopulation of GABAergic local interneurons suggesting that the Ms5HTRs are likely expressed heterogeneously within the antennal lobe based on functional neuronal subtype. PMID:23922709

  10. Exclusion of linkage between the serotonin2 receptor and schizophrenia in a large Swedish kindred.

    PubMed

    Hallmayer, J; Kennedy, J L; Wetterberg, L; Sjögren, B; Kidd, K K; Cavalli-Sforza, L L

    1992-03-01

    Family, twin, and adoption studies suggest that genetic factors play an important role in the etiology of schizophrenia. Detection of single gene(s) involved in a higher susceptibility to a hereditary disease is possible with linkage analysis. The effects of serotonin2-receptor antagonists on symptoms of schizophrenia suggest that a mutation in the gene coding for this receptor subtype might be involved in the pathophysiology of this disease. Recently a copy DNA encoding the serotonin 5-HT2 receptor has been isolated and with a human 5-HT2 receptor copy DNA probe the HTR2 locus has been mapped to chromosome 13. Using multipoint linkage analysis between schizophrenia and genetic markers spanning the region of the HTR2 locus, we were able to exclude linkage between this candidate gene and schizophrenia in a Swedish kindred. Given this result, we conclude that the serotonin 5-HT2 receptor gene itself is not a major susceptibility gene for schizophrenia in this family.

  11. [Serotonin receptors in the brain of animals selected for their domesticated type of behavior].

    PubMed

    Maslova, G B; Avgustinovich, D F

    1989-01-01

    Participation was studied of central serotonin receptors of the first and second types in behaviour change of animals selected by the character of defensive reaction to man. Serotonin receptors were determined by radioligand method by binding of the brain preparations 3H-serotonin and 3H-spiperone. An increase of C2 receptors number was found in the frontal brain cortex of the tame brown rats in comparison with the aggressive ones. Differences were not found in specific C1-receptor binding in the frontal brain cortex of tame and aggressive brown rats, silver foxes and American minks in various relatively early selection stages. It is supposed that disappearance of aggressive reaction to man at domestication is connected with an increase of C2 receptors number.

  12. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  13. Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical Region in Autism

    PubMed Central

    Oblak, Adrian; Gibbs, Terrell T.; Blatt, Gene J.

    2013-01-01

    Autism is a behaviorally defined, neurological disorder with symptom onset before the age of three. Abnormalities in social-emotional behaviors are a core deficit in autism and are characterized by impaired reciprocal social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5HT systems have been implicated in several psychiatric disorders including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5HT in autism, there is emerging evidence that 5HT systems in the CNS, including various 5HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5HT1A receptor binding density in superficial and deep layers of the PCC and FG, and in the density of 5HT2A receptors in superficial layers of the PCC and FG. Significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. These studies provide potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. PMID:23894004

  14. The serotonin 5-HT₁A receptor agonist tandospirone improves executive function in common marmosets.

    PubMed

    Baba, Satoko; Murai, Takeshi; Nakako, Tomokazu; Enomoto, Takeshi; Ono, Michiko; Shimizu, Isao; Ikeda, Kazuhito

    2015-01-01

    Previous pilot clinical studies have shown that the serotonin 5-HT1A receptor agonist tandospirone has beneficial effect on cognitive deficits associated with schizophrenia. In the present study, we evaluated the cognitive efficacy of tandospirone, given alone or in combination with the antipsychotic blonanserin, risperidone or haloperidol, on executive function in marmosets using the object retrieval with detour (ORD) task. Treatment with tandospirone alone at 20 and 40 mg/kg increased the number of correct responses in the difficult trial, while risperidone (0.3mg/kg) and haloperidol (0.3mg/kg) decreased the number of correct responses in this trial. On the other hand, blonanserin (0.1-0.3mg/kg), an atypical antipsychotic highly selective for dopamine D2/D3 and serotonin 5-HT2A receptors, did not affect the number of correct responses in both the easy and difficult trials. Co-treatment with tandospirone (20mg/kg) and risperidone (0.1-0.3mg/kg) or haloperidol (0.1-0.3mg/kg) did not improve animals' performance in the difficult trial. However, co-treatment with tandospirone and blonanserin (0.1-0.3mg/kg) increased the number of correct responses in the difficult trial. In addition, treatment with the dopamine D1 receptor agonist SKF-81297 at 1mg/kg increased marmosets correct responses in the difficult trial. These results suggest that tandospirone is a promising candidate for the treatment of cognitive deficits associated with schizophrenia and that adjunctive treatment with tandospirone and blonanserin is more appropriate for cognitive deficits than combination therapy with tandospirone and risperidone or haloperidol. The results of this study also indicate that the putative mechanism of action of tandospirone might be related to enhancement of dopamine neurotransmission via activation of the 5-HT1A receptor.

  15. Dopamine and Serotonin Modulate Human GABAρ1 Receptors Expressed in Xenopus laevis Oocytes

    PubMed Central

    2011-01-01

    GABAρ1 receptors are highly expressed in bipolar neurons of the retina and to a lesser extent in several areas of the central nervous system (CNS), and dopamine and serotonin are also involved in the modulation of retinal neural transmission. Whether these biogenic amines have a direct effect on ionotropic GABA receptors was not known. Here, we report that GABAρ1 receptors, expressed in X. laevis oocytes, were negatively modulated by dopamine and serotonin and less so by octopamine and tyramine. Interestingly, these molecules did not have effects on GABAA receptors. 5-Carboxamido-tryptamine and apomorphine did not exert evident effects on any of the receptors. Schild plot analyses of the inhibitory actions of dopamine and serotonin on currents elicited by GABA showed slopes of 2.7 ± 0.3 and 6.1 ± 1.8, respectively, indicating a noncompetitive mechanism of inhibition. The inhibition of GABAρ1 currents was independent of the membrane potential and was insensitive to picrotoxin, a GABA receptor channel blocker and to the GABAρ-specific antagonist (1,2,5,6-tetrahydropyridine-4-yl)methyl phosphinic acid (TPMPA). Dopamine and serotonin changed the sensitivity of GABAρ1 receptors to the inhibitory actions of Zn2+. In contrast, La3+ potentiated the amplitude of the GABA currents generated during negative modulation by dopamine (EC50 146 μM) and serotonin (EC50 196 μM). The functional role of the direct modulation of GABAρ receptors by dopamine and serotonin remains to be elucidated; however, it may represent an important modulatory pathway in the retina, where GABAρ receptors are highly expressed and where these biogenic amines are abundant. PMID:22860179

  16. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar [Irvine, CA; Saigal, Neil [Fresno, CA; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably .sup.18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with .sup.18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  17. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil

    2010-06-08

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  18. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  19. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  20. Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...

  1. Neuroticism and serotonin 5-HT1A receptors in healthy subjects.

    PubMed

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell; Hietala, Jarmo

    2015-10-30

    Neuroticism is a personality trait associated with vulnerability for mood and anxiety disorders. Serotonergic mechanisms likely contribute to neuroticism. Serotonin 5-HT1A receptors are altered in mood and anxiety disorders, but whether 5-HT1A receptors are associated with neuroticism in healthy subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals with low neuroticism. This finding was confirmed with an independent voxel-based whole-brain analysis. Other personality traits did not correlate with 5-HT1A receptor BPP. Previous observations have reported lower serotonin 5-HT1A receptor density in major depression. This neurobiological finding may be a trait-like phenomenon and partly explained by higher neuroticism in patients with affective disorders. The link between personality traits and 5-HT1A receptors should be studied in patients with major depression.

  2. Serotonin enhances urinary bladder nociceptive processing via a 5-HT3 receptor mechanism.

    PubMed

    Hall, Jason D; DeWitte, Cary; Ness, Timothy J; Robbins, Meredith T

    2015-09-14

    Serotonin from the descending pain modulatory pathway is critical to nociceptive processing. Its effects on pain modulation may either be inhibitory or facilitatory, depending on the type of pain and which receptors are involved. Little is known about the role of serotonergic systems in bladder nociceptive processing. These studies examined the effect of systemic administration of the serotonin precursor, 5-hydroxytryptophan (5-HTP), on normal bladder and somatic sensation in rats. ELISA was used to quantify peripheral and central changes in serotonin and its major metabolite following 5-HTP administration, and the potential role of the 5-HT3 receptor on changes in bladder sensation elicited by 5-HTP was investigated. 5-HTP produced bladder hypersensitivity and somatic analgesia. The pro-nociceptive effect of 5-HTP was attenuated by intrathecal, but not systemic, ondansetron. Peripheral increases in serotonin, its metabolism and rate of turnover were detectable within 30min of 5-HTP administration. Significant enhancement of serotonin metabolism was observed centrally. These findings suggest that 5-HTP increases serotonin, which may then affect descending facilitatory systems to produce bladder hypersensitivity via activation of spinal 5-HT3 receptors.

  3. Serotonin receptors as potential targets for modulation of nicotine use and dependence.

    PubMed

    Fletcher, Paul J; Lê, Anh Dzung; Higgins, Guy A

    2008-01-01

    Nicotine use carries considerable health risks and plays a major role in a variety of diseases. Current pharmacological treatments to aid in smoking cessation include nicotine-replacement therapy and non-nicotinic strategies such as bupropion and varenicline. While these treatments benefit some individuals there is still a need for better and more effective treatment strategies. Nicotine is the major psychoactive substance in tobacco. Some behavioural effects of nicotine, including its reinforcing efficacy result in part from activation of mesolimbic dopamine neurons. Modulation of dopamine function is one potential treatment strategy that could treat nicotine dependence. Serotonergic neurons modulate the functioning of dopamine neurons in a complex fashion. Much of this complexity arises from the fact that serotonin (5-HT) exerts its effects through multiple receptor subtypes, some of which even act in apparent functional opposition to each other. This article reviews evidence, primarily from animal experiments, using behavioural procedures relevant to nicotine use on the potential for 5-HT receptors as targets for treating nicotine dependence. The 5-HT(1A, 2A, 2C, 3, 4, 6) receptor subtypes have received most experimental attention, with the 5-HT(1A) and 5-HT(2C) receptors being the best studied. Several studies have now shown that 5-HT(1A) receptor antagonists alleviate some of the behavioural signs induced by nicotine withdrawal. Electrophysiological and neurochemical studies show that stimulation of 5-HT(2C) receptors reduces the function of the mesolimbic dopamine pathway. 5-HT(2C) receptor agonists block the stimulatory action of nicotine on midbrain dopamine function. They also reduce several behavioural effects of nicotine including its discriminative stimulus properties and reinforcing effects. Although more work remains to be done, 5-HT(2C) receptor agonists perhaps hold the most promise as potential therapies for smoking cessation.

  4. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    PubMed

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT2A, 5-HT2B, and 5-HT2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  5. Expression of serotonin, chromogranin-A, serotonin receptor-2B, tryptophan hydroxylase-1, and serotonin reuptake transporter in the intestine of dogs with chronic enteropathy.

    PubMed

    Bailey, Candice; Ruaux, Craig; Stang, Bernadette V; Valentine, Beth A

    2016-05-01

    Serotonin regulates many intestinal motor and sensory functions. Altered serotonergic metabolism has been described in human gastrointestinal diseases. The objective of our study was to compare expression of several components of the serotonergic system [serotonin (5-HT), serotonin reuptake transporter protein (SERT), tryptophan hydroxylase-1 (TPH-1), 5-HT receptor2B (5-HT2B)] and the enterochromaffin cell marker chromogranin-A (CgA) in the intestinal mucosa between dogs with chronic enteropathy and healthy controls. Serotonin and CgA expression were determined by immunohistochemistry using banked and prospectively obtained, paraffin-embedded canine gastrointestinal biopsies (n = 11), and compared to a control group of canine small intestinal sections (n = 10). Expression of SERT, TPH-1, and 5-HT2B were determined via real-time reverse transcription (qRT)-PCR using prospectively collected endoscopic duodenal biopsies (n = 10) and compared to an additional control group of control duodenal biopsies (n = 8, control group 2) showing no evidence of intestinal inflammation. Dogs with chronic enteropathies showed strong staining for both 5-HT and CgA. Mean positive cells per high power field (HPF) were significantly increased for both compounds in dogs with chronic enteropathies (p < 0.001 for 5-HT; p < 0.05 for CgA). The number of 5-HT-positive and CgA-positive cells/HPF showed significant correlation in the entire group of dogs, including both diseased and healthy individuals (Pearson r(2) = 0.2433, p = 0.016). No significant differences were observed for SERT, TPH-1, or 5-HT2B expression; however, dogs with chronic enteropathy showed greater variability in expression of TPH-1 and 5-HT2B We conclude that components of the neuroendocrine system show altered expression in the intestinal mucosa of dogs with chronic enteropathy. These changes may contribute to nociception and clinical signs in these patients.

  6. Do serotonin(1-7) receptors modulate short and long-term memory?

    PubMed

    Meneses, A

    2007-05-01

    Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.

  7. Identification, functional characterization, and pharmacological profile of a serotonin type-2b receptor in the medically important insect, Rhodnius prolixus

    PubMed Central

    Paluzzi, Jean-Paul V.; Bhatt, Garima; Wang, Chang-Hui J.; Zandawala, Meet; Lange, Angela B.; Orchard, Ian

    2015-01-01

    In the Chagas disease vector, Rhodnius prolixus, two diuretic hormones act synergistically to dramatically increase fluid secretion by the Malpighian tubules (MTs) during the rapid diuresis that is initiated upon engorgement of vertebrate blood. One of these diuretic hormones is the biogenic amine, serotonin (5-hydroxytryptamine, 5-HT), which controls a variety of additional activities including cuticle plasticization, salivary gland secretion, anterior midgut absorption, cardioacceleratory activity, and myotropic activities on a number of visceral tissues. To better understand the regulatory mechanisms linked to these various physiological actions of serotonin, we have isolated and characterized a serotonin type 2b receptor in R. prolixus, Rhopr5HTR2b, which shares sequence similarity to the vertebrate serotonin type 2 receptors. Rhopr5HTR2b transcript is enriched in well-recognized physiological targets of serotonin, including the MTs, salivary glands and dorsal vessel (i.e., insect heart). Notably, Rhopr5HTR2b was not enriched in the anterior midgut where serotonin stimulates absorption and elicits myotropic control. Using a heterologous functional receptor assay, we examined Rhopr5HTR2b activation characteristics and its sensitivity to potential agonists, antagonists, and other biogenic amines. Rhopr5HTR2b is dose-dependently activated by serotonin with an EC50 in the nanomolar range. Rhopr5HTR2b is sensitive to alpha-methyl serotonin and is inhibited by a variety of serotonin receptor antagonists, including propranolol, spiperone, ketanserin, mianserin, and cyproheptadine. In contrast, the cardioacceleratory activity of serotonin revealed a unique pharmacological profile, with no significant response induced by alpha-methyl serotonin and insensitivity to ketanserin and mianserin. This distinct agonist/antagonist profile indicates that a separate serotonin receptor type may mediate cardiomodulatory effects controlled by serotonin in R. prolixus. PMID:26041983

  8. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

    PubMed

    Zhang, Zhaiyi; Shen, Manli; Gresch, Paul J; Ghamari-Langroudi, Masoud; Rabchevsky, Alexander G; Emeson, Ronald B; Stamm, Stefan

    2016-08-01

    The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.

  9. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  10. 5-HT(2B) receptors are required for serotonin-selective antidepressant actions.

    PubMed

    Diaz, S L; Doly, S; Narboux-Nême, N; Fernández, S; Mazot, P; Banas, S M; Boutourlinsky, K; Moutkine, I; Belmer, A; Roumier, A; Maroteaux, L

    2012-02-01

    The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological inactivation of 5-HT(2B) receptors. Conversely, direct agonist stimulation of 5-HT(2B) receptors induces an SSRI-like response in behavioral and neurogenic assays. Moreover, the observation that (i) this receptor is expressed by raphe serotonergic neurons, (ii) the SSRI-induced increase in hippocampal extracellular serotonin concentration is strongly reduced in the absence of functional 5-HT(2B) receptors and (iii) a selective 5-HT(2B) agonist mimics SSRI responses, supports a positive regulation of serotonergic neurons by 5-HT(2B) receptors. The 5-HT(2B) receptor appears, therefore, to positively modulate serotonergic activity and to be required for the therapeutic actions of SSRIs. Consequently, the 5-HT(2B) receptor should be considered as a new tractable target in the combat against depression.

  11. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    SciTech Connect

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  12. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter

    2009-01-01

    Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…

  13. Effect of grazing seedhead-suppressed tall fescue pasture on the vasoactivity of serotonin receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has demonstrated that exposure to ergot alkaloids reduces vasoactivity of serotonin (5HT) receptors. Chemical suppression of tall fescue seedhead production is a tool to reduce the level of exposure to ergot alkaloids by a grazing animal. Therefore, the objective was to evaluate co...

  14. Interaction between Serotonin Transporter and Serotonin Receptor 1 B genes polymorphisms may be associated with antisocial alcoholism

    PubMed Central

    2012-01-01

    Background Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR) and serotonin 1 B receptor (5-HT1B), may be associated with alcoholism, but their results are contradictory because of alcoholism’s heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. Methods We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD) [antisocial alcoholism (AS-ALC) group (n = 120) and antisocial non-alcoholism (AS-N-ALC) group (n = 153)] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. Results There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Conclusion Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan’s Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism. PMID:22550993

  15. Brain Serotonin Receptors and Transporters: Initiation vs. Termination of Escalated Aggression

    PubMed Central

    Takahashi, Aki; Quadros, Isabel M.; de Almeida, Rosa M. M.; Miczek, Klaus A.

    2013-01-01

    Rationale Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. Objective We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. Results New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT1A, 5-HT1B and 5-HT2A/2C receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT1A and 5-HT1B receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. Conclusions Feedback to autoreceptors of the 5-HT1 family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT2 family expression may cause escalated aggression, whereas the phasic increase of 5-HT2 receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment. PMID:20938650

  16. Alpha-2 adrenergic and serotonin-1B receptors in the OK cell, an opossum kidney cell line

    SciTech Connect

    Murphy, T.J.

    1988-01-01

    Alpha-2 adrenergic and serotonin-1B (5HT{sub 1B}) receptors, both negatively-coupled to adenylyl cyclase, were characterized in the OK cell line, a renal proximal tubule epithelial cell line derived from the kidney of a North American opossum. In membrane saturation radioligand binding experiments, ({sup 3}H)yohimbine and ({sup 3}H)rauwolscine labeled an equivalent number of binding sites. Detailed pharmacological analysis of OK cell alpha-2 adrenergic receptors in competition binding assays indicate this receptor is neither an alpha-2A nor an alpha-2B adrenergic receptor subtype, although the alpha-2B receptor subtype-selective drugs prazosin, ARC-239 and chlorpromazine have affinities for OK cell alpha-2 adrenergic receptors similar to those at the alpha-2B receptor subtype. Determinations of agonist potency for inhibition of PTH-stimulated cyclic AMP production and radioligand binding analysis using ({sup 125}I)({minus})-cyanopindolol indicate that a 5HT{sub 1B} receptor is expressed in the OK cell line. A biochemical effector system coupled to this receptor subtype has not been previously described. Several compounds appear to be potent agonists at the 5TH{sub 1B} receptor including the beta adrenergic antagonists cyanopindolol, pindolol, propranolol and alprenolol.

  17. Open probability of homomeric murine 5-HT3A serotonin receptors depends on subunit occupancy

    PubMed Central

    Mott, David D; Erreger, Kevin; Banke, Tue G; Traynelis, Stephen F

    2001-01-01

    The time course of macroscopic current responses of homomeric murine serotonin 5-HT3A receptors was studied in whole cells and excised membrane patches under voltage clamp in response to rapid application of serotonin. Serotonin activated whole cell currents with an EC50 value for the peak response of 2 μm and a Hill slope of 3.0 (n = 12), suggesting that the binding of at least three agonist molecules is required to open the channel. Homomeric 5-HT3A receptors in excised membrane patches had a slow activation time course (mean ±s.e.m. 10-90 % rise time 12.5 ± 1.6 ms; n = 9 patches) for 100 μm serotonin. The apparent activation rate was estimated by fitting an exponential function to the rising phase of responses to supramaximal serotonin to be 136 s−1. The 5-HT3A receptor response to 100 μm serotonin in outside-out patches (n = 19) and whole cells (n = 41) desensitized with a variable rate that accelerated throughout the experiment. The time course for desensitization was described by two exponential components (for patches τslow 1006 ± 139 ms, amplitude 31 % τfast 176 ± 25 ms, amplitude 69 %). Deactivation of the response following serotonin removal from excised membrane patches (n = 8) and whole cells (n = 29) was described by a dual exponential time course with time constants similar to those for desensitization (for patches τslow 838 ± 217 ms, 55 % amplitude; τfast 213 ± 44 ms, 45 % amplitude). In most patches (6 of 8), the deactivation time course in response to a brief 1-5 ms pulse of serotonin was similar to or slower than desensitization. This suggests that the continued presence of agonist can induce desensitization with a similar or more rapid time course than agonist unbinding. The difference between the time course for deactivation and desensitization was voltage independent over the range -100 to -40 mV in patches (n = 4) and -100 to +50 mV in whole cells (n = 4), suggesting desensitization of these receptors in the presence of

  18. Serotonin 1A receptors and sexual behavior in male rats: a review.

    PubMed

    Snoeren, Eelke M S; Veening, Jan G; Olivier, Berend; Oosting, Ronald S

    2014-06-01

    Serotonin plays an important role in male sexual behavior. Many studies have been performed on the pivotal role of 5-HT₁A receptors in sexual behavior. Overall, 5-HT₁A receptors do not appear to be involved under normal circumstances, but become very important under conditions of elevated serotonin levels in sexual behavior. 5-HT₁A receptor agonists facilitate ejaculatory behavior in male rats, while inhibiting copulatory behavior. Three different phases can be distinguished in rats' sexual cycle, the introductory (precopulatory), the copulatory and the executive (ejaculatory) phases. Different mechanisms and brain regions are involved in these phases. The mechanisms, brain regions and the possible involvement of 5-HT and 5-HT₁A receptors in the appropriate phases in male rat sexual behavior will be discussed in the current review.

  19. Platelet-Derived Serotonin Mediates Liver Regeneration

    NASA Astrophysics Data System (ADS)

    Lesurtel, Mickael; Graf, Rolf; Aleil, Boris; Walther, Diego J.; Tian, Yinghua; Jochum, Wolfram; Gachet, Christian; Bader, Michael; Clavien, Pierre-Alain

    2006-04-01

    The liver can regenerate its volume after major tissue loss. In a mouse model of liver regeneration, thrombocytopenia, or impaired platelet activity resulted in the failure to initiate cellular proliferation in the liver. Platelets are major carriers of serotonin in the blood. In thrombocytopenic mice, a serotonin agonist reconstituted liver proliferation. The expression of 5-HT2A and 2B subtype serotonin receptors in the liver increased after hepatectomy. Antagonists of 5-HT2A and 2B receptors inhibited liver regeneration. Liver regeneration was also blunted in mice lacking tryptophan hydroxylase 1, which is the rate-limiting enzyme for the synthesis of peripheral serotonin. This failure of regeneration was rescued by reloading serotonin-free platelets with a serotonin precursor molecule. These results suggest that platelet-derived serotonin is involved in the initiation of liver regeneration.

  20. Differential effects of serotonin (5-HT)2 receptor-targeting ligands on locomotor responses to nicotine-repeated treatment.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Wydra, Karolina; Filip, Małgorzata

    2010-07-01

    We verified the hypothesis that serotonin (5-HT)(2) receptors control the locomotor effects of nicotine (0.4 mg kg(-1)) in rats by using the 5-HT(2A) receptor antagonist M100907, the preferential 5-HT(2A) receptor agonist DOI, the 5-HT(2C) receptor antagonist SB 242084, and the 5-HT(2C) receptor agonists Ro 60-0175 and WAY 163909. Repeated pairings of a test environment with nicotine for 5 days, on Day 10 significantly augmented the locomotor activity following nicotine administration. Of the investigated 5-HT(2) receptor ligands, M100907 (2 mg kg(-1)) or DOI (1 mg kg(-1)) administered during the first 5 days in combination with nicotine attenuated or enhanced, respectively, the development of nicotine sensitization. Given acutely on Day 10, M100907 (2 mg kg(-1)), Ro 60-0175 (1 mg kg(-1)), and WAY 163909 (1.5 mg kg(-1)) decreased the expression of nicotine sensitization. In another set of experiments, where the nicotine challenge test was performed on Day 15 in animals treated repeatedly (Days: 1-5, 10) with nicotine, none of 5-HT(2) receptor ligands administered during the second withdrawal period (Days: 11-14) to nicotine-treated rats altered the sensitizing effect of nicotine given on Day 15. Our data indicate that 5-HT(2A) receptors (but not 5-HT(2C) receptors) play a permissive role in the sensitizing effects of nicotine, while stimulation of 5-HT(2A) receptors enhances the development of nicotine sensitization and activation of 5-HT(2C) receptors is essential for the expression of nicotine sensitization. Repeated treatment with the 5-HT(2) receptor ligands within the second nicotine withdrawal does not inhibit previously established sensitization.

  1. Role of Serotonin via 5-HT2B Receptors in the Reinforcing Effects of MDMA in Mice

    PubMed Central

    Doly, Stéphane; Bertran-Gonzalez, Jesus; Callebert, Jacques; Bruneau, Alexandra; Banas, Sophie Marie; Belmer, Arnauld; Boutourlinsky, Katia; Hervé, Denis; Launay, Jean-Marie; Maroteaux, Luc

    2009-01-01

    The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT2B receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT2B receptors to the reinforcing properties of MDMA. We show here that 5-HT2B−/− mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT2B receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT2B receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT2B receptor-independent behavioral effects. These results underpin the importance of 5-HT2B receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions. PMID:19956756

  2. The serotonin receptor 5-HT₇R regulates the morphology and migratory properties of dendritic cells.

    PubMed

    Holst, Katrin; Guseva, Daria; Schindler, Susann; Sixt, Michael; Braun, Armin; Chopra, Himpriya; Pabst, Oliver; Ponimaskin, Evgeni

    2015-08-01

    Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7R, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7R enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7R-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7R could be a new target for treatment of a variety of inflammatory and immune disorders.

  3. Molecular imaging of the serotonin 5-HT7 receptors: from autoradiography to positron emission tomography.

    PubMed

    Zimmer, Luc; Billard, Thierry

    2014-01-01

    Serotonin and its various receptors are involved in numerous brain functions and neuropsychiatric disorders. Of the 14 known serotoninergic receptors, the 5-HT7 receptor is the most recently identified and characterized. It is closely involved in the pathogenesis of depression, anxiety, epilepsy and pain and is therefore an important target for drug therapy. It is a crucial target in neuroscience, and there is a clear need for radioligands for in vitro and in vivo visualization and quantification, first in animal models and ultimately in humans. This review focuses on the main radioligands suggested for in vitro and in vivo imaging of the 5-HT7 receptor.

  4. Low nanomolar serotonin inhibits the glutamate receptor/nitric oxide/cyclic GMP pathway in slices from adult rat cerebellum.

    PubMed

    Maura, G; Guadagnin, A; Raiteri, M

    1995-09-01

    The function of serotonin afferents to the cerebellum has been investigated by monitoring the effects of serotoninergic drugs on the production of cyclic GMP elicited in cerebellar slices by activation of ionotropic glutamate receptors. Exposure of adult rat cerebellar slices to N-methyl-D-aspartate (1 nM to 1 microM) or to (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA; 1 nM to 10 microM) elicited concentration-dependent and saturable rises in the levels of cyclic GMP. These responses were blocked by selective antagonists at the N-methyl-D-aspartate or AMPA receptors and by inhibiting nitric oxide synthase, but were insensitive to tetrodotoxin. When tested between 0.1 and 10 nM, serotonin, the serotonin1A receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin and the serotonin2 receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane inhibited, concentration-dependently, the cyclic GMP responses evoked by near-maximal (0.1 microM) concentrations of N-methyl-D-aspartate or AMPA. The EC50 values (concentrations causing half-maximal effect) ranged between 0.7 and 2.1 nM. The actions of serotonin were totally abolished by methiothepin, a mixed-type serotonin receptor antagonist. Thus, the serotonergic cerebellar afferents may exert a potent inhibitory control on the excitatory transmission mediated by N-methyl-D-aspartate and AMPA receptors; the inhibition occurs through both serotonin1A and serotonin2 receptors. As the glutamate receptor-dependent cyclic GMP responses involve production of nitric oxide, a diffusible activator of guanylate cyclase, the above inhibitory serotonin receptors may have multiple localization.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites

    PubMed Central

    Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke

    2010-01-01

    The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101

  6. Effects of serotonin (5-HT)2 receptor ligands on depression-like behavior during nicotine withdrawal.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Wydra, Karolina; Filip, Małgorzata

    2010-06-01

    A pronounced withdrawal syndrome including depressed mood prevents cigarette smoking cessation. We tested if blockade or activation of serotonin (5-HT)(2) receptors affected the time of immobility (as an indirect measure of depression-like behavior) in naïve animals and in those withdrawn from chronic nicotine in the forced swim test (FST). The antidepressant imipramine was used as a control. In the FST, the selective 5-HT(2A) receptor antagonist M100,907 (1-2 mg/kg, but not 0.5 mg/kg), the selective 5-HT(2C) receptor antagonist SB 242,084 (0.3-1 mg/kg, but not 0.1 mg/kg), the 5-HT(2C) receptor agonists Ro 60-0175 (10 mg/kg, but not 3 mg/kg) and WAY 163,909 (1.5-10 mg/kg, but not 0.75 mg/kg) as well as imipramine (30 mg/kg, but not 15 mg/kg) decreased the immobility time while the non-selective 5-HT(2) receptor agonist DOI (0.1-1 mg/kg) was inactive in naïve rats. We found an increase in immobility time in rats that were withdrawn from nicotine exposure after 5 days of chronic nicotine treatment. This effect increased from day 1 until day 10 following withdrawal of nicotine, with maximal withdrawal effects on day 3. M100,907 (1 mg/kg), SB 242,084 (0.3 mg/kg), Ro 60-0175 (3 mg/kg), WAY 163,909 (0.75-1.5 mg/kg) and imipramine (15-30 mg/kg) shortened the immobility time in rats that had been removed from nicotine exposure for 3 days. Locomotor activity studies indicated that the effects of SB 242,084 might have been non-specific, as we noticed enhanced basal locomotion in naïve rats. This data set demonstrates that 5-HT(2A) receptor antagonist and 5-HT(2C) receptor agonists exhibited effects similar to antidepressant drugs and abolished the depression-like effects in nicotine-withdrawn rats. These drugs should be considered as adjuncts to smoking cessation therapy, to ameliorate abstinence-induced depressive symptoms.

  7. Involvement of serotonin receptor subtypes in the antidepressant-like effect of TRIM in the rat forced swimming test.

    PubMed

    Ulak, Güner; Mutlu, Oguz; Tanyeri, Pelin; Komsuoglu, F Ipek; Akar, Füruzan Yildiz; Erden, B Faruk

    2010-05-01

    Depression is a common illness with severe morbidity and mortality. Nitric oxide synthase (NOS) inhibitors are shown to elicit antidepressant-like effect in various animals models. It is widely known that serotonin plays an important role in the antidepressant-like effect of drugs. The aim of this study is to investigate the involvement of 5-HT(1) and 5-HT(2) receptor subtypes in the antidepressant-like effect of TRIM, a nNOS inhibitor, in the rat forced swimming test (FST). TRIM displays an antidepressant-like activity in FST which is blocked by pretreatment with the NOS substrate l-arginine. Depletion of endogenous serotonin using para-chlorophenylalanine (pCPA; 3x150mg/kg, i.p.) partially attenuated TRIM (50mg/kg)-induced reductions in immobility time in FST. Pretreatment with methiothepin (0.1mg/kg, i.p, a non-selective 5-HT receptor antagonist), cyproheptadine (3mg/kg i.p, a 5-HT(2) receptor antagonist) or ketanserin (5mg/kg i.p, a 5HT(2A/2C) receptor antagonist) prevented the effect of TRIM (50mg/kg) in the FST. WAY 100635 (0.1mg/kg i.p, a selective 5-HT(1A) receptor antagonist) and GR 127935 (3mg/kg i.p, a selective 5-HT(1B/1D) receptor antagonist) slightly reversed the immobility-reducing effect of TRIM in the FST, but this failed to reach a statistically significant level. The results of this study demonstrate that antidepressant-like effect of TRIM in the FST seems to be mediated, at least in part, by an interaction with 5-HT(2) receptors while non-significant effects were obtained with 5-HT(1) receptors.

  8. Association of temporomandibular dysfunction with the 102T-C polymorphism in the serotonin receptor gene in Brazilian patients

    PubMed Central

    de Freitas, Luciana Venâncio Secches; Lopes, Ana Cláudia Polli; Maniglia, José Victor

    2013-01-01

    Introduction Serotonin is a key neurotransmitter in the central nervous system. It has been suggested that serotoninergic dysfunction mediates the pathophysiology of temporomandibular dysfunction (TMD). Polymorphisms in the serotonin receptor gene (HTR2A) can alter its transcription, affecting the number of receptors in the serotoninergic system, altering nociceptive pain and hyperalgesia in TMD. The aim of this study is to investigate the association of the 102T-C polymorphism in the HTR2A gene in Brazilian patients with TMD. Material and methods This cross-sectional study examined 100 patients, of both genders, with TMD as index cases and 100 healthy volunteers as controls, also of both genders. DNA was extracted from peripheral blood leukocytes, and the site that encompassed the polymorphism in the HTR2A gene was amplified by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). Results Our results revealed that there were significantly more females among index cases compared with the control group (p < 0.05). The CC genotype of the 102T-C polymorphism was more frequent in patients with TMD vs. controls (OR: 2.25; 95% CI: 1.13–4.46; p < 0.05). Conclusions The present study supports the view that the 102T-C polymorphism in the HTR2A gene is associated with TMD in this studied Brazilian population. PMID:24482644

  9. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders.

    PubMed

    Naumenko, Vladimir S; Popova, Nina K; Lacivita, Enza; Leopoldo, Marcello; Ponimaskin, Evgeni G

    2014-07-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. Besides the important role of 5-HT receptors in the pathogenesis of depressive disorders and in their clinical medications, underlying mechanisms are far from being completely understood. This review focuses on possible cross talk between two serotonin receptors, 5-HT1A and the 5-HT7 . Although these receptors are highly co-expressed in brain regions implicated in depression, and most agonists developed for the 5-HT1A or 5-HT7 receptors have cross-reactivity, their functional interaction has not been yet established. It has been recently shown that 5-HT1A and 5-HT7 receptors form homo- and heterodimers both in vitro and in vivo. From the functional point of view, heterodimerization has been shown to play an important role in regulation of receptor-mediated signaling and internalization, suggesting the implication of heterodimerization in the development and maintenance of depression. Interaction between these receptors is also of clinical interest, because both receptors represent an important pharmacological target for the treatment of depression and anxiety.

  10. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    PubMed

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies.

  11. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels

    PubMed Central

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2015-01-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I(5-HTi)) and accelerated spontaneous firing in ~80% of LHb neurons in rat brain slices. I(5-HTi) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I(5-HTi) was diminished by 5-HT2/3 receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT2/3 agonists 1-(3- Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I(5-HTi) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression. PMID:26471419

  12. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels.

    PubMed

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2016-02-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I((5-HTi))) and accelerated spontaneous firing in ∼80% of LHb neurons in rat brain slices. I((5-HTi)) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I((5-HTi)) was diminished by 5-HT(2/3) receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT(2/3) agonists 1-(3-Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I((5-HTi)) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression.

  13. [Antidepressants, stressors and the serotonin 1A receptor].

    PubMed

    Kirilly, Eszter; Gonda, Xénia; Bagdy, György

    2015-06-01

    5-HT(1A) receptor is a receptor of surprises. Buspirone, an anxiolytic drug with a then yet unidentified mechanism of action had been marketed for years when it was discovered that it is a 5-HT(1A) partial agonist. Several more years had to pass before it was accepted that this receptor plays the key role in the action mechanism of buspirone. This was followed by further surprises. It was discovered that in spite of its anxiolytic effect buspirone activates the hypothalamic-pituitary-adrenal (HPA) stress axis, furthermore, it increases peripheral noradrenaline and adrenaline concentration via a central mechanism. Thus activation of this receptor leads to ACTH/corticosterone and catecholamine release and also increases beta-endorphine, oxytocin and prolactin secretion while decreasing body temperature, increasing food uptake, eliciting characteristic behavioural responses in rodents and also playing a role in the development of certain types of epilepsy. Human genetic studies revealed the role of 5-HT(1A) receptors in cognitive processes playing a role in the development of depression such as impulsiveness or response to environmental stress. This exceptionally wide spectrum of effects is attributable to the presence of 5-HT1A receptors in serotonergic as well as other, for example glutamatergic, cholinergic, dopaminergic and noradrenergic neurons. The majority of the effects of 5-HT(1A) receptors is manifested via the mediation of Gi proteins through the hyperpolarisation or inhibition of the neuron carrying the receptor. 5-HT(1A) receptors on serotonergic neurons can be found in the somatodendritic area and play a significant role in delaying the effects of antidepressants which is an obvious disadvantage. Therefore the newest serotonergic antidepressants including vilazodone and vortioxetine have been designed to possess 5-HT(1A) receptor partial agonist properties. In the present paper we focus primarily on the role of 5-HT(1A) receptors in stress and

  14. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  15. Serotonin Receptors and Heart Valve Disease – it was meant 2B

    PubMed Central

    Hutcheson, Joshua D.; Setola, Vincent; Roth, Bryan L.; Merryman, W. David

    2011-01-01

    Carcinoid heart disease was one of the first valvular pathologies studied in molecular detail, and early research identified serotonin produced by oncogenic enterochromaffin cells as the likely culprit in causing changes in heart valve tissue. Researchers and physicians in the mid-1960s noted a connection between the use of several ergot-derived medications with structures similar to serotonin and the development of heart valve pathologies similar to those observed in carcinoid patients. The exact serotonergic target that mediated valvular pathogenesis remained a mystery for many years until similar cases were reported in patients using the popular diet drug Fen-Phen in the late 1990s. The Fen-Phen episode sparked renewed interest in serotonin-mediated valve disease, and studies led to the identification of the 5-HT2B receptor as the likely molecular target leading to heart valve tissue fibrosis. Subsequent studies have identified numerous other activators of the 5-HT2B receptor, and consequently, the use of many of these molecules has been linked to heart valve disease. Herein, we: review the molecular properties of the 5-HT2B receptor including factors that differentiate the 5-HT2B receptor from other 5-HT receptor subtypes, discuss the studies that led to the identification of the 5-HT2B receptor as the mediator of heart valve disease, present current efforts to identify potential valvulopathogens by screening for 5-HT2B receptor activity, and speculate on potential therapeutic benefits of 5-HT2B receptor targeting. PMID:21440001

  16. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    PubMed

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection.

  17. PET imaging of cortical S2 serotonin receptors after stroke: lateralized changes and relationship to depression

    SciTech Connect

    Mayberg, H.S.; Robinson, R.G.; Wong, D.F.; Parikh, R.; Bolduc, P.; Starkstein, S.E.; Price, T.; Dannals, R.F.; Links, J.M.; Wilson, A.A.

    1988-08-01

    Patients with right-hemisphere strokes (N = 9) more than 1 year after injury had greater cortical binding of (3-N-(/sup 11/C)methyl)spiperone than a similar group of patients with left-hemisphere strokes (N = 8) or normal control subjects (N = 17). The higher S2 serotonin receptor binding occurred in uninjured regions of the right parietal and temporal cortex. The ratio of binding in the ipsilateral to contralateral cortex showed a significant negative correlation with severity of depression scores in the left temporal cortex. These findings suggest that the biochemical response of the brain may be different depending on which hemisphere is injured and that some depressions may be a consequence of the failure to upregulate serotonin receptors after stroke.

  18. Epac2: a sulfonylurea receptor?

    PubMed

    Rehmann, Holger

    2012-02-01

    Sulfonylureas are widely used oral drugs in the treatment of diabetes mellitus. They function by the inhibition of ATP-sensitive K+ channels in pancreatic β-cells, which are thus considered the 'classical' sulfonylurea receptor. Next to the ATP-sensitive K+ channels, additional sulfonylurea-interacting proteins were identified, which might contribute to the physiological effects of this drug family. Most recently, Epac2 (exchange protein directly activated by cAMP 2) was added to the list of sulfonylurea receptors. However, this finding caused controversy in the literature. The critical discussion of the present paper comes to the conclusion that sulfonylureas are not able to activate Epac2 directly and are unlikely to bind to Epac2. Increased blood glucose levels after food intake result in the secretion of insulin from pancreatic β-cells. Glucose levels are detected 'indirectly' by β-cells: owing to increased glycolysis rates, the ratio of cellular ATP/ADP increases and causes the closure of ATP-sensitive K+ channels. In consequence, cells depolarize and voltage-dependent Ca2+ channels open to cause an increase in the cellular Ca2+ concentration. Finally, Ca2+ induces the fusion of insulin-containing granules with the plasma membrane. Sulfonylureas, such as tolbutamide, glibenclamide or acetohexamide, form a class of orally applicable drugs used in the treatment of non-insulin-dependent diabetes mellitus.

  19. Serotonin (5-HT) receptor 5A sequence variants affect human plasma triglyceride levels

    PubMed Central

    Zhang, Y.; Smith, E. M.; Baye, T. M.; Eckert, J. V.; Abraham, L. J.; Moses, E. K.; Kissebah, A. H.; Martin, L. J.

    2010-01-01

    Neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) work closely with leptin and insulin to fine-tune the metabolic and neuroendocrine responses to dietary intake. Losing the sensitivity to excess food intake can lead to obesity, diabetes, and a multitude of behavioral disorders. It is largely unclear how different serotonin receptor subtypes respond to and integrate metabolic signals and which genetic variations in these receptor genes lead to individual differences in susceptibility to metabolic disorders. In an obese cohort of families of Northern European descent (n = 2,209), the serotonin type 5A receptor gene, HTR5A, was identified as a prominent factor affecting plasma levels of triglycerides (TG), supported by our data from both genome-wide linkage and targeted association analyses using 28 publicly available and 12 newly discovered single nucleotide polymorphisms (SNPs), of which 3 were strongly associated with plasma TG levels (P < 0.00125). Bayesian quantitative trait nucleotide (BQTN) analysis identified a putative causal promoter SNP (rs3734967) with substantial posterior probability (P = 0.59). Functional analysis of rs3734967 by electrophoretic mobility shift assay (EMSA) showed distinct binding patterns of the two alleles of this SNP with nuclear proteins from glioma cell lines. In conclusion, sequence variants in HTR5A are strongly associated with high plasma levels of TG in a Northern European population, suggesting a novel role of the serotonin receptor system in humans. This suggests a potential brain-specific regulation of plasma TG levels, possibly by alteration of the expression of HTR5A. PMID:20388841

  20. Linezolid-induced serotonin toxicity in a patient not taking monoamine oxidase inhibitors or serotonin receptor antagonists

    PubMed Central

    Sutton, Jacob; Stroup, Jeff

    2016-01-01

    Linezolid is an oxazolidinone antibiotic with weak monoamine oxidase (MAO) type A and MAO type B inhibitory effects. Linezolid has been associated with serotonin toxicity when used concomitantly with multiple medications that are known to increase serotonin concentrations. We report the case of a 65-year-old woman with signs and symptoms of serotonin toxicity following administration of linezolid for treatment of methicillin-resistant Staphylococcus aureus pneumonia. PMID:27034576

  1. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior.

    PubMed

    Veenstra-VanderWeele, Jeremy; Muller, Christopher L; Iwamoto, Hideki; Sauer, Jennifer E; Owens, W Anthony; Shah, Charisma R; Cohen, Jordan; Mannangatti, Padmanabhan; Jessen, Tammy; Thompson, Brent J; Ye, Ran; Kerr, Travis M; Carneiro, Ana M; Crawley, Jacqueline N; Sanders-Bush, Elaine; McMahon, Douglas G; Ramamoorthy, Sammanda; Daws, Lynette C; Sutcliffe, James S; Blakely, Randy D

    2012-04-03

    Fifty years ago, increased whole-blood serotonin levels, or hyperserotonemia, first linked disrupted 5-HT homeostasis to Autism Spectrum Disorders (ASDs). The 5-HT transporter (SERT) gene (SLC6A4) has been associated with whole blood 5-HT levels and ASD susceptibility. Previously, we identified multiple gain-of-function SERT coding variants in children with ASD. Here we establish that transgenic mice expressing the most common of these variants, SERT Ala56, exhibit elevated, p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia. These effects are accompanied by altered basal firing of raphe 5-HT neurons, as well as 5HT(1A) and 5HT(2A) receptor hypersensitivity. Strikingly, SERT Ala56 mice display alterations in social function, communication, and repetitive behavior. Our efforts provide strong support for the hypothesis that altered 5-HT homeostasis can impact risk for ASD traits and provide a model with construct and face validity that can support further analysis of ASD mechanisms and potentially novel treatments.

  2. Headache, Raynaud's syndrome and serotonin receptor agonists in systemic lupus erythematosus.

    PubMed

    Bernatsky, S; Pineau, C A; Lee, J L; Clarke, A E

    2006-01-01

    There are potential concerns regarding serotonin receptor agonists in SLE patients with migraine, particularly patients with concomitant Raynaud's syndrome. We estimated the prevalence of lupus-related headache and Raynaud's syndrome in the Montreal General Hospital SLE clinic cohort and evaluated the relationship between these two variables in multivariable logistic regression models, controlling for age, sex, race, SLE duration and the presence of lupus anticoagulant and antibodies to cardiolipin and beta2 glycoprotein I. We also assessed, through chart review in those individuals with both Raynaud's syndrome and migraine, a history of serotonin receptor agonist use, and any associated worsening vasospasm. Based on Systemic Lupus Activity Measure (SLAM) scores, the cumulative incidence of lupus-related headache in our sample (n = 391) was 46.1%; the prevalence of Raynaud's syndrome was 49.4%. The adjusted odds ratio (OR) for lupus-related headache and Raynaud's syndrome was 1.7 (95% CI 1.1, 2.5). In addition, there was a strong independent relationship between headache and anti-beta2 glycoprotein I antibodies (adjusted OR 5.6 [95% CI 1.8, 17.0]). The data from our chart review suggest that careful use of serotonin receptor agonists in patients with both Raynaud's syndrome and migraines may be undertaken, although caution would necessitate that these agents not be used in individuals with very severe Raynaud's (eg, digital ulcerations, and so on).

  3. In vivo binding of /sup 3/H-N-methylspiperone to dopamine and serotonin receptors

    SciTech Connect

    Frost, J.J.; Smith, A.C.; Kuhar, M.J.; Dannals, R.F.; Wagner, H.N. Jr.

    1987-03-09

    /sup 3/H-N-methylspiperone (/sup 3/H-NMSP) was used to label dopamine-2 and serotonin-2 in vivo in the mouse. The striatum/cerebellum binding ratio reached a maximum of 80 eight hours after intravenous administration of /sup 3/H-NMSP. The frontal cortex/cerebellum ratio was 5 one hour after injection. The binding of /sup 3/H-NMSP was saturable in the frontal cortex and cerebellum between doses of 10 and 1000 ..mu..g/kg. Between 0.01 and 10 ..mu..g/kg the ratio total/nonspecific binding increased from 14 to 21. Inhibition of /sup 3/H-NMSP binding in the frontal cortex and striatum by ketanserin, a selective serotonin-2 antagonist, demonstrated that 20% of the total binding in the striatum was to serotonin-2 rectors and 91% of the total binding in the frontal cortex was to serotonin-2 receptors. Compared to /sup 3/H-spiperone, /sup 3/H-NMSP 1) results in a much higher specific/nonspecific binding ratio in the striatum and frontal cortex and 2) displays more than a two-fold higher brain uptake. 18 references, 4 figures.

  4. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2.

    PubMed

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V; Khelashvili, George; Weinstein, Harel

    2014-11-12

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT(2A)R) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT(2A)R is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT(2A)R agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT(2A)R interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. The findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT(2A)R activation.

  5. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    SciTech Connect

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; Khelashvili, George; Weinstein, Harel

    2014-10-14

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT2AR) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT2AR activation.

  6. Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability.

    PubMed

    Husch, Andreas; Dietz, Shelby B; Hong, Diana N; Harris-Warrick, Ronald M

    2015-02-15

    In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG.

  7. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action.

    PubMed

    Kubacka, Monika; Mogilski, Szczepan; Bednarski, Marek; Nowiński, Leszek; Dudek, Magdalena; Żmudzka, Elżbieta; Siwek, Agata; Waszkielewicz, Anna M; Marona, Henryk; Satała, Grzegorz; Bojarski, Andrzej; Filipek, Barbara; Pytka, Karolina

    2016-02-01

    Since serotonin (5-HT) is strongly involved in the etiology and pathophysiology of depression, the development of new antidepressants is still based on the serotonergic system. The complexity of serotonergic system provides an opportunity for the development of compounds with multiple and complementary mechanism of action. This study describes serotonin receptor profile, functional characterization, and pharmacological in vivo evaluation of new aroxyalkyl derivatives of 2-methoxyphenylpiperazine. The obtained results allowed for the identification of compound 3, (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride), a partial 5-HT1A receptor agonist, and 5-HT2A receptor antagonist, with high affinity toward 5-HT7 receptors, showing antidepressant- and anxiolytic-like properties. Moreover, 5-HT1A receptor activation is crucial for the antidepressant-like activity of compound 3. The rest of the compounds (except compounds 1 and 9) showed antidepressant but not anxiolytic-like properties, which did not result from 5-HT1A receptors activation. Furthermore, the compounds are 5-HT1A and weak 5-HT3 receptors antagonists, and some of them 5-HT2A antagonists. Moreover, none of the studied compounds impaired motor coordination at antidepressant-like doses. Since the studied compounds exhibited activity in behavioral assays and interacted with various receptors, the results of our experiments are very promising and require further studies.

  8. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    PubMed

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants.

  9. Individual differences in positivity offset and negativity bias: Gender-specific associations with two serotonin receptor genes.

    PubMed

    Ashare, Rebecca L; Norris, Catherine J; Wileyto, E Paul; Cacioppo, John T; Strasser, Andrew A

    2013-09-01

    Individual differences in the evaluation of affective stimuli, such as the positivity offset and negativity bias may have a biological basis. We tested whether two SNPs (HTR2A; 102T>C and HTR1A; 1019C>G) related to serotonin receptor function, a biological pathway associated with affective regulation, were differentially related to positivity offset and negativity bias for males and females. Participants were 109 cigarette smokers who rated a series of affective stimuli to assess reactions to positive and negative pictures. Gender × genotype interactions were found for both SNPs. Males with the 102T allele showed a greater positivity offset than males with the 102C allele. For females, in contrast, the 1019C allele was associated with a greater positivity offset than the 1019G allele, whereas the 102T allele was associated with a greater negativity bias than the 102C allele. Identifying how gender differences may moderate the effect of serotonin receptor genes on affective information processing may provide insight into their role in guiding behavior and regulating affect.

  10. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.

    PubMed

    Nagatomo, Takafumi; Rashid, Mamunur; Abul Muntasir, Habib; Komiyama, Tadazumi

    2004-10-01

    The serotonin (5-hydroxytryptamine, 5-HT) receptors have conventionally been divided into seven subfamilies, most of which have several subtypes. Among them, 5-HT(2A) receptor is associated with the contraction of vascular smooth muscle, platelet aggregation and thrombus formation and coronary artery spasms. Accordingly, selective 5-HT(2A) antagonists may have potential in the treatment of cardiovascular diseases. Sarpogrelate, a selective 5-HT(2A) antagonist, has been introduced clinically as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis. Molecular modeling studies also suggest that sarpogrelate is a 5-HT(2A) selective antagonist and is likely to have pharmacological effects beneficial in the treatment of cardiovascular diseases. This review describes the above findings as well as the signaling linkages of the 5-HT(2A) receptors and the mode of agonist binding to 5-HT(2A) receptor using data derived from molecular modeling and site-directed mutagenesis.

  11. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    PubMed Central

    Oh, Eun Ju; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Kim, Su Yeon; Chang, Sung Eun; Hwang, Jae Sung

    2016-01-01

    BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B) agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription factor (MITF) in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders. PMID:27077852

  12. Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice.

    PubMed

    Mössner, R; Schmitt, A; Hennig, T; Benninghoff, J; Gerlach, M; Riederer, P; Deckert, J; Lesch, K P

    2004-01-01

    Mice deficient in the serotonin transporter (5HTT) display highly elevated extracellular 5HT levels. 5HT exerts ist effects via at least fourteen different cloned 5HT receptors located pre- and postsynaptically. In contrast to the other 5HT receptors, the 5HT3 receptor is a ionotropic receptor with ligand-gated cation channel function. Since G-protein-coupled 5HT receptors show extensive adaptive changes in 5HTT-deficient mice, we investigated whether 5HT3 receptors are also altered in these mice. Using quantitative autoradiography, we found that 5HT3 receptors are upregulated in frontal cortex (+46%), parietal cortex (+42%), and in stratum oriens of the CA3 region of the hippocampus (+18%) of 5HTT knockout mice. Changes in 5HT3 receptor mRNA expression, as determined by quantitative in situ hybridisation, were less pronounced. The adaptive changes of 5HT3 receptor expression constitute a part of the complex regulatory pattern of 5HT receptors in 5HTT knockout mice.

  13. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    PubMed

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.

  14. Activation of serotonin 3 receptors changes in vivo auditory responses in the mouse inferior colliculus

    PubMed Central

    Bohorquez, Alexander; Hurley, Laura M.

    2009-01-01

    Metabotropic serotonin receptors such as 5-HT1A and 5-HT1B receptors shape the level, selectivity, and timing of auditory responses in the inferior colliculus (IC). Less is known about the effects of ionotropic 5-HT3 receptors, which are cation channels that depolarize neurons. In the current study, the influence of the 5-HT3 receptor on auditory responses in vivo was explored by locally iontophoresing a 5-HT3 receptor agonist and antagonists onto single neurons recorded extracellularly in mice. Three main findings emerge from these experiments. First, activation of the 5-HT3 receptor can either facilitate or suppress auditory responses, but response suppressions are not consistent with 5-HT3 effects on presynaptic GABAergic neurons. Both response facilitations and suppressions are less pronounced in neurons with high precision in response latency, suggesting functional differences in the role of receptor activation for different classes of neuron. Finally, the effects of 5-HT3 activation vary across repetition rate within a subset of single neurons, suggesting that the influence of receptor activation sometimes varies with the level of activity. These findings contribute to the view of the 5-HT3 receptor as an important component of the serotonergic infrastructure in the IC, with effects that are complex and neuron- selective. PMID:19236912

  15. Brain Serotonin 1A Receptor Binding as a Predictor of Treatment Outcome in Major Depressive Disorder

    PubMed Central

    Miller, Jeffrey M.; Hesselgrave, Natalie; Ogden, R. Todd; Zanderigo, Francesca; Oquendo, Maria A.; Mann, J. John; Parsey, Ramin V.

    2013-01-01

    Background We previously reported higher serotonin 1A receptor (5-HT1A) binding in subjects with major depressive disorder (MDD) during a major depressive episode using positron emission tomography imaging with [11C]WAY-100635. 5-HT1A receptor binding is also associated with treatment outcome after nonstandardized antidepressant treatment. We examined whether pretreatment 5-HT1A binding is associated with treatment outcome following standardized escitalopram treatment in MDD. We also compared 5-HT1A binding between all MDD subjects in this cohort and a sample of healthy control subjects. Methods Twenty-four MDD subjects in a current major depressive episode and 51 previously studied healthy control subjects underwent positron emission tomography scanning with [11C]WAY-100635, acquiring a metabolite-corrected arterial input function and free-fraction measurement to estimate 5-HT1A binding potential (BPF = Bmax/KD, where Bmax = available receptors and KD = dissociation constant). Major depressive disorder subjects then received 8 weeks of treatment with escitalopram; remission was defined as a posttreatment 24-item Hamilton Depression Rating Scale <10 and ≥50% reduction in Hamilton Depression Rating Scale. Results Remitters to escitalopram had 33% higher baseline 5-HT1A binding in the raphe nuclei than nonremitters (p = .047). Across 12 cortical and subcortical regions, 5-HT1A binding did not differ between remitters and nonremitters (p = .86). Serotonin 1A receptor binding was higher in MDD than control subjects across all regions (p = .0003). Remitters did not differ from nonremitters in several relevant clinical measures. Conclusions Elevated 5-HT1A binding in raphe nuclei is associated with subsequent remission with the selective serotonin reuptake inhibitor escitalopram; this is consistent with data from a separate cohort receiving naturalistic antidepressant treatment. We confirmed our previous findings of higher 5-HT1A binding in current MDD compared with

  16. Effects of age of serotonin 5-HT2 receptors in cocaine abusers and normal subjects

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Logan, J.

    1995-05-01

    We measured the effect of age on serotonin 5-HT2 receptor availability and compared it with the effects on dopamine D2 receptors on 19 chronic cocaine abusers (35.2{plus_minus}9.8 years, range 18-54 years old) and 19 age matched normal controls using positron emission tomography (PET) and F-18 N-methylspiperone (NMS). 5-HT2 Receptor availability was measure din frontal (FR), occipital (OC), cingulate (CI) and orbitofrontal (OF) cortices using the ratio of the distribution volume in the region of interest to that in the cerebelium (CB) which is a function of Bmax/Kd. D2 receptor availability in the basal ganglia was measured using the {open_quotes}ratio index{close_quotes} (slope of striatum/CB versus time over 180 min of the scan) which is a function of Bmax. 5-HT2 Receptor availability differed among regions and were as follows: CI>OF>OC>FC.5-HT2 Receptor availability decreased significantly with age. This effect was more accentuated for 5-HT2 receptor availability in FR than in OC(df=1, p<0.025). Striatal dopamine D2 receptors were also found to decrease significantly with age (r=0.63, p<0.007). In a given subject, D2 receptor availability was significantly correlated with 5-HT2 receptor availability in FR (r=0.51, p<0.035) but not in OC. The values for 5-HT2 receptor availability were not different in normal subjects and cocaine abusers. These results document a decline in 5-HT2 and D2 receptors with age and document an association between frontal 5-HT2 and striatal D2 receptor availability. These results did not show any changes in 5-HT2 receptor availability in cocaine abusers as compared to control subjects.

  17. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    PubMed

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  18. Serotonin Receptor Agonist 5-Nonyloxytryptamine Alters the Kinetics of Reovirus Cell Entry

    PubMed Central

    Mainou, Bernardo A.; Ashbrook, Alison W.; Smith, Everett Clinton; Dorset, Daniel C.; Denison, Mark R.

    2015-01-01

    ABSTRACT Mammalian orthoreoviruses (reoviruses) are nonenveloped double-stranded RNA viruses that infect most mammalian species, including humans. Reovirus binds to cell surface glycans, junctional adhesion molecule A (JAM-A), and the Nogo-1 receptor (depending on the cell type) and enters cells by receptor-mediated endocytosis. Within the endocytic compartment, reovirus undergoes stepwise disassembly, which is followed by release of the transcriptionally active viral core into the cytoplasm. In a small-molecule screen to identify host mediators of reovirus infection, we found that treatment of cells with 5-nonyloxytryptamine (5-NT), a prototype serotonin receptor agonist, diminished reovirus cytotoxicity. 5-NT also blocked reovirus infection. In contrast, treatment of cells with methiothepin mesylate, a serotonin antagonist, enhanced infection by reovirus. 5-NT did not alter cell surface expression of JAM-A or attachment of reovirus to cells. However, 5-NT altered the distribution of early endosomes with a concomitant impairment of reovirus transit to late endosomes and a delay in reovirus disassembly. Consistent with an inhibition of viral disassembly, 5-NT treatment did not alter infection by in vitro-generated infectious subvirion particles, which bind to JAM-A but bypass a requirement for proteolytic uncoating in endosomes to infect cells. We also found that treatment of cells with 5-NT decreased the infectivity of alphavirus chikungunya virus and coronavirus mouse hepatitis virus. These data suggest that serotonin receptor signaling influences cellular activities that regulate entry of diverse virus families and provides a new, potentially broad-spectrum target for antiviral drug development. IMPORTANCE Identification of well-characterized small molecules that modulate viral infection can accelerate development of antiviral therapeutics while also providing new tools to increase our understanding of the cellular processes that underlie virus-mediated cell

  19. Regulating prefrontal cortex activation: an emerging role for the 5-HT₂A serotonin receptor in the modulation of emotion-based actions?

    PubMed

    Aznar, Susana; Klein, Anders B

    2013-12-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.

  20. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release

    PubMed Central

    Pehek, E.A.; Hernan, A.E.

    2017-01-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a “long-loop” feedback system from the PFC to the VTA and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA. Infusions of a combination of a NMDA (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-Dimethoxy-4-iodoamphetamine] (2.5 mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  1. Quantitative mapping shows that serotonin rather than dopamine receptor mRNA expressions are affected after repeated intermittent administration of MDMA in rat brain.

    PubMed

    Kindlundh-Högberg, Anna M S; Svenningsson, Per; Schiöth, Helgi B

    2006-09-01

    Ecstasy, (+/-)-3,4-methylenedioxy-metamphetamine (MDMA), is a popular recreational drug among young people. The present study aims to mimic MDMA intake among adolescents at dance clubs, taking repeated doses in the same evening on an intermittent basis. Male Sprague-Dawley rats received either 3x1 or 3x5 mg/kg/day (3 h apart) every seventh day during 4 weeks. We used real-time RT-PCR to determine the gene expression of serotonin 5HT1A, 5HT1B, 5HT2A, 5HT2C, 5HT3, 5HT6 receptors and dopamine D1, D2, D3 receptors in seven brain nuclei. The highest dose of MDMA extensively increased the 5HT1B-receptor mRNA in the cortex, caudate putamen, nucleus accumbens, and hypothalamus. The 5HT2A-receptor mRNA was reduced at the highest MDMA dose in the cortex. The 5HT2C mRNA was significantly increased in a dose-dependent manner in the cortex and the hypothalamus, as well as the 5HT3-receptor mRNA was in the hypothalamus. The 5HT6 mRNA level was increased in the forebrain cortex and the amygdala. Dopamine receptor mRNAs were only affected in the hypothalamus. In conclusion, this study provides evidence for a unique implication of serotonin rather than dopamine receptor mRNA levels, in response to repeated intermittent MDMA administration. We therefore suggest that serotonin regulated functions also primarily underlie repeated MDMA intake at rave parties.

  2. Serotonin Modulates Developmental Microglia via 5-HT2B Receptors: Potential Implication during Synaptic Refinement of Retinogeniculate Projections.

    PubMed

    Kolodziejczak, Marta; Béchade, Catherine; Gervasi, Nicolas; Irinopoulou, Theano; Banas, Sophie M; Cordier, Corinne; Rebsam, Alexandra; Roumier, Anne; Maroteaux, Luc

    2015-07-15

    Maturation of functional neuronal circuits during central nervous system development relies on sophisticated mechanisms. First, axonal and dendritic growth should reach appropriate targets for correct synapse elaboration. Second, pruning and neuronal death are required to eliminate redundant or inappropriate neuronal connections. Serotonin, in addition to its role as a neurotransmitter, actively participates in postnatal establishment and refinement of brain wiring in mammals. Brain resident macrophages, that is, microglia, also play an important role in developmentally regulated neuronal death as well as in synaptic maturation and elimination. Here, we tested the hypothesis of cross-regulation between microglia and serotonin during postnatal brain development in a mouse model of synaptic refinement. We found expression of the serotonin 5-HT2B receptor on postnatal microglia, suggesting that serotonin could participate in temporal and spatial synchronization of microglial functions. Using two-photon microscopy, acute brain slices, and local delivery of serotonin, we observed that microglial processes moved rapidly toward the source of serotonin in Htr2B(+/+) mice, but not in Htr2B(-/-) mice lacking the 5-HT2B receptor. We then investigated whether some developmental steps known to be controlled by serotonin could potentially result from microglia sensitivity to serotonin. Using an in vivo model of synaptic refinement during early brain development, we investigated the maturation of the retinal projections to the thalamus and observed that Htr2B(-/-) mice present anatomical alterations of the ipsilateral projecting area of retinal axons into the thalamus. In addition, activation markers were upregulated in microglia from Htr2B(-/-) compared to control neonates, in the absence of apparent morphological modifications. These results support the hypothesis that serotonin interacts with microglial cells and these interactions participate in brain maturation.

  3. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    NASA Astrophysics Data System (ADS)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  4. In vivo regulation of the serotonin-2 receptor in rat brain

    SciTech Connect

    Stockmeier, C.A.; Kellar, K.J.

    1986-01-13

    Serotonin-2 (5-HT-2) receptors in brain were measured using (/sup 3/H)ketanserin. The authors examined the effects of amitriptyline, an anti-depressant drug, of electroconvulsive shock (ECS) and of drug-induced alterations in presynaptic 5-HT function on (/sup 3/H)ketanserin binding to 5-HT-2 receptors in rat brain. The importance of intact 5-HT axons to the up-regulation of 5-HT-2 receptors by ECS was also investigated, and an attempt was made to relate the ECS-induced increase in this receptor to changes in 5-HT presynaptic mechanisms. Twelve days of ECS increased the number of 5-HT-2 receptors in frontal cortex. Neither the IC/sub 50/ nor the Hill coefficient of 5-HT in competing for (/sup 3/H)ketanserin binding sites was altered by ECS. Repeated injections of amitriptyline reduced the number of 5-HT-2 receptors in frontal cortex. Reserpine, administered daily for 12 days, caused a significant increase in 5-HT-2 receptors, but neither daily injections of p-chlorophenylalanine (PCPA) nor lesions of 5-HT axons with 5,7-dihydroxytryptamine (5,7-DHT) affected 5-HT-2 receptors. However, regulation of 5-HT-2 receptors by ECS was dependent on intact 5-HT axons since ECS could not increase the number of 5-HT-2 receptors in rats previously lesioned with 5,7-DHT. Repeated ECS, however, does not appear to affect either the high-affinity uptake of (/sup 3/H)5-HT or (/sup 3/H)imipramine binding, two presynaptic markers of 5-HT neuronal function. 5-HT-2 receptors appear to be under complex control. ECS or drug treatments such as reserpine or amitriptyline, which affect several monoamine neurotransmission systems including 5-HT, can alter 5-HT-2 receptors. 28 references, 1 figure, 7 tables.

  5. Mammal-like striatal functions in Anolis. I. Distribution of serotonin receptor subtypes, and absence of striosome and matrix organization.

    PubMed

    Clark, E C; Baxter, L R

    2000-11-01

    Serotonin (5-HT) 5-HT(2A) and 5-HT(2C) receptors are thought to play important roles in the mammalian striatum. As basal ganglia functions in general are thought highly conserved among amniotes, we decided to use in situ autoradiographic methods to determine the occurrence and distribution of pharmacologically mammal-like 5-HT(2A) and 5-HT(2C) receptors in the lizard, Anolis carolinensis, with particular attention to the striatum. We also determined the distributions of 5-HT(1A), 5-HT(1B/D), 5 HT(3), and 5-HT(uptake) receptors for comparison. All 5-HT receptors examined showed pharmacological binding specificity, and forebrain binding density distributions that resembled those reported for mammals. Anolis 5 HT(2A/C) and 5-HT(1A) site distributions were similar in both in vivo and ex vivo binding experiments. 5-HT(2A & C) receptors occur in both high and low affinity states, the former having preferential affinity for (125)I-(+/-)-2,5-dimethoxy-4-iodo-amphetamine hydrochloride ((125)I-DOI). In mammals (125)I-DOI binding shows a patchy density distribution in the striatum, being more dense in striosomes than in surrounding matrix. There was no evidence of any such patchy density of (125)I-DOI binding in the anole striatum, however. As a further indication that anoles do not possess a striosome and matrix striatal organization, neither (3)H-naloxone binding nor histochemical staining for acetylcholinesterase activity (AChE) were patchy. AChE did show a band-like striatal distribution, however, similar to that seen in birds.

  6. Presynaptic CB(1) cannabinoid receptors control frontocortical serotonin and glutamate release--species differences.

    PubMed

    Ferreira, Samira G; Teixeira, Filipe M; Garção, Pedro; Agostinho, Paula; Ledent, Catherine; Cortes, Luísa; Mackie, Ken; Köfalvi, Attila

    2012-07-01

    Both the serotonergic and endocannabinoid systems modulate frontocortical glutamate release; thus they are well positioned to participate in the pathogenesis of psychiatric disorders. With the help of fluorescent and confocal microscopy, we localized the CB(1) cannabinoid receptor (CB(1)R) in VGLUT1- and 2- (i.e. glutamatergic) and serotonin transporter- (i.e. serotonergic) -positive fibers and nerve terminals in the mouse and rat frontal cortex. CB(1)R activation by the synthetic agonists, WIN55212-2 (1 μM) and R-methanandamide (1 μM) inhibited the simultaneously measured evoked Ca(2+)-dependent release of [(14)C]glutamate and [(3)H]serotonin from frontocortical nerve terminals of Wistar rats, in a fashion sensitive to the CB(1)R antagonists, O-2050 (1 μM) and LY320135 (5 μM). CB(1)R agonists also inhibited the evoked release of [(14)C]glutamate in C57BL/6J mice in a reversible fashion upon washout. Interestingly, the evoked release of [(14)C]glutamate and [(3)H]serotonin was significantly greater in the CB(1)R knockout CD-1 mice. Furthermore, CB(1)R binding experiments revealed similar frontocortical CB(1)R density in the rat and the CD-1 mouse. Still, the evoked release of [(3)H]serotonin was modulated by neither CB(1)R agonists nor antagonists in wild-type CD-1 or C57BL/6J mice. Altogether, this is the first study to demonstrate functional presynaptic CB(1)Rs in frontocortical glutamatergic and serotonergic terminals, revealing species differences.

  7. Common SSRI side-effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: Data from a randomized controlled trial

    PubMed Central

    Garfield, Lauren D.; Dixon, David; Nowotny, Petra; Lotrich, Francis E.; Pollock, Bruce G.; Kristjansson, Sean D.; Doré, Peter M.; Lenze, Eric J.

    2013-01-01

    Objective Antidepressant side-effects are a significant public health issue, associated with poor adherence, premature treatment discontinuation and in rare cases significant harm. This is especially relevant for older adults, who assume the largest and most serious burden of medication side-effects. We investigated the association between antidepressant side-effects and genetic variation in the serotonin system in anxious, older adults participating in a randomized, placebo-controlled trial of the SSRI escitalopram. Method Adults (n=177) aged ≥ 60 years were randomized to active treatment or placebo for 12-weeks. Side-effects were assessed using the UKU side effect rating scale. Genetic polymorphisms were putative functional variants in the promoters of the serotonin transporter and 1A and 2A receptors (5-HTTLPR (L/S + rs25531), HTR1A rs6295, HTR2A rs6311, respectively). Results Four significant drug-placebo side-effect differences were found, including increased duration of sleep, dry mouth, diarrhea and diminished sexual desire. Analyses using putative high- vs low-transcription genotype groupings revealed 6 pharmacogenetic effects: greater dry mouth and decreased sexual desire for the low- and high-expressing genotypes of the serotonin transporter, respectively, and greater diarrhea with the low-transcription genotype of the 1A receptor. Diminished sexual desire was experienced significantly more in those with high-expressing genotype and either the serotonin transporter, 1A or 2A receptors. There was not a significant relationship between drug concentration and side-effects nor a mean difference in drug concentration between low- and high-expressing genotypes. Conclusion Genetic variation in the 5HT system may predict who develops common SSRI side-effects and why. More work is needed to further characterize this genetic modulation and to translate research findings into strategies useful for more personalized patient care. PMID:24021217

  8. Long-term administration of fluvoxamine attenuates neuropathic pain and involvement of spinal serotonin receptors in diabetic model rats.

    PubMed

    Kato, Takahiro; Kajiyama, Seiji; Hamada, Hiroshi; Kawamoto, Masashi

    2013-12-01

    Diabetic neuropathic pain management is difficult even with non-steroidal anti-inflammatory drugs and narcotic analgesics such as morphine. Fluvoxamine, a class of selective serotonin reuptake inhibitors (SSRIs), is widely used to treat depression. Its analgesic effects are also documented for diabetic neuropathic pain, but they are limited because it is administered as a single-dose. In this study, we examined the time course of the antiallodynic effect of fluvoxamine in a rat model of diabetic neuropathic pain, which was induced by a single intraperitoneal administration of streptozotocin (75 mg/kg). In addition, the involvement of spinal serotonin (5-HT) receptors in long-term fluvoxamine treatment was studied by intrathecal administration of 5-HT receptor antagonists. In this study the development of mechanical hyperalgesia was assessed by measuring the hind paw withdrawal threshold using von Frey filaments. The results demonstrated that daily oral administration of fluvoxamine (10, 30, and 100 mg/kg) to diabetic rats from 3 to 8 weeks after streptozotocin administration resulted in a dose-dependent antiallodynic effect. The antiallodynic effect was sustained from 2 to 5 weeks after fluvoxamine administration. The antiallodynic effect of fluvoxamine in the diabetic rats was attenuated by WAY-100635 (a 5-HT(1A) receptor antagonist) intrathecally administered 1 week after the onset of daily administration of fluvoxamine, whereas no significant attenuation was seen when the antagonist was administered 3 and 5 weeks after fluvoxamine administration. The antiallodynic effect of fluvoxamine was also attenuated by ketanserin (a 5-HT(2A/2C) receptor antagonist) and ondansetron (a 5-HT3 receptor antagonist) intrathecally administered 1 and 3 weeks after the onset of daily fluvoxamine administration. However, no significant attenuation was observed when the antagonist was administered 5 weeks after fluvoxamine administration. This study demonstrated that daily oral

  9. Interactions of serotonin (5-HT)2 receptor-targeting ligands and nicotine: locomotor activity studies in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Filip, Małgorzata

    2009-08-01

    Male Wistar rats were used to verify the hypothesis that serotonin (5-HT)(2A) or 5-HT(2C) receptors may control the locomotor effects evoked by nicotine (0.4 mg/kg). The 5-HT(2A) receptor antagonist (M100,907), the 5-HT(2A) receptor agonist (DOI), the 5-HT(2C) receptor antagonist (SB 242,084), and the 5-HT(2C) receptor agonists (Ro 60-0175 and WAY 163,909) were used. M100,907 (0.5-2mg/kg) did not alter, while DOI (1 mg/kg) enhanced the nicotine-induced hyperlocomotion. The effect of DOI was antagonized by M100,907 (1 mg/kg). SB 242,084 (0.25-1 mg/kg) augmented, while Ro 60-0175 (1 and 3 mg/kg) and WAY 163,909 (1.5 mg/kg) decreased the overall effect of acute nicotine; effects of Ro 60-0175 and WAY 163,909 were attenuated by SB 242,084 (0.125 mg/kg). In another set of experiments, M100,907 (2 mg/kg) on Day 10 attenuated, while DOI (0.1-1 mg/kg) enhanced the nicotine-evoked conditioned hyperlocomotion in rats repeatedly (Days 1-5) treated with nicotine in experimental chambers. SB 242,084 (0.125 or 1 mg/kg) did not change, while Ro 60-0175 (1 mg/kg) or WAY 163,909 (1.5 mg/kg) decreased the expression of nicotine-induced conditioned hyperactivity. Only DOI (0.3 and 1 mg/kg) and SB 242,084 (1 mg/kg) enhanced the basal locomotion. The present data indicate that 5-HT(2A) receptors are significant for the expression of nicotine-evoked conditioned hyperactivity. Conversely, 5-HT(2C) receptors play a pivotal role in the acute effects of nicotine. Pharmacological stimulation of 5-HT(2A) receptors enhances the conditioned hyperlocomotion, while activation of 5-HT(2C) receptors decreases both the response to acute nicotine and conditioned hyperactivity.

  10. Crucial interactions between selective serotonin uptake inhibitors and sigma-1 receptor in heart failure.

    PubMed

    Bhuiyan, Md Shenuarin; Tagashira, Hideaki; Fukunaga, Kohji

    2013-01-01

    Depression is associated with a substantial increase in the risk of developing heart failure and is independently associated with increased cardiovascular morbidity and mortality. Inversely, cardiovascular disease can lead to severe depression. Thus, therapy with selective serotonin reuptake inhibitors (SSRIs) is strongly recommended to reduce cardiovascular disease-induced morbidity and mortality. However, molecular mechanisms to support evidence-based SSRI treatment of cardiovascular disease have not been elucidated. We recently found very high expression of the sigma-1 receptor, an orphan receptor, in rat heart tissue and defined the cardiac sigma-1 receptor as a direct SSRI target in eliciting cardioprotection in both pressure overload (PO)induced and transverse aortic constriction (TAC)-induced myocardial hypertrophy models in rodents. Our findings suggest that SSRIs such as fluvoxamine protect against PO- and TAC-induced cardiac dysfunction by upregulating sigma-1 receptor expression and stimulating sigma-1 receptor-mediated Akt-eNOS signaling. Here, we discuss the association of depression and cardiovascular diseases, the protective mechanism of SSRIs in heart failure patients, and the pathophysiological relevance of sigma-1 receptors to progression of heart failure. These findings should promote development of clinical therapeutics targeting the sigma-1 receptor in cardiovascular diseases.

  11. Serotonin 1A receptors and sexual behavior in a genetic model of depression.

    PubMed

    Schijven, D; Sousa, V C; Roelofs, J; Olivier, B; Olivier, J D A

    2014-06-01

    The Flinder Sensitive Line (FSL) is a rat strain that displays distinct behavioral and neurochemical features of major depression. Chronic selective serotonin reuptake inhibitors (SSRIs) are able to reverse these symptoms in FSL rats. It is well known that several abnormalities in the serotonergic system have been found in FSL rats, including increased 5-HT brain tissue levels and reduced 5-HT synthesis. SSRIs are known to exert (part of) their effects by desensitization of the 5-HT₁A receptor and FSL rats appear to have lower 5-HT1A receptor densities compared with Flinder Resistant Line (FRL) rats. We therefore studied the sensitivity of this receptor on the sexual behavior performance in both FRL and FSL rats. First, basal sexual performance was studied after saline treatment followed by treatment of two different doses of the 5-HT₁A receptor agonist ±8-OH-DPAT. Finally we measured the effect of a 5-HT₁A receptor antagonist to check for specificity of the 5-HT₁A receptor activation. Our results show that FSL rats have higher ejaculation frequencies compared with FRL rats which do not fit with a more depressive-like phenotype. Moreover FRL rats are more sensitive to effects of ±8-OH-DPAT upon EL and IF than FSL rats. The blunted response of FSL rats to the effects of ±8-OH-DPAT may be due to lower densities of 5-HT₁A receptors.

  12. Effect of Combination of Non-Invasive Spinal Cord Electrical Stimulation and Serotonin Receptor Activation in Patients with Chronic Spinal Cord Lesion.

    PubMed

    Moshonkina, T R; Shapkova, E Yu; Sukhotina, I A; Emeljannikov, D V; Gerasimenko, Yu P

    2016-10-01

    We analyzed the efficiency of percutaneous electrical stimulation of the spinal cord and serotonin receptor activation in rehabilitation of paralyzed patients. Four-week course of spinal cord electrical stimulation combined with mechanotherapy produced positive shifts in the status of chronically paralyzed patients. Serotonin receptor activation potentiated the effect of spinal cord stimulation and can be regarded as an additional neurorehabilitation option.

  13. Serotonin receptor-mediated stimulation of bovine smooth muscle cell prostacyclin synthesis and its modulation by platelet-derived growth factor.

    PubMed Central

    Coughlin, S R; Moskowitz, M A; Antoniades, H N; Levine, L

    1981-01-01

    Serotonin (5-hydroxytryptamine; 0.5 microM and above) stimulated the synthesis of prostacyclin (as measured by radioimmunoassay of 6-ketoprostaglandin F1 alpha) by bovine aortic smooth muscle cells in culture. This effect was structurally specific; a similar response was not elicited by the other indoles (tryptophan, n-acetylserotonin, 5-hydroxytryptophan, melatonin, or 5-hydroxyindoleacetic acid) or by the amines phenylephrine, isoproterenol, dopamine, or histamine). The response was reversible and was saturable at serotonin concentrations of 10 microM or higher. An increase in prostacyclin synthesis was elicited by the addition of a serotonin agonist, quipazine (1 microM and above), and antagonized by the serotonin receptor blockers cyproheptadine, methysergide, or methiothepin but not by other aminergic receptor-blocking drugs (e.g., phentolamine or propranolol). This effect was selective for cell type because serotonin or quipazine (100 microM) did not increase prostacyclin synthesis by bovine aortic endothelial cells. The addition of platelet-derived growth factor (PDGF) to cultures of smooth muscle cells dramatically enhanced prostacyclin synthesis in response to the coadministration of serotonin. PDGF greatly increased the maximum response to serotonin without altering the half-maximal effective concentration for serotonin. This synergistic interaction was blocked by the addition of a serotonin-receptor blocking agent. Taken together, these data suggest that serotonin stimulates smooth muscle prostacyclin synthesis through a specific receptor-mediated mechanism that can be modulated by PDGF. Images PMID:7031670

  14. Serotonin2c receptor constitutive activity: in vivo direct and indirect evidence and functional significance.

    PubMed

    Navailles, Sylvia; Lagière, Mélanie; Guthrie, Martin; De Deurwaerdère, Philippe

    2013-06-01

    Serotonin2c (5-HT2c) receptors are widely expressed in the central nervous system where they play a pivotal role in the regulation of neuronal network excitability. Along with this fundamental physiological function, 5-HT2c receptors are thought to be implicated in the pathophysiology of several neuropsychiatric disorders and have become a major pharmacological target for the development of improved treatments of these disorders. In the past decade, many studies have focused on the constitutive activity of 5-HT2c receptors and the therapeutic potential of drugs acting as inverse agonists. Although the constitutive activity of the 5-HT2c receptor has been clearly described in vitro, the transposition of this concept to living animals is often difficult to ascertain. Nevertheless, cumulating evidence has demonstrated the functional relevance of such property in regulating physiological systems in vivo both at the level of the central and peripheral nervous systems. The present review provides an update of the growing number of studies that show, by means of pharmacological tools, the participation of the constitutive activity of 5-HT2c receptors in the control of various biochemical and behavioural functions in vivo and emphasizes the functional organization of this constitutive control together with the phasic and tonic (involving the spontaneous release of 5-HT) modalities of the 5-HT2c receptor in the brain.

  15. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  16. Effects of systemic injections of vilazodone, a selective serotonin reuptake inhibitor and serotonin 1A receptor agonist, on anxiety induced by predator stress in rats.

    PubMed

    Adamec, Robert; Bartoszyk, Gerd D; Burton, Paul

    2004-11-03

    We examined the effect of Vilazodone, a selective serotonin reuptake inhibitor (SSRI) and serotonin 1A (5-HT(1A)) receptor agonist [Bartoszyk, G.D., Hegenbart, R., Ziegler, H., 1997. EMD 68843, a serotonin reuptake inhibitor with selective presynaptic 5-HT1A receptor agonistic properties. Eur. J. Pharmacol. 322, 147-153.], on change in affect following predator stress. Vilazodone and vehicle injection (intraperitoneal) occurred either 10 min after predator stress (prophylactic testing), or 90 min prior to behavioral testing for the effects of predator stress (therapeutic testing). Predator stress involved unprotected exposure of rats to a domestic cat. Behavioral effects of stress were evaluated with hole board, plus-maze, and acoustic startle tests 1 week after stress. Predator stress increased anxiety-like behavior in the plus-maze and elevated response to acoustic startle. In prophylactic testing, Vilazodone affected stress potentiation of startle at doses above 5 mg/kg. Vilazodone increased stress elevation of startle at 10 mg/kg. Higher doses of Vilazodone (20 and 40 mg/kg) blocked stress potentiation of startle. In contrast, Vilazodone had no effect on stress potentiation of anxiety in the plus-maze. In therapeutic testing, Vilazodone increased stress elevation of startle at all doses. In contrast, therapeutic Vilazodone had no effect on stress potentiation of anxiety in the plus-maze. Taken together, the data suggest a prophylactic potential for Vilazodone in the treatment of changes in hypervigilance following severe stress.

  17. The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, does not require functional leptin receptor, serotonin, and hypothalamic POMC and CART activities in mice.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao

    2016-10-01

    The acute anorexic effect of liraglutide, a GLP-1 receptor agonist, did not require functional leptin receptor, serotonin, and hypothalamic proopiomelanocortin and cocaine amphetamine regulated transcript activities in mice, although decrease in functional hypothalamic orexin activity might be involved in the acute anorexic effect of liraglutide.

  18. Effects of developmental hyperserotonemia on juvenile play behavior, oxytocin and serotonin receptor expression in the hypothalamus are age and sex dependent.

    PubMed

    Madden, Amanda M K; Zup, Susan L

    2014-04-10

    There is a striking sex difference in the diagnosis of Autism Spectrum Disorder (ASD), such that males are diagnosed more often than females, usually in early childhood. Given that recent research has implicated elevated blood serotonin (hyperserotonemia) in perinatal development as a potential factor in the pathogenesis of ASD, we sought to evaluate the effects of developmental hyperserotonemia on social behavior and relevant brain morphology in juvenile males and females. Administration of 5-methoxytryptamine (5-MT) both pre- and postnatally was found to disrupt normal social play behavior in juveniles. In addition, alterations in the number of oxytocinergic cells in the lateral and medial paraventricular nucleus (PVN) were evident on postnatal day 18 (PND18) in 5-MT treated females, but not treated males. 5-MT treatment also changed the relative expression of 5-HT(1A) and 5-HT(2A) receptors in the PVN, in males at PND10 and in females at PND18. These data suggest that serotonin plays an organizing role in the development of the PVN in a sexually dimorphic fashion, and that elevated serotonin levels during perinatal development may disrupt normal organization, leading to neurochemical and behavioral changes. Importantly, these data also suggest that the inclusion of both juvenile males and females in studies will be necessary to fully understand the role of serotonin in development, especially in relation to ASD.

  19. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    DOE PAGES

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; ...

    2014-10-14

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT2AR) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT2ARmore » is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT2AR activation.« less

  20. Pharmacological characterization of JNJ-28583867, a histamine H(3) receptor antagonist and serotonin reuptake inhibitor.

    PubMed

    Barbier, Ann J; Aluisio, Leah; Lord, Brian; Qu, Ying; Wilson, Sandy J; Boggs, Jamin D; Bonaventure, Pascal; Miller, Kirsten; Fraser, Ian; Dvorak, Lisa; Pudiak, Cindy; Dugovic, Christine; Shelton, Jonathan; Mazur, Curt; Letavic, Michael A; Carruthers, Nicholas I; Lovenberg, Timothy W

    2007-12-08

    Wake-promoting agents such as modafinil are used in the clinic as adjuncts to antidepressant therapy in order to alleviate lethargy. The wake-promoting action of histamine H(3) receptor antagonists has been evidenced in numerous animal studies. They may therefore be a viable strategy for use as an antidepressant therapy in conjunction with selective serotonin reuptake inhibitors. JNJ-28583867 (2-Methyl-4-(4-methylsulfanyl-phenyl)-7-(3-morpholin-4-yl-propoxy)-1,2,3,4-tetrahydro-isoquinoline) is a selective and potent histamine H(3) receptor antagonist (K(i)=10.6 nM) and inhibitor of the serotonin transporter (SERT) (K(i)=3.7 nM), with 30-fold selectivity for SERT over the dopamine and norepinephrine transporters. After subcutaneous administration, JNJ-28583867 occupied both the histamine H(3) receptor and the SERT in rat brain at low doses (<1 mg/kg). JNJ-28583867 blocked imetit-induced drinking (3-10 mg/kg i.p.), confirming in vivo functional activity at the histamine H(3) receptor and also significantly increased cortical extracellular levels of serotonin at doses of 0.3 mg/kg (s.c.) and higher. Smaller increases in cortical extracellular levels of norepinephrine and dopamine were also observed. JNJ-28583867 (3-30 mg/kg p.o.) showed antidepressant-like activity in the mouse tail suspension test. JNJ-28583867 (1-3 mg/kg s.c.) caused a dose-dependent increase in the time spent awake mirrored by a decrease in NREM. Concomitantly, JNJ-28583867 produced a potent suppression of REM sleep from the dose of 1 mg/kg onwards. JNJ-28583867 has good oral bioavailability in the rat (32%), a half-life of 6.9 h and a C(max) of 260 ng/ml after 10 mg/kg p.o. In summary, JNJ-28583867 is a combined histamine H(3) receptor antagonist-SERT inhibitor with in vivo efficacy in biochemical and behavioral models of depression and wakefulness.

  1. G-protein-linked serotonin receptors in mouse kidney exhibit identical properties to 5-HT1b receptors in brain

    SciTech Connect

    Ciaranello, R.D.; Tan, G.L.; Dean, R. )

    1990-03-01

    The serotonin 1b (5-HT1b) receptor is thought to mediate both pre- and postsynaptic actions of serotonin. Until recently 5-HT1b sites were thought to be present only in rodent brain. We now report the presence of high-affinity (125I)iodocyanopindolol ((125I) ICYP) binding sites in the mouse renal medulla with properties identical to those of brain 5-HT1b receptors. In vitro receptor autoradiography demonstrates that (125I)ICYP binding is highly localized to the outer stripe of the renal medulla. Association and dissociation kinetics, saturation analysis and competition displacement analyses indicate that renal medullary (125I)ICYP binding sites exhibit identical properties with brain 5-HT1b receptors. Incubation of renal medullary or brain membranes with guanylimidodiphosphate results in a decreased affinity of 5-HT1b sites for 5-HT and (125I)ICYP; this can be reversed by the addition of a purified mixture of G proteins (Gi/Go). Treatment of brain or kidney membranes with N-ethylmaleimide results in a decrease in 5-HT1b binding which can also be restored by reconstitution with purified G proteins. Adenylyl cyclase from renal medullary homogenates or minces can be stimulated more than 3-fold by forskolin and attenuated by 5-HT. These results indicate that mouse kidney contains high-affinity 5-HT1b receptors with identical properties to those found in brain. These are localized in the outer stripe of the renal medulla and are functionally coupled to adenylyl cyclase inhibitor (Gi) G-proteins.

  2. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness.

    PubMed

    Monti, Jaime M; Jantos, Héctor

    2014-01-01

    Different approaches have been followed to characterize the role of 5-hydroxytryptamine (serotonin) receptor 7 (5-HT7) in the regulation of sleep-wake behavior: (1) 5-HT7 receptor knockout mice spend less time in rapid eye movement sleep than their wild-type counterparts, mainly during the light period. In contrast, there is no difference between the genotypes in time spent in wakefulness or slow-wave sleep. (2) Systemic administration of the selective 5-HT7 receptor agonist LP-211 significantly increased wakefulness (time spent awake) and reduced rapid eye movement sleep in the rat. Direct infusion of LP-211 into the dorsal raphe nucleus, locus coeruleus nucleus, basal forebrain (horizontal limb of the diagonal band of Broca), or laterodorsal tegmental nucleus also produced a decrease in rapid eye movement sleep. Additionally, microinjection of the 5-HT7 receptor agonist into the basal forebrain augmented the time animals remained awake. Local injection of the 5-HT7 receptor agonist LP-44 into the dorsal raphe nucleus also suppressed rapid eye movement sleep in the rat. (3) A similar reduction of rapid eye movement sleep has been described following intraperitoneal injection of the selective 5-HT7 receptor antagonists SB-269970 and SB-656104 in the rat and oral administration of the 5-HT7 receptor antagonist NJ-18038683 to rat and man. Local microinjection of SB-269970 into the dorsal raphe nucleus and basal forebrain also induced a decrease in rapid eye movement sleep in the rat. This tends to suggest that the on-off (activation/blockade), two-state ligand-receptor interaction model is not tenable for the 5-HT7 receptor.

  3. A Hybrid Structural Approach to Analyze Ligand Binding by the Serotonin Type 4 Receptor (5-HT4)*

    PubMed Central

    Padayatti, Pius S.; Wang, Liwen; Gupta, Sayan; Orban, Tivadar; Sun, Wenyu; Salom, David; Jordan, Steven R.; Palczewski, Krzysztof; Chance, Mark R.

    2013-01-01

    Hybrid structural methods have been used in recent years to understand protein-protein or protein-ligand interactions where high resolution crystallography or NMR data on the protein of interest has been limited. For G protein-coupled receptors (GPCRs), high resolution structures of native structural forms other than rhodopsin have not yet been achieved; gaps in our knowledge have been filled by creative crystallography studies that have developed stable forms of receptors by multiple means. The neurotransmitter serotonin (5-hydroxytryptamine) is a key GPCR-based signaling molecule affecting many physiological manifestations in humans ranging from mood and anxiety to bowel function. However, a high resolution structure of any of the serotonin receptors has not yet been solved. Here, we used structural mass spectrometry along with theoretical computations, modeling, and other biochemical methods to develop a structured model for human serotonin receptor subtype 4(b) in the presence and absence of its antagonist GR125487. Our data confirmed the overall structure predicted by the model and revealed a highly conserved motif in the ligand-binding pocket of serotonin receptors as an important participant in ligand binding. In addition, identification of waters in the transmembrane region provided clues as to likely paths mediating intramolecular signaling. Overall, this study reveals the potential of hybrid structural methods, including mass spectrometry, to probe physiological and functional GPCR-ligand interactions with purified native protein. PMID:23378516

  4. Selective agonists for serotonin 7 (5-HT7) receptor and their applications in preclinical models: an overview.

    PubMed

    Di Pilato, Pantaleo; Niso, Mauro; Adriani, Walter; Romano, Emilia; Travaglini, Domenica; Berardi, Francesco; Colabufo, Nicola A; Perrone, Roberto; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello

    2014-01-01

    The serotonin 7 (5-HT7) receptor was the last serotonin receptor subtype to be discovered in 1993. This receptor system has been implicated in several central nervous system (CNS) functions, including circadian rhythm, rapid eye movement sleep, thermoregulation, nociception, memory and neuropsychiatric symptoms and pathologies, such as anxiety, depression and schizophrenia. In 1999, medicinal chemistry efforts led to the identification of SB-269970, which became the gold standard selective 5-HT7 receptor antagonist, and later of various selective agonists such as AS-19, LP-44, LP-12, LP-211 and E-55888. In this review, we summarize the preclinical pharmacological studies performed using these agonists, highlighting their strengths and weaknesses. The data indicate that 5-HT7 receptor agonists can have neuroprotective effects against N-methyl-d-aspartate-induced toxicity, modulate neuronal plasticity in rats, enhance morphine-induced antinociception and alleviate hyperalgesia consecutive to nerve lesion in neuropathic animals.

  5. Disrupting 5-HT2A Receptor/PDZ Protein Interactions Reduces Hyperalgesia and Enhances SSRI Efficacy in Neuropathic Pain

    PubMed Central

    Pichon, Xavier; Wattiez, Anne S; Becamel, Carine; Ehrlich, Ingrid; Bockaert, Joel; Eschalier, Alain; Marin, Philippe; Courteix, Christine

    2010-01-01

    Antidepressants are one of the first-line treatments for neuropathic pain. Despite the influence of serotonin (5-hydroxytryptamine, 5-HT) in pain modulation, selective serotonin reuptake inhibitors (SSRIs) are less effective than tricyclic antidepressants. Here, we show, in diabetic neuropathic rats, an alteration of the antihyperalgesic effect induced by stimulation of 5-HT2A receptors, which are known to mediate SSRI-induced analgesia. 5-HT2A receptor density was not changed in the spinal cord of diabetic rats, whereas postsynaptic density protein-95 (PSD-95), one of the PSD-95/disc large suppressor/zonula occludens-1 (PDZ) domain containing proteins interacting with these receptors, was upregulated. Intrathecal injection of a cell-penetrating peptidyl mimetic of the 5-HT2A receptor C-terminus, which disrupts 5-HT2A receptor–PDZ protein interactions, induced an antihyperalgesic effect in diabetic rats, which results from activation of 5-HT2A receptors by endogenous 5-HT. The peptide also enhanced antihyperalgesia induced by the SSRI fluoxetine. Its effects likely resulted from an increase in receptor responsiveness, because it revealed functional 5-HT2A receptor-operated Ca2+ responses in neurons, an effect mimicked by knockdown of PSD-95. Hence, 5-HT2A receptor/PDZ protein interactions might contribute to the resistance to SSRI-induced analgesia in painful diabetic neuropathy. Disruption of these interactions might be a valuable strategy to design novel treatments for neuropathic pain and to increase the effectiveness of SSRIs. PMID:20531396

  6. A systematic investigation of the differential roles for ventral tegmentum serotonin 1- and 2-type receptors on food intake in the rat.

    PubMed

    Pratt, Wayne E; Clissold, Kara A; Lin, Peagan; Cain, Amanda E; Ciesinski, Alexa F; Hopkins, Thomas R; Ilesanmi, Adeolu O; Kelly, Erin A; Pierce-Messick, Zachary; Powell, Daniel S; Rosner, Ian A

    2016-10-01

    Central serotonin (5-HT) pathways are known to influence feeding and other ingestive behaviors. Although the ventral tegmentum is important for promoting the seeking and consumption of food and drugs of abuse, the roles of 5-HT receptor subtypes in this region on food intake have yet to be comprehensively examined. In these experiments, food restricted rats were given 2-h access to rat chow; separate groups of non-restricted animals had similar access to a sweetened fat diet. Feeding and locomotor activity were monitored following ventral tegmentum stimulation or blockade of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, or 5-HT2C receptors. 5-HT1A receptor stimulation transiently inhibited rearing behavior and chow intake in food-restricted rats, and had a biphasic effect on non-restricted rats offered the palatable diet. 5-HT1B receptor agonism transiently inhibited feeding in restricted animals, but did not affect intake of non-restricted rats. In contrast, 5-HT1B receptor antagonism decreased palatable feeding. Although stimulation of ventral tegmental 5-HT2B receptors with BW723C86 did not affect hunger-driven food intake, it significantly affected palatable feeding, with a trend for an increasing intake at 2.0µg/side but not at 5.0µg/side. Antagonism of the same receptor modestly but significantly inhibited feeding of the palatable diet at 5.0µg/side ketanserin. Neither stimulation nor blockade of 5-HT2A or 5-HT2C receptors caused prolonged effects on intake or locomotion. These data suggest that serotonin's effects on feeding within the ventral tegmentum depend upon the specific receptor targeted, as well as whether intake is motivated by food restriction or the palatable nature of the offered diet.

  7. Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats.

    PubMed

    Dahlqvist, P; Rönnbäck, A; Risedal, A; Nergårdh, R; Johansson, I-M; Seckl, J R; Johansson, B B; Olsson, T

    2003-01-01

    Housing rats in an enriched environment improves functional outcome after ischemic stroke, this may reflect neuronal plasticity in brain regions outside the lesion. Which components of the enriched environment that are of greatest importance for recovery after brain ischemia is uncertain. We have previously found that enriched environment and social interaction alone both improve functional recovery after focal cerebral ischemia, compared with isolated housing with voluntary wheel-running. In this study, the aim was to separate components of the enriched environment and investigate the effects on some potential mediators of improved functional recovery; such as the inducible transcription factors nerve growth factor-induced gene A (NGFI-A) and NGFI-B, and the glucocorticoid and serotonin systems. After permanent middle cerebral artery occlusion, rats were divided into four groups: individually housed with no equipment (deprived group), individually housed with free access to a running wheel (running group), housed together in a large cage with no equipment (social group) or in a large cage furnished with exchangeable bars, chains and other objects (enriched group). mRNA expression of inducible transcription factors, serotonin and glucocorticoid receptors was determined with in situ hybridisation 1 month after cerebral ischemia. Rats housed in enriched or social environments showed significantly higher mRNA expression of NGFI-A and NGFI-B in cortical regions outside the lesion and in the CA1 (cornu ammonis region of the hippocampus), compared with isolated rats with or without a running wheel. NGFI-A and NGFI-B mRNA expression in cortex and in CA1 was significantly correlated to functional outcome. 5-Hydroxytryptamine receptor 1A (5-HT(1A)) mRNA expression and binding, as well as 5-HT(2A) receptor mRNA expression were decreased in the hippocampus (CA4 region) of the running wheel rats. Mineralocorticoid receptor gene expression was increased in the dentate gyrus

  8. Contribution of brain serotonin subtype 1B receptors in levodopa-induced motor complications.

    PubMed

    Morin, Nicolas; Morissette, Marc; Grégoire, Laurent; Rajput, Alex; Rajput, Ali H; Di Paolo, Thérèse

    2015-12-01

    L-DOPA-induced dyskinesias (LID) are abnormal involuntary movements limiting the chronic use of L-DOPA, the main pharmacological treatment of Parkinson's disease. Serotonin receptors are implicated in the development of LID and modulation of basal ganglia 5-HT1B receptors is a potential therapeutic alternative in Parkinson's disease. In the present study, we used receptor-binding autoradiography of the 5-HT1B-selective radioligand [3H]GR125743 to investigate possible contributions of changes in ligand binding of this receptor in LID in post-mortem brain specimens from Parkinson's disease patients (n=14) and control subjects (n=11), and from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys treated with saline (n=5), L-DOPA (n=4) or L-DOPA+2-methyl-6-(phenylethynyl)pyridine (MPEP) (n=5), and control monkeys (n=4). MPEP is the prototypal metabotropic glutamate 5 (mGlu5) receptor antagonist and has been shown to reduce the development of LID in these monkeys in a chronic treatment of one month. [3H]GR125743 specific binding to striatal and pallidal 5-HT1B receptors respectively were only increased in L-DOPA-treated MPTP monkeys (dyskinetic monkeys) as compared to controls, saline and L-DOPA+MPEP MPTP monkeys; dyskinesias scores correlated positively with this binding. Parkinson's disease patients with motor complications (L-DOPA-induced dyskinesias and wearing-off) had higher [3H]GR125743 specific binding compared to those without motor complications and controls in the basal ganglia. Reduction of motor complications was associated with normal striatal 5-HT1B receptors, suggesting the potential of this receptor for the management of motor complications in Parkinson's disease.

  9. 5-Hydroxytryptamine-2A receptor gene (HTR 2 A) candidate polymorphism (T 102 C): Role for human platelet function under pharmacological challenge ex vivo.

    PubMed

    Ozdener, F; Gülbas, Z; Erol, K; Ozdemir, V

    2005-01-01

    Although the environmental and life-style factors influencing individual predisposition to acute myocardial infarction (AMI) have been well documented, little is known on the identity of genetic loci that may contribute to risk for AMI. Recently, genetic studies in patients with nonfatal AMI have suggested an association with the T 102 C polymorphism in the serotonin 5-HT(2A) receptor gene (HTR 2 A). Considering the significant role of the 5-HT(2A) receptor in serotonin-induced platelet responses and the contribution of platelet (patho)physiology to thromboembolic events, we postulated that the increased susceptibility to AMI in patients with the T 102 homozygosity may be attributable, in part, to altered serotonin-mediated platelet function. In a group of healthy volunteers recruited from the Eskisehir region in central Turkey (N=37), we investigated the functional consequences of HTR 2 A T 102 C polymorphism in relation to platelet pharmacodynamics ex vivo. The platelet shape change and aggregation response to serotonin were measured with use of the platelet aggregometry and expressed as aggregometer output (mm). Because the circulating catecholamine hormone epinephrine can augment platelet aggregation, pharmacodynamic response (aggregation and its inhibition by 5-HT(2A) receptor antagonist cyproheptadine) was measured in the presence of both serotonin and epinephrine, to mimic the clinical situation in patients. The mean platelet aggregation was higher by 38% in subjects with T 10 2 homozygosity (T/T genotype, N=13) when compared with the carriers of the 102 C-allele (T/C and the C/C genotypic groups, N=24) (39.5 mm+/-12.3 vs. 28.7 mm+/-16.8, respectively) (mean+/-SD) (p<0.05). On the other hand, neither the serotonin-induced platelet shape change nor the cyproheptadine inhibition of platelet aggregation was influenced by the HTR 2 A T 102 C genetic variation (p>0.05). These findings in healthy subjects may provide a mechanistic explanation for the previously

  10. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  11. Effects of ergot alkaloid exposure on serotonin receptor mRNA in the smooth muscle of the bovine gastrointestinal tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various serotonin (5HT) receptor subtypes have been located in the gastrointestinal tract and some are associated with gut motility. Cattle exposed to ergot alkaloids through consumption of contaminated feedstuffs have demonstrated signs (e.g. - increased rumen DM content and total content) that sug...

  12. Stimulation of serotonin-1A receptors in mammals to alleviate motion sickness and emesis induced by chemical agents

    NASA Technical Reports Server (NTRS)

    Lucot, James B. (Inventor); Crampton, George H. (Inventor)

    1990-01-01

    A method for the alleviation of both motion sickness and chemically-induced emesis is provided which includes the administration of a nontoxic, therapeutically effective amount of a composition which stimulates serotonin-1A receptors in a mammal in need of such treatment. The preferred compounds for use are buspirone and 8-hydroxy-2(di-n-propylamino)-tetralin (8-OH-DPAT).

  13. Acute and subchronic treatments with selective serotonin reuptake inhibitors increase Nociceptin/Orphanin FQ (NOP) receptor density in the rat dorsal raphe nucleus; interactions between nociceptin/NOP system and serotonin.

    PubMed

    Le Maître, Erwan; Dourmap, Nathalie; Vilpoux, Catherine; Leborgne, Romain; Janin, François; Bonnet, Jean-Jacques; Costentin, Jean; Leroux-Nicollet, Isabelle

    2013-07-03

    Nociceptin/Orphanin FQ is the endogenous ligand of NOP receptor, formerly referred to as the Opioid Receptor-Like 1 receptor. We have previously shown that NOP receptors were located on serotonergic neurons in the rat dorsal raphe nucleus, suggesting possible direct interactions between nociceptin and serotonin in this region, which is a target for antidepressant action. In the present study, we investigated further the link between Selective Serotonin Reuptake Inhibitor (SSRI) antidepressant treatments and the nociceptin/NOP receptor system. Intraperitoneal administration of the SSRI citalopram induced an increase in NOP-receptor density, measured by autoradiographic [(3)H] nociceptin binding, in the rat dorsal raphe nucleus, from the first to the 21st day of treatment. This effect was also observed with other SSRIs (sertraline, fluoxetine), but not with two tricyclic antidepressants (imipramine, clomipramine) and was abolished by pre-treatment with para-chlorophenylalanine, an inhibitor of serotonin synthesis. Using microdialysis experiments, we demonstrated that NOP-receptor activation by infusion of nociceptin 10(-6) M or 10(-5) M increased the level of extracellular serotonin in the dorsal raphe nucleus. This effect was abolished by co-infusion of the NOP-receptor antagonist UFP 101. These results confirm the existence of reciprocal interactions between serotonin and nociceptin/NOP transmissions in the dorsal raphe nucleus.

  14. Striatal Serotonin 2C receptors decrease nigrostriatal dopamine release by increasing GABA-A receptor tone in the substantia nigra

    PubMed Central

    Burke, M.V.; Nocjar, C.; Sonneborn, A.J.; McCreary, A.C.

    2017-01-01

    Drugs acting at the serotonin-2C (5-HT2C) receptor subtype have shown promise as therapeutics in multiple syndromes including obesity, depression, and Parkinson’s disease. While it is established that 5-HT2C receptor stimulation inhibits DA release, the neural circuits and the localization of the relevant 5-HT2C receptors remain unknown. The present study used dual-probe in vivo microdialysis to investigate the relative contributions of 5-HT2C receptors localized in the rat substantia nigra (SN) and caudate-putamen (CP) in the control of nigrostriatal DA release. Systemic administration (3.0 mg/kg) of the 5-HT2C receptor selective agonist Ro 60-0175 [(α S )-6-Chloro-5-fluoro-α-methyl-1 H-indole-1-ethanamine fumarate] decreased, whereas intrastriatal infusions of the selective 5-HT2C antagonist SB 242084 [6-Chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1 H-indole-1-carboxyamide; 1.0 µM] increased, basal DA in the CP. Depending on the site within the SN pars reticulata (SNpr), infusions of SB 242084 had more modest but significant effects. Moreover, infusions of the GABA-A receptor agonist muscimol (10 µM) into the SNpr completely reversed the increases in striatal DA release produced by intrastriatal infusions of SB 242084. These findings suggest a role for 5-HT2C receptors regulating striatal DA release that is highly localized. 5-HT2C receptors localized in the striatum may represent a primary site of action that is mediated by actions on GABAergic activity in the SN. PMID:25073477

  15. Serotonin2C receptors in the nucleus accumbens are involved in enhanced alcohol-drinking behavior.

    PubMed

    Yoshimoto, Kanji; Watanabe, Yoshihisa; Tanaka, Masaki; Kimura, Minoru

    2012-04-01

    Dopamine and serotonin (5-HT) in the nucleus accumbens (ACC) and ventral tegmental area of the mesoaccumbens reward pathways have been implicated in the mechanisms underlying development of alcohol dependence. We used a C57BL/6J mouse model with increased voluntary alcohol-drinking behavior by exposing the mice to alcohol vapor for 20 consecutive days. In the alcohol-exposed mice, the expression of 5-HT(2C) receptor mRNA increased in the ACC, caudate nucleus and putamen, dorsal raphe nucleus (DRN), hippocampus and lateral hypothalamus, while the protein level of 5-HT(2C) receptor significantly increased in the ACC. The expression of 5-HT(7) receptor mRNA increased in the ACC and DRN. Contents of 5-HT decreased in the ACC shell (ACC(S) ) and DRN of the alcohol-exposed mice. The basal extracellular releases of dopamine (DA) and 5-HT in the ACC(S) increased more in the alcohol-exposed mice than in alcohol-naïve mice. The magnitude of the alcohol-induced ACC(S) DA and 5-HT release in the alcohol-exposed mice was increased compared with the control mice. Intraperitoneal (i.p.) administration or local injection into ACC(S) of the 5-HT(2C) receptor antagonist, SB-242084, suppressed voluntary alcohol-drinking behavior in the alcohol-exposed mice. But the i.p. administration of the 5-HT(7) receptor antagonist, SB-258719, did not have significant effects on alcohol-drinking behavior in the alcohol-exposed mice. The effects of the 5-HT(2C) receptor antagonist were not observed in the air-exposed control mice. These results suggest that adaptations of the 5-HT system, especially the upregulation of 5-HT(2C) receptors in the ACC(S) , are involved in the development of enhanced voluntary alcohol-drinking behavior.

  16. Modulation of serotonin transporter function by kappa-opioid receptor ligands.

    PubMed

    Sundaramurthy, Santhanalakshmi; Annamalai, Balasubramaniam; Samuvel, Devadoss J; Shippenberg, Toni S; Jayanthi, Lankupalle D; Ramamoorthy, Sammanda

    2017-02-01

    Kappa opioid receptor (KOR) agonists produce dysphoria and psychotomimesis. While KOR agonists produce pro-depressant-like effects, KOR antagonists produce anti-depressant-like effects in rodent models. The cellular mechanisms and downstream effector(s) by which KOR ligands produce these effects are not clear. KOR agonists modulate serotonin (5-HT) transmission in the brain regions implicated in mood and motivation regulation. Presynaptic serotonin transporter (SERT) activity is critical in the modulation of synaptic 5-HT and, subsequently, in mood disorders. Detailing the molecular events of KOR-linked SERT regulation is important for examining the postulated role of this protein in mood disorders. In this study, we used heterologous expression systems and native tissue preparations to determine the cellular signaling cascades linked to KOR-mediated SERT regulation. KOR agonists U69,593 and U50,488 produced a time and concentration dependent KOR antagonist-reversible decrease in SERT function. KOR-mediated functional down-regulation of SERT is sensitive to CaMKII and Akt inhibition. The U69,593-evoked decrease in SERT activity is associated with a decreased transport Vmax, reduced SERT cell surface expression, and increased SERT phosphorylation. Furthermore, KOR activation enhanced SERT internalization and decreased SERT delivery to the membrane. These data demonstrate that KOR activation decreases 5-HT uptake by altering SERT trafficking mechanisms and phosphorylation status to reduce the functional availability of surface SERT.

  17. Decreased serotonin2C receptor responses in male patients with schizophrenia.

    PubMed

    Lee, Myung Ae; Jayathilake, Karuna; Sim, Min Young; Meltzer, Herbert Y

    2015-03-30

    Serotonin (5-HT)2C receptors in brain affect psychosis, reward, substance abuse, anxiety, other behaviors, appetite, body temperature, and other physiological measures. They also have been implicated in antipsychotic drug efficacy and side effects. We previously reported that the hyperthermia following administration of MK-212, a predominantly 5-HT(2C) receptor agonist, was diminished in a small sample of patients with schizophrenia (SCH), suggesting decreased 5-HT(2C) receptor responsiveness. We have now studied the responses to oral MK-212 and placebo in a larger sample of unmedicated male SCH (n = 69) and normal controls (CON) (n = 33), and assessed the influence of comorbid substance abuse (SA) on oral body temperature, behavioral responses, etc. The placebo-adjusted oral body temperature response to MK-212 was significantly lower in SCH compared to CON and not significantly different between the SCH with or without SA. Some behavioral responses to MK-212, e.g. self-rated feelings of increased anxiety, depression and decreased calmness, or good overall feeling, were significantly lower in the SCH patients compared to CON. These results add to the evidence for diminished 5-HT(2C) receptor responsiveness in SCH patients compared to CON and are consistent with reported association of HTR(2C) polymorphisms, leading to decreased expression or function of the HTR(2C) in patients with SCH.

  18. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.

    PubMed

    Rodríguez, David; Brea, José; Loza, María Isabel; Carlsson, Jens

    2014-08-05

    The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles.

  19. Development of a high specific activity radioligand, /sup 125/I-LSD, and its application to the study of serotonin receptors

    SciTech Connect

    Kadan, M.J.

    1987-01-01

    /sup 125/I-Labeled receptor ligands can be synthesized with specific activities exceeding 2000 Ci/mmol, making them nearly 70-fold more sensitive in receptor site assays than (mono) tritiated ligands. We have synthesized and characterized /sup 125/I-lysergic acid diethylamide (/sup 125/I-LSD), the first radioiodinated ligand for serotonin receptor studies. The introduction of /sup 125/I at the 2 position of LSD increased both the affinity and selectivity of this compound for serotonin 5-HT/sub 2/ receptors in rat cortex. The high specific activity of /sup 125/I-LSD and its high ratio of specific to nonspecific binding make this ligand especially useful for autoradiographic studies of serotonin receptor distribution. We have found that /sup 125/I-LSD binds with high affinity to a class of serotonin receptors in the CNS of the marine mollusk Aplysia californica.

  20. Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey.

    PubMed

    Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2015-06-01

    The dual development of the retina of lampreys is exceptional among vertebrates and offers an interesting EvoDevo (evolutionary developmental biology) model for understanding the origin and evolution of the vertebrate retina. Only a single type of photoreceptor, ganglion cell and bipolar cell are present in the early-differentiated central retina of lamprey prolarvae. A lateral retina appears later in medium-sized larvae (about 3 years after hatching in the sea lamprey), growing and remaining largely neuroblastic until metamorphosis. In this lateral retina, only ganglion cells and optic fibers differentiate in larvae, whereas differentiation of amacrine, horizontal, photoreceptor and bipolar cells mainly takes place during metamorphosis, which gives rise to the adult retina. Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter found in the retina of vertebrates whose synthesis is mediated by the rate-limiting enzyme tryptophan hydroxylase (TPH). TPH is also the first enzyme in the biosynthetic pathways of melatonin in photoreceptor cells. The serotonin 1A receptor (5-HT1A) is a major determinant of the activity of both serotonergic cells and their targets due to its pre- and post-synaptic location. Here, we report the developmental pattern of expression of tph and 5-ht1a transcripts in the sea lamprey retina by means of in situ hybridization. In larvae, strong tph mRNA signal was observed in photoreceptors and putative ganglion cells of the central retina, and in some neuroblasts of the lateral retina. In adults, strong tph expression was observed in bipolar, amacrine and ganglion cells and in photoreceptors. In the prolarval (central) retina, all the differentiated retinal cells expressed 5-ht1a transcripts, which were not observed in undifferentiated cells. In larvae, photoreceptors, bipolar cells and ganglion cells in the central retina, and neuroblasts in the lateral retina, showed 5-ht1a expression. In the adult retina, expression of 5-ht1a transcript

  1. Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives

    SciTech Connect

    Kline, T.B.; Benington, F.; Morin, R.D.; Beaton, J.M.; Glennon, R.A.; Domelsmith, L.N.; Houk, K.N.; Rozeboom, M.D.

    1982-11-01

    Serotonin receptor affinity and photelectron spectral data were obtained on a number of substituted N,N-dimethyltryptamines. Evidence is presented that electron-donating substituents in the 5-position lead to enhanced behavioral disruption activity and serotonin receptor affinity as compared to unsubstituted N,N-dimethyltryptamine and analogues substituted in the 4- or 6-position. Some correlation was found between ionization potentials and behavioral activity, which may have implications concerning the mechanism of receptor binding.

  2. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only

    PubMed Central

    Pagani, Jerome H.; Williams Avram, Sarah K.; Cui, Zhenzhong; Song, June; Mezey, Éva; Senerth, Julia M.; Baumann, Michael H.; Young, W. Scott

    2015-01-01

    Serotonin and oxytocin influence aggressive and anxiety-like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically-mediated anxiety-like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open-field, olfactory habituation/dishabituation or, surprisingly, anxiety-like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to eight of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident-intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety-like behaviors or maternal care. PMID:25677455

  3. Blocking effect of serotonin on inhibitory dopamine receptor activity of Aplysia ganglion cells.

    PubMed

    Shozushima, M

    1984-01-01

    The abdominal ganglion of Aplysia includes neurons with a characteristic dopamine (DA) receptor, the activation of which induces a marked hyperpolarization with a specific increase in the permeability of the membrane to K+. The DA receptor of this type is called the "HK-type." A 2-min exposure to 1 microM serotonin (5-HT) had little effect on the resting membranes with the receptor of HK-type, but significantly depressed the responses to 10 microM DA. The depressing effect of 5-HT on this type of response was completely reversible after a 15-min washing with normal artificial Aplysia blood. Lineweaver-Burke type plotting of the DA-induced responses showed a systematic shift of the straight lines when the concentration of 5-HT was increased; the slope of the line became steeper but the intercept on the ordinate remained unchanged. The dose-inhibition curves, in which relative responses to a given [DA] were plotted against log [5-HT], showed a parallel shift toward the right when the concentration of DA increased. These findings suggest that 5-HT competes with DA for common binding sites at the DA receptor of HK-type, and that the blockade is not due to the interaction of 5-HT with K+-channels in the receptor membrane. The effect of other indole derivatives suggests that the DA receptor of HK-type includes anionic and cationic sites to which the NH2 group and 5-HO group of 5-HT could specifically bind, thus exhibiting competitive blockade.

  4. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2013-05-15

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature.

  5. Serotonin receptor antagonists discriminate between PKA- and PKC-mediated plasticity in aplysia sensory neurons.

    PubMed

    Dumitriu, Bogdan; Cohen, Jonathan E; Wan, Qin; Negroiu, Andreea M; Abrams, Thomas W

    2006-04-01

    Highly selective serotonin (5-hydroxytryptamine, 5-HT) receptor antagonists developed for mammals are ineffective in Aplysia due to the evolutionary divergence of neurotransmitter receptors and because the higher ionic strength of physiological saline for marine invertebrates reduces antagonist affinity. It has therefore been difficult to identify antagonists that specifically block individual signaling cascades initiated by 5-HT. We studied two broad-spectrum 5-HT receptor antagonists that have been characterized biochemically in Aplysia CNS: methiothepin and spiperone. Methiothepin is highly effective in inhibiting adenylyl cyclase (AC)-coupled 5-HT receptors in Aplysia. Spiperone, which blocks phospholipase C (PLC)-coupled 5-HT receptors in mammals, does not block AC-coupled 5-HT receptors in Aplysia. In electrophysiological studies, we explored whether methiothepin and spiperone can be used in parallel to distinguish between the AC-cAMP and PLC-protein kinase C (PKC) modulatory cascades that are initiated by 5-HT. 5-HT-induced broadening of the sensory neuron action potential in the presence of tetraethylammonium/nifedipine, which is mediated by modulation of the S-K+ currents, was used an assay for the AC-cAMP cascade. Spike broadening initiated by 5 microM 5-HT was unaffected by 100 microM spiperone, whereas it was effectively blocked by 100 microM methiothepin. Facilitation of highly depressed sensory neuron-to-motor neuron synapses by 5-HT was used as an assay for the PLC-PKC cascade. Spiperone completely blocked facilitation of highly depressed synapses by 5 microM 5-HT. In contrast, methiothepin produced a modest, nonsignificant, reduction in the facilitation of depressed synapses. Interestingly, these experiments revealed that the PLC-PKC cascade undergoes desensitization during exposure to 5-HT.

  6. Serotonin 1A receptor binding and treatment response in late-life depression.

    PubMed

    Meltzer, Carolyn Cidis; Price, Julie C; Mathis, Chester A; Butters, Meryl A; Ziolko, Scott K; Moses-Kolko, Eydie; Mazumdar, Sati; Mulsant, Benoit H; Houck, Patricia R; Lopresti, Brian J; Weissfeld, Lisa A; Reynolds, Charles F

    2004-12-01

    Depression in late life carries an increased risk of dementia and brittle response to treatment. There is growing evidence to support a key role of the serotonin type 1A (5-HT(1A)) receptor as a regulator of treatment response, particularly the 5-HT(1A) autoreceptor in the dorsal raphe nucleus (DRN). We used [11C]WAY 100635 and positron emission tomography (PET) to test our hypothesis that 5-HT(1A) receptor binding in the DRN and prefrontal cortex is altered in elderly depressives and that these measures relate to treatment responsivity. We studied 17 elderly subjects with untreated (nonpsychotic, nonbipolar) major depression (four men, 13 women; mean age: 71.4+/-5.9) and 17 healthy control subjects (eight men, nine women; mean age: 70.0+/-6.7). Patients were subsequently treated with paroxetine as part of a clinical trial of maintenance therapies in geriatric depression. [11C]WAY 100635 PET imaging was acquired and binding potential (BP) values derived using compartmental modeling. We observed significantly diminished [11C]WAY 100635 binding in the DRN in depressed (BP = 2.31+/-0.90) relative to control (BP = 3.69+/-1.56) subjects (p = 0.0016). Further, the DRN BP was correlated with pretreatment Hamilton Depression Rating Scores (r = 0.60, p = 0.014) in the depressed cohort. A trend level correlation between DRN binding and time to remission (r = 0.52, p = 0.067) was observed in the 14 depressed patients for whom these data were available. Our finding of decreased [11C]WAY 100635 binding in the brainstem region of the DRN in elderly depressed patients supports evidence of altered 5-HT(1A) autoreceptor function in depression. Further, this work indicates that dysfunction in autoreceptor activity may play a central role in the mechanisms underlying treatment response to selective serotonin reuptake inhibitors in late-life depression.

  7. Estradiol accelerates the effects of fluoxetine on serotonin 1A receptor signaling.

    PubMed

    Li, Qian; Sullivan, Nicole R; McAllister, Carrie E; Van de Kar, Louis D; Muma, Nancy A

    2013-07-01

    A major problem with current anti-depressant therapy is that it takes on average 6-7 weeks for remission. Since desensitization of serotonin (5-HT)1A receptor signaling contributes to the anti-depressive response, acceleration of the desensitization may reduce this delay in response to antidepressants. The purpose of the present study was to test the hypothesis that estradiol accelerates fluoxetine-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus (PVN) of rats, via alterations in components of the 5-HT1A receptor signaling pathway. Ovariectomized rats were injected with estradiol and/or fluoxetine, then adrenocorticotropic hormone (ACTH) and oxytocin responses to a 5-HT1A receptor agonist (+)-8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT) were examined to assess the function of 5-HT1A receptors in the PVN. Treatment with estradiol for either 2 or 7 days or fluoxetine for 2 days produced at most a partial desensitization of 5-HT1A receptor signaling, whereas 7 days of fluoxetine produced full desensitization. Combined treatment with estradiol and fluoxetine for 2 days produced nearly a full desensitization, demonstrating an accelerated response compared to either treatment alone. With two days of combined treatments, estradiol prevented the fluoxetine-induced increase in 5-HT1A receptor protein, which could contribute to the more rapid desensitization. Furthermore, EB treatment for 2 days decreased the abundance of the 35 kD Gαz protein which could contribute to the desensitization response. We found two isoforms of Gαz proteins with molecular mass of 35 and 33 kD, which differentially distributed in the detergent resistant microdomain (DRM) and in Triton X-100 soluble membrane region, respectively. The 35 kD Gαz proteins in the DRM can be sumoylated by SUMO1. Stimulation of 5-HT1A receptors with 8-OH-DPAT increases the sumoylation of Gαz proteins and reduces the 33 kD Gαz proteins, suggesting that these

  8. Mice Lacking Serotonin 2C Receptors Have increased Affective Responses to Aversive Stimuli

    PubMed Central

    Bonasera, Stephen J.; Schenk, A. Katrin; Luxenberg, Evan J.; Wang, Xidao; Basbaum, Allan; Tecott, Laurence H.

    2015-01-01

    Although central serotonergic systems are known to influence responses to noxious stimuli, mechanisms underlying serotonergic modulation of pain responses are unclear. We proposed that serotonin 2C receptors (5-HT2CRs), which are expressed within brain regions implicated in sensory and affective responses to pain, contribute to the serotonergic modulation of pain responses. In mice constitutively lacking 5-HT2CRs (2CKO mice) we found normal baseline sensory responses to noxious thermal, mechanical and chemical stimuli. In contrast, 2CKO mice exhibited a selective enhancement of affect-related ultrasonic afterdischarge vocalizations in response to footshock. Enhanced affect-related responses to noxious stimuli were also exhibited by 2CKO mice in a fear-sensitized startle assay. The extent to which a brief series of unconditioned footshocks produced enhancement of acoustic startle responses was markedly increased in 2CKO mice. As mesolimbic dopamine pathways influence affective responses to noxious stimuli, and these pathways are disinhibited in 2CKO mice, we examined the sensitivity of footshock-induced enhancement of startle to dopamine receptor blockade. Systemic administration of the dopamine D2/D3 receptor antagonist raclopride selectively reduced footshock-induced enhancement of startle without influencing baseline acoustic startle responses. We propose that 5-HT2CRs regulate affective behavioral responses to unconditioned aversive stimuli through mechanisms involving the disinhibition of ascending dopaminergic pathways. PMID:26630489

  9. The serotonin receptor 7 and the structural plasticity of brain circuits

    PubMed Central

    Volpicelli, Floriana; Speranza, Luisa; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2014-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R) in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration. PMID:25309369

  10. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine.

    PubMed

    Stahl, Stephen M

    2015-10-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. 5HT3 receptor antagonism is one of these actions, and this leads to increased release of norepinephrine (NE), acetylcholine (ACh), and serotonin (5HT) within various brain circuits.

  11. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.

    PubMed

    Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M

    2015-08-01

    We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.

  12. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines

    PubMed Central

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-01-01

    Serotonin 5-HT7 receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT7 receptors and 5-HT7 receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase–polymerase chain reaction (RT–PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT≫8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89–1.13) and pA2 values of 8.69–9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT7 receptor (5-HT7(a/b/d)) was visualized by RT–PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT7 receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT7 receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  13. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    PubMed

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets.

  14. Enhanced central serotonin release from slices of rat hypothalamus following repeated nialamide administration: evidence supporting the overactive serotonin receptor theory of depression

    SciTech Connect

    Offord, S.J.

    1986-01-01

    Researchers are suggesting unipolar affective disorders may be related to an abnormality in biogenic amine receptor-sensitivity. This abnormality may be a result of a dysfunction in central serotonin (5-HT) release mechanisms. 5-HT neurotransmission is modulated by presynaptic autoreceptors, which are members of the 5-HT/sub 1/ receptor subtype. The autoreceptor is thought to play an important role in the homeostasis of the central 5-HT synapse and could be a site at which some antidepressants mediate their therapeutic effect. The number of 5-HT/sub 1/ type receptor binding sites are reduced and behavior mediated by this receptor is abolished following repeated injections of monoamine oxidase inhibitor type antidepressants. These changes did not occur following a single injection. It was hypothesized that repeated treatment with a monoamine oxidase inhibitor would reduce the sensitivity of 5-HT autoreceptors and enhance 5-HT release. Rats were pretreated with single or repeated (twice daily for 7 days) intraperitoneal injections of nialamide (40 mg/kg) or chlorimipramine (10 mg/kg) and the ability of the autoreceptor agonist to inhibit potassium-induced /sup 3/H-5-HT release was evaluated using an in vitro superfusion system. These changes in 5-HT autoreceptor activity are consistent with other reports evaluating monoamine oxidase inhibitors on 5-HT/sub 1/ type receptors. It is hypothesized that the changes in 5-HT neurotransmission are related to the antidepressant mechanism of monoamine oxidase inhibitors.

  15. Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders

    PubMed Central

    Leopoldo, Marcello; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto; Hedlund, Peter B.

    2010-01-01

    Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT7 receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT7 receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT7 receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT7 receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT7 receptor agonists and antagonists in central nervous system disorders is presented. PMID:20923682

  16. Evaluation of the serotonin receptor blocker methiothepin in broilers injected intravenously with lipopolysaccharide and microparticles.

    PubMed

    Chapman, M E; Wideman, R F

    2006-12-01

    There has been considerable interest in the role of serotonin (5-hydroxytryptamine, 5-HT) in the pathogenesis of pulmonary hypertension due to episodes of primary pulmonary hypertension in humans linked to serotoninergic appetite-suppressant drugs. In this study, we investigated the effect of 5-HT on the development of pulmonary hypertension induced by injecting bacterial lipopolysaccharide (LPS; endotoxin) and cellulose microparticles intravenously, using the nonselective 5-HT(1/2)receptor, antagonist methiothepin. In Experiment 1, broilers selected for ascites susceptibility or resistance under conditions of hypobaric hypoxia were treated with methiothepin or saline, followed by injection of LPS, while recording pulmonary arterial pressure (PAP). In Experiment 2 ascites-susceptible broilers were treated with methiothepin or saline, followed by injection of cellulose microparticles, while recording PAP. In Experiment 3, an i.v. microparticle injection dose shown to cause 50% mortality was injected into ascites-susceptible and ascites-resistant broilers after methiothepin or saline treatment. Injecting methiothepin reduced PAP below baseline values in ascites-susceptible and ascites-resistant broilers, suggesting a role for 5-HT in maintaining the basal tone of the pulmonary vasculature in broilers. Injecting microparticles into the wing vein had no affect on the PAP in the broilers treated with methiothepin, suggesting that 5-HT is an important mediator in the pulmonary hypertensive response of broilers to microparticles. Furthermore, injecting an 50% lethal dose of microparticles into ascites-susceptible and ascites-resistant broilers pretreated with methiothepin resulted in reduced mortality. Serotonin appears to play a less prominent role in the pulmonary hypertensive response of broilers to intravenously injected LPS, indicating that other mediators within the innate response to inflammatory stimuli may also be involved. These results are consistent with our

  17. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation

    PubMed Central

    Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Mesonero, José E.

    2016-01-01

    TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system. PMID:28033388

  18. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation.

    PubMed

    Latorre, Eva; Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Alcalde, Ana I; Mesonero, José E

    2016-01-01

    TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.

  19. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    PubMed

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target.

  20. mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain

    PubMed Central

    Shukla, Rammohan; Watakabe, Akiya; Yamamori, Tetsuo

    2014-01-01

    To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are layer-selective and area-selective mRNA expressions of 5HTRs. (3) Highly localized mRNA expressions of 5HT1F and 5HT3A were observed. (4) There was a conspicuous overlap of the mRNA expressions of receptor subtypes known to have somatodendritic localization of receptor proteins with dense serotonergic terminations in the visual cortex, the central lateral (CL) nucleus of the thalamus, the presubiculum, and the medial mammillary nucleus of the hypothalamus. This suggests a high correlation between serotonin availability and receptor expression at these locations. (5) The 5HTRs show differences in mRNA expression pattern between the marmoset and mouse cortices whereas the patterns of both the species were much similar in the hippocampus. We discuss the possible roles of 5HTRs in the marmoset brain revealed by the analysis of their overall mRNA expression patterns. PMID:24904298

  1. Dorsomedial hypothalamus serotonin 1A receptors mediate a panic-related response in the elevated T-maze.

    PubMed

    Nascimento, Juliana O G; Kikuchi, Letícia Sumiko; de Bortoli, Valquíria Camin; Zangrossi, Hélio; Viana, Milena B

    2014-10-01

    The dorsomedial hypothalamus (DMH) has long been associated with the regulation of escape, a panic-related defensive response. Previous evidence has shown that the activation of serotonin (5-HT) 1A and 2A receptors impairs escape behavior induced by the electrical stimulation of the same region. In this study we further explore the relationship of the DMH with defense by investigating the effects of 5-HT1A activation on escape behavior generated in male Wistar rats by an ethologically based aversive stimuli, exposure to one of the open arms of the elevated T-maze (ETM). Aside from escape, the ETM also allows the measurement of inhibitory avoidance, a defensive response associated with generalized anxiety disorder. To evaluate locomotor activity, after ETM measurements animals were submitted to an open field. Results showed that intra-DMH administration of the 5-HT1A receptor agonist 8-OH-DPAT inhibited escape expression. Local administration of the 5-HT1A antagonist WAY-100635 by its own was ineffective, but blocked the panicolytic-like effect of 8-OH-DPAT. Chronic (21 days) systemic treatment with imipramine potentiated the anti-escape effect of 8-OH-DPAT. No significant effects of treatment with 8-OH-DPAT or imipramine on avoidance latencies or the number of lines crossed in the open field were found. These results indicate that 5-HT1A receptors within the DMH may play a phasic inhibitory role on ETM escape expression. As previously proposed, facilitation of 5-HT1A-mediated neurotransmission in the DMH may be involved in the mechanism of action of anti-panic compounds.

  2. Oppositional Effects of Serotonin Receptors 5-HT1a, 2, and 2c in the Regulation of Adult Hippocampal Neurogenesis

    PubMed Central

    Klempin, Friederike; Babu, Harish; Tonelli, Davide De Pietri; Alarcon, Edson; Fabel, Klaus; Kempermann, Gerd

    2009-01-01

    Serotonin (5-HT) appears to play a major role in controlling adult hippocampal neurogenesis and thereby it is relevant for theories linking failing adult neurogenesis to the pathogenesis of major depression and the mechanisms of action of antidepressants. Serotonergic drugs lacked acute effects on adult neurogenesis in many studies, which suggested a surprisingly long latency phase. Here we report that the selective serotonin reuptake inhibitor fluoxetine, which has no acute effect on precursor cell proliferation, causes the well-described increase in net neurogenesis upon prolonged treatment partly by promoting the survival and maturation of new postmitotic neurons. We hypothesized that this result is the cumulative effect of several 5-HT-dependent events in the course of adult neurogenesis. Thus, we used specific agonists and antagonists to 5-HT1a, 2, and 2c receptor subtypes to analyze their impact on different developmental stages. We found that 5-HT exerts acute and opposing effects on proliferation and survival or differentiation of precursor cells by activating the diverse receptor subtypes on different stages within the neuronal lineage in vivo. This was confirmed in vitro by demonstrating that 5-HT1a receptors are involved in self-renewal of precursor cells, whereas 5-HT2 receptors effect both proliferation and promote neuronal differentiation. We propose that under acute conditions 5-HT2 effects counteract the positive proliferative effect of 5-HT1a receptor activation. However, prolonged 5-HT2c receptor activation fosters an increase in late-stage progenitor cells and early postmitotic neurons, leading to a net increase in adult neurogenesis. Our data indicate that serotonin does not show effect latency in the adult dentate gyrus. Rather, the delayed response to serotonergic drugs with respect to endpoints downstream of the immediate receptor activity is largely due to the initially antagonistic and un-balanced action of different 5-HT receptors. PMID

  3. Schizophrenia-like disruptions of sensory gating by serotonin receptor stimulation in rats: effect of MDMA, DOI and 8-OH-DPAT.

    PubMed

    Thwaites, Shane J; Gogos, Andrea; Van den Buuse, Maarten

    2013-11-01

    Schizophrenia pathophysiology is associated with alterations in several neurotransmitter systems, particularly dopamine, glutamate and serotonin (5-HT). Schizophrenia patients also have disruptions in sensory gating, a brain information filtering mechanism in response to repeated sensory stimuli. Dopamine and glutamate have been implicated in sensory gating; however, little is known about the contribution of serotonin. We therefore investigated the effects of several psychoactive compounds that alter serotonergic neuronal activity on event-related potentials (ERP) to paired auditory pulses. Male Sprague-Dawley rats were implanted with cortical surface electrodes to measure ERPs to 150 presentations of two 85 dB bursts of white noise, 500 ms apart (S1 and S2). Saline-treated animals suppressed the response to S2 to less than 50% of S1. In contrast, treatment with the serotonin releaser, MDMA (ecstasy; 2.0mg/kg), the 5-HT2A/2C receptor agonist, DOI (0.5mg/kg), or the 5-HT1A/7 receptor agonist, 8-OH-DPAT (0.5mg/kg), caused an increase in S2/S1 ratios. Analysis of waveform components suggested that the S2/S1 ratio disruption by MDMA was due to subtle effects on the ERPs to S1 and S2; DOI caused the disruption primarily by reducing the ERP to S1; 8-OH-DPAT-induced disruptions were due to an increase in the ERP to S2. These results show that 5-HT receptor stimulation alters S2/S1 ERP ratios in rats. These results may help to elucidate the sensory gating deficits observed in schizophrenia patients.

  4. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  5. Expression of Serotonin2C Receptors in Pyramidal and GABAergic Neurons of Rat Prefrontal Cortex: A Comparison with Striatum.

    PubMed

    Santana, Noemí; Artigas, Francesc

    2016-06-01

    The prefrontal cortex (PFC) is enriched in several serotonin receptors, including 5-HT1A-R, 5-HT2A-R, and 5-HT3-R. These receptors modulate PFC activity due to their expression in large neuronal populations (5-HT1A-R, 5-HT2A-R) or in selected GABAergic populations (5-HT3-R). They are also relevant for antidepressant and antipsychotic drug action. Less is known about the localization of 5-HT2C-R, for which atypical antipsychotics show high affinity. Here, we report on the cellular distribution of 5-HT2C-R in rat PFC and striatum, using double in situ hybridization histochemistry. In PFC, 5-HT2C-R are expressed in pyramidal (VGLUT1-positive) and GABAergic (GAD-positive) neurons, including parvalbumin-positive neurons. There is a marked dorso-ventral gradient in the proportion of VGLUT1-positive cells expressing 5-HT2C-R (9% in the cingulate cortex, 61% in the tenia tecta and 66% in the piriform cortex), less marked for GABAergic neurons (13-27%). There is also a laminar gradient, with more cells expressing 5-HT2C-R in deep (V-VI) than in intermediate (II-III) layers. In common with 5-HT3-R, layer I GABAergic cells express 5-HT2C-R. The proportion of 5-HT2C-R-expressing striatal neurons was 23% (dorsolateral caudate-putamen), 37% (ventromedial caudate-putamen), 53% (nucleus accumbens-core), and 49% (nucleus accumbens-shell). These results help to better understand the serotonergic modulation of PFC-based networks, including basal ganglia circuits, and atypical antipsychotic drug action.

  6. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  7. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date.

    PubMed

    Nikiforuk, Agnieszka

    2015-04-01

    The 5-HT7 (5-hydroxytryptamine 7, serotonin 7) receptor is one of the most recently identified members of the serotonin receptor family. Pharmacological tools, including selective antagonists and, more recently, agonists, along with 5-HT7 receptor (5-HT7R) knock-out mice have revealed the involvement of this receptor in central nervous system processes. Its well-established role in controlling body temperature and regulating sleep and circadian rhythms has implicated this receptor in mood disorders. Thus, the 5-HT7R has gained much attention as a possible target for the treatment of depression. Although preclinical data support the antidepressant-like actions of 5-HT7R antagonists, their clinical efficacy has not been yet established. Other evidence has implicated the 5-HT7R in learning and memory. Preclinical findings suggest that blockade of this receptor may be beneficial against schizophrenia-like cognitive deficits. Other possible indications include nociception, epilepsy, migraine, autism spectrum disorders, and Rett Syndrome. However, the question is whether the beneficial effects may be achieved by activation or blockade of 5-HT7Rs. Hence, this review briefly summarises the recent findings on the role of 5-HT7Rs and their ligands in CNS disorders.

  8. Serotonin Receptors Expressed in Drosophila Mushroom Bodies Differentially Modulate Larval Locomotion

    PubMed Central

    Silva, Bryon; Goles, Nicolás I.; Varas, Rodrigo; Campusano, Jorge M.

    2014-01-01

    Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA) including serotonin (5HT) participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB). The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3rd-instar) exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R) were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae. PMID:24586928

  9. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes.

    PubMed

    Filip, Małgorzata; Spampinato, Umberto; McCreary, Andrew C; Przegaliński, Edmund

    2012-10-02

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT(2C) receptors on the effects of different classes of addictive drugs, illustrated by reference to data using pharmacological and genetic tools. The neurochemical mechanism of the interaction between 5-HT(2C) receptors, with focus on the mesocorticolimbic dopaminergic system, and drugs of abuse (using cocaine as an example) is discussed. Finally, we integrate recent nonclinical and clinical research and information with marketed products possessing 5-HT(2C) receptor binding affinities. Accordingly, available nonclinical data and some clinical observations targeting 5-HT(2C) receptors may offer innovative translational strategies for combating drug dependence.This article is part of a Special Issue entitled: Brain Integration.

  10. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability

    PubMed Central

    Du, Yunpeng; Cramer, Megan; Lee, Chieh Allen; Tang, Jie; Muthusamy, Arivalagan; Antonetti, David A.; Jin, Hui; Palczewski, Krzysztof; Kern, Timothy S.

    2015-01-01

    Reactive oxygen species play an important role in the pathogenesis of diabetic retinopathy. We studied the role of adrenergic and serotonin receptors in the generation of superoxide by retina and 661W retinal cells in high glucose and of the α1-adrenergic receptor (AR) on vascular lesions of the retinopathy in experimentally diabetic C57Bl/6J mice (and controls) after 2 and 8 months. Compared with 5 mM glucose, incubating cells or retinal explants in 30 mM glucose induced superoxide generation. This response was reduced or ablated by pharmacologic inhibition of the α1-AR (a Gq-coupled receptor) or Gs-coupled serotonin (5-HT2, 5-HT4, 5-HT6, and 5-HT7) receptors or by activation of the Gi-coupled α2-AR. In elevated glucose, the α1-AR produced superoxide via phospholipase C, inositol triphosphate-induced Ca2+ release, and NADPH oxidase, and pharmacologic inhibition of these reactions prevented the superoxide increase. Generation of retinal superoxide, expression of proinflammatory proteins, and degeneration of retinal capillaries in diabetes all were significantly inhibited with daily doxazosin or apocynin (inhibitors of α1-AR and NADPH oxidase, respectively), but increased vascular permeability was not significantly affected. Adrenergic receptors, and perhaps other GPCRs, represent novel targets for inhibiting the development of important features of diabetic retinopathy.—Du, Y., Cramer, M., Lee, C. A., Tang, J., Muthusamy, A., Antonetti, D. A., Jin, H., Palczewski, K., Kern, T. S. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability. PMID:25667222

  11. Depletion of serotonin in the basolateral amygdala elevates glutamate receptors and facilitates fear-potentiated startle

    PubMed Central

    Tran, L; Lasher, B K; Young, K A; Keele, N B

    2013-01-01

    Our previous experiments demonstrated that systemic depletion of serotonin (5-hydroxytryptamine, 5-HT), similar to levels reported in patients with emotional disorders, enhanced glutamateric activity in the lateral nucleus of the amygdala (LA) and potentiated fear behaviors. However, the effects of isolated depletion of 5-HT in the LA, and the molecular mechanisms underlying enhanced glutamatergic activity are unknown. In the present study, we tested the hypothesis that depletion of 5-HT in the LA induces increased fear behavior, and concomitantly enhances glutamate receptor (GluR) expression. Bilateral infusions of 5,7-dihydroxytryptamine (4 μg per side) into the LA produced a regional reduction of serotonergic fibers, resulting in decreased 5-HT concentrations. The induction of low 5-HT in the LA elevated fear-potentiated startle, with a parallel increase in GluR1 mRNA and GluR1 protein expression. These findings suggest that low 5-HT concentrations in the LA may facilitate fear behavior through enhanced GluR-mediated mechanisms. Moreover, our data support a relationship between 5-HT and glutamate in psychopathologies. PMID:24002084

  12. Role of acetylcholine and muscarinic receptors in serotonin-induced bronchoconstriction in the mouse.

    PubMed

    Kummer, Wolfgang; Wiegand, Silke; Akinci, Sibel; Schinkel, Alfred H; Wess, Jürgen; Koepsell, Hermann; Haberberger, Rainer Viktor; Lips, Katrin Susanne

    2006-01-01

    For the murine trachea, it has been reported that constriction evoked by serotonin (5-HT) is largely dependent on acetylcholine (ACh) released from the epithelium, owing to the sensitivity of the 5-HT response to epithelium removal, sensitivity to atropine, and insensitivity to tetrodotoxin (Moffatt et al., 2003). Consistent with this assumption, the respiratory epithelium contains ACh, its synthesizing enzyme, and the high-affinity choline transporter CHT1 (Reinheimer et al., 1996; Pfeil et al., 2003; Proskocil et al., 2004). Recently, we demonstrated that ACh can be released from non-neuronal cells by corticosteroid-sensitive polyspecific organic cation transporters (OCTs), which are also expressed by airway epithelial cells (Lips et al., 2005). Hence, we proposed that 5-HT evokes release of ACh from epithelial cells via OCTs and that this epithelial-derived ACh induces bronchoconstriction. We tested this hypothesis in a well-established model of videomorphometric analysis of bronchial diameter in precision-cut murine lung slices utilizing epithelium removal to assess the role of the epithelium, OCT mouse knockout (KO) strains to assess the role of OCT isoforms, and muscarinic receptor M2/M3 double-KO mice to assess the cholinergic component of 5-HT induced bronchoconstriction, as bronchi of this strain are entirely unresponsive to cholinergic stimulation(Struckmann et al., 2003).

  13. The Effects of Chronic Alcohol Self-Administration on Serotonin-1A Receptor Binding in Nonhuman Primates

    PubMed Central

    Hillmer, Ansel T.; Wooten, Dustin W.; Tudorascu, Dana L.; Barnhart, Todd E.; Ahlers, Elizabeth O.; Resch, Leslie M.; Larson, Julie A.; Converse, Alexander K.; Moore, Colleen F.; Schneider, Mary L.; Christian, Bradley T.

    2014-01-01

    Background Previous studies have found interrelationships between the serotonin system and alcohol self-administration. The goal of this work was to directly observe in vivo effects of chronic ethanol self-administration on serotonin 5-HT1A receptor binding with [18F]mefway PET neuroimaging in rhesus monkeys. Subjects were first imaged alcohol-naïve and again during chronic ethanol self-administration to quantify changes in 5-HT1A receptor binding. Methods Fourteen rhesus monkey subjects (10.7-12.8 years) underwent baseline [18F]mefway PET scans prior to alcohol exposure. Subjects then drank gradually increasing ethanol doses over four months as an induction period, immediately followed by at least nine months ad libidum ethanol access. A post [18F]mefway PET scan was acquired during the final three months of ad libidum ethanol self-administration. 5-HT1A receptor binding was assayed with binding potential (BPND) using the cerebellum as a reference region. Changes in 5-HT1A binding during chronic ethanol self-administration were examined. Relationships of binding metrics with daily ethanol self-administration were also assessed. Results Widespread increases in 5-HT1A binding were observed during chronic ethanol self-administration, independent of the amount of ethanol consumed. A positive correlation between 5-HT1A binding in the raphe nuclei and average daily ethanol self-administration was also observed, indicating that baseline 5-HT1A binding in this region predicted drinking levels. Conclusions The increase in 5-HT1A binding levels during chronic ethanol self-administration demonstrates an important modulation of the serotonin system due to chronic alcohol exposure. Furthermore, the correlation between 5-HT1A binding in the raphe nuclei and daily ethanol self-administration indicates a relationship between the serotonin system and alcohol self-administration. PMID:25220896

  14. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  15. The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain.

    PubMed

    Aznar, Susana; Qian, Zhaoxia; Shah, Reshma; Rahbek, Birgitte; Knudsen, Gitte M

    2003-01-03

    The 5-HT(1A) receptor is a well-characterized serotonin receptor playing a role in many central nervous functions and known to be involved in depression and other mental disorders. In situ hybridization, immunocytochemical, and binding studies have shown that the 5-HT(1A) receptor is widely distributed in the rat brain, with a particularly high density in the limbic system. The receptor's localization in the different neuronal subtypes, which may be of importance for understanding its role in neuronal circuitries, is, however, unknown. In this study we show by immunocytochemical double-labeling techniques, that the 5-HT(1A) receptor is present on both pyramidal and principal cells, and calbindin- and parvalbumin-containing neurons, which generally define two different subtypes of interneurons. Moreover, semiquantitative analysis showed that the receptor's distribution in the different neuronal types varies between brain areas. In cortex, hippocampus, hypothalamus, and amygdala the receptor was located on both principal cells and calbindin- and parvalbumin-containing neurons. In septum and thalamus, the receptor was mostly present on calbindin- and parvalbumin-containing cells. Especially in the medial septum and thalamic reticular nucleus, the receptor highly colocalized with parvalbumin-positive neurons. These results suggest a diverse function of the 5-HT(1A) receptor in modulating neuronal circuitry in different brain areas, that may depend on the type of neuron the receptor is predominantly located on.

  16. Disease-specific expression of the serotonin-receptor 5-HT(2C) in natural killer cells in Alzheimer's dementia.

    PubMed

    Martins, Luiza Conceição Amorim; Rocha, Natália Pessoa; Torres, Karen Cecília Lima; Dos Santos, Rodrigo Ribeiro; França, Giselle Sabrina; de Moraes, Edgar Nunes; Mukhamedyarov, Marat Alexandrovich; Zefirov, Andrey Lvovich; Rizvanov, Albert Anatolyevich; Kiyasov, Andrey Pavlovich; Vieira, Luciene Bruno; Guimarães, Melissa Monteiro; Yalvaç, Mehmet Emir; Teixeira, Antônio Lúcio; Bicalho, Maria Aparecida Camargo; Janka, Zoltán; Romano-Silva, Marco Aurélio; Palotás, András; Reis, Helton José

    2012-10-15

    Alzheimer's dementia (AD) is a degenerative brain disorder characterized mainly by cholinergic failure, but other neuro-transmitters are also deficient especially at late stages of the disease. Misfolded β-amyloid peptide has been identified as a causative agent, however inflammatory changes also play a pivotal role. Even though the most prominent pathology is seen in the cognitive functions, specific abnormalities of the central nervous system (CNS) are also reflected in the periphery, particularly in the immune responses of the body. The aim of this study was to characterize the dopaminergic and serotonergic systems in AD, which are also markedly disrupted along with the hallmark acetyl-choline dysfunction. Peripheral blood mono-nuclear cells (PBMCs) from demented patients were judged against comparison groups including individuals with late-onset depression (LOD), as well as non-demented and non-depressed subjects. Cellular sub-populations were evaluated by mono-clonal antibodies against various cell surface receptors: CD4/CD8 (T-lymphocytes), CD19 (B-lymphocytes), CD14 (monocytes), and CD56 (natural-killer (NK)-cells). The expressions of dopamine D(3) and D(4), as well as serotonin 5-HT(1A), 5-HT(2A), 5-HT(2B) and 5-HT(2C) were also assessed. There were no significant differences among the study groups with respect to the frequency of the cellular sub-types, however a unique profound increase in 5-HT(2C) receptor exclusively in NK-cells was observed in AD. The disease-specific expression of 5-HT(2C), as well as the NK-cell cyto-toxicity, has been linked with cognitive derangement in dementia. These changes not only corroborate the existence of bi-directional communication between the immune system and the CNS, but also elucidate the role of inflammatory activity in AD pathology, and may serve as potential biomarkers for less invasive and early diagnostic purposes as well.

  17. Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors.

    PubMed

    Müller, Christian P; Carey, Robert J; Huston, Joseph P; De Souza Silva, Maria A

    2007-02-01

    Serotonin(1A)-receptors (5-HT(1A)-Rs) are important components of the 5-HT system in the brain. As somatodendritic autoreceptors they control the activity of 5-HT neurons, and, as postsynaptic receptors, the activity in terminal areas. Cocaine (COC), amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine ("Ecstasy", MDMA) are psychostimulant drugs that can lead to addiction-related behavior in humans and in animals. At the neurochemical level, these psychostimulant drugs interact with monoamine transporters and increase extracellular 5-HT, dopamine and noradrenalin activity in the brain. The increase in 5-HT, which, in addition to dopamine, is a core mechanism of action for drug addiction, hyperactivates 5-HT(1A)-Rs. Here, we first review the role of the various 5-HT(1A)-R populations in spontaneous behavior to provide a background to elucidate the contribution of the 5-HT(1A)-Rs to the organization of psychostimulant-induced addiction behavior. The progress achieved in this field shows the fundamental contribution of brain 5-HT(1A)-Rs to virtually all behaviors associated with psychostimulant addiction. Importantly, the contribution of pre- and postsynaptic 5-HT(1A)-Rs can be dissociated and frequently act in opposite directions. We conclude that 5-HT(1A)-autoreceptors mainly facilitate psychostimulant addiction-related behaviors by a limitation of the 5-HT response in terminal areas. Postsynaptic 5-HT(1A)-Rs, in contrast, predominantly inhibit the expression of various addiction-related behaviors directly. In addition, they may also influence the local 5-HT response by feedback mechanisms. The reviewed findings do not only show a crucial role of 5-HT(1A)-Rs in the control of brain 5-HT activity and spontaneous behavior, but also their complex role in the regulation of the psychostimulant-induced 5-HT response and subsequent addiction-related behaviors.

  18. Serotonin (5-HT3) receptor antagonists for the reduction of symptoms of low anterior resection syndrome

    PubMed Central

    Itagaki, Ryohei; Koda, Keiji; Yamazaki, Masato; Shuto, Kiyohiko; Kosugi, Chihiro; Hirano, Atsushi; Arimitsu, Hidehito; Shiragami, Risa; Yoshimura, Yukino; Suzuki, Masato

    2014-01-01

    Purpose Serotonin (5-hydroxytryptamine [5-HT])3 receptor antagonists are effective for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), in which exaggerated intestinal/colonic hypermotility is often observed. Recent studies have suggested that the motility disorder, especially spastic hypermotility, seen in the neorectum following sphincter-preserving operations for rectal cancer may be the basis of the postoperative defecatory malfunction seen in these patients. We investigated the efficacy of 5-HT3 receptor antagonists in patients suffering from severe low anterior resection syndrome. Patients and methods A total of 25 male patients with complaints of uncontrollable urgency or fecal incontinence following sphincter-preserving operations were enrolled in this study. Defecatory status, assessed on the basis of incontinence score (0–20), urgency grade (0–3), and number of toilet visits per day, was evaluated using a questionnaire before and 1 month after the administration of the 5-HT3 antagonist ramosetron. Results All the parameters assessed improved significantly after taking ramosetron for 1 month. The effect was more prominent in cases whose anastomotic line was lower, ie, inside the anal canal. Defecatory function was better in patients who commenced ramosetron therapy within 6 months postoperatively, as compared to those who were not prescribed ramosetron for more than 7 months postoperatively. Conclusion These results suggest that 5-HT3 antagonists are effective for the treatment of low anterior resection syndrome, as in diarrhea-predominant irritable bowel syndrome. The improvement in symptoms is not merely time dependent, but it is related to treatment with 5-HT3 antagonists. PMID:24648748

  19. Fluvoxamine, a selective serotonin reuptake inhibitor, and 5-HT2C receptor inactivation induce appetite-suppressing effects in mice via 5-HT1B receptors.

    PubMed

    Nonogaki, Katsunori; Nozue, Kana; Takahashi, Yukiko; Yamashita, Nobuyuki; Hiraoka, Shuichi; Kumano, Hiroaki; Kuboki, Tomifusa; Oka, Yohsitomo

    2007-10-01

    Serotonin (5-hydroxytryptamine; 5-HT) 2C receptors and the downstream melanocortin pathway are suggested to mediate the appetite-suppressing effects of 5-HT drugs such as m-chlorophenylpiperazine (mCPP) and fenfluramine. Here, we report that fluvoxamine (3-30 mg/kg), a selective serotonin reuptake inhibitor (SSRI), in the presence of SB 242084 (1-2 mg/kg), a selective 5-HT2C receptor antagonist, exerts appetite-suppressing effects while fluvoxamine or SB 242084 alone has no effect. The appetite-suppressing effects were attenuated in the presence of SB 224289 (5 mg/kg), a selective 5-HT1B receptor antagonist. Moreover, CP 94253 (5-10 mg/kg), a selective 5-HT1B receptor agonist, exerted appetite-suppressing effects and significantly increased hypothalamic pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) gene expression and decreased hypothalamic orexin gene expression. These results suggest that fluvoxamine and inactivation of 5-HT2C receptors exert feeding suppression through activation of 5-HT1B receptors, and that 5-HT1B receptors up-regulate hypothalamic POMC and CART gene expression and down-regulate hypothalamic orexin gene expression in mice.

  20. Pharmacological Characterization of a 5-HT1-Type Serotonin Receptor in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Vleugels, Rut; Lenaerts, Cynthia; Baumann, Arnd; Vanden Broeck, Jozef; Verlinden, Heleen

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is known for its key role in modulating diverse physiological processes and behaviors by binding various 5-HT receptors. However, a lack of pharmacological knowledge impedes studies on invertebrate 5-HT receptors. Moreover, pharmacological information is urgently needed in order to establish a reliable classification system for invertebrate 5-HT receptors. In this study we report on the molecular cloning and pharmacological characterization of a 5-HT1 receptor from the red flour beetle, Tribolium castaneum (Trica5-HT1). The Trica5-HT1 receptor encoding cDNA shows considerable sequence similarity with members of the 5-HT1 receptor class. Real time PCR showed high expression in the brain (without optic lobes) and the optic lobes, consistent with the role of 5-HT as neurotransmitter. Activation of Trica5-HT1 in mammalian cells decreased NKH-477-stimulated cyclic AMP levels in a dose-dependent manner, but did not influence intracellular Ca2+ signaling. We studied the pharmacological profile of the 5-HT1 receptor and demonstrated that α-methylserotonin, 5-methoxytryptamine and 5-carboxamidotryptamine acted as agonists. Prazosin, methiothepin and methysergide were the most potent antagonists and showed competitive inhibition in presence of 5-HT. This study offers important information on a 5-HT1 receptor from T. castaneum facilitating functional research of 5-HT receptors in insects and other invertebrates. The pharmacological profiles may contribute to establish a reliable classification scheme for invertebrate 5-HT receptors. PMID:23741451

  1. Electrophysiological examination of the effects of sustained flibanserin administration on serotonin receptors in rat brain

    PubMed Central

    Rueter, Lynne E; Blier, Pierre

    1999-01-01

    5-HT1A receptor agonists have proven to be effective antidepressant medications, however they suffer from a significant therapeutic lag before depressive symptoms abate. Flibanserin is a 5-HT1A receptor agonist and 5-HT2A receptor antagonist developed to possibly induce a more rapid onset of antidepressant action through its preferential postsynaptic 5-HT1A receptor agonism. Flibanserin antagonized the effect of microiontophoretically-applied DOI in the medial prefrontal cortex (mPFC) following 2 days of administration, indicating antagonism of postsynaptic 5-HT2A receptors. This reduction in the effect of locally-applied DOI was no longer present following 7-day flibanserin administration. Two-day flibanserin administration only marginally reduced the firing activity of dorsal raphe (DRN) 5-HT neurons. Following 7 days of administration, 5-HT neuronal firing activity had returned to normal and the somatodendritic 5-HT1A autoreceptors were desensitized. The responsiveness of postsynaptic 5-HT1A receptors located on CA3 hippocampus pyramidal neurons and mPFC neurons, examined using microiontophoretically-applied 5-HT and gepirone, was unchanged following a 7-day flibanserin treatment. As demonstrated by the ability of the 5-HT1A receptor antagonist WAY 100635 to selectively increase the firing of hippocampal neurons in 2- and 7-day treated rats, flibanserin enhanced the tonic activation of postsynaptic 5-HT1A receptors in this brain region. The results suggest that flibanserin could be a therapeutically useful compound putatively endowed with a more rapid onset of antidepressant action. PMID:10188973

  2. Mice lacking the serotonin 5-HT2B receptor as an animal model of resistance to selective serotonin reuptake inhibitors antidepressants.

    PubMed

    Diaz, Silvina Laura; Narboux-Nême, Nicolas; Boutourlinsky, Katia; Doly, Stéphane; Maroteaux, Luc

    2016-02-01

    Depressive disorders are among the most prevalent neuropsychiatric dysfunctions worldwide, with high rates of resistance to antidepressant treatment. Genetic factors clearly contribute to the manifestation of depression as well as to the response to antidepressants. Transgenic mouse models appear as seminal tools to disentangle this complex disorder. Here, we analyzed new key aspects of the phenotype of knock-out mice for the gene encoding the serotonin 2B receptor (Htr(2B)(-/-)), including basal phenotype, ability to develop a depressive-like phenotype upon chronic isolation, and effect of chronic exposure to fluoxetine on chronically stressed Htr(2B)(-/-) mice. We find, here, that Htr(2B)(-/-) mice display an antidepressant-like phenotype, which includes reduced latency to feed in the novelty suppressed feeding test, basal increase in hippocampal BDNF levels, no change in TrkB and p75 protein levels, and an increased preference for sucrose consumption compared to wild type (Htr(2B)(+/+)) mice. Nevertheless, we show that these mice can develop depressive-like behaviors when socially isolated during four weeks. Selective serotonin reuptake inhibitors (SSRI) have been previously shown to be ineffective in non-stressed Htr(2B)(-/-) mice. We evaluated, here, the effects of the SSRI fluoxetine in chronically stressed Htr(2B)(-/-) mice and similarly no behavioral or plastic effect was induced by this antidepressant. All together, these results highlight the suitability to study resistance to SSRI antidepressants of this mouse model displaying panoply of conditions among which behavioral, neurotrophic and plastic causative factors can be analyzed.

  3. Ethanol and Mesolimbic Serotonin/Dopamine Interactions via 5-HT-1B Receptors

    DTIC Science & Technology

    2005-03-01

    role in the reinforcing/rewarding properties of many drugs of abuse [34]. Since inhibition of [1] M.T. Abellan, R. Martin-Ruiz, F. Artigas , Local...receptor- [2] A. Adell, P. Celada, M.T. Abellan, F. Artigas , Origin and functional mediated regulation of rewarding effects of abused drugs. In role of

  4. Role of prenatal undernutrition in the expression of serotonin, dopamine and leptin receptors in adult mice: implications of food intake.

    PubMed

    Manuel-Apolinar, Leticia; Rocha, Luisa; Damasio, Leticia; Tesoro-Cruz, Emiliano; Zarate, Arturo

    2014-02-01

    Perturbations in the levels of serotonin expression have a significant impact on behavior and have been implicated in the pathogenesis of several neuropsychiatric disorders including anxiety, mood and appetite. Fetal programming is a risk factor for the development of metabolic diseases during adulthood. Moreover, previous studies have shown that serotonin (5‑HT), dopamine and leptin are important in energy balance. In the present study, the impact of maternal malnutrition‑induced prenatal undernutrition (UN) was investigated in mice and the expression of 5‑HT1A, dopamine (D)1, D2 and Ob‑Rb receptors was analyzed in the hypothalamus during adulthood. The UN group showed a low birth weight compared with the control group. With regard to receptor expression, 5‑HT1A in the UN group was increased in the hypothalamus and D1 was reduced, whereas D2 showed an increase from postnatal day (P)14 in the arcuate nucleus. Ob‑Rb receptor expression was increased in the hypothalamus at P14 and P90. These observations indicated that maternal caloric restriction programs a postnatal body weight gain in offspring with an increased food intake in early postnatal life which continues into adulthood. In addition, UN in mice was found to be affected by Ob‑Rb, 5‑HT1A and D1/2 receptor expression, indicating that these observations may be associated with hyperphagia and obesity.

  5. Role of prenatal undernutrition in the expression of serotonin, dopamine and leptin receptors in adult mice: Implications of food intake

    PubMed Central

    MANUEL-APOLINAR, LETICIA; ROCHA, LUISA; DAMASIO, LETICIA; TESORO-CRUZ, EMILIANO; ZARATE, ARTURO

    2014-01-01

    Perturbations in the levels of serotonin expression have a significant impact on behavior and have been implicated in the pathogenesis of several neuropsychiatric disorders including anxiety, mood and appetite. Fetal programming is a risk factor for the development of metabolic diseases during adulthood. Moreover, previous studies have shown that serotonin (5-HT), dopamine and leptin are important in energy balance. In the present study, the impact of maternal malnutrition-induced prenatal undernutrition (UN) was investigated in mice and the expression of 5-HT1A, dopamine (D)1, D2 and Ob-Rb receptors was analyzed in the hypothalamus during adulthood. The UN group showed a low birth weight compared with the control group. With regard to receptor expression, 5-HT1A in the UN group was increased in the hypothalamus and D1 was reduced, whereas D2 showed an increase from postnatal day (P)14 in the arcuate nucleus. Ob-Rb receptor expression was increased in the hypothalamus at P14 and P90. These observations indicated that maternal caloric restriction programs a postnatal body weight gain in offspring with an increased food intake in early postnatal life which continues into adulthood. In addition, UN in mice was found to be affected by Ob-Rb, 5-HT1A and D1/2 receptor expression, indicating that these observations may be associated with hyperphagia and obesity. PMID:24337628

  6. In vivo binding of /sup 125/I-LSD to serotonin 5-HT/sub 2/ receptors in mouse brain

    SciTech Connect

    Hartig, P.R.; Scheffel, U., Frost, J.J.; Wagner, H.N. Jr.

    1985-08-19

    The binding of /sup 125/I-LSD (2-(/sup 125/I)-lysergic acid diethylamide) was studied in various mouse brain regions following intravenous injection of the radioligand. The high specific activity of /sup 125/I-LSD enabled the injection of low mass doses (14ng/kg), which are well below the threshold for induction of any known physiological effect of the probe. The highest levels of /sup 125/I-LSD binding were found in the frontal cortex, olfactory tubercles, extra-frontal cortex and striatum while the lowest level was found in the cerebellum. Binding was saturable in the frontal cortex but increased linearly in the cerebellum with increasing doses of /sup 125/I-LSD. Serotonergic compounds potently inhibited /sup 125/I-LSD binding in cortical regions, olfactory tubercles, and hypothalamus but had no effect in the cerebellum. Dopaminergic compounds caused partial inhibition of binding in the striatum while adrenergic compounds were inactive. From these studies the authors conclude that /sup 125/I-LSD labels serotonin 5-HT/sub 2/ receptor sites in cortical regions with no indication that other receptor sites are labeled. In the olfactory tubercles and hypothalamus, /sup 125/I-LSD labeling occurs predominantly or entirely at serotonic 5-HT/sub 2/ sites. In the striatum, /sup 125/I-LSD labels approximately equal proportions of serotonergic and dopaminergic sites. These data indicate that /sup 125/I-LSD labels serotonin receptors in vivo and suggests that appropriate derivatives of 2I-LSD may prove useful for tomographic imaging of serotonin 5-HT/sub 2/ receptors in the mammalian cortex.

  7. Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats.

    PubMed

    McGuire, Michelle; Zhang, Yi; White, David P; Ling, Liming

    2004-02-01

    Respiratory long-term facilitation (LTF), a serotonin-dependent, persistent augmentation of respiratory activity after episodic hypoxia, is enhanced by pretreatment of chronic intermittent hypoxia (CIH; 5 min 11-12% O2-5 min air, 12 h/night for 7 nights). The present study examined the effects of methysergide (serotonin 5-HT1,2,5,6,7 receptor antagonist), ketanserin (5-HT2 antagonist), or clozapine (5-HT2,6,7 antagonist) on both ventilatory LTF and the CIH effect on ventilatory LTF in conscious male adult rats to determine which specific receptor subtype(s) is involved. In untreated rats (i.e., animals not exposed to CIH), LTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O2) separated by 5-min normoxic intervals, was measured twice by plethysmography. Thus the measurement was conducted 1-2 days before (as control) and approximately 1 h after systemic injection of methysergide (1 mg/kg ip), ketanserin (1 mg/kg), or clozapine (1.5 mg/kg). Resting ventilation, metabolic rate, and hypoxic ventilatory response (HVR) were unchanged, but LTF ( approximately 18% above baseline) was eliminated by each drug. In CIH-treated rats, LTF was also measured twice, before and approximately 8 h after CIH. Vehicle, methysergide, ketanserin, or clozapine was injected approximately 1 h before the second measurement. Neither resting ventilation nor metabolic rate was changed after CIH and/or any drug. HVR was unchanged after methysergide and ketanserin but reduced in four of seven clozapine rats. The CIH-enhanced LTF ( approximately 28%) was abolished by methysergide and clozapine but only attenuated by ketanserin (to approximately 10%). Collectively, these data suggest that ventilatory LTF requires 5-HT2 receptors and that the CIH effect on LTF requires non-5-HT2 serotonin receptors, probably 5-HT6 and/or 5-HT7 subtype(s).

  8. Serotonin induces peripheral mechanical antihyperalgesic effects in mice.

    PubMed

    Diniz, Danielle A; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina G M; Perez, Andrea C; Duarte, Igor D G; Romero, Thiago R L

    2015-11-15

    The role of serotonin (5-HT) in nociception will vary according to the subtypes of receptors activated. When administered peripherally, it induces pain in humans and in rats by activation of 5-HT1, 5-HT2 and 5-HT3 receptors. In addition, endogenous 5-HT produced in situ, is involved in the nociceptive response induced by formalin in rat's paw inflammation, possibly via 5-HT3 receptors. Moreover, it has been shown that 5-HT released in the dorsal horn of the spinal cord by stimulation of the periaqueductal gray causes activation of inhibitory interneurons, resulting in inhibition of spinal neurons. In the present study we evaluated the effect of serotonin and its receptors at peripheral antinociception. The mice paw pressure test was used in animals that had increased sensitivity by an intraplantar injection of PGE2 (2 µg). We used selective antagonists of serotonin receptors (isamoltan 5-HT1B, BRL 15572 5-HT1D, ketanserin 5-HT2A, ondansetron 5-HT3 and SB-269970 5-HT7). Administration of serotonin into the right hind paw (62.5, 125, 250 and 500 ng and 1 µg) produced a dose-dependent peripheral mechanical antihyperalgesic effect of serotonin in mice. Selective antagonists for 5-HT1B, 5-HT2A, 5-HT3 receptors at doses of 0.1, 1 and 10 µg, reversed the antihyperalgesic effect induced by 250 ng serotonin. In contrast, selective antagonists for 5-HT1D and 5-HT7 receptors were unable to reverse the antihyperalgesic effect induced by serotonin. These results demonstrated for the first time, the peripheral mechanical antihyperalgesic effect of serotonin, and participation of 5-HT1B, 5-HT2A and 5-HT3 receptors in this event.

  9. PET imaging of the serotonin transporter and 5HT1A receptor in alcohol dependence

    PubMed Central

    Martinez, Diana; Slifstein, Mark; Gil, Roberto; Hwang, Dah-Ren; Huang, Yiyun; Perez, Audrey; Frankle, W. Gordon; Laruelle, Marc; Krystal, John; Abi-Dargham, Anissa

    2009-01-01

    Background Rodent models as well as studies in humans have suggested alterations in serotonin (5HT) innervation and transmission in early onset genetically determined or type II alcoholism. This study examines two indices of serotonergic transmission, 5HT transporter levels and 5-HT1A availability, in vivo, in type II alcoholism. This is the first report of combined tracers for pre and post-synaptic serotonergic transmission in the same alcoholic subjects and the first study of 5HT1A receptors in alcoholism. Method Fourteen alcohol dependent subjects were scanned (11 with both tracers, 1 with [11C]DASB only and two with [11C]WAY100635 only). Twelve healthy controls (HC) subjects were scanned with [11C]DASB and another 13 were scanned with [11C]WAY100635. Binding Potential (BPp, mL/cm3) and the specific to nonspecific partition coefficient (BPND, unitless) were derived for both tracers using 2 tissue compartment model and compared to HC across different brain regions. Relationships to severity of alcoholism were assessed. Results No significant differences were observed in regional BPp or BPND between patients and controls in any of the regions examined. No significant relationships were observed between regional 5HT transporter availability, 5-HT1A availability, and disease severity with the exception of a significant negative correlation between SERT and years of dependence in amygdala and insula. Conclusion This study did not find alterations in measures of 5-HT1A or 5HT transporter levels in patients with type II alcoholism. PMID:18962444

  10. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    NASA Astrophysics Data System (ADS)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  11. Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome.

    PubMed

    De Filippis, Bianca; Nativio, Paola; Fabbri, Alessia; Ricceri, Laura; Adriani, Walter; Lacivita, Enza; Leopoldo, Marcello; Passarelli, Francesca; Fuso, Andrea; Laviola, Giovanni

    2014-10-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2-308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability.

  12. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue.

    PubMed

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  13. Antipsychotic drugs disrupt normal development in Caenorhabditis elegans via additional mechanisms besides dopamine and serotonin receptors

    PubMed Central

    Donohoe, Dallas R.; Aamodt, Eric J.; Osborn, Elizabeth; Dwyer, Donard S.

    2006-01-01

    Antipsychotic drugs may produce adverse effects during development in humans and rodents. However, the extent of these effects has not been systematically characterized nor have molecular mechanisms been identified. Consequently, we sought to evaluate the effects of an extensive panel of antipsychotic drugs in a model organism, C. elegans, whose development is well characterized, and which offers the possibility of identifying novel molecular targets. For these studies, animals were grown from hatching in the presence of vehicle (control) or antipsychotic drugs over a range of concentrations (20–160 μM) and growth was analyzed by measuring head-to-tail length at various intervals. First-generation antipsychotics (e.g., fluphenazine) generally slowed growth and maturation more than second-generation drugs such as quetiapine, and olanzapine. This is consistent with in vitro effects on human neuronal cell lines. Clozapine, a second-generation drug, produced similar growth deficits as haloperidol. Converging lines of evidence, including the failure to rescue growth with high concentrations of agonists, suggested that the drug-induced delay in development was not mediated by the major neurotransmitter receptors recognized by the antipsychotic drugs. Moreover, in serotonin-deficient tph-1 mutants, the drugs dramatically slowed development and led to larval arrest (including dauer formation), and neuronal abnormalities. Evaluation of alternative targets of the antipsychotics revealed a potential role for calmodulin and underscored the significance of Ca2+-calmodulin signaling in development. These findings suggest that antipsychotic drugs may interfere with normal developmental processes, and provide a tool for investigating the key signaling pathways involved. PMID:16962336

  14. Role of catecholamines and serotonin receptor subtypes in nefopam-induced antinociception.

    PubMed

    Girard, Philippe; Coppé, Marie-Claude; Verniers, Danielle; Pansart, Yannick; Gillardin, Jean-Marie

    2006-09-01

    The non-opiate analgesic nefopam has been shown to inhibit monoamines uptake, but little is known about receptor subtypes effectively involved in its analgesic effect. In vitro binding assays yielded the following measures of affinity (IC(50)): serotonergic 5-HT(2C) (1.4 microM), 5-HT(2A) (5.1 microM), 5-HT(3) (22.3 microM), 5-HT(1B) (41.7 microM), 5-HT(1A) (64.9 microM), adrenergic alpha(1) (15.0 microM) and dopaminergic D(1) (100 microM). Subcutaneous nefopam administration dose-dependently inhibited pain in acetic acid-induced writhing (1-30 mg kg(-1)) and formalin (1-10 mg kg(-1)) tests in the mouse. Pretreatments with adrenergic alpha(1) (prazosin) and alpha(2) (yohimbine), and serotonergic 5-HT(1B) (GR127935) receptor antagonists significantly increased the nefopam ED(50) in the writhing test. The serotonergic 5-HT(2C) (RS102221) and the dopaminergic D(2) (sulpiride) receptor antagonists inhibited nefopam antinociception in the formalin test. However, in both tests, nefopam analgesic activity was not modified by the following receptor antagonists: dopaminergic D(1) (SCH23390), serotonergic 5-HT(1A) (NAN-190, WAY100635), 5-HT(2A) (R96544, ketanserin), 5-HT(3) (tropisetron), and 5-HT(4) (SDZ205557). In conclusion, nefopam analgesic activity could be modulated by the adrenergic alpha(1) and alpha(2) receptors, the dopaminergic D(2) receptors, and the serotonergic 5-HT(1B) and 5-HT(2C) receptor subtypes.

  15. Polymorphisms of the serotonin transporter and receptor genes: susceptibility to substance abuse.

    PubMed

    Herman, Aryeh I; Balogh, Kornelia N

    2012-06-01

    Serotonin (5-hydroxytryptamine [5-HT]) is an important neurotransmitter implicated in regulating substance-use disorder (SUD) acquisition, maintenance, and recovery. During the past several years, an abundance of research has begun discovering and describing specific 5-HT genetic polymorphisms associated with SUDs. Genetic variations in the 5-HT system, such as SLC6A4, HTR1B, HTR2A, HTR2C, HTR3 (HTR3A, HTR3B, HTR3C, HTR3D, and HTR3E), likely play a role contributing to SUD patient heterogeneity. The 5-HT transporter-linked polymorphic region S allele, located in SLC6A4, has now been modestly associated with alcohol dependence in two large meta-analyses. Additional 5-HT genes may also play a role but have not been extensively investigated. A limited number of SUD treatment studies have included 5-HT gene variation as moderating treatment outcomes, but the results have been equivocal. Future research on 5-HT addiction genetics should adopt whole-genome sequencing technology, utilize large study samples, and collect data from multiple ethnic groups. Together, these methods will build on the work already conducted with the aim of utilizing 5-HT genetics in SUD treatment settings.

  16. The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine.

    PubMed

    Marek, Gerard J; Martin-Ruiz, Raul; Abo, Allyson; Artigas, Francesc

    2005-12-01

    The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT(2A) receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT(2A) receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT(2) antagonists and SSRIs. M100907 has a approximately 100-fold or greater selectivity at 5-HT(2A) receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT(2A) receptors at doses below 100 microg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT(2A) receptor antagonist (6.25-12.5 microg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 microg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT(2A) receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.

  17. Serotonin 1B Receptor Gene (HTR1B) Methylation as a Risk Factor for Callous-Unemotional Traits in Antisocial Boys.

    PubMed

    Moul, Caroline; Dobson-Stone, Carol; Brennan, John; Hawes, David J; Dadds, Mark R

    2015-01-01

    The serotonin system is thought to play a role in the aetiology of callous-unemotional (CU) traits in children. Previous research identified a functional single nucleotide polymorphism (SNP) from the promoter region of the serotonin 1B receptor gene as being associated with CU traits in boys with antisocial behaviour problems. This research tested the hypothesis that CU traits are associated with reduced methylation of the promoter region of the serotonin 1B receptor gene due to the influence of methylation on gene expression. Participants (N = 117) were boys with antisocial behaviour problems aged 3-16 years referred to University of New South Wales Child Behaviour Research Clinics. Participants volunteered a saliva sample from which the genotype of a SNP from the promoter region of the serotonin 1B receptor gene and the methylation levels of 30 CpG sites from 3 CpG regions surrounding the location of this polymorphism were assayed. Lower levels of serotonin 1B receptor gene methylation were associated with higher levels of CU traits. This relationship, however, was found to be moderated by genotype and carried exclusively by two CpG sites for which levels of methylation were negatively associated with overall methylation levels in this region of the gene. Results provide support to the emerging literature that argues for a genetically-driven system-wide alteration in serotonin function in the aetiology of CU traits. Furthermore, the results suggest that there may be two pathways to CU traits that involve methylation of the serotonin 1B receptor gene; one that is driven by a genotypic risk and another that is associated with risk for generally increased levels of methylation. Future research that aims to replicate and further investigate these results is required.

  18. Identification and expression analyses of a novel serotonin receptor gene, 5-HT2β, in the field cricket, Gryllus bimaculatus.

    PubMed

    Watanabe, T; Aonuma, H

    2012-01-01

    Biogenic amine serotonin (5-HT) modulates various aspects of behaviors such as aggressive behavior and circadian behavior in the cricket. In our previous report, in order to elucidate the molecular basis of the cricket 5-HT system, we identified three genes involved in 5-HT biosynthesis, as well as four 5-HT receptor genes (5-HT1A, 5-HT1B, 5-HT2α, and 5-HT7) expressed in the brain of the field cricket Gryllus bimaculatus DeGeer [7]. In the present study, we identified Gryllus 5-HT2β gene, an additional 5-HT receptor gene expressed in the cricket brain, and examined its tissue-specific distribution and embryonic stage-dependent expression. Gryllus 5-HT2β gene was ubiquitously expressed in the all examined adult tissues, and was expressed during early embryonic development, as well as during later stages. This study suggests functional differences between two 5-HT2 receptors in the cricket.

  19. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    PubMed

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE.

  20. Dopamine and serotonin receptors measured in vivo in Huntington's Disease with C-11 n-methylspiperone PET imaging

    SciTech Connect

    Wong, D.F.; Links, J.M.; Wanger, H.N. Jr.; Folstein, S.E.; Suneja, S.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Tune, L.E.; Pearlson, G.

    1985-05-01

    Thirteen patients with the clinical diagnosis of Huntington's Disease (HD) and nine persons at risk to develop the disease were studied by positron emission tomography (PET) after administration of /sup 11/C-n-methylspiperone (NMSP), a tracer with a high affinity for D2 dopamine and, to a lesser degree, for S2 serotonin receptors. All subjects had an X-ray CT scan for positioning and to assess caudate size. Dopamine and serotonin receptor binding (D2 and S2) were estimated by the caudate/cerebellum activity ratio at 43 min. post injection (CA/CB), and frontal cortex/cerebellum (FR/CB), respectively. CA/CB's of HD pts. were lower than age and sex matched controls. However, when corrected by recovery coefficients (RC) for our PET using CT dimensions of the caudate, CA/CB's were higher than normal. The relative total number of D2 receptors (estimated by CA/CB x CT caudate volume) was lower than the controls without or with RC correction.

  1. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    SciTech Connect

    Burris, K.D.; Breeding, M.; Sanders-Bush, E. )

    1991-09-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD.

  2. [CROSS-TALK BETWEEN 5-HT1A AND 5-HT7 RECEPTORS: ROLE IN THE AUTOREGULATION OF THE BRAIN SEROTONIN SYSTEM AND IN MECHANISM OF ANTIDEPRESSANTS ACTION].

    PubMed

    Popova, N K; Ponimaskin, E G; Naumenko, V S

    2015-11-01

    Recent studies considerably extended our knowledge of the mechanisms and physiological role of the interaction between different receptors in the brain. Current review summarizes data on the formation of receptor complexes and the role of such complexes in the autoregulation of the brain serotonin system, behavioral abnormalities and mechanism of antidepressants action. Particular attention is paid to 5-HT1A and 5-HT7 receptor heterodimers. The results described in the present review indicate that: i) dimerization and formation of mobile receptor complexes is a common feature for the members of G-protein coupled receptor superfamily; ii) 5-HT7 receptor appears to be a modulator for 5-HT1A receptor - the key autoregulator of the brain serotonin system; iii) 5-HT1A/5-HT7 receptor complexes formation is one of the mechanisms for inactivation and desensitization of the 5-HTIA receptors in the brain; iv) differences in the 5-HT7 receptor and 5-HTIA/5-HT7 heterodimers density define different sensitivity of pre- and postsynaptic 5-HTlA receptors to chronic treatment with selective serotonin reuptake inhibitors.

  3. Selective serotonin receptor stimulation of the medial nucleus accumbens causes differential effects on food intake and locomotion.

    PubMed

    Pratt, Wayne E; Blackstone, Kaitlin; Connolly, Megan E; Skelly, Mary Jane

    2009-10-01

    Substantial evidence suggests that pharmacological manipulations of neural serotonin pathways influence ingestive behaviors. Despite the known role of the nucleus accumbens in directing appetitive and consummatory behavior, there has been little examination of the influences that serotonin receptors may play in modulating feeding within nucleus accumbens circuitry. In these experiments, the authors examined the effects of bilateral nucleus accumbens infusions of the 5-HT1/7 receptor agonist 5-CT (at 0.0, 0.5, 1.0, or 4.0 microg/0.5 microl/side), the 5-HT receptor agonist EMD 386088 (at 0.0, 1.0, and 4.0 microg/0.5 microl/side), or the 5-HT2C preferential agonist RO 60-0175 (at 0.0, 2.0, or 5.0 microg/0.5 microl/side) on food intake and locomotor activity in the rat. Intra-accumbens infusions of 5-CT caused a dose-dependent reduction of food intake and rearing behavior, both in food-restricted animals given 2-hr free access to Purina Protab RMH 3000 Chow, as well as in nondeprived rats offered 2-hr access to a highly palatable fat/sucrose diet. In contrast, stimulation of 5-HT receptors with EMD 386088 caused a dose-dependent increase of intake under both feeding conditions, without affecting measures of locomotion. Infusions of the moderately selective 5-HT2C receptor agonist RO 60-0175 had no effects on feeding or locomotor measures in food-restricted animals, but did reduce intake of the fat/sucrose in nonrestricted animals at the 2.0 microg, but not the 5.0 microg dose. Intra-accumbens infusions of selective antagonists for the 5-HT (SB 269970), 5-HT (SB 252585), and 5-HT2C (RS 102221) receptors did not affect locomotion, and demonstrated no lasting changes in feeding for any of the groups tested. These data are the first to suggest that the activation of different serotonin receptor subtypes within the feeding circuitry of the medial nucleus accumbens differentially influence consummatory behavior.

  4. Novel antagonists of serotonin-4 receptors: synthesis and biological evaluation of pyrrolothienopyrazines.

    PubMed

    Lemaître, Stéphane; Lepailleur, Alban; Bureau, Ronan; Butt-Gueulle, Sabrina; Lelong-Boulouard, Véronique; Duchatelle, Pascal; Boulouard, Michel; Dumuis, Aline; Daveu, Cyril; Lezoualc'h, Frank; Pfeiffer, Bruno; Dauphin, François; Rault, Sylvain

    2009-03-15

    Based on the definition of a 5-HT(4) receptor antagonist pharmacophore, a series of pyrrolo[1,2-a]thieno[3,2-e] and pyrrolo[1,2-a]thieno[2,3-e] pyrazine derivatives were designed, prepared, and evaluated to determine the properties necessary for high-affinity binding to 5-HT(4) receptors. The compounds were synthesized by substituting the chlorine atom of the pyrazine ring with various N-alkyl-4-piperidinylmethanolates. They were evaluated in binding assays with [(3)H]GR113808 (1) as the 5-HT(4) receptor radioligand. The affinity values (K(i) or inhibition percentages) were affected by both the substituent on the aromatic ring and the substituent on the lateral piperidine chain. A methyl group on the tricyclic ring produced a marked increase in affinity while an N-propyl or N-butyl group gave compounds with nanomolar affinities. Among the most potent ligands, 34d was selected for further pharmacological studies and evaluated in vivo. This compound acts as an antagonist/weak partial agonist in COS-7 cells stably expressing the 5-HT(4(a)) receptor and is of great interest as a peripheral antinociceptive agent.

  5. Long-lasting alterations in 5-HT2A receptor after a binge regimen of methamphetamine in mice.

    PubMed

    Chiu, Hong-Yi; Chan, Ming-Huan; Lee, Mei-Yi; Chen, Shao-Tsu; Zhan, Zih-Yi; Chen, Hwei-Hsien

    2014-10-01

    The repeated administration of methamphetamine (MA) to animals in a single-day 'binge' dosing regimen produces damage to dopamine and serotonin terminals and psychosis-like behaviours similar to those observed in MA abusers. The present study aimed to examine the effects of MA binge exposure on 5-HT2A receptors, the subtype of serotonin receptors putatively involved in psychosis. ICR male mice were treated with MA (4 × 5 mg/kg) or saline at 2 h intervals. Recognition memory and social behaviours were sequentially evaluated by a novel location recognition test, a novel object recognition test, a social interaction and a nest-building test to confirm the persistent cognitive and behavioural impairments after this dosing regimen. Subsequently, a hallucinogenic 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch, molecular and electrophysiological responses were monitored. Finally, the levels of 5-HT2C, 5-HT1A, 5-HT2A and mGlu2 receptors in the medial prefrontal cortex were determined. MA binge exposure produced recognition memory impairment, reduced social behaviours, and increased DOI-induced head-twitch response, c-Fos and Egr-2 expression and field potentials in the medial prefrontal cortex. Furthermore, MA binge exposure increased 5-HT2A and decreased mGlu2 receptor expression in the medial frontal cortex, whereas 5-HT2C and 5-HT1A receptors were unaffected. These data reveal that the increased behavioural, molecular and electrophysiological responses to DOI might be associated with an up-regulation of 5-HT2A receptors in the medial prefrontal cortex after MA binge exposure. Identifying the biochemical alterations that parallel the behavioural changes in a mouse model of MA binge exposure may facilitate targeting therapies for treatment of MA-related psychiatric disorders.

  6. Roles of the serotonin 5-HT4 receptor in dendrite formation of the rat hippocampal neurons in vitro.

    PubMed

    Kozono, Naoki; Ohtani, Akiko; Shiga, Takashi

    2017-01-15

    Serotonin (5-HT) is involved in various aspects of hippocampal development, although the specific roles of 5-HT receptors are poorly understood. We investigated the roles of 5-HT receptors in the dendrite formation of hippocampal neurons. We focused on the 5-HT4 receptor, which is coupled with Gs protein, and compared the effects with those of the Gi-coupled 5-HT1A receptor. Neurons from rat hippocampi at embryonic day 18 were dissociated and treated for 4 days with the 5-HT4 receptor agonist BIMU8 or the 5-HT1A receptor agonist 8-OH DPAT. The formation of primary dendrites and dendrite branching were promoted by BIMU8, whereas the dendrite branching was inhibited by 8-OH DPAT. BIMU8-induced promotion of dendrite formation was neutralized by concomitant treatment with the 5-HT4 receptor antagonist, confirming the specific actions of the 5-HT4 receptor. We then examined the signaling mechanisms underlying the actions of the 5-HT4 receptor by using a protein kinase A (PKA) inhibitor. The BIMU8-induced promotion of dendrite formation was reversed partially by the PKA inhibitor, suggesting involvement of PKA signaling downstream of the 5-HT4 receptor. Finally, we examined the contribution of brain-derived neurotrophic factor (BDNF) to the promotion of dendrite formation by BIMU8. Quantitative RT-PCR analysis showed that BIMU8 increased the BDNF mRNA expression and that treatment of cultured neurons with the TrkB antagonist reversed the BIMU8-induced increase in dendrite formation. In summary, the present study suggests a novel role for the 5-HT4 receptor in facilitation of dendrite formation in which intracellular signaling of PKA and the BDNF-TrkB system may be involved.

  7. Signal Transduction Mechanism for Serotonin 5-HT2B Receptor-Mediated DNA Synthesis and Proliferation in Primary Cultures of Adult Rat Hepatocytes.

    PubMed

    Naito, Kota; Tanaka, Chizuru; Mitsuhashi, Manami; Moteki, Hajime; Kimura, Mitsutoshi; Natsume, Hideshi; Ogihara, Masahiko

    2016-01-01

    The involvement of serotonin (5-hydroxytryptamine; 5-HT) and the 5-HT2 receptor subtypes in the induction of DNA synthesis and proliferation was investigated in primary cultures of adult rat hepatocytes to elucidate the intracellular signal transduction mechanisms. Hepatocyte parenchymal cells maintained in a serum-free, defined medium, synthesized DNA and proliferated in the presence of 5-HT or a selective 5-HT2B receptor agonist, BW723C86, but not in the presence of 5-HT2A, or 5-HT2C receptor agonists (TCB-2 and CP809101, respectively), in a time- and dose-dependent manner. A selective 5-HT2B receptor antagonist, LY272015 (10(-7) M), and a specific phospholipase C (PLC) inhibitor, U-73122 (10(-6) M), as well as specific inhibitors of growth-related signal transducers-including AG1478, LY294002, PD98059, and rapamycin-completely inhibited 5-HT (10(-6) M)- or BW723C86 (10(-6) M)-induced hepatocyte DNA synthesis and proliferation. Both 5-HT and BW723C86 were shown to significantly stimulate the phosphorylation of epidermal growth factor (EGF)/transforming growth factor (TGF)-α receptor tyrosine kinase (p175 kDa) and extracellular signal-regulated kinase (ERK) 2 on Western blot analysis. These results suggest that the proliferative mechanism of activating 5-HT is mediated mainly through 5-HT2B receptor-stimulated Gq/PLC and EGF/TGF-α-receptor/phosphatidylinositol 3-kinase (PI3K)/ERK2/mammalian target of rapamycin (mTOR) signaling pathways in primary cultured hepatocytes.

  8. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC.

  9. 5-HT2A/C receptors mediate the antipsychotic-like effects of alstonine.

    PubMed

    Linck, V M; Bessa, M M; Herrmann, A P; Iwu, M M; Okunji, C O; Elisabetsky, E

    2012-01-10

    The purpose of this study was to determine the effects of alstonine, an indole alkaloid with putative antipsychotic effects, on working memory by using the step-down inhibitory avoidance paradigm and MK801-induced working memory deficits in mice. Additionally, the role of serotonin 5-HT2A/C receptors in the effects of alstonine on mouse models associated with positive (MK801-induced hyperlocomotion), negative (MK801-induced social interaction deficit), and cognitive (MK801-induced working memory deficit) schizophrenia symptoms was examined. Treatment with alstonine was able to prevent MK801-induced working memory deficit, indicating its potential benefit for cognitive deficits now seen as a core symptom in the disease. Corroborating previously reported data, alstonine was also effective in counteracting MK801-induced hyperlocomotion and social interaction deficit. Ritanserin, a 5-HT2A/C receptor antagonist, prevented alstonine's effects on these three behavioral parameters. This study presents additional evidence that 5-HT2A/C receptors are central to the antipsychotic-like effects of alstonine, consistently seen in mouse models relevant to the three dimensions of schizophrenia symptoms.

  10. Analysis of the Serotonergic System in a Mouse Model of Rett Syndrome Reveals Unusual Upregulation of Serotonin Receptor 5b

    PubMed Central

    Vogelgesang, Steffen; Niebert, Sabine; Renner, Ute; Möbius, Wiebke; Hülsmann, Swen; Manzke, Till; Niebert, Marcus

    2017-01-01

    Mutations in the transcription factor methyl-CpG-binding-protein 2 (MeCP2) cause a delayed-onset neurodevelopmental disorder known as Rett syndrome (RTT). Although alteration in serotonin levels have been reported in RTT patients, the molecular mechanisms underlying these defects are not well understood. Therefore, we chose to investigate the serotonergic system in hippocampus and brainstem of male Mecp2-/y knock-out mice in the B6.129P2(C)-Mecp2(tm1.1Bird) mouse model of RTT. The serotonergic system in mouse is comprised of 16 genes, whose mRNA expression profile was analyzed by quantitative RT-PCR. Mecp2-/y mice are an established animal model for RTT displaying most of the cognitive and physical impairments of human patients and the selected areas receive significant modulation through serotonin. Using anatomically and functional characterized areas, we found region-specific differential expression between wild type and Mecp2-/y mice at post-natal day 40. In brainstem, we found five genes to be dysregulated, while in hippocampus, two genes were dysregulated. The one gene dysregulated in both brain regions was dopamine decarboxylase, but of special interest is the serotonin receptor 5b (5-ht5b), which showed 75-fold dysregulation in brainstem of Mecp2-/y mice. This dysregulation was not due to upregulation, but due to failure of down-regulation in Mecp2-/y mice during development. Detailed analysis of 5-ht5b revealed a receptor that localizes to endosomes and interacts with Gαi proteins. PMID:28337123

  11. Pharmacological and biochemical characterization of the mouse 5HT5A serotonin receptor heterologously produced in the yeast Saccharomyces cerevisiae.

    PubMed

    Bach, M; Sander, P; Haase, W; Reiländer, H

    1996-01-01

    The cDNA for the mouse 5HT5A receptor has been functionally expressed in the unicellular yeast Saccharomyces cerevisiae. The NH2-terminal end of the receptor gene was fused to the Bacillus macerans (1-3, 1-4)-beta-glucanase signal sequence to ensure proper membrane insertion and to the c-myc epitope to permit immunological detection of the heterologously expressed protein. In the resulting episomal yeast expression plasmid pCNNmm5HT5A the modified 5HT5A gene is under the transcriptional control of the endopeptidase B gene promoter (PRB1). After transformation of the vector into the protease deficient S. cerevisiae strain cI3-ABYS-86, recombinant clones were examined for the presence of functional receptor by radioligand binding using [3H]LSD. Whole cells as well as crude membrane preparations of recombinant clones showed saturable binding of the receptor with a KD of approximately 2.2 nM. The pharmacological properties for the heterologous expressed receptor, estimated by ligand-displacement studies using certain serotonin agonists and antagonists, were comparable to those reported for the receptor expressed in mammalian systems. Western blot analysis of membranes prepared from a recombinant clone using the monoclonal antibody 9E10, directed against the c-myc epitope of the modified receptor, revealed an apparent molecular mass of about 43 kDa for the receptor expressed in S. cerevisiae. Glycosylation of the receptor was analysed by EndoH digestion. A heat shock of recombinant yeast significantly increased the number of specific binding sites per cell and also improved the affinity of the receptor. Immunogold electron microscopy was used to study the localization of the heterologously expressed protein within the yeast cells.

  12. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin.

    PubMed

    Kusek, Magdalena; Sowa, Joanna; Kamińska, Katarzyna; Gołembiowska, Krystyna; Tokarski, Krzysztof; Hess, Grzegorz

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons.

  13. [Regulation of potential-dependant calcium channels by 5-HT1B serotonin receptors in various populations of hippocampal cells].

    PubMed

    Kononov, A V; Ivanov, S V; Zinchenko, V P

    2013-01-01

    Metabotropic serotonin receptors of 5HT1-type in brain neurons participate in regulation of such human emotional states as aggression, fear and dependence on alcohol. Activated presynaptic 5-HT1B receptors suppress the Ca2+ influx through the potential-dependent calcium channels in certain neurons. The Ca2+ influx into the cells has been measured by increase of calcium ions concentration in cytoplasm in reply to the depolarization caused by 35mM KC1. Using system of image analysis in hippocampal cells culture we found out that Ca2+-signals to depolarization oin various populations of neurons differed in form, speed and amplitude. 5HT1B receptor agonists in 86 +/- 3 % of neurons slightly suppressed the activity of potential-dependent calcium channels. Two minor cell populations (5-8 % of cells each) were found out, that strongly differed in Ca2+ signal desensitization. Calcium signal caused by depolarization in one cells population differed in characteristic delay and high rate of decay. 5HT1B receptor agonists strongly inhibited the amplitude of the Ca2+ response on KCl only in this population of neurons. The calcium signal in second cell population differed by absence desensitization and smaller amplitude which constantly increased during depolarization. 5HT 1 B receptor agonists increased the calcium response amplitude to depolarization in this population of neurons. Thus we show various sensitivity of potential-dependent calcium channels of separate neurons to 5HTB1 receptor agonist.

  14. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter.

    PubMed

    Heitland, Ivo; Groenink, Lucianne; Bijlsma, Elisabeth Y; Oosting, Ronald S; Baas, Johanna M P

    2013-01-01

    The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS) was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886) and the serotonin transporter (5HTTLPR). These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886) showed no acquisition of fear conditioned responses (FPS) to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele) and 5HTTLPR (short allele) was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.

  15. Systematic screening for mutations in the human serotonin 1F receptor gene in patients with bipolar affective disorder and schizophrenia

    SciTech Connect

    Shimron-Abarbanell, D.; Harms, H.; Erdmann, J.; Propping, P.; Noethen, M.M.

    1996-04-09

    Using single strand conformational analysis we screened the complete coding sequence of the serotonin 1F (5-HT{sub 1F}) receptor gene for the presence of DNA sequence variation in a sample of 137 unrelated individuals including 45 schizophrenic patients, 46 bipolar patients, as well as 46 healthy controls. We detected only three rare sequence variants which are characterized by single base pair substitutions, namely a silent T{r_arrow}A transversion in the third position of codon 261 (encoding isoleucine), a silent C{r_arrow}T transition in the third position of codon 176 (encoding histidine), and a C{r_arrow}T transition in position -78 upstream from the start codon. The lack of significant mutations in patients suffering from schizophrenia and bipolar affective disorder indicates that the 5-HT{sub 1F} receptor is not commonly involved in the etiology of these diseases. 12 refs., 1 fig., 2 tabs.

  16. Responding for a conditioned reinforcer, and its enhancement by nicotine, is blocked by dopamine receptor antagonists and a 5-HT(2C) receptor agonist but not by a 5-HT(2A) receptor antagonist.

    PubMed

    Guy, Elizabeth Glenn; Fletcher, Paul J

    2014-10-01

    An aspect of nicotine reinforcement that may contribute to tobacco addiction is the effect of nicotine to enhance the motivational properties of reward-associated cues, or conditioned stimuli (CSs). Several studies have now shown that nicotine enhances responding for a stimulus that has been paired with a natural reinforcer. This effect of nicotine to enhance responding for a conditioned reinforcer is likely due to nicotine-induced enhancements in mesolimbic dopaminergic activity, but this has not been directly assessed. In this study, we assessed roles for dopamine (DA) D1 or D2 receptors, and two serotonin (5-HT) receptor subtypes known to modulate DA activity, the 5-HT2C or 5-HT2A subtypes, on nicotine-enhanced responding for a conditioned reinforcer. Water-restricted rats were exposed to Pavlovian conditioning sessions, where a CS was paired with water delivery. Then, in a second phase, animals were required to perform a novel, lever-pressing response for presentations of the CS as a conditioned reinforcer. Nicotine (0.4 mg/kg) enhanced responding for the conditioned reinforcer. To examine potential roles for dopamine (DA) and serotonin (5-HT) receptors in this effect, separate groups of animals were used to assess the impact of administering the D1 receptor antagonist SCH 23390, D2 receptor antagonist eticlopride, 5-HT2C receptor agonist Ro 60-0175, or 5-HT2A receptor antagonist M100907 on nicotine-enhanced responding for conditioned reinforcement. SCH 23390, eticlopride, and Ro 60-0175 all reduced responding for conditioned reinforcement, and the ability of nicotine to enhance this effect. M100907 did not alter this behavior. Together, these studies indicate that DA D1 and D2 receptors, but not 5-HT2A receptors, contribute to the effect of nicotine to enhance responding for a conditioned reinforcer. This effect can also be modulated by 5-HT2C receptor activation.

  17. Comprehensive Immunolocalization Studies of a Putative Serotonin Receptor from the Alimentary Canal of Aedes aegypti Larvae Suggest Its Diverse Roles in Digestion and Homeostasis

    PubMed Central

    Petrova, Adelina; Moffett, David Franklin

    2016-01-01

    Serotonin regulates key processes including digestion and homeostasis in insects. Serotonin effects are mediated by serotonin receptors that transduce information through initiation of second messenger signaling pathways. Lack of information on serotonin receptors associated with the alimentary canal impedes the understanding of the serotonergic role in insect physiology. To address this void, the present study has cloned and identified a putative serotonin receptor (hereafter AaSeR-1) from the alimentary canal of Aedes aegypti (yellow fever mosquito) larvae. In addition to in-silico analyses of AaSeR-1 primary sequence, immunohistochemical investigations were carried out to elucidate receptor expression patterns. Specific AaSeR-1 immunofluorescence was detected in the caeca, the mid- and hindgut, including the Malpighian tubules. These findings point out not only receptor ubiquitous nature but also its involvement in regulation of different stages of nutrient processing and homeostasis. Furthermore, AaSeR-1 may mediate an array of effects through its differential expression at various cell compartments. While AaSeR-1 specific immunofluorescence was depicted in the nucleus and nucleolus of principal cells of the anterior midgut, in the posterior, analyses suggest receptor association with the plasma membrane of both principal and regenerative cells. In addition, AaSeR-1 immunofluorescence was also found in some enteroendocrine cells and in both circular and longitudinal muscles that innervate the alimentary canal. Overall, immunohistochemical analyses of AaSeR-1 expression indicate that this receptor exercises multiple roles in digestion- and homeostasis-related mechanisms. PMID:26808995

  18. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients

    PubMed Central

    Bădescu, George Mihai; Bogdan, Catalin; Weston, Ria; Slevin, Mark; Di Napoli, Mario; Popa-Wagner, Aurel

    2016-01-01

    Despite the fact that a high proportion of elderly stroke patients develop mood disorders, the mechanisms underlying late-onset neuropsychiatric and neurocognitive symptoms have so far received little attention in the field of neurobiology. In rodents, aged animals display depressive symptoms following stroke, whereas young animals recover fairly well. This finding has prompted us to investigate the expression of serotonin receptors 2A and 2B, which are directly linked to depression, in the brains of aged and young rats following stroke. Although the development of the infarct was more rapid in aged rats in the first 3 days after stroke, by day 14 the cortical infarcts were similar in size in both age groups i.e. 45% of total cortical volume in young rats and 55.7% in aged rats. We also found that the expression of serotonin receptor type B mRNA was markedly increased in the perilesional area of aged rats as compared to the younger counterparts. Furthermore, histologically, HTR2B protein expression in degenerating neurons was closely associated with activated microglia both in aged rats and human subjects. Treatment with fluoxetine attenuated the expression of Htr2B mRNA, stimulated post-stroke neurogenesis in the subventricular zone and was associated with an improved anhedonic behavior and an increased activity in the forced swim test in aged animals. We hypothesize that HTR2B expression in the infarcted territory may render degenerating neurons susceptible to attack by activated microglia and thus aggravate the consequences of stroke. PMID:27013593

  19. Normalization of hypothalamic serotonin (5-HT 1B) receptor and NPY in cancer anorexia after tumor resection: an immunocytochemical study.

    PubMed

    Makarenko, Irina G; Meguid, Michael M; Gatto, Louis; Chen, Chung; Ramos, Eduardo J B; Goncalves, Carolina G; Ugrumov, Michael V

    2005-08-05

    Tumor growth leads to anorexia and decreased food intake, the regulation of which is via the integrated hypothalamic peptidergic and monoaminergic system. Serotonin (5-HT), an anorectic monoamine acts primarily via 5-HT 1B-receptors in hypothalamic nuclei while neuropeptide Y (NPY) acts an orexigenic peptide. We previously reported that 5-HT 1B-receptors are up regulated while NPY is down regulated in tumor-bearing (TB)-related anorexia, contributing to food intake reduction. In anorectic TB rats we hypothesize that after tumor resection when food intake has reverted to normal, normalization of 5-HT 1B-receptor and NPY will occur. The aim of this study was to demonstrate normalization of these hypothalamic changes compared to Controls. In anorectic tumor-bearing rats after tumor resection (TB-R) and in sham-operated (Control) rats, distribution of 5-HT 1B-receptors and NPY in hypothalamic nuclei was analyzed using peroxidase antiperoxidase immunocytochemical methods. Image analysis of immunostaining was performed and the data were statistically analyzed. Immunostaining specificity was controlled by omission of primary or secondary antibodies and pre-absorption test. Our results show that after TB-R versus Controls a normalization of food intake, 5-H-1B-receptor and NPY expression in the hypothalamus occurs. These data, discussed in context with our previous studies, support the hypothesis that tumor resection results not only in normalization of food intake but also in reversible changes of anorectic and orexigenic hypothalamic modulators.

  20. Comparative Pharmacology and Guide to the Use of the Serotonin 5-HT3 Receptor Antagonists for Postoperative Nausea and Vomiting.

    PubMed

    Kovac, Anthony L

    2016-12-01

    Since the introduction of the serotonin 5-hydroxy tryptamine 3 (5-HT3) receptor antagonists in the early 1990s, the incidence of postoperative nausea and vomiting (PONV) and post-discharge nausea and vomiting (PDNV) has decreased, yet continues to be a problem for the surgical patient. The clinical application of the 5-HT3 receptor antagonists has helped define the approach and role of these antiemetics in the prevention and treatment of PONV and PDNV. Pharmacological and clinical differences exist among these medications resulting in corresponding differences in effectiveness, safety, optimal dosage, time of administration, and use as combination and rescue antiemetic therapy. The clinical application of the 5-HT3 receptor antagonist antiemetics has improved the prevention and treatment of PONV and PDNV. The most recent consensus guidelines for PONV published in 2014 outline the use of these antiemetics. The 5-HT3 receptor antagonists play an important role to help prevent PONV and PDNV in perioperative care pathways such as Enhanced Recovery After Surgery (ERAS). Comparisons and guidelines for use of the 5-HT3 receptor antagonists in relation to the risk for PONV and PDNV are reviewed.

  1. Role of serotonin 1A receptors in the median raphe nucleus on the behavioral consequences of forced swim stress.

    PubMed

    Almeida, P V G; Trovo, M C; Tokumoto, A M; Pereira, A C; Padovan, C M

    2013-12-01

    Despite the intense research on the neurobiology of stress, the role of serotonin (5-HT)1A receptors still remains to be elucidated. In the hippocampus, post-synaptic 5-HT1A receptors activation induces anxiolytic effects in animals previously exposed to stressful situations. However, little is known about somatodendritic 5-HT1A receptors in the median raphe nucleus (MRN). Therefore, the aim of this study was to investigate the role of 5-HT1A receptors located in the MRN in rats exposed to forced swim stress. After recovering from surgery, rats were forced to swim for 15 min in a cylinder. Intra-MRN injections of saline, 8-OH-DPAT (3 nmol/0.2 µL) and/or WAY-100635 (0.3 nmol/0.2 µL) were performed immediately before or after pre-exposure or 24 h later (immediately before test). Non-stressed rats received the same treatment 24 h or 10 min before test. Our data showed that 8-OH-DPAT increased latency to display immobility while decreasing time spent immobile in almost all experimental conditions. These effects were not prevented by previous treatment with WAY-100635. No effects of different treatments were described in non-stressed animals. Taken together, our data suggest that in addition to activation of 5-HT1A, 5-HT7 receptors may also be involved in the behavioural consequences of exposure to swim stress.

  2. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways.

    PubMed

    Gorini, C; Jameson, H; Woerman, A L; Perry, D C; Mendelowitz, D

    2013-08-15

    In this study we used a rat model for prenatal nicotine exposure to test whether clinically relevant concentrations of brain nicotine and cotinine are passed from dams exposed to nicotine to her pups, whether this changes the trigeminocardiac reflex (TCR), and whether serotonergic function in the TCR brainstem circuitry is altered. Pregnant Sprague-Dawley dams were exposed to 6 mg·kg(-1)·day(-1) of nicotine via osmotic minipumps for the duration of pregnancy. Following birth dams and pups were killed, blood was collected, and brain nicotine and cotinine levels were measured. A separate group of prenatal nicotine-exposed pups was used for electrophysiological recordings. A horizontal brainstem slice was obtained by carefully preserving the trigeminal nerve with fluorescent identification of cardiac vagal neurons (CVNs) in the nucleus ambiguus. Stimulation of the trigeminal nerve evoked excitatory postsynaptic current in CVNs. Our data demonstrate that prenatal nicotine exposure significantly exaggerates both the TCR-evoked changes in heart rate in conscious unrestrained pups, and the excitatory neurotransmission to CVNs upon trigeminal afferent nerve stimulation within this brainstem reflex circuit. Application of the 5-HT1A receptor antagonist WAY 100635 (100 μM) and 5-HT2A/C receptor antagonist ketanserin (10 μM)significantly decreased neurotransmission, indicating an increased facilitation of 5-HT function in prenatal nicotine-exposed animals. Prenatal nicotine exposure enhances activation of 5-HT receptors and exaggerates the trigeminocardiac reflex.

  3. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways

    PubMed Central

    Gorini, C.; Jameson, H.; Woerman, A. L.; Perry, D. C.

    2013-01-01

    In this study we used a rat model for prenatal nicotine exposure to test whether clinically relevant concentrations of brain nicotine and cotinine are passed from dams exposed to nicotine to her pups, whether this changes the trigeminocardiac reflex (TCR), and whether serotonergic function in the TCR brainstem circuitry is altered. Pregnant Sprague-Dawley dams were exposed to 6 mg·kg−1·day−1 of nicotine via osmotic minipumps for the duration of pregnancy. Following birth dams and pups were killed, blood was collected, and brain nicotine and cotinine levels were measured. A separate group of prenatal nicotine-exposed pups was used for electrophysiological recordings. A horizontal brainstem slice was obtained by carefully preserving the trigeminal nerve with fluorescent identification of cardiac vagal neurons (CVNs) in the nucleus ambiguus. Stimulation of the trigeminal nerve evoked excitatory postsynaptic current in CVNs. Our data demonstrate that prenatal nicotine exposure significantly exaggerates both the TCR-evoked changes in heart rate in conscious unrestrained pups, and the excitatory neurotransmission to CVNs upon trigeminal afferent nerve stimulation within this brainstem reflex circuit. Application of the 5-HT1A receptor antagonist WAY 100635 (100 μM) and 5-HT2A/C receptor antagonist ketanserin (10 μM)significantly decreased neurotransmission, indicating an increased facilitation of 5-HT function in prenatal nicotine-exposed animals. Prenatal nicotine exposure enhances activation of 5-HT receptors and exaggerates the trigeminocardiac reflex. PMID:23766497

  4. Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin1A receptors

    PubMed Central

    Sarnyai, Zoltán; Sibille, Etienne L.; Pavlides, Constantine; Fenster, Robert J.; McEwen, Bruce S.; Tóth, Miklós

    2000-01-01

    The hippocampus is a major limbic target of the brainstem serotonergic neurons that modulate fear, anxiety, and learning through postsynaptic serotonin1A receptors (5-HT1A receptors). Because chronic stress selectively down-regulates the 5-HT1A receptors in the hippocampus, we hypothesized that mice lacking these receptors may exhibit abnormalities reminiscent of symptoms of stress-related psychiatric disorders. In particular, a hippocampal deficit in the 5-HT1A receptor could contribute to the cognitive abnormalities often seen in these disorders. To test whether a deficit in 5-HT1A receptors impairs hippocampus-related functions, we studied hippocampal-dependent learning and memory, synaptic plasticity in the hippocampus, and limbic neuronal excitability in 5-HT1A-knockout (KO) mice. 5-HT1A-KO animals showed a deficit in hippocampal-dependent learning and memory tests, such as the hidden platform (spatial) version of the Morris water maze and the delayed version of the Y maze. The performance of KO mice was not impaired in nonhippocampal memory tasks such as the visible platform (nonspatial) version of the Morris water maze, the immediate version of the Y maze, and the spontaneous-alternation test of working memory. Furthermore, paired-pulse facilitation in the dentate gyrus of the hippocampus was impaired in 5-HT1A-KO mice. Finally, 5-HT1A-KO mice, as compared with wild-type animals, displayed higher limbic excitability manifested as lower seizure threshold and higher lethality in response to kainic acid administration. These results demonstrate that 5-HT1A receptors are required for maintaining normal hippocampal functions and implicate a role for the 5-HT1A receptor in hippocampal-related symptoms, such as cognitive disturbances, in stress-related disorders. PMID:11121072

  5. Serotonin effects in the crab Neohelice granulata: Possible involvement of two types of receptors in peripheral tissues.

    PubMed

    Inohara, Elen Thegla Sander; Pinto, Charles Budazewsky; Model, Jorge Felipe Argenta; Trapp, Márcia; Kucharski, Luiz Carlos; Da Silva, Roselis Silveira Martins; Vinagre, Anapaula Sommer

    2015-07-01

    In crustaceans, serotonin (5-HT) controls various physiological processes, such as hormonal secretion, color changes, reproduction, and metabolism. Since 5-HT injections cause hyperglycemia, this study was designed to further investigate this action of 5-HT in the crab Neohelice granulate, fed with a high-carbohydrate (HC) or a high-protein (HP) diet. The effects of pre-treatment with mammalian 5-HT receptor antagonists, cyproheptadine and methiothepin, were also investigated. A series of in vivo experiments with (3)H-5-HT was carried out in order to investigate the presence of putative receptors in peripheral tissues. Since gills were the tissue with the highest labeling in in vivo experiments, in vitro studies with isolated anterior and posterior gills were also conducted. Cyproheptadine blocked the hyperglycemic effect of 5-HT in HP-fed crabs. Methiothepin reduced glycogen levels in the anterior gills of HP crabs and partially blocked the 5-HT-like posture. The injection of (3)H-5-HT identified specific binding sites in all the tissues studied and revealed that the binding can be influenced by the type of diet administered to the crabs. Incubation of the anterior and posterior gills with (3)H-5-HT and 5-HT confirmed the specificity of the binding sites. Both antagonists inhibited (3)H-5-HT binding. In conclusion, this study highlights the importance of serotonin in the control of glucose homeostasis in crustaceans and provides evidences of at least two types of 5-HT binding sites in peripheral tissues. Further studies are necessary to identify the structure of these receptors and their signaling pathways.

  6. Individual vulnerability to escalated aggressive behavior by a low dose of alcohol: decreased serotonin receptor mRNA in the prefrontal cortex of male mice.

    PubMed

    Chiavegatto, S; Quadros, I M H; Ambar, G; Miczek, K A

    2010-02-01

    Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors with the sensitivity of alcohol's effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared with alcohol non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin [5-hydroxytryptamine (5-HT)] system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5-HT(3), in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT(1B) receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT(1B) mRNA was elevated when compared with ANA mice. In the hypothalamus, AHA mice also showed increased transcripts for 5-HT(2A) receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in mice which showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression.

  7. Platelet serotonin modulates immune functions.

    PubMed

    Mauler, M; Bode, C; Duerschmied, D

    2016-01-01

    This short review addresses immune functions of platelet serotonin. Platelets transport serotonin at a high concentration in dense granules and release it upon activation. Besides haemostatic, vasotonic and developmental modulation, serotonin also influences a variety of immune functions (mediated by different serotonin receptors). First, platelet serotonergic effects are directed against invading pathogens via activation and proliferation of lymphocytes, modulation of cytokine release, and recruitment of neutrophils to sites of acute inflammation by induction of selectin expression on endothelial cells. Second, serotonin levels are elevated in autoimmune diseases, such as asthma or rheumatoid arthritis, and during tissue regeneration after ischemia of myocardium or brain. Specific antagonism of serotonin receptors appears to improve survival after myocardial infarction or sepsis and to attenuate asthmatic attacks in animal models. It will be of great clinical relevance if these findings can be translated into human applications. In conclusion, targeting immune modulatory effects of platelet serotonin may provide novel therapeutic options for common health problems.

  8. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    SciTech Connect

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.

  9. Serotonin receptor 1B genotype and hostility, anger and aggressive behavior through the lifespan: the Young Finns study.

    PubMed

    Hakulinen, Christian; Jokela, Markus; Hintsanen, Mirka; Merjonen, Päivi; Pulkki-Råback, Laura; Seppälä, Ilkka; Lyytikäinen, Leo-Pekka; Lehtimäki, Terho; Kähönen, Mika; Viikari, Jorma; Raitakari, Olli T; Keltikangas-Järvinen, Liisa

    2013-12-01

    The serotonin system has been shown to be involved in the regulation of hostility, anger, and aggressive behavior. Previous molecular genetic studies suggest that the serotonin receptor 1B (HTR1B) rs6296 genotype might have a particular role in these types of behaviors. We examined whether HTR1B is related to hostility, anger, and aggressive behavior phenotypes over a lifespan and whether it modifies the connection between childhood aggressive behavior and adulthood hostility and anger. The participants were 967 women and men from a large population based sample (The Young Finns Study) with a 27-year follow-up. Childhood aggressive behavior was reported by the mother twice when the participants were 3 to 12 years of age. Adulthood hostility and anger were self-reported by the participants between ages 24 and 36. Childhood aggressive behavior predicted adulthood hostility over 27 years. HTR1B SNP rs6296 was associated with childhood aggressive behavior but not with adulthood anger or hostility. The HTR1B SNP rs6296 modified the association between childhood aggressive behavior and adulthood hostility. Aggressive behavior and hostility might form a life course pattern, and the HTR1B might contribute to a development of this pattern.

  10. Impact of Serotonin 2C Receptor Null Mutation on Physiology and Behavior Associated with Nigrostriatal Dopamine Pathway Function

    PubMed Central

    Abdallah, Luna; Bonasera, Stephen J.; Hopf, F. Woodward; O’Dell, Laura; Giorgetti, Marco; Jongsma, Minke; Carra, Scott; Pierucci, Massimo; Di Giovanni, Giuseppe; Esposito, Ennio; Parsons, Loren H.; Bonci, Antonello; Tecott, Laurence H.

    2011-01-01

    The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT2CR) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT2CRs produces marked alterations in the activity and functional output of this pathway. 5-HT2CR mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of D-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D1 receptor agonist SKF 81297. Differences in DSt D1 or D2 receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT2CRs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt. PMID:19553455

  11. Unique ionotropic receptors for D-aspartate are a target for serotonin-induced synaptic plasticity in Aplysia californica.

    PubMed

    Carlson, Stephen L; Fieber, Lynne A

    2012-01-01

    The non-L-glutamate (L-Glu) receptor component of D-aspartate (D-Asp) currents in Aplysia californica buccal S cluster (BSC) neurons was studied with whole cell voltage clamp to differentiate it from receptors activated by other well-known agonists of the Aplysia nervous system and investigate modulatory mechanisms of D-Asp currents associated with synaptic plasticity. Acetylcholine (ACh) and serotonin (5-HT) activated whole cell excitatory currents with similar current voltage relationships to D-Asp. These currents, however, were pharmacologically distinct from D-Asp. ACh currents were blocked by hexamethonium (C6) and tubocurarine (D-TC), while D-Asp currents were unaffected. 5-HT currents were blocked by granisetron and methysergide (MES), while D-Asp currents were unaffected. Conversely, while (2S,3R)-1-(Phenanthren-2-carbonyl)piperazine-2,3-dicarboxylic acid(PPDA) blocked D-Asp currents, it had no effect on ACh or 5-HT currents. Comparison of the charge area described by currents induced by ACh or 5-HT separately from, or with, D-Asp suggests activation of distinct receptors by all 3 agonists. Charge area comparisons with L-Glu, however, suggested some overlap between L-Glu and D-Asp receptors. Ten minute exposure to 5-HT induced facilitation of D-Asp-evoked responses in BSC neurons. This effect was mimicked by phorbol ester, suggesting that protein kinase C (PKC) was involved.

  12. The antipsychotic aripiprazole induces antinociceptive effects: Possible role of peripheral dopamine D2 and serotonin 5-HT1A receptors.

    PubMed

    Almeida-Santos, Ana F; Ferreira, Renata C M; Duarte, Igor D; Aguiar, Daniele C; Romero, Thiago R L; Moreira, Fabricio A

    2015-10-15

    Aripiprazole is an antipsychotic that acts by multiple mechanisms, including partial agonism at dopamine D2 and serotonin 5-HT1A receptors. Since these neurotransmitters also modulate pain and analgesia, we tested the hypothesis that systemic or local administration of aripiprazole induces antinociceptive responses. Systemic aripiprazole (0.1-10 mg/kg; i.p.) injection in mice inhibited formalin-induced paw licking and PGE2-induced hyperalgesia in the paw pressure test. This effect was mimicked by intra-plantar administration (12.5-100 µg/paw) in the ipsi, but not contralateral, paw. The peripheral action of aripiprazole (100 µg/paw) was reversed by haloperidol (0.1-10 µg/paw), suggesting the activation of dopamine receptors as a possible mechanism. Accordingly, quinpirole (25-100 µg/paw), a full agonist at D2/D3 receptors, also reduced nociceptive responses.. In line with the partial agoniztic activity of aripiprazole, low dose of this compound inhibited the effect of quinpirole (both at 25 µg/paw). Finally, peripheral administration of NAN-190 (0.1-10 μg/paw), a 5-HT1A antagonist, also prevented aripiprazole-induced antinociception. In conclusion, systemic or local administration of aripiprazole induces antinociceptive effects. Similar to its antipsychotic activity, the possible peripheral mechanism involves dopamine D2 and serotoninergic 5-HT1A receptors. Aripiprazole and other dopaminergic modulators should be further investigated as new treatments for certain types of pain.

  13. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  14. Ethanol and Mesolimbic Serotonin/Dopamine Interactions Via 5-HT1B Receptors

    DTIC Science & Technology

    2006-03-01

    5 - HT3 receptor antagonist antagonized systemic ethanol- induced increases of DA release in the VTA [10] or the NACC [9]. Moreover, the...experiments with a selective 5 -HT1B receptor antagonist such as SB 216641 are required to strengthen this conclusion. The future experiments will be... receptor antagonist ), but not BRL 15572 (a 5 -HT1D/1A receptor antagonist ) or WAY 100635 (a 5 -HT1A receptor antagonist ). Administration

  15. Selective 5HT2A and 5HT6 Receptor Antagonists Promote Sleep in Rats

    PubMed Central

    Morairty, Stephen R.; Hedley, Linda; Flores, Judith; Martin, Renee; Kilduff, Thomas S.

    2008-01-01

    Study Objectives: Serotonin (5-HT) has long been implicated in the control of sleep and wakefulness. This study evaluated the hypnotic efficacy of the 5-HT6 antagonist RO4368554 (RO) and the 5-HT2A receptor antagonist MDL100907 (MDL) relative to zolpidem. Design: A randomized, repeated-measures design was utilized in which Wistar rats received intraperitoneal injections of RO (1.0, 3.0, and 10 mg/kg), MDL (0.1, 1.0 and 3.0 mg/kg), zolpidem (10 mg/kg), or vehicle in the middle of the dark (active) period. Electroencephalogram, electromyogram, body temperature (Tb) and locomotor activity were analyzed for 6 hours after injection. Measurements and Results: RO, MDL, and zolpidem all produced significant increases in sleep and decreases in waking, compared with vehicle control. All 3 doses of MDL produced more consolidated sleep, increased non-rapid eye movement sleep (NREM) sleep, and increased electroencephalographic delta power during NREM sleep. The highest dose of RO (10.0 mg/kg) produced significant increases in sleep and decreases in waking during hour 2 following dosing. These increases in sleep duration were associated with greater delta power during NREM sleep. ZO Zolpidem induced sleep with the shortest latency and significantly increased NREM sleep and delta power but also suppressed rapid eye movement sleep sleep; in contrast, neither RO nor MDL affected rapid eye movement sleep. Whereas RO did not affect Tb, both zolpidem and MDL reduced Tb relative to vehicle-injected controls. Conclusions: These results support a role for 5-HT2A receptor modulation in NREM sleep and suggest a previously unrecognized role for 5-HT6 receptors in sleep-wake regulation. Citation: Morairty SR; Hedley L; Flores J; Martin R; Kilduff TS. Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. SLEEP 2008;31(1):34-44. PMID:18220076

  16. Mice Lacking the Serotonin Htr2B Receptor Gene Present an Antipsychotic-Sensitive Schizophrenic-Like Phenotype.

    PubMed

    Pitychoutis, Pothitos M; Belmer, Arnauld; Moutkine, Imane; Adrien, Joëlle; Maroteaux, Luc

    2015-11-01

    Impulsivity and hyperactivity share common ground with numerous mental disorders, including schizophrenia. Recently, a population-specific serotonin 2B (5-HT2B) receptor stop codon (ie, HTR2B Q20*) was reported to segregate with severely impulsive individuals, whereas 5-HT2B mutant (Htr2B(-/-)) mice also showed high impulsivity. Interestingly, in the same cohort, early-onset schizophrenia was more prevalent in HTR2B Q*20 carriers. However, the putative role of 5-HT2B receptor in the neurobiology of schizophrenia has never been investigated. We assessed the effects of the genetic and the pharmacological ablation of 5-HT2B receptors in mice subjected to a comprehensive series of behavioral test screenings for schizophrenic-like symptoms and investigated relevant dopaminergic and glutamatergic neurochemical alterations in the cortex and the striatum. Domains related to the positive, negative, and cognitive symptom clusters of schizophrenia were affected in Htr2B(-/-) mice, as shown by deficits in sensorimotor gating, in selective attention, in social interactions, and in learning and memory processes. In addition, Htr2B(-/-) mice presented with enhanced locomotor response to the psychostimulants dizocilpine and amphetamine, and with robust alterations in sleep architecture. Moreover, ablation of 5-HT2B receptors induced a region-selective decrease of dopamine and glutamate concentrations in the dorsal striatum. Importantly, selected schizophrenic-like phenotypes and endophenotypes were rescued by chronic haloperidol treatment. We report herein that 5-HT2B receptor deficiency confers a wide spectrum of antipsychotic-sensitive schizophrenic-like behavioral and psychopharmacological phenotypes in mice and provide first evidence for a role of 5-HT2B receptors in the neurobiology of psychotic disorders.

  17. Serotonergic innervation and serotonin receptor expression of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei.

    PubMed

    Bonn, M; Schmitt, A; Lesch, K-P; Van Bockstaele, E J; Asan, E

    2013-03-01

    Pharmacobehavioral studies in experimental animals, and imaging studies in humans, indicate that serotonergic transmission in the amygdala plays a key role in emotional processing, especially for anxiety-related stimuli. The lateral and basolateral amygdaloid nuclei receive a dense serotonergic innervation in all species studied to date. We investigated interrelations between serotonergic afferents and neuropeptide Y (NPY)-producing neurons, which are a subpopulation of inhibitory interneurons in the rat lateral and basolateral nuclei with particularly strong anxiolytic properties. Dual light microscopic immunolabeling showed numerous appositions of serotonergic afferents on NPY-immunoreactive somata. Using electron microscopy, direct membrane appositions and synaptic contacts between serotonin-containing axon terminals and NPY-immunoreactive cellular profiles were unequivocally established. Double in situ hybridization documented that more than 50 %, and about 30-40 % of NPY mRNA-producing neurons, co-expressed inhibitory 5-HT1A and excitatory 5-HT2C mRNA receptor subtype mRNA, respectively, in both nuclei with no gender differences. Triple in situ hybridization showed that individual NPY mRNA-producing interneurons co-express both 5-HT1A and 5-HT2C mRNAs. Co-expression of NPY and 5-HT3 mRNA was not observed. The results demonstrate that serotonergic afferents provide substantial innervation of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Studies of serotonin receptor subtype co-expression indicate a differential impact of the serotonergic innervation on this small, but important, population of anxiolytic interneurons, and provide the basis for future studies of the circuitry underlying serotonergic modulation of emotional stimulus processing in the amygdala.

  18. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome.

    PubMed

    De Filippis, Bianca; Chiodi, Valentina; Adriani, Walter; Lacivita, Enza; Mallozzi, Cinzia; Leopoldo, Marcello; Domenici, Maria Rosaria; Fuso, Andrea; Laviola, Giovanni

    2015-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family-crucially involved in the regulation of brain structural plasticity and cognitive processes-can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.

  19. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome

    PubMed Central

    De Filippis, Bianca; Chiodi, Valentina; Adriani, Walter; Lacivita, Enza; Mallozzi, Cinzia; Leopoldo, Marcello; Domenici, Maria Rosaria; Fuso, Andrea; Laviola, Giovanni

    2015-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family—crucially involved in the regulation of brain structural plasticity and cognitive processes—can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R. PMID:25926782

  20. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    PubMed

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear.

  1. CB-1 receptors modulate the effect of the selective serotonin reuptake inhibitor, citalopram on extracellular serotonin levels in the rat prefrontal cortex.

    PubMed

    Kleijn, Jelle; Cremers, Thomas I F H; Hofland, Corry M; Westerink, Ben H C

    2011-07-01

    A large percentage of depressed individuals use drugs of abuse, like cannabis. This study investigates the impact of cannabis on the pharmacological effects of the antidepressant citalopram. Using microdialysis in the prefrontal cortex of rats we monitored serotonin levels before and after cannabinoid (WIN55,212-2 or rimonabant) and citalopram administration. Stimulating CB-1 decreased the effect of citalopram on increasing serotonin levels in the prefrontal cortex. Blocking CB-1 augmented this effect of citalopram. Although repeating these experiments in a chronical setting is recommended the present results might have implication for the clinical effects of citalopram.

  2. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    SciTech Connect

    Nagayama, Daiji; Ishihara, Noriko; Bujo, Hideaki; Shirai, Kohji; Tatsuno, Ichiro

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  3. Influence of WA-335, a factor which blocks serotonin receptors, on neuroleptic-induced catalepsy.

    PubMed

    Maj, J; Sowińska, H; Baran, L

    1976-01-01

    In a previous study, anticataleptic action of cyproheptadine was reported. The present investigation deals with the influence of WA-335 (9,10-dihydro-10-(1-methyl-4-piperidylidene)-9-anthrol), another antagonist of serotonin, on catalepsy induced in rats with spiroperidol, pimozide, fluphenazine and reserpine. WA-335 antagonized catalepsy induced by these neuroleptics (the effect on reserpine-induced catalepsy was weakest). Joint administration of WA-335 and L-DOPA with an inhibitor of peripheral decarboxylase, or WA-335 and amantadine produced a stronger antagonistic effect (spiroperidol catalepsy) than either of these substances separately. WA-335 did not prevent catalepsy induced with physostigmine.

  4. The serotonin receptor mediates changes in autonomic neurotransmission and gastrointestinal transit induced by heat-killed Lactobacillus brevis SBC8803.

    PubMed

    Horii, Y; Nakakita, Y; Misonou, Y; Nakamura, T; Nagai, K

    2015-01-01

    Lactobacilli exhibit several health benefits in mammals, including humans. Our previous reports established that heat-killed Lactobacillus brevis SBC8803 (SBC8803) increased both efferent gastric vagal nerve activity and afferent intestinal vagal nerve activity in rats. We speculated that this strain could be useful for the treatment of gastrointestinal (GI) disorders. In this study, we examined the effects of SBC8803 on peristalsis and the activity of the efferent celiac vagal nerve innervating the intestine in rats. First, we examined the effects of intraduodenal (ID) administration of SBC8803 on efferent celiac vagal nerve activity (efferent CVNA) in urethane-anesthetised rats using electrophysiological studies. The effects of intravenous injection of the serotonin 5-HT3 receptor antagonist granisetron on changes in efferent CVNA due to ID administration of SBC8803 were also investigated. Finally, the effects of oral gavage of SBC8803 on GI transit were analysed using the charcoal propulsion method in conscious rats treated with or without granisetron. ID administration of SBC8803 increased efferent CVNA. Pretreatment with granisetron eliminated SBC8803-dependent changes in efferent CVNA. Furthermore, oral gavage of SBC8803 significantly accelerated GI transit, while pretreatment with granisetron inhibited GI transit. Our findings suggested that SBC8803 increased efferent CVNA and GI transit of charcoal meal via 5-HT3 receptors. Moreover, SBC8803 enhanced the activity of efferent vagal nerve innervating the intestine and promoted peristalsis via 5-HT3 receptors.

  5. Serotonin-induced blood flow changes in the rat hindlegs after unilateral ligation of the femoral artery. Inhibition by the S2 receptor antagonist ketanserin.

    PubMed

    Verheyen, A; Vlaminckx, E; Lauwers, F; Van Den Broeck, C; Wouters, L

    1984-08-01

    Collateral arteries can clearly be visualized in corrosion cast material after ligation of the femoral artery in rats. To characterize the influence of serotonin on the blood circulation under the experimental condition of unilateral ligation, we performed intermuscular thermoflow measurements. The data showed that intraperitoneal serotonin (8.7 and 20 mg.kg-1) injection markedly reduced the muscle temperature in both hindlegs. However, the effect was significantly more pronounced on the ligated side, where the blood was supplied through a collateral circulation, than on the non-ligated side with its normal arterial vasculature. Almost identical changes were obtained in rats with an early as well as in animals with a more advanced stage of collateral development (challenge with 8.7 mg.kg-1 serotonin). Evans blue dye experiments and angiographic data further revealed that, after challenge with 20 mg.kg-1 serotonin, the severe temperature decrease at the ligated side probably reflected a nearly complete blockage of blood supply. Pretreatment with the S2 receptor antagonist ketanserin (2.5 mg.kg-1) resulted in a significant reduction in the extent and duration of the serotonin-induced temperature decrease as revealed by the temperature measurements; such a treatment inhibited also the blockage in blood flow as seen with the other techniques. This study shows that serotonin, through its vasoconstrictive properties, can restrict the blood flow to the lower extremities of the rat, particularly when the blood is supplied through collateral circulation. This probably results in moderate to severe skeletal muscle ischaemia. It also suggests that the vasoconstriction is not only important in the inhibition of collateral blood flow in recently established collaterals but also in collateral vessels in a more advanced stage of development. The in vivo vasoconstriction and subsequent reduction of the blood supply caused by serotonin can be effectively counteracted by

  6. Practical application of the Average Information Content Maximization (AIC-MAX) algorithm: selection of the most important structural features for serotonin receptor ligands.

    PubMed

    Warszycki, Dawid; Śmieja, Marek; Kafel, Rafał

    2017-02-09

    The Average Information Content Maximization algorithm (AIC-MAX) based on mutual information maximization was recently introduced to select the most discriminatory features. Here, this methodology was applied to select the most significant bits from the Klekota-Roth fingerprint for serotonin receptors ligands as well as to select the most important features for distinguishing ligands with activity for one receptor versus another. The interpretation of selected bits and machine-learning experiments performed using the reduced interpretations outperformed the raw fingerprints and indicated the most important structural features of the analyzed ligands in terms of activity and selectivity. Moreover, the AIC-MAX methodology applied here for serotonin receptor ligands can also be applied to other target classes.

  7. Serotonin-3 receptors in the posterior ventral tegmental area regulate ethanol self-administration of alcohol-preferring (P) rats.

    PubMed

    Rodd, Zachary A; Bell, Richard L; Oster, Scott M; Toalston, Jamie E; Pommer, Tylene J; McBride, William J; Murphy, James M

    2010-05-01

    Several studies indicated the involvement of serotonin-3 ([5-hydroxy tryptamine] 5-HT(3)) receptors in regulating alcohol-drinking behavior. The objective of this study was to determine the involvement of 5-HT(3) receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers (Coulbourn Instruments, Allentown, PA) were used to examine the effects of seven consecutive bilateral microinfusions of ICS 205-930 (ICS), a 5-HT(3) receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (vol/vol) ethanol self-administration. P rats readily acquired ethanol self-administration by the fourth session. The three highest doses (0.125, 0.25, and 1.25 microg) of ICS prevented acquisition of ethanol self-administration. During the acquisition postinjection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the three highest doses (0.75, 1.0, and 1.25 microg) of ICS significantly increased responding on the ethanol lever; after the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Microinfusion of ICS into the posterior VTA did not alter the low responding on the water lever and did not alter saccharin (0.0125% wt/v) self-administration. Microinfusion of ICS into the anterior VTA did not alter ethanol self-administration. Overall, the results of this study suggest that 5-HT(3) receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration and/or repeated treatments with a 5-HT(3) receptor antagonist may alter neuronal circuitry within the posterior VTA.

  8. Carbon-11 and radioiodinated derivatives of lysergic acid diethylamide: Ligands for the study of serotonin S2 receptors in vivo

    SciTech Connect

    Lever, J.R.; Hartig, P.R.; Wong, D.F.; Scheffel, U.; Dannals, R.F.; Wilson, A.A.; Ravert, H.T.; Hoffman, B.J.; Frost, J.J.; Burns, H.D.

    1985-05-01

    2-(/sup 125/1)-LSD binds selectively and with high affinity to serotonin S2 receptors in vitro. In the present study, the authors prepared 2-(/sup 123/1)-LSD as well as a carbon-11 labeled analog. They also characterized the in vivo binding of these tracers to receptor sites in mouse brain to assess their potential for tomographic imaging of S2 receptors in man. The temporal distribution of 2-(/sup 125/1)-LSD paralleled the density of S2 receptors. Regional selectivity was maximal after 15 minutes when tissue to cerebellum ratios were: frontal cortex (2.6), olfactory tubercles (2.4), striatum (2.3), and cortex (2.0). Preinjection of ketanserin, a potent S2 antagonist, inhibited binding. 2-(/sup 123/1)-LSD, prepared in 20% yield from LSD and electrophilic I-123, gave similar results in vivo and may be useful for SPECT studies. The authors then synthesized N1-((/sup 11/C)-Me)-2-Br-LSD (/sup 11/C-MBL) from (/sup 11/C)-methyl iodide and 2-Br-LSD for PET imaging trials. /sup 11/C-MBL was isolated by HPLC in high chemical and radiochemical purity within 30 minutes from E.O.B. The average radiochemical yield was 20% and the specific activity was determined by U.V. spectroscopy to be up to 1300Ci/mMol (E.O.S.). 11C-MBL showed greater regional selectivity in vivo in mouse brain than 2-(/sup 125/1)-LSD. After 30 minutes, peak tissue to cerebellum ratios were: frontal cortex (5.4), olfactory tubercles (4.2), striatum (3.0), and cortex (2.8). Preinjection of ketanserin markedly inhibited /sup 11/C-MBL binding. /sup 11/C-MBL is a promising candidate for PET studies of S2 receptors.

  9. Serotonin 2B Receptor (5-HT2B R) Signals through Prostacyclin and PPAR-ß/δ in Osteoblasts

    PubMed Central

    Chabbi-Achengli, Yasmine; Launay, Jean-Marie; Maroteaux, Luc; de Vernejoul, Marie Christine; Collet, Corinne

    2013-01-01

    Osteoporosis is due to an imbalance between decreased bone formation by osteoblasts and increased resorption by osteoclasts. Deciphering factors controlling bone formation is therefore of utmost importance for the understanding and the treatment of osteoporosis. Our previous in vivo results showed that bone formation is reduced in the absence of the serotonin receptor 5-HT2B, causing impaired osteoblast proliferation, recruitment, and matrix mineralization. In this study, we investigated the signaling pathways responsible for the osteoblast defect in 5-HT2BR−/− mice. Notably, we investigated the phospholipase A2 pathway and synthesis of eicosanoids in 5-HT2BR−/− compared to wild type (WT) osteoblasts. Compared to control osteoblasts, the lack of 5-HT2B receptors was only associated with a 10-fold over-production of prostacyclin (PGI2). Also, a specific prostacyclin synthase inhibitor (U51605) rescued totally osteoblast aggregation and matrix mineralization in the 5-HT2BR−/− osteoblasts without having any effect on WT osteoblasts. Prostacyclin is the endogenous ligand of the nuclear peroxisome proliferator activated receptor ß/δ (PPAR-ß/δ), and its inhibition in 5-HT2BR−/− cells rescued totally the alkaline phosphatase and osteopontin mRNA levels, cell-cell adhesion, and matrix mineralization. We conclude that the absence of 5-HT2B receptors leads to the overproduction of prostacyclin, inducing reduced osteoblast differentiation due to PPAR-ß/δ -dependent target regulation and defective cell-cell adhesion and matrix mineralization. This study thus reveals a previously unrecognized cell autonomous osteoblast defect in the absence of 5-HT2BR and highlights a new pathway linking 5-HT2B receptors and nuclear PPAR- ß/δ via prostacyclin. PMID:24069449

  10. Lateral/basolateral amygdala serotonin type-2 receptors modulate operant self-administration of a sweetened ethanol solution via inhibition of principal neuron activity

    PubMed Central

    McCool, Brian A.; Christian, Daniel T.; Fetzer, Jonathan A.; Chappell, Ann M.

    2014-01-01

    The lateral/basolateral amygdala (BLA) forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates “seeking” (exemplified as lever-press behaviors) from consumption (drinking) directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (α-m5HT) into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA α-m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that α-m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of α-m5HT. During whole-cell patch current-clamp recordings, we subsequently found that α-m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a sweetened ethanol solution

  11. Dynamic Expression of Serotonin Receptor 5-HT3A in Developing Sensory Innervation of the Lower Urinary Tract

    PubMed Central

    Ritter, K. Elaine; Southard-Smith, E. Michelle

    2017-01-01

    Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as

  12. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  13. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  14. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  15. The inhibitory effect of combination treatment with leptin and cannabinoid CB1 receptor agonist on food intake and body weight gain is mediated by serotonin 1B and 2C receptors.

    PubMed

    Wierucka-Rybak, M; Wolak, M; Juszczak, M; Drobnik, J; Bojanowska, E

    2016-06-01

    Previous studies reported that the co-injection of leptin and cannabinoid CB1 receptor antagonists reduces food intake and body weight in rats, and this effect is more profound than that induced by these compounds individually. Additionally, serotonin mediates the effects of numerous anorectic drugs. To investigate whether serotonin interacts with leptin and endocannabinoids to affect food intake and body weight, we administered 5-hydroxytryptamine(HT)1B and 5-hydroxytryptamine(HT)2C serotonin receptor antagonists (3 mg/kg GR 127935 and 0.5 mg/kg SB 242084, respectively) to male Wistar rats treated simultaneously with leptin (100 μg/kg) and the CB1 receptor inverse agonist AM 251 (1 mg/kg) for 3 days. In accordance with previous findings, the co-injection of leptin and AM 251, but not the individual injection of each drug, resulted in a significant decrease in food intake and body weight gain. Blockade of the 5-HT1B and 5-HT2C receptors completely abolished the leptin- and AM 251-induced anorectic and body-weight-reducing effects. These results suggest that serotonin mediates the leptin- and AM 251-dependent regulation of feeding behavior in rats via the 5-HT1B and 5-HT2C receptors.

  16. Serotonin regulates β-casein expression via 5-HT7 receptors in human mammary epithelial MCF-12A cells.

    PubMed

    Chiba, Takeshi; Kimura, Soichiro; Takahashi, Katsuo; Morimoto, Yasunori; Maeda, Tomoji; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-01-01

    We previously reported that serotonin (5-hydroxytryptamine; 5-HT) suppresses β-casein expression, a differentiation marker in mammary epithelial cells, via inhibition of the signal transducer and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial cell line, MCF-12A. In this study, we investigated the expression pattern of the different 5-HT receptor subtypes in MCF-12A cells, and identified the receptors involved in 5-HT-mediated suppression of β-casein protein expression. β-Casein mRNA expression was inhibited by 30 µM 5-HT in a time-dependent manner. Treatment with 30 µM 5-HT for 72 h decreased β-casein protein levels and STAT5 phosphorylation (pSTAT5). The cells expressed four 5-HT receptors subtypes (5-HTR1D, 2B, 3A, and 7) at the mRNA and protein level, and their expression was elevated by prolactin (PRL) treatment. Additionally, the mRNA levels of 5-HTR1D and 5-HTR7 were significantly higher than the other 5-HT receptors in the cells. Tryptophan hydroxylase 1 mRNA was detectable in the cells in the absence of PRL, and PRL treatment significantly increased its expression. β-Casein and pSTAT5/STAT5 levels in the cells co-treated with 5-HT and a selective 5-HTR1D inhibitor, BRL15572, were equal to those observed in cells treated with 5-HT alone. However, in the cells co-treated with 5-HT and a selective 5-HTR7 inhibitor, SB269970, β-casein and pSTAT5/STAT5 levels increased in a SB269970 concentration-dependent manner. In conclusion, we showed that 5-HT regulates β-casein expression via 5-HTR7 in MCF-12A human mammary epithelial cells.

  17. Antiemetic effects of YM060, a potent and selective serotonin (5HT)3-receptor antagonist, in ferrets and dogs.

    PubMed

    Kamato, T; Miyata, K; Ito, H; Yuki, H; Yamano, M; Honda, K

    1991-11-01

    YM060, (R)-5-[(1-methyl-3-indolyl)carbonyl]-4,5,6,7-tetrahydro-1H-benzimidazole hydrochloride, is a new serotonin (5HT)3-receptor antagonist. We examined the effects of YM060 on chemotherapeutic agent-, apomorphine- and copper sulfate-induced emesis. Intravenous YM060 potently prevented cisplatin (10 mg/kg, i.v.)-induced emesis with ED50 values of 0.06 (0.05-0.07) micrograms/kg, i.v. in ferrets. Based on the ED50 values, YM060 was 300, 20 and 100 times more potent than ondansetron, granisetron and the S-isomer of YM060, respectively. The relative potencies of these drugs described above were similar to those in the previously reported 5HT3-receptor antagonism. YM060 given orally also potently inhibited cisplatin (10 mg/kg, i.p.)- and cyclophosphamide (200 mg/kg, i.p.)-induced emesis in ferrets with ED50 values of 0.1 (0.09-0.11) and 0.02 (0.16-0.27) micrograms/kg, p.o., respectively. All tested 5HT3-receptor antagonists including YM060 failed to prevent apomorphine (0.1 mg/kg, s.c.)-induced emesis in dogs and copper sulfate (1%, 10 ml, p.o.)-induced emesis in ferrets. Our data indicate that YM060 is a highly potent inhibitor of chemotherapeutic agent-induced emesis and that the antiemetic effect of YM060 may be depend on 5HT3-receptor antagonism.

  18. Serotonin 1A Receptors on Astrocytes as a Potential Target for the Treatment of Parkinson’s Disease

    PubMed Central

    Miyazaki, Ikuko; Asanuma, Masato

    2016-01-01

    Astrocytes are the most abundant neuron-supporting glial cells in the central nervous system. The neuroprotective role of astrocytes has been demonstrated in various neurological disorders such as amyotrophic lateral sclerosis, spinal cord injury, stroke and Parkinson’s disease (PD). Astrocyte dysfunction or loss-of-astrocytes increases the susceptibility of neurons to cell death, while astrocyte transplantation in animal studies has therapeutic advantage. We reported recently that stimulation of serotonin 1A (5-HT1A) receptors on astrocytes promoted astrocyte proliferation and upregulated antioxidative molecules to act as a neuroprotectant in parkinsonian mice. PD is a progressive neurodegenerative disease with motor symptoms such as tremor, bradykinesia, rigidity and postural instability, that are based on selective loss of nigrostriatal dopaminergic neurons, and with non-motor symptoms such as orthostatic hypotension and constipation based on peripheral neurodegeneration. Although dopaminergic therapy for managing the motor disability associated with PD is being assessed at present, the main challenge remains the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find treatments that can reduce the progression of dopaminergic cell death. In this article, we summarize first the neuroprotective properties of astrocytes targeting certain molecules related to PD. Next, we review neuroprotective effects induced by stimulation of 5-HT1A receptors on astrocytes. The review discusses new promising therapeutic strategies based on neuroprotection against oxidative stress and prevention of dopaminergic neurodegeneration. PMID:26795196

  19. Kinetic modeling of the serotonin 5-HT1B receptor radioligand [11C]P943 in humans

    PubMed Central

    Gallezot, Jean-Dominique; Nabulsi, Nabeel; Neumeister, Alexander; Planeta-Wilson, Beata; Williams, Wendol A; Singhal, Tarun; Kim, Sunhee; Maguire, R Paul; McCarthy, Timothy; Frost, J James; Huang, Yiyun; Ding, Yu-Shin; Carson, Richard E

    2010-01-01

    [11C]P943 is a new radioligand recently developed to image and quantify serotonin 5-Hydroxytryptamine (5-HT1B) receptors with positron emission tomography (PET). The purpose of this study was to evaluate [11C]P943 for this application in humans, and to determine the most suitable quantification method. Positron emission tomography data and arterial input function measurements were acquired in a cohort of 32 human subjects. Using arterial input functions, compartmental modeling, the Logan graphical analysis, and the multilinear method MA1 were tested. Both the two tissue-compartment model and MA1 provided good fits of the PET data and reliable distribution volume estimates. Using the cerebellum as a reference region, BPND binding potential estimates were computed. [11C]P943 BPND estimates were significantly correlated with in vitro measurements of the density of 5-HT1B receptors, with highest values in the occipital cortex and pallidum. To evaluate noninvasive methods, two- and three-parameter graphical analyses, Simplified Reference Tissue Models (SRTM and SRTM2), and Multilinear Reference Tissue Models (MRTM and MRTM2) were tested. The MRTM2 model provided the best correlation with MA1 binding-potential estimates. Parametric images of the volume of distribution or binding potential of [11C]P943 could be computed using both MA1 and MRTM2. The results show that [11C]P943 provides quantitative measurements of 5-HT1B binding potential. PMID:19773803

  20. PRX-00023, a selective serotonin 1A receptor agonist, reduces ultrasonic vocalizations in infant rats bred for high infantile anxiety.

    PubMed

    Brunelli, Susan A; Aviles, Jessica A; Gannon, Kimberly S; Branscomb, Aron; Shacham, Sharon

    2009-11-01

    To address the development of early anxiety disorders across the lifespan, the High USV line of rats was bred based on rates of infant ultrasonic vocalization in the 40-50 kHz range of predominant frequencies (USV) to maternal separation at postnatal day (P) 10. In this study, rates of USV in High line infants (pups: Postnatal Day 11+/-1) were compared to those of randomly-bred controls in response to EPIX compound PRX-00023, a unique serotonin (5-HT) agonist, acting exclusively at the 5-HT1A receptor, or buspirone, a nonspecific 5HT1A agonist. After testing, pups were examined for sedation and other drug-related effects. The results indicated that all doses of buspirone reduced USV rates in isolation, consistent with other reports. PRX-00023 significantly reduced USV rates at the lowest doses (0.01-0.05 mg/kg). None of the PRX-00023 doses produced sedation, whereas all but the lowest dose of buspirone (0.1 mg/kg) produced sedation effects. The results suggest that this compound alleviates infantile anxiety-like behavior with great specificity in rats bred for high anxiety/depressive phenotypes by selectively targeting 5-HT1A receptors, possibly by both pre- and post-synaptic mechanisms.

  1. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers.

    PubMed

    Kamal, Maud; Gbahou, Florence; Guillaume, Jean-Luc; Daulat, Avais M; Benleulmi-Chaachoua, Abla; Luka, Marine; Chen, Patty; Kalbasi Anaraki, Dina; Baroncini, Marc; Mannoury la Cour, Clotilde; Millan, Mark J; Prevot, Vincent; Delagrange, Philippe; Jockers, Ralf

    2015-05-01

    Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders.

  2. S100B interacts with the serotonin 5-HT7 receptor to regulate a depressive-like behavior.

    PubMed

    Stroth, Nikolas; Svenningsson, Per

    2015-12-01

    The serotonin 5-HT7 receptor (5-HT7) is an emerging target for psychiatric pharmacotherapy. Recent observations in rodent models and humans suggest that its blockade mediates antidepressant efficacy. In the present study, we identify the Ca(2+)-binding protein S100B as an interacting partner of 5-HT7 and show that S100B negatively regulates inducible cyclic AMP (cAMP) accumulation in transfected HeLa cells and mouse cortical astrocytes. Overexpression of S100B causes brain region-specific dysregulation of the cAMP pathway in vivo, such that concentrations of cAMP in the frontal cortex are higher in S100B transgenic female mice compared to wild-types. Finally, S100B transgenic female mice show depressive-like behavior in the forced swim test (FST) and pharmacological blockade of 5-HT7 with SB269970 normalizes FST behavior. Taken together, our results show that S100B affects behavioral despair in female mice through functional interaction with the 5-HT7 receptor. Furthermore, we identify S100B as a cAMP-regulatory protein in cultured astrocytes and the murine frontal cortex. Future experiments will clarify whether there is a direct link between the 5-HT7-associated and cAMP-regulatory actions of S100B.

  3. Separate serotonin and dopamine receptors modulate the duration of post-tetanic potentiation at an Aplysia synapse without affecting other aspects of synaptic transmission.

    PubMed

    Newlin, S A; Schlapfer, W T; Barondes, S H

    1980-01-06

    We have studied the effect of the biogenic amines, serotonin and dopamine, on post-tetanic potentiation (PTP) at an identified synapse in the abdominal ganglion of Aplysia californica. We found that: (1) 10(-7) M perfused serotonin doubles the rate constant of decay of PTP. The effect is specific in that neither the size of the non-potentiated (isolated) EPSP nor the amplitude of PTP is affected. As reported previously, higher doses of serotonin will also increase the amplitude of PTP and decrease the size of the isolated EPSP; (2) 5 X 10(-7) M dopamine in the perfusate increases the rate constant of decay of PTP by about 50%. The effect is also specific in that neither PTP amplitude nor the size of the isolated EPSP is affected; (3) SQ10,631, a serotonin antagonist, blocks the effect of perfused serotonin on PTP decay rate. It does not antagonize the dopamine effect. SQ10,631 also slows the endogenous decay of PTP in some preparations which exhibit an unusually fast PTP decay rate, suggesting a naturally occurring source of serotonin within the ganglion capable of affecting the rate constant of PTP decay; (4) (+)-butaclamol, a dopamine antagonist, blocks the effect of dopamine on the rate constant of PTP decay, whereas (-)-butaclamol has little effect. Butaclamol does not block the effect of serotonin on the rate constant of PTP decay; (5) phosphodiesterase inhibitors potentiate the effect of serotonin on the rate constant of PTP decay, and cyclic AMP analogues mimic the effect of the biogenic amines, suggesting that the aminergic modulation of the rate of decay of PTP is coupled with activation of adenylate cyclase and accumulation of cyclic AMP; and (6) the evidence presented is consistent with the hypothesis that serotonin and dopamine are capable of specifically modifying the rate of change in the efficacy of transmitter release which underlies PTP. It also suggests that the two biogenic amines operate separately and in parallel via presynaptic receptor

  4. Differences in the C-terminus contribute to variations in trafficking between rat and human 5-HT(2A) receptor isoforms: identification of a primate-specific tripeptide ASK motif that confers GRK-2 and beta arrestin-2 interactions.

    PubMed

    Bhattacharya, Aditi; Sankar, Shobhana; Panicker, Mitradas M

    2010-02-01

    Internalization and recycling of G-protein coupled receptors are important cellular processes regulating receptor function. These are receptor-subtype and cell type-specific. Although important, trafficking variations between receptor isoforms of different species has received limited attention. We report here, differences in internalization and recycling between rat and human serotonin 2A receptor (5-HT(2A)R) isoforms expressed in human embryonic kidney 293 cells in response to serotonin. Although the human and rat 5-HT(2A)Rs differ by only a few amino acids, the human receptor takes longer to recycle to the cell surface after internalization, with the additional involvement of beta arrestin-2 and G-protein receptor kinase 2. The interaction of beta arrestin-2 with the human receptor causes the delay in recycling and is dependent on a primate-specific ASK motif present in the C-terminus of the receptor. Conversion of this motif to NCT, the corresponding sequence present in the rat isoform, results in the human isoform trafficking like the rat receptor. Replacing the serine 457 with alanine in the ASK motif of human isoform resulted in faster recycling, although with continued arrestin-dependent internalization. This study establishes significant differences between the two isoforms with important implications in our understanding of the human 5-HT(2A)R functions; and indicates that extrapolating results from non-human receptor isoforms to human subtypes is not without caveats.

  5. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1.

    PubMed

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila; Frimurer, Thomas; Schwartz, Thue W; Levy, Finn Olav; Andressen, Kjetil Wessel

    2015-07-15

    The human 5-HT7 serotonin receptor, a G-protein-coupled receptor (GPCR), activates adenylyl cyclase constitutively and upon agonist activation. Biased ligands differentially activate 5-HT7 serotonin receptor desensitization, internalization and degradation in addition to G protein activation. We have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine-mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations of the identified motifs and residues, located in or close to Helix-VIII of the 5-HT7 receptor, modified antipsychotic-stimulated binding of proteins (such as GASP-1), possibly by altering the flexibility of Helix-VIII, and also interfered with G protein activation. Taken together, our data demonstrate that binding of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1.

  6. Alterations in serotonin, transient receptor potential channels and protease-activated receptors in rats with irritable bowel syndrome attenuated by Shugan decoction

    PubMed Central

    Shi, Hai-Lian; Liu, Chu-Hsuan; Ding, Li-Li; Zheng, Yu; Fei, Xiao-Yan; Lu, Lu; Zhou, Xue-Ming; Yuan, Jian-Ye; Xie, Jian-Qun

    2015-01-01

    AIM: To determine the molecular mechanisms of Shugan decoction (SGD) in the regulation of colonic motility and visceral hyperalgesia (VHL) in irritable bowel syndrome (IBS). METHODS: The chemical compounds contained in SGD were measured by high-performance liquid chromatography. A rat model of IBS was induced by chronic water avoidance stress (WAS). The number of fecal pellets was counted after WAS and the pain pressure threshold was measured by colorectal distension. Morphological changes in colonic mucosa were detected by hematoxylin-eosin staining. The contents of tumor necrosis factor (TNF)-α in colonic tissue and calcitonin-gene-related peptide (CGRP) in serum were measured by ELISA. The protein expression of serotonin [5-hydroxytryptamide (5-HT)], serotonin transporter (SERT), chromogranin A (CgA) and CGRP in colon tissue was measured by immunohistochemistry. RESULTS: SGD inhibited colonic motility dysfunction and VHL in rats with IBS. Blockers of transient receptor potential (TRP) vanilloid 1 (TRPV1) (Ruthenium Red) and TRP ankyrin-1 (TRPA1) (HC-030031) and activator of protease-activated receptor (PAR)4 increased the pain pressure threshold, whereas activators of PAR2 and TRPV4 decreased the pain pressure threshold in rats with IBS. The effect of SGD on pain pressure threshold in these rats was abolished by activators of TRPV1 (capsaicin), TRPV4 (RN1747), TRPA1 (Polygodial) and PAR2 (AC55541). In addition, CGRP levels in serum and colonic tissue were both increased in these rats. TNF-α level in colonic tissue was also significantly upregulated. However, the levels of 5-HT, SERT and CgA in colonic tissue were decreased. All these pathological changes in rats with IBS were attenuated by SGD. CONCLUSION: SGD alleviated VHL and attenuated colon motility in IBS, partly by regulating TRPV1, TRPV4, TRPA1, PAR2, 5-HT, CgA and SERT, and reducing CGRP and TNF-α level. PMID:25944998

  7. Comparison of the anti-dopamine D₂ and anti-serotonin 5-HT(2A) activities of chlorpromazine, bromperidol, haloperidol and second-generation antipsychotics parent compounds and metabolites thereof.

    PubMed

    Suzuki, Hidenobu; Gen, Keishi; Inoue, Yuichi

    2013-04-01

    Second-generation antipsychotics, which have become the standard drug therapies for schizophrenia, are known to have a serotonin 5-HT(2A) receptor blocking effect in addition to a dopamine D₂ receptor blocking effect. However, although chlorpromazine (CPZ) has a 5-HT(2A) receptor blocking effect and has the profile of a second-generation antipsychotic in vitro, it loses this pharmacological profile in vivo. In order to elucidate the differences between the in vivo and in vitro pharmacological characteristics of CPZ, we used a radioreceptor assay to measure the anti-D₂ activity and the anti-5-HT(2A) activity of CPZ and five major metabolites of CPZ, and compared the results to the anti-D₂ activity and anti-5-HT(2A) activity of risperidone, zotepine, perospirone, the major metabolites of each of these drugs, and olanzapine, bromperidol, and haloperidol. The subjects were 182 patients who had received diagnoses of schizophrenia based on the DSM-IV criteria. The results revealed that CPZ exhibited little anti-5-HT(2A) activity, regardless of the anti-D₂ activity level, and that none of the metabolites possessed anti-5-HT(2A) activity. However, both the parent compounds and the metabolites of each of the second-generation antipsychotics possessed both anti-D₂ activity and anti-5-HT(2A) activity. This clarified that, unlike second-generation antipsychotics, the reason CPZ loses its second-generation antipsychotic profiles in vivo is because it does not have any metabolites that possess anti-5-HT(2A) activity.

  8. Serotonin and Prefrontal Cortex Function: Neurons, Networks, and Circuits

    PubMed Central

    Puig, M. Victoria; Gulledge, Allan T.

    2012-01-01

    Higher-order executive tasks such as learning, working memory, and behavioral flexibility depend on the prefrontal cortex (PFC), the brain region most elaborated in primates. The prominent innervation by serotonin neurons and the dense expression of serotonergic receptors in the PFC suggest that serotonin is a major modulator of its function. The most abundant serotonin receptors in the PFC, 5-HT1A, 5-HT2A and 5-HT3A receptors, are selectively expressed in distinct populations of pyramidal neurons and inhibitory interneurons, and play a critical role in modulating cortical activity and neural oscillations (brain waves). Serotonergic signaling is altered in many psychiatric disorders such as schizophrenia and depression, where parallel changes in receptor expression and brain waves have been observed. Furthermore, many psychiatric drug treatments target serotonergic receptors in the PFC. Thus, understanding the role of serotonergic neurotransmission in PFC function is of major clinical importance. Here we review recent findings concerning the powerful influences of serotonin on single neurons, neural networks, and cortical circuits in the PFC of the rat, where the effects of serotonin have been most thoroughly studied. PMID:22076606

  9. The antidepressant-like action of metabotropic glutamate 7 receptor agonist N,N'-bis(diphenylmethyl)-1,2-ethanediamine (AMN082) is serotonin-dependent.

    PubMed

    Pałucha-Poniewiera, Agnieszka; Brański, Piotr; Lenda, Tomasz; Pilc, Andrzej

    2010-09-01

    Behavioral studies show that modulation of the glutamatergic system might be an efficient way to achieve antidepressant activity. Among the group III metabotropic glutamate (mGlu) receptors, the mGlu7 receptor subtype seems to be the most promising target for potential antidepressants. It has been shown that a selective, allosteric mGlu7 receptor agonist, N,N'-bis (diphenylmethyl)-1,2-ethanediamine (AMN082), induced antidepressant-like action in behavioral tests in mice, although the mechanisms responsible for this action remained unknown. Here, we decided to investigate the possible role of the serotonergic system in the antidepressant-like activity of AMN082 in both the forced swim test (FST) in rats and the tail suspension test (TST) in mice. We found that AMN082 (1-10 mg/kg i.p.) induced a dose-dependent reduction in the immobility of rats and an increase in their swimming behavior, whereas there were not any changes in climbing behavior in the FST in rats. In the TST in mice we found that AMN082 (3 mg/kg i.p.) did not induce an antidepressant-like effect after depletion of serotonin (5-HT) with para-chlorophenylalanine. Moreover, we revealed that citalopram, but not reboxetine, when combined with AMN082 (all compounds used at low subeffective doses), induced a significant antidepressant-like effect in the TST. We also discovered that the 5-HT1A receptor antagonist N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635) (0.1 mg/kg s.c.), but not the 5-HT2A/2C receptor antagonist ritanserin (0.5 mg/kg i.p.), blocked the antidepressant-like action of AMN082. Altogether, the results of our studies show that the antidepressant-like action of the mGlu7 receptor-positive modulator AMN082 depends on the activation of the serotonergic system.

  10. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.

  11. Chronic Caffeine Alters the Density of Adenosine, Adrenergic, Cholinergic, GABA, and Serotonin Receptors and Calcium Channels in Mouse Brain

    PubMed Central

    Shi, Dan; Nikodijević, Olga; Jacobson, Kenneth A.; Daly, John W.

    2012-01-01

    SUMMARY 1. Chronic ingestion of caffeine by male NIH strain mice alters the density of a variety of central receptors. 2. The density of cortical A1 adenosine receptors is increased by 20%, while the density of striatal A2A adenosine receptors is unaltered. 3. The densities of cortical β1 and cerebellar β2 adrenergic receptors are reduced by ca. 25%, while the densities of cortical α1 and α2 adrenergic receptors are not significantly altered. Densities of striatal D1 and D2 dopaminergic receptors are unaltered. The densities of cortical 5 HT1 and 5 HT2 serotonergic receptors are increased by 26–30%. Densities of cortical muscarinic and nicotinic receptors are increased by 40–50%. The density of cortical benzodiazepine-binding sites associated with GABAA receptors is increased by 65%, and the affinity appears slightly decreased. The density of cortical MK-801 sites associated with NMDA-glutaminergic receptors appear unaltered. 4. The density of cortical nitrendipine-binding sites associated with calcium channels is increased by 18%. 5. The results indicate that chronic ingestion of caffeine equivalent to about 100 mg/kg/day in mice causes a wide range of biochemical alterations in the central nervous system. PMID:8242688

  12. Increasing spinal 5-HT2A receptor responsiveness mediates anti-allodynic effect and potentiates fluoxetine efficacy in neuropathic rats. Evidence for GABA release.

    PubMed

    Dupuis, Amandine; Wattiez, Anne-Sophie; Pinguet, Jérémy; Richard, Damien; Libert, Frédéric; Chalus, Maryse; Aissouni, Youssef; Sion, Benoit; Ardid, Denis; Marin, Philippe; Eschalier, Alain; Courteix, Christine

    2017-04-01

    Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT2A) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT2A receptor-PDZ protein interactions. This enhancement depends on 5-HT2A receptor activation, spinal GABA release and GABAA receptor activation.

  13. Prenatal nicotine exposure alters the responses to subsequent nicotine administration and withdrawal in adolescence: Serotonin receptors and cell signaling.

    PubMed

    Slotkin, Theodore A; Tate, Charlotte A; Cousins, Mandy M; Seidler, Frederic J

    2006-11-01

    Offspring of women who smoke during pregnancy are themselves more likely to take up smoking in adolescence, effects that are associated with a high rate of depression and increased sensitivity to withdrawal symptoms. To evaluate the biological basis for this relationship, we assessed effects on serotonin (5-hydroxytryptamine, 5HT) receptors and 5HT-mediated cellular responses in rats exposed to nicotine throughout prenatal development and then given nicotine in adolescence (postnatal days PN30-47.5), using regimens that reproduce plasma nicotine levels found in smokers. Evaluations were then made during the period of adolescent nicotine treatment and for up to one month after the end of treatment. Prenatal nicotine exposure, which elicits damage to 5HT projections in the cerebral cortex and striatum, produced sex-selective changes in the expression of 5HT(1A) and 5HT2 receptors, along with induction of adenylyl cyclase (AC), leading to sensitization of heterologous inputs operating through this signaling pathway. Superimposed on these effects, the AC response to 5HT was shifted toward inhibition. By itself, adolescent nicotine administration, which damages the same pathways, produced similar effects on receptors and the 5HT-mediated response, but a smaller overall induction of AC. Animals exposed to prenatal nicotine showed a reduced response to nicotine administered in adolescence, results in keeping with earlier findings of persistent desensitization. Our results indicate that prenatal nicotine exposure alters parameters of 5HT synaptic communication lasting into adolescence and changes the response to nicotine administration and withdrawal in adolescence, actions which may contribute to a subpopulation especially vulnerable to nicotine dependence.

  14. Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain.

    PubMed

    Harada, Yumi; Takayama, Kiyoshige; Ro, Shoki; Ochiai, Mitsuko; Noguchi, Masamichi; Iizuka, Seiichi; Hattori, Tomohisa; Yakabi, Koji

    2014-01-01

    This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague-Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control.

  15. Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons.

    PubMed

    Rojas, Paulina S; Neira, David; Muñoz, Mauricio; Lavandero, Sergio; Fiedler, Jenny L

    2014-08-01

    Serotonin (5-HT) production and expression of 5-HT receptors (5-HTRs) occur early during prenatal development. Recent evidence suggests that, in addition to its classical role as a neurotransmitter, 5-HT regulates neuronal connectivity during mammalian development by modulating cell migration and neuronal cytoarchitecture. Given the variety of 5-HTRs, researchers have had difficulty clarifying the specific role of each receptor subtype in brain development. Signalling mediated by the G-protein-coupled 5-HT1A R and 5-HT7 R, however, has been associated with neuronal plasticity. Thus, we hypothesized that 5-HT promotes neurite outgrowth through 5-HT1A R and 5-HT7 R. The involvement of 5-HT1A R and 5-HT7 R in the morphology of rat hippocampal neurons was evaluated by treating primary cultures at 2 days in vitro with 5-HT and specific antagonists for 5-HT1A R and 5-HT7 R (WAY-100635 and SB269970, respectively). The stimulation of hippocampal neurons with 100 nM 5-HT for 24 hr produced no effect on either the number or the length of primary neurites. Nonetheless, after 5HT7 R was blocked, the addition of 5-HT increased the number of primary neurites, suggesting that 5HT7 R could inhibit neuritogenesis. In contrast, 5-HT induced secondary neurite outgrowth, an effect inhibited by 1 μM WAY-100635 or SB269970. These results suggest that both serotonergic receptors participate in secondary neurite outgrowth. We conclude that 5-HT1A R and 5-HT7 R regulate neuronal morphology in primary hippocampal cultures by promoting secondary neurite outgrowth.

  16. The functional serotonin 1a receptor promoter polymorphism, rs6295, is associated with psychiatric illness and differences in transcription

    PubMed Central

    Donaldson, Z R; le Francois, B; Santos, T L; Almli, L M; Boldrini, M; Champagne, F A; Arango, V; Mann, J J; Stockmeier, C A; Galfalvy, H; Albert, P R; Ressler, K J; Hen, R

    2016-01-01

    The G/C single-nucleotide polymorphism in the serotonin 1a receptor promoter, rs6295, has previously been linked with depression, suicide and antidepressant responsiveness. In vitro studies suggest that rs6295 may have functional effects on the expression of the serotonin 1a receptor gene (HTR1A) through altered binding of a number of transcription factors. To further explore the relationship between rs6295, mental illness and gene expression, we performed dual epidemiological and biological studies. First, we genotyped a cohort of 1412 individuals, randomly split into discovery and replication cohorts, to examine the relationship between rs6295 and five psychiatric outcomes: history of psychiatric hospitalization, history of suicide attempts, history of substance or alcohol abuse, current posttraumatic stress disorder (PTSD), current depression. We found that the rs6295G allele is associated with increased risk for substance abuse, psychiatric hospitalization and suicide attempts. Overall, exposure to either childhood or non-childhood trauma resulted in increased risk for all psychiatric outcomes, but we did not observe a significant interaction between rs6295 and trauma in modulating psychiatric outcomes. In conjunction, we also investigated the potential impact of rs6295 on HTR1A expression in postmortem human brain tissue using relative allelic expression assays. We found more mRNA produced from the C versus the G-allele of rs6295 in the prefrontal cortex (PFC), but not in the midbrain of nonpsychiatric control subjects. Further, in the fetal cortex, rs6295C allele exhibited increased relative expression as early as gestational week 18 in humans. Finally, we found that the C:G allelic expression ratio was significantly neutralized in the PFC of subjects with major depressive disorder (MDD) who committed suicide as compared with controls, indicating that normal patterns of transcription may be disrupted in MDD/suicide. These data provide a putative biological

  17. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  18. Altered serotonin receptor expression is associated with depression-related behavior in the R6/1 transgenic mouse model of Huntington's disease.

    PubMed

    Pang, Terence Y C; Du, Xin; Zajac, Michelle S; Howard, Monique L; Hannan, Anthony J

    2009-02-15

    Dysregulation of the serotonergic signaling system has been implicated in the pathology of mood disorders including depression, and various rodent models of disrupted serotonergic signaling display depression-related behavioral phenotypes. Depression is a common neuropsychiatric feature of preclinical Huntington's disease (HD) but the underlying changes in the HD brain contributing to the development of depression are unknown. Using the R6/1 transgenic mouse model of HD, we show that pre-motor symptomatic HD mice display sex-specific depressive-related behaviors on the forced-swim (FST), tail-suspension (TST) and novelty-suppressed feeding (NSFT) tests while having muted responses to acute anti-depressant administration. The baseline behaviors of HD mice were similar to the behavioral phenotypes of serotonin (5-HT) receptor and transporter null mutants, and gene expression of specific serotonin receptors were subsequently found to be reduced in the hippocampus and cortex of HD mice. Female HD mice had an additional deficit in cortical expression of serotonin transporter (SerT). Environmental enrichment normalized the FST behavioral response of female HD mice corresponding with increased gene expression of specific 5-HT receptors in the hippocampus and cortex. Our findings implicate altered serotonergic signaling as the basis for the development of depression during the preclinical stages of HD.

  19. Adolescent nicotine administration alters serotonin receptors and cell signaling mediated through adenylyl cyclase.

    PubMed

    Xu, Z; Seidler, F J; Cousins, M M; Slikker, W; Slotkin, T A

    2002-10-04

    Nicotine is a neuroteratogen that targets synaptic function during critical developmental stages and recent studies indicate that CNS vulnerability extends into adolescence, the age at which smoking typically commences. We administered nicotine to adolescent rats via continuous minipump infusions from PN30 to PN47.5, using 6 mg/kg/day, a dose rate that replicates the plasma nicotine levels found in smokers, and examined 5HT receptors and related cell signaling during nicotine administration (PN45) and in the post-treatment period (PN50, 60, 75). Adolescent nicotine decreased 5HT(2) receptor binding in brain regions containing 5HT projections (hippocampus and cerebral cortex), with selectivity for females in the cerebral cortex; regions containing 5HT cell bodies showed either an increase (midbrain in males) or no change (brainstem). In contrast, there were no significant changes in 5HT(1A) receptors; however, the ability of the receptors to signal through adenylyl cyclase (AC) showed a switch from stimulatory to inhibitory effects in females during the post-treatment period. There were also transient alterations in AC responses to beta-adrenergic receptor stimulation, as well as pronounced induction of the AC response to the non-receptor-mediated stimulant, forskolin. Our results indicate that adolescent nicotine exposure alters the concentrations and functions of postsynaptic 5HT receptors in a manner commensurate with impaired 5HT synaptic function. The direction of change, emergence of defects after the cessation of nicotine administration, and sex-preference for effects in females, all support a relationship of impaired 5HT function to the higher incidence of depression seen in adolescent smokers.

  20. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    PubMed Central

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  1. Serotonin 1A, 1B, and 7 receptors of the rat medial nucleus accumbens differentially regulate feeding, water intake, and locomotor activity.

    PubMed

    Clissold, Kara A; Choi, Eugene; Pratt, Wayne E

    2013-11-01

    Serotonin (5-HT) signaling has been widely implicated in the regulation of feeding behaviors in both humans and animal models. Recently, we reported that co-stimulation of 5-HT1&7 receptors of the anterior medial nucleus accumbens with the drug 5-CT caused a dose-dependent decrease in food intake, water intake, and locomotion in rats (Pratt et al., 2009). The current experiments sought to determine which of three serotonin receptor subtypes (5-HT1A, 5-HT1B, or 5-HT7) might be responsible for these consummatory and locomotor effects. Food-deprived rats were given 2-h access to rat chow after stimulation of nucleus accumbens 5-HT1A, 5-HT1B, or 5-HT7 receptors, or blockade of the 5-HT1A or 5-HT1B receptors. Stimulation of 5-HT1A receptors with 8-OH-DPAT (at 0.0, 2.0, 4.0, and 8.0 μg/0.5 μl/side) caused a dose-dependent decrease in food and water intake, and reduced rearing behavior but not ambulation. In contrast, rats that received the 5-HT1B agonist CP 93129 (at 0.0, 1.0, 2.0 and 4.0 μg/0.5 μl/side) showed a significant dose-dependent decrease in water intake only; stimulation of 5-HT7 receptors (AS 19; at 0.0, 1.0, and 5.0 μg/0.5 μl/side) decreased ambulatory activity but did not affect food or water consumption. Blockade of 5-HT1A or 5-HT1B receptors had no lasting effects on measures of food consumption. These data suggest that the food intake, water intake, and locomotor effects seen after medial nucleus accumbens injections of 5-CT are due to actions on separate serotonin receptor subtypes, and contribute to growing evidence for selective roles of individual serotonin receptors within the nucleus accumbens on motivated behavior.

  2. Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    PubMed Central

    Ryals, Renee C.; Ku, Cristy A.; Fischer, Cody M.; Patel, Rachel C.; Datta, Shreya; Yang, Paul; Wen, Yuquan; Hen, René; Pennesi, Mark E.

    2016-01-01

    Purpose To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for

  3. Differential regulation of serotonin-1A receptor-stimulated [35S]GTP gamma S binding in the dorsal raphe nucleus by citalopram and escitalopram.

    PubMed

    Rossi, Dania V; Burke, Teresa F; Hensler, Julie G

    2008-03-31

    The effect of chronic citalopram or escitalopram administration on 5-HT1A receptor function in the dorsal raphe nucleus was determined by measuring [35S]GTP gamma S binding stimulated by the 5-HT1A receptor agonist (R)-(+)-8-OH-DPAT (1nM-10 microM). Although chronic administration of citalopram or escitalopram has been shown to desensitize somatodendritic 5-HT1A autoreceptors, we found that escitalopram treatment decreased the efficacy of 5-HT1A receptors to activate G proteins, whereas citalopram treatment did not. The binding of [3H]8-OH-DPAT to the coupled, high affinity agonist state of the receptor was not altered by either treatment. Interestingly, escitalopram administration resulted in greater occupancy of serotonin transporter sites as measured by the inhibition of [3H]cyanoimipramine binding. As the binding and action of escitalopram is limited by the inactive enantiomer R-citalopram present in racemic citalopram, we propose that the regulation of 5-HT1A receptor function in the dorsal raphe nucleus at the level of receptor-G protein interaction may be a result of greater inhibition of the serotonin transporter by escitalopram.

  4. Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale