Science.gov

Sample records for 2b miyoshi myopathy

  1. Genetics Home Reference: Miyoshi myopathy

    MedlinePlus

    ... Itoyama Y. Dysferlin mutations in Japanese Miyoshi myopathy: relationship to phenotype. Neurology. 2003 Jun 10;60(11): ... healthcare professional . About Genetics Home Reference Site Map Customer Support Selection Criteria for Links USA.gov Copyright ...

  2. Limb-girdle muscular dystrophy and Miyoshi myopathy in an aboriginal Canadian kindred map to LGMD2B and segregate with the same haplotype.

    PubMed Central

    Weiler, T.; Greenberg, C. R.; Nylen, E.; Halliday, W.; Morgan, K.; Eggertson, D.; Wrogemann, K.

    1996-01-01

    We report the results of our investigations of a large, inbred, aboriginal Canadian kindred with nine muscular dystrophy patients. The ancestry of all but two of the carrier parents could be traced to a founder couple, seven generations back. Seven patients presented with proximal myopathy consistent with limb girdle-type muscular dystrophy (LGMD), whereas two patients manifested predominantly distal wasting and weakness consistent with Miyoshi myopathy (distal autosomal recessive muscular dystrophy) (MM). Age at onset of symptoms, degree of creatine kinase elevation, and muscle histology were similar in both phenotypes. Segregation of LGMD/MM is consistent with autosomal recessive inheritance, and the putative locus is significantly linked (LOD scores >3.0) to six marker loci that span the region of the LGMD2B locus on chromosome 2p. Our initial hypothesis that the affected patients would all be homozygous by descent for microsatellite markers surrounding the disease locus was rejected. Rather, two different core haplotypes, encompassing a 4-cM region spanned by D2S291-D2S145-D2S286, segregated with the disease, indicating that there are two mutant alleles of independent origin in this kindred. There was no association, however, between the two different haplotypes and clinical variability; they do not distinguish between the LGMD and MM phenotypes. Thus, we conclude that LGMD and MM in our population are caused by the same mutation in LGMD2B and that additional factors, both genetic and nongenetic, must contribute to the clinical phenotype. PMID:8808603

  3. Limb-girdle muscular dystrophy and Miyoshi myopathy in an aboriginal Canadian kindred map to LGMD2B and segregate with the same haplotype

    SciTech Connect

    Weiler, T.; Nylen, E.; Wrogemann, K.

    1996-10-01

    We report the results of our investigations of a large, inbred, aboriginal Canadian kindred with nine muscular dystrophy patients. The ancestry of all but two of the carrier parents could be traced to a founder couple, seven generations back. Seven patients presented with proximal myopathy consistent with limb girdle-type muscular dystrophy (LGMD), whereas two patients manifested predominantly distal wasting and weakness consistent with Miyoshi myopathy (distal autosomal recessive muscular dystrophy) (MM). Age at onset of symptoms, degree of creatine kinase elevation, and muscle histology were similar in both phenotypes. Segregation of LGMD/MM is consistent with autosomal recessive inheritance, and the putative locus is significantly linked (LOD scores >3.0) to six marker loci that span the region of the LGMD2B locus on chromosome 2p. Our initial hypothesis that the affected patients would all be homozygous by descent for microsatellite markers surrounding the disease locus was rejected. Rather, two different core haplotypes, encompassing a 4-cM region spanned by D2S291-D2S145-D2S286, segregated with the disease, indicating that there are two mutant alleles of independent origin in this kindred. There was no association, however, between the two different haplotypes and clinical variability; they do not distinguish between the LGMD and MM phenotypes. Thus, we conclude that LGMD and MM in our population are caused by the same mutation in LGMD2B and that additional factors, both genetic and nongenetic, must contribute to the clinical phenotype. 37 refs., 2 figs., 2 tabs.

  4. Atypical Miyoshi distal myopathy: A case report

    PubMed Central

    Wang, Meiling; Guo, Yujie; Fu, Yong; Jia, Rui; Chen, Gang

    2016-01-01

    Five distinct predominant distal myopathies have been identified with discrete clinical and genetic patterns. Miyoshi myopathy (MM; early adult-onset, type 2) is a subtype of dysferlinopathy. Furthermore, MM is the most common form of autosomal recessive distal myopathy. MM is typically characterized by muscular weakness, initially affecting the gastrocnemius or soleus muscle from the late teens or early adulthood. The present study reports a case of MM that was confirmed by pathological and immunohistochemical methods, in addition to a review of the relevant literature. A 37-year-old male patient presented with muscular weakness in the left foot. This clinical manifestation was not typical of MM, and the patient was initially diagnosed with inflammatory myopathy. He was treated with dexamethasone at a dose of 10 mg for 5 days followed by gradual tapering, following which the symptoms were alleviated; however, the pathology, immunohistochemistry and electromyography eventually confirmed the diagnosis of MM. The treatment was then terminated and the patient was discharged. The present study further supports the underlying heterogeneity in atypical MM-like phenotypes. Dysferlin protein deficiency can be identified by pathological examination. The pathology of dysferlinopathy is characterized by changes of muscular dystrophy. Inflammatory cellular infiltration is a relatively common finding in the muscle biopsies from numerous patients with dysferlinopathy. Therefore, the detection of dysferlin deficiency or marked reduction on the sarcolemma using immunohistochemical staining is important for the diagnosis of dysferlinopathy. PMID:27882118

  5. Polymyositis without Beneficial Response to Steroid Therapy: Should Miyoshi Myopathy be a Differential Diagnosis?

    PubMed Central

    Scalco, Renata Siciliani; Lorenzoni, Paulo José; Lynch, David S.; Martins, William Alves; Jungbluth, Heinz; Quinlivan, Ros; Becker, Jefferson; Houlden, Henry

    2017-01-01

    Patient: Male, 16 Final Diagnosis: Miyoshi myopathy Symptoms: HyperCKemia • myalgia • weakness Medication: — Clinical Procedure: — Specialty: Neurology Objective: Rare disease Background: Miyoshi myopathy (MM) is an autosomal-recessive muscle disorder caused by mutations in the DYSF gene. Clinical features and histopathological changes in dysferlinopathies may mimic inflammatory myopathies and a high degree of clinical suspicion is required to guide the genetic investigation. Case Report: We report the case of a 16-year-old male who presented with severe bilateral calf pain and elevated CK levels (15 000 IU/l) who was on prolonged steroid therapy prompted by the clinical suspicion of inflammatory myopathy. Three years into his illness, he was referred for neuromuscular evaluation presenting with untreatable muscle pain and progressive weakness. The diagnosis of “refractory polymyositis” was revisited. Targeted exome sequencing revealed homozygous pathogenic mutations in the DYSF gene, confirming a diagnosis of Miyoshi myopathy. Conclusions: Our case illustrates that severe muscle pain may be the initial feature of Miyoshi myopathy and should be considered in the differential diagnosis of inflammatory myopathies. Although the described patient reported partial clinical improvement in muscle pain, steroid treatment is not an effective therapy for dysferlinopathy patients and it did not prevent disease progression. In addition, we confirm the utility of next-generation sequencing approaches to myopathies, particularly in complex or unusual cases when muscle biopsy is not available. PMID:28053302

  6. Polymyositis without Beneficial Response to Steroid Therapy: Should Miyoshi Myopathy be a Differential Diagnosis?

    PubMed

    Scalco, Renata Siciliani; Lorenzoni, Paulo José; Lynch, David S; Martins, William Alves; Jungbluth, Heinz; Quinlivan, Ros; Becker, Jefferson; Houlden, Henry

    2017-01-05

    BACKGROUND Miyoshi myopathy (MM) is an autosomal-recessive muscle disorder caused by mutations in the DYSF gene. Clinical features and histopathological changes in dysferlinopathies may mimic inflammatory myopathies and a high degree of clinical suspicion is required to guide the genetic investigation. CASE REPORT We report the case of a 16-year-old male who presented with severe bilateral calf pain and elevated CK levels (15 000 IU/l) who was on prolonged steroid therapy prompted by the clinical suspicion of inflammatory myopathy. Three years into his illness, he was referred for neuromuscular evaluation presenting with untreatable muscle pain and progressive weakness. The diagnosis of "refractory polymyositis" was revisited. Targeted exome sequencing revealed homozygous pathogenic mutations in the DYSF gene, confirming a diagnosis of Miyoshi myopathy. CONCLUSIONS Our case illustrates that severe muscle pain may be the initial feature of Miyoshi myopathy and should be considered in the differential diagnosis of inflammatory myopathies. Although the described patient reported partial clinical improvement in muscle pain, steroid treatment is not an effective therapy for dysferlinopathy patients and it did not prevent disease progression. In addition, we confirm the utility of next-generation sequencing approaches to myopathies, particularly in complex or unusual cases when muscle biopsy is not available.

  7. PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models

    PubMed Central

    Sabha, Nesrin; Volpatti, Jonathan R.; Gonorazky, Hernan; Davidson, Ann E.; Li, Xingli; Eltayeb, Nadine M.; Dall’Armi, Claudia; Di Paolo, Gilbert; Brooks, Susan V.; Buj-Bello, Ana; Feldman, Eva L.; Dowling, James J.

    2016-01-01

    Myotubular myopathy (MTM) is a devastating pediatric neuromuscular disorder of phosphoinositide (PIP) metabolism resulting from mutations of the PIP phosphatase MTM1 for which there are no treatments. We have previously shown phosphatidylinositol-3-phosphate (PI3P) accumulation in animal models of MTM. Here, we tested the hypothesis that lowering PI3P levels may prevent or reverse the MTM disease process. To test this, we targeted class II and III PI3 kinases (PI3Ks) in an MTM1-deficient mouse model. Muscle-specific ablation of Pik3c2b, but not Pik3c3, resulted in complete prevention of the MTM phenotype, and postsymptomatic targeting promoted a striking rescue of disease. We confirmed this genetic interaction in zebrafish, and additionally showed that certain PI3K inhibitors prevented development of the zebrafish mtm phenotype. Finally, the PI3K inhibitor wortmannin improved motor function and prolonged lifespan of the Mtm1-deficient mice. In all, we have identified Pik3c2b as a genetic modifier of Mtm1 mutation and demonstrated that PIK3C2B inhibition is a potential treatment strategy for MTM. In addition, we set the groundwork for similar reciprocal inhibition approaches for treating other PIP metabolic disorders and highlight the importance of modifier gene pathways as therapeutic targets. PMID:27548528

  8. DISTAL MYOPATHIES

    PubMed Central

    Dimachkie, Mazen M.; Barohn, Richard J.

    2014-01-01

    Over a century ago, Gowers described two young patients in whom distal muscles weakness involved the hand, foot, sternocleidomastoid, and facial muscles in the other case the shoulder and distal leg musculature. Soon after, , similar distal myopathy cases were reported whereby the absence of sensory symptoms and of pathologic changes in the peripheral nerves and spinal cord at postmortem examination allowed differentiation from Charcot-Marie-Tooth disease. In 1951, Welander described autosomal dominant (AD) distal arm myopathy in a large Scandanavian cohort. Since then the number of well-characterized distal myopathies has continued to grow such that the distal myopathies have formed a clinically and genetically heterogeneous group of disorders. Affected kindred commonly manifest weakness that is limited to foot and toe muscles even in advanced stages of the disease, with variable mild proximal leg, distal arm, neck and laryngeal muscle involvement in selected individuals. An interesting consequence of the molecular characterization of the distal myopathies has been the recognition that mutation in a single gene can lead to more than one clinical disorder. For example, Myoshi myopathy (MM) and limb girdle muscular dystrophy (LGMD) type 2B are allelic disorders due to defects in the gene that encodes dysferlin. The six well described distal myopathy syndromes are shown in Table 1. Table 2 lists advances in our understanding of the myofibrillar myopathy group and Table 3 includes more recently delineated and less common distal myopathies. In the same manner, the first section of this review pertains to the more traditional six distal myopathies followed by discussion of the myofibrillar myopathies. In the third section, we review other clinically and genetically distinctive distal myopathy syndromes usually based upon single or smaller family cohorts. The fourth section considers other neuromuscular disorders that are important to recognize as they display prominent

  9. Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p

    SciTech Connect

    Bashir, R.; Keers, S.; Strachan, T.

    1996-04-01

    The limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of disorders, different forms of which have been mapped to at least six distinct genetic loci. We have mapped to at least six distinct genetic loci. We have mapped an autosomal recessive form of LGMD (LGMD2B) to chromosome 2p13. Two other conditions have been shown to map to this region or to the homologous region in mouse: a gene for a form of autosomal recessive distal muscular dystrophy, Miyoshi myopathy, shows linkage to the same markers on chromosome 2p as LGMD2B, and an autosomal recessive mouse mutation mnd2, in which there is rapidly progressive paralysis and muscle atrophy, has been mapped to mouse chromosome 6 to a region showing conserved synteny with human chromosome 2p12-p13. We have assembled a 6-cM YAC contig spanning the LGMD2B locus and have mapped seven genes and 13 anonymous polymorphic microsatellites to it. Using haplotype analysis in the linked families, we have narrowed our region of interest to a 0-cM interval between D2S2113 and D2S145, which does not overlap with the critical region for mnd2 in mouse. Use of these most closely linked markers will help to determine the relationship between LGMD2B and Miyoshi myopathy. YACs selected from our contig will be the starting point for the cloning of the LGMD2B gene and thereby establish the biological basis for this form of muscular dystrophy and its relationship with the other limb-girdle muscular dystrophies. 26 refs., 6 figs.

  10. No mutations in hnRNPA1 and hnRNPA2B1 in Dutch patients with amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy.

    PubMed

    Seelen, Meinie; Visser, Anne E; Overste, Daniel J; Kim, Hong J; Palud, A; Wong, Tsz H; van Swieten, John C; Scheltens, Philip; Voermans, Nicol C; Baas, Frank; de Jong, J M B V; van der Kooi, Anneke J; de Visser, Marianne; Veldink, Jan H; Taylor, J Paul; Van Es, Michael A; van den Berg, Leonard H

    2014-08-01

    Inclusion body myopathy (IBM) associated with Paget disease of the bone, frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), sometimes called IBMPFD/ALS or multi system proteinopathy, is a rare, autosomal dominant disorder characterized by progressive degeneration of muscle, brain, motor neurons, and bone with prominent TDP-43 pathology. Recently, 2 novel genes for multi system proteinopathy were discovered; heterogenous nuclear ribonucleoprotein (hnRNP) A1 and A2B1. Subsequently, a mutation in hnRNPA1 was also identified in a pedigree with autosomal dominant familial ALS. The genetic evidence for ALS and other neurodegenerative diseases is still insufficient. We therefore sequenced the prion-like domain of these genes in 135 familial ALS, 1084 sporadic ALS, 68 familial FTD, 74 sporadic FTD, and 31 sporadic IBM patients in a Dutch population. We did not identify any mutations in these genes in our cohorts. Mutations in hnRNPA1 and hnRNPA2B1 prove to be a rare cause of ALS, FTD, and IBM in the Netherlands.

  11. Clinical features and a mutation with late onset of limb girdle muscular dystrophy 2B

    PubMed Central

    Takahashi, Toshiaki; Aoki, Masashi; Suzuki, Naoki; Tateyama, Maki; Yaginuma, Chikako; Sato, Hitomi; Hayasaka, Miho; Sugawara, Hitomi; Ito, Mariko; Abe-Kondo, Emi; Shimakura, Naoko; Ibi, Tohru; Kuru, Satoshi; Wakayama, Tadashi; Sobue, Gen; Fujii, Naoki; Saito, Toshio; Matsumura, Tsuyoshi; Funakawa, Itaru; Mukai, Eiichiro; Kawanami, Toru; Morita, Mitsuya; Yamazaki, Mineo; Hasegawa, Takashi; Shimizu, Jun; Tsuji, Shoji; Kuzuhara, Shigeki; Tanaka, Hiroyasu; Yoshioka, Masaru; Konno, Hidehiko; Onodera, Hiroshi; Itoyama, Yasuto

    2013-01-01

    Objective and methods Dysferlin encoded by DYSF deficiency leads to two main phenotypes, limb girdle muscular dystrophy (LGMD) 2B and Miyoshi myopathy. To reveal in detail the mutational and clinical features of LGMD2B in Japan, we observed 40 Japanese patients in 36 families with LGMD2B in whom dysferlin mutations were confirmed. Results and conclusions Three mutations (c.1566C>G, c.2997G>T and c.4497delT) were relatively more prevalent. The c.2997G>T mutation was associated with late onset, proximal dominant forms of dysferlinopathy, a high probability that muscle weakness started in an upper limb and lower serum creatine kinase (CK) levels. The clinical features of LGMD2B are as follows: (1) onset in the late teens or early adulthood, except patients homozygous for the c.2997G>T mutation; (2) lower limb weakness at onset; (3) distal change of lower limbs on muscle CT at an early stage; (4) impairment of lumbar erector spinal muscles on muscle CT at an early stage; (5) predominant involvement of proximal upper limbs; (6) preservation of function of the hands at late stage; (7) preservation of strength in neck muscles at late stage; (8) lack of facial weakness or dysphagia; (9) avoidance of scoliosis; (10) hyper-Ckaemia; (11) preservation of cardiac function; and (12) a tendency for respiratory function to decline with disease duration. It is important that the late onset phenotype is found with prevalent mutations. PMID:23243261

  12. Dysferlin Deficiency and the Development of Cardiomyopathy in a Mouse Model of Limb-Girdle Muscular Dystrophy 2B

    PubMed Central

    Chase, Thomas H.; Cox, Gregory A.; Burzenski, Lisa; Foreman, Oded; Shultz, Leonard D.

    2009-01-01

    Limb-girdle muscular dystrophy 2B, Miyoshi myopathy, and distal myopathy of anterior tibialis are severely debilitating muscular dystrophies caused by genetically determined dysferlin deficiency. In these muscular dystrophies, it is the repair, not the structure, of the plasma membrane that is impaired. Though much is known about the effects of dysferlin deficiency in skeletal muscle, little is known about the role of dysferlin in maintenance of cardiomyocytes. Recent evidence suggests that dysferlin deficiency affects cardiac muscle, leading to cardiomyopathy when stressed. However, neither the morphological location of dysferlin in the cardiomyocyte nor the progression of the disease with age are known. In this study, we examined a mouse model of dysferlinopathy using light and electron microscopy as well as echocardiography and conscious electrocardiography. We determined that dysferlin is normally localized to the intercalated disk and sarcoplasm of the cardiomyocytes. In the absence of dysferlin, cardiomyocyte membrane damage occurs and is localized to the intercalated disk and sarcoplasm. This damage results in transient functional deficits at 10 months of age, but, unlike in skeletal muscle, the cell injury is sublethal and causes only mild cardiomyopathy even at advanced ages. PMID:19875504

  13. Congenital Myopathy

    MedlinePlus

    ... arms and legs, droopy eyelids, and problems with eye movements. Weakness often gets worse with time. Central core ... difficulties occur as well. Some children have weakened eye movements. Congenital fiber-type disproportion myopathy is a rare ...

  14. [Inflammatory myopathies].

    PubMed

    Maurer, Britta

    2017-02-01

    Inflammatory myopathies comprise heterogeneous, often multisystemic autoimmune diseases with muscle involvement as a common feature. The prognosis largely depends on a timely diagnosis and initiation of therapy. Given the complexity of these rare diseases, when an inflammatory myopathy is suspected patients should be referred to an expert center with established algorithms for the diagnostic work-up. The differential diagnostic exclusion of myositis mimics should ideally be carried out in close collaboration with neurologists and neuropathologists. The choice of immunosuppressive treatment should primarily depend on disease severity and organ involvement but age and comorbidities also have to be taken into account.

  15. Toxic Myopathies

    PubMed Central

    Pasnoor, Mamatha; Barohn, Richard J.; Dimachkie, Mazen M.

    2014-01-01

    Muscle tissue is highly sensitive to many substances. Early recognition of toxic myopathies is important, as they potentially are reversible on removal of the offending drug or toxin, with greater likelihood of complete resolution the sooner this is achieved. Clinical features range from mild muscle pain and cramps to severe weakness with rhabdomyolysis, renal failure, and even death. The pathogenic bases can be multifactorial. This article reviews some of the common toxic myopathies and their clinical presentation, histopathologic features and possible underlying cellular mechanisms. PMID:25037083

  16. Metabolic myopathies

    NASA Technical Reports Server (NTRS)

    Martin, A.; Haller, R. G.; Barohn, R.; Blomqvist, C. G. (Principal Investigator)

    1994-01-01

    Metabolic myopathies are disorders of muscle energy production that result in skeletal muscle dysfunction. Cardiac and systemic metabolic dysfunction may coexist. Symptoms are often intermittent and provoked by exercise or changes in supply of lipid and carbohydrate fuels. Specific disorders of lipid and carbohydrate metabolism in muscle are reviewed. Evaluation often requires provocative exercise testing. These tests may include ischemic forearm exercise, aerobic cycle exercise, and 31P magnetic resonance spectroscopy with exercise.

  17. Molecular and Genetic Studies of Congenital Myopathies

    ClinicalTrials.gov

    2016-12-08

    Central Core Disease; Centronuclear Myopathy; Congenital Fiber Type Disproportion; Multiminicore Disease; Myotubular Myopathy; Nemaline Myopathy; Rigid Spine Muscular Dystrophy; Undefined Congenital Myopathy

  18. Congenital myopathies

    PubMed Central

    Colombo, Irene; Scoto, Mariacristina; Manzur, Adnan Y.; Robb, Stephanie A.; Maggi, Lorenzo; Gowda, Vasantha; Cullup, Thomas; Yau, Michael; Phadke, Rahul; Sewry, Caroline; Jungbluth, Heinz

    2015-01-01

    Objective: To assess the natural history of congenital myopathies (CMs) due to different genotypes. Methods: Retrospective cross-sectional study based on case-note review of 125 patients affected by CM, followed at a single pediatric neuromuscular center, between 1984 and 2012. Results: Genetic characterization was achieved in 99 of 125 cases (79.2%), with RYR1 most frequently implicated (44/125). Neonatal/infantile onset was observed in 76%. At birth, 30.4% required respiratory support, and 25.2% nasogastric feeding. Twelve percent died, mainly within the first year, associated with mutations in ACTA1, MTM1, or KLHL40. All RYR1-mutated cases survived and did not require long-term ventilator support including those with severe neonatal onset; however, recessive cases were more likely to require gastrostomy insertion (p = 0.0028) compared with dominant cases. Independent ambulation was achieved in 74.1% of all patients; 62.9% were late walkers. Among ambulant patients, 9% eventually became wheelchair-dependent. Scoliosis of variable severity was reported in 40%, with 1/3 of (both ambulant and nonambulant) patients requiring surgery. Bulbar involvement was present in 46.4% and required gastrostomy placement in 28.8% (at a mean age of 2.7 years). Respiratory impairment of variable severity was a feature in 64.1%; approximately half of these patients required nocturnal noninvasive ventilation due to respiratory failure (at a mean age of 8.5 years). Conclusions: We describe the long-term outcome of a large cohort of patients with CMs. While overall course is stable, we demonstrate a wide clinical spectrum with motor deterioration in a subset of cases. Severity in the neonatal/infantile period is critical for survival, with clear genotype-phenotype correlations that may inform future counseling. PMID:25428687

  19. Myopathy in acute hypothyroidism.

    PubMed Central

    Kung, A. W.; Ma, J. T.; Yu, Y. L.; Wang, C. C.; Woo, E. K.; Lam, K. S.; Huang, C. Y.; Yeung, R. T.

    1987-01-01

    Hypothyroid myopathy has so far been reported in long standing cases of hypothyroidism. We describe two adult patients with myopathy associated with acute transient hypothyroidism. Both presented with severe muscle aches and cramps, stiffness and spasms. Muscle enzymes were markedly elevated and electromyography in one patient showed myopathic features. Histological changes were absent in muscle biopsy, probably because of the short duration of metabolic disturbance. The myopathy subsided promptly when the hypothyroid state was reversed. PMID:3422868

  20. Evaluation of Limb-Girdle Muscular Dystrophy

    ClinicalTrials.gov

    2014-03-06

    Becker Muscular Dystrophy; Limb-Girdle Muscular Dystrophy, Type 2A (Calpain-3 Deficiency); Limb-Girdle Muscular Dystrophy, Type 2B (Miyoshi Myopathy, Dysferlin Deficiency); Limb-Girdle Muscular Dystrophy, Type 2I (FKRP-deficiency)

  1. Statin-associated myopathy.

    PubMed

    Hamilton-Craig, I

    2001-11-05

    Myopathy occurs in 0.1%-0.2% of patients receiving statins in clinical trials. This adverse effect is shared by all statins, but is more common with cerivastatin, especially in combination with gemfibrozil. The risk of myopathy is increased by: the use of high doses of statins, concurrent use of fibrates, concurrent use of hepatic cytochrome P450 inhibitors, acute viral infections, major trauma, surgery, hypothyroidism and other conditions. Statin-associated myopathy should be suspected when a statin-treated patient complains of unexplained muscle pain, tenderness or weakness. Statin therapy should be stopped in cases of suspected myopathy, and serum creatine kinase levels should be checked and monitored. No specific therapies other than statin withdrawal and supportive measures for rhabdomyolysis are currently available.

  2. Eosinophils in hereditary and inflammatory myopathies.

    PubMed

    Schröder, Thomas; Fuchss, Johann; Schneider, Ilka; Stoltenburg-Didinger, Gisela; Hanisch, Frank

    2013-12-01

    It is not known whether eosinophilic myositis is a specific histopathological feature of limb girdle muscular dystrophy 2A (LGMD2A). Number and location of eosinophils in skeletal muscle biopsies (n=100) was analysed by Giemsa and modified hematoxylin/eosin staining in patients with genetically confirmed myopathies (LGMD2A, LGMD2B, LGMD2L, facioscapulohumeral muscular dystrophy, dystrophinopathy), histologically confirmed idiopathic inflammatory myopathies (sporadic inclusion body myositis (sIBM), dermatomyositis (DM), polymyositis), amyotrophic lateral sclerosis (neurogenic control), and normal controls. The number of eosinophils/mm² was significantly higher in LGMD2A, PM, DM, and sIBM compared to controls but not significantly higher than other myopathies. A large overlap in the number of eosinophils/mm2 between all groups was seen. In all disease groups eosinophils were mainly found endomysially (46- 88%) and intra- and perivascularly (4-37%). There was no correlation between the numbers of eosinophils/mm² and (i) age at biopsy and (ii) the duration of the disease. The extent of myopathic, fibrotic, and inflammatory changes did not differ in samples with high and low eosinophil count. Eosinophils seem to represent an unspecific histological finding in hereditary and inflammatory myopathies, but also amyotrophic lateral sclerosis.

  3. Statin-induced Myopathy.

    PubMed

    Fitzgerald, Kara; Redmond, Elizabeth; Harbor, Cathryn

    2012-05-01

    Heart disease (HD) is the number one killer in the United States.(1) In 2006, the direct and indirect costs associated with cardiovascular disease in the United States were estimated at 400 billion dollars.(2) Statin therapy for cholesterol reduction is a mainstay intervention for cardiovascular disease (CVD) as reflected in atorvastatin's status as the number one prescribed medication in the United States.(3) Statin therapy, however, is also associated with side effects that signal mitochondrial distress. A commonly reported statin-induced symptom is myalgia, which is defined as muscle pain without an associated elevation of serum creatine kinase (CK). In clinical trials, the reports of myalgia vary from less than 1% to 25% of patients.(4) Myopathy is a general term defined as an abnormal condition or disease of muscle tissue. Myopathy includes myalgia, myositis (inflammation of muscle tissue associated with elevated CK) and the very serious condition rhabdomyolysis (extreme myositis). Histological findings in statin-induced myopathy demonstrate electron chain dysfunction making "mitochondrial myopathy" the more precise term.(5) Mitochondrial myopathy has been associated with statin-induced CoQ10 depletion.(5) Given the density of mitochondria in cardiomyocytes, and CoQ10's role in mitochondrial energy production, depletion has long been associated with increased risk for heart disease.(6-7) In the case below, mitochondrial-specific organic acids, serum CoQ10, vitamin D and clinical history all suggest statin-induced mitochondrial myopathy, despite normal serum CK.

  4. Statin-induced myopathies.

    PubMed

    Tomaszewski, Michał; Stępień, Karolina M; Tomaszewska, Joanna; Czuczwar, Stanisław J

    2011-01-01

    Statins are considered to be safe, well tolerated and the most efficient drugs for the treatment of hypercholesterolemia, one of the main risk factor for atherosclerosis, and therefore they are frequently prescribed medications. The most severe adverse effect of statins is myotoxicity, in the form of myopathy, myalgia, myositis or rhabdomyolysis. Clinical trials commonly define statin toxicity as myalgia or muscle weakness with creatine kinase (CK) levels greater than 10 times the normal upper limit. Rhabdomyolysis is the most severe adverse effect of statins, which may result in acute renal failure, disseminated intravascular coagulation and death. The exact pathophysiology of statin-induced myopathy is not fully known. Multiple pathophysiological mechanisms may contribute to statin myotoxicity. This review focuses on a number of them. The prevention of statin-related myopathy involves using the lowest statin dose required to achieve therapeutic goals and avoiding polytherapy with drugs known to increase systemic exposure and myopathy risk. Currently, the only effective treatment of statin-induced myopathy is the discontinuation of statin use in patients affected by muscle aches, pains and elevated CK levels.

  5. Myopathy in Addison's disease.

    PubMed Central

    Mor, F; Green, P; Wysenbeek, A J

    1987-01-01

    Since the first description of primary adrenocortical insufficiency by Thomas Addison in 1855 several large series of patients with Addison's disease have been published. The common signs and symptoms include: weakness, hyperpigmentation, weight loss, gastrointestinal complaints, and hypotension. It is rare for patients with Addison's disease to present with musculoskeletal symptoms including flexion contractures, hyperkalaemic neuromyopathy, Guillain-Barré syndrome, migratory myalgia, sciatica-like pain, and low back pain. Myopathy has not been previously described in Addison's disease. Herein we report a patient presenting with severe hyponatraemia and myopathy which resolved after steroid replacement therapy. PMID:3813679

  6. Genetics Home Reference: inclusion body myopathy 2

    MedlinePlus

    ... Conditions inclusion body myopathy 2 inclusion body myopathy 2 Enable Javascript to view the expand/collapse boxes. ... Open All Close All Description Inclusion body myopathy 2 is a condition that primarily affects skeletal muscles , ...

  7. Managing statin myopathy.

    PubMed

    Venero, Carmelo V; Thompson, Paul D

    2009-03-01

    Approximately 10% of patients treated with statins experience some form of muscle-related side effects in clinical practice. These can range from asymptomatic creatine kinase (CK) elevation, to muscle pain, weakness, and its most severe form, rhabdomyolysis. Higher risk patients for statin myopathy are those older than 80, with a small body frame, on higher statin doses, on other medications, or with other systemic diseases including hepatic or renal diseases, diabetes mellitus, or hypothyroidism. The cause of statin myopathy is presumed to be the same for its variable presentation but has not been defined. In patients with myopathic symptoms, their symptoms and CK levels determine whether statin therapy can be continued or must be stopped.

  8. Myopathy associated with gluten sensitivity.

    PubMed

    Hadjivassiliou, Marios; Chattopadhyay, Arup K; Grünewald, Richard A; Jarratt, John A; Kandler, Rosalind H; Rao, D G; Sanders, D S; Wharton, S B; Davies-Jones, G A B

    2007-04-01

    Ataxia and peripheral neuropathy are the most common neurological manifestations of gluten sensitivity. Myopathy is a less common and poorly characterized additional neurological manifestation of gluten sensitivity. We present our experience with 13 patients who presented with symptoms and signs suggestive of a myopathy and in whom investigation led to the diagnosis of gluten sensitivity. Three of these patients had a neuropathy with or without ataxia in addition to the myopathy. The mean age at onset of the myopathic symptoms was 54 years. Ten patients had neurophysiological evidence of myopathy. Inflammatory myopathy was the most common finding on neuropathological examination. One patient had basophilic rimmed vacuoles suggestive of inclusion-body myositis. Six patients received immunosuppressive treatment in addition to starting on a gluten-free diet; five improved and one remained unchanged. Among seven patients not on immunosuppressive treatment, four showed clinical improvement of the myopathy with a gluten-free diet. The improvement was also associated with reduction or normalization of serum creatine kinase level. The myopathy progressed in one patient who refused the gluten-free diet. Myopathy may be another manifestation of gluten sensitivity and is likely to have an immune-mediated pathogenesis. A gluten-free diet may be a useful therapeutic intervention.

  9. Metabolic neuropathies and myopathies.

    PubMed

    D'Amico, Adele; Bertini, Enrico

    2013-01-01

    Inborn errors of metabolism may impact on muscle and peripheral nerve. Abnormalities involve mitochondria and other subcellular organelles such as peroxisomes and lysosomes related to the turnover and recycling of cellular compartments. Treatable causes are β-oxidation defects producing progressive neuropathy; pyruvate dehydrogenase deficiency, porphyria, or vitamin B12 deficiency causing recurrent episodes of neuropathy or acute motor deficit mimicking Guillain-Barré syndrome. On the other hand, lysosomal (mucopolysaccharidosis, Gaucher and Fabry diseases), mitochondriopathic (mitochondrial or nuclear mutations or mDNA depletion), peroxisomal (adrenomyeloneuropathy, Refsum disease, sterol carrier protein-2 deficiency, cerebrotendinous xanthomatosis, α-methylacyl racemase deficiency) diseases are multisystemic disorders involving also the heart, liver, brain, retina, and kidney. Pathophysiology of most metabolic myopathies is related to the impairment of energy production or to abnormal production of reactive oxygen species (ROS). Main symptoms are exercise intolerance with myalgias, cramps and recurrent myoglobinuria or limb weakness associated with elevation of serum creatine kinase. Carnitine palmitoyl transferase deficiency, followed by acid maltase deficiency, and lipin deficiency, are the most common cause of isolated rhabdomyolysis. Metabolic myopathies are frequently associated to extra-neuromuscular disorders particularly involving the heart, liver, brain, retina, skin, and kidney.

  10. Centronuclear (myotubular) myopathy

    PubMed Central

    Jungbluth, Heinz; Wallgren-Pettersson, Carina; Laporte, Jocelyn

    2008-01-01

    Centronuclear myopathy (CNM) is an inherited neuromuscular disorder characterised by clinical features of a congenital myopathy and centrally placed nuclei on muscle biopsy. The incidence of X-linked myotubular myopathy is estimated at 2/100000 male births but epidemiological data for other forms are not currently available. The clinical picture is highly variable. The X-linked form usually gives rise to a severe phenotype in males presenting at birth with marked weakness and hypotonia, external ophthalmoplegia and respiratory failure. Signs of antenatal onset comprise reduced foetal movements, polyhydramnios and thinning of the ribs on chest radiographs; birth asphyxia may be the present. Affected infants are often macrosomic, with length above the 90th centile and large head circumference. Testes are frequently undescended. Both autosomal-recessive (AR) and autosomal-dominant (AD) forms differ from the X-linked form regarding age at onset, severity, clinical characteristics and prognosis. In general, AD forms have a later onset and milder course than the X-linked form, and the AR form is intermediate in both respects. Mutations in the myotubularin (MTM1) gene on chromosome Xq28 have been identified in the majority of patients with the X-linked recessive form, whilst AD and AR forms have been associated with mutations in the dynamin 2 (DNM2) gene on chromosome 19p13.2 and the amphiphysin 2 (BIN1) gene on chromosome 2q14, respectively. Single cases with features of CNM have been associated with mutations in the skeletal muscle ryanodine receptor (RYR1) and the hJUMPY (MTMR14) genes. Diagnosis is based on typical histopathological findings on muscle biopsy in combination with suggestive clinical features; muscle magnetic resonance imaging may complement clinical assessment and inform genetic testing in cases with equivocal features. Genetic counselling should be offered to all patients and families in whom a diagnosis of CNM has been made. The main differential

  11. [Spheroid body myopathy: case report].

    PubMed

    Scola, Rosana Hermínia; Trentin, Alcides Júnior; Vaez, Rodrigo; Gignon, Vinicius de Faria; Costa, Thaís Gurgel; Werneck, Lineu Cesar

    2005-06-01

    Spheroid body myopathy is a rare illness classified in the group of the congenital myopathies as a desmin-related neuromuscular disorder, presenting dominant autosomical origin with the beginning of the symptoms in the adult phase. We report on a seven years old girl with facial paresia, generalized muscular hypotrophy and hypotony, generalized deep areflexia, proximal upper and lower limbs muscular strengh and distal upper limbs grade 3 and distal lower limbs grade 1. Needle electromyography evidenced increased conscription and potentials of motor unit of short duration and low amplitude, characterizing a myopathic standard. The muscle biopsy disclosed mixed standard to myopathy, denervation and inclusion bodies that are consistent to spheroid body myopathy. In this case, the patient presented, in advance, early beginning of the symptoms and there are no similar cases in the family.

  12. Adult-onset mitochondrial myopathy.

    PubMed Central

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  13. Genetics Home Reference: nemaline myopathy

    MedlinePlus

    ... Nemaline myopathy is a disorder that primarily affects skeletal muscles , which are muscles that the body uses for ... for producing proteins that play important roles in skeletal muscles . Within skeletal muscle cells, these proteins are found ...

  14. [Autoantibodies of Inflammatory Myopathies: Update].

    PubMed

    Suzuki, Shigeaki

    2016-12-01

    Inflammatory myopathies are a heterogeneous group of immune-mediated diseases that involve the skeletal muscle as well as many other organs. In addition to a histological diagnosis at muscle biopsy, the clinical phenotypes of inflammatory myopathies can be defined by the presence of various autoantibodies that are originally detected by RNA or protein immunoprecipitation. However, the correlation between histological features and autoantibodies has not been fully elucidated. Immune-mediated necrotizing myopathy (IMNM), which is characterized by significant necrotic and regeneration muscle fibers with minimal or no inflammatory cell infiltration, is associated with the presence of autoantibodies. IMNM is now classified as a distinct category of inflammatory myopathies, separate from polymyositis, dermatomyositis, and sporadic inclusion body myositis. Here, we divided the autoantibodies of inflammatory myopathies into the following categories: those associated with IMNM, those with activity against aminoacyl transfer RNA synthetase, those associated with dermatomyositis, and those related to other disorders, including overlap syndrome, inclusion body myositis, and primary biliary cirrhosis. The detection of autoantibodies against signal recognition particle or 3-hydroxy-3-methylglutaryl-coenzyme A reductase is useful for the diagnosis of IMNM. The screening of autoantibodies has clinical relevance for managing patients with inflammatory myopathies.

  15. Resveratrol and Myopathy

    PubMed Central

    Bastin, Jean; Djouadi, Fatima

    2016-01-01

    Resveratrol is a natural polyphenolic compound produced by plants under various stress conditions. Resveratrol has been reported to exhibit antioxidant, anti-inflammatory, and anti-proliferative properties in mammalian cells and animal models, and might therefore exert pleiotropic beneficial effects in different pathophysiological states. More recently, resveratrol has also been shown to potentially target many mitochondrial metabolic pathways, including fatty acid β-oxidation or oxidative phosphorylation, leading to the up-regulation of the energy metabolism via signaling pathways involving PGC-1α, SIRT1, and/or AMP-kinase, which are not yet fully delineated. Some of resveratrol beneficial effects likely arise from its cellular effects in the skeletal muscle, which, surprisingly, has been given relatively little attention, compared to other target tissues. Here, we review the potential for resveratrol to ameliorate or correct mitochondrial metabolic deficiencies responsible for myopathies, due to inherited fatty acid β-oxidation or to respiratory chain defects, for which no treatment exists to date. We also review recent data supporting therapeutic effects of resveratrol in the Duchenne Muscular Dystrophy, a fatal genetic disease affecting the production of muscle dystrophin, associated to a variety of mitochondrial dysfunctions, which likely contribute to disease pathogenesis. PMID:27136581

  16. Resveratrol and Myopathy.

    PubMed

    Bastin, Jean; Djouadi, Fatima

    2016-04-28

    Resveratrol is a natural polyphenolic compound produced by plants under various stress conditions. Resveratrol has been reported to exhibit antioxidant, anti-inflammatory, and anti-proliferative properties in mammalian cells and animal models, and might therefore exert pleiotropic beneficial effects in different pathophysiological states. More recently, resveratrol has also been shown to potentially target many mitochondrial metabolic pathways, including fatty acid β-oxidation or oxidative phosphorylation, leading to the up-regulation of the energy metabolism via signaling pathways involving PGC-1α, SIRT1, and/or AMP-kinase, which are not yet fully delineated. Some of resveratrol beneficial effects likely arise from its cellular effects in the skeletal muscle, which, surprisingly, has been given relatively little attention, compared to other target tissues. Here, we review the potential for resveratrol to ameliorate or correct mitochondrial metabolic deficiencies responsible for myopathies, due to inherited fatty acid β-oxidation or to respiratory chain defects, for which no treatment exists to date. We also review recent data supporting therapeutic effects of resveratrol in the Duchenne Muscular Dystrophy, a fatal genetic disease affecting the production of muscle dystrophin, associated to a variety of mitochondrial dysfunctions, which likely contribute to disease pathogenesis.

  17. Evidence-based management of statin myopathy.

    PubMed

    Harper, Charles R; Jacobson, Terry A

    2010-09-01

    Statin-associated muscle symptoms are a relatively common condition that may affect 10% to 15% of statin users. Statin myopathy includes a wide spectrum of clinical conditions, ranging from mild myalgia to rhabdomyolysis. The etiology of myopathy is multifactorial. Recent studies suggest that statins may cause myopathy by depleting isoprenoids and interfering with intracellular calcium signaling. Certain patient and drug characteristics increase risk for statin myopathy, including higher statin doses, statin cytochrome metabolism, and polypharmacy. Genetic risk factors have been identified, including a single nucleotide polymorphism of SLCO1B1. Coenzyme Q10 and vitamin D have been used to prevent and treat statin myopathy; however, clinical trial evidence demonstrating their efficacy is limited. Statin-intolerant patients may be successfully treated with either low-dose statins, alternate-day dosing, or using twice-weekly dosing with longer half-life statins. An algorithm is presented to assist the clinician in managing myopathy in patients with dyslipidemia.

  18. Statin-associated necrotizing autoimmune myopathy.

    PubMed

    Fernandes, Geórgea Hermogenes; Zanoteli, Edmar; Shinjo, Samuel Katsuyuki

    2014-09-01

    Necrotizing autoimmune myopathy (NAM) is a severe adverse effect of statins. We report a 66-year-old Caucasian female who had progressive proximal muscle weakness after treatment with statins. Results of a muscle biopsy showed necrotizing myopathy with minimal inflammatory cell infiltrate and increased major histocompatibility class I antigen expression in muscle fibers. The clinical and laboratory parameters improved significantly with immunosuppressive treatment. Although it is a rare event, statin-induced NAM should be included as a differential diagnosis of myopathies.

  19. Metabolic myopathies: clinical features and diagnostic approach.

    PubMed

    Smith, Edward C; El-Gharbawy, Areeg; Koeberl, Dwight D

    2011-05-01

    The rheumatologist is frequently called on to evaluate patients with complaints of myalgia, muscle cramps, and fatigue. The evaluation of these patients presents a diagnostic challenge given the nonspecific and intermittent nature of their complaints, often leading to inappropriate diagnostic testing. When these symptoms are associated with physical exertion, a metabolic myopathy should be suspected Although inflammatory myopathies may present with similar features, such a pattern should prompt a thorough evaluation for an underlying metabolic myopathy. This review discusses the most common causes of metabolic myopathies and reviews the current diagnostic options available to the clinician.

  20. Fetal akinesia sequence caused by nemaline myopathy.

    PubMed

    Lammens, M; Moerman, P; Fryns, J P; Lemmens, F; van de Kamp, G M; Goemans, N; Dom, R

    1997-04-01

    Nine patients with the characteristic signs of fetal akinesia sequence (polyhydramnion, multiple joint contractures and lung hypoplasia) are described. In 8 of the 9 patients nemaline myopathy could be demonstrated with histology. The ninth patient presented the same phenotype as his 4 affected siblings in whom the nemaline myopathy could be histologically proven. Seven of the patients belonged to 2 families; the other 2 patients were isolated cases. In one fetal case nemaline myopathy was documented at week 22 of gestation. These observations demonstrate that nemaline myopathy can cause the fetal akinesia sequence, with onset of first symptoms as early as the beginning of the second trimester of pregnancy.

  1. Stepwise Approach to Myopathy in Systemic Disease

    PubMed Central

    Chawla, Jasvinder

    2011-01-01

    Muscle diseases can constitute a large variety of both acquired and hereditary disorders. Myopathies in systemic disease results from several different disease processes including endocrine, inflammatory, paraneoplastic, infectious, drug- and toxin-induced, critical illness myopathy, metabolic, and myopathies with other systemic disorders. Patients with systemic myopathies often present acutely or sub acutely. On the other hand, familial myopathies or dystrophies generally present in a chronic fashion with exceptions of metabolic myopathies where symptoms on occasion can be precipitated acutely. Most of the inflammatory myopathies can have a chance association with malignant lesions; the incidence appears to be specifically increased only in patients with dermatomyositis. In dealing with myopathies associated with systemic illnesses, the focus will be on the acquired causes. Management is beyond the scope of this chapter. Prognosis is based upon the underlying cause and, most of the time, carries a good prognosis. In order to approach a patient with suspected myopathy from systemic disease, a stepwise approach is utilized. PMID:21886637

  2. Statin induced necrotizing autoimmune myopathy.

    PubMed

    Babu, Suma; Li, Yuebing

    2015-04-15

    Statin induced necrotizing autoimmune myopathy (SINAM) is a recently characterized entity belonging to the spectrum of statin myotoxicity. It is a more severe form, and is usually associated with significant proximal muscle weakness, strikingly elevated creatine kinase levels and persistent symptoms despite statin discontinuation. The characteristic pathological finding is a marked muscle fiber necrosis with minimal or no inflammation on muscle biopsy. SINAM is an autoimmune disorder associated with an antibody against 3-hydroxy-3-methyglutaryl-coenzyme A reductase (HMGCR), and the antibody titer is a useful marker for assessing treatment response. However, anti-HMGCR positive myopathies are also caused by unknown etiologies other than statin exposure, especially in the younger population. SINAM should be promptly recognized as immunosuppressive therapy can improve its clinical outcome significantly. Further research is needed to elucidate its pathogenesis and provide evidence based guidelines for management.

  3. Immune-mediated statin myopathy.

    PubMed

    Loganathan, Priyadarshini; Oddis, Chester V; Aggarwal, Rohit

    2016-01-01

    Statin-induced necrotizing autoimmune myopathy (SINAM) is associated with a unique clinical 5 phenotype of severe proximal muscle weakness during or after exposure to statins in patients with high creatine kinase (CK) levels. Electromyography (EMG) and muscle biopsy reveal features of a necrotizing myopathy and the anti-HMGCR autoantibody is frequently detected. Treatment requires a combination of statin discontinuation as well as immunomodulatory or immunosuppressive therapy. HLA typing (HLADRB1*1101) is strongly associated with anti-10 HMGCR autoantibody positivity in statin-exposed patients. It is well documented that statin triggers autoimmune disease in those with a genetic susceptibility. With the commercial availability of an accurate ELISA test, the natural history of the disease and its phenotypic features are becoming increasingly understood.

  4. Respiratory assessment in centronuclear myopathies

    PubMed Central

    Smith, Barbara K; Goddard, Melissa; Childers, Martin K.

    2014-01-01

    The centronuclear myopathies (CNMs) are a group of inherited neuromuscular disorders classified as congenital myopathies. While several causative genes have been identified, some patients do not harbor any of the currently known mutations. These diverse disorders have common histological features, which include a high proportion of centrally-nucleated muscle fibers, and clinical attributes of muscle weakness and respiratory insufficiency. Respiratory problems in CNMs may manifest initially during sleep, but daytime symptoms, ineffective airway clearance, and hypoventilation predominate as more severe respiratory muscle dysfunction evolves. Respiratory muscle capacity can be evaluated using a variety of clinical tests selected with consideration for the age and baseline motor function of the patient. Similar clinical tests of respiratory function can also be incorporated into preclinical CNM canine models to offer insight for clinical trials. Since respiratory problems account for significant morbidity in patients, routine assessments of respiratory muscle function are discussed. PMID:24668768

  5. Integrated classification of inflammatory myopathies.

    PubMed

    Allenbach, Y; Benveniste, O; Goebel, H-H; Stenzel, W

    2017-02-01

    Inflammatory myopathies comprise a multitude of diverse diseases, most often occurring in complex clinical settings. To ensure accurate diagnosis, multidisciplinary expertise is required. Here, we propose a comprehensive myositis classification that incorporates clinical, morphological and molecular data as well as autoantibody profile. This review focuses on recent advances in myositis research, in particular, the correlation between autoantibodies and morphological or clinical phenotypes that can be used as the basis for an 'integrated' classification system.

  6. Pathogenic Mechanisms in Centronuclear Myopathies

    PubMed Central

    Jungbluth, Heinz; Gautel, Mathias

    2014-01-01

    Centronuclear myopathies (CNMs) are a genetically heterogeneous group of inherited neuromuscular disorders characterized by clinical features of a congenital myopathy and abundant central nuclei as the most prominent histopathological feature. The most common forms of congenital myopathies with central nuclei have been attributed to X-linked recessive mutations in the MTM1 gene encoding myotubularin (“X-linked myotubular myopathy”), autosomal-dominant mutations in the DNM2 gene encoding dynamin-2 and the BIN1 gene encoding amphiphysin-2 (also named bridging integrator-1, BIN1, or SH3P9), and autosomal-recessive mutations in BIN1, the RYR1 gene encoding the skeletal muscle ryanodine receptor, and the TTN gene encoding titin. Models to study and rescue the affected cellular pathways are now available in yeast, C. elegans, drosophila, zebrafish, mouse, and dog. Defects in membrane trafficking have emerged as a key pathogenic mechanisms, with aberrant T-tubule formation, abnormalities of triadic assembly, and disturbance of the excitation–contraction machinery the main downstream effects studied to date. Abnormal autophagy has recently been recognized as another important collateral of defective membrane trafficking in different genetic forms of CNM, suggesting an intriguing link to primary disorders of defective autophagy with overlapping histopathological features. The following review will provide an overview of clinical, histopathological, and genetic aspects of the CNMs in the context of the key pathogenic mechanism, outline unresolved questions, and indicate promising future lines of enquiry. PMID:25566070

  7. Boeing XF2B-1 (F2B-1)

    NASA Technical Reports Server (NTRS)

    1931-01-01

    Boeing XF2B-1 (F2B-1): Serving as the prototype for the F2B-1 shipboard fighter, the XF2B-1 differed visually in having a pointed spinner and an unbalanced rudder. Like many aircraft of its day, the Boeing model 69 was powered by a Pratt & Whitney Wasp radial engine.

  8. [Autoimmune myopathy associated with statin use].

    PubMed

    Ljøstad, Unn; Mygland, Åse

    2016-09-01

    It is well known that statins can have a toxic effect on musculature, but less widely known that they can also trigger progressive autoimmune myopathy. Statin-associated autoimmune myopathy is characterised by proximal muscle weakness, antibodies to 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in serum, and necrosis without lymphocytic infiltration on muscle biopsy.

  9. Infantile peripheral neuropathy, deafness, and proximal tubulopathy associated with a novel mutation of the RRM2B gene

    PubMed Central

    Stojanović, Vesna; Mayr, Johannes A.; Sperl, Wolfgang; Barišić, Nenad; Doronjski, Aleksandra; Milak, Gordana

    2013-01-01

    Mitochondrial DNA depletion syndromes are a group of autosomal recessive hereditary disorders characterized by reduction of the amount of mitochondrial DNA in the affected tissue (muscle, liver, brain, or kidneys). We report a case of an infant with myopathy, deafness, peripheral neuropathy, nephrocalcinosis, proximal renal tubulopathy, moderate lactic acidosis, and a novel mutation of the RRM2B gene. PMID:24382854

  10. Infantile peripheral neuropathy, deafness, and proximal tubulopathy associated with a novel mutation of the RRM2B gene: case study.

    PubMed

    Stojanovic, Vesna; Mayr, Johannes A; Sperl, Wolfgang; Barišić, Nenad; Doronjski, Aleksandra; Milak, Gordana

    2013-12-01

    Mitochondrial DNA depletion syndromes are a group of autosomal recessive hereditary disorders characterized by reduction of the amount of mitochondrial DNA in the affected tissue (muscle, liver, brain, or kidneys). We report a case of an infant with myopathy, deafness, peripheral neuropathy, nephrocalcinosis, proximal renal tubulopathy, moderate lactic acidosis, and a novel mutation of the RRM2B gene.

  11. A diagnostic algorithm for metabolic myopathies.

    PubMed

    Berardo, Andres; DiMauro, Salvatore; Hirano, Michio

    2010-03-01

    Metabolic myopathies comprise a clinically and etiologically diverse group of disorders caused by defects in cellular energy metabolism, including the breakdown of carbohydrates and fatty acids to generate adenosine triphosphate, predominantly through mitochondrial oxidative phosphorylation. Accordingly, the three main categories of metabolic myopathies are glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders due to respiratory chain impairment. The wide clinical spectrum of metabolic myopathies ranges from severe infantile-onset multisystemic diseases to adult-onset isolated myopathies with exertional cramps. Diagnosing these diverse disorders often is challenging because clinical features such as recurrent myoglobinuria and exercise intolerance are common to all three types of metabolic myopathy. Nevertheless, distinct clinical manifestations are important to recognize as they can guide diagnostic testing and lead to the correct diagnosis. This article briefly reviews general clinical aspects of metabolic myopathies and highlights approaches to diagnosing the relatively more frequent subtypes (Fig. 1). Fig. 1 Clinical algorithm for patients with exercise intolerance in whom a metabolic myopathy is suspected. CK-creatine kinase; COX-cytochrome c oxidase; CPT-carnitine palmitoyl transferase; cyt b-cytochrome b; mtDNA-mitochondrial DNA; nDNA-nuclear DNA; PFK-phosphofructokinase; PGAM-phosphoglycerate mutase; PGK-phosphoglycerate kinase; PPL-myophosphorylase; RRF-ragged red fibers; TFP-trifunctional protein deficiency; VLCAD-very long-chain acyl-coenzyme A dehydrogenase.

  12. Narrative review: statin-related myopathy.

    PubMed

    Joy, Tisha R; Hegele, Robert A

    2009-06-16

    Statin-related myopathy is a clinically important cause of statin intolerance and discontinuation. The spectrum of statin-related myopathy ranges from common but clinically benign myalgia to rare but life-threatening rhabdomyolysis. Observational studies suggest that myalgia can occur in up to 10% of persons prescribed statins, whereas rhabdomyolysis continues to be rare. The mechanisms of statin-related myopathy are unclear. Options for managing statin myopathy include statin switching, particularly to fluvastatin or low-dose rosuvastatin; nondaily dosing regimens; nonstatin alternatives, such as ezetimibe and bile acid-binding resins; and coenzyme Q10 supplementation. Few of these strategies have high-quality evidence supporting them. Because statin-related myopathy will probably become more common with greater numbers of persons starting high-dose statin therapy and the increasing stringency of low-density lipoprotein cholesterol level targets, research to better identify patients at risk for statin myopathy and to evaluate management strategies for statin-related myopathy is warranted.

  13. Dementia in a child with myotubular myopathy.

    PubMed

    McCrea, Heather J; Kretz, Christine; Laporte, Jocelyn; Ment, Laura R

    2009-06-01

    An 8-year old boy with genetically confirmed X-linked myotubular myopathy developed progressively worsening dementia and subclinical seizures at age 5-6 years. Previously, seizures or dementia have been noted in only a small number of myotubular myopathy patients, and only in association with significant metabolic disturbances. This patient had no evidence of hypoxemia or other metabolic disturbance. The present case suggests that the clinical spectrum of X-linked myotubular myopathy is broader than previously considered and may include mutation-dependent central nervous system disease.

  14. Mitochondrial DNA polymorphism in mitochondrial myopathy.

    PubMed

    Holt, I J; Harding, A E; Morgan-Hughes, J A

    1988-05-01

    In order to test the hypothesis that mitochondrial myopathy may be caused by mutation of the mitochondrial (mt) genome, restriction fragment length polymorphism in leucocyte mt DNA has been studied in 38 patients with mitochondrial myopathy, 44 of their unaffected matrilineal relatives, and 35 normal control subjects. Previously unreported mt DNA polymorphisms were identified in both patients and controls. No differences in restriction fragment patterns were observed between affected and unaffected individuals in the same maternal line, and there was no evidence of major deletion of mt DNA in patients. This study provides no positive evidence of mitochondrial inheritance in mitochondrial myopathy, but this has not been excluded.

  15. Nemaline myopathy with dilated cardiomyopathy in childhood.

    PubMed

    Gatayama, Ryohei; Ueno, Kentaro; Nakamura, Hideaki; Yanagi, Sadamitsu; Ueda, Hideaki; Yamagishi, Hiroyuki; Yasui, Seiyo

    2013-06-01

    We present a case of a 9-year-old boy with nemaline myopathy and dilated cardiomyopathy. The combination of nemaline myopathy and cardiomyopathy is rare, and this is the first reported case of dilated cardiomyopathy associated with childhood-onset nemaline myopathy. A novel mutation, p.W358C, in ACTA1 was detected in this patient. An unusual feature of this case was that the patient's cardiac failure developed during early childhood with no delay of gross motor milestones. The use of a β-blocker did not improve his clinical course, and the patient died 6 months after diagnosis of dilated cardiomyopathy. Congenital nonprogressive nemaline myopathy is not necessarily a benign disorder: deterioration can occur early in the course of dilated cardiomyopathy with neuromuscular disease, and careful clinical evaluation is therefore necessary.

  16. Genetics Home Reference: Laing distal myopathy

    MedlinePlus

    ... Laing distal myopathy is a condition that affects skeletal muscles, which are muscles that the body uses for ... in heart (cardiac) muscle and in type I skeletal muscle fibers. Type I fibers, which are also known ...

  17. Pulmonary complications of inflammatory myopathy.

    PubMed

    Ascherman, Dana P

    2002-10-01

    Pulmonary manifestations contribute significantly to the morbidity and mortality of the idiopathic inflammatory myopathies, ranging from intrinsic lung disease to secondary complications that include aspiration pneumonia, opportunistic infection, congestive heart failure, and hypoventilation. Newer classification schemes for interstitial lung disease have permitted closer correlation between histologic subtype and clinical outcome, while diagnostic techniques such as bronchoalveolar lavage have begun to define the cellular elements responsible for immune-mediated pulmonary dysfunction. Investigators have identified several serum markers correlating with inflammatory disease activity in the lung that should enhance noninvasive monitoring of therapeutic responses to newer regimens involving agents such as cyclosporine and tacrolimus. Taken together, these advances have contributed to better understanding of the immunopathogenesis of myositis-associated interstitial lung disease that should ultimately translate into more effective treatment.

  18. Mitochondrial dysfunction in myofibrillar myopathy.

    PubMed

    Vincent, Amy E; Grady, John P; Rocha, Mariana C; Alston, Charlotte L; Rygiel, Karolina A; Barresi, Rita; Taylor, Robert W; Turnbull, Doug M

    2016-10-01

    Myofibrillar myopathies (MFM) are characterised by focal myofibrillar destruction and accumulation of myofibrillar elements as protein aggregates. They are caused by mutations in the DES, MYOT, CRYAB, FLNC, BAG3, DNAJB6 and ZASP genes as well as other as yet unidentified genes. Previous studies have reported changes in mitochondrial morphology and cellular positioning, as well as clonally-expanded, large-scale mitochondrial DNA (mtDNA) deletions and focal respiratory chain deficiency in muscle of MFM patients. Here we examine skeletal muscle from patients with desmin (n = 6), ZASP (n = 1) and myotilin (n = 2) mutations and MFM protein aggregates, to understand how mitochondrial dysfunction may contribute to the underlying mechanisms causing disease pathology. We have used a validated quantitative immunofluorescent assay to study respiratory chain protein levels, together with oxidative enzyme histochemistry and single cell mitochondrial DNA analysis, to examine mitochondrial changes. Results demonstrate a small number of clonally-expanded mitochondrial DNA deletions, which we conclude are due to both ageing and disease pathology. Further to this we report higher levels of respiratory chain complex I and IV deficiency compared to age matched controls, although overall levels of respiratory deficient muscle fibres in patient biopsies are low. More strikingly, a significantly higher percentage of myofibrillar myopathy patient muscle fibres have a low mitochondrial mass compared to controls. We concluded this is mechanistically unrelated to desmin and myotilin protein aggregates; however, correlation between mitochondrial mass and muscle fibre area is found. We suggest this may be due to reduced mitochondrial biogenesis in combination with muscle fibre hypertrophy.

  19. Myopathy

    MedlinePlus

    ... Association National Office - 222 S. Riverside Plaza Suite 1500 Chicago IL Chicago, IL 60606 mda@mdausa.org http://www.mda. ... Association National Office - 222 S. Riverside Plaza Suite 1500 Chicago IL Chicago, IL 60606 mda@mdausa.org http:// ...

  20. Myopathies

    MedlinePlus

    ... to an attack, while potassium intake can restore serum potassium levels and stem an oncoming attack. Ask your MDA clinic director for specific recommendations about diet, exercise and medications. Andersen-Tawil syndrome Causes: This disease is caused by defects in a potassium channel ...

  1. Statin-induced myopathy in the rat: relationship between systemic exposure, muscle exposure and myopathy.

    PubMed

    Sidaway, J; Wang, Y; Marsden, A M; Orton, T C; Westwood, F R; Azuma, C T; Scott, R C

    2009-01-01

    Rare instances of myopathy are associated with all statins, but cerivastatin was withdrawn from clinical use due to a greater incidence of myopathy. The mechanism of statin-induced myopathy with respect to tissue disposition was investigated by measuring the systemic, hepatic, and skeletal muscle exposure of cerivastatin, rosuvastatin, and simvastatin in rats before and after muscle damage. The development of myopathy was not associated with the accumulation of statins in skeletal muscle. For each statin exposure was equivalent in muscles irrespective of their fibre-type sensitivity to myopathy. The low amount of each statin in skeletal muscle relative to the liver does not support a significant role for transporters in the disposition of statins in skeletal muscle. Finally, the concentration of cerivastatin necessary to cause necrosis in skeletal muscle was considerably lower than rosuvastatin or simvastatin, supporting the concept cerivastatin is intrinsically more myotoxic than other statins.

  2. Myopathy in hypophosphataemic osteomalacia presenting in adult life.

    PubMed Central

    Schott, G D; Wills, M R

    1975-01-01

    Three cases of hypophosphataemic osteomalacia presenting in adult life, in which a myopathy was a prominent presenting feature, are described. In one, a nasopharyngeal haemangioma was also present. Possible mechanisms underlying the myopathy are discussed briefly. PMID:1151410

  3. Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy

    PubMed Central

    Li, Songqing; Zhang, Peipei; Freibaum, Brian D.; Kim, Nam Chul; Kolaitis, Regina-Maria; Molliex, Amandine; Kanagaraj, Anderson P.; Yabe, Ichiro; Tanino, Mishie; Tanaka, Shinya; Sasaki, Hidenao; Ross, Eric D.; Taylor, J. Paul; Kim, Hong Joo

    2016-01-01

    Adult-onset inherited myopathies with similar pathological features, including hereditary inclusion body myopathy (hIBM) and limb-girdle muscular dystrophy (LGMD), are a genetically heterogeneous group of muscle diseases. It is unclear whether these inherited myopathies initiated by mutations in distinct classes of genes are etiologically related. Here, we exploit a genetic model system to establish a mechanistic link between diseases caused by mutations in two distinct genes, hnRNPA2B1 and DNAJB6. Hrb98DE and mrj are the Drosophila melanogaster homologs of human hnRNPA2B1 and DNAJB6, respectively. We introduced disease-homologous mutations to Hrb98DE, thus capturing mutation-dependent phenotypes in a genetically tractable model system. Ectopic expression of the disease-associated mutant form of hnRNPA2B1 or Hrb98DE in fly muscle resulted in progressive, age-dependent cytoplasmic inclusion pathology, as observed in humans with hnRNPA2B1-related myopathy. Cytoplasmic inclusions consisted of hnRNPA2B1 or Hrb98DE protein in association with the stress granule marker ROX8 and additional endogenous RNA-binding proteins (RBPs), suggesting that these pathological inclusions are related to stress granules. Notably, TDP-43 was also recruited to these cytoplasmic inclusions. Remarkably, overexpression of MRJ rescued this phenotype and suppressed the formation of cytoplasmic inclusions, whereas reduction of endogenous MRJ by a classical loss of function allele enhanced it. Moreover, wild-type, but not disease-associated, mutant forms of MRJ interacted with RBPs after heat shock and prevented their accumulation in aggregates. These results indicate both genetic and physical interactions between disease-linked RBPs and DNAJB6/mrj, suggesting etiologic overlap between the pathogenesis of hIBM and LGMD initiated by mutations in hnRNPA2B1 and DNAJB6. PMID:26744327

  4. Does reduced creatine synthesis protect against statin myopathy?

    PubMed

    Ballard, Kevin D; Thompson, Paul D

    2013-12-03

    Statins, widely used to lower cholesterol levels, cause myopathy in some patients. Mangravite et al. (2013) show that a single nucleotide polymorphism decreasing expression of glycine amidinotransferase (GATM), the enzyme regulating creatine biosynthesis, is associated with reduced statin myopathy. Whether reduced creatine production protects against statin myopathy remains to be determined.

  5. Dropped head presentation of mitochondrial myopathy.

    PubMed

    Rahim, Fazal; Gupta, Devanshi; Bertorini, Tulio E; Ledoux, Mark S

    2003-12-01

    Dropped head secondary to weakness of the neck extensors has been reported in a wide assortment of neuromuscular disorders. Infrequently, dropped head can be the first sign of disease. We describe two patients with dropped head as the presenting manifestation of mitochondrial myopathy. In both patients, serum lactate was elevated and muscle biopsy showed mitochondrial proliferation. Mitochondrial myopathy should be considered in the differential diagnosis of dropped head syndrome, particularly when other, more common causes such as myasthenia gravis, polymyositis, and amyotrophic lateral sclerosis have been excluded by appropriate laboratory and electrophysiological studies.

  6. A TPM3 mutation causing cap myopathy.

    PubMed

    De Paula, Andre Maues; Franques, Jerome; Fernandez, Carla; Monnier, Nicole; Lunardi, Joel; Pellissier, Jean-François; Figarella-Branger, Dominique; Pouget, Jean

    2009-10-01

    Cap disease is a rare congenital myopathy associated with skeletal malformations and respiratory involvement. Abnormally arranged myofibrils taking the appearance of a "cap" are the morphological hallmark of this entity. We report a case of cap disease concerning a 42-year-old man, without any family history and presenting a p.Arg168His mutation on the TPM3 gene. His first biopsy at 7years had only shown selective type I hypotrophy. Mutations of TPM3 gene have been found in nemaline myopathy, congenital fiber type disproportion, but never before in cap disease.

  7. Pancreatic Cancer Stage 2B

    MedlinePlus

    ... 2B Description: Stage IIB pancreatic cancer; drawing shows cancer in the pancreas and in nearby lymph nodes. Also shown are the bile duct, pancreatic duct, and duodenum. Stage IIB pancreatic cancer. Cancer has spread to nearby lymph nodes and ...

  8. Clinicopathological Features of Telbivudine-Associated Myopathy

    PubMed Central

    2016-01-01

    Telbivudine, a thymidine nucleoside analog, is a common therapeutic option for chronic hepatitis B infection. While raised serum creatine kinase is common, myopathy associated with telbivudine is rare. Reports on its myopathological features are few and immunohistochemical analyses of inflammatory cell infiltrates have not been previously described. We describe the clinical, myopathological and immunohistochemical features of four patients who developed myopathy after telbivudine therapy for chronic hepatitis B infection. All four patients presented with progressive proximal muscle weakness, elevation of serum creatine kinase and myopathic changes on electromyography. Muscle biopsies showed myofiber degeneration/necrosis, regeneration, and fibers with cytoplasmic bodies and cytochrome c oxidase deficiency. There was minimal inflammation associated with strong sarcolemmal overexpression of class I major histocompatibility complex (MHC class I). Upon withdrawal of telbivudine, muscle weakness improved in all patients and eventually completely resolved in three. In our series, telbivudine-associated myopathy is characterized by necrotizing myopathy which improved on drug withdrawal. Although the occasional loss of cytochrome c oxidase is consistent with mitochondrial toxicity, the overexpression of MHC class I in all patients could suggest an underlying immune-mediated mechanism which may warrant further investigation. PMID:27611456

  9. Genetics Home Reference: intranuclear rod myopathy

    MedlinePlus

    ... fibers and are important for muscle contraction. Attachment (binding) and release of the overlapping thick and thin filaments allows them to move relative to each other so that the muscles can contract. ACTA1 gene mutations that cause intranuclear rod myopathy ...

  10. Genetics Home Reference: actin-accumulation myopathy

    MedlinePlus

    ... fibers and are important for muscle contraction. Attachment (binding) and release of the overlapping thick and thin filaments allows them to move relative to each other so that the muscles can contract. ACTA1 gene mutations that cause actin-accumulation myopathy ...

  11. Genetics Home Reference: tubular aggregate myopathy

    MedlinePlus

    ... Krahn M, Eymard B, Bartoli M, Laporte J. Constitutive activation of the calcium sensor STIM1 causes tubular- ... ORAI1 cause tubular aggregate myopathy with hypocalcemia via constitutive activation of store-operated Ca²⁺ channels. Hum Mol ...

  12. Multidisciplinary Approach to the Management of Myopathies

    PubMed Central

    M. King, Wendy; Kissel, John T.

    2013-01-01

    Purpose of Review Aside from some inflammatory myopathies and very few genetic disorders, there are no therapies that make most patients with myopathies stronger. Consequently, the management of these patients can be frustrating for patients and their families as well as the clinicians taking care of them. Treatment of these patients must involve a comprehensive approach focused on limiting the secondary effects of skeletal muscle weakness, managing comorbidities associated with specific diseases, and, most importantly, optimizing patients’ functional abilities and quality of life in terms of their ability to accomplish activities of daily living. While the approach to each patient differs depending on their disease, certain common themes can be addressed in each patient. This review highlights an approach centered on four conceptual themes (“the Four S’s”): Strength therapies, Supportive care, Symptomatic therapies, and pSychological support. Recent Findings Although relatively few well-designed studies have been done that highlight conservative management of patients with various myopathies, an emerging literature helps guide the clinician in certain key areas, especially in relation to cardiac and pulmonary management of these patients. Summary While disease-altering therapies have proven elusive for many muscle diseases, a multimodal approach to the conservative and supportive care of these patients can markedly improve their quality of life. Pharmacologic treatment options for specific myopathies will not be addressed in this article but are covered elsewhere in this issue of CONTINUUM. PMID:24305452

  13. Severe congenital RYR1-associated myopathy

    PubMed Central

    Bharucha-Goebel, Diana Xerxes; Santi, Mariarita; Medne, Līvija; Zukosky, Kristin; Dastgir, Jahannaz; Shieh, Perry B.; Winder, Thomas; Tennekoon, Gihan; Finkel, Richard S.; Dowling, James J.; Monnier, Nicole

    2013-01-01

    Objective: To report a series of 11 patients on the severe end of the spectrum of ryanodine receptor 1 (RYR1) gene–related myopathy, in order to expand the clinical, histologic, and genetic heterogeneity associated with this group of patients. Methods: Eleven patients evaluated in the neonatal period with severe neonatal-onset RYR1-associated myopathy confirmed by genetic testing were ascertained. Clinical features, molecular testing results, muscle imaging, and muscle histology are reviewed. Results: Clinical features associated with the severe neonatal presentation of RYR1-associated myopathy included decreased fetal movement, hypotonia, poor feeding, respiratory involvement, arthrogryposis, and ophthalmoplegia in 3 patients, and femur fractures or hip dislocation at birth. Four patients had dominant RYR1 mutations, and 7 had recessive RYR1 mutations. One patient had a cleft palate, and another a congenital rigid spine phenotype—findings not previously described in the literature in patients with early-onset RYR1 mutations. Six patients who underwent muscle ultrasound showed relative sparing of the rectus femoris muscle. Histologically, all patients with dominant mutations had classic central cores on muscle biopsy. Patients with recessive mutations showed great histologic heterogeneity, including fibrosis, variation in fiber size, skewed fiber typing, very small fibers, and nuclear internalization with or without ill-defined cores. Conclusions: This series confirms and expands the clinical and histologic variability associated with severe congenital RYR1-associated myopathy. Both dominant and recessive mutations of the RYR1 gene can result in a severe neonatal-onset phenotype, but more clinical and histologic heterogeneity has been seen in those with recessive RYR1 gene mutations. Central cores are not obligatory histologic features in recessive RYR1 mutations. Sparing of the rectus femoris muscle on imaging should prompt evaluation for RYR1-associated

  14. Statin-associated autoimmune myopathy and anti-HMGCR autoantibodies.

    PubMed

    Mohassel, Payam; Mammen, Andrew L

    2013-10-01

    Statins are among the most commonly prescribed medications that significantly reduce cardiovascular risk in selected individuals. However, these drugs can also be associated with muscle symptoms ranging from mild myalgias to severe rhabdomyolysis. Although statin myotoxicity is usually self-limited, in some instances statin-exposed subjects can develop an autoimmune myopathy typically characterized by progressive weakness, muscle enzyme elevations, a necrotizing myopathy on muscle biopsy, and autoantibodies that recognize 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), the pharmacologic target of statins. These antibodies are also found in some autoimmune myopathy patients without statin exposure. Importantly, anti-HMGCR antibodies are not found in the vast majority of statin-exposed subjects without autoimmune myopathy, including those with self-limited statin intolerance. Thus, testing for these antibodies may help differentiate those with self-limited statin myopathy who recover after statin discontinuation from those with a progressive statin-associated autoimmune myopathy who typically require immunosuppressive therapy.

  15. GNE Myopathy: Two Clusters with History and Several Founder Mutations

    PubMed Central

    Argov, Zohar; Mitrani Rosenbaum, Stella

    2015-01-01

    Abstract GNE myopathy (previous names: HIBM, DMRV, IBM2) is a unique distal myopathy with quadriceps sparing. This recessively inherited myopathy has been diagnosed in various regions of the world with more than 150 disease-causing mutations already identified. Several of those are proven or suspected to be founder mutations in certain regional clusters and are described in this review. The review also discusses some historical aspects that might be relevant to the mutational distribution. PMID:27858758

  16. Statin-induced myopathy in a patient with previous poliomyelitis.

    PubMed

    Martikainen, Mika H; Gardberg, Maria; Kohonen, Ia; Lähdesmäki, Janne

    2013-11-01

    This report describes a patient with a history of poliomyelitis who developed new, progressive symptoms of muscle fatigue and weakness, suggestive of postpoliomyelitis syndrome. However, comprehensive investigations led to the diagnosis of statin-induced myopathy as the cause of the patient's symptoms. This case highlights the possibility of statin-induced myopathy in patients with a history of poliomyelitis and the differential diagnosis between postpoliomyelitis syndrome and statin-induced myopathy in these patients. The possibility of statin-induced myopathy should be considered when patients with previous poliomyelitis who take statin medication develop symptoms suggestive of postpoliomyelitis syndrome.

  17. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy.

    PubMed

    Dirks-Naylor, Amie J; Griffiths, Carrie L

    2009-10-01

    Glucocorticoid-induced myopathy is a common side effect of chronic glucocorticoid therapy. Several mechanisms are currently being examined as ways in which glucocorticoid-induced myopathy occurs. These include apoptotic signaling through mitochondrial-mediated and Fas-mediated apoptosis, the role of the proteosome, the suppression of the IGF-1 signaling, and the role of ceramide in glucocorticoid-induced apoptosis and myopathy. It is difficult to differentiate which mechanism may be the initiating event responsible for the induction of apoptosis; however, all of the mechanisms play a vital role in glucocorticoid-induced myopathy.

  18. [Biologic therapy in idiopathic inflammatory myopathy].

    PubMed

    Selva-O'Callaghan, Albert; Ramos Casals, Manel; Grau Junyent, Josep M

    2014-09-15

    The aim of this article is to study the evidence-based knowledge related to the use of biological therapies in patients diagnosed with idiopathic inflammatory myopathy (dermatomyositis, polymyositis and inclusion body myositis). In this review the leading published studies related to the use of biological therapy in patients with myositis are analysed; mainly those with high methodological standards, that means randomized and controlled studies. Methodological drawbacks due to the rarity and heterogeneity of these complex diseases are also addressed. Up to now is not possible to ascertain the biologics as a recommended therapy in patients with myositis, at least based in the current evidence-based knowledge, although it can not be neglected as a therapeutic option in some clinical situations, taking into account the scarce of effective treatments in those patients, especially in refractory myositis. Future studies probably will help to better define the role of biological therapies in patients with idiopathic inflammatory myopathy.

  19. Presumed isotretinoin-induced extraocular myopathy

    PubMed Central

    Alam, Md. Shahid; Agarwal, Swati

    2016-01-01

    Isotretinoin a synthetic analogue of vitamin A is primarily used for cystic acne not responding to conventional treatment. Several ocular side effects including blurring of vision, decreased dark adaptation, corneal opacities and meibomian gland atrophy have been reported with prolonged use of isotretinoin. There have been reports of muscular damage caused by isotretinoin. Extra ocular myopathy as an adverse effect of long term used of isotretinoin has never been mentioned in literature. We report a case of a young male who presented to us with complaints of diplopia after using isotretinoin for a prolonged period. He was diagnosed as a case of presumed isotretinoin extraocular myopathy after imaging and other blood investigations. PMID:28163542

  20. Intranuclear rods myopathy with autonomic dysfunction.

    PubMed

    Chou, Po-Ching; Liang, Wen-Chen; Nonaka, Ikuya; Mitsuhashi, Satomi; Nishino, Ichizo; Jong, Yuh-Jyh

    2013-08-01

    Intranuclear rods myopathy (IRM), a variant of nemaline myopathy (NM), is characterized by rod structure in the myonuclei. Patients with IRM present with similar symptoms to those of severe infantile-type NM but have worse outcome. Several extramuscular manifestations have been reported in NM but no dysautonomia. We herein report a 2-year-old girl with IRM and a heterozygous mutation, c.430C>T (p.L144F) in ACTA1. During the infancy, the patient showed severe diaphoresis and facial flushing. Arrhythmia and hypertension with the precipitating factors of feeding, defecation, and urination were observed. Sympathetic antagonist was prescribed and showed some effectiveness. Our report may widen the clinical spectrum of IRM. It also reminds clinicians that autonomic dysfunction may occur in patients with IRM or other actinopathies and appropriate treatment may be necessary.

  1. Muscle biopsy findings in inflammatory myopathies.

    PubMed

    Dalakas, Marinos C

    2002-11-01

    The inflammatory myopathies encompass a heterogeneous group of acquired muscle diseases characterized clinically, by muscle weakness, and histologically, by inflammatory infiltrates within the skeletal muscles. The group of these myopathies comprise three major and discrete subsets: polymyositis (PM), dermatomyositis (DM), and inclusion body myositis (IBM). Each subset retains its characteristic clinical, immunopathologic, and morphologic features regardless of whether it occurs separately or in connection with other systemic diseases. Although the diagnosis of these disorders is based on the combination of clinical examination, electromyographic data, serum muscle enzyme levels, various autoantibodies, and the muscle biopsy findings, the muscle biopsy offers the most definitive diagnostic information in the majority of the cases. This article summarizes the main histologic features that characterize PM, DM, or IBM and emphasizes the main pitfalls associated with interpretation of the biopsies.

  2. [Statin myopathy--rarity or reality?].

    PubMed

    Pella, D

    2010-09-01

    Statins are the most effective drugs for reducing LDL-cholesterol and have strong evidence based medicine documented by significant reduction of cardiovascular events in wide variety of patients. Despite this fact, they are still underused in common clinical practice. Many physicians have expressed concern about potential adverse effects, particularly severe muscle toxicity, which is an impediment to appropriate statin use. The clinical symptoms of statin myopathy include myalgia or muscle weakness, tiredness, cramps and/or creatinkinase activity increases (CK). Because hypercholesterolaemia is usually asymptomatic, any unwanted effect of drug used for its management can undermine adherence. Therefore it is very important to evaluate myopathy magnitude, prompt and rational individual management, and if applicable, restart of lipid-lowering therapy as soon as possible with regard to its type, dose and concomitant treatment.

  3. Autoimmune Myopathies: Where Do We Stand?

    PubMed Central

    Simon, Jean-Philippe; Marie, Isabelle; Jouen, Fabienne; Boyer, Olivier; Martinet, Jérémie

    2016-01-01

    Autoimmune diseases (AIDs) as a whole represent a major health concern and remain a medical and scientific challenge. Some of them, such as multiple sclerosis or type 1 diabetes, have been actively investigated for many decades. Autoimmune myopathies (AIMs), also referred to as idiopathic inflammatory myopathies or myositis, represent a group of very severe AID for which we have a more limited pathophysiological knowledge. AIM encompass a group of, individually rare but collectively not so uncommon, diseases characterized by symmetrical proximal muscle weakness, increased serum muscle enzymes such as creatine kinase, myopathic changes on electromyography, and several typical histological patterns on muscle biopsy, including the presence of inflammatory cell infiltrates in muscle tissue. Importantly, some AIMs are strongly related to cancer. Here, we review the current knowledge on the most prevalent forms of AIM and, notably, the diagnostic contribution of autoantibodies. PMID:27379096

  4. MITOCHONDRIAL MYOPATHY: A NEW THERAPEUTIC APPROACH.

    PubMed

    Hagiu, B A; Mungiu, C

    2016-01-01

    Restoration of deoxyribonucleic acid in mitochondrial myopathies may occur after a mechanical or chemical injury of striated muscle or by endurance training. Therapies with enzymes, gene therapies, or treatments with substances that stimulate mitochondrial biogenesis are used at the moment. Genesis of mitochondria may also come from myonuclei by releasing the nuclear respiratory factor-1/2 during muscle contractions. Multiplying of myonuclei depends on muscle satellite cell activation. Since the electromyostimulation increase the number of circulating stem cells that may participate in the genesis of new muscle fibers (adding to the deposit of specific stem cells of the muscle), and intermittent hypoxia stimulates the proliferation of muscle satellite cells, we propose to combine the two processes for the treatment of mitochondrial myopathies. Respective combined therapy may be useful for restoring damaged mitochondria by drug side effects.

  5. Identifying statin-associated autoimmune necrotizing myopathy.

    PubMed

    Albayda, Jemima; Christopher-Stine, Lisa

    2014-12-01

    Statins up-regulate expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in cholesterol synthesis and the major target of autoantibodies in statin-associated immune-mediated necrotizing myopathy. As muscle cells regenerate, they express high levels of HMGCR, which may sustain the immune response even after statin therapy is stopped. Awareness of this entity will help physicians who prescribe statins to take action to limit the associated morbidity.

  6. Statin-induced apoptosis and skeletal myopathy.

    PubMed

    Dirks, Amie J; Jones, Kimberly M

    2006-12-01

    Over 100 million prescriptions were filled for statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) in 2004. Statins were originally developed to lower plasma cholesterol in patients with hypercholesterolemia and are the most effective drugs on the market in doing so. Because of the discovered pleiotropic effects of statins, the use has expanded to the treatment of many other conditions, including ventricular arrythmias, idiopathic dilated cardiomyopathy, cancer, osteoporosis, and diabetes. The elderly population is growing. Therefore, it is estimated that the number of statin users will also increase. Fortunately, the use of statins is relatively safe with few side effects. Myopathy is the most common side effect with symptoms ranging from fatigue, weakness, and pain to symptoms associated with rhabdomyolysis which is a life-threatening condition. The development of statin-induced rhabdomyolysis is rare occurring in approximately 0.1% of patients; however, the occurrence of less severe symptoms is underreported and may be 1-5% or more. Physical exercise appears to increase the likelihood for the development of myopathy in patients taking statins. It is thought that as many as 25% of statin users who exercise may experience muscle fatigue, weakness, aches, and cramping due to statin therapy and potentially dismissed by the patient and physician. The mechanisms causing statin-induced myopathy have not been elucidated; however, research efforts suggest that apoptosis of myofibers may contribute. The mitochondrion is considered a regulatory center of apoptosis, and therefore its role in the induction of apoptosis will be discussed as well as the mechanism of statin-induced apoptosis and myopathy.

  7. Immune Mediated Necrotizing Myopathy: a Cause of Isolated Myopathy of Neck Extensor Muscle

    PubMed Central

    Sehgal, Rahul; Medina-Flores, Rafael; Yachoui, Ralph; Kenney, Charles V

    2016-01-01

    Immune mediated necrotizing myopathy (IMNM) is a unique form of myositis that is characterized by distinct muscle biopsy features including abundant myofiber necrosis, degeneration, and regeneration with only minimal, if any, inflammation on muscle biopsy. IMNM is clinically similar to idiopathic inflammatory myopathy (IIM); hence, muscle biopsy is essential to diagnose IMNM. Herein we describe a case of neck extensor weakness due to necrotizing myopathy. Isolated weakness of the neck extensor muscles is uncommon in IIM and IMNM. This case describes the diagnostic work-up, treatments utilized, and 2 year follow-up course without involvement of other muscle groups and without progression of neck extensor muscle weakness. Advanced imaging using magnetic resonance imaging (MRI) facilitated the diagnosis by identifying the affected muscles and site for muscle biopsy. PMID:27573534

  8. Muscle fibrillin deficiency in Marfan's syndrome myopathy

    PubMed Central

    Behan, W; Longman, C; Petty, R; Comeglio, P; Child, A; Boxer, M; Foskett, P; Harriman, D

    2003-01-01

    Objective: To report a family with Marfan's syndrome in whom a myopathy was associated with respiratory failure; muscle biopsies from affected individuals were examined to determine whether there were abnormalities in fibrillin. Methods: 21 family members underwent detailed clinical examination, including neurological and pulmonary assessment. Muscle biopsies in the most severely affected cases were immunostained using monoclonal antibodies to specific fibrillin components. Genomic DNA from all 21 members was analysed for mutations in the fibrillin gene, FBN1, on 15q21. Results: 13 individuals had a C4621T base change in exon 37 of the FBN1 gene, which in four cases segregated with muscle weakness or evidence of respiratory muscle dysfunction or both. Their muscle biopsies revealed an abnormality in fibrillin immunoreactivity. Conclusions: Abnormalities in fibrillin can be detected in muscle biopsies from patients with Marfan's syndrome who have myopathy. This pedigree, with a point mutation in FBN1, also draws attention to the potential for respiratory failure associated with myopathy. PMID:12700307

  9. Isolated inflammatory myopathy with rimmed vacuoles presenting with dropped head.

    PubMed

    Kataoka, Hiroshi; Sugie, Kazuma; Terashima, Mari; Koizumi, Munehisa; Horikawa, Hirosei; Nishino, Ichizo; Nonaka, Ikuya; Ueno, Satoshi

    2009-12-01

    We describe an unusual case of inflammatory myopathy with rimmed vacuoles associated with dropped head syndrome. Muscle biopsy in our patient revealed variations in fiber size with fiber necrosis and regeneration, accompanied by many rimmed vacuoles and areas of endomysial cell infiltration. Electron microscopy demonstrated autophagic vacuoles and tubulofilamentous inclusions. This myopathy can cause dropped head syndrome in a subgroup of patients.

  10. Myopathy with tubulin-reactive inclusions in two cats.

    PubMed

    Shelton, G Diane; Sturges, Beverly K; Lyons, Leslie A; Williams, D Colette; Aleman, Monica; Jiang, Yun; Mizisin, Andrew P

    2007-11-01

    Many types of inclusions have been described in human myopathies including but not limited to nemaline rod bodies, cylindrical spirals, tubular aggregates, cytoplasmic bodies, reducing bodies, and fingerprint bodies, and hyaline inclusions in myofibrillar myopathy and inclusion body myositis. There are very few reports describing inclusions in spontaneously occurring myopathies in cats, and these reports are limited to nemaline rod myopathy. A myopathy with tubulin-reactive crystalline inclusions has recently been reported in a human patient with a clinical presentation of myalgia and fatigue. Similarly, a myopathy with chronic, slowly progressive muscle weakness has been identified here in two unrelated cats. Inclusions were the only pathological change in skeletal muscle biopsies and, ultrastructurally, groups of crystalline structures were evident that had a subsarcolemmal or central location, rhomboid or rectangular shapes, lacked orientation, and were not membrane bound. The crystalline structures reacted positively with an antibody against tubulin. This feline myopathy may be the equivalent of the human myopathy with tubulin-positive crystalline inclusions.

  11. An Unusual Case of Statin-Induced Myopathy: Anti-HMGCoA Necrotizing Autoimmune Myopathy.

    PubMed

    Nichols, Laura; Pfeifer, Kurt; Mammen, Andrew L; Shahnoor, Nazima; Konersman, Chamindra G

    2015-12-01

    Statins are some of the most widely prescribed medications, and though generally well tolerated, can lead to a self-limited myopathy in a minority of patients. Recently, these medications have been associated with a necrotizing autoimmune myopathy (NAM). Statin-associated NAM is characterized by irritable myopathy on electromyography (EMG) and muscle necrosis with minimal inflammation on muscle biopsy. The case presented is a 63-year-old woman who has continued elevation of creatine kinase (CK) after discontinuation of statin therapy. She has irritable myopathy on EMG and NAM is confirmed by muscle biopsy. She subsequently tests positive for an experimental anti-3-hydroxy-3-methylglutaryl-coenzyme A (anti-HMGCoA) antibody that is found to be present in patients with statin-associated NAM. Though statin-associated NAM is a relatively rare entity, it is an important consideration for the general internist in patients who continue to have CK elevation and weakness after discontinuation of statin therapy. Continued research is necessary to better define statin-specific and dose-dependent risk, as well as optimal treatment for this condition.

  12. Exertional myopathy in whooping cranes (Grus americana) with prognostic guidelines.

    PubMed

    Hanley, Christopher S; Thomas, Nancy J; Paul-Murphy, Joanne; Hartup, Barry K

    2005-09-01

    Exertional myopathy developed in three whooping cranes (Grus americana) secondary to routine capture, handling, and trauma. Presumptive diagnosis of exertional myopathy was based on history of recent capture or trauma, clinical signs, and elevation of aspartate aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase, and serum potassium. Treatments were attempted in each case, but ultimately were not successful. Gross and microscopic lesions at necropsy confirmed the diagnosis in each case, with the leg musculature most severely affected. Guidelines for determining prognosis of exertional myopathy in cranes have been included based on the analysis of these cases and others in the literature. As treatment is largely unrewarding, prevention remains the key in controlling exertional myopathy. Identification of predisposing factors and proper handling, immobilization, and transportation techniques can help prevent development of exertional myopathy in cranes.

  13. Exertional myopathy in whooping cranes (Grus americana) with prognostic guidlelines

    USGS Publications Warehouse

    Hanley, C.S.; Thomas, N.J.; Paul-Murphy, P.; Hartup, B.K.

    2005-01-01

    Exertional myopathy developed in three whooping cranes (Grus americana) secondary to routine capture, handling, and trauma. Presumptive diagnosis of exertional myopathy was based on history of recent capture or trauma, clinical signs, and elevation of aspartate aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase, and serum potassium. Treatments were attempted in each case, but ultimately were not successful. Gross and microscopic lesions at necropsy confirmed the diagnosis in each case, with the leg musculature most severely affected. Guidelines for determining prognosis of exertional myopathy in cranes have been included based on the analysis of these cases and others in the literature. As treatment is largely unrewarding, prevention remains the key in controlling exertional myopathy. Identification of predisposing factors and proper handling, immobilization, and transportation techniques can help prevent development of exertional myopathy in cranes.

  14. Critical illness polyneuropathy and myopathy: a systematic review.

    PubMed

    Zhou, Chunkui; Wu, Limin; Ni, Fengming; Ji, Wei; Wu, Jiang; Zhang, Hongliang

    2014-01-01

    Critical illness polyneuropathy and critical illness myopathy are frequent complications of severe illness that involve sensorimotor axons and skeletal muscles, respectively. Clinically, they manifest as limb and respiratory muscle weakness. Critical illness polyneuropathy/myopathy in isolation or combination increases intensive care unit morbidity via the inability or difficulty in weaning these patients off mechanical ventilation. Many patients continue to suffer from decreased exercise capacity and compromised quality of life for months to years after the acute event. Substantial progress has been made lately in the understanding of the pathophysiology of critical illness polyneuropathy and myopathy. Clinical and ancillary test results should be carefully interpreted to differentiate critical illness polyneuropathy/myopathy from similar weaknesses in this patient population. The present review is aimed at providing the latest knowledge concerning the pathophysiology of critical illness polyneuropathy/myopathy along with relevant clinical, diagnostic, differentiating, and treatment information for this debilitating neurological disease.

  15. Clinical approach to the diagnosis of congenital myopathies.

    PubMed

    North, Kathryn N

    2011-12-01

    In this issue of Seminars in Pediatric Neurology, each chapter will focus on the features and management of individual congenital myopathies. This introductory chapter will provide an overview of the clinical features that alert the clinician to the likely diagnosis of a congenital myopathy, and specific features on history and examination that are characteristic of a specific genetic subtype. Most congenital myopathies share a common pattern of clinical features, which makes it difficult to predict the genetic cause in a patient by clinical assessment alone. Although no single feature is specific for the congenital myopathies, the presence of this common pattern highlights patients in whom a muscle biopsy is likely to provide important diagnostic information. The diagnosis of a specific congenital myopathy should only be made when the defining morphologic feature is the predominant pathologic change, other possible causes have been excluded, and the clinical course is nonprogressive or only slowly progressive.

  16. Idiopathic inflammatory myopathy with diffuse alveolar damage.

    PubMed

    Lee, C-S; Chen, T-L; Tzen, C-Y; Lin, F-J; Peng, M-J; Wu, C-L; Chen, P-J

    2002-09-01

    Interstitial lung disease (ILD) in patients with myositis is defined by the presence of interstitial changes on radiographic examination. The reported prevalence of ILD varies from 0% to nearly 50%. However, only rarely has the pathological pattern of diffuse alveolar damage (DAD) associated with idiopathic inflammatory myopathy (IIM) been reported. We report five patients with IIM (one with dermatomyositis, one with polymyositis, and three with amyopathic dermatomyositis) and respiratory failure. Four underwent open lung biopsy with pathological proof of diffuse alveolar damage (DAD). Despite intensive immunosuppressive therapy, all of them died. In addition to the case reports, we discuss DAD in patients with IIM.

  17. [Sarcopenia or uremic myopathy in CKD patients].

    PubMed

    Chauveau, Philippe; Moreau, Karine; Lasseur, Catherine; Fouque, Denis; Combe, Christian; Aparicio, Michel

    2016-04-01

    Often underestimated or misunderstood in chronic renal failure (CRF), muscle wasting is nevertheless common and concerns about 50% of dialysis patients. The consequences of this myopathy on quality of life and outcomes of patients are unfavorable, identical to those observed in sarcopenia in elderly subjects with sarcopenia. The similarities between the two situations also concern the symptoms, the underlying muscle damages and the pathogenic mechanisms and may be partly explained by the frequently high age of ESRD patients. Skeletal muscle involvement should be systematically investigated in the IRC patient as in the elderly with sarcopenia to propose as early as possible a treatment of which physical activity and nutritional interventions are the mainstay.

  18. Bethlem myopathy is not allelic to limb-girdle muscular dystrophy type 1A

    SciTech Connect

    Speer, M.C.; Yamaoka, L.H.; Stajich, J.; Lewis, K.

    1995-08-28

    The Bethlem myopathy, an autosomal-dominant myopathy, shows a distribution of proximal muscle weakness similar to that observed in dominant limb-girdle muscular dystrophy (LGMD). Yet the Bethlem myopathy differs from most limb-girdle dystrophies in two important regards. First, the Bethlem myopathy presents with joint contractures most commonly observed at the elbows, ankles, and neck. Secondly, disease onset in the Bethlem myopathy is in early childhood, while most dominant LGMDs present with adult onset. 6 refs., 1 fig.

  19. Idiopathic Inflammatory Myopathies: Clinical Approach and Management

    PubMed Central

    Malik, Asma; Hayat, Ghazala; Kalia, Junaid S.; Guzman, Miguel A.

    2016-01-01

    Idiopathic inflammatory myopathies (IIM) are a group of chronic, autoimmune conditions affecting primarily the proximal muscles. The most common types are dermatomyositis (DM), polymyositis (PM), necrotizing autoimmune myopathy (NAM), and sporadic inclusion body myositis (sIBM). Patients typically present with sub-acute to chronic onset of proximal weakness manifested by difficulty with rising from a chair, climbing stairs, lifting objects, and combing hair. They are uniquely identified by their clinical presentation consisting of muscular and extramuscular manifestations. Laboratory investigations, including increased serum creatine kinase (CK) and myositis specific antibodies (MSA) may help in differentiating clinical phenotype and to confirm the diagnosis. However, muscle biopsy remains the gold standard for diagnosis. These disorders are potentially treatable with proper diagnosis and initiation of therapy. Goals of treatment are to eliminate inflammation, restore muscle performance, reduce morbidity, and improve quality of life. This review aims to provide a basic diagnostic approach to patients with suspected IIM, summarize current therapeutic strategies, and provide an insight into future prospective therapies. PMID:27242652

  20. Calcium Dyshomeostasis in Tubular Aggregate Myopathy

    PubMed Central

    Lee, Jong-Mok; Noguchi, Satoru

    2016-01-01

    Calcium is a crucial mediator of cell signaling in skeletal muscles for basic cellular functions and specific functions, including contraction, fiber-type differentiation and energy production. The sarcoplasmic reticulum (SR) is an organelle that provides a large supply of intracellular Ca2+ in myofibers. Upon excitation, it releases Ca2+ into the cytosol, inducing contraction of myofibrils. During relaxation, it takes up cytosolic Ca2+ to terminate the contraction. During exercise, Ca2+ is cycled between the cytosol and the SR through a system by which the Ca2+ pool in the SR is restored by uptake of extracellular Ca2+ via a specific channel on the plasma membrane. This channel is called the store-operated Ca2+ channel or the Ca2+ release-activated Ca2+ channel. It is activated by depletion of the Ca2+ store in the SR by coordination of two main molecules: stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel protein 1 (ORAI1). Recently, myopathies with a dominant mutation in these genes have been reported and the pathogenic mechanism of such diseases have been proposed. This review overviews the calcium signaling in skeletal muscles and role of store-operated Ca2+ entry in calcium homeostasis. Finally, we discuss the phenotypes and the pathomechanism of myopathies caused by mutations in the STIM1 and ORAI1 genes. PMID:27879676

  1. Mitochondrial function is altered in horse atypical myopathy.

    PubMed

    Lemieux, Hélène; Boemer, François; van Galen, Gaby; Serteyn, Didier; Amory, Hélène; Baise, Etienne; Cassart, Dominique; van Loon, Gunther; Marcillaud-Pitel, Christel; Votion, Dominique-M

    2016-09-01

    Equine atypical myopathy in Europe is a fatal rhabdomyolysis syndrome that results from the ingestion of hypoglycin A contained in seeds and seedlings of Acer pseudoplatanus (sycamore maple). Acylcarnitine concentrations in serum and muscle OXPHOS capacity were determined in 15 atypical myopathy cases. All but one acylcarnitine were out of reference range and mitochondrial respiratory capacity was severely decreased up to 49% as compared to 10 healthy controls. The hallmark of atypical myopathy thus consists of a severe alteration in the energy metabolism including a severe impairment in muscle mitochondrial respiration that could contribute to its high death rate.

  2. Peginterferon Alfa-2b (PEG-Intron)

    MedlinePlus

    ... alpha-2b is a combination of interferon and polyethylene glycol, which helps the interferon stay active in ... 2b, other alpha interferons, any other medications, or polyethylene glycol (PEG). Ask your doctor if you are ...

  3. Pravastatin-associated myopathy. Report of a case.

    PubMed

    Scalvini, T; Marocolo, D; Cerudelli, B; Sleiman, I; Balestrieri, G P; Giustina, G

    1995-05-01

    A case of acute inflammatory myopathy associated with the use of pravastatin, a new hydrophilic 3-hydroxy-3 methylglutaril coenzyme A reductase inhibitor, is reported. The patient, a 69-year-old man was affected by non-insulin-dependent diabetes mellitus and hypertension. He assumed pravastatin (20 mg/day) because of hypercholesterolemia. He was admitted with acute myopathy of the lower limbs which resolved in a few days after pravastatin discontinuation. A previously unknown hypothyroidism, probably due to chronic autoimmune thyroiditis, was evidenced. Muscle biopsy (left gastrocnemius) revealed a perimysial and endomysial inflammatory infiltrate with a prevalence of CD4+ lymphocytes. While lovastatin and simvastatin have been associated with toxic myopathy, pravastatin-associated myopathy could represent a distinct, inflammatory entity.

  4. Statin-associated myopathy and its exacerbation with exercise.

    PubMed

    Meador, Benjamin M; Huey, Kimberly A

    2010-10-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are a common and effective treatment for hypercholesterolemia, with a low overall rate of side-effects. The most common complication is some degree of skeletal muscle myopathy, ranging from painless serum creatine kinase elevations to rhabdomyolysis. Unfortunately, the likelihood and/or severity of complications increases with the combination of statin treatment and physical activity. The specific pathways that mediate statin-associated myopathy are unclear, and research directly addressing the exacerbation with exercise is limited. Potential mechanisms include the induction of skeletal muscle fiber apoptosis, alterations in ubiquitin-proteasome pathway activity, mitochondrial dysfunction, and terpenoid depletion. In this review we provide an overview of research that specifically addresses the combination of statin-associated myopathy and physical activity and highlight some deficiencies in the available literature, as well as future directions for this important subset of statin-associated myopathy.

  5. Atypical presentation of GNE myopathy with asymmetric hand weakness.

    PubMed

    de Dios, John Karl L; Shrader, Joseph A; Joe, Galen O; McClean, Jeffrey C; Williams, Kayla; Evers, Robert; Malicdan, May Christine V; Ciccone, Carla; Mankodi, Ami; Huizing, Marjan; McKew, John C; Bluemke, David A; Gahl, William A; Carrillo-Carrasco, Nuria

    2014-12-01

    GNE myopathy is a rare autosomal recessive muscle disease caused by mutations in GNE, the gene encoding the rate-limiting enzyme in sialic acid biosynthesis. GNE myopathy usually manifests in early adulthood with distal myopathy that progresses slowly and symmetrically, first involving distal muscles of the lower extremities, followed by proximal muscles with relative sparing of the quadriceps. Upper extremities are typically affected later in the disease. We report a patient with GNE myopathy who presented with asymmetric hand weakness. He had considerably decreased left grip strength, atrophy of the left anterior forearm and fibro-fatty tissue replacement of left forearm flexor muscles on T1-weighted magnetic resonance imaging. The patient was an endoscopist and thus the asymmetric hand involvement may be associated with left hand overuse in daily repetitive pinching and gripping movements, highlighting the possible impact of environmental factors on the progression of genetic muscle conditions.

  6. Genetics Home Reference: collagen VI-related myopathy

    MedlinePlus

    ... hands and soles of the feet; and abnormal wound healing that creates shallow scars. The intermediate form of ... skin on the palms and soles; and abnormal wound healing. Individuals with collagen VI-related myopathy often have ...

  7. Mechanisms of zidovudine-induced mitochondrial toxicity and myopathy.

    PubMed

    Scruggs, Erin R; Dirks Naylor, Amie J

    2008-01-01

    Zidovudine (3-azido-3'-deoxythymidine), also referred to as azidothymidine (AZT), has become an integral component in highly active antiretroviral therapy, and has also been used in the treatment of cancer. The clinical effectiveness of AZT is constrained due to its association with increased adverse effects, such as myopathy. There are numerous potential mechanisms that may contribute to AZT-induced myopathy. The first hypothesized mechanism to explain AZT-induced toxicity was mtDNA depletion due to inhibition of DNA polymerase gamma. Although mtDNA depletion is present in patients with myopathy, current data suggests that alternative mechanisms may play a more direct role in the myotoxicity. These mechanisms include AZT-induced oxidative stress, direct inhibition of mitochondrial bioenergetic machinery, and mitochondrial depletion of L-carnitine. Furthermore, we hypothesize that apoptosis may play a role in AZT-induced myopathy.

  8. Review of Critical Illness Myopathy and Neuropathy

    PubMed Central

    Shepherd, Starane; Batra, Ayush

    2016-01-01

    Critical illness myopathy (CIM) and neuropathy are underdiagnosed conditions within the intensive care setting and contribute to prolonged mechanical ventilation and ventilator wean failure and ultimately lead to significant morbidity and mortality. These conditions are often further subdivided into CIM, critical illness polyneuropathy (CIP), or the combination—critical illness polyneuromyopathy (CIPNM). In this review, we discuss the epidemiology and pathophysiology of CIM, CIP, and CIPNM, along with diagnostic considerations such as detailed clinical examination, electrophysiological studies, and histopathological review of muscle biopsy specimens. We also review current available treatments and prognosis. Increased awareness and early recognition of CIM, CIP, and CIPNM in the intensive care unit setting may lead to earlier treatments and rehabilitation, improving patient outcomes. PMID:28042370

  9. Excitation-Contraction Coupling Alterations in Myopathies

    PubMed Central

    Marty, Isabelle; Fauré, Julien

    2016-01-01

    During the complex series of events leading to muscle contraction, the initial electric signal coming from motor neurons is transformed into an increase in calcium concentration that triggers sliding of myofibrils. This process, referred to as excitation–contraction coupling, is reliant upon the calcium-release complex, which is restricted spatially to a sub-compartment of muscle cells (“the triad”) and regulated precisely. Any dysfunction in the calcium-release complex leads to muscle impairment and myopathy. Various causes can lead to alterations in excitation–contraction coupling and to muscle diseases. The latter are reviewed and classified into four categories: (i) mutation in a protein of the calcium-release complex; (ii) alteration in triad structure; (iii) modification of regulation of channels; (iv) modification in calcium stores within the muscle. Current knowledge of the pathophysiologic mechanisms in each category is described and discussed. PMID:27911331

  10. Mitochondrial myopathy presenting as fibromyalgia: a case report

    PubMed Central

    2012-01-01

    Introduction To the best of our knowledge, we describe for the first time the case of a woman who met the diagnostic criteria for fibromyalgia, did not respond to therapy for that disorder, and was subsequently diagnosed by biochemical and genetic studies with a mitochondrial myopathy. Treatment of the mitochondrial myopathy resulted in resolution of symptoms. This case demonstrates that mitochondrial myopathy may present in an adult with a symptom complex consistent with fibromyalgia. Case presentation Our patient was a 41-year-old Caucasian woman with symptoms of fatigue, exercise intolerance, headache, and multiple trigger points. Treatment for fibromyalgia with a wide spectrum of medications including non-steroidal anti-inflammatory drugs, antidepressants, gabapentin and pregabalin had no impact on her symptoms. A six-minute walk study demonstrated an elevated lactic acid level (5 mmol/L; normal < 2 mmol/L). Biochemical and genetic studies from a muscle biopsy revealed a mitochondrial myopathy. Our patient was started on a compound of coenzyme Q10 (ubiquinone) 200 mg, creatine 1000 mg, carnitine 200 mg and folic acid 1 mg to be taken four times a day. She gradually showed significant improvement in her symptoms over a course of several months. Conclusions This case demonstrates that adults diagnosed with fibromyalgia may have their symptom complex related to an adult onset mitochondrial myopathy. This is an important finding since treatment of mitochondrial myopathy resulted in resolution of symptoms. PMID:22325469

  11. Clinical characterization and molecular mechanisms of statin myopathy.

    PubMed

    Toth, Peter P; Harper, Charles R; Jacobson, Terry A

    2008-08-01

    Myopathy has been reported in a small percentage of statin-treated patients for the past 30 years, but the etiologic mechanisms for inducing muscle injury have not yet been fully characterized. Statin-induced myopathy is now understood to be a heterogeneous condition that may be due to: mechanisms of the drug itself; interactions with other drugs; or genetic, metabolic and immunological vulnerabilities in individual patients. In some cases, statins may unmask latent conditions (e.g., asymptomatic baseline myopathy) that predispose patients to muscle toxicity. The definitions, epidemiology, clinical features, risk factors and proposed mechanisms of statin-induced myopathy are reviewed. Muscle metabolism can be adversely impacted by statin therapy, including changes in fatty acid oxidation, possibly reduced coenzyme Q(10) biosynthesis, and increased myocyte protein degradation via the activity of atrogin-1 and the ubiquitin-proteasome pathway. Statin therapy may also activate a variety of autoimmune phenomena that potentiate myocellular injury. Improving our understanding of statin-induced myopathy is a high clinical priority given the large number of patients eligible for statin therapy and the fact that the development of myalgia and myopathy are leading reasons cited by patients for statin discontinuation.

  12. Genetics Home Reference: myopathy with deficiency of iron-sulfur cluster assembly enzyme

    MedlinePlus

    ... myopathy with deficiency of iron-sulfur cluster assembly enzyme Enable Javascript to view the expand/collapse boxes. ... Myopathy with deficiency of iron-sulfur cluster assembly enzyme is an inherited disorder that primarily affects muscles ...

  13. Proximal weakness of the extremities as main feature of amyloid myopathy.

    PubMed Central

    Jennekens, F G; Wokke, J H

    1987-01-01

    Two patients with muscle weakness caused by amyloid myopathy are described. Characteristic features such as pseudohypertrophy and abnormal firmness, and tumours of muscles were absent. It is suggested that muscle weakness in amyloid myopathy is caused by layers of amyloid covering muscle fibres. In middle aged or elderly patients with proximal muscle weakness the diagnosis of amyloid myopathy should be considered. Images PMID:3681315

  14. Mutation Update: The Spectra of Nebulin Variants and Associated Myopathies

    PubMed Central

    Lehtokari, Vilma-Lotta; Kiiski, Kirsi; Sandaradura, Sarah A.; Laporte, Jocelyn; Repo, Pauliina; Frey, Jennifer A.; Donner, Kati; Marttila, Minttu; Saunders, Carol; Barth, Peter G.; den Dunnen, Johan T.; Beggs, Alan H.; Clarke, Nigel F.; North, Kathryn N.; Laing, Nigel G.; Romero, Norma B.; Winder, Thomas L.; Pelin, Katarina; Wallgren-Pettersson, Carina

    2015-01-01

    A mutation update on the nebulin gene (NEB) is necessary because of recent developments in analysis methodology, the identification of increasing numbers and novel types of variants, and a widening in the spectrum of clinical and histological phenotypes associated with this gigantic, 183 exons containing gene. Recessive pathogenic variants in NEB are the major cause of nemaline myopathy (NM), one of the most common congenital myopathies. Moreover, pathogenic NEB variants have been identified in core-rod myopathy and in distal myopathies. In this update, we present the disease-causing variants in NEB in 159 families, 143 families with NM, and 16 families with NM-related myopathies. Eighty-eight families are presented here for the first time. We summarize 86 previously published and 126 unpublished variants identified in NEB. Furthermore, we have analyzed the NEB variants deposited in the Exome Variant Server (http://evs.gs.washington.edu/EVS/), identifying that pathogenic variants are a minor fraction of all coding variants (~7%). This indicates that nebulin tolerates substantial changes in its amino acid sequence, providing an explanation as to why variants in such a large gene result in relatively rare disorders. Lastly, we discuss the difficulties of drawing reliable genotype–phenotype correlations in NEB-associated disease. PMID:25205138

  15. Consensus Statement on Standard of Care for Congenital Myopathies

    PubMed Central

    Wang, Ching H.; Dowling, James J.; North, Kathryn; Schroth, Mary K.; Sejersen, Thomas; Shapiro, Frederic; Bellini, Jonathan; Weiss, Hali; Guillet, Marc; Amburgey, Kimberly; Apkon, Susan; Bertini, Enrico; Bonnemann, Carsten; Clarke, Nigel; Connolly, Anne M.; Estournet-Mathiaud, Brigitte; Fitzgerald, Dominic; Florence, Julaine M.; Gee, Richard; Gurgel-Giannetti, Juliana; Glanzman, Allan M.; Hofmeister, Brittany; Jungbluth, Heinz; Koumbourlis, Anastassios C.; Laing, Nigel G.; Main, Marion; Morrison, Leslie A.; Munns, Craig; Rose, Kristy; Schuler, Pamela M.; Sewry, Caroline; Storhaug, Kari; Vainzof, Mariz; Yuan, Nanci

    2016-01-01

    Recent progress in scientific research has facilitated accurate genetic and neuropathological diagnosis of congenital myopathies. However, given their relatively low incidence, congenital myopathies remain unfamiliar to the majority of care providers, and the levels of patient care are extremely variable. This consensus statement aims to provide care guidelines for congenital myopathies. The International Standard of Care Committee for Congenital Myopathies worked through frequent e-mail correspondences, periodic conference calls, 2 rounds of online surveys, and a 3-day workshop to achieve a consensus for diagnostic and clinical care recommendations. The committee includes 59 members from 10 medical disciplines. They are organized into 5 working groups: genetics/diagnosis, neurology, pulmonology, gastroenterology/nutrition/speech/oral care, and orthopedics/rehabilitation. In each care area the authors summarize the committee’s recommendations for symptom assessments and therapeutic interventions. It is the committee’s goal that through these recommendations, patients with congenital myopathies will receive optimal care and improve their disease outcome. PMID:22431881

  16. Full-length dysferlin expression driven by engineered human dystrophic blood derived CD133+ stem cells.

    PubMed

    Meregalli, Mirella; Navarro, Claire; Sitzia, Clementina; Farini, Andrea; Montani, Erica; Wein, Nicolas; Razini, Paola; Beley, Cyriaque; Cassinelli, Letizia; Parolini, Daniele; Belicchi, Marzia; Parazzoli, Dario; Garcia, Luis; Torrente, Yvan

    2013-12-01

    The protein dysferlin is abundantly expressed in skeletal and cardiac muscles, where its main function is membrane repair. Mutations in the dysferlin gene are involved in two autosomal recessive muscular dystrophies: Miyoshi myopathy and limb-girdle muscular dystrophy type 2B. Development of effective therapies remains a great challenge. Strategies to repair the dysferlin gene by skipping mutated exons, using antisense oligonucleotides (AONs), may be suitable only for a subset of mutations, while cell and gene therapy can be extended to all mutations. AON-treated blood-derived CD133+ stem cells isolated from patients with Miyoshi myopathy led to partial dysferlin reconstitution in vitro but failed to express dysferlin after intramuscular transplantation into scid/blAJ dysferlin null mice. We thus extended these experiments producing the full-length dysferlin mediated by a lentiviral vector in blood-derived CD133+ stem cells isolated from the same patients. Transplantation of engineered blood-derived CD133+ stem cells into scid/blAJ mice resulted in sufficient dysferlin expression to correct functional deficits in skeletal muscle membrane repair. Our data suggest for the first time that lentivirus-mediated delivery of full-length dysferlin in stem cells isolated from Miyoshi myopathy patients could represent an alternative therapeutic approach for treatment of dysferlinopathies.

  17. Myopathy in patients with Hashimoto's disease.

    PubMed

    Villar, Jaqueline; Finol, Héctor J; Torres, Sonia H; Roschman-González, Antonio

    2015-03-01

    Hashimoto thyroiditis (HT) is an autoimmune disease of the thyroid gland. Patients may present or not a hypothyroid state, and frequently have manifestations of myopathy. The present work was aimed to assess the clinical symptoms and signs of skeletal muscle alterations in HT, describe the muscular pathological changes and relate them to the functional thyroid status and to the autoimmune condition of the patient. Clinical and laboratory studies were performed in ten HT patients and three control subjects (hormonal levels and electromyography). Biopsies from their vastus lateralis of quadriceps femoris muscle were analyzed under light (histochemistry and immunofluorescense) and electron microscopy. All patients showed muscle focal alterations, ranging from moderate to severe atrophy, necrosis, activation of satellite cells, presence of autophagosomes, capillary alterations and macrophage and mast cell infiltration, common to autoimmune diseases. The intensity of clinical signs and symptoms was not related to the morphological muscle findings, the electromyography results, or to the state of the thyroid function. Reactions for immunoglobulin in muscle fibers were positive in 80% of the patients. Fiber type II proportion was increased in all patients, with the exception of those treated with L-thyroxine. In conclusion, autoimmune processes in several of the patients may be associated to the skeletal muscle alterations, independently of the functional state of the thyroid gland; however, fiber II type proportion could have been normalized by L-thyroxine treatment.

  18. Mendelian bases of myopathies, cardiomyopathies, and neuromyopathies

    PubMed Central

    Piluso, G; Aurino, S; Cacciottolo, M; Del Vecchio Blanco, F; Lancioni, A; Rotundo, IL; Torella, A; Nigro, V

    2010-01-01

    Summary A second genetic revolution is approaching thanks to next-generation DNA sequencing technologies. In the next few years, the 1,000$-genome sequencing promises to reveal every individual variation of DNA. There is, however, a major problem: the identification of thousands of nucleotide changes per individual with uncertain pathological meaning. This is also an ethical issue. In the middle, there is today the possibility to address the sequencing analysis of genetically heterogeneous disorders to selected groups of genes with defined mutation types. This will be cost-effective and safer. We assembled an easy-to manage overview of most Mendelian genes involved in myopathies, cardiomyopathies, and neuromyopathies. This was entirely put together using a number of open access web resources that are listed below. During this effort we realized that there are unexpected countless sources of data, but the confusion is huge. In some cases, we got lost in the validation of disease genes and in the difficulty to discriminate between polymorphisms and disease-causing alleles. In the table are the annotated genes, their associated disorders, genomic, mRNA and coding sizes. We also counted the number of pathological alleles so far reported and the percentage of single nucleotide mutations. PMID:22029103

  19. Zellweger syndrome and secondary mitochondrial myopathy.

    PubMed

    Salpietro, Vincenzo; Phadke, Rahul; Saggar, Anand; Hargreaves, Iain P; Yates, Robert; Fokoloros, Christos; Mankad, Kshitij; Hertecant, Jozef; Ruggieri, Martino; McCormick, David; Kinali, Maria

    2015-04-01

    Defects in peroxisomes such as those associated with Zellweger syndrome (ZS) can influence diverse intracellular metabolic pathways, including mitochondrial functioning. We report on an 8-month-old female infant and a 6-month-old female infant with typical clinical, radiological and laboratory features of Zellweger syndrome; light microscopic and ultrastructural evidence of mitochondrial pathology in their muscle biopsies; and homozygous pathogenic mutations of the PEX16 gene (c.460 + 5G > A) and the PEX 12 gene (c.888_889 del p.Leu297Thrfs*12), respectively. Additionally, mitochondrial respiratory chain enzymology analysis in the first girl showed a mildly low activity in complexes II-III and IV. We also review five children previously reported in the literature with a presumptive diagnosis of ZS and additional mitochondrial findings in their muscle biopsies. In conclusion, this is the first study of patients with a molecularly confirmed peroxisomal disorder with features of a concomitant mitochondrial myopathy and underscores the role of secondary mitochondrial dysfunction in Zellweger syndrome, potentially contributing to the clinical phenotype.

  20. Investigation of Class 2b Trucks

    SciTech Connect

    Davis, S.C.

    2002-04-03

    The popularity of trucks in the class 2 category--that is, those with a 6,000 to 10,000 pounds (lbs) gross vehicle weight rating (GVWR)--has increased since the late 1970s/early 1980s. The purpose of this research is to identify and examine vehicles in the upper portion of the class 2 weight range (designated as vehicle class 2b) and to assess their impact. Vehicles in class 2b (8,500-10,000 lbs GVWR) include pickup trucks, sport utility vehicles (SUVs), and large vans (i.e., not minivans). Oak Ridge National Laboratory researched each individual truck model to determine which models were class 2b trucks and arrived at four methodologies to derive sales volumes. Two methods--one for calendar year and one for model year sales--were recommended for producing believable and reliable results. The study indicates that 521,000 class 2b trucks were sold in calendar year 1999--6.4% of sales of all trucks under 10,000 lbs. Eighty-two percent of class 2b trucks sold in 1999 were pickups; one third of class 2b trucks sold in 1999 were diesel. There were 5.8 million class 2b trucks on the road in 2000, which amounts to 7.8% of all trucks under 10,000 lbs. Twenty-four percent of the class 2b truck population is diesel. Estimates show that class 2b trucks account for 8% of annual miles traveled by trucks under 10,000 lbs and 9% of fuel use. Data on class 2b trucks are scarce. As the Tier 2 standards, which apply to passenger vehicles in the 8,500-10,000 lb GVWR category, become effective, additional data on class 2b trucks may become available--not only emissions data, but data in all areas. At the moment, distinguishing class 2b trucks from class 2 trucks in general is a substantial task requiring data on an individual model level.

  1. An unusual case of glipizide-induced proximal myopathy

    PubMed Central

    Das, Saibal; Ramasamy, Anand; De, Soumyadip; Mondal, Somnath

    2016-01-01

    This case report outlines a very rare case of glipizide-induced severe proximal myopathy in a 61-year-old diabetic man. After taking 10 mg glipizide for 5 months, diabetes was well controlled but the patient presented with progressive proximal muscle weakness in all the four limbs. Clinical examination and relevant investigations suggested it to be a case of proximal myopathy and might be drug induced. De-challenge was done and was treated resulting in reversal of the diseased state. After 3 more months, controlled re-challenge was done and there was recurrence of proximal muscle weakness. There were no evidences of any other possible metabolic, infective, organic or other pathologic causes giving rise to that condition and Naranjo adverse drug reaction probability scale suggested that it was “probable” that glipizide was responsible for the development of myopathy in this patient. PMID:27440956

  2. Myosin storage (hyaline body) myopathy: a case report.

    PubMed

    Shingde, Meena V; Spring, Penelope J; Maxwell, Adam; Wills, Edward J; Harper, Clive G; Dye, Danielle E; Laing, Nigel G; North, Kathryn N

    2006-12-01

    Myosin storage myopathy/hyaline body myopathy is a rare congenital myopathy, with less than 30 cases reported in the literature. It is characterised by the presence of subsarcolemmal hyaline bodies in type 1 muscle fibres and predominantly proximal muscle weakness. Recently, a single mutation (Arg1845Trp) in the slow/beta-cardiac myosin heavy chain gene (MYH7) was identified in four unrelated probands from Sweden and Belgium. The clinical severity and age of onset was variable, despite the same disease-causing mutation and similar histological findings. Here, we report the clinical and morphological findings of two brothers of English/Scottish background with the Arg1845Trp mutation in MYH7. This case report adds to the clinical description of this rare disorder and confirms that Arg1845Trp is a common mutation associated with this phenotype, at least in the White European population.

  3. Amyloid myopathy: characteristic features of a still underdiagnosed disease.

    PubMed

    Chapin, John E; Kornfeld, Mario; Harris, Alexis

    2005-02-01

    A 62-year-old man with progressive proximal weakness underwent extensive evaluation including muscle biopsy without a clear diagnosis being established. A repeat muscle biopsy including Congo red-stained sections revealed infiltration of blood-vessel walls and endomysium with amyloid protein, as well as an unusual pattern of pathologic changes to muscle fibers. From a review of 79 cases of amyloid myopathy reported in the English-language literature, the characteristic features of this disorder are described. Congo red-stained sections of muscle biopsy viewed under fluorescent or polarized optics, and serum or urine protein immunoelectrophoresis, play an important role in the evaluation of myopathy. Amyloid myopathy should be a consideration in adults with progressive neuromuscular weakness of uncertain cause.

  4. Whole Exome Sequencing Identifies Atypical Welander Distal Myopathy in Patient

    PubMed Central

    Blackburn, Patrick; Jackson, Jessica; Harris, Kimberly; Selcen, Duygu; Dimberg, Elliot; Atwal, Paldeep

    2017-01-01

    Abstract Welander distal myopathy is a rare autosomal dominant disorder characterized by muscle weakness in the hands and feet. Exome sequencing of affected families discovered a segregating p.Glu384Lys pathogenic variant in TIA-1 as the main genetic cause of Welander distal myopathy. TIA-1 encodes an RNA-binding protein which serves as a key component of stress granules. This protein also regulates splicing and translation of mRNA. Our patient developed progressive weakness in his hands and feet during his late 40s that was misdiagnosed as a neuropathy that caused muscle atrophy. Follow-up genetic testing revealed a p.Glu384Lys pathogenic variant in TIA-1, and he was then diagnosed with Welander distal myopathy. Our case report underlines the importance of electrodiagnostic and genetic testing of patients. PMID:28221306

  5. Immune-mediated necrotizing myopathy associated with statins.

    PubMed

    Grable-Esposito, Phyllis; Katzberg, Hans D; Greenberg, Steven A; Srinivasan, Jayashri; Katz, Jonathan; Amato, Anthony A

    2010-02-01

    We report patients from two neuromuscular centers who were evaluated between the years 2000 and 2008 and met the following criteria: (1) proximal muscle weakness occurring during or after treatment with statins; (2) elevated serum creatine kinase (CK); (3) persistence of weakness and elevated CK despite discontinuation of the statin; (4) improvement with immunosuppressive agents; and (5) muscle biopsy showing necrotizing myopathy without significant inflammation. Twenty-five patients fulfilled our inclusion criteria. Twenty-four patients required multiple immunosuppressive agents. Fifteen patients relapsed after being tapered off immunosuppressive therapy. Exposure to statins prior to onset was significantly higher in patients with necrotizing myopathy (82%) as compared to those with dermatomyositis (18%), polymyositis (24%), and inclusion-body myositis (38%) seen in the same time period. The lack of improvement following discontinuation of statins, the need for immunosuppressive therapy, and frequent relapse when treatment was tapered suggest an immune-mediated etiology for this rare, statin-associated necrotizing myopathy.

  6. Peginterferon Alfa-2b Injection (Sylatron)

    MedlinePlus

    ... 2b injection is used in people with malignant melanoma (a life-threatening cancer that begins in certain ... is used to reduce the chance that malignant melanoma will come back and must be started within ...

  7. [Two cases with dropped head syndrome caused by hypokalemic myopathy].

    PubMed

    Taniguchi, Koichiro; Okino, Iwao; Yamamoto, Nobuaki; Matsumoto, Shinichi; Tachibana, Naoko; Hamano, Toshiaki

    2011-02-01

    We reported two women (78 and 85 years of age) with dropped head syndrome caused by hypokalemic myopathy restricted to the posterior cervical muscles. Both presented with relatively rapid onset of severe neck extensor weakness. Needle EMG demonstrated myogenic changes in the cervical paraspinal muscles and there were high intensity signals in the posterior cervical muscles on the neck MRI. Dropped head syndrome resolved in both patients as potassium normalized. One of the patients relapsed 11 months later with recurrent hypokalemia, but recovered rapidly with supplementation of potassium. Focal myopathy localized in the posterior cervical muscles due to hypokalemia should be considered as one of the possible causes of dropped head syndrome.

  8. A rat model of spontaneous myopathy and malignant hyperthermia.

    PubMed Central

    Gonzalez, L. E.; Meléndez-Vásquez, C. V.; Gregson, N. A.; File, S. E.

    1998-01-01

    Malignant hyperthermia is a main cause of death during general anesthesia, particularly in children. However, research has been hampered by the lack of a convenient animal model, the only one available being a special strain of pig. In this study, we describe spontaneous myopathy and a fatal syndrome of generalized muscle rigidity triggered by halothane in an outbred strain of rat. Histological examination of skeletal muscle reveals severe abnormalities indicating chronic underlying myopathy. The association of histological abnormalities with an acute, fatal syndrome clinically resembling malignant hyperthermia provides a strong basis for a new and extremely useful animal model to study this fatal disorder. Images Figure 1 Figure 2 PMID:9546371

  9. Genetic and immunologic susceptibility to statin-related myopathy.

    PubMed

    Patel, Jaideep; Superko, H Robert; Martin, Seth S; Blumenthal, Roger S; Christopher-Stine, Lisa

    2015-05-01

    Statin-related myopathy (SRM) undermines drug adherence that is critical for achieving the benefits of lipid-lowering therapy. While the exact mechanism of SRM remains largely unknown, recent evidence supports specific genetic and immunologic influence on the development of intolerance. Genes of interest include those involved in the pharmacokinetics of statin response (i.e. drug metabolism, uptake transporters, and efflux transporters), pharmacodynamics (i.e. drug toxicity and immune-mediated myopathy), and gene expression. We examine the influence of genetic and immunologic variation on the pharmacokinetics, pharmacodynamics, and gene expression of SRM.

  10. Renal Involvement in Idiopathic Inflammatory Myopathies.

    PubMed

    Cucchiari, David; Angelini, Claudio

    2017-02-01

    Renal involvement in idiopathic inflammatory myopathies is not as uncommon as was previously thought, as it develops in about one fifth of patients. Clinical presentation includes either acute kidney injury or chronic glomerulonephritis. The former usually develops abruptly during acute phases of rhabdomyolysis: in this case, kidney injury is caused by the toxic effects that myoglobinuria has on the kidney tubules, including cast formation and iron-induced oxidative stress and the development of a third space into the injured muscles. The latter instead has an autoimmune nature, a pleomorphic histological picture, and a more indolent course, with the exception of crescentic glomerulonephritis. Accurate diagnosis and management is crucial for these patients, as timely evaluation and treatment can prevent most of the complications. In the setting of rhabdomyolysis-induced acute kidney injury, the necessity of dialysis can be avoided through aggressive hydration and alkalinization, in order to force diuresis and avoid acidosis and hyperkalemia. In immune-mediated glomerulonephritis, renal biopsy is of undoubtedly value in the diagnostic process and can add prognostic and therapeutic information. In these forms, the development of chronic kidney disease can be prevented or at least delayed by the institution or modification of immunosuppressive treatment. Moreover, the use of drugs that inhibit the renin-angiotensin-aldosterone system and some lifestyle modifications, such as smoking cessation, weight loss, and salt restriction have also value in reducing proteinuria and the progression of kidney damage. In this review, we have summarized the currently available evidence and the different case series in an attempt to provide the readers with the most complete and practical notions that are needed to handle these delicate patients.

  11. Statin induced myopathy does not show up in MIBI scintigraphy.

    PubMed

    Lupattelli, G; Palumbo, B; Sinzinger, H

    2001-05-01

    Statin induced myopathy is the most commonly seen side effect in users of this family of drugs. Their different forms present with either creatine phosphokinase (CK) elevation or not, signs of in vivo oxidation injury or not or a combination of both. The pathogenetic background, however, still remains obscure. As MIBI, beside myocardial and tumour scintigraphy, is useful in detecting muscle metabolic abnormalities, an increased uptake of MIBI in the diseased muscular segments could be expected. We investigated seven patients (five males, two females; aged 36-56 years) with statin induced myopathy with either elevated CK, isoprostanes or muscle pains at varying combinations. MIBI whole-body imaging was done immediately, the patients still being on the respective statin. Sixteen patients (six males, 10 females) suffering from lung or breast cancer and being on statins served as controls. No uptake abnormalities in any muscular segment either in the patients or the control group were seen. Thus, MIBI scintigraphy is not useful, apparently, in diagnosing and eventually localizing statin induced myopathy. These findings indicate that MIBI scintigraphy is of no help for diagnosis and gaining further insight into statin induced myopathy.

  12. Current and future therapeutic approaches to the congenital myopathies.

    PubMed

    Jungbluth, Heinz; Ochala, Julien; Treves, Susan; Gautel, Mathias

    2016-08-08

    The congenital myopathies - including Central Core Disease (CCD), Multi-minicore Disease (MmD), Centronuclear Myopathy (CNM), Nemaline Myopathy (NM) and Congenital Fibre Type Disproportion (CFTD) - are a genetically heterogeneous group of early-onset neuromuscular conditions characterized by distinct histopathological features, and associated with a substantial individual and societal disease burden. Appropriate supportive management has substantially improved patient morbidity and mortality but there is currently no cure. Recent years have seen an exponential increase in the genetic and molecular understanding of these conditions, leading to the identification of underlying defects in proteins involved in calcium homeostasis and excitation-contraction coupling, thick/thin filament assembly and function, redox regulation, membrane trafficking and/or autophagic pathways. Based on these findings, specific therapies are currently being developed, or are already approaching the clinical trial stage. Despite undeniable progress, therapy development faces considerable challenges, considering the rarity and diversity of specific conditions, and the size and complexity of some of the genes and proteins involved. The present review will summarize the key genetic, histopathological and clinical features of specific congenital myopathies, and outline therapies already available or currently being developed in the context of known pathogenic mechanisms. The relevance of newly discovered molecular mechanisms and novel gene editing strategies for future therapy development will be discussed.

  13. Anesthesia for sickle cell disease and congenital myopathy in combination.

    PubMed

    Fanning, Rebecca; O'Donnell, Brian; Lynch, Brian; Stephens, Michael; O'Donovan, Frances

    2006-08-01

    We report on the perioperative management of anesthesia and analgesia in a child with sickle cell disease and a congenital myopathy, presenting for corrective orthopedic surgery. The case illustrates two valuable points of interest: the many benefits of regional anesthesia in complex medical cases and the successful use of tourniquets in children with sickle cell disease.

  14. Congenital myopathy is caused by mutation of HACD1

    PubMed Central

    Muhammad, Emad; Reish, Orit; Ohno, Yusuke; Scheetz, Todd; DeLuca, Adam; Searby, Charles; Regev, Miriam; Benyamini, Lilach; Fellig, Yakov; Kihara, Akio; Sheffield, Val C.; Parvari, Ruti

    2013-01-01

    Congenital myopathies are heterogeneous inherited diseases of muscle characterized by a range of distinctive histologic abnormalities. We have studied a consanguineous family with congenital myopathy. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous non-sense mutation in 3-hydroxyacyl-CoA dehydratase 1 (HACD1) in affected individuals. The mutation results in non-sense mediated decay of the HACD1 mRNA to 31% of control levels in patient muscle and completely abrogates the enzymatic activity of dehydration of 3-hydroxyacyl-CoA, the third step in the elongation of very long-chain fatty acids (VLCFAs). We describe clinical findings correlated with a deleterious mutation in a gene not previously known to be associated with congenital myopathy in humans. We suggest that the mutation in the HACD1 gene causes a reduction in the synthesis of VLCFAs, which are components of membrane lipids and participants in physiological processes, leading to congenital myopathy. These data indicate that HACD1 is necessary for muscle function. PMID:23933735

  15. Genetics Home Reference: X-linked myotubular myopathy

    MedlinePlus

    ... myotubular myopathy is inherited in an X-linked recessive pattern . The gene associated with this condition is located on the ... females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. A characteristic ...

  16. Exertional myopathy in pileated woodpeckers (Dryocopus pileatus) subsequent to capture.

    PubMed

    Ruder, Mark G; Noel, Brandon L; Bednarz, James C; Keel, M Kevin

    2012-04-01

    Out of 33 Pileated Woodpeckers (Dryocopus pileatus) captured and fitted with radio-transmitters, 12 were later found dead. Three carcasses were recovered and submitted for necropsy. One bird had large pale foci in multiple muscles. Microscopically, skeletal muscle in all three had evidence of severe coagulative necrosis, consistent with capture myopathy.

  17. Pulmonary arterial hypertension in idiopathic inflammatory myopathies

    PubMed Central

    Sanges, Sébastien; Yelnik, Cécile M.; Sitbon, Olivier; Benveniste, Olivier; Mariampillai, Kuberaka; Phillips-Houlbracq, Mathilde; Pison, Christophe; Deligny, Christophe; Inamo, Jocelyn; Cottin, Vincent; Mouthon, Luc; Launay, David; Lambert, Marc; Hatron, Pierre-Yves; Rottat, Laurence; Humbert, Marc; Hachulla, Eric

    2016-01-01

    Abstract Occurrence of pulmonary arterial hypertension (PAH) in idiopathic inflammatory myopathies (IIMs) without extensive interstitial lung disease (ILD) has rarely been described in the medical literature. This study aimed to report all cases with association of PAH and IIM in the French Pulmonary Hypertension (PH) Registry, to identify IIM features associated with the presence of PAH, and to describe treatment modalities of these patients. All cases of IIM-PAH were retrieved from the French PH Registry, which gathers PH patients prospectively enrolled by 27 referral hospital centers across France. Patients were excluded if they had an extensive ILD or overlap syndrome. Characteristics of IIM-PAH patients were compared with a control group of IIM patients without PH. Among the 5223 PH patients in the Registry, 34 had a diagnosis of IIM. Among them, 3 IIM-PAH patients (2 females and 1 male) had no evidence of extensive ILD or overlap syndrome, and were included in this study. In these 3 patients, dermatomyositis (DM) was the only identified IIM. One patient had autoantibodies classically associated with IIM (anti-Ku). PAH had always developed after IIM onset, was severe in all cases, and led to a marked functional impairment. By pooling our cases with 6 patients previously reported in the literature, and comparing them with a control cohort of 35 IIM patients without PH, we identify several IIM characteristics possibly associated with PAH occurrence, including DM subtype (78% vs 46%; P = 0.02), skin involvement (P = 0.04), anti-SSA antibodies (P = 0.05), and peripheral microangiopathy (P = 0.06). Overall, IIM-PAH patients were managed by corticosteroids and/or immunosuppressants, either alone or combined with PAH therapy. Patients did not seem to respond to IIM treatment alone. Our study reports for the first time the rare but possible association of PAH and IIM in a large prospective PH Registry. In that setting, PAH seems associated with DM, skin involvement

  18. Managing the underestimated risk of statin-associated myopathy.

    PubMed

    Rallidis, Loukianos S; Fountoulaki, Katerina; Anastasiou-Nana, Maria

    2012-09-06

    In clinical practice 5-10% of patients receiving statins develop myopathy, a side effect that had been systematically underestimated in the randomized controlled trials with statins. The most common manifestation of myopathy is muscle pain (usually symmetrical, involving proximal muscles) without creatinine kinase (CK) elevation or less frequently with mild CK elevation. Clinically significant rhabdomyolysis (muscle symptoms with CK elevation >10 times the upper limit of normal and with creatinine elevation) is extremely rare. Myopathy complicates the use of all statins (class effect) and is dose-dependent. The pathophysiologic mechanism of statin-associated myopathy is unknown and probably multifactorial. The risk of statin-associated myopathy can be minimized by identifying vulnerable patients (i.e. patients with impaired renal or liver function, advanced age, hypothyroidism, etc.) and/or by eliminating-avoiding statin interactions with specific drugs (cytochrome P-450 3A4 inhibitors, gemfibrozil, etc.). In symptomatic patients, the severity of symptoms, the magnitude of CK elevation and the risk/benefit ratio of statin continuation should be considered before statin treatment is discontinued. Potential strategies are the use of the same statin at a lower dose and if symptoms recur the initiation of fluvastatin XL 80 mg daily or rosuvastatin intermittently in low dose (5-10mg), combined usually with ezetimibe 10mg daily. Failure of these approaches necessitates the use of non-statin lipid lowering drugs (ezetimibe, colesevelam). In order to provide evidence based recommendations for the appropriate management of statin-intolerant patients we need randomized clinical trials directly comparing the myopathic potential of different lipid-lowering medications at comparable doses.

  19. Congenital myopathy caused by a novel missense mutation in the CFL2 gene

    PubMed Central

    Ockeloen, C.W.; Gilhuis, H.J.; Pfundt, R.; Kamsteeg, E.J.; Agrawal, P.B.; Beggs, A.H.; Hama-Amin, A. Dara; Diekstra, A.; Knoers, N.V.A.M.; Lammens, M.; van Alfen, N.

    2012-01-01

    Nemaline myopathy and myofibrillar myopathy are heterogeneous myopathies that both comprise early-onset forms. We present two sisters from a consanguineous Iraqi Kurdish family with predominant axial and limb girdle weakness. Muscle biopsies showed features of both nemaline myopathy and myofibrillar myopathy. We performed homozygosity mapping in both siblings using an Affymetrix 250K Nspl SNP array. One of the overlapping homozygous regions harbored the gene CFL2. Because a mutation in CFL2 was identified in a family with nemaline myopathy, we performed sequence analysis of the gene and a novel homozygous missense mutation in exon 2 (c.19G>A, p.Val7Met) of CFL2 was identified in both siblings. CFL2 encodes the protein cofilin-2, which plays an important role in regulation of sarcomeric actin filaments. To our knowledge, this is the second family in which a mutation in CFL2 causes an autosomal recessive form of congenital myopathy with features of both nemaline and myofibrillar myopathy. Given the clinical variability and the multitude of histological features of congenital myopathies, CFL2 sequence analysis should be considered in patients presenting with an autosomal recessive form of congenital myopathy. PMID:22560515

  20. CARDIO-i2b2: integrating arrhythmogenic disease data in i2b2.

    PubMed

    Segagni, Daniele; Tibollo, Valentina; Dagliati, Arianna; Napolitano, Carlo; G Priori, Silvia; Bellazzi, Riccardo

    2012-01-01

    The CARDIO-i2b2 project is an initiative to customize the i2b2 bioinformatics tool with the aim to integrate clinical and research data in order to support translational research in cardiology. In this work we describe the implementation and the customization of i2b2 to manage the data of arrhytmogenic disease patients collected at the Fondazione Salvatore Maugeri of Pavia in a joint project with the NYU Langone Medical Center (New York, USA). The i2b2 clinical research chart data warehouse is populated with the data obtained by the research database called TRIAD. The research infrastructure is extended by the development of new plug-ins for the i2b2 web client application able to properly select and export phenotypic data and to perform data analysis.

  1. Statin-induced necrotizing myositis - a discrete autoimmune entity within the "statin-induced myopathy spectrum".

    PubMed

    Hamann, Philip D H; Cooper, Robert G; McHugh, Neil J; Chinoy, Hector

    2013-10-01

    Statin-induced necrotizing myositis is increasingly being recognised as part of the "statin-induced myopathy spectrum". As in other immune-mediated necrotizing myopathies, statin-induced myositis is characterised by proximal muscle weakness with marked serum creatinine kinase elevations and histological evidence of myonecrosis, with little or no inflammatory cell infiltration. Unlike other necrotizing myopathies, statin-induced myopathy is associated with the presence of autoantibodies directed against 3-hydroxy-3-methylglutaryl- coenzyme A reductase (the enzyme target of statin therapies), and with Human Leukocyte Antigen-DRB1*11. This article summarises the clinical presentation, investigations and management of this rare, but serious complication of statin therapy.

  2. Coenzyme Q10 and statin-related myopathy.

    PubMed

    2015-05-01

    Statins inhibit the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is involved in the production of mevalonic acid in the cholesterol biosynthesis pathway. This pathway also results in the production of other bioactive molecules including coenzyme Q10 (also known as ubiquinone or ubidecarenone). Coenzyme Q10 is a naturally-occurring coenzyme with antioxidant effects that is involved in electron transport in mitochondria and is thought to play a role in energy transfer in skeletal muscle. Muscle-related problems are a frequently reported adverse effect of statins, and it has been hypothesised that a reduced endogenous coenzyme Q10 concentration is a cause of statin-induced myopathy. Coenzyme Q10 supplementation has therefore been proposed to reduce the adverse muscular effects sometimes seen with statins. Here, we consider whether coenzyme Q10 has a place in the management of statin-induced myopathy.

  3. Chronic primary intestinal pseudo-obstruction from visceral myopathy.

    PubMed

    Muñoz-Yagüe, M T; Marín, J C; Colina, F; Ibarrola, C; López-Alonso, G; Martín, M A; Solís-Herruzo, J A

    2006-04-01

    Chronic intestinal pseudo-obstruction is an uncommon syndrome characterized by relapsing episodes suggesting intestinal obstruction during which no mechanical causes are identified to account for symptoms. Etiologic factors may be manifold. Among them a number of neurologic conditions, gastrointestinal smooth muscle myopathies, endocrino-metabolic and autoimmune diseases, and the use of selected drugs stand out. We report a case of chronic intestinal pseudo-obstruction originating in a sporadic, primary intestinal myopathy that corresponds to no type thus far described. A histological study of the intestinal wall showed disrupted muscle bundles and the presence of interstitial edema. Myocytes had severe degenerative changes, and no alterations were seen in submucosal and myenteric plexus neurons. The activity of enzyme complexes in the mitochondrial respiratory chain, and of thymidine phosphorylase was normal. No mitochondrial DNA changes were seen.

  4. Delayed acute capture myopathy in three roe deer.

    PubMed

    Montané, J; Marco, I; Manteca, X; López, J; Lavín, S

    2002-03-01

    Delayed acute capture myopathy is the term used to describe the clinical syndrome observed in three roe deer captured by drive-nets and transported to an enclosure for scientific purposes. The animals died 48 h, 60 h and 8 days after being captured. The simultaneous deaths coincided with a previous episode of deliberate human disturbance. The histopathological findings were indicative of acute myopathy and myoglobinaemic nephrosis. These could be related to an ataxic myoglobinuric syndrome brought on by capture and transport operations. The lack of clinical signs and negative prognosis indicators in the period between capture and just before death. the absence of gross muscular lesions in the animal that died after 8 days post-capture, the simultaneous deaths of animals captured at different times and the evidence of deliberate human disturbance in the enclosure are suggestive of death triggered by a second stress episode.

  5. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy.

    PubMed

    Horvath, Rita; Kemp, John P; Tuppen, Helen A L; Hudson, Gavin; Oldfors, Anders; Marie, Suely K N; Moslemi, Ali-Reza; Servidei, Serenella; Holme, Elisabeth; Shanske, Sara; Kollberg, Gittan; Jayakar, Parul; Pyle, Angela; Marks, Harold M; Holinski-Feder, Elke; Scavina, Mena; Walter, Maggie C; Coku, Jorida; Günther-Scholz, Andrea; Smith, Paul M; McFarland, Robert; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N; Hirano, Michio; Lochmüller, Hanns; Taylor, Robert W; Chinnery, Patrick F; Tulinius, Mar; DiMauro, Salvatore

    2009-11-01

    Childhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal outcome. However, a puzzling infantile disorder, long known as 'benign cytochrome c oxidase deficiency myopathy' is an exception because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive care. Here we define the principal molecular basis of the disorder by identifying a maternally inherited, homoplasmic m.14674T>C mt-tRNA(Glu) mutation in 17 patients from 12 families. Our results provide functional evidence for the pathogenicity of the mutation and show that tissue-specific mechanisms downstream of tRNA(Glu) may explain the spontaneous recovery. This study provides the rationale for a simple genetic test to identify infants with mitochondrial myopathy and good prognosis.

  6. Andersen-Tawil syndrome with early fixed myopathy.

    PubMed

    Lefter, Stela; Hardiman, Orla; Costigan, Donal; Lynch, Bryan; McConville, John; Hand, Collette K; Ryan, Aisling M

    2014-12-01

    Andersen-Tawil syndrome (ATS) is a rare autosomal dominant potassium channelopathy characterized by a triad of periodic paralysis, ventricular arrhythmias, and distinctive dysmorphic abnormalities. We present a 19-year-old man with characteristic skeletal dysmorphic features of ATS, early nonfluctuating proximal lower limb weakness from childhood, and neonatal focal seizures. He later developed fluctuating weakness in addition to a fixed proximal myopathy. A 12-lead electrocardiogram showed prominent "U" waves, and McManis protocol prolonged exercise test showed an unusually early decline in the compound motor action potential amplitude by 51%. Genetic testing revealed a de novo heterozygous mutation (R218W) in KCNJ2 associated with ATS. This is the first reported case of ATS in an Irish population with an unusual fixed myopathy from early childhood.

  7. Chronic myopathy due to immunoglobulin light chain amyloidosis

    PubMed Central

    Manoli, Irini; Kwan, Justin Y.; Wang, Qian; Rushing, Elisabeth J.; Tsokos, Maria; Arai, Andrew E.; Burch, Warner M.; Dispenzieri, Angela; McPherron, Alexandra C.; Gahl, William A.

    2013-01-01

    Amyloid myopathy associated with a plasma cell dyscrasia is a rare cause of muscle hypertrophy. It can be a challenging diagnosis, since pathological findings are often elusive. In addition, the mechanism by which immunoglobulin light-chain deposition stimulates muscle overgrowth remains poorly understood. We present a 53–year old female with a 10-year history of progressive generalized muscle overgrowth. Congo-red staining and immunohistochemistry revealed perivascular lambda light chain amyloid deposits, apparent only in a second muscle biopsy. The numbers of central nuclei and satellite cells were increased, suggesting enhanced muscle progenitor cell formation. Despite the chronicity of the light chain disease, the patient showed complete resolution of hematologic findings and significant improvement of her muscle symptoms following autologous bone marrow transplantation. This case highlights the importance of early diagnosis and therapy for this treatable cause of a chronic myopathy with muscle hypertrophy. PMID:23465863

  8. Nemaline myopathy in a newborn infant: a rare muscle disorder.

    PubMed

    Olukman, O; Calkavur, S; Diniz, G; Unalp, A; Atlihan, F

    2013-01-01

    Nemaline myopathy (NM) is a genetically and clinically heterogeneous muscle disorder, defined by the presence of characteristic nemaline bodies on muscle biopsy. The disease has a wide spectrum of phenotypes, ranging from forms with neonatal onset and fatal outcome to asymptomatic forms. The neonatal form is severe and usually fatal. The clinical variability, with differing age of onset and severity of symptoms makes the diagnosis difficult during infancy. There is no curative treatment. L-tyrosine may prevent aspiration by reducing pharyngeal secretions and drooling. Most of the patients die from respiratory and cardiac failure. This article discusses a newborn infant who presented with generalized weakness and respiratory failure. Partial response to L-tyrosine treatment was noted. The case is worth presenting to remind clinicians of congenital myopathies in the differential diagnosis of floppy infant during neonatal period and to emphasize the importance of muscle biopsy in diagnosis.

  9. Exercise training in mitochondrial myopathy: a randomized controlled trial.

    PubMed

    Cejudo, Pilar; Bautista, Juan; Montemayor, Teodoro; Villagómez, Rafael; Jiménez, Luis; Ortega, Francisco; Campos, Yolanda; Sánchez, Hildegard; Arenas, Joaquín

    2005-09-01

    Patients with mitochondrial myopathies (MM) usually suffer from exercise intolerance due to their impaired oxidative capacity and physical deconditioning. We evaluated the effects of a 12-week supervised randomized rehabilitation program involving endurance training in patients with MM. Twenty MM patients were assigned to a training or control group. For three nonconsecutive days each week, patients combined cycle exercise at 70% of their peak work rate with three upper-body weight-lifting exercises performed at 50% of maximum capacity. Training increased maximal oxygen uptake (28.5%), work output (15.5%), and minute ventilation (40%), endurance performance (62%), walking distance in shuttle walking test (+95 m), and peripheral muscle strength (32%-62%), and improved Nottingham Health Profile scores (21.47%) and clinical symptoms. Control MM patients did not change from baseline. Results show that our exercise program is an adequate training strategy for patients with mitochondrial myopathy.

  10. An unusual myopathy: speckled muscle fibers due to enlarged mitochondria.

    PubMed

    Jeffree, Rosalind L; Wills, Edward J; Harper, Clive

    2007-07-01

    We report a 52-year-old woman who presented with a 6-month history of proximal muscle weakness, elevated serum creatine kinase, and myopathic pattern on electromyography (EMG). Histology of the muscle shows a speckled pattern due to clustering of enlarged mitochondria. The pathology resembles that of selenium deficiency. The patient was found to have borderline low serum selenium and also low vitamin D and thyroid-stimulating hormone. The cause of this unusual myopathy is probably multifactorial. This case is important because the unusual pathological picture represents a potentially treatable myopathy. In addition, we hope that publication of the complex clinical and biochemical abnormalities of this case, in conjunction with other case reports, may facilitate future elucidation of muscle mitochondrial function and dysfunction.

  11. Schistosomiasis and nutritional myopathy in a Brazilian tapir (Tapirus terrestris).

    PubMed

    Yamini, B; Schillhorn van Veen, T W

    1988-10-01

    Gross lesions suggestive of severe hepatoenteropathy and myopathy were noted in a 4.5-yr-old Brazilian tapir (Tapirus terrestris) from a zoo in Michigan (USA). The major microscopic lesions were granulomatous hepatitis and hemorrhagic enteritis associated with non-operculated eggs compatible with those of the Schistosomatidae (Digenea). Skeletal muscle and tongue contained foci of severe acute myodegeneration and necrosis. The hepatic vitamin E value of 1.3 ppm dry weight was considered critically low.

  12. Analysis of lipid profile in lipid storage myopathy.

    PubMed

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  13. Filamin C-related myopathies: pathology and mechanisms

    PubMed Central

    Goldfarb, Lev G.; Kley, Rudolf A.; Vorgerd, Matthias; Olivé, Montse; van der Ven, Peter F. M.

    2016-01-01

    The term filaminopathy was introduced after a truncating mutation in the dimerization domain of filamin C (FLNc) was shown to be responsible for a devastating muscle disease. Subsequently, the same mutation was found in patients from diverse ethnical origins, indicating that this specific alteration is a mutational hot spot. Patients initially present with proximal muscle weakness, while distal and respiratory muscles become affected with disease progression. Muscle biopsies of these patients show typical signs of myofibrillar myopathy, including disintegration of myofibrils and aggregation of several proteins into distinct intracellular deposits. Highly similar phenotypes were observed in patients with other mutations in Ig-like domains of FLNc that result in expression of a noxious protein. Biochemical and biophysical studies showed that the mutated domains acquire an abnormal structure causing decreased stability and eventually becoming a seed for abnormal aggregation with other proteins. The disease usually presents only after the fourth decade of life possibly as a result of ageing-related impairments in the machinery that is responsible for disposal of damaged proteins. This is confirmed by mutations in components of this machinery that cause a highly similar phenotype. Transfection studies of cultured muscle cells reflect the events observed in patient muscles and, therefore, may provide a helpful model for testing future dedicated therapeutic strategies. More recently, FLNC mutations were also found in families with a distal myopathy phenotype, caused either by mutations in the actin-binding domain of FLNc that result in increased actin-binding and non-specific myopathic abnormalities without myofibrillar myopathy pathology, or a nonsense mutation in the rod domain that leads to RNA instability, haploinsufficiency with decreased expression levels of FLNc in the muscle fibers and myofibrillar abnormalities, but not to the formation of desmin-positive protein

  14. Idiopathic inflammatory myopathies: definition and management of refractory disease.

    PubMed

    Brandão, Mariana; Marinho, António

    2011-09-01

    Adult idiopathic inflammatory myopathies, commonly referred to as myositis, are a heterogeneous group of diseases with an autoimmune etiology. In this review, the authors are going to focus on myositis excluding inclusion body myositis. They will review the prognostic factors (for mortality and response to steroids), define refractory disease, introduce a new concept (presumed refractory disease), analyze definitions of active disease, damage and improvement criteria, and summarize therapeutic alternatives for refractory patients, based on different disease phenotypes.

  15. Statin myopathy: a common dilemma not reflected in clinical trials.

    PubMed

    Fernandez, Genaro; Spatz, Erica S; Jablecki, Charles; Phillips, Paul S

    2011-06-01

    Although statins are remarkably effective, they are still underprescribed because of concerns about muscle toxicity. We review the aspects of statin myopathy that are important to the primary care physician and provide a guide for evaluating patients on statins who present with muscle complaints. We outline the differential diagnosis, the risks and benefits of statin therapy in patients with possible toxicity, and the subsequent treatment options.

  16. Insights into muscle degeneration from heritable inclusion body myopathies.

    PubMed

    Krause, Sabine

    2015-01-01

    Muscle mass and function are gradually lost in age-related, degenerative neuromuscular disorders, which also reflect the clinical hallmarks of sarcopenia. The consensus definition of sarcopenia includes a condition of age-related loss of muscle mass, quality, and strength. The most common acquired muscle disease affecting adults aged over 50 years is sporadic inclusion body myositis (sIBM). Besides inflammatory effects and immune-mediated muscle injury, degenerative myofiber changes are characteristic features of the disease. Although the earliest triggering events in sIBM remain elusive, a plethora of downstream mechanisms are implicated in the pathophysiology of muscle wasting. Although it remains controversial whether hereditary forms of inclusion body myopathy (IBM) may be considered as degenerative sIBM disease models, partial pathophysiological aspects can mimic the much more frequent sporadic condition, in particular the occurrence of inclusion bodies in skeletal muscle. Various clinical aspects in genetically determined skeletal muscle disorders reflect age-related alterations observed in sarcopenia. Several intriguing clues from monogenic defects in heritable IBMs contributing to the molecular basis of muscle loss will be discussed with special emphasis on inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) and GNE myopathy. Finally, also the recently identified dominant multisystem proteinopathy will be considered, which may rarely present as IBM.

  17. Dermatomyositis, polymyositis and immune-mediated necrotising myopathies.

    PubMed

    Luo, Yue-Bei; Mastaglia, Frank L

    2015-04-01

    Dermatomyositis, polymyositis and immune-mediated necrotising myopathy are major forms of idiopathic inflammatory myopathy. We review here recent developments in understanding the pathology and pathogenesis of these diseases, and characterisation of autoantibody biomarkers. Dermatomyositis is traditionally considered to be due to a complement-mediated microangiopathy but the factors responsible for complement activation remain uncertain. Recent studies have emphasised the importance of the type I interferon pathway in the pathogenesis of the disease and have identified autoantibodies with specificities for different clinical subgroups of patients. Polymyositis is characterised by a cytotoxic T cell response targeting as yet unidentified muscle antigens presented by MHC Class I molecules, and can occur in isolation but is more often part of a multi-systemic overlap syndrome. The immune-mediated necrotising myopathies are heterogeneous and are distinguished from polymyositis by the sparseness of inflammatory infiltrates and recognition of an association with specific autoantibodies such as anti-SRP and anti-HMGCR in many cases. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.

  18. The genetic basis of undiagnosed muscular dystrophies and myopathies

    PubMed Central

    Savarese, Marco; Di Fruscio, Giuseppina; Torella, Annalaura; Fiorillo, Chiara; Magri, Francesca; Fanin, Marina; Ruggiero, Lucia; Ricci, Giulia; Astrea, Guja; Passamano, Luigia; Ruggieri, Alessandra; Ronchi, Dario; Tasca, Giorgio; D'Amico, Adele; Janssens, Sandra; Farina, Olimpia; Mutarelli, Margherita; Marwah, Veer Singh; Garofalo, Arcomaria; Giugliano, Teresa; Sanpaolo, Simone; Del Vecchio Blanco, Francesca; Esposito, Gaia; Piluso, Giulio; D'Ambrosio, Paola; Petillo, Roberta; Musumeci, Olimpia; Rodolico, Carmelo; Messina, Sonia; Evilä, Anni; Hackman, Peter; Filosto, Massimiliano; Di Iorio, Giuseppe; Siciliano, Gabriele; Mora, Marina; Maggi, Lorenzo; Minetti, Carlo; Sacconi, Sabrina; Santoro, Lucio; Claes, Kathleen; Vercelli, Liliana; Mongini, Tiziana; Ricci, Enzo; Gualandi, Francesca; Tupler, Rossella; De Bleecker, Jan; Udd, Bjarne; Toscano, Antonio; Moggio, Maurizio; Pegoraro, Elena; Bertini, Enrico; Mercuri, Eugenio; Angelini, Corrado; Santorelli, Filippo Maria; Politano, Luisa; Bruno, Claudio; Comi, Giacomo Pietro

    2016-01-01

    Objective: To apply next-generation sequencing (NGS) for the investigation of the genetic basis of undiagnosed muscular dystrophies and myopathies in a very large cohort of patients. Methods: We applied an NGS-based platform named MotorPlex to our diagnostic workflow to test muscle disease genes with a high sensitivity and specificity for small DNA variants. We analyzed 504 undiagnosed patients mostly referred as being affected by limb-girdle muscular dystrophy or congenital myopathy. Results: MotorPlex provided a complete molecular diagnosis in 218 cases (43.3%). A further 160 patients (31.7%) showed as yet unproven candidate variants. Pathogenic variants were found in 47 of 93 genes, and in more than 30% of cases, the phenotype was nonconventional, broadening the spectrum of disease presentation in at least 10 genes. Conclusions: Our large DNA study of patients with undiagnosed myopathy is an example of the ongoing revolution in molecular diagnostics, highlighting the advantages in using NGS as a first-tier approach for heterogeneous genetic conditions. PMID:27281536

  19. Capture myopathy in an endangered sandhill crane (Grus canadensis pulla)

    USGS Publications Warehouse

    Carpenter, J.W.; Thomas, N.J.; Reeves, S.

    1991-01-01

    Despite precautions to protect cranes, a 3-year-old endangered Mississippi sandhill crane (Grus canadensis pulla) was found caught in a leghold trap in Gautier, Mississippi, on 11 November 1987. The bird could have been in the trap for up to 16 hr and was standing and struggling to escape when it was discovered. Serum chemistries of the crane on 12 November revealed elevated lactic dehydrogenase (2,880 IU/L), alanine aminotransferase (ALT) (152 IU/L), and aspartate aminotransferase (AST) (>1,000 IU/L) values. Following surgical amputation of a fractured toe, the bird never attempted to stand and was unable to stand even when manually supported. Radiographic and physical examination of both legs did not reveal any anatomical abnormalities. Despite medical care, including supportive therapy, no improvement was observed in the bird's ability to stand and to support itself, and the bird died on 19 November. Serum chemistries and the postmortem and histopathologic findings were compatible with capture myopathy described in other species. Because of the possible susceptibility of long-legged birds such as the Mississippi sandhill crane to capture myopathy, special care must be taken when trapping, handling, chemically immobilizing, and transporting these species. In addition, precautions must be taken when conducting a predator-control program to ensure that nontarget wildlife are unlikely to encounter traps. Capture myopathy has only rarely been observed in wild birds, and this case represents the first report in a Mississippi sandhill crane.

  20. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy

    PubMed Central

    Ceyhan-Birsoy, Ozge; Agrawal, Pankaj B.; Hidalgo, Carlos; Schmitz-Abe, Klaus; DeChene, Elizabeth T.; Swanson, Lindsay C.; Soemedi, Rachel; Vasli, Nasim; Iannaccone, Susan T.; Shieh, Perry B.; Shur, Natasha; Dennison, Jane M.; Lawlor, Michael W.; Laporte, Jocelyn; Markianos, Kyriacos; Fairbrother, William G.; Granzier, Henk

    2013-01-01

    Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. Results: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. Conclusions: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes. PMID:23975875

  1. Deliberate and Crisis Action Planning and Execution Segments Increment 2B (DCAPES Inc 2B)

    DTIC Science & Technology

    2016-03-01

    Defense Acquisition Management Information Retrieval (DAMIR) UNCLASSIFIED DCAPES Inc 2B 2016 MAR UNCLASSIFIED 2 Table of Contents Common...M - Millions of Dollars MAIS - Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone...Logistics DCAPES Inc 2B 2016 MAR UNCLASSIFIED 3 Lt Col Christopher Thrower 201 East Moore Drive Building 856, Room 154 Maxwell Air Force Base-Gunter

  2. Isotretinoin-induced acute severe myopathy involving pelvic girdle muscles: A case report

    PubMed Central

    Sameem, Farah; Semira

    2016-01-01

    Oral isotretinoin has been in widespread use for more than three decades. It causes numerous side effects; skin and mucous membrane being commonly involved. Musculoskeletal adverse effects are also known to occur, but pelvic girdle myopathy is rarely reported. We report myopathy involving pelvic girdle muscles in a young male who received oral isotretinoin for folliculitis decalvans. PMID:27721552

  3. Differences in Methadone Metabolism by CYP2B6 Variants.

    PubMed

    Gadel, Sarah; Friedel, Christina; Kharasch, Evan D

    2015-07-01

    Methadone is a long-acting opioid with considerable unexplained interindividual variability in clearance. Cytochrome P450 2B6 (CYP2B6) mediates clinical methadone clearance and metabolic inactivation via N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). Retrospective studies suggest that individuals with the CYP2B6*6 allelic variant have higher methadone plasma concentrations. Catalytic activities of CYP2B6 variants are highly substrate- and expression-system dependent. This investigation evaluated methadone N-demethylation by expressed human CYP2B6 allelic variants in an insect cell coexpression system containing P450 reductase. Additionally, the influence of coexpressing cytochrome b5, whose role in metabolism can be inhibitory or stimulatory depending on the P450 isoform and substrate, on methadone metabolism, was evaluated. EDDP formation from therapeutic (0.25-1 μM) R- and S-methadone concentrations was CYP2B6.4 ≥ CYP2B6.1 ≥ CYP2B6.5 > CYP2B6.9 ≈ CYP2B6.6, and undetectable from CYP2B6.18. Coexpression of b5 had small and variant-specific effects at therapeutic methadone concentrations but at higher concentrations stimulated EDDP formation by CYP2B6.1, CYP2B6.4, CYP2B6.5, and CYP2B6.9 but not CYP2B6.6. In vitro intrinsic clearances were generally CYP2B6.4 ≥ CYP2B6.1 > CYP2B6.5 > CYP2B6.9 ≥ CYP2B6.6. Stereoselective methadone metabolism (S>R) was maintained with all CYP2B6 variants. These results show that methadone N-demethylation by CYP2B6.4 is greater compared with CYP2B6.1, whereas CYP2B6.9 and CYP2B6.6 (which both contain the 516G>T, Q172H polymorphism), are catalytically deficient. The presence or absence of b5 in expression systems may explain previously reported disparate catalytic activities of CYP2B6 variants for specific substrates. Differences in methadone metabolism by CYP2B6 allelic variants provide a mechanistic understanding of pharmacogenetic variability in clinical methadone metabolism and clearance.

  4. Myopathy induced by statin-ezetimibe combination: Evaluation of potential risk factors.

    PubMed

    Brahmachari, Ballari; Chatterjee, Suparna

    2015-01-01

    Although both atorvastatin and ezetimibe may cause myopathy, statin-induced myopathy is less likely at low doses, and ezetimibe is only rarely reported to induce myopathy. Also, ezetimibe is not usually known to potentiate statin-induced myopathy. We report a case of myalgia with elevated serum creatinine phosphokinase in a patient after 2 months of therapy with fixed dose combination of atorvastatin and ezetimibe (10 mg each). At the time of the event, patient was undertaking moderate physical exertion in the form of brisk walking for 30-40 min a day and was detected to have low serum Vitamin D levels. The adverse event resolved after stopping atorvastatin-ezetimibe combination therapy. Potential risk factors, such as physical exertion and Vitamin D deficiency, co-existent in dyslipidemic patients, may exacerbate myopathy potential of these drugs, and precipitate muscular symptoms even at a low-dose.

  5. Steroid myopathy in a child with juvenile rheumatoid arthritis. Case report.

    PubMed

    Genel, F; Arslanoglu, S; Hizarcioglu, M; Durmaz, B; Uran, N; Aktaş, S

    2003-03-01

    An 8-year-old boy who had been diagnosed as systemic-onset juvenile rheumatoid arthritis were on treatment for 8 months with methotrexate and additional steroids during activation. At the end of the 8th month when the corticosteroid dose was 12.5 mg/day, he began to suffer from numbness and weakness in his hands. Physical examination, laboratory findings and electromyography results demonstrated myopathy. Steroid myopathy was considered. Corticosteroids were tapered and stopped. At follow-up clinical findings remitted and electromyography became normal at the 4th month. We present here this case to direct attention to drug-induced myopathy besides myopathy due to primary disease in connective tissue disorders whenever myopathy exists.

  6. Telecom 2-B and 2-C (TC2B and TC2C)

    NASA Technical Reports Server (NTRS)

    Dulac, J.; Alvarez, H.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for Telecom 2-B and 2-C (TC2B and TC2C) are summarized. These Telecom missions will provide high-speed data link applications, telephone, and television service between France and overseas territories as a follow-on to TC2A. Mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  7. Obstructive sleep apnea in patients with inflammatory myopathies.

    PubMed

    Selva-O'Callaghan, Albert; Sampol, Gabriel; Romero, Odile; Lloberes, Patricia; Trallero-Araguás, Ernesto; Vilardell-Tarrés, Miquel

    2009-02-01

    The purpose of this study was to determine the frequency of obstructive sleep apnea in patients with inflammatory myopathy. An observational and prospective study was performed on a cohort of adult patients with inflammatory myopathy followed at a specialized outpatient clinic. Sixteen consecutive adult patients were evaluated by the Epworth Sleepiness Scale (ESS) and by complete polysomnography study. Disease activity and severity were assessed using the Myositis Disease Activity Assessment Tool (MDAAT) and Myositis Damage Index (MDI), respectively. Associations between sleep parameters and other factors were calculated using the chi-square test, Fisher's exact test, Mann-Whitney U-test, and Wilcoxon's test. A serum autoantibody profile was determined for all patients. The mean apnea-hypopnea index was 28.7 (23.8), and 14 patients (87%) had an apnea-hypopnea index >5. The mean frequency of respiratory arousals was 20.1 (12.5). Eleven (68%) patients reported frequently-always snoring, and 3 (19%) had excessive daytime sleepiness (ESS >10). Seven patients were offered continuous positive airway pressure (CPAP) therapy; 4 tolerated the procedure well and reported a clear improvement in daytime sleepiness and/or sleep quality. No significant association was observed between the apnea-hypopnea index and clinical or immunological groups. Dysphagia, disease activity, and disease severity were not significantly associated with any sleep parameters. The frequency of obstructive sleep apnea in adult patients with inflammatory myopathy is high. The possibility that these alterations play a role in persistent fatigue in these patients cannot be ruled out.

  8. Ketogenic diet slows down mitochondrial myopathy progression in mice.

    PubMed

    Ahola-Erkkilä, Sofia; Carroll, Christopher J; Peltola-Mjösund, Katja; Tulkki, Valtteri; Mattila, Ismo; Seppänen-Laakso, Tuulikki; Oresic, Matej; Tyynismaa, Henna; Suomalainen, Anu

    2010-05-15

    Mitochondrial dysfunction is a major cause of neurodegenerative and neuromuscular diseases of adult age and of multisystem disorders of childhood. However, no effective treatment exists for these progressive disorders. Cell culture studies suggested that ketogenic diet (KD), with low glucose and high fat content, could select against cells or mitochondria with mutant mitochondrial DNA (mtDNA), but proper patient trials are still lacking. We studied here the transgenic Deletor mouse, a disease model for progressive late-onset mitochondrial myopathy, accumulating mtDNA deletions during aging and manifesting subtle progressive respiratory chain (RC) deficiency. We found that these mice have widespread lipidomic and metabolite changes, including abnormal plasma phospholipid and free amino acid levels and ketone body production. We treated these mice with pre-symptomatic long-term and post-symptomatic shorter term KD. The effects of the diet for disease progression were followed by morphological, metabolomic and lipidomic tools. We show here that the diet decreased the amount of cytochrome c oxidase negative muscle fibers, a key feature in mitochondrial RC deficiencies, and prevented completely the formation of the mitochondrial ultrastructural abnormalities in the muscle. Furthermore, most of the metabolic and lipidomic changes were cured by the diet to wild-type levels. The diet did not, however, significantly affect the mtDNA quality or quantity, but rather induced mitochondrial biogenesis and restored liver lipid levels. Our results show that mitochondrial myopathy induces widespread metabolic changes, and that KD can slow down progression of the disease in mice. These results suggest that KD may be useful for mitochondrial late-onset myopathies.

  9. [Myopathy and rhabdomyolysis after treatment with simvastatin, amlodipine, and roxithromycin].

    PubMed

    Skovbølling, Sara Lyngby; Lindelof, Mette

    2014-10-06

    This is a case report of a 71-year-old male with known diabetes, hypertension and diabetic nephropaty who over the course of one year developed an unrecognized myopathy due to concomitant treatment with high-dose simvastatin and amlodipin. Due to rhabdomyolysis he was after seven days of treatment with roxithromycin admitted to hospital with loss of the ability to walk. We wish to raise awareness of the potentially severe side effects of simvastatin and to emphasize that these can be limited by increased attention to patients with risk factors and to interactions with other drugs.

  10. Histopathologic and MRI findings in hypokalemic myopathy induced by glycyrrhizin.

    PubMed

    Hayashi, K; Hayashi, R; Maruyama, K; Yanagisawa, N

    1995-08-01

    Histopathologic studies and magnetic resonance images of the leg muscles were conducted in two patients with glycyrrhizin-induced hypokalemic myopathy (GHM). Muscle biopsy showed myopathic changes and vacuolated fibers with light microscopy, and dilatation of the sarcoplasmic reticulum, various types of vacuoles and myofibrillar degeneration with electron microscopy. High signal intensities in T2-weighted images obtained during severe muscle weakness were widely distributed in the leg muscles, especially the pretibial and soleus muscles. These high signal intensities disappeared after full recovery of muscle weakness. We suggest that high signal intensity in T2-weighted images can be seen and correspond to histopathologic changes in the muscles of GHM patients.

  11. K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD

    PubMed Central

    Zhang, Yan; Lin, Dao-Hong; Wang, Zhi-Jian; Jin, Yan; Yang, Baofeng; Wang, Wen-Hui

    2009-01-01

    We used Western blot analysis to examine the effect of dietary K intake on the expression of serine/threonine protein phosphatase in the kidney. K restriction significantly decreased the expression of catalytic subunit of protein phosphatase (PP)2B but increased the expression of PP2B regulatory subunit in both rat and mouse kidney. However, K depletion did not affect the expression of PP1 and PP2A. Treatment of M-1 cells, mouse cortical collecting duct (CCD) cells, or 293T cells with glucose oxidase (GO), which generates superoxide anions through glucose metabolism, mimicked the effect of K restriction on PP2B expression and significantly decreased expression of PP2B catalytic subunits. However, GO treatment increased expression of regulatory subunit of PP2B and had no effect on expression of PP1, PP2A, and protein tyrosine phosphatase 1D. Moreover, deletion of gp91-containing NADPH oxidase abolished the effect of K depletion on PP2B. Thus superoxide anions or related products may mediate the inhibitory effect of K restriction on the expression of PP2B catalytic subunit. We also used patch-clamp technique to study the effect of inhibiting PP2B on renal outer medullary K (ROMK) channels in the CCD. Application of cyclosporin A or FK506, inhibitors of PP2B, significantly decreased ROMK channels, and the effect of PP2B inhibitors was abolished by blocking p38 mitogen-activated protein kinase (MAPK) and ERK. Furthermore, Western blot demonstrated that inhibition of PP2B with cyclosporin A or small interfering RNA increased the phosphorylation of ERK and p38 MAPK. We conclude that K restriction suppresses the expression of PP2B catalytic subunits and that inhibition of PP2B decreases ROMK channel activity through stimulation of MAPK in the CCD. PMID:18184875

  12. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy.

    PubMed

    Dowling, James J; Arbogast, Sandrine; Hur, Junguk; Nelson, Darcee D; McEvoy, Anna; Waugh, Trent; Marty, Isabelle; Lunardi, Joel; Brooks, Susan V; Kuwada, John Y; Ferreiro, Ana

    2012-04-01

    The skeletal muscle ryanodine receptor is an essential component of the excitation-contraction coupling apparatus. Mutations in RYR1 are associated with several congenital myopathies (termed RYR1-related myopathies) that are the most common non-dystrophic muscle diseases of childhood. Currently, no treatments exist for these disorders. Although the primary pathogenic abnormality involves defective excitation-contraction coupling, other abnormalities likely play a role in disease pathogenesis. In an effort to discover novel pathogenic mechanisms, we analysed two complementary models of RYR1-related myopathies, the relatively relaxed zebrafish and cultured myotubes from patients with RYR1-related myopathies. Expression array analysis in the zebrafish disclosed significant abnormalities in pathways associated with cellular stress. Subsequent studies focused on oxidative stress in relatively relaxed zebrafish and RYR1-related myopathy myotubes and demonstrated increased oxidant activity, the presence of oxidative stress markers, excessive production of oxidants by mitochondria and diminished survival under oxidant conditions. Exposure to the antioxidant N-acetylcysteine reduced oxidative stress and improved survival in the RYR1-related myopathies human myotubes ex vivo and led to significant restoration of aspects of muscle function in the relatively relaxed zebrafish, thereby confirming its efficacy in vivo. We conclude that oxidative stress is an important pathophysiological mechanism in RYR1-related myopathies and that N-acetylcysteine is a successful treatment modality ex vivo and in a vertebrate disease model. We propose that N-acetylcysteine represents the first potential therapeutic strategy for these debilitating muscle diseases.

  13. Synthesis and Electrochemical Properties of Nano-VO2 (B).

    PubMed

    Yang, Yun; Lu, Yong; Wang, Wei; Feng, Chuanqi; Yang, Shuijin

    2016-03-01

    The nano-VO2 (B) has been self-assembly synthesized by hydrothermal method using different templates, which may give them some interesting properties. The as-prepared samples were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties of the samples were investigated. The results show that the hexadecyltrimethyl ammonium bromide (CTAB) (soft template) was used to obtain the VO2 (B1) nanobelts. The flake graphite (hard template) was taken to get the VO2 (B2) nanosheets. The VO2 (B1) nanobelts have higher initial capacity to compare with VO2 (B2). But the VO2 (B2) nanosheets showed better cycling performance than that of VO2 (B1) nanobelts. The nano VO2 (B2) is a promising anode material for lithium ion battery application.

  14. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy

    PubMed Central

    Kadoya, Masato; Hida, Ayumi; Hashimoto Maeda, Meiko; Taira, Kenichiro; Ikenaga, Chiseko; Uchio, Naohiro; Kubota, Akatsuki; Kaida, Kenichi; Miwa, Yusuke; Kurasawa, Kazuhiro; Shimada, Hiroyuki; Sonoo, Masahiro; Chiba, Atsuro; Shiio, Yasushi; Uesaka, Yoshikazu; Sakurai, Yasuhisa; Izumi, Toru; Inoue, Manami; Kwak, Shin; Tsuji, Shoji

    2016-01-01

    Objective: To show cancer association is a risk factor other than statin exposure for anti-3-hydroxy-3-methylglutaryl coenzyme A reductase autoantibody-positive (anti-HMGCR Ab+) myopathy. Methods: We analyzed the clinical features and courses of 33 patients (23 female and 10 male) with anti-HMGCR Ab+ myopathy among 621 consecutive patients with idiopathic inflammatory myopathies. Results: Among the 33 patients, 7 (21%) were statin-exposed and 26 were statin-naive. In relation with cancer, there were 12 patients (statin-exposed, n = 4) with cancers detected within 3 years of myopathy diagnosis (cancer association), 3 patients (all statin-naive) with cancers detected more than 3 years before myopathy diagnosis (cancer history), 10 cancer-free patients followed up for more than 3 years (all statin-naive), and 8 patients without cancer detection but followed up for less than 3 years (statin-exposed, n = 3). Therefore, 12 patients with cancer association (36%) formed a larger group than that of 7 statin-exposed patients (21%). Among 12 patients with cancer association, 92% had cancer detection within 1 year of myopathy diagnosis (after 1.3 years in the remaining patient), 83% had advanced cancers, and 75% died of cancers within 2.7 years. Of interest, 1 patient with cancer history had sustained increase in creatine kinase level over 12 years from cancer removal to the development of weakness. Conclusions: Patients with cancer association formed a large group with poor prognosis in our series of patients with anti-HMGCR Ab+ myopathy. The close synchronous occurrence of cancers and myopathies suggested that cancer association is one of the risk factors for developing anti-HMGCR Ab+ myopathy. PMID:27761483

  15. Respiratory Motor Function in Individuals with Centronuclear Myopathies

    PubMed Central

    Smith, Barbara K.; Renno, Markus S.; Green, Meghan M.; Sexton, Terry M.; Lawson, Lee Ann; Martin, Anatole D.; Corti, Manuela; Byrne, Barry J.

    2015-01-01

    Introduction Individuals with X-linked myotubular myopathy (XLMTM) and other centronuclear myopathies (CNMs) frequently have profound respiratory insufficiency that requires support early in life. Still, few quantitative data exist to characterize respiratory motor function in CNM. Methods We evaluated the reliance upon mechanical ventilation (MV), ventilatory kinematics, unassisted tidal volumes, and maximal respiratory pressures in 14 individuals with CNMs, including 10 boys with XLMTM. Results Thirteen participants required full-time, invasive MV. Maximal inspiratory pressures were higher in subjects who breathed unsupported at least 1 hour per day than 24-hour MV users [33.7 (11.9–42.3) vs 8.4 (6.0–10.9) cm H2O, P<0.05]. Years of MV dependence significantly correlated with MEP (r=−0.715, P<0.01). Discussion Respiratory function in CNMs may be related to deconditioning from prolonged MV and/or differences in residual respiratory muscle strength. Results from this study may assist in evaluating severe respiratory insufficiency in neuromuscular clinical care and research. PMID:26351754

  16. [Current views on lipid metabolism: statin-induced myopathy].

    PubMed

    Teichmann, L L; Fleck, M

    2010-10-01

    Cardiovascular diseases are the most common causes of death in Germany and the prevalence is increased in patients with inflammatory rheumatic diseases. Statins are often employed for primary and secondary prophylaxis of cardiovascular events but can potentially induce myopathy as a side-effect. In addition to an asymptomatic elevation of muscle enzymes, myalgia and myositis as well as rhabdomyolysis, the most severe side-effect, have been observed, which are mostly manifested within 6 months after initiation of therapy. Statin-induced myopathy is rare but if risk factors are present, the individual risk can be much higher. Such factors are in particular interaction with other medications, statin dosage, the characteristics of the statin preparation used, comorbidities, age and sex of the patient. Regular testing of muscle enzymes after induction of statin therapy is not generally recommended for asymptomatic patients, but is indispensable when muscle symptoms appear. Statin therapy must be immediately terminated and a diagnostic evaluation must be carried out at the latest when creatine kinase values show a more than 10-fold increase.

  17. Mitochondrial Bioenergetics in the Metabolic Myopathy Accompanying Peripheral Artery Disease

    PubMed Central

    Rontoyanni, Victoria G.; Nunez Lopez, Omar; Fankhauser, Grant T.; Cheema, Zulfiqar F.; Rasmussen, Blake B.; Porter, Craig

    2017-01-01

    Peripheral artery disease (PAD) is a serious but relatively underdiagnosed and undertreated clinical condition associated with a marked reduction in functional capacity and a heightened risk of morbidity and mortality. The pathophysiology of lower extremity PAD is complex, and extends beyond the atherosclerotic arterial occlusion and subsequent mismatch between oxygen demand and delivery to skeletal muscle mitochondria. In this review, we evaluate and summarize the available evidence implicating mitochondria in the metabolic myopathy that accompanies PAD. Following a short discussion of the available in vivo and in vitro methodologies to quantitate indices of muscle mitochondrial function, we review the current evidence implicating skeletal muscle mitochondrial dysfunction in the pathophysiology of PAD myopathy, while attempting to highlight questions that remain unanswered. Given the rising prevalence of PAD, the detriment in quality of life for patients, and the associated significant healthcare resource utilization, new alternate therapies that ameliorate lower limb symptoms and the functional impairment associated with PAD are needed. A clear understanding of the role of mitochondria in the pathophysiology of PAD may contribute to the development of novel therapeutic interventions. PMID:28348531

  18. Statin-associated myopathy: from genetic predisposition to clinical management.

    PubMed

    Vrablik, M; Zlatohlavek, L; Stulc, T; Adamkova, V; Prusikova, M; Schwarzova, L; Hubacek, J A; Ceska, R

    2014-01-01

    Statin-associated myopathy (SAM) represents a broad spectrum of disorders from insignificant myalgia to fatal rhabdomyolysis. Its frequency ranges from 1-5 % in clinical trials to 15-20 % in everyday clinical practice. To a large extent, these variations can be explained by the definition used. Thus, we propose a scoring system to classify statin-induced myopathy according to clinical and biochemical criteria as 1) possible, 2) probable or 3) definite. The etiology of this disorder remains poorly understood. Most probably, an underlying genetic cause is necessary for overt SAM to develop. Variants in a few gene groups that encode proteins involved in: i) statin metabolism and distribution (e.g. membrane transporters and enzymes; OATP1B1, ABCA1, MRP, CYP3A4), ii) coenzyme Q10 production (e.g. COQ10A and B), iii) energy metabolism of muscle tissue (e.g. PYGM, GAA, CPT2) and several others have been proposed as candidates which can predispose to SAM. Pharmacological properties of individual statin molecules (e.g. lipophilicity, excretion pathways) and patients´ characteristics influence the likelihood of SAM development. This review summarizes current data as well as our own results.

  19. Idiopathic Inflammatory Myopathies and Malignancy: a Comprehensive Review.

    PubMed

    Tiniakou, Eleni; Mammen, Andrew L

    2017-02-01

    The idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of autoimmune diseases (collectively known as myositis) affecting the skeletal muscles as well as other organ systems such as skin, lungs, and joints. The primary forms of myositis include polymyositis (PM), dermatomyositis (PM), and immune-mediated necrotizing myopathy (IMNM). Patients with these diseases experience progressive proximal muscle weakness, have characteristic muscle biopsy findings, and produce autoantibodies that are associated with unique clinical features. One distinguishing feature of these patients is that they are also known to have an increased risk of cancer. Since the first description of the association in 1916, it has been extensively reported in the medical literature. However, there have been significant variations between the different studies with regard to the degree of cancer risk in patients with IIM. These discrepancies can, in part, be attributed to differences in the definition of malignancy-associated myositis used in different studies. In recent years, significant advances have been made in defining specific features of IIM that are associated with the development of malignancy. One of these has been myositis-specific antibodies (MSAs), which are linked to distinct clinical phenotypes and categorize patients into groups with more homogeneous features. Indeed, patients with certain MSAs seem to be at particularly increased risk of malignancy. This review attempts a systematic evaluation of research regarding the association between malignancy and myositis.

  20. Mitochondrial myopathy induces a starvation-like response.

    PubMed

    Tyynismaa, Henna; Carroll, Christopher J; Raimundo, Nuno; Ahola-Erkkilä, Sofia; Wenz, Tina; Ruhanen, Heini; Guse, Kilian; Hemminki, Akseli; Peltola-Mjøsund, Katja E; Tulkki, Valtteri; Oresic, Matej; Moraes, Carlos T; Pietiläinen, Kirsi; Hovatta, Iiris; Suomalainen, Anu

    2010-10-15

    Mitochondrial respiratory chain (RC) deficiency is among the most common causes of inherited metabolic disease, but its physiological consequences are poorly characterized. We studied the skeletal muscle gene expression profiles of mice with late-onset mitochondrial myopathy. These animals express a dominant patient mutation in the mitochondrial replicative helicase Twinkle, leading to accumulation of multiple mtDNA deletions and progressive subtle RC deficiency in the skeletal muscle. The global gene expression pattern of the mouse skeletal muscle showed induction of pathways involved in amino acid starvation response and activation of Akt signaling. Furthermore, the muscle showed induction of a fasting-related hormone, fibroblast growth factor 21 (Fgf21). This secreted regulator of lipid metabolism was also elevated in the mouse serum, and the animals showed widespread changes in their lipid metabolism: small adipocyte size, low fat content in the liver and resistance to high-fat diet. We propose that RC deficiency induces a mitochondrial stress response, with local and global changes mimicking starvation, in a normal nutritional state. These results may have important implications for understanding the metabolic consequences of mitochondrial myopathies.

  1. [Interferon alpha-2b modified with polyethylene glycol].

    PubMed

    Wu, Yingxin; Zhai, Yanqin; Lei, Jiandu; Ma, Guanghui; Su, Zhiguo

    2008-09-01

    In order to obtain a more stable PEGylated interferon alpha-2b, and prolong its half life, interferon alpha-2b (IFN alpha-2b) was modified with monomethoxy polyethylene glycol propionaldehyde (mPEG-ALD) 20000. It was found that the optimized reaction condition for the maximum bioactivity and highest PEGylation degree of the mono PEGylated interferon alpha-2b was as follows: in 20 mmol/L, pH 6.5, citric acid and sodium dihydrogen phosphate buffer, the concentration of IFN alpha-2b was 4 mg/mL, and the molar ratio of PEG/IFN alpha-2b was 8:1, and the reaction time was 20 h at 4 degrees C. Under the optimized reaction condition, the mono PEGylation degree reached to 55%. Ion exchange chromatography was used to separate and purify mono PEGylated interferon alpha-2b from the reaction mixture. The purity of mono PEGylated interferon alpha-2b was higher than 97% characterized by HPLC. The bioactivity of the mono PEGylated interferon alpha-2b was 13.4% of the native IFN alpha-2b, while its half life in SD rat is much longer than the native IFN alpha-2b. The mono PEGylated interferon alpha-2b is also stable in aqueous.

  2. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  3. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  4. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  5. 7 CFR 301.80-2b - Exempted articles. 1

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Exempted articles. 1 301.80-2b Section 301.80-2b....80-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines. (a) The following articles are exempt from the certification and permit...

  6. 7 CFR 301.80-2b - Exempted articles. 1

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Exempted articles. 1 301.80-2b Section 301.80-2b....80-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines. (a) The following articles are exempt from the certification and permit...

  7. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  8. 7 CFR 301.85-2b - Exempted articles. 1

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Exempted articles. 1 301.85-2b Section 301.85-2b... § 301.85-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines and other provisions of this subpart. (a) The following articles...

  9. 7 CFR 301.80-2b - Exempted articles. 1

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Exempted articles. 1 301.80-2b Section 301.80-2b....80-2b Exempted articles. 1 1 The articles hereby exempted remain subject to applicable restrictions under other quarantines. (a) The following articles are exempt from the certification and permit...

  10. Human congenital myopathy actin mutants cause myopathy and alter Z-disc structure in Drosophila flight muscle.

    PubMed

    Sevdali, Maria; Kumar, Vikash; Peckham, Michelle; Sparrow, John

    2013-03-01

    Over 190 mutations in the human skeletal muscle α-actin gene, ACTA1 cause congenital actin myopathies. We transgenically expressed six different mutant actins, G15R, I136M, D154N, V163L, V163M and D292V in Drosophila indirect flight muscles and investigated their effects in flies that express one wild type and one mutant actin copy. All the flies were flightless, and the IFMs showed incomplete Z-discs, disorganised actin filaments and 'zebra bodies'. No differences in levels of sarcomeric protein expression were observed, but tropomodulin staining was somewhat disrupted in D164N, V163L, G15R and V163M heterozygotes. A single copy of D292V mutant actin rescued the hypercontractile phenotypes caused by TnI and TnT mutants, suggesting that the D292V mutation interferes with thin filament regulation. Our results show that expression of actin mutations homologous to those in humans in the indirect flight muscles of Drosophila disrupt sarcomere organisation, with somewhat similar phenotypes to those observed in humans. Using Drosophila to study actin mutations may help aid our understanding of congential myopathies caused by actin mutations.

  11. Methadone N-demethylation by the common CYP2B6 allelic variant CYP2B6.6.

    PubMed

    Gadel, Sarah; Crafford, Amanda; Regina, Karen; Kharasch, Evan D

    2013-04-01

    The long-acting opioid methadone displays considerable unexplained interindividual pharmacokinetic variability. Methadone metabolism clinically occurs primarily by N-demethylation to 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), catalyzed predominantly by CYP2B6. Retrospective studies suggest that the common allele variant CYP2B6*6 may influence methadone plasma concentrations. The catalytic activity of CYP2B6.6, encoded by CYP2B6*6, is highly substrate-dependent. This investigation compared methadone N-demethylation by CYP2B6.6 with that by wild-type CYP2B6.1. Methadone enantiomer and racemate N-demethylation by recombinant-expressed CYP2B6.6 and CYP2B6.1 was determined. At substrate concentrations (0.25-2 µM) approximating plasma concentrations occurring clinically, rates of methadone enantiomer N-demethylation by CYP2B6.6, incubated individually or as the racemate, were one-third to one-fourth those by CYP2B6.1. For methadone individual enantiomers and metabolism by CYP2B6.6 compared with CYP2B6.1, Vmax was diminished, Ks was greater and the in vitro intrinsic clearance was diminished 5- to 6-fold. The intrinsic clearance for R- and S-EDDP formation from racemic methadone was diminished approximately 6-fold and 3-fold for R- and S-methadone, respectively. Both CYP2B6.6 and CYP2B6.1 showed similar stereoselectivity (S>R-methadone). Human liver microsomes with diminished CYP2B6 content due to a CYP2B6*6 allele had lower rates of methadone N-demethylation. Results show that methadone N-demethylation catalyzed by CYP2B6.6, the CYP2B6 variant encoded by the CYP2B6*6 polymorphism, is catalytically deficient compared with wild-type CYP2B6.1. Diminished methadone N-demethylation by CYP2B6.6 may provide a mechanistic explanation for clinical observations of altered methadone disposition in individuals carrying the CYP2B6*6 polymorphism.

  12. 76 FR 40222 - Airworthiness Directives; Turbomeca S.A. ARRIEL 2B and 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    .... ARRIEL 2B and 2B1 Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... service on ARRIEL 2 twin engine applications and recently one on a single engine helicopter. For the case occurring in flight on a single engine helicopter (ARRIEL 2B1 engine), the pilot performed an...

  13. PHOX2B is a suppressor of neuroblastoma metastasis.

    PubMed

    Naftali, Osnat; Maman, Shelly; Meshel, Tsipi; Sagi-Assif, Orit; Ginat, Ravit; Witz, Isaac P

    2016-03-01

    Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.

  14. Isolated inclusion body myopathy caused by a multisystem proteinopathy–linked hnRNPA1 mutation

    PubMed Central

    Izumi, Rumiko; Warita, Hitoshi; Niihori, Tetsuya; Takahashi, Toshiaki; Tateyama, Maki; Suzuki, Naoki; Nishiyama, Ayumi; Shirota, Matsuyuki; Funayama, Ryo; Nakayama, Keiko; Mitsuhashi, Satomi; Nishino, Ichizo; Aoki, Yoko

    2015-01-01

    Objective: To identify the genetic cause of isolated inclusion body myopathy (IBM) with autosomal dominant inheritance in 2 families. Methods: Genetic investigations were performed using whole-exome and Sanger sequencing of the heterogeneous nuclear ribonucleoprotein A1 gene (hnRNPA1). The clinical and pathologic features of patients in the 2 families were evaluated with neurologic examinations, muscle imaging, and muscle biopsy. Results: We identified a missense p.D314N mutation in hnRNPA1, which is also known to cause familial amyotrophic lateral sclerosis, in 2 families with IBM. The affected individuals developed muscle weakness in their 40s, which slowly progressed toward a limb-girdle pattern. Further evaluation of the affected individuals revealed no apparent motor neuron dysfunction, cognitive impairment, or bone abnormality. The muscle pathology was compatible with IBM, lacking apparent neurogenic change and inflammation. Multiple immunohistochemical analyses revealed the cytoplasmic aggregation of hnRNPA1 in close association with autophagosomes and myonuclei. Furthermore, the aberrant accumulation was characterized by coaggregation with ubiquitin, sequestome-1/p62, valosin-containing protein/p97, and a variety of RNA-binding proteins (RBPs). Conclusions: The present study expands the clinical phenotype of hnRNPA1-linked multisystem proteinopathy. Mutations in hnRNPA1, and possibly hnRNPA2B1, will be responsible for isolated IBM with a pure muscular phenotype. Although the mechanisms underlying the selective skeletal muscle involvement remain to be elucidated, the immunohistochemical results suggest a broad sequestration of RBPs by the mutated hnRNPA1. PMID:27066560

  15. The Myositis Autoantibody Phenotypes of the Juvenile Idiopathic Inflammatory Myopathies

    PubMed Central

    Shah, Mona; Mamyrova, Gulnara; Huber, Adam M.; Rice, Madeline Murguia; Targoff, Ira N.; Miller, Frederick W.

    2013-01-01

    Abstract The juvenile idiopathic inflammatory myopathies (JIIM) are systemic autoimmune diseases characterized by skeletal muscle weakness, characteristic rashes, and other systemic features. In follow-up to our study defining the major clinical subgroup phenotypes of JIIM, we compared demographics, clinical features, laboratory measures, and outcomes among myositis-specific autoantibody (MSA) subgroups, as well as with published data on adult idiopathic inflammatory myopathy patients enrolled in a separate natural history study. In the present study, of 430 patients enrolled in a nationwide registry study who had serum tested for myositis autoantibodies, 374 had either a single specific MSA (n = 253) or no identified MSA (n = 121) and were the subject of the present report. Following univariate analysis, we used random forest classification and exact logistic regression modeling to compare autoantibody subgroups. Anti-p155/140 autoantibodies were the most frequent subgroup, present in 32% of patients with juvenile dermatomyositis (JDM) or overlap myositis with JDM, followed by anti-MJ autoantibodies, which were seen in 20% of JIIM patients, primarily in JDM. Other MSAs, including anti-synthetase, anti-signal recognition particle (SRP), and anti-Mi-2, were present in only 10% of JIIM patients. Features that characterized the anti-p155/140 autoantibody subgroup included Gottron papules, malar rash, “shawl-sign” rash, photosensitivity, cuticular overgrowth, lowest creatine kinase (CK) levels, and a predominantly chronic illness course. The features that differed for patients with anti-MJ antibodies included muscle cramps, dysphonia, intermediate CK levels, a high frequency of hospitalization, and a monocyclic disease course. Patients with anti-synthetase antibodies had higher frequencies of interstitial lung disease, arthralgia, and “mechanic’s hands,” and had an older age at diagnosis. The anti-SRP group, which had exclusively juvenile polymyositis, was

  16. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies.

    PubMed

    Rider, Lisa G; Shah, Mona; Mamyrova, Gulnara; Huber, Adam M; Rice, Madeline Murguia; Targoff, Ira N; Miller, Frederick W

    2013-07-01

    The juvenile idiopathic inflammatory myopathies (JIIM) are systemic autoimmune diseases characterized by skeletal muscle weakness, characteristic rashes, and other systemic features. In follow-up to our study defining the major clinical subgroup phenotypes of JIIM, we compared demographics, clinical features, laboratory measures, and outcomes among myositis-specific autoantibody (MSA) subgroups, as well as with published data on adult idiopathic inflammatory myopathy patients enrolled in a separate natural history study. In the present study, of 430 patients enrolled in a nationwide registry study who had serum tested for myositis autoantibodies, 374 had either a single specific MSA (n = 253) or no identified MSA (n = 121) and were the subject of the present report. Following univariate analysis, we used random forest classification and exact logistic regression modeling to compare autoantibody subgroups. Anti-p155/140 autoantibodies were the most frequent subgroup, present in 32% of patients with juvenile dermatomyositis (JDM) or overlap myositis with JDM, followed by anti-MJ autoantibodies, which were seen in 20% of JIIM patients, primarily in JDM. Other MSAs, including anti-synthetase, anti-signal recognition particle (SRP), and anti-Mi-2, were present in only 10% of JIIM patients. Features that characterized the anti-p155/140 autoantibody subgroup included Gottron papules, malar rash, "shawl-sign" rash, photosensitivity, cuticular overgrowth, lowest creatine kinase (CK) levels, and a predominantly chronic illness course. The features that differed for patients with anti-MJ antibodies included muscle cramps, dysphonia, intermediate CK levels, a high frequency of hospitalization, and a monocyclic disease course. Patients with anti-synthetase antibodies had higher frequencies of interstitial lung disease, arthralgia, and "mechanic's hands," and had an older age at diagnosis. The anti-SRP group, which had exclusively juvenile polymyositis, was characterized by high

  17. Hepatic SH2B1 and SH2B2 regulate liver lipid metabolism and VLDL secretion in mice.

    PubMed

    Sheng, Liang; Liu, Yan; Jiang, Lin; Chen, Zheng; Zhou, Yingjiang; Cho, Kae Won; Rui, Liangyou

    2013-01-01

    SH2B1 is an SH2 and PH domain-containing adaptor protein. Genetic deletion of SH2B1 results in obesity, type 2 diabetes, and fatty liver diseases in mice. Mutations in SH2B1 are linked to obesity in humans. SH2B1 in the brain controls energy balance and body weight at least in part by enhancing leptin sensitivity in the hypothalamus. SH2B1 in peripheral tissues also regulates glucose and lipid metabolism, presumably by enhancing insulin sensitivity in peripheral metabolically-active tissues. However, the function of SH2B1 in individual peripheral tissues is unknown. Here we generated and metabolically characterized hepatocyte-specific SH2B1 knockout (HKO) mice. Blood glucose and plasma insulin levels, glucose tolerance, and insulin tolerance were similar between HKO, albumin-Cre, and SH2B1(f/f) mice fed either a normal chow diet or a high fat diet (HFD). Adult-onset deletion of SH2B1 in the liver either alone or in combination with whole body SH2B2 knockout also did not exacerbate HFD-induced insulin resistance and glucose intolerance. Adult-onset, but not embryonic, deletion of SH2B1 in the liver attenuated HFD-induced hepatic steatosis. In agreement, adult-onset deletion of hepatic SH2B1 decreased the expression of diacylglycerol acyltransferase-2 (DGAT2) and increased the expression of adipose triglyceride lipase (ATGL). Furthermore, deletion of liver SH2B1 in SH2B2 null mice attenuated very low-density lipoprotein (VLDL) secretion. These data indicate that hepatic SH2B1 is not required for the maintenance of normal insulin sensitivity and glucose metabolism; however, it regulates liver triacylglycerol synthesis, lipolysis, and VLDL secretion.

  18. Myopathy caused by polymyxin E: functional disorder of the cell membrane

    PubMed Central

    Vanhaeverbeek, M.; Ectors, M.; Vanhaelst, L.; Franken, L.

    1974-01-01

    A myopathy caused by the activity of polymyxin E on the cell membrane was accompained by immunological manifestations. There were also disturbances of the central nervous system, contrasting with the absence of serious renal lesion. PMID:4615135

  19. Toxic myopathy induced by industrial minerals oils: clinical and histopathological features.

    PubMed

    Rossi, B; Siciliano, G; Giraldi, C; Angelini, C; Marchetti, A; Paggiaro, P L

    1986-12-01

    We report a case of subacute myopathy in a 47 years old man engaged on boiler maintenance at an oil-fired thermoelectric power station. The occupational history highlighted heavy exposure to inhalation of ash derived from mineral oil combustion and containing several elements, metals and metalloids, including vanadium and nickel. The presenting symptoms, clinical course and muscle histopathology suggest that exposure to toxic agents probably played an important part in the causation of the myopathy.

  20. Prominent subcutaneous oedema as a masquerading symptom of an underlying inflammatory myopathy.

    PubMed

    Anantharajah, Anthea; Vucic, Steve; Tarafdar, Surjit; Vongsuvanh, Roslyn; Wilcken, Nicholas; Swaminathan, Sanjay

    2017-02-01

    The inflammatory myopathies are a group of immune-mediated inflammatory muscle disorders that typically present with marked proximal muscle weakness. We report four cases of inflammatory myopathies with marked subcutaneous oedema as their main complaint. Three of the four patients had normal or low levels of creatine kinase, an enzyme often markedly elevated in these disorders. Magnetic resonance imaging of the muscles, followed by a muscle biopsy were used to make a definitive diagnosis.

  1. Inclusion body myopathy and Paget disease is linked to a novel mutation in the VCP gene.

    PubMed

    Haubenberger, D; Bittner, R E; Rauch-Shorny, S; Zimprich, F; Mannhalter, C; Wagner, L; Mineva, I; Vass, K; Auff, E; Zimprich, A

    2005-10-25

    Mutations in the valosin-containing protein (VCP) on chromosome 9p13-p12 were recently found to be associated with hereditary inclusion body myopathy, Paget disease of the bone, and frontotemporal dementia (IBMPFD). We identified a novel missense mutation in the VCP gene (R159H; 688G>A) segregating with this disease in an Austrian family of four affected siblings, who exhibited progressive proximal myopathy and Paget disease of the bone but without clinical signs of dementia.

  2. Mitochondrial depletion causes neonatal-onset leigh syndrome, myopathy, and renal tubulopathy.

    PubMed

    Lee, Inn-Chi; Lee, Ni-Chung; Lu, Jang-Jih; Su, Pen-Hua

    2013-03-01

    The authors describe a newborn with postnatal myopathy who subsequently developed feeding difficulties, ophthalmoplegia, ptosis, encephalopathy, and seizures. She became ventilator dependent after sudden apnea. The myopathy was without ragged red fibers in the muscle biopsy. An electron transport chain study showed a markedly generalized low level of enzyme activity, particularly in complexes I, I + III, and IV. An initial electroencephalogram finding was normal; subsequent electroencephalograms showed suppression bursts. The mitochondrial copy number in skeletal muscle was 2% of normal.

  3. PHOX2B Is Associated with Neuroblastoma Cell Differentiation.

    PubMed

    Yang, Liqun; Ke, Xiao-Xue; Xuan, Fan; Tan, Juan; Hou, Jianbing; Wang, Mei; Cui, Hongjuan; Zhang, Yundong

    2016-03-01

    Neuroblastoma is a common pediatric malignancy that accounts for ∼15% of tumor-related deaths in children. The tumor is generally believed to originate from neural crest cells during early sympathetic neurogenesis. As the degree of neuroblastoma differentiation has been correlated with clinical outcome, clarifying the molecular mechanisms that drive neuroblastoma progression and differentiation is important for increasing the survival of these patients. In a previous study, the authors identified paired-like homeobox 2b (PHOX2B) as a key mediator of neuroblastoma pathogenesis in a TH-MYCN mouse model. In the present study, they aimed to define whether PHOX2B is also associated with proliferation and differentiation of human neuroblastoma cells. PHOX2B expression in neuroblastoma cells was evaluated by immunoblot analyses, and the effects of PHOX2B on the proliferation of neuroblastoma cells in vitro were determined using clonogenic and sphere formation assays. Xenograft experiments in NOD/SCID mice were used to examine the in vivo response to PHOX2B knockdown. Their data demonstrated that PHOX2B acts as a prognostic marker in neuroblastoma and that retinoic acid-induced neuronal differentiation downregulates PHOX2B expression, thereby suppressing the self-renewal capacity of neuroblastoma cells and inhibiting tumorigenicity. These findings confirmed that PHOX2B is a key regulator of neuroblastoma differentiation and stemness maintenance and indicated that PHOX2B might serve as a potential therapeutic target in neuroblastoma patients.

  4. PTK2b function during fertilization of the mouse oocyte

    SciTech Connect

    Luo, Jinping; McGinnis, Lynda K.; Carlton, Carol; Beggs, Hilary E.; Kinsey, William H.

    2014-08-01

    Highlights: • PTK2b is expressed in oocytes and is activated following fertilization. • PTK2b suppression in oocytes prevents fertilization, but not parthenogenetic activation. • PTK2b suppression prevents the oocyte from fusing with or incorporating bound sperm. • PTK2b suppressed oocytes that fail to fertilize do not exhibit calcium oscillations. - Abstract: Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilization of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.

  5. Sequential muscle biopsy changes in a case of congenital myopathy.

    SciTech Connect

    Danon, M. J.; Giometti, C. S.; Manaligod, J. R.; Swisher, C.; Center for Mechanistic Biology and Biotechnology; New York Medical Coll.; Univ. of Illinois at Chicago; Children's Memorial Hospital

    1997-05-01

    Muscle biopsies at age 7 months in a set of dizygotic male twins born floppy showed typical features of congenital fiber-type disproportion (CFTD). One of the twins died at age 1 year due to respiratory complications. The second one subsequently developed facial diplegia and external ophthalmoplegia. He never walked, remained wheelchair bound, and required continuous ventilatory support. He underwent repeat biopsies at ages 2 and 4, which showed many atrophic type 1 muscle fibers containing central nuclei and severe type 2 fiber deficiency compatible with centronuclear myopathy (CNM). Two-dimensional gel electrophoresis of muscle showed decreases of type II myosin light chains 2 and 3, suggestive of histochemical type I fiber deficiency. The progressive nature of morphological changes in one of our patients cannot be explained by maturational arrest. Repeat biopsies in cases of CFTD with rapid clinical deterioration may very well show CNM.

  6. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy

    PubMed Central

    Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  7. Inborn Errors of Energy Metabolism Associated with Myopathies

    PubMed Central

    Das, Anibh M.; Steuerwald, Ulrike; Illsinger, Sabine

    2010-01-01

    Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiology of energy metabolism in muscle is described, followed by the presentation of distinct disorders affecting skeletal and cardiac muscle: glycogen storage diseases types III, V, VII, fatty acid oxidation defects, and respiratory chain defects (i.e., mitochondriopathies). The diagnostic work-up and therapeutic options in these disorders are discussed. PMID:20589068

  8. Hypokalemic myopathy in primary aldosteronism: A case report

    PubMed Central

    Wu, Chuifen; Xin, Jun; Xin, Minghua; Zou, Hai; Jing, Lie; Zhu, Caoyong; Lei, Wenhui

    2016-01-01

    Primary aldosteronism (PA) is a rare disorder. The majority of patients with PA present with typical features and are easily diagnosed. This disorder is usually diagnosed with hypokalemia, hypertension or an adrenal mass. However, patients with atypical symptoms may present a challenge for diagnosis and treatment. In the present study, a case of PA is described that presented with hypokalemic myopathy simulating polymyositis. The patient was a 44-year-old woman who presented with weakness and difficulty walking. The patient was initially suspected to have PM and was treated with methylprednisolone. The patient was found to have hypokalemia which persisted despite high-dose supplementation of potassium. Adrenal computed tomography revealed a right adrenal mass. Surgical adrenalectomy was conducted. The final pathological diagnosis was benign adrenocortical adenoma. The serum tests remained normal and the patient's symptoms were resolved during the 8-month follow-up. PMID:28101185

  9. Rituximab in the treatment of inflammatory myopathies: a review.

    PubMed

    Fasano, Serena; Gordon, Patrick; Hajji, Raouf; Loyo, Esthela; Isenberg, David A

    2017-01-01

    Several uncontrolled studies have encouraged the use of rituximab (RTX) in patients with myositis. Unfortunately, the first placebo-phase trial to assess the efficacy of RTX in refractory myositis did not show a significant difference between the two treatment groups, and doubts have been expressed about its study design. In this review we present an up-to-date overview of the reported experiences of RTX therapy in myositis. A PubMed search was performed to find all the available cases of refractory myositis patients treated with RTX up to July 2015. The following terms were assessed: inflammatory myopathies OR anti-synthetase syndrome OR polymyositis OR dermatomyositis AND RTX. A total of 48 studies were included. We identified 458 patients with myositis treated with RTX. We found a rate of response to RTX of 78.3%. RTX can play a role in the management of patients with myositis, at least in those with positive myositis-specific autoantibodies.

  10. Multiple mitochondrial alterations in a case of myopathy.

    PubMed

    Fujioka, H; Tandler, B; Cohen, M; Koontz, D; Hoppel, C L

    2014-05-01

    Mitochondrial alterations are the most common feature of human myopathies. A biopsy of quadriceps muscle from a 50-year-old woman exhibiting myopathic symptoms was examined by transmission electron microscopy. Biopsied fibers from quadriceps muscle displayed numerous subsarcolemmal mitochondria that contained crystalloids. Numbering 1-6 per organelle, these consisted of rows of punctuate densities measuring ∼0.34 nm; the parallel rows of these dots had a periodicity of ∼0.8 nm. The crystalloids were ensconced within cristae or in the outer compartment. Some mitochondria without crystalloids had circumferential cristae, leaving a membrane-free center that was filled with a farinaceous material. Other scattered fibrocyte defects included disruption of the contractile apparatus or its sporadic replacement by a finely punctuate material in some myofibers. Intramitochondrial crystalloids, although morphologically striking, do not impair organelle physiology to a significant degree, so the muscle weakness of the patient must originate elsewhere.

  11. Characterization of feline cytochrome P450 2B6.

    PubMed

    Okamatsu, Gaku; Komatsu, Tetsuya; Ono, Yuka; Inoue, Hiroki; Uchide, Tsuyoshi; Onaga, Takenori; Endoh, Daiji; Kitazawa, Takio; Hiraga, Takeo; Uno, Yasuhiro; Teraoka, Hiroki

    2017-02-01

    1. Little is known about drug metabolism in carnivores. Although the domestic cat (Felis catus) is an obligate carnivore and is the most common companion animal, usage and dosage of many drugs are determined according to information obtained from humans and dogs. We determined the complete cDNA sequence of CYP2B6 from the feline lung. 2. Feline CYP2B6 consists of 494 deduced amino acids, showing highest identity with the dog CYP2B ortholog, followed by those of horse, pig, primate and human. 3. Feline CYP2B6 transcripts were expressed predominantly in the lung and slightly in the small intestine but not in the liver without significant sex-dependent differences. Western blot analysis with an anti-human CYP2B6 antibody confirmed the presence of CYP2B protein in the lung but not in the liver. 4. Feline CYP2B6 proteins heterologously expressed in Escherichia coli metabolized several substrates specific to human CYP2B6, including 7-ethoxy-4-(trifluoromethyl) coumarin (EFC). The metabolic activity was strongly inhibited by medetomidine and atipamezole, potent inhibitors of canine CYP2B11 (now officially CYP2B6) as well as by ticlopidine and sertraline, inhibitors selective to human CYP2B6. 5. The results suggest that feline CYP2B6 is a functional CYP2B ortholog that plays a role in the local defense mechanism in the cat respiratory system and intestine.

  12. KLHL40-related nemaline myopathy with a sustained, positive response to treatment with acetylcholinesterase inhibitors.

    PubMed

    Natera-de Benito, D; Nascimento, A; Abicht, A; Ortez, C; Jou, C; Müller, J S; Evangelista, T; Töpf, A; Thompson, R; Jimenez-Mallebrera, C; Colomer, J; Lochmüller, H

    2016-03-01

    Congenital myopathies are a group of inherited muscle disorders characterized by hypotonia, weakness and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. Neuromuscular transmission defects have recently been reported in several patients with congenital myopathies (CM). Mutations in KLHL40 are among the most common causes of severe forms of nemaline myopathy. Clinical features of affected individuals include fetal akinesia or hypokinesia, respiratory failure, and swallowing difficulties at birth. Muscle weakness is usually severe and nearly half of the individuals have no spontaneous antigravity movement. The average age of death has been reported to be 5 months in a recent case series. Herein we present a case of a patient with a nemaline myopathy due to KLHL40 mutations (c.604delG, p.Ala202Argfs*56 and c.1513G>C, p.Ala505Pro) with an impressive and prolonged beneficial response to treatment with high-dose pyridostigmine. Myasthenic features or response to ACEI have not previously been reported as a characteristic of nemaline myopathy or KLHL40-related myopathy.

  13. Modern Therapies for Idiopathic Inflammatory Myopathies (IIMs): Role of Biologics

    PubMed Central

    Moghadam-Kia, Siamak; Oddis, Chester V.

    2016-01-01

    Despite the lack of placebo-controlled trials, glucocorticoids are considered the mainstay of initial treatment for idiopathic inflammatory myopathy (IIMs) and myositis-associated ILD (MA-ILD). Glucocorticoid-sparing agents are often given concomitantly with other immunosuppressive agents, particularly in patients with moderate or severe disease. As treatment of refractory cases of idiopathic inflammatory myopathies has been challenging, there is growing interest in evaluating newer therapies including biologics that target various pathways involved in the pathogenesis of IIMs. In a large clinical trial of rituximab in adult and juvenile myositis, the primary outcome was not met, but the definition of improvement was met by most of this refractory group of myositis patients. Rituximab use was also associated with a significant glucocorticoid-sparing effect. Intravenous immune globulin (IVIg) can be used for refractory IIMs or those with severe dysphagia or concomitant infections. Anti-tumor necrosis factor (anti-TNF) utility in IIMs is generally limited by previous negative studies along with recent reports suggesting their potential for inducing myositis. Further research is required to assess the role of new therapies such as tocilizumab (anti-IL6), ACTH gel, sifalimumab (anti-IFNα), and abatacept (inhibition of T cell co-stimulation) given their biological plausibility and encouraging small case series results. Other potential novel therapies include alemtuzumab (a humanized monoclonal antibody which binds CD52 on B and T lymphocytes), fingolimod (a sphingosine 1-phosphate receptor modulator that traps T lymphocytes in the lymphoid organs), eculizumab, and basiliximab. The future investigations in IIMs will depend on well-designed controlled clinical trials using validated consensus core set measures and improvements in myositis classification schemes based on serologic and histopathologic features. PMID:26767526

  14. Modern Therapies for Idiopathic Inflammatory Myopathies (IIMs): Role of Biologics.

    PubMed

    Moghadam-Kia, Siamak; Oddis, Chester V; Aggarwal, Rohit

    2017-02-01

    Despite the lack of placebo-controlled trials, glucocorticoids are considered the mainstay of initial treatment for idiopathic inflammatory myopathy (IIMs) and myositis-associated ILD (MA-ILD). Glucocorticoid-sparing agents are often given concomitantly with other immunosuppressive agents, particularly in patients with moderate or severe disease. As treatment of refractory cases of idiopathic inflammatory myopathies has been challenging, there is growing interest in evaluating newer therapies including biologics that target various pathways involved in the pathogenesis of IIMs. In a large clinical trial of rituximab in adult and juvenile myositis, the primary outcome was not met, but the definition of improvement was met by most of this refractory group of myositis patients. Rituximab use was also associated with a significant glucocorticoid-sparing effect. Intravenous immune globulin (IVIg) can be used for refractory IIMs or those with severe dysphagia or concomitant infections. Anti-tumor necrosis factor (anti-TNF) utility in IIMs is generally limited by previous negative studies along with recent reports suggesting their potential for inducing myositis. Further research is required to assess the role of new therapies such as tocilizumab (anti-IL6), ACTH gel, sifalimumab (anti-IFNα), and abatacept (inhibition of T cell co-stimulation) given their biological plausibility and encouraging small case series results. Other potential novel therapies include alemtuzumab (a humanized monoclonal antibody which binds CD52 on B and T lymphocytes), fingolimod (a sphingosine 1-phosphate receptor modulator that traps T lymphocytes in the lymphoid organs), eculizumab, and basiliximab. The future investigations in IIMs will depend on well-designed controlled clinical trials using validated consensus core set measures and improvements in myositis classification schemes based on serologic and histopathologic features.

  15. The Clinical and Histological Spectrum of Idiopathic Inflammatory Myopathies.

    PubMed

    Cavazzana, Ilaria; Fredi, Micaela; Selmi, Carlo; Tincani, Angela; Franceschini, Franco

    2017-02-01

    Idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of myositis, characterised by chronic muscle weakness, cutaneous features, different extra-muscular manifestations and circulating autoantibodies. IIMs included classical polymyositis (PM), dermatomyositis (DM) and other different types of myositis with a wide range of muscle involvement. A complete autoantibody profile and a muscle biopsy are mandatory to correctly diagnose different clinical entities and to define their different prognosis. Bohan and Peter's criteria included five items to diagnose adult onset PM and DM. The sensitivity was 74-100 %, while the specificity is low, due to a poor ability to differentiate PM from neuromuscular diseases. Other criteria included a more accurate histological definition of PM, DM or amyopathic DM, obtaining a higher specificity. Autoantibodies' association, interstitial lung disease and clinical cardiac involvement represent the main items that could define the prognosis of these patients. On the other hand, inclusion body myositis is a different myopathy characterised by a peculiar muscle mass involvement, muscle atrophy and progressive loss of function, due to complete failure to all immunosuppressive drugs used. Treatment of IIMs is based on corticosteroids (CS), which show rapid clinical response and functional improvement. Different immunosuppressant drugs are given to obtain a better control of the disease during CS tapering dose. No controlled double blind trials demonstrated the superiority of one immunesuppressant on another. The occurrence of interstitial lung involvement requires the immediate introduction of immunosuppressants in addiction to CS. Severe dysphagia seems to improve with intravenous immunoglobulins (Ig). Physical therapy could be started after the acute phase of diseases and seems to have a beneficial role in muscle strength recovery.

  16. Motor unit reorganization in progressive muscular dystrophies and congenital myopathies.

    PubMed

    Szmidt-Sałkowska, Elżbieta; Gaweł, Małgorzata; Lipowska, Marta

    2015-01-01

    The aim of this study was to analyze motor unit reorganization in different types of progressive muscular dystrophies and congenital myopathies. The study population consisted of patients with genetically verified progressive muscular dystrophies: Duchenne (DMD) (n=54), Becker (BMD) (n=30), facio-scapulo-humeral (FSHD) (n=37), and Emery-Dreifuss (E-DD) (n=26). Patients with probable limb-girdle dystrophy (L-GD) (n=58) and congenital myopathies (n=35) were also included in the study. Quantitative EMG recordings were obtained from 469 muscles. Muscle activity at rest and during slight voluntary and maximal muscle contraction was analyzed. The motor unit activity potential (MUAP) duration, amplitude, area, size index (SI), polyphasicity, and the presence of "outliers" were evaluated. Diminished values of MUAP parameters and decreased maximal amplitude of maximal muscle contraction were recorded most frequently in DMD and mainly in the biceps brachii muscles. SI was the most frequently changed EMG parameter. "Outliers" with amplitude below the normal range were recorded more frequently then a decreased mean MUAP amplitude (what could indicate a very high sensitivity of this EMG parameter). Pathological interference pattern was recorded in 34.7% of biceps brachii and in 21.2% of rectus femoris muscles. In FSHD, decreased MUAP duration and SI and pathological interference pattern with low amplitude were recorded most frequently in the tibial anterior and deltoid muscles. The presence of potentials with reduced parameters is a result of decreasing motor unit area (reduced number and size of muscle fibers), while high amplitude potentials recorded in BMD and E-DD could indicate a slow and mild course of disease and muscle regeneration.

  17. Correlation of Clinicoserologic and Pathologic Classifications of Inflammatory Myopathies

    PubMed Central

    Fernandez, Carla; Bardin, Nathalie; De Paula, André Maues; Salort-Campana, Emmanuelle; Benyamine, Audrey; Franques, Jérôme; Schleinitz, Nicolas; Weiller, Pierre-Jean; Pouget, Jean; Pellissier, Jean-François; Figarella-Branger, Dominique

    2013-01-01

    Abstract The idiopathic inflammatory myopathies (IIM) are acquired muscle diseases characterized by muscle weakness and inflammation on muscle biopsy. Clinicoserologic classifications do not take muscle histology into account to distinguish the subsets of IIM. Our objective was to determine the pathologic features of each serologic subset of IIM and to correlate muscle biopsy results with the clinicoserologic classification defined by Troyanov et al, and with the final diagnoses. We retrospectively studied a cohort of 178 patients with clinicopathologic features suggestive of IIM with the exclusion of inclusion body myositis. At the end of follow-up, 156 of 178 cases were still categorized as IIM: pure dermatomyositis, n = 44; pure polymyositis, n = 14; overlap myositis, n = 68; necrotizing autoimmune myopathy, n = 8; cancer-associated myositis, n = 18; and unclassified IIM, n = 4. The diagnosis of IIM was ruled out in the 22 remaining cases. Pathologic dermatomyositis was the most frequent histologic picture in all serologic subsets of IIM, with the exception of patients with anti-Ku or anti-SRP autoantibodies, suggesting that it supports the histologic diagnosis of pure dermatomyositis, but also myositis of connective tissue diseases and cancer-associated myositis. Unspecified myositis was the second most frequent histologic pattern. It frequently correlated with overlap myositis, especially with anti-Ku or anti-PM-Scl autoantibodies. Pathologic polymyositis was rare and more frequently correlated with myositis mimickers than true polymyositis. The current study shows that clinicoserologic and pathologic data are complementary and must be taken into account when classifying patients with IIM patients. We propose guidelines for diagnosis according to both clinicoserologic and pathologic classifications, to be used in clinical practice. PMID:23269233

  18. B2B Models for DoD Acquisition

    DTIC Science & Technology

    2008-01-15

    public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words.) A central vision of B2B e - commerce is that...OF ABSTRACT: UU - ii - THIS PAGE INTENTIONALLY LEFT BLANK - iii - Abstract A central vision of B2B e - commerce is that of...goods and services are purchased, pricing mechanisms, the characteristics of the markets, and ownership of marketplace. Keywords: B2B E - Commerce

  19. Structure, functional regulation and signaling properties of Rap2B

    PubMed Central

    QU, DEBAO; HUANG, HUI; DI, JIEHUI; GAO, KEYU; LU, ZHENG; ZHENG, JUNNIAN

    2016-01-01

    The Ras family small guanosine 5′-triphosphate (GTP)-binding protein Rap2B is is a member of the Ras oncogene family and a novel target of p53 that regulates the p53-mediated pro-survival function of cells. The Rap2B protein shares ~90% homology with Rap2A, and its sequence is 70% identical to other members of the Rap family such as RaplA and RaplB. As a result, Rap2B has been theorized to have similar signaling effectors to the GTPase-binding protein Rap, which mediates various biological functions, including the regulation of sterile 20/mitogen-activated proteins. Since its identification in the early 1990s, Rap2B has elicited a considerable interest. Numerous studies indicate that Rap2B exerts specific biological functions, including binding and stimulating phospholipase C-ε and interferon-γ. In addition, downregulation of Rap2B affects the growth of melanoma cells. The present review summarizes the possible effectors and biological functions of Rap2B. Increasing evidence clearly supports the association between Rap2B function and tumor development. Therefore, it is conceivable that anticancer drugs targeting Rap2B may be generated as novel therapies against cancer. PMID:27073477

  20. Scientific core hole Valles caldera No. 2b (VC-2b), New Mexico

    SciTech Connect

    Garner, J.N.; Hulen, J.B.; Lysne, P.; Jacobson, R.; Goff, F.; Nielson, D.L.; Pisto, L.; Criswell, C.W.; Gribble, R.; Utah Univ. Research Inst., Salt Lake City, UT; Sandia National Labs., Albuquerque, NM; Los Alamos National Lab., NM; Utah Univ. Research Inst., Salt Lake City, UT; Tonto Drilling Services, Inc., Salt Lake City, UT; Los Alamo

    1989-01-01

    Research core hole was continuously cored to 1.762 km on the western flank of the caldera's resurgent dome in 1988. Bottom hole temperature is about 295{degree}C within Precambrian (1.5 Ga) quartz monzonite, deep within the liquid-dominated portions of the Sulphur Springs hydrothermal system. VC-2b may be the deepest, hottest, continuously cored hole in North America. Core recovery was 99.2%. The only major drilling problems encountered were when temperatures at the bit exceeded 225{degree}C below depths of about 1000 m. The result of these conditions was loss of viscosity and/or lubricity in the mud, apparently caused by breakdown of the high temperature polymers. Lithologies in caldera-fill indicate the drill site may be proximal to ignimbrite vents and that an intracaldera lake with temperatures approaching boiling formed soon after the caldera itself. Structural correlations between VC-2b and the 528-m-deep companion hole VC-2a indicate the earlier Toledo caldera (1.45 Ma; Otowi Member tuffs) and even older Lower Tuffs caldera experienced no structural resurgence similar to the 1.12 million year old Valles caldera. The hydrothermal system penetrated by these bores, consists of a shallow vapor-rich cap, which has evolved from an earlier 200{degree}C liquid-dominated system, overlying stacked, liquid-dominated zones up to about 300{degree}C. Geochemistry of mud returns collected during drilling suggests chloride-rich geothermal fluids were entering the bore and mixing with the drilling fluids in the fractured lower Paleozoic and Precambrian sections. 23 refs., 5 figs., 1 tab.

  1. Natural history of pulmonary function in collagen VI-related myopathies

    PubMed Central

    Foley, A. Reghan; Quijano-Roy, Susana; Collins, James; Straub, Volker; McCallum, Michelle; Deconinck, Nicolas; Mercuri, Eugenio; Pane, Marika; D’Amico, Adele; Bertini, Enrico; North, Kathryn; Ryan, Monique M.; Richard, Pascale; Allamand, Valérie; Hicks, Debbie; Lamandé, Shireen; Hu, Ying; Gualandi, Francesca; Auh, Sungyoung; Muntoni, Francesco

    2013-01-01

    The spectrum of clinical phenotypes associated with a deficiency or dysfunction of collagen VI in the extracellular matrix of muscle are collectively termed ‘collagen VI-related myopathies’ and include Ullrich congenital muscular dystrophy, Bethlem myopathy and intermediate phenotypes. To further define the clinical course of these variants, we studied the natural history of pulmonary function in correlation to motor abilities in the collagen VI-related myopathies by analysing longitudinal forced vital capacity data in a large international cohort. Retrospective chart reviews of genetically and/or pathologically confirmed collagen VI-related myopathy patients were performed at 10 neuromuscular centres: USA (n = 2), UK (n = 2), Australia (n = 2), Italy (n = 2), France (n = 1) and Belgium (n = 1). A total of 486 forced vital capacity measurements obtained in 145 patients were available for analysis. Patients at the severe end of the clinical spectrum, conforming to the original description of Ullrich congenital muscular dystrophy were easily identified by severe muscle weakness either preventing ambulation or resulting in an early loss of ambulation, and demonstrated a cumulative decline in forced vital capacity of 2.6% per year (P < 0.0001). Patients with better functional abilities, in whom walking with/without assistance was achieved, were initially combined, containing both intermediate and Bethlem myopathy phenotypes in one group. However, one subset of patients demonstrated a continuous decline in pulmonary function whereas the other had stable pulmonary function. None of the patients with declining pulmonary function attained the ability to hop or run; these patients were categorized as intermediate collagen VI-related myopathy and the remaining patients as Bethlem myopathy. Intermediate patients had a cumulative decline in forced vital capacity of 2.3% per year (P < 0.0001) whereas the relationship between age and forced vital capacity in patients with

  2. In silico analysis of Brucella abortus Omp2b and in vitro expression of SOmp2b

    PubMed Central

    2016-01-01

    Purpose At present, there is no vaccine available for the prevention of human brucellosis. Brucella outer membrane protein 2b (Omp2b) is a 36 kD porin existed in common Brucella pathogens and it is considered as priority antigen for designing a new subunit vaccine. Materials and Methods In the current study, we aimed to predict and analyze the secondary and tertiary structures of the Brucella abortus Omp2b protein, and to predict T-cell and B-cell epitopes with the help of bioinformatics tools. Subsequently, cloning and expression of the short form of Omp2b (SOmp2b) was performed using pET28a expression vector and Escherichia coli BL21 host, respectively. The recombinant SOmp2b (rSOmp2b) was purified with Ni-NTA column. Results The recombinant protein was successfully expressed in E. coli host and purified under denaturation conditions. The yield of the purified rSOmp2b was estimated by Bradford method and found to be 220 µg/mL of the culture. Conclusion Our results indicate that Omp2b protein has a potential to induce both B-cell– and T-cell–mediated immune responses and it can be evaluated as a new subunit vaccine candidate against brucellosis. PMID:26866027

  3. Building Customized University-to-Business (U2B) Partnerships

    ERIC Educational Resources Information Center

    Irvine, George; Verma, Lisa

    2013-01-01

    Continuing education (CE) units throughout the United States have successfully built University-to-Business (U2B) partnerships to provide greater value to their community partners and to increase revenue for the university. Our experience in building U2B partnerships and feedback from our partners--businesses, corporations, state agencies, and…

  4. The clinical phenotypes of the juvenile idiopathic inflammatory myopathies.

    PubMed

    Shah, Mona; Mamyrova, Gulnara; Targoff, Ira N; Huber, Adam M; Malley, James D; Rice, Madeline Murguia; Miller, Frederick W; Rider, Lisa G

    2013-01-01

    The juvenile idiopathic inflammatory myopathies (JIIM) are systemic autoimmune diseases characterized by skeletal muscle weakness, characteristic rashes, and other systemic features. Although juvenile dermatomyositis (JDM), the most common form of JIIM, has been well studied, the other major clinical subgroups of JIIM, including juvenile polymyositis (JPM) and juvenile myositis overlapping with another autoimmune or connective tissue disease (JCTM), have not been well characterized, and their similarity to the adult clinical subgroups is unknown. We enrolled 436 patients with JIIM, including 354 classified as JDM, 33 as JPM, and 49 as JCTM, in a nationwide registry study. The aim of the study was to compare demographics; clinical features; laboratory measures, including myositis autoantibodies; and outcomes among these clinical subgroups, as well as with published data on adult patients with idiopathic inflammatory myopathies (IIM) enrolled in a separate natural history study. We used random forest classification and logistic regression modeling to compare clinical subgroups, following univariate analysis. JDM was characterized by typical rashes, including Gottron papules, heliotrope rash, malar rash, periungual capillary changes, and other photosensitive and vasculopathic skin rashes. JPM was characterized by more severe weakness, higher creatine kinase levels, falling episodes, and more frequent cardiac disease. JCTM had more frequent interstitial lung disease, Raynaud phenomenon, arthralgia, and malar rash. Differences in autoantibody frequency were also evident, with anti-p155/140, anti-MJ, and anti-Mi-2 seen more frequently in patients with JDM, anti-signal recognition particle and anti-Jo-1 in JPM, and anti-U1-RNP, PM-Scl, and other myositis-associated autoantibodies more commonly present in JCTM. Mortality was highest in patients with JCTM, whereas hospitalizations and wheelchair use were highest in JPM patients. Several demographic and clinical features

  5. Histopathological findings in systemic sclerosis-related myopathy: fibrosis and microangiopathy with lack of cellular inflammation

    PubMed Central

    Corallo, Claudio; Cutolo, Maurizio; Volpi, Nila; Franci, Daniela; Aglianò, Margherita; Montella, Antonio; Chirico, Chiara; Gonnelli, Stefano; Nuti, Ranuccio; Giordano, Nicola

    2016-01-01

    Objectives: The objective of this study was to identify specific histopathological features of skeletal muscle involvement in systemic sclerosis (SSc) patients. Methods: A total of 35 out of 112 SSc-patients (32%, including 81% female and 68% diffuse scleroderma) presenting clinical, biological and electromyographic (EMG) features of muscle weakness, were included. Patients underwent vastus lateralis biopsy, assessed for individual pathologic features including fibrosis [type I collagen (Coll-I), transforming growth factor β (TGF-β)], microangiopathy [cluster of differentiation 31 (CD31), pro-angiogenic vascular endothelial growth factor A (VEGF-A), anti-angiogenic VEGF-A165b], immune/ inflammatory response [CD4, CD8, CD20, human leucocyte antigens ABC (HLA-ABC)], and membranolytic attack complex (MAC). SSc biopsies were compared with biopsies of (n = 35) idiopathic inflammatory myopathies (IIMs) and to (n = 35) noninflammatory myopathies (NIMs). Ultrastructural abnormalities of SSc myopathy were also analyzed by transmission electron microscopy (TEM). Results: Fibrosis in SSc myopathy (81%) is higher compared with IIM (32%, p < 0.05) and with NIM (18%, p < 0.05). Vascular involvement is dominant in SSc muscle (92%), and in IIM (78%) compared with NIM (21%, p < 0.05). In particular, CD31 shows loss of endomysial vessels in SSc myopathy compared with IIM (p < 0.05) and with NIM (p < 0.01). VEGF-A is downregulated in SSc myopathy compared with IIM (p < 0.05) and NIM (p < 0.05). Conversely, VEGF-A165b is upregulated in SSc myopathy. The SSc immune/inflammatory response suggested humoral process with majority (85%) HLA-ABC fibral neoexpression and complement deposits on endomysial capillaries MAC, compared with IIM (p < 0.05), characterized by CD4+/CD8+/B-cell infiltrate, and NIM (p < 0.05). TEM analysis showed SSc vascular alterations consisting of thickening and lamination of basement membrane and endothelial cell ‘swelling’ coupled to endomysial

  6. Regulation of UGT2B4 and UGT2B7 by miRNAs in liver cancer cells.

    PubMed

    Wijayakumara, Dhilushi; Mackenzie, Peter Ian; McKinnon, Ross A; Hu, Dong Gui; Meech, Robyn

    2017-04-07

    The transcriptional regulation of UGT2B4 and UGT2B7 has been well studied using liver cancer cell lines and recently post-transcriptional regulation of these two UGTs by miR-216b-5p was reported. The present study describes novel miRNA-mediated regulation of UGT2B4 and UGT2B7 in liver cancer cells. Bioinformatic analyses identified a putative miR-3664-3p binding site in the UGT2B7 3'-UTR, and binding sites for both miR-135a-5p and miR-410-3p in the UGT2B4 3'-UTR. These sites were functionally characterized using miRNA mimics and reporter constructs. A miR-3664-3p mimic induced repression of a luciferase reporter carrying the UGT2B7 3'-UTR in liver cancer cell lines; mutation of the miR-3664-3p site abrogated the response of the reporter to the mimic. Similarly, mutation of the miR-135a-5p site or miR-410-3p site in a luciferase reporter bearing UGT2B4 3'-UTR abrogated the ability of miR-135a-5p or miR-410-3p mimics to reduce reporter activity. Transfection of miR-3664-3p mimics in HepG2 liver cancer cells significantly reduced mRNA and protein levels of UGT2B7, and this led to reduced enzymatic activity. Transfection of miR-135a-5p or miR-410-3p mimics significantly decreased UGT2B4 mRNA levels in Huh7 liver cancer cells. The expression levels of miR-410-3p were inversely correlated with UGT2B4 mRNA levels in the TCGA cohort of Liver Hepatocellular Carcinoma (370 specimens) and a panel of 9 normal human tissues. Similarly, there was an inverse correlation between miR-135a and UGT2B4 mRNA levels in a panel of 18 normal human liver tissues. Together these data suggest that miR-135a and miR-410 control UGT2B4 and that miR-3664 controls UGT2B7 expression in liver cancer and/or normal liver cells.

  7. Clinical Studies in Familial VCP Myopathy Associated With Paget Disease of Bone and Frontotemporal Dementia

    PubMed Central

    Kimonis, Virginia. E.; Mehta, Sarju G.; Fulchiero, Erin C.; Thomasova, Dana; Pasquali, Marzia; Boycott, Kym; Neilan, Edward G.; Kartashov, Alex; Forman, Mark S.; Tucker, Stuart; Kimonis, Katerina; Mumm, Steven; Whyte, Michael P.; Smith, Charles D.; Watts, Giles D. J.

    2008-01-01

    Inclusion body myopathy with Paget disease of the bone (PDB) and/or frontotemporal dementia (IBMPFD, OMIM 167320), is a progressive autosomal dominant disorder caused by mutations in the Valousin-containing protein (VCP, p97 or CDC48) gene. IBMPFD can be difficult to diagnose. We assembled data on a large set of families to illustrate the number and type of misdiagnoses that occurred. Clinical analysis of 49 affected individuals in nine families indicated that 42 (87%) of individuals had muscle disease. The majority were erroneously diagnosed with limb girdle muscular dystrophy (LGMD), facioscapular muscular dystrophy, peroneal muscular dystrophy, late adult onset distal myopathy, spinal muscular atrophy, scapuloperoneal muscular dystrophy, or amyotrophic lateral sclerosis (ALS) among others. Muscle biopsies showed rimmed vacuoles characteristic of an inclusion body myopathy in 7 of 18 patients (39%), however, inclusion body myopathy was correctly diagnosed among individuals in only families 5 and 15. Frontotemporal dementia (FTD) was diagnosed in 13 individuals (27%) at a mean age of 57 years (range 48.9–60.2 years); however, several individuals had been diagnosed with Alzheimer disease. Histopathological examination of brains of three affected individuals revealed a pattern of ubiquitin positive neuronal intranuclear inclusions and dystrophic neurites. These families expand the clinical phenotype in IBMPFD, a complex disorder caused by mutations in VCP. The presence of PDB in 28 (57%) individuals suggests that measuring serum alkaline phosphatase (ALP) activity may be a useful screen for IBMPFD in patients with myopathy. PMID:18260132

  8. Statin myopathy: significant problem with minimal awareness by clinicians and no emphasis by clinical investigators.

    PubMed

    Whayne, Thomas F

    2011-07-01

    High cardiovascular risk patients need reduction of low-density-lipoprotein cholesterol (LDL-C) to <70 mg/dL (1.8 mmol/L). Statins are optimal treatment but myopathy can be a limitation to their use. The incidence of statin-related myopathy is difficult to determine but up to 10.5% appears an appropriate estimate. Short-term trials report lower incidence than long-term trials. Statin-related myopathy may be influenced by genetics and tends to be dose-dependent. Ezetimibe can contribute to LDL-C reduction allowing a lower dose of statin to be used. Another approach is to administer rosuvastatin twice weekly. Statins have been shown to interfere with the cellular role of coenzyme Q10. Coenzyme Q10 supplementation may decrease or prevent statin myopathy, but this has not been proven. The occurrence of the most serious complication of myopathy-rhabdomyolysis-is very rare, but awareness of the problem, risks, and prevention are essential.

  9. SQSTM1 splice site mutation in distal myopathy with rimmed vacuoles

    PubMed Central

    Bucelli, Robert C.; Arhzaouy, Khalid; Pestronk, Alan; Pittman, Sara K.; Rojas, Luisa; Sue, Carolyn M.; Evilä, Anni; Hackman, Peter; Udd, Bjarne; Harms, Matthew B.

    2015-01-01

    Objective: To identify the genetic etiology and characterize the clinicopathologic features of a novel distal myopathy. Methods: We performed whole-exome sequencing on a family with an autosomal dominant distal myopathy and targeted exome sequencing in 1 patient with sporadic distal myopathy, both with rimmed vacuolar pathology. We also evaluated the pathogenicity of identified mutations using immunohistochemistry, Western blot analysis, and expression studies. Results: Sequencing identified a likely pathogenic c.1165+1 G>A splice donor variant in SQSTM1 in the affected members of 1 family and in an unrelated patient with sporadic distal myopathy. Affected patients had late-onset distal lower extremity weakness, myopathic features on EMG, and muscle pathology demonstrating rimmed vacuoles with both TAR DNA-binding protein 43 and SQSTM1 inclusions. The c.1165+1 G>A SQSTM1 variant results in the expression of 2 alternatively spliced SQSTM1 proteins: 1 lacking the C-terminal PEST2 domain and another lacking the C-terminal ubiquitin-associated (UBA) domain, both of which have distinct patterns of cellular and skeletal muscle localization. Conclusions: SQSTM1 is an autophagic adaptor that shuttles aggregated and ubiquitinated proteins to the autophagosome for degradation via its C-terminal UBA domain. Similar to mutations in VCP, dominantly inherited mutations in SQSTM1 are now associated with rimmed vacuolar myopathy, Paget disease of bone, amyotrophic lateral sclerosis, and frontotemporal dementia. Our data further suggest a pathogenic connection between the disparate phenotypes. PMID:26208961

  10. Myopathy mutations in alpha-skeletal-muscle actin cause a range of molecular defects.

    PubMed

    Costa, Céline F; Rommelaere, Heidi; Waterschoot, Davy; Sethi, Kamaljit K; Nowak, Kristen J; Laing, Nigel G; Ampe, Christophe; Machesky, Laura M

    2004-07-01

    Mutations in the gene encoding alpha-skeletal-muscle actin, ACTA1, cause congenital myopathies of various phenotypes that have been studied since their discovery in 1999. Although much is now known about the clinical aspects of myopathies resulting from over 60 different ACTA1 mutations, we have very little evidence for how mutations alter the behavior of the actin protein and thus lead to disease. We used a combination of biochemical and cell biological analysis to classify 19 myopathy mutants and found a range of defects in the actin. Using in vitro expression systems, we probed actin folding and actin's capacity to interact with actin-binding proteins and polymerization. Only two mutants failed to fold; these represent recessive alleles, causing severe myopathy, indicating that patients produce nonfunctional actin. Four other mutants bound tightly to cyclase-associated protein, indicating a possible instability in the nucleotide-binding pocket, and formed rods and aggregates in cells. Eleven mutants showed defects in the ability to co-polymerize with wild-type actin. Some of these could incorporate into normal actin structures in NIH 3T3 fibroblasts, but two of the three tested also formed aggregates. Four mutants showed no defect in vitro but two of these formed aggregates in cells, indicating functional defects that we have not yet tested for. Overall, we found a range of defects and behaviors of the mutants in vitro and in cultured cells, paralleling the complexity of actin-based muscle myopathy phenotypes.

  11. Osteopathic approach to sacroiliac dysfunction in a patient with steroid myopathy: case report and literature review.

    PubMed

    Kohns, David J; Fitch, David S

    2014-06-01

    Long-term steroid use has a well-documented risk of myopathy that imposes functional limitations for patients and challenges for health care providers. Proximal weakness from steroid myopathy affects support structures around the pelvic girdle and likely predisposes patients to somatic dysfunction. To the authors' knowledge, there are no prior reports in the literature that describe an osteopathic manipulative medicine (OMM) approach for patients with steroid myopathy. In the present case report, a 59-year-old woman with acute myeloid leukemia received a blood stem cell transplantation and developed gastrointestinal graft-versus-host disease. High-dose steroids were prescribed, and she developed proximal weakness from steroid myopathy. The patient's acute inpatient rehabilitation was impacted by new onset left sacroiliac dysfunction. A patient-focused OMM approach was used to assist the patient in maximizing her sacroiliac function. The proximal weakness seen with steroid myopathy necessitates special considerations for an OMM approach to address somatic dysfunction associated with this disease.

  12. Myalgia as the revealing symptom of multicore disease and fibre type disproportion myopathy

    PubMed Central

    Sobreira*, C; Marques, W; Barreira, A

    2003-01-01

    Objective: To report the occurrence of myalgia as the revealing symptom of multicore disease and fibre type disproportion myopathy. Methods: The clinical cases of three patients with fibre type disproportion myopathy and one with multicore disease are described. Skeletal muscle biopsies were processed for routine histological and histochemical studies. Results: The clinical picture was unusual in that the symptoms were of late onset and the predominant complaint was muscle pain exacerbated by exercise. Muscle weakness was found in only a single patient, the mother of a patient with fibre type disproportion myopathy. Physical examination was unremarkable in the other patients. Muscle biopsies from patients 1 and 2 contained type I fibres that were considerably smaller than the type II fibres, supporting the diagnosis of fibre type disproportion myopathy. Skeletal muscle of patient 4 showed multiple areas, predominantly but not exclusively in the type I fibres, from which oxidative enzyme activities were absent, as seen in multicore disease. Conclusions: Muscle pain was the main clinical manifestation in our patients. Recognition of the broader clinical expression of these myopathies is important for prognostic reasons and for genetic counselling of the family members. PMID:12933945

  13. Deleterious mutation in FDX1L gene is associated with a novel mitochondrial muscle myopathy.

    PubMed

    Spiegel, Ronen; Saada, Ann; Halvardson, Jonatan; Soiferman, Devorah; Shaag, Avraham; Edvardson, Simon; Horovitz, Yoseph; Khayat, Morad; Shalev, Stavit A; Feuk, Lars; Elpeleg, Orly

    2014-07-01

    Isolated metabolic myopathies encompass a heterogeneous group of disorders, with mitochondrial myopathies being a subgroup, with depleted skeletal muscle energy production manifesting either by recurrent episodes of myoglobinuria or progressive muscle weakness. In this study, we investigated the genetic cause of a patient from a consanguineous family who presented with adolescent onset autosomal recessive mitochondrial myopathy. Analysis of enzyme activities of the five respiratory chain complexes in our patients' skeletal muscle showed severely impaired activities of iron sulfur (Fe-S)-dependent complexes I, II and III and mitochondrial aconitase. We employed exome sequencing combined with homozygosity mapping to identify a homozygous mutation, c.1A>T, in the FDX1L gene, which encodes the mitochondrial ferredoxin 2 (Fdx2) protein. The mutation disrupts the ATG initiation translation site resulting in severe reduction of Fdx2 content in the patient muscle and fibroblasts mitochondria. Fdx2 is the second component of the Fe-S cluster biogenesis machinery, the first being IscU that is associated with isolated mitochondrial myopathy. We suggest adding genetic analysis of FDX1L in cases of mitochondrial myopathy especially when associated with reduced activity of the respiratory chain complexes I, II and III.

  14. Potassium dependent rescue of a myopathy with core-like structures in mouse.

    PubMed

    Hanson, M Gartz; Wilde, Jonathan J; Moreno, Rosa L; Minic, Angela D; Niswander, Lee

    2015-01-07

    Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations.

  15. B2B Models for DoD Acquisition

    DTIC Science & Technology

    2007-07-30

    ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i - k^s^i=mlpqdo^ar^qb=p`elli= Abstract A central vision of B2B e - commerce is that of an electronic...are purchased, pricing mechanisms, the characteristics of the markets, and ownership of marketplace. Keywords: B2B E - Commerce , Internet...interest is in the analysis, design and implementation of computer-based information systems. Specifically, he is interested in B2B and B2C e - commerce

  16. Cardiac involvement in adult and juvenile idiopathic inflammatory myopathies

    PubMed Central

    Schwartz, Thomas; Diederichsen, Louise Pyndt; Lundberg, Ingrid E; Sanner, Helga

    2016-01-01

    Idiopathic inflammatory myopathies (IIM) include the main subgroups polymyositis (PM), dermatomyositis (DM), inclusion body myositis (IBM) and juvenile DM (JDM). The mentioned subgroups are characterised by inflammation of skeletal muscles leading to muscle weakness and other organs can also be affected as well. Even though clinically significant heart involvement is uncommon, heart disease is one of the major causes of death in IIM. Recent studies show an increased prevalence of traditional cardiovascular risk factors in JDM and DM/PM, which need attention. The risk of developing atherosclerotic coronary artery disease is increased twofold to fourfold in DM/PM. New and improved diagnostic methods have in recent studies in PM/DM and JDM demonstrated a high prevalence of subclinical cardiac involvement, especially diastolic dysfunction. Interactions between proinflammatory cytokines and traditional risk factors might contribute to the pathogenesis of cardiac dysfunction. Heart involvement could also be related to myocarditis and/or myocardial fibrosis, leading to arrhythmias and congestive heart failure, demonstrated both in adult and juvenile IIM. Also, reduced heart rate variability (a known risk factor for cardiac morbidity and mortality) has been shown in long-standing JDM. Until more information is available, patients with IIM should follow the same recommendations for cardiovascular risk stratification and prevention as for the corresponding general population, but be aware that statins might worsen muscle symptoms mimicking myositis relapse. On the basis of recent studies, we recommend a low threshold for cardiac workup and follow-up in patients with IIM. PMID:27752355

  17. Mechanical Signaling in the Pathophysiology of Critical Illness Myopathy

    PubMed Central

    Kalamgi, Rebeca C.; Larsson, Lars

    2016-01-01

    The complete loss of mechanical stimuli of skeletal muscles, i.e., the loss of external strain, related to weight bearing, and internal strain, related to the contraction of muscle cells, is uniquely observed in pharmacologically paralyzed or deeply sedated mechanically ventilated intensive care unit (ICU) patients. The preferential loss of myosin and myosin associated proteins in limb and trunk muscles is a significant characteristic of critical illness myopathy (CIM) which separates CIM from other types of acquired muscle weaknesses in ICU patients. Mechanical silencing is an important factor triggering CIM. Microgravity or ground based microgravity models form the basis of research on the effect of muscle unloading-reloading, but the mechanisms and effects may differ from the ICU conditions. In order to understand how mechanical tension regulates muscle mass, it is critical to know how muscles sense mechanical information and convert stimulus to intracellular biochemical actions and changes in gene expression, a process called cellular mechanotransduction. In adult skeletal muscles and muscle fibers, this process may differ, the same stimulus can cause divergent response and the same fiber type may undergo opposite changes in different muscles. Skeletal muscle contains multiple types of mechano-sensors and numerous structures that can be affected differently and hence respond differently in distinct muscles. PMID:26869939

  18. Canine inflammatory myopathy associated with Leishmania Infantum infection.

    PubMed

    Paciello, Orlando; Oliva, Gaetano; Gradoni, Luigi; Manna, Laura; Foglia Manzillo, Valentina; Wojcik, Slawomir; Trapani, Francesca; Papparella, Serenella

    2009-02-01

    Inflammatory myopathy associated with several infectious diseases occurs in dogs including those caused by Toxoplasma gondii, Neospora caninum, Ehrlichia canis and Hepatozoon canis. However, muscle disease due to Leishmania infection has been poorly documented. The aim of this study was to examine the distribution and types of cellular infiltrates and expression of MHC class I and II in muscle biopsies obtained from 15 male beagle dogs from a breeder group with an established diagnosis of leishmaniasis. Myopathic features were characterized by necrosis, regeneration, fibrosis and infiltration of mononuclear inflammatory cells consisting of lymphocytes, plasma cells and histiocytes. The predominant leukocyte populations were CD3+, CD8+ and CD45RA+ with lesser numbers of CD4+ cells. Many muscle fibers had MHC class I and II positivity on the sarcolemma. There was a direct correlation between the severity of pathological changes, clinical signs, and the numbers of Leishmania amastigotes. Our studies provided evidence that: 1) Leishmania should be considered as a cause of IM in dogs; 2) Leishmania is not present within muscle fibers but in macrophages, and that 3) the muscle damage might be related to immunological alterations associated with Leishmania infection. Leishmania spp. should also be considered as a possible cause in the pathogenesis of human myositis.

  19. Repository Corticotropin Injection for Treatment of Idiopathic Inflammatory Myopathies

    PubMed Central

    Seely, Georgia; Aggarwal, Rohit

    2016-01-01

    Idiopathic inflammatory myopathies are a group of systemic autoimmune diseases that involve inflammation of skeletal muscle. The two most common forms are dermatomyositis and polymyositis, the former of which entails a skin component. There are few approved therapeutics available for treatment of this group of diseases and the first-line therapy is usually corticosteroid treatment. Considering that a large proportion of patients do not respond to or cannot tolerate corticosteroids, additional treatments are required. There are second-line therapies available, but many patients are also refractory to those options. H.P. Acthar® Gel (repository corticotropin injection [RCI]) is a melanocortin peptide that can induce steroid-dependent effects and steroid-independent effects. Herein, we present a series of cases that involved the use of RCI in the management of dermatomyositis and polymyositis. RCI treatments resulted in improvement in three of four patients, despite failure with previous therapies. The use of RCI did not exacerbate any comorbidity and no significant changes in blood pressure, weight, or glycemic control were observed. Overall, these results are encouraging and suggest that randomized, controlled clinical trials applying RCI to dermatomyositis and polymyositis are warranted. PMID:27642533

  20. Cardiac involvement in hereditary myopathy with early respiratory failure

    PubMed Central

    Steele, Hannah E.; Harris, Elizabeth; Barresi, Rita; Marsh, Julie; Beattie, Anna; Bourke, John P.; Straub, Volker

    2016-01-01

    Objective: To assess whether hereditary myopathy with early respiratory failure (HMERF) due to the c.951434T>C; (p.Cys31712Arg) TTN missense mutation also includes a cardiac phenotype. Method: Clinical cohort study of our HMERF cohort using ECG, 2D echocardiogram, and cross-sectional cardiac imaging with MRI or CT. Results: We studied 22 participants with the c.951434T>C; (p.Cys31712Arg) TTN missense mutation. Three were deceased. Cardiac conduction abnormalities were identified in 7/22 (32%): sustained atrioventricular tachycardia (n = 2), atrial fibrillation (n = 2), nonsustained atrial tachycardia (n = 1), premature supraventricular complexes (n = 1), and unexplained sinus bradycardia (n = 1). In addition, 4/22 (18%) had imaging evidence of otherwise unexplained cardiomyopathy. These findings are supported by histopathologic correlation suggestive of myocardial cytoskeletal remodeling. Conclusions: Coexisting cardiac and skeletal muscle involvement is not uncommon in patients with HMERF arising due to the c.951434T>C; (p.Cys31712Arg) TTN mutation. All patients with pathogenic or putative pathogenic TTN mutations should be offered periodic cardiac surveillance. PMID:27511179

  1. Hypermethylation: Causes and Consequences in Skeletal Muscle Myopathy.

    PubMed

    Majumder, Avisek; JyotirmayaBehera; Jeremic, Navena; Tyagi, Suresh C

    2016-12-16

    A detrimental consequence of hypermethylation is hyperhomocysteinemia (HHcy), that causes oxidative stress, inflammation and matrix degradation, which leads to multi-pathology in different organs. Although, it is well known that hypermethylation leads to overall gene silencing and hypomethylation leads to overall gene activation, the role of such process in skeletal muscle dysfunction during HHcy condition is unclear. In this study, we emphasized the multiple mechanisms including epigenetic alteration by which HHcy causes skeletal muscle myopathy. This review also highlights possible role of methylation, histone modification and RNA interference in skeletal muscle dysfunction during HHcy condition and potential therapeutic molecules, putative challenges, and methodologies to deal with HHcy mediated skeletal muscle dysfunction. We also highlighted that B vitamins (mainly B12 and B6) with folic acid supplementation, could be useful as an adjuvant therapy to reverse these consequences associated with this HHcy conditions in skeletal muscle. However, we would recommend to further study involving long-term trials could help to assess efficacy of the use of these therapeutic agents. This article is protected by copyright. All rights reserved.

  2. "Hiker's feet": a novel cutaneous finding in the inflammatory myopathies.

    PubMed

    Cox, Jacob T; Gullotti, David M; Mecoli, Christopher A; Lahouti, Arash H; Albayda, Jemima; Paik, Julie; Johnson, Cheilonda; Danoff, Sonye K; Mammen, Andrew L; Christopher-Stine, Lisa

    2017-04-07

    Mechanic's hands is a well-characterized manifestation of select idiopathic inflammatory myopathy (IIM) syndromes. Less well characterized is the hyperkeratosis of the toes and plantar surface of the feet that can also accompany these disorders. We aim to describe common pedal signs in the context of IIM, and suggest that it may be another key feature in the presentation of these syndromes. A cohort of 2145 myositis patient charts gathered since 2003 were retrospectively reviewed using the key search terms "mechanic's feet" and/or "mechanic's foot." Charts that included either phrase were further reviewed for clinical characteristics. Nine patients were identified with documentation describing "mechanic's feet" or "mechanic's foot." All nine affected individuals carried a diagnosis of DM, seven of whom also met criteria for antisynthetase syndrome. In eight patients (89%), it presented in conjunction with mechanic's hands. Six (67%) presented with anti-Jo-1 antibodies, and three (33%) were seronegative. Although the term "mechanic's feet" has been used to describe this clinical finding in patients in our myositis cohort, we propose the term "hiker's feet," given that the presentation resembles a callousing pattern more typical of avid hikers or long-distance walkers. Prevalence data are not yet known but should be considered for further study. If the presenting signs of IIM are expanded to include hiker's feet, it could aid in not only diagnosis and management but also provide insights into the pathophysiology of these diseases.

  3. HMG-CoA reductase inhibitor-induced myopathy in the rat: cyclosporine A interaction and mechanism studies.

    PubMed

    Smith, P F; Eydelloth, R S; Grossman, S J; Stubbs, R J; Schwartz, M S; Germershausen, J I; Vyas, K P; Kari, P H; MacDonald, J S

    1991-06-01

    Recent clinical evidence indicates a potential for skeletal muscle toxicity after therapy with HMG-CoA reductase inhibitors (HMGRIs) in man. Although the incidence of drug-induced skeletal muscle toxicity is very low (0.1-0.2%) with monotherapy, it may increase following concomitant drug therapy with the immunosuppressant, cyclosporine A (CsA), and possibly with certain other hypolipidemic agents. In the Sprague-Dawley rat, very high, pharmacologically comparable dosages (150-1200 mg/kg/day) of structurally similar HMGRIs (lovastatin, simvastatin, pravastatin and L-647, 318) produced dose-related increases in the incidence and severity of skeletal muscle degeneration. Physical signs included inappetence, decreased activity, loss of body weight, localized alopecia and mortality. To evaluate the interaction between HMGRIs and CsA, a rat model of CsA-induced cholestasis was developed. In this 2-week model, the skeletal muscle toxicity of the HMGRIs was clearly potentiated by CsA (10 mg/kg/day). Doses of HMGRIs which did not produce skeletal muscle toxicity when given alone caused between 75 and 100% incidence of myopathy (very slight to marked skeletal muscle degeneration) when CsA was coadministered. Typical light microscopic changes included myofiber necrosis with interstitial edema and inflammatory infiltration in areas of acute injury. Histochemical characterization of the muscle lesion indicated that type 2B fibers (primarily glycolytic white fibers) were most sensitive to this toxicity but that, with prolonged administration, all fiber types were ultimately affected. Results of pharmacokinetic studies in rats treated with various HMGRIs +/- CsA indicated that coadministration of CsA alters the disposition of these compounds, resulting in increased systemic exposure (e.g., increased area under the plasma drug concentration vs. time curve-AUC) and consequent (up to 13-fold) increases in skeletal muscle drug levels. Evaluation of the potential interaction between

  4. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other.

    PubMed

    Maures, Travis J; Kurzer, Jason H; Carter-Su, Christin

    2007-01-01

    Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.

  5. Secretion of human interferon alpha 2b by Streptomyces lividans.

    PubMed

    Pimienta, E; Fando, R; Sánchez, J C; Vallin, C

    2002-02-01

    Biologically active human interferon alpha 2b (HuIFNalpha-2b) was secreted into the culture medium by Streptomyces lividans transformed with recombinant plasmids coding for HuIFNalpha-2b fused to the Streptomyces exfoliatus M11 lipase A signal sequence. Levels were low, 15 or 100 ng/ml, depending on the plasmid used. Neither processed nor unprocessed HuIFNalpha-2b was detected in cell lysates of the transformants secreting the recombinant product. However, the secreted recombinant product was found to partially degrade when cultures reached the stationary phase by the action of an, as yet, unidentified mycelium-associated factor. Experimental evidence suggests that the degrading factor is related to mycelium-associated proteolytic activity.

  6. Rf2a and rf2b transcription factors

    DOEpatents

    Beachy, Roger N.; Petruccelli, Silvana; Dai, Shunhong

    2007-10-02

    A method of activating the rice tungro bacilliform virus (RTBV) promoter in vivo is disclosed. The RTBV promoter is activated by exposure to at least one protein selected from the group consisting of Rf2a and Rf2b.

  7. Molecular and cellular insights into a distinct myopathy of Great Dane dogs.

    PubMed

    Chang, Kin-Chow; McCulloch, Maj-Lis C; Anderson, Thomas James

    2010-03-01

    A myopathy in the Great Dane dog with characteristic pathological and molecular features is reported. Young adults present with progressive weakness and generalised muscle atrophy. To better define this condition, an investigation using histopathology, confocal microscopy, biochemistry and microarray analysis was undertaken. The skeletal muscles of affected dogs exhibited increased oxidative fibre phenotype and core fibre lesions characterised by the disruption of the sarcomeric architecture and the accumulation of mitochondrial organelles. Affected muscles displayed co-ordinated expression of genes consistent with a slow-oxidative phenotype, which was possibly a compensatory response to chronic muscle damage. There was disruption of Z-lines in affected muscles which, at the molecular level, manifested as transcriptional dysregulation of several Z-line associated genes, including alpha-actinin, myotilin, desmin, vimentin and telethonin. The pathology of this canine myopathy is distinct from that of human central core myopathies that are characterised by cores devoid of mitochondria and by the presence of myofibrillar breakdown products.

  8. Individualized risk for statin-induced myopathy: current knowledge, emerging challenges and potential solutions.

    PubMed

    Feng, QiPing; Wilke, Russell A; Baye, Tesfaye M

    2012-04-01

    Skeletal muscle toxicity is the primary adverse effect of statins. In this review, we summarize current knowledge regarding the genetic and nongenetic determinants of risk for statin induced myopathy. Many genetic factors were initially identified through candidate gene association studies limited to pharmacokinetic (PK) targets. Through genome-wide association studies, it has become clear that SLCO1B1 is among the strongest PK predictors of myopathy risk. Genome-wide association studies have also expanded our understanding of pharmacodynamic candidate genes, including RYR2. It is anticipated that deep resequencing efforts will define new loci with rare variants that also contribute, and sophisticated computational approaches will be needed to characterize gene-gene and gene-environment interactions. Beyond environment, race is a critical covariate, and its influence is only partly explained by geographic differences in the frequency of known pharmacodynamic and PK variants. As such, admixture analyses will be essential for a full understanding of statin-induced myopathy.

  9. Camptocormia in a patient with Parkinson disease and a myopathy with nemaline rods.

    PubMed

    Ozer, Feriha; Ozturk, Oya; Meral, Hasan; Serdaroglu, Piraye; Yayla, Vildan

    2007-01-01

    Camptocormia, also referred to as bent spine, is a gait disorder characterized by hyperflexion of the thoracolumbar spine that develops in recumbent position while walking and that disappears in supine position. Myopathy is one of the frequent causes of camptocormia. A 77-yr-old male patient who was followed up with the diagnosis of rheumatoid arthritis for 2 yrs was admitted with progressive gait deterioration. Hyperflexion of trunk, disappearing in supine position, was detected and diagnosed as camptocormia. He also exhibited the signs of parkinsonism. A paraspinal muscle biopsy showed myopathy with rods in many muscle fibers. Camptocormia in this patient may be attributable to the myopathic weakness of thoracolumbar paraspinal muscles. The normal biceps brachii muscle biopsy refers to the isolated affection of paraspinal muscles in this patient. A camptocormia (bent spine) case of myopathy with nemaline rods associated with Parkinson disease is presented.

  10. Ultrastructural changes in muscle cells of patients with collagen VI-related myopathies

    PubMed Central

    Tagliavini, Francesca; Sardone, Francesca; Squarzoni, Stefano; Maraldi, Nadir Mario; Merlini, Luciano; Faldini, Cesare; Sabatelli, Patrizia

    2013-01-01

    Summary Collagen VI is an extracellular matrix protein expressed in several tissues including skeletal muscle. Mutations in COL6A genes cause Bethlem Myopathy (BM), Ullrich Congenital Muscular Dystrophy (UCMD) and Myosclerosis Myopathy (MM). Collagen VI deficiency causes increased opening of the mitochondrial permeability transition pore (mPTP), leading to ultrastructural and functional alterations of mitochondria, amplified by impairment of autophagy. Here we report for the first time ultrastructural studies on muscle biopsies from BM and UCMD patients, showing swollen mitochondria with hypodense matrix, disorganized cristae and paracrystalline inclusions, associated with dilated sarcoplasmic reticulum and apoptotic changes. These data were supported by scanning electron microscopy analysis on BM and UCMD cultured cells, showing alterations of the mitochondrial network. Morphometric analysis also revealed a reduced short axis and depicted swelling in about 3% of mitochondria. These data demonstrate that mitochondrial defects underlie the pathogenetic mechanism in muscle tissue of patients affected by collagen VI myopathies. PMID:24596691

  11. Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition.

    PubMed

    Schirris, Tom J J; Renkema, G Herma; Ritschel, Tina; Voermans, Nicol C; Bilos, Albert; van Engelen, Baziel G M; Brandt, Ulrich; Koopman, Werner J H; Beyrath, Julien D; Rodenburg, Richard J; Willems, Peter H G M; Smeitink, Jan A M; Russel, Frans G M

    2015-09-01

    Cholesterol-lowering statins effectively reduce the risk of major cardiovascular events. Myopathy is the most important adverse effect, but its underlying mechanism remains enigmatic. In C2C12 myoblasts, several statin lactones reduced respiratory capacity and appeared to be strong inhibitors of mitochondrial complex III (CIII) activity, up to 84% inhibition. The lactones were in general three times more potent inducers of cytotoxicity than their corresponding acid forms. The Qo binding site of CIII was identified as off-target of the statin lactones. These findings could be confirmed in muscle tissue of patients suffering from statin-induced myopathies, in which CIII enzyme activity was reduced by 18%. Respiratory inhibition in C2C12 myoblasts could be attenuated by convergent electron flow into CIII, restoring respiration up to 89% of control. In conclusion, CIII inhibition was identified as a potential off-target mechanism associated with statin-induced myopathies.

  12. PTK2b function during fertilization of the mouse oocyte.

    PubMed

    Luo, Jinping; McGinnis, Lynda K; Carlton, Carol; Beggs, Hilary E; Kinsey, William H

    2014-08-01

    Fertilization triggers rapid changes in intracellular free calcium that serve to activate multiple signaling events critical to the initiation of successful development. Among the pathways downstream of the fertilization-induced calcium transient is the calcium-calmodulin dependent protein tyrosine kinase PTK2b or PYK2 kinase. PTK2b plays an important role in fertilization of the zebrafish oocyte and the objective of the present study was to establish whether PTK2b also functions in mammalian fertilization. PTK2b was activated during the first few hours after fertilization of the mouse oocyte during the period when anaphase resumption was underway and prior to the pronuclear stage. Suppression of PTK2b kinase activity in oocytes blocked sperm incorporation and egg activation although sperm-oocyte binding was not affected. Oocytes that failed to incorporate sperm after inhibitor treatment showed no evidence of a calcium transient and no evidence of anaphase resumption suggesting that egg activation did not occur. The results indicate that PTK2b functions during the sperm-egg fusion process or during the physical incorporation of sperm into the egg cytoplasm and is therefore critical for successful development.

  13. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus

    PubMed Central

    Ravenscroft, Gianina; Laing, Nigel G.

    2015-01-01

    The congenital myopathies are a diverse group of genetic skeletal muscle diseases, which typically present at birth or in early infancy. There are multiple modes of inheritance and degrees of severity (ranging from foetal akinesia, through lethality in the newborn period to milder early and later onset cases). Classically, the congenital myopathies are defined by skeletal muscle dysfunction and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. However, mutations in multiple different genes can cause the same pathology and mutations in the same gene can cause multiple different pathologies. This is becoming ever more apparent now that, with the increasing use of next generation sequencing, a genetic diagnosis is achieved for a greater number of patients. Thus, considerable genetic and pathological overlap is emerging, blurring the classically established boundaries. At the same time, some of the pathophysiological concepts underlying the congenital myopathies are moving into sharper focus. Here we explore whether our emerging understanding of disease pathogenesis and underlying pathophysiological mechanisms, rather than a strictly gene-centric approach, will provide grounds for a different and perhaps complementary grouping of the congenital myopathies, that at the same time could help instil the development of shared potential therapeutic approaches. Stemming from recent advances in the congenital myopathy field, five key pathophysiology themes have emerged: defects in (i) sarcolemmal and intracellular membrane remodelling and excitation-contraction coupling; (ii) mitochondrial distribution and function; (iii) myofibrillar force generation; (iv) atrophy; and (v) autophagy. Based on numerous emerging lines of evidence from recent studies in cell lines and patient tissues, mouse models and zebrafish highlighting these unifying pathophysiological themes, here we review the congenital myopathies in relation to these

  14. Statin-induced Myopathy and Ubiquinone Levels in Serum - Results from a Prospective, Observational Study.

    PubMed

    Skilving, Ilona; Acimovic, Jure; Rane, Anders; Ovesjö, Marie-Louise; Björkhem-Bergman, Linda

    2015-08-01

    It has been suggested that an impaired ubiquinone (Q10) synthesis may be responsible for muscular side effects caused by statins. The primary aim of this study was to investigate whether low Q10 levels in serum could be used as a marker to predict the risk of developing statin-induced myopathy. The secondary aim was to compare the change in Q10 levels during statin treatment and differences between men and women. Serum samples from a prospective, observational study in statin-treated patients who were thoroughly followed regarding muscular symptoms were used. In this cohort, 16 developed myopathy and 126 had no muscular symptoms related to statin treatment. Q10 levels were measured with a novel LC-MS method at baseline and after 2 months of statin treatment. Q10 levels showed no correlation with the risk of developing statin-induced myopathy. Individuals with low levels, Q10 < 200 ng/ml, at baseline had no increased risk of developing myopathy. In consistence with earlier reports, we showed that Q10 levels were reduced by 30% during statin treatment. There was no significant difference in the reduction between patients with or without myopathy. Women had approximately 30% lower Q10 levels compared to men both before and after treatment. In this study, there was no association between Q10 levels at baseline and statin-induced muscular side effects during a 2-month follow-up period, and our results indicate that Q10 levels in serum is not a useful marker to predict statin-induced myopathy.

  15. Identification of SH2B2beta as an inhibitor for SH2B1- and SH2B2alpha-promoted Janus kinase-2 activation and insulin signaling.

    PubMed

    Li, Minghua; Li, Zhiqin; Morris, David L; Rui, Liangyou

    2007-04-01

    The SH2B family has three members (SH2B1, SH2B2, and SH2B3) that contain conserved dimerization (DD), pleckstrin homology, and SH2 domains. The DD domain mediates the formation of homo- and heterodimers between members of the SH2B family. The SH2 domain of SH2B1 (previously named SH2-B) or SH2B2 (previously named APS) binds to phosphorylated tyrosines in a variety of tyrosine kinases, including Janus kinase-2 (JAK2) and the insulin receptor, thereby promoting the activation of JAK2 or the insulin receptor, respectively. JAK2 binds to various members of the cytokine receptor family, including receptors for GH and leptin, to mediate cytokine responses. In mice, SH2B1 regulates energy and glucose homeostasis by enhancing leptin and insulin sensitivity. In this work, we identify SH2B2beta as a new isoform of SH2B2 (designated as SH2B2alpha) derived from the SH2B2 gene by alternative mRNA splicing. SH2B2beta has a DD and pleckstrin homology domain but lacks a SH2 domain. SH2B2beta bound to both SH2B1 and SH2B2alpha, as demonstrated by both the interaction of glutathione S-transferase-SH2B2beta fusion protein with SH2B1 or SH2B2alpha in vitro and coimmunoprecipitation of SH2B2beta with SH2B1 or SH2B2alpha in intact cells. SH2B2beta markedly attenuated the ability of SH2B1 to promote JAK2 activation and subsequent tyrosine phosphorylation of insulin receptor substrate-1 by JAK2. SH2B2beta also significantly inhibited SH2B1- or SH2B2alpha-promoted insulin signaling, including insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. These data suggest that SH2B2beta is an endogenous inhibitor of SH2B1 and/or SH2B2alpha, negatively regulating insulin signaling and/or JAK2-mediated cellular responses.

  16. Familial visceral myopathy diagnosed by exome sequencing of a patient with chronic intestinal pseudo-obstruction.

    PubMed

    Holla, Oystein L; Bock, Gunter; Busk, Oyvind L; Isfoss, Björn Logi

    2014-06-01

    A 55-year-old woman with a history of bowel dysmotility presented with abdominal distension and peritonitis. Family history included premature deaths with intestinal symptomatology, suggesting autosomal dominant inheritance. Computed tomography showed a distended small bowel. Symptoms were alleviated by enterocutaneous stomas. Initial ileal biopsy suggested neuropathy; however, exome sequencing revealed an Arg148Ser mutation in the enteric smooth muscle actin gamma 2 (ACTG2) gene. Histological reassessment showed abnormal muscularis propria and smooth muscle actin, with the same findings in sibling, confirming familial visceral myopathy. Thus, noninvasive genomic analysis can provide early and specific diagnosis of familial visceral myopathy, which may help to avoid inappropriate surgery.

  17. A study of acute muscle dysfunction with particular reference to dengue myopathy

    PubMed Central

    Verma, Rajesh; Holla, Vikram V.; Kumar, Vijay; Jain, Amita; Husain, Nuzhat; Malhotra, Kiran Preet; Garg, Ravindra Kumar; Malhotra, Hardeep Singh; Sharma, Praveen Kumar; Kumar, Neeraj

    2017-01-01

    Background: Acute myopathy is a common cause of acute motor quadriparesis which has various etiologies with different courses of illness and prognosis depending on the cause. Understanding this diversity helps us in proper approach toward diagnosis, predicting the prognosis, and possible complications and in improving the treatments that are being provided. This study was planned to study the clinical, electrophysiological, and etiological profile of patients presenting with acute myopathy. We also studied how dengue-related acute myopathy differs from other causes and also difference between myopathy due to myositis and hypokalemia in cases of dengue. Materials and Methods: This was a prospective, observational study involving all clinically suspected cases of acute myopathy of not more than 4 weeks duration with raised serum creatine kinase (CK) level. They were subjected to detailed clinical evaluation along with hematological, biochemical, microbiological, and electrophysiological studies and followed-up for outcome at 1 and 3 months. Muscle biopsy and histopathological examination were done in selected patients after taking informed consent. Statistical analysis was performed by appropriate methods using SPSS version 16.0 (Chicago, IL, USA). Results: We evaluated thirty patients of acute myopathy with raised CK level. Seventeen patients had fever, 11 had myalgia, and 5 had skin lesions. All presented with symmetric weakness, 17 (56.7%) patients having predominantly proximal weakness, neck or truncal weakness in 6 (20%), hyporeflexia in 12 (40%), with mean Medical Research Council (MRC) sum score of 46.67 ± 6.0. Eight (mean modified Barthel index [MBI] at presentation - 15 ± 3.7) patients had poor functional status according to MBI and 15 according to modified Rankin scale (MRS) (mean MRS score - 2.5 ± 1.2). Etiology was dengue viral infection in 14 patients; hypokalemia due to various causes other than dengue in 8; pyomyositis in 3; dermatomyositis

  18. Unfolded protein response and aggresome formation in hereditary reducing-body myopathy.

    PubMed

    Liewluck, Teerin; Hayashi, Yukiko K; Ohsawa, Maki; Kurokawa, Rumi; Fujita, Masako; Noguchi, Satoru; Nonaka, Ikuya; Nishino, Ichizo

    2007-03-01

    Reducing-body myopathy (RBM) is a rare myopathy characterized by the presence of unique sarcoplasmic inclusions called reducing bodies (RBs). We characterized the aggresomal features of RBs that contained gamma-tubulin, ubiquitin, and endoplasmic reticulum (ER) chaperones, together with a set of membrane proteins, in a family with hereditary RBM. Increased messenger ribonucleic acid and protein levels of a molecular chaperone, glucose-related protein 78, were also observed. These results suggest that the unfolded protein response caused by the accumulation of misfolded proteins in the endoplasmic reticulum plays an important role in the formation of RBs.

  19. A case of isolated neck extensor myopathy responding favorably to immunotherapy.

    PubMed

    Larsen, Håvard; Bogaard, Pauline W; Oppel, Lorenz

    2013-12-01

    We report on a case of a 79-year-old man with dropped head syndrome, where diagnostic tests, ruling out other differential diagnoses, confirmed the relatively rarely occurring condition known as isolated neck extensor myopathy. Biopsy of the neck extensor musculature was with classical pronounced fibrosis, without signs of myositis. The patient was treated with 3 cycles of corticosteroids with pronounced clinical improvement of his symptoms. This emphasizes the importance of considering isolated neck extensor myopathy as a differential diagnosis when encountered with a patient with dropped head syndrome and the importance of trying therapy with corticosteroids even when myositis is absent.

  20. Capture myopathy in a free-flying greater sandhill crane (Grus canadensis tabida) from Wisconsin

    USGS Publications Warehouse

    Windingstad, R.M.; Hurley, S.S.; Sileo, L.

    1983-01-01

    Capture myopathy has been reported Frequently in wild mammals (Bartsch et al., 1977, Vet. Pathol. 14: 314-324). There are, however, fewer reports of this disease in wild birds (Young, 1967, mt. Zoo Yearb. 7: 226-227; Bartsch et al., 1977, op. cit. ; Henschel and Low, 1978, S. Afr. J. Sci. 74: 305-306; Wobeser, 1981, Diseases of Wild Waterfowl, Plenum Press, New York, 300 pp.). We are reporting a case of skeletal muscle necrosis in a greater sandhill crane found dead 5 days after its capture, radio-tagging, and release. We believe this is the first case of capture myopathy to be reported for this species.

  1. [Myopathy due to potassium deficiency in eight cats and a dog].

    PubMed

    Grevel, V; Opitz, M; Steeb, C; Skrodzki, M

    1993-01-01

    Eight cats and one dog with signs of cervical ventroflexion, reluctance to walk, a stiff and stilted gait and muscle weakness are introduced. Though blood potassium concentration was very low (< 3.0 mval/l) in one cat and the dog only, a potassium depletion myopathy was assumed as the cause of these symptoms. Two of three cats had elevated values of the urinary fractional potassium excretion compared to ten healthy cats. Blood creatinine values were within normal ranges. Five of seven cats had elevated creatine kinase values. All animals improved after potassium substitution. Causes of potassium depletion are discussed and differential diagnoses of myopathies are briefly mentioned.

  2. Predictive In Silico Studies of Human 5-hydroxytryptamine Receptor Subtype 2B (5-HT2B) and Valvular Heart Disease

    PubMed Central

    Reid, Terry-Elinor; Kumar, Krishna

    2014-01-01

    Serotonin (5-HT) receptors are neuromodulator neurotransmitter receptors which when activated generate a signal transduction pathway within cells resulting in cell-cell communication. 5-hydroxytryptamine (serotonin) receptor 2B (5-HT2B) is a subtype of the seven members of 5-hydroxytrytamine (5-HT) family of receptors which is the largest member of the super family of 7-transmembrane G-protein coupled receptors (GPCRs). Not only do 5-HT receptors play physiological roles in the cardiovascular system, gastrointestinal and endocrine function and the central nervous, but they also play a role in behavioral functions. In particular 5-HT2B receptor is wide spread with regards to its distribution throughout bodily tissues and is expressed at high levels in the lungs, peripheral tissues, liver, kidney and prostate just to name a few. Hence 5-HT2B participates in multiple biological functions including CNS regulation, regulation of gastrointestinal motality, cardiovascular regulation and 5-HT transport system regulation. While 5-HT2B is a viable drug target and has therapeutic indications for treating obesity, psychotherapy, Parkinson’s disease etc. there is a growing concern regarding adverse drug reactions, specifically valvulopathy associated with 5-HT2B agonists. Due to the sequence homology experienced by 5-HT2 subtypes there is also a concern regarding the off target effects of 5-HT2A and 5-HT2C agonists. The concept of subtype selectivity is of paramount importance and can be tackled with the aid of in silico studies, specifically cheminformatics, to develop models to predict valvulopathy associated toxicity of drug candidates prior to clinical trials. This review has highlighted three in silico approaches thus far that have been successful in either predicting 5-HT2B toxicity of molecules or identifying important interactions between 5-HT2B and drug molecules that bring about valvulopathy related toxicities. PMID:23675941

  3. Antagonistic effects of extracts from Artemisia rupetris L. and Leontopodium leontopodioides to CC chemokine receptor 2b (CCR2b).

    PubMed

    Yu, Qin-Wei; Hu, Jie; Wang, Hao; Chen, Xin; Zhao, Fang; Gao, Peng; Yang, Qiu-Bin; Sun, Dan-Dan; Zhang, Lu-Yong; Yan, Ming

    2016-05-01

    The present study was designed to establish a suitable assay to explore CCR2b receptor antagonists from the natural products of Artemisia rupetris and Leontopodium leontopodioides. An aequorin assay was developed as a cell-based assay suitable for 384-well microplate and used for screening CCR2b receptor antagonists from natural products. Through establishing suitable conditions, the assay was shown to be suitable for screening of CCR2b receptor antagonists. Seven compounds were identified in preliminary screening. Five of them showed evident dose-response relationship in secondary screening. The structure-activity relationship study suggested that 7-position hydroxyl group of flavonoids was necessary, a polar group should be introduced on the 3-position, and the substituents on 2-position benzene ring of flavonoids have little influence on the potentency of the inhibition activity on CCR2b receptor. The ortho-position dihydroxyl structure in quinic acid compounds may be important. In conclusion, Compounds HR-1, 5, 7, and AR-20, 35 showed activity as antagonist of CCR2b receptor, which shed lights on the development of novel drugs as CCR2b receptor antagonists for preventing inflammation related diseases.

  4. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    PubMed

    Cappelletti, Cristina; Galbardi, Barbara; Kapetis, Dimos; Vattemi, Gaetano; Guglielmi, Valeria; Tonin, Paola; Salerno, Franco; Morandi, Lucia; Tomelleri, Giuliano; Mantegazza, Renato; Bernasconi, Pia

    2014-01-01

    Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs). In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM), polymyositis (PM), dermatomyositis (DM) and juvenile dermatomyositis (JDM). We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1). These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  5. The Spectrum of Renal Involvement in Patients With Inflammatory Myopathies

    PubMed Central

    Couvrat-Desvergnes, Grégoire; Masseau, Agathe; Benveniste, Olivier; Bruel, Alexandra; Hervier, Baptiste; Mussini, Jean-Marie; Buob, David; Hachulla, Eric; Rémy, Philippe; Azar, Raymond; Namara, Evelyne Mac; MacGregor, Brigitte; Daniel, Laurent; Lacraz, Adeline; Broucker, Thomas De; Rouvier, Philippe; Carli, Philippe; Laville, Maurice; Dantan, Etienne; Hamidou, Mohamed; Moreau, Anne

    2014-01-01

    Abstract Data regarding the incidence and outcome of renal involvement in patients with inflammatory myopathies (IM) remain scarce. We assessed the incidence and causes of acute kidney injury (AKI) and chronic kidney disease (CKD) in 150 patients with dermatomyositis, polymyositis, and antisynthetase syndrome followed in 3 French referral centers. Renal involvement occurred in 35 (23.3%) patients: AKI in 16 (10.7%), and CKD in 31 (20.7%) patients. The main cause of AKI was drug or myoglobinuria-induced acute tubular necrosis. Male sex, cardiovascular risk factors, cardiac involvement, and initial proteinuria >0.3 g/d were associated with the occurrence of AKI. The outcome of patients with AKI was poor: 13 (81%) progressed to CKD and 2 (12.5%) reached end-stage renal disease. In multivariate survival analysis, age at IM onset, male sex, a history of cardiovascular events, and a previous episode of AKI were associated with the risk of CKD. We also identified 14 IM patients who underwent a kidney biopsy in 10 nephrology centers. Renal pathology disclosed a wide range of renal disorders, mainly immune-complex glomerulonephritis. We identified in 5 patients a peculiar pattern of severe acute renal vascular damage consisting mainly of edematous thickening of the intima of arterioles. We found that AKI and CKD are frequent in patients with IM. Prevention of AKI is crucial in these patients, as AKI is a major contributor to their relatively high risk of CKD. A peculiar pattern of acute vascular damage is part of the spectrum of renal diseases associated with IM. PMID:24378741

  6. The spectrum of renal involvement in patients with inflammatory myopathies.

    PubMed

    Couvrat-Desvergnes, Grégoire; Masseau, Agathe; Benveniste, Olivier; Bruel, Alexandra; Hervier, Baptiste; Mussini, Jean-Marie; Buob, David; Hachulla, Eric; Rémy, Philippe; Azar, Raymond; Mac Namara, Evelyne; MacGregor, Brigitte; Daniel, Laurent; Lacraz, Adeline; De Broucker, Thomas; Rouvier, Philippe; Carli, Philippe; Laville, Maurice; Dantan, Etienne; Hamidou, Mohamed; Moreau, Anne; Fakhouri, Fadi

    2014-01-01

    Data regarding the incidence and outcome of renal involvement in patients with inflammatory myopathies (IM) remain scarce. We assessed the incidence and causes of acute kidney injury (AKI) and chronic kidney disease (CKD) in 150 patients with dermatomyositis, polymyositis, and antisynthetase syndrome followed in 3 French referral centers. Renal involvement occurred in 35 (23.3%) patients: AKI in 16 (10.7%), and CKD in 31 (20.7%) patients. The main cause of AKI was drug or myoglobinuria-induced acute tubular necrosis. Male sex, cardiovascular risk factors, cardiac involvement, and initial proteinuria >0.3 g/d were associated with the occurrence of AKI. The outcome of patients with AKI was poor: 13 (81%) progressed to CKD and 2 (12.5%) reached end-stage renal disease. In multivariate survival analysis, age at IM onset, male sex, a history of cardiovascular events, and a previous episode of AKI were associated with the risk of CKD. We also identified 14 IM patients who underwent a kidney biopsy in 10 nephrology centers. Renal pathology disclosed a wide range of renal disorders, mainly immune-complex glomerulonephritis. We identified in 5 patients a peculiar pattern of severe acute renal vascular damage consisting mainly of edematous thickening of the intima of arterioles. We found that AKI and CKD are frequent in patients with IM. Prevention of AKI is crucial in these patients, as AKI is a major contributor to their relatively high risk of CKD. A peculiar pattern of acute vascular damage is part of the spectrum of renal diseases associated with IM.

  7. Fibrillin-2b regulates endocardial morphogenesis in zebrafish.

    PubMed

    Mellman, Katharine; Huisken, Jan; Dinsmore, Colin; Hoppe, Cornelia; Stainier, Didier Y

    2012-12-01

    scotch tape (sco) is a zebrafish cardiac mutant initially proposed to exhibit a reduced amount of cardiac jelly, the extracellular matrix between the myocardial and endocardial layers. We analyzed sco(te382) mutant hearts in detail using both selective plane illumination microscopy (SPIM) and transmission electron microscopy (TEM), and observed a fascinating endocardial defect. Time-lapse SPIM imaging of wild-type and mutant embryos revealed significant and dynamic gaps between endocardial cells during development. Although these gaps close in wild-type animals, they fail to close in the mutants, ultimately leading to a near complete absence of endocardial cells in the atrial chamber by the heart looping stage. TEM analyses confirm the presence of gaps between endocardial cells in sco mutants, allowing the apparent leakage of cardiac jelly into the lumen. High-resolution mapping places the sco(te382) mutation within the fbn2b locus, which encodes the extracellular matrix protein Fibrillin 2b (OMIM ID: 121050). Complementation and further phenotypic analyses confirm that sco is allelic to puff daddy(gw1) (pfd(gw1)), a null mutant in fbn2b, and that sco(te382) is a hypomorphic allele of fbn2b. fbn2b belongs to a family of genes responsible for the assembly of microfibrils throughout development, and is essential for microfibril structural integrity. In sco(te382) mutants, Fbn2b is disabled by a missense mutation in a highly conserved cbEGF domain, which likely interferes with protein folding. Integrating data obtained from microscopy and molecular biology, we posit that this mutation impacts the rigidity of Fbn2b, imparting a structural defect that weakens endocardial adhesion thereby resulting in perforated endocardium.

  8. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  9. Lithium insertion in nanostructured TiO(2)(B) architectures.

    PubMed

    Dylla, Anthony G; Henkelman, Graeme; Stevenson, Keith J

    2013-05-21

    Electric vehicles and grid storage devices have potentialto become feasible alternatives to current technology, but only if scientists can develop energy storage materials that offer high capacity and high rate capabilities. Chemists have studied anatase, rutile, brookite and TiO2(B) (bronze) in both bulk and nanostructured forms as potential Li-ion battery anodes. In most cases, the specific capacity and rate of lithiation and delithiation increases as the materials are nanostructured. Scientists have explained these enhancements in terms of higher surface areas, shorter Li(+) diffusion paths and different surface energies for nanostructured materials allowing for more facile lithiation and delithiation. Of the most studied polymorphs, nanostructured TiO2(B) has the highest capacity with promising high rate capabilities. TiO2(B) is able to accommodate 1 Li(+) per Ti, giving a capacity of 335 mAh/g for nanotubular and nanoparticulate TiO2(B). The TiO2(B) polymorph, discovered in 1980 by Marchand and co-workers, has been the focus of many recent studies regarding high power and high capacity anode materials with potential applications for electric vehicles and grid storage. This is due to the material's stability over multiple cycles, safer lithiation potential relative to graphite, reasonable capacity, high rate capability, nontoxicity, and low cost (Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem., Int. Ed.2008, 47, 2930-2946). One of the most interesting properties of TiO2(B) is that both bulk and nanostructured forms lithiate and delithiate through a surface redox or pseudocapacitive charging mechanism, giving rise to stable high rate charge/discharge capabilities in the case of nanostructured TiO2(B). When other polymorphs of TiO2 are nanostructured, they still mainly intercalate lithium through a bulk diffusion-controlled mechanism. TiO2(B) has a unique open crystal structure and low energy Li

  10. Management of Type 2B von Willebrand Disease during Pregnancy.

    PubMed

    McLaughlin, David; Kerr, Ron

    2017-01-01

    Type 2B von Willebrand disease is a rare bleeding condition resulting in thrombocytopenia and a reduction in large VWF multimers. It usually has an autosomal dominant pattern of inheritance. We report the management of a patient with type 2B von Willebrand disease, whose diagnosis was confirmed by demonstration of a R1306W mutation, through her first pregnancy. The patient's von Willebrand factor (VWF) antigen and VWF ristocetin cofactor levels rose throughout pregnancy, with an associated drop in the platelet count. The patient was successfully managed through labour to a surgical delivery with VWF concentrate, platelet transfusions and tranexamic acid. The patient delivered a male baby who was found to have inherited type 2B von Willebrand disease and had a significant cephalhaematoma at delivery. The baby was managed with VWF concentrate and platelet transfusions and made a full recovery. There is a lack of evidence to guide the best management of pregnant patients with type 2B von Willebrand disease. We adopted a pragmatic management plan, in keeping with other published case reports. To the best of our knowledge, this is the first case report in which the child was found to have inherited type 2B von Willebrand disease and encountered bleeding problems, making this case unique amongst the published literature.

  11. Human GRIN2B variants in neurodevelopmental disorders

    PubMed Central

    Hu, Chun; Chen, Wenjuan; Myers, Scott J.; Yuan, Hongjie; Traynelis, Stephen F.

    2016-01-01

    The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-D-aspartate receptor (NMDAR) gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies. PMID:27818011

  12. Immune-mediated myopathy related to anti 3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies as an emerging cause of necrotizing myopathy induced by statins.

    PubMed

    Lahaye, Clément; Beaufrére, Anne Marie; Boyer, Olivier; Drouot, Laurent; Soubrier, Martin; Tournadre, Anne

    2014-01-01

    Immune-mediated necrotizing myopathy (IMNM) associated with statin use and anti 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) antibody is a new and emerging entity that supports a link between statin use and IMNM and raises the questions of distinct clinical phenotypes and treatment strategy. We describe the clinical and histopathological characteristics of a patient and discuss the spectrum of IMNM and statin-induced myopathies. A 65-year-old man was suffering from proximal muscle weakness and elevated CK levels, following exposure to statin therapy. The symptoms worsened despite discontinuation of the drug. At that point, no myositis-specific or -associated antibodies were detected. Malignancy screening did not reveal abnormalities. Muscle biopsy demonstrated a predominantly necrotizing myopathy with minimal lymphocytic infiltrates, MHC class I expression in necrotic muscle fibers, and complement deposition on scattered non-necrotic muscle fibers. Muscle protein analysis by western blot was normal. The patient did not improve with steroid and methotrexate and required monthly intravenous immunoglobulin (IVIG) therapy. Muscle strength gradually improved, CK levels normalized and IVIG were stopped 1 year later. Screening for anti-HMGCR antibodies, not available at the time of presentation, was highly positive. Identification of anti-HMGCR antibodies in statin-exposed patients with myopathy appears to be helpful both for differential diagnosis and for treatment strategy. In patients who did not improve after discontinuation of the statin treatment, a muscle biopsy should be performed as well as screening for anti-HMGCR antibodies. Patients with this disorder require aggressive immunosuppressive treatment.

  13. Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin.

    PubMed

    Brunham, L R; Lansberg, P J; Zhang, L; Miao, F; Carter, C; Hovingh, G K; Visscher, H; Jukema, J W; Stalenhoef, A F; Ross, C J D; Carleton, B C; Kastelein, J J P; Hayden, M R

    2012-06-01

    Statins reduce cardiovascular morbidity and mortality in appropriately selected patients. However, statin-associated myopathy is a significant risk associated with these agents. Recently, variation in the SLCO1B1 gene was reported to predict simvastatin-associated myopathy. The aim of this study was to replicate association of the rs4149056 variant in SLCO1B1 with severe statin-associated myopathy in a cohort of patients using a variety of statin medications and to investigate the association with specific statin types. We identified 25 cases of severe statin-associated myopathy and 84 controls matched for age, gender, statin type and dose. The rs4149056 variant in SLCO1B1 was not significantly associated with myopathy in this group as a whole. However, when subjects were stratified by statin type, the SLCO1B1 rs4149056 genotype was significantly associated with myopathy in patients who received simvastatin, but not in patients who received atorvastatin. Our findings provide further support for a role for SLCO1B1 genotype in simvastatin-associated myopathy, and suggest that this association may be stronger for simvastatin compared with atorvastatin.

  14. Altered megakaryocytopoiesis in von Willebrand type 2B disease.

    PubMed

    Nurden, A T; Federici, A B; Nurden, P

    2009-07-01

    Type 2B von Willebrand disease (VWD2B) is caused by gain-of-function amino acid substitutions in the von Willebrand factor (VWF) A1 domain. These allow facilitated binding of mutated VWF to platelet GPIbalpha with prolonged lifetimes of VWF bonds and enhanced ADAMTS-13 cleavage of large VWF multimers. A bleeding rather than prothrombotic syndrome is due to: (i) decreased large VWF multimers in plasma; (ii) limited thrombus formation; and (iii) thrombocytopenia affecting some but not all patients. Accumulating evidence points to an altered megakaryocytopoiesis in VWD2B with the production of enlarged or giant platelets showing an abnormal ultrastructure and, in a cohort of patients, the presence of circulating platelet agglutinates. In fact, evidence from in vitro cultures and marrow aspirates suggests that the upregulated VWF function can lead to abnormal VWF trafficking in megakaryocytes, a modified platelet production with interacting proplatelets, and the presence or even release of platelet agglutinates in the bone marrow.

  15. The 23 K superconducting phase YPd 2B 2C

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Rusakova, I.; Meng, R. L.; Cao, Y.; Gautier-Picard, P.; Chu, C. W.

    1994-09-01

    We have carried out a systematic structural, electric, and magnetic study on YPdBC samples with different compositions with emphasis on the as-cast and annealed YPd 5B 3C 0.3 which was first reported to superconduct at ∼ 23 K by Cava et al. We found that the tetragonal body-centered YPd 2B 2C with lattice parameters a=3.71 Å and c=10.81 Å is the phase responsible for the 23 K superconductivity and that YPd 2B 2C is metastable, which is consistent with the suggestion made by Cava et al. [1]: it is not stable at high temperatures nor stabilizable by Ni doping, although its isostructural compound, YNi 2B 2C, exists. Two new phases with Y:Pd ratios of 1:7 and 2:3, respectively, have also bee detected.

  16. Flow Simulation of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the subsonic fixed wing project. In this study, flow fields around the N2B configuration is simulated using a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by response surfaces of the NPSS thermodynamic engine cycle model. The present flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and nacelle-airframe interference. The N2B configuration can be a good test bed for application of multidisciplinary design optimization technology.

  17. Ileocolonic transfer of solid chyme in small intestinal neuropathies and myopathies

    SciTech Connect

    Greydanus, M.P.; Camilleri, M.; Colemont, L.J.; Phillips, S.F.; Brown, M.L.; Thomforde, G.M. )

    1990-07-01

    The aims of this study were to assess gastric emptying, small bowel transit and colonic filling in patients with motility disorders, with particular attention to the patterns of colonic filling. Gastrointestinal transit was assessed using a previously validated radiolabeled mixed meal. Fourteen patients with clinical and manometric features of chronic intestinal pseudoobstruction classified as intestinal neuropathy and 6 as intestinal myopathy, were studied. The results were compared with those from 10 healthy controls studied similarly. Gastric emptying and small bowel transit of solids were significantly slower in both groups of patients than in healthy controls (P less than 0.05). In health, the ileocolonic transit of solid chyme was characterized by intermittent bolus transfers. The mean size of boluses transferred to the colon (expressed as a percentage of ingested radiolabel) was significantly less (P less than 0.05) in patients with intestinal myopathy (10% +/- 4% (SEM)) than in healthy controls (25% +/- 4%) or in patients with intestinal neuropathy (25% +/- 4%). The intervals between bolus transfer of solids (plateaus in the colonic filling curve) were longer (P less than 0.05) in myopathies (212 +/- 89 minutes) than in health (45 +/- 7 minutes) or neuropathies (53 +/- 11 minutes). Thus, gastric emptying and small bowel transit were delayed in small bowel neuropathies and myopathies. Bolus filling of the colon was less frequent and less effective in patients with myopathic intestinal pseudoobstruction, whereas bolus transfer was preserved in patients with neuropathic intestinal pseudoobstruction.

  18. Mutation-Specific Effects on Thin Filament Length in Thin Filament Myopathy

    PubMed Central

    de Winter, Josine M.; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A.; Pappas, Christopher T.; Gregorio, Carol C.; Stienen, Ger J. M.; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B.; van Engelen, Baziel G.; Voermans, Nicol C.; Donkervoort, Sandra; Bönnemann, C. G.; Clarke, Nigel F.; Beggs, Alan H.; Granzier, Henk; Ottenheijm, Coen A. C.

    2016-01-01

    Objective Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. Methods We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Results Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force–sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin–thick filament overlap. Interpretation These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. PMID:27074222

  19. Clinical Manifestation and a New "ISCU" Mutation in Iron-Sulphur Cluster Deficiency Myopathy

    ERIC Educational Resources Information Center

    Kollberg, Gittan; Tulinius, Mar; Melberg, Atle; Darin, Niklas; Andersen, Oluf; Holmgren, Daniel; Oldfors, Anders; Holme, Elisabeth

    2009-01-01

    Myopathy with deficiency of succinate dehydrogenase and aconitase is a recessively inherited disorder characterized by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, severe metabolic acidosis and rhabdomyolysis may occur. The…

  20. Use of guidelines when planning home care of a girl with severe congenital myopathy.

    PubMed

    Gray, Kelly; Isaacs, David; Kilham, Henry; Tobin, Bernadette; Waters, Karen

    2016-01-01

    We use issues that arose in the management of a 4-year old girl with a congenital myopathy to consider the tension between respecting the choices and decisions of the child's parents and applying clinical practice guidelines that emphasise minimising risk to the child. This case raises the issue of when it is reasonable to override parents' choice of management options.

  1. Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3

    PubMed Central

    Cenik, Bercin K.; Garg, Ankit; McAnally, John R.; Shelton, John M.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.; Liu, Ning

    2015-01-01

    Maintenance of skeletal muscle structure and function requires a precise stoichiometry of sarcomeric proteins for proper assembly of the contractile apparatus. Absence of components of the sarcomeric thin filaments causes nemaline myopathy, a lethal congenital muscle disorder associated with aberrant myofiber structure and contractility. Previously, we reported that deficiency of the kelch-like family member 40 (KLHL40) in mice results in nemaline myopathy and destabilization of leiomodin-3 (LMOD3). LMOD3 belongs to a family of tropomodulin-related proteins that promote actin nucleation. Here, we show that deficiency of LMOD3 in mice causes nemaline myopathy. In skeletal muscle, transcription of Lmod3 was controlled by the transcription factors SRF and MEF2. Myocardin-related transcription factors (MRTFs), which function as SRF coactivators, serve as sensors of actin polymerization and are sequestered in the cytoplasm by actin monomers. Conversely, conditions that favor actin polymerization de-repress MRTFs and activate SRF-dependent genes. We demonstrated that the actin nucleator LMOD3, together with its stabilizing partner KLHL40, enhances MRTF-SRF activity. In turn, SRF cooperated with MEF2 to sustain the expression of LMOD3 and other components of the contractile apparatus, thereby establishing a regulatory circuit to maintain skeletal muscle function. These findings provide insight into the molecular basis of the sarcomere assembly and muscle dysfunction associated with nemaline myopathy. PMID:25774500

  2. Rehabilitation of Critical Illness Polyneuropathy and Myopathy Patients: An Observational Study

    ERIC Educational Resources Information Center

    Novak, Primoz; Vidmar, Gaj; Kuret, Zala; Bizovicar, Natasa

    2011-01-01

    Critical illness polyneuropathy and myopathy (CIPNM) frequently develops in patients hospitalized in intensive care units. The number of patients with CIPNM admitted to inpatient rehabilitation is increasing. The aim of this study was to comprehensively evaluate the outcome of their rehabilitation. Twenty-seven patients with CIPNM were included in…

  3. Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences

    PubMed Central

    Bacurau, Aline V.; Cunha, Telma F.; Souza, Rodrigo W.; Voltarelli, Vanessa A.; Gabriel-Costa, Daniele; Brum, Patricia C.

    2016-01-01

    Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF. PMID:26904163

  4. Novel Pathogenic Variants in a French Cohort Widen the Mutational Spectrum of GNE Myopathy

    PubMed Central

    Cerino, Mathieu; Gorokhova, Svetlana; Béhin, Anthony; Urtizberea, Jon Andoni; Kergourlay, Virginie; Salvo, Eric; Bernard, Rafaëlle; Lévy, Nicolas; Bartoli, Marc; Krahn, Martin

    2015-01-01

    Background: GNE myopathy is a rare autosomal recessively inherited muscle disease resulting from mutations in the gene encoding GNE (UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase), a key enzyme in sialic acid biosynthesis. 154 different pathogenic variants have been previously associated with GNE myopathy. Objective: Describe novel pathogenic variants associated with GNE myopathy in a large French cohort. Methods: We analyzed mutational data from 32 GNE myopathy index patients. Novel, as well as previously published pathogenic variants, were examined for possible deleterious effects on splicing. Results: We describe 13 novel pathogenic variants in GNE, identified in the first large French cohort reported to date. We also find that 6 published pathogenic variants might have a previously unrecognized deleterious effect on splicing. Conclusions: Novel pathogenic GNE variants described here raise the total number of different pathogenic variants reported to 167, complementing the recently published GNE mutation update. Our novel findings on possible splice-disrupting effects by several variants suggest that the pathogenicity mechanism of these variants could be reinterpreted, expanding our knowledge about the GNE mutational spectrum. PMID:27858732

  5. Sporadic cardiac and skeletal myopathy caused by a de novo desmin mutation.

    PubMed

    Park, K Y; Dalakas, M C; Semino-Mora, C; Lee, H S; Litvak, S; Takeda, K; Ferrans, V J; Goldfarb, L G

    2000-06-01

    Desmin myopathy is a familial or sporadic disorder characterized by intracytoplasmic accumulation of desmin in the muscle cells. We and others have previously identified desmin gene mutations in patients with familial myopathy, but close to 45% of the patients do not report previous family history of the disease. The present study was conducted to determine the cause of desmin myopathy in a sporadic patient presenting with symmetrical muscle weakness and atrophy combined with atrioventricular conduction block requiring a permanent pacemaker. A novel heterozygous R406W mutation in the desmin gene was identified by sequencing cDNA and genomic DNA. Expression of a construct containing the patient's mutant desmin cDNA in SW13 (vim-) cells demonstrated a high pathogenic potential of the R406W mutation. This mutation was not found in the patient's father, mother or sister by sequencing and restriction analysis. Testing with five microsatellite markers and four intragenic single nucleotide polymorphisms excluded alternative paternity. Haplotype analysis indicates that the patient's father was germ-line mosaic for the desmin mutation. We conclude that de novo mutations in the desmin gene may be the cause of sporadic forms of desmin-related cardiac and skeletal myopathy.

  6. Metabolic Myopathies and Physical Activity: When Fatigue Is More Than Simple Exertion.

    ERIC Educational Resources Information Center

    Tarnopolsky, Mark A.

    2002-01-01

    When patients experience fatigue and muscle cramps beyond exercise adaptation, physicians should consider metabolic myopathies. The most common conditions seen in active patients are myoadenylate deaminase deficiency and disorders such as McArdle's disease. Targeted family histories and basic laboratory studies help rule out conditions mimicking…

  7. Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy

    PubMed Central

    Liu, Ning; Bezprozvannaya, Svetlana; Shelton, John M.; Frisard, Madlyn I.; Hulver, Matthew W.; McMillan, Ryan P.; Wu, Yaru; Voelker, Kevin A.; Grange, Robert W.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2011-01-01

    MicroRNAs modulate cellular phenotypes by inhibiting expression of mRNA targets. In this study, we have shown that the muscle-specific microRNAs miR-133a-1 and miR-133a-2 are essential for multiple facets of skeletal muscle function and homeostasis in mice. Mice with genetic deletions of miR-133a-1 and miR-133a-2 developed adult-onset centronuclear myopathy in type II (fast-twitch) myofibers, accompanied by impaired mitochondrial function, fast-to-slow myofiber conversion, and disarray of muscle triads (sites of excitation-contraction coupling). These abnormalities mimicked human centronuclear myopathies and could be ascribed, at least in part, to dysregulation of the miR-133a target mRNA that encodes dynamin 2, a GTPase implicated in human centronuclear myopathy. Our findings reveal an essential role for miR-133a in the maintenance of adult skeletal muscle structure, function, bioenergetics, and myofiber identity; they also identify a potential modulator of centronuclear myopathies. PMID:21737882

  8. Cyclophilin D, a target for counteracting skeletal muscle dysfunction in mitochondrial myopathy

    PubMed Central

    Gineste, Charlotte; Hernandez, Andres; Ivarsson, Niklas; Cheng, Arthur J.; Naess, Karin; Wibom, Rolf; Lesko, Nicole; Bruhn, Helene; Wedell, Anna; Freyer, Christoph; Zhang, Shi-Jin; Carlström, Mattias; Lanner, Johanna T.; Andersson, Daniel C.; Bruton, Joseph D.; Wredenberg, Anna; Westerblad, Håkan

    2015-01-01

    Muscle weakness and exercise intolerance are hallmark symptoms in mitochondrial disorders. Little is known about the mechanisms leading to impaired skeletal muscle function and ultimately muscle weakness in these patients. In a mouse model of lethal mitochondrial myopathy, the muscle-specific Tfam knock-out (KO) mouse, we previously demonstrated an excessive mitochondrial Ca2+ uptake in isolated muscle fibers that could be inhibited by the cyclophilin D (CypD) inhibitor, cyclosporine A (CsA). Here we show that the Tfam KO mice have increased CypD levels, and we demonstrate that this increase is a common feature in patients with mitochondrial myopathy. We tested the effect of CsA treatment on Tfam KO mice during the transition from a mild to terminal myopathy. CsA treatment counteracted the development of muscle weakness and improved muscle fiber Ca2+ handling. Importantly, CsA treatment prolonged the lifespan of these muscle-specific Tfam KO mice. These results demonstrate that CsA treatment is an efficient therapeutic strategy to slow the development of severe mitochondrial myopathy. PMID:26374844

  9. Evaluating the Atrial Myopathy Underlying Atrial Fibrillation: Identifying the Arrhythmogenic and Thrombogenic Substrate

    PubMed Central

    Goldberger, Jeffrey J.; Arora, Rishi; Green, David; Greenland, Philip; Lee, Daniel C.; Lloyd-Jones, Donald M.; Markl, Michael; Ng, Jason; Shah, Sanjiv J.

    2015-01-01

    Atrial disease or myopathy forms the substrate for atrial fibrillation (AF) and underlies the potential for atrial thrombus formation and subsequent stroke. Current diagnostic approaches in patients with AF focus on identifying clinical predictors with evaluation of left atrial size by echocardiography serving as the sole measure specifically evaluating the atrium. Although the atrial substrate underlying AF is likely developing for years prior to the onset of AF, there is no current evaluation to identify the pre-clinical atrial myopathy. Atrial fibrosis is one component of the atrial substrate that has garnered recent attention based on newer MRI techniques that have been applied to visualize atrial fibrosis in humans with prognostic implications regarding success of treatment. Advanced ECG signal processing, echocardiographic techniques, and MRI imaging of fibrosis and flow provide up-to-date approaches to evaluate the atrial myopathy underlying AF. While thromboembolic risk is currently defined by clinical scores, their predictive value is mediocre. Evaluation of stasis via imaging and biomarkers associated with thrombogenesis may provide enhanced approaches to assess risk for stroke in patients with AF. Better delineation of the atrial myopathy that serves as the substrate for AF and thromboembolic complications might improve treatment outcomes. Furthermore, better delineation of the pathophysiologic mechanisms underlying the development of the atrial substrate for AF, particularly in its earlier stages, could help identify blood and imaging biomarkers that could be useful to assess risk for developing new onset AF and suggest specific pathways that could be targeted for prevention. PMID:26216085

  10. Cyclophilin D, a target for counteracting skeletal muscle dysfunction in mitochondrial myopathy.

    PubMed

    Gineste, Charlotte; Hernandez, Andres; Ivarsson, Niklas; Cheng, Arthur J; Naess, Karin; Wibom, Rolf; Lesko, Nicole; Bruhn, Helene; Wedell, Anna; Freyer, Christoph; Zhang, Shi-Jin; Carlström, Mattias; Lanner, Johanna T; Andersson, Daniel C; Bruton, Joseph D; Wredenberg, Anna; Westerblad, Håkan

    2015-12-01

    Muscle weakness and exercise intolerance are hallmark symptoms in mitochondrial disorders. Little is known about the mechanisms leading to impaired skeletal muscle function and ultimately muscle weakness in these patients. In a mouse model of lethal mitochondrial myopathy, the muscle-specific Tfam knock-out (KO) mouse, we previously demonstrated an excessive mitochondrial Ca(2+) uptake in isolated muscle fibers that could be inhibited by the cyclophilin D (CypD) inhibitor, cyclosporine A (CsA). Here we show that the Tfam KO mice have increased CypD levels, and we demonstrate that this increase is a common feature in patients with mitochondrial myopathy. We tested the effect of CsA treatment on Tfam KO mice during the transition from a mild to terminal myopathy. CsA treatment counteracted the development of muscle weakness and improved muscle fiber Ca(2+) handling. Importantly, CsA treatment prolonged the lifespan of these muscle-specific Tfam KO mice. These results demonstrate that CsA treatment is an efficient therapeutic strategy to slow the development of severe mitochondrial myopathy.

  11. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats.

    PubMed

    Schaefer, William H; Lawrence, Jeffery W; Loughlin, Amy F; Stoffregen, Dana A; Mixson, Lori A; Dean, Dennis C; Raab, Conrad E; Yu, Nathan X; Lankas, George R; Frederick, Clay B

    2004-01-01

    As a class, hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors can potentially cause skeletal myopathy. One statin, cerivastatin, has recently been withdrawn from the market due to an unacceptably high incidence of rhabdomyolysis. The mechanism underlying statin-induced myopathy is unknown. This paper sought to investigate the relationship among statin-induced myopathy, mitochondrial function, and muscle ubiquinone levels. Rats were administered cerivastatin at 0.1, 0.5, and 1.0 (mg/kg)/day or dose vehicle (controls) by oral gavage for 15 days. Samples of type I-predominant skeletal muscle (soleus) and type II-predominant skeletal muscle [quadriceps and extensor digitorum longus (EDL)], and blood were collected on study days 5, 10, and 15 for morphological evaluation, clinical chemistry, mitochondrial function tests, and analysis of ubiquinone levels. No histological changes were observed in any of the animals on study days 5 or 10, but on study day 15, mid- and high-dose animals had necrosis and inflammation in type II skeletal muscle. Elevated creatine kinase (CK) levels in blood (a clinical marker of myopathy) correlated with the histopathological diagnosis of myopathy. Ultrastructural characterization of skeletal muscle revealed disruption of the sarcomere and altered mitochondria only in myofibers with degeneration, while adjacent myofibers were unaffected and had normal mitochondria. Thus, mitochondrial effects appeared not to precede myofiber degeneration. Mean coenzyme Q9 (CoQ9) levels in all dose groups were slightly decreased relative to controls in type II skeletal muscle, although the difference was not significantly different in most cases. Mitochondrial function in skeletal muscle was not affected by the changes in ubiquinone levels. The ubiquinone levels in high-dose-treated animals exhibiting myopathy were not significantly different from low-dose animals with no observable toxic effects. Furthermore, ubiquinone levels did not correlate

  12. The Clinical Phenotypes of the Juvenile Idiopathic Inflammatory Myopathies

    PubMed Central

    Shah, Mona; Mamyrova, Gulnara; Targoff, Ira N.; Huber, Adam M.; Malley, James D.; Rice, Madeline Murguia; Miller, Frederick W.; Rider, Lisa G.

    2015-01-01

    The juvenile idiopathic inflammatory myopathies (JIIM) are systemic autoimmune diseases characterized by skeletal muscle weakness, characteristic rashes and other systemic features. Although juvenile dermatomyositis (JDM), the most common form of JIIM, has been well-studied, the other major clinical subgroups of JIIM, including juvenile polymyositis (JPM) and juvenile myositis overlapping with another autoimmune or connective tissue disease (JCTM), have not been well characterized, and their similarity to the adult clinical subgroups is also unknown. We enrolled 436 patients with JIIM, including 354 classified as JDM, 33 as JPM and 49 as JCTM, in a nationwide registry study. The aim of this study was to compare demographics, clinical features, laboratory measures, including myositis autoantibodies, and outcomes, among these clinical subgroups, as well as with published data on adult IIM patients enrolled in a separate natural history study. Random forest classification and logistic regression modeling were used to compare clinical subgroups, following univariate analysis. JDM was characterized by typical rashes, including Gottron’s papules, heliotrope rash, malar rash, periungual capillary changes and other photosensitive and vasculopathic skin rashes. JPM was characterized by more severe weakness, higher creatine kinase levels, falling episodes and more frequent cardiac disease. JCTM had more frequent interstitial lung disease, Raynaud’s phenomenon, arthralgia and malar rash. Differences in autoantibody frequency were also evident, with anti-p155, anti-MJ and anti-Mi2 seen more frequently in patients with JDM, anti-signal recognition particle and anti-Jo1 in JPM, and anti-U1RNP, PM-Scl and other myositis-associated autoantibodies more commonly present in JCTM. Mortality was highest in JCTM, whereas hospitalizations and wheelchair usage were highest in JPM patients. Several demographic and clinical features were shared between juvenile and adult IIM subgroups

  13. Muscle-fiber transdifferentiation in an experimental model of respiratory chain myopathy

    PubMed Central

    2012-01-01

    Introduction Skeletal muscle fiber composition and muscle energetics are not static and change in muscle disease. This study was performed to determine whether a mitochondrial myopathy is associated with adjustments in skeletal muscle fiber-type composition. Methods Ten rats were treated with zidovudine, an antiretroviral nucleoside reverse transcriptase inhibitor that induces a myopathy by interfering with mitochondrial functions. Soleus muscles were examined after 21 weeks of treatment. Ten untreated rats served as controls. Results Zidovudine induced a myopathy with mitochondrial DNA depletion, abnormalities in mitochondrial ultrastructure, and reduced cytochrome c oxidase activity. Mitochondrial DNA was disproportionally more diminished in type I compared with type II fibers, whereas atrophy predominated in type II fibers. Compared with those of controls, zidovudine-exposed soleus muscles contained an increased proportion (256%) of type II fibers, whereas neonatal myosin heavy chains remained repressed, indicating fiber-type transformation in the absence of regeneration. Microarray gene-expression analysis confirmed enhanced fast-fiber isoforms, repressed slow-fiber transcripts, and reduced neonatal fiber transcripts in the mitochondrial myopathy. Respiratory chain transcripts were diminished, whereas the enzymes of glycolysis and glycogenolysis were enhanced, indicating a metabolic adjustment from oxidative to glycolytic capacities. A coordinated regulation was found of transcription factors known to orchestrate type II fiber formation (upregulation of MyoD, Six1, Six2, Eya1, and Sox6, and downregulation of myogenin and ERRγ). Conclusions The type I to type II fiber transformation in mitochondrial myopathy implicates mitochondrial function as a new regulator of skeletal muscle fiber type. PMID:23107834

  14. Phenotypes, genotypes, and prevalence of congenital myopathies older than 5 years in Denmark

    PubMed Central

    Werlauff, Ulla; Duno, Morten; Vissing, John

    2017-01-01

    Objective: Congenital myopathy as a nosologic entity has long been recognized, but knowledge of overall and subtype prevalence and phenotype-genotype relationship is scarce, especially in the adult population. Methods: A national cohort of 107 patients ≥5 years diagnosed with congenital myopathy were prospectively assessed clinically, histologically, and genetically. Results: Twenty-five patients were excluded because of atypical features or alternative etiologies. The remaining 82 were on average 28 years old. Histologic examination revealed 14 (17%) with core disease, 15 (18%) centronuclear myopathy, 12 (15%) nemaline rods, 27 (33%) congenital fiber-type disproportion or type I predominance, and 14 (17%) nonspecific myopathic changes. Genetic etiology was identified in 46 patients (56.1%); 22.0% were heterozygous or compound heterozygous for mutations in RYR1, 7.3% had DNM2 mutations, and 7.3% NEB mutations. Less than 5% had mutations in ACTA1, TPM2/3, MTM1, TTN, SEPN1, or SC4NA. A genetic cause was established in 83% with specific histology (cores/rods/centronuclear myopathy) vs 29% with unspecific histology. The detailed clinical examination found gene-dependent discrepancies in the pattern of muscle affection and walking ability. Although walking ability was delayed in patients with ACTA1, TPM2/3, and RYR1 mutations, it was within normal limits in patients with NEB and DNM2 mutations. Conclusions: We found that overall, genetic and histologic prevalence of congenital myopathy in Denmark differs from previous retrospective reports. Less RYR1 and more DNM2 and NEB mutations and less core histology were present in our cohort. These differences may be explained by our prospective design, the older cohort of patients, and by differences in genetic background. PMID:28357410

  15. Persistent Electrochemical Performance in Epitaxial VO2(B).

    PubMed

    Lee, Shinbuhm; Sun, Xiao-Guang; Lubimtsev, Andrew A; Gao, Xiang; Ganesh, Panchapakesan; Ward, Thomas Z; Eres, Gyula; Chisholm, Matthew F; Dai, Sheng; Lee, Ho Nyung

    2017-04-12

    Discovering high-performance energy storage materials is indispensable for renewable energy, electric vehicle performance, and mobile computing. Owing to the open atomic framework and good room temperature conductivity, bronze-phase vanadium dioxide [VO2(B)] has been regarded as a highly promising electrode material for Li ion batteries. However, previous attempts were unsuccessful to show the desired cycling performance and capacity without chemical modification. Here, we show with epitaxial VO2(B) films that one can accomplish the theoretical limit for capacity with persistent charging-discharging cyclability owing to the high structural stability and unique open pathways for Li ion conduction. Atomic-scale characterization by scanning transmission electron microscopy and density functional theory calculations also reveal that the unique open pathways in VO2(B) provide the most stable sites for Li adsorption and diffusion. Thus, this work ultimately demonstrates that VO2(B) is a highly promising energy storage material and has no intrinsic hindrance in achieving superior cyclability with a very high power and capacity in a Li-ion conductor.

  16. INSAT-2A and 2B development mechanisms

    NASA Technical Reports Server (NTRS)

    Sathyanarayan, M. N.; Rao, M. Nageswara; Nataraju, B. S.; Viswanatha, N.; Chary, M. Laxmana; Balan, K. S.; Murthy, V. Sridhara; Aller, Raju; Kumar, H. N. Suresha

    1994-01-01

    The Indian National Satellite (INSAT) 2A and 2B have deployment mechanisms for deploying the solar array, two C/S band antenna reflectors and a coilable lattice boom with sail. The mechanisms have worked flawlessly on both satellites. The configuration details, precautions taken during the design phase, the test philosophy, and some of the critical analysis activities are discussed.

  17. Molecular dissection of N2B cardiac titin's extensibility.

    PubMed Central

    Trombitás, K; Freiburg, A; Centner, T; Labeit, S; Granzier, H

    1999-01-01

    Titin is a giant filamentous polypeptide of multidomain construction spanning between the Z- and M-lines of the cardiac muscle sarcomere. Extension of the I-band segment of titin gives rise to a force that underlies part of the diastolic force of cardiac muscle. Titin's force arises from its extensible I-band region, which consists of two main segment types: serially linked immunoglobulin-like domains (tandem Ig segments) interrupted with a proline (P)-, glutamate (E)-, valine (V)-, and lysine (K)-rich segment called PEVK segment. In addition to these segments, the extensible region of cardiac titin also contains a unique 572-residue sequence that is part of the cardiac-specific N2B element. In this work, immunoelectron microscopy was used to study the molecular origin of the in vivo extensibility of the I-band region of cardiac titin. The extensibility of the tandem Ig segments, the PEVK segment, and that of the unique N2B sequence were studied, using novel antibodies against Ig domains that flank these segments. Results show that only the tandem Igs extend at sarcomere lengths (SLs) below approximately 2.0 microm, and that, at longer SLs, the PEVK and the unique sequence extend as well. At the longest SLs that may be reached under physiological conditions ( approximately 2.3 microm), the PEVK segment length is approximately 50 nm whereas the unique N2B sequence is approximately 80 nm long. Thus, the unique sequence provides additional extensibility to cardiac titins and this may eliminate the necessity for unfolding of Ig domains under physiological conditions. In summary, this work provides direct evidence that the three main molecular subdomains of N2B titin are all extensible and that their contribution to extensibility decreases in the order of tandem Igs, unique N2B sequence, and PEVK segment. PMID:10585940

  18. Mutations of the human interferon alpha-2b (hIFNα-2b) gene in cancer patients receiving radiotherapy

    PubMed Central

    Shahid, Saman; Chaudhry, Muhammad Nawaz; Mahmood, Nasir

    2015-01-01

    This research aimed to find out the impact of ionizing radiations on the hIFNα-2b gene of radiotherapy treated cancer patients. The gene hIFNα-2b synthesizes a protein which is an important anticancerous and antiviral protein. The cancer patients (breast, lung, thyroid, oral and prostate) who were undergoing a radiotherapy treatment were selected. A molecular analysis was performed for DNA isolation and gene amplification through PCR, to identify gene mutations. Further, by bioinformatics tools we concluded that how mutations identified in gene sequences have led to the alterations in the hINFα-2b protein in radiotherapy receiving cancer patients. The 32% mutations in the hINFα-2b gene were identified and all were frameshift mutations. Radiotherapy can impact the immune system and cancer patients may modulate their immunity. Understaning the mechanisms of radiotherapy-elicited immune response may be helpful in the development of those therapeutic interventions that can enhance the efficacy of radiotherapy. PMID:26396921

  19. 76 FR 9515 - Airworthiness Directives; Turbomeca S.A. ARRIEL 2B and 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... on a single engine helicopter. For the case occurring in flight on a single engine helicopter (ARRIEL 2B1 engine), the pilot performed an emergency autorotation, landing the helicopter without further... twin engine applications and recently one on a single engine helicopter. For the case occurring...

  20. Functional characterization of CYP2B6 allelic variants in demethylation of antimalarial artemether.

    PubMed

    Honda, Masashi; Muroi, Yuka; Tamaki, Yuichiro; Saigusa, Daisuke; Suzuki, Naoto; Tomioka, Yoshihisa; Matsubara, Yoichi; Oda, Akifumi; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2011-10-01

    Artemether (AM) is one of the most effective antimalarial drugs. The elimination half-life of AM is very short, and it shows large interindividual variability in pharmacokinetic parameters. The aim of this study was to identify cytochrome P450 (P450) isozymes responsible for the demethylation of AM and to evaluate functional differences between 26 CYP2B6 allelic variants in vitro. Of 14 recombinant P450s examined in this study, CYP2B6 and CYP3A4 were primarily responsible for production of the desmethyl metabolite dihydroartemisinin. The intrinsic clearance (V(max)/K(m)) of CYP2B6 was 6-fold higher than that of CYP3A4. AM demethylation activity was correlated with CYP2B6 protein levels (P = 0.004); however, it was not correlated with CYP3A4 protein levels (P = 0.27) in human liver microsomes. Wild-type CYP2B6.1 and 25 CYP2B6 allelic variants (CYP2B6.2-CYP2B6.21 and CYP2B6.23-CYP2B6.27) were heterologously expressed in COS-7 cells. In vitro analysis revealed no enzymatic activity in 5 variants (CYP2B6.8, CYP2B6.12, CYP2B6.18, CYP2B6.21, and CYP2B6.24), lower activity in 7 variants (CYP2B6.10, CYP2B6.11, CYP2B6.14, CYP2B6.15, CYP2B6.16, CYP2B6.20, and CYP2B6.27), and higher activity in 4 variants (CYP2B6.2, CYP2B6.4, CYP2B6.6, and CYP2B6.19), compared with that of wild-type CYP2B6.1. In kinetic analysis, 3 variants (CYP2B6.2, CYP2B6.4, and CYP2B6.6) exhibited significantly higher V(max), and 3 variants (CYP2B6.14, CYP2B6.20 and CYP2B6.27) exhibited significantly lower V(max) compared with that of CYP2B6.1. This functional analysis of CYP2B6 variants could provide useful information for individualization of antimalarial drug therapy.

  1. Delayed diagnosis of late-onset Pompe disease in patients with myopathies of unknown origin and/or hyperCKemia.

    PubMed

    Pérez-López, Jordi; Selva-O'Callaghan, Albert; Grau-Junyent, Josep M; Gallego-Galindo, Luis; Coll, M Josep; García-Morillo, Salvador; Torralba-Cabeza, Miguel A; Vilardell-Tarrés, Miquel

    2015-04-01

    Pompe disease is a rare metabolic myopathy whose diagnosis is sometimes delayed despite being essential for improving clinical outcomes. We aimed to investigate the prevalence of late-onset Pompe disease among patients with a myopathy of unknown etiology, including polymyositis, or with idiopathic rise of creatine kinase (CK) levels, in a department of internal medicine. A cohort study was conducted in 241 subjects: 140 patients with myopathies of unknown origin or increased CK levels, 30 with polymyositis and 71 who constituted the control group of other myopathies. Acid α-glucosidase (GAA) activity was tested in dried blood spots. If a positive result was obtained, GAA activity in isolated lymphocytes and/or genetic testing was performed as a confirmatory diagnosis. Out of the 140 investigated patients, 2 patients with myopathies of unknown origin were confirmed to be positive for Pompe disease. Thus, late-onset Pompe disease should be considered among adult patients with myopathy of unknown origin.

  2. Compound RYR1 heterozygosity resulting in a complex phenotype of malignant hyperthermia susceptibility and a core myopathy.

    PubMed

    Kraeva, N; Heytens, L; Jungbluth, H; Treves, S; Voermans, N; Kamsteeg, E; Ceuterick-de Groote, C; Baets, J; Riazi, S

    2015-07-01

    Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic myopathy triggered by exposure to volatile anesthetics and/or depolarizing muscle relaxants. Susceptibility to MH is primarily associated with dominant mutations in the ryanodine receptor type 1 gene (RYR1). Recent genetic studies have shown that RYR1 variants are the most common cause of dominant and recessive congenital myopathies - central core and multi-minicore disease, congenital fiber type disproportion, and centronuclear myopathy. However, the MH status of many patients, especially with recessive RYR1-related myopathies, remains uncertain. We report the occurrence of a triplet of RYR1 variants, c.4711A>G (p.Ile1571Val), c.10097G>A (p.Arg3366His), c.11798A>G (p.Tyr3933Cys), found in cis in four unrelated families, one from Belgium, one from The Netherlands and two from Canada. Phenotype-genotype correlation analysis indicates that the presence of the triplet allele alone confers susceptibility to MH, and that the presence of this allele in a compound heterozygous state with the MH-associated RYR1 variant c.14545G>A (p.Val4849Ile) results in the MH susceptibility phenotype and a congenital myopathy with cores and rods. Our study underlines the notion that assigning pathogenicity to individual RYR1 variants or combination of variants, and counseling in RYR1-related myopathies may require integration of clinical, histopathological, in vitro contracture testing, MRI and genetic findings.

  3. An update on type 2B von Willebrand disease.

    PubMed

    Mikhail, Sameh; Aldin, Ehab Saad; Streiff, Michael; Zeidan, Amer

    2014-04-01

    Type 2B von Willebrand disease (VWD) accounts for fewer than 5% of all VWD patients. In this disease, mutations in the A1 domain result in increased von Willebrand factor (VWF) binding to platelet GPIbα receptors, causing increased platelet clearance and preferential loss of high molecular weight VWF multimers. Diagnosis is complicated because of significant clinical variations even among patients with identical mutations. Platelet transfusion often provides suboptimal results since transfused platelets may be aggregated by the patients' abnormal VWF. Desmopressin may cause a transient decrease in platelet count that could lead to an increased risk of bleeding. Replacement therapy with factor VIII/VWF concentrates is the most effective approach to prevention and treatment of bleeding in type 2B VWD.

  4. Twenty-Year Clinical Progression of Dysferlinopathy in Patients from Dagestan.

    PubMed

    Umakhanova, Zoya R; Bardakov, Sergei N; Mavlikeev, Mikhail O; Chernova, Olga N; Magomedova, Raisat M; Akhmedova, Patimat G; Yakovlev, Ivan A; Dalgatov, Gimat D; Fedotov, Valerii P; Isaev, Artur A; Deev, Roman V

    2017-01-01

    To date, over 30 genes with mutations causing limb-girdle muscle dystrophy have been described. Dysferlinopathies are a form of limb-girdle muscle dystrophy type 2B with an incidence ranging from 1:1,300 to 1:200,000 in different populations. In 1996, Dr. S. N. Illarioshkin described a family from the Botlikhsky district of Dagestan, where limb-girdle muscle dystrophy type 2B and Miyoshi myopathy were diagnosed in 12 members from three generations of a large Avar family. In 2000, a previously undescribed mutation in the DYSF gene (c.TG573/574AT; p. Val67Asp) was detected in the affected members of this family. Twenty years later, in this work, we re-examine five known and seven newly affected family members previously diagnosed with dysferlinopathy. We observed disease progression in family members who were previously diagnosed and noted obvious clinical polymorphism of the disease. A typical clinical case is provided.

  5. Dysferlin at transverse tubules regulates Ca2+ homeostasis in skeletal muscle

    PubMed Central

    Kerr, Jaclyn P.; Ward, Christopher W.; Bloch, Robert J.

    2014-01-01

    The class of muscular dystrophies linked to the genetic ablation or mutation of dysferlin, including Limb Girdle Muscular Dystrophy 2B (LGMD2B) and Miyoshi Myopathy (MM), are late-onset degenerative diseases. In lieu of a genetic cure, treatments to prevent or slow the progression of dysferlinopathy are of the utmost importance. Recent advances in the study of dysferlinopathy have highlighted the necessity for the maintenance of calcium handling in altering or slowing the progression of muscular degeneration resulting from the loss of dysferlin. This review highlights new evidence for a role for dysferlin at the transverse (t-) tubule of striated muscle, where it is involved in maintaining t-tubule structure and function. PMID:24639655

  6. Clinical, histological and genetic characterization of reducing body myopathy caused by mutations in FHL1

    PubMed Central

    Schessl, Joachim; Taratuto, Ana L.; Sewry, Caroline; Battini, Roberta; Chin, Steven S.; Maiti, Baijayanta; Dubrovsky, Alberto L.; Erro, Marcela G.; Espada, Graciela; Robertella, Monica; Saccoliti, Maria; Olmos, Patricia; Bridges, Leslie R.; Standring, Peter; Hu, Ying; Zou, Yaqun; Swoboda, Kathryn J.; Scavina, Mena; Goebel, Hans-Hilmar; Mitchell, Christina A.; Flanigan, Kevin M.; Muntoni, Francesco

    2009-01-01

    We recently identified the X-chromosomal four and a half LIM domain gene FHL1 as the causative gene for reducing body myopathy, a disorder characterized by progressive weakness and intracytoplasmic aggregates in muscle that exert reducing activity on menadione nitro-blue-tetrazolium (NBT). The mutations detected in FHL1 affected highly conserved zinc coordinating residues within the second LIM domain and lead to the formation of aggregates when transfected into cells. Our aim was to define the clinical and morphological phenotype of this myopathy and to assess the mutational spectrum of FHL1 mutations in reducing body myopathy in a larger cohort of patients. Patients were ascertained via the detection of reducing bodies in muscle biopsy sections stained with menadione-NBT followed by clinical, histological, ultrastructural and molecular genetic analysis. A total of 11 patients from nine families were included in this study, including seven sporadic patients with early childhood onset disease and four familial cases with later onset. Weakness in all patients was progressive, sometimes rapidly so. Respiratory failure was common and scoliosis and spinal rigidity were significant in some of the patients. Analysis of muscle biopsies confirmed the presence of aggregates of FHL1 positive material in all biopsies. In two patients in whom sequential biopsies were available the aggregate load in muscle sections appeared to increase over time. Ultrastructural analysis revealed that cytoplasmic bodies were regularly seen in conjunction with the reducing bodies. The mutations detected were exclusive to the second LIM domain of FHL1 and were found in both sporadic as well as familial cases of reducing body myopathy. Six of the nine mutations affected the crucial zinc coordinating residue histidine 123. All mutations in this residue were de novo and were associated with a severe clinical course, in particular in one male patient (H123Q). Mutations in the zinc coordinating residue

  7. Agent-based services for B2B electronic commerce

    NASA Astrophysics Data System (ADS)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  8. The Recently Revived and Produced Goddard Satellite-based Surface Turbulent Fluxes Version-2b (GSSTF2b) Dataset

    NASA Astrophysics Data System (ADS)

    Shie, C.; Chiu, L.; Adler, R. F.; Lin, I. I.; Nelkin, E. J.; Ardizzone, J. V.; Gao, S.

    2009-12-01

    Accurate sea surface flux measurements are crucial to understanding the global water and energy cycles. Remote sensing is a valuable tool for global monitoring of these flux measurements. The GSSTF (Goddard Satellite-based Surface Turbulent Fluxes) algorithm was thus developed and applied to remote sensing research and applications. The subsequently produced daily global (1ox1o) GSSTF2 (Version-2) dataset (July 1987-December 2000) has been widely used by the scientific community for global energy and water cycle research, as well as regional and short period data analyses since its official release in 2001. We have recently been funded by the NASA/MEaSUREs Program to resume processing of the GSSTF with an objective of continually producing an up-to-date uniform and reliable dataset of sea surface turbulent fluxes, derived from improved input remote sensing data and model reanalysis, which would continue to be useful for global energy and water flux research and applications. The daily global (1ox1o) GSSTF2b (Version-2b) dataset (July 1987-December 2007 so far) has been produced very recently using improved input datasets. The upgraded input datasets used for the GSSTF2b production consist of the Special Sensor Microwave Imager (SSM/I) Version-6 (V6) product (including brightness temperature [Tb], total precipitable water [W], and wind speed [U]) and the NCEP/DOE Reanalysis-2 (R2) product (including sea skin temperature [SKT], 2-meter air temperature [T2m], and sea level pressure [SLP]). The input datasets previously used for the GSSTF2 production were the SSM/I Version-4 (V4) product and the NCEP Reanalysis-1 (R1) product. These newly produced GSSTF2b turbulent fluxes, along with their counterparts from GSSTF2, have been validated using available sounding observations obtained from five field experiments. The GSSTF2b product has been found to generally agree better with the sounding observations than its counterpart (GSSTF2) does in all the three flux components

  9. MOLECULAR CHARACTERIZATION OF CYP2B6 SUBSTRATES

    PubMed Central

    Ekins, Sean; Iyer, Manisha; Krasowski, Matthew D.; Kharasch, Evan D.

    2008-01-01

    CYP2B6 has not been as fully characterized at the molecular level as other members of the human cytochrome P450 family. As more widely used in vitro probes for characterizing the involvement of this enzyme in the metabolism of xenobiotics have become available, the number of molecules identified as CYP2B6 substrates has increased. In this study we have analyzed the available kinetic data generated by multiple laboratories with human recombinant expressed CYP2B6 and along with calculated molecular properties derived from the ChemSpider database, we have determined the molecular features that appear to be important for CYP2B6 substrates. In addition we have applied 2D and 3D QSAR methods to generate predictive pharmacophore and 2D models. For 28 molecules with Km data, the molecular weight (mean ± SD) is 253.78±74.03, ACD/logP is 2.68±1.51, LogDpH 5.5 is 1.51±1.43, LogDpH 7.4 is 2.02±1.25, hydrogen bond donor (HBD) count is 0.57 ±0.57, hydrogen bond acceptor (HBA) count is 2.57±1.37, rotatable bonds is 3.50±2.71 and total polar surface area (TPSA) is 27.63±19.42. A second set of 15 molecules without Km data possessed similar mean molecular property values. These properties are comparable to those of a set of 21 molecules used in a previous pharmacophore modeling study (Ekins et al., J Pharmacol Exp Ther 288 (1), 21–29, 1999). Only the LogD and HBD values were statistically significantly different between these different datasets. We have shown that CYP2B6 substrates are generally small hydrophobic molecules that are frequently central nervous system active, which may be important for drug discovery research. PMID:18537573

  10. The ISS 2B PVTCS Ammonia Leak: An Operational History

    NASA Technical Reports Server (NTRS)

    Vareha, Anthony

    2014-01-01

    In 2006, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B power channel began leaking ammonia at a rate of approximately 1.5lbm/year (out of a starting approximately 53lbm system ammonia mass). Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity during the STS-134 mission. During this mission the system was topped off with ammonia piped over from a separate thermal control system. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. Without these periodic EVAs to refill the 2B coolant system, the channel would eventually leak enough fluid as to risk pump cavitation and system failure, resulting in the loss of the 2B power channel - the most critical of the Space Station's 8 power channels. In mid-2012, the leak rate increased to approximately 5lbm/year. Once discovered, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to a dormant thermal control system not intended to be utilized as anything other than spare components. The purpose of this rerouting of the TCS was to increase system volume and to isolate the photovoltaic radiator, thought to be the likely leak source. This EVA was successfully executed on November 1st, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a totally different radiator than what the system was designed to utilize. Unfortunately, data monitoring over the next several months showed that the isolated radiator was not leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the

  11. Serotonin 2B Receptor (5-HT2B R) Signals through Prostacyclin and PPAR-ß/δ in Osteoblasts

    PubMed Central

    Chabbi-Achengli, Yasmine; Launay, Jean-Marie; Maroteaux, Luc; de Vernejoul, Marie Christine; Collet, Corinne

    2013-01-01

    Osteoporosis is due to an imbalance between decreased bone formation by osteoblasts and increased resorption by osteoclasts. Deciphering factors controlling bone formation is therefore of utmost importance for the understanding and the treatment of osteoporosis. Our previous in vivo results showed that bone formation is reduced in the absence of the serotonin receptor 5-HT2B, causing impaired osteoblast proliferation, recruitment, and matrix mineralization. In this study, we investigated the signaling pathways responsible for the osteoblast defect in 5-HT2BR−/− mice. Notably, we investigated the phospholipase A2 pathway and synthesis of eicosanoids in 5-HT2BR−/− compared to wild type (WT) osteoblasts. Compared to control osteoblasts, the lack of 5-HT2B receptors was only associated with a 10-fold over-production of prostacyclin (PGI2). Also, a specific prostacyclin synthase inhibitor (U51605) rescued totally osteoblast aggregation and matrix mineralization in the 5-HT2BR−/− osteoblasts without having any effect on WT osteoblasts. Prostacyclin is the endogenous ligand of the nuclear peroxisome proliferator activated receptor ß/δ (PPAR-ß/δ), and its inhibition in 5-HT2BR−/− cells rescued totally the alkaline phosphatase and osteopontin mRNA levels, cell-cell adhesion, and matrix mineralization. We conclude that the absence of 5-HT2B receptors leads to the overproduction of prostacyclin, inducing reduced osteoblast differentiation due to PPAR-ß/δ -dependent target regulation and defective cell-cell adhesion and matrix mineralization. This study thus reveals a previously unrecognized cell autonomous osteoblast defect in the absence of 5-HT2BR and highlights a new pathway linking 5-HT2B receptors and nuclear PPAR- ß/δ via prostacyclin. PMID:24069449

  12. A mitochondrial tRNA aspartate mutation causing isolated mitochondrial myopathy.

    PubMed

    Seneca, Sara; Goemans, Nathalie; Van Coster, Rudy; Givron, Patrice; Reybrouck, Tony; Sciot, Raf; Meulemans, Ann; Smet, Joel; Van Hove, Johan L K

    2005-08-30

    Several mutations in mitochondrial transfer RNA (tRNA) genes can cause mitochondrial myopathy. We describe a young girl who presented with pronounced exercise intolerance. The anaerobic threshold and the maximal oxygen consumption were decreased. She had decreased complex I and IV enzyme activity and ragged red fibers on muscle biopsy. An A to G transition at nucleotide position 7526 in tRNA Aspartate (tRNA(Asp)) gene was heteroplasmic in several of the patient's tissues. We were unable to detect the mutation in muscle tissue from the patient's mother. This case adds a new genetic etiology for mitochondrial myopathy. It also illustrates for patients with combined deficiency of the complex I and IV enzyme activity the value of sequencing in the affected tissue muscle, and not only in blood, all mitochondrial tRNA genes including those not commonly affected, such as in this case mt tRNA(Asp).

  13. [An autosomal recessive syndrome with myopathy and central and peripheral nervous system involvement (author's transl)].

    PubMed

    Warter, J M; Marescaux, C; Coquillat, G; Walter, P; Micheletti, G; Rohmer, F

    1981-01-01

    Three of 11 children, offspring of a consanguineous marriage, presented a progressive myopathy and seizures, associated with symptoms suggesting both central and peripheral nervous system involvement. The ultrastructural muscular lesions were not specific. The association of severe impairment of muscle tissue and of central nervous system is rare, being described in centronuclear myopathy, cerebromuscular dystrophy, Kearns-Sayre syndrome and in a few isolated cases. Clinically only these isolated observations and especially the Kearns-Sayre syndrome demonstrate analogies to our observations. These data lead us to the discussion of the specificity of ultrastructural lesions, especially mitochondrial abnormalities. Some authors consider these abnormalities to be the biochemical hallmark for ophthalmoplegia plus, whereas for others, especially Drachman, they are an inconstant and nonspecific finding, merely the consequence and not the cause of this disease. These observations argue for the relationship between muscular pathology and nervous system dysfunction.

  14. Ranolazine-induced myopathy in a patient on chronic statin therapy.

    PubMed

    Correa, Daniel; Landau, Mark

    2013-03-01

    We present a case demonstrating clinical, electrophysiological, serological, and radiological evidence of a myopathy induced by ranolazine, in a patient otherwise asymptomatic on chronic statin therapy. The patient developed proximal weakness, serum creatine kinase levels of 1875 U/L, electromyography with muscle membrane instability and small short-duration motor unit potentials, and magnetic resonance imaging evidence of muscle edema. The manifestations began within one week of initiation of ranolazine and improved within days after discontinuation. Ranolazine is a weak inhibitor of CYP3A4 known to increase the serum level of simvastatin and its active metabolite 2-fold. We postulate that the addition of ranolazine to a medical regimen that included atorvastatin induced a myoncecrotic myopathy.

  15. Camptocormia and dropped head syndrome as a clinic picture of myotonic myopathy.

    PubMed

    Kocaaga, Zehra; Bal, Serpil; Turan, Yasemin; Gurgan, Alev; Esmeli, Figen

    2008-12-01

    Dropped head syndrome is primarily based on weakness localized at neck extensors. It may result from motor neuron disease, myasthenia gravis, and chronic inflammatory demyelinating polyneuropathy and also from various neuromuscular diseases including inflammatory, dystrophic and metabolic myopathies. Camptocormia (CC) on the other hand is an unusual condition characterized by progressive weakness of the extensor vertebral muscles and results in involuntary trunk flexion. CC may emerge as a clinical feature of many different conditions such as several myopathies and Parkinson's disease. The association of dropped head syndrome with CC has been rarely published in the literature. However, this is the only case presenting with concomitant dropped head syndrome and CC as a clinical picture of myotonic dystrophy (MD). In this report we aimed to represent a female patient, who was diagnosed as having myotonic dystrophy, with concurrent dropped head syndrome and CC.

  16. A myopathy associated with protozoan schizonts in chickens in commercial farms in peninsular Malaysia.

    PubMed

    Opitz, H M; Jakob, H J; Wiensenhuetter, E; Devi, V V

    1982-01-01

    A myopathy associated with elongated intramuscular protozoan schizonts of uncertain classification was observed in chickens in commercial farms. Of 152 affected fowls originating from 21 flocks in 12 farms, 149 were 24 weeks of age or older and 136 were broiler breeder birds. Both sexes were affected. The disease was only observed during the months of October, November and December, 1976 and 1977. The monthly mortality rate in affected adult flocks rose by 0.5% to 4% and the egg production declined by 5% to 15% during this period. Most affected birds were in good body condition or overweight. Gross lesions were usually present in all skeletal muscles and the cardiac muscle. They resembled nutritional myopathy, sarcosporidiosis, leucocytozoonosis or haemorrhagic syndrome. Microscopically visible elongated schizonts were demonstrated in skeletal muscles and the cardiac muscle in 49 of 55 birds examined histologically. The possible aetiology with respect to known parasites of muscles in fowls is discussed.

  17. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.

    PubMed

    Velleman, Sandra G

    2015-12-01

    Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.

  18. Glutaric aciduria type II presenting as myopathy and rhabdomyolysis in a teenager.

    PubMed

    Prasad, Manish; Hussain, Shanawaz

    2015-01-01

    Late-onset glutaric aciduria type II has been described recently as a rare but treatable cause of proximal myopathy in teenagers and adults. It is an autosomal recessive disease affecting fatty acid, amino acid, and choline metabolism. This is usually a result of 2 defective flavoproteins: either electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone oxidoreductase (ETF:QO). We present a 14-year-old boy with a background of autistic spectrum disorder who presented with severe muscle weakness and significant rhabdomyolysis. Before the onset of muscle weakness, he was very active but was completely bedridden at presentation. Diagnosis was established quickly by urine organic acid and plasma acylcarnitine analysis. He has shown significant improvement after starting oral riboflavin supplementation and is now fully mobile. This case highlights that late-onset glutaric aciduria type II is an important differential diagnosis to consider in teenagers presenting with proximal myopathy and rhabdomyolysis and it may not be associated with hypoglycemia.

  19. A PATTERN RECOGNITION APPROACH TO THE PATIENT WITH A SUSPECTED MYOPATHY

    PubMed Central

    Barohn, Richard J.; Dimachkie, Mazen M.; Jackson, Carlayne E.

    2014-01-01

    Myopathies are a heterogeneous group of disorders that can be challenging to diagnose. The purpose of this review is to provide a diagnostic approach based predominantly upon the clinical history and neurologic examination. Laboratory testing that can be subsequently used to confirm the suspected diagnosis based upon this pattern recognition approach will also be discussed. Over the past decade, there have been numerous discoveries allowing clinicians to diagnose myopathies with genetic testing. Unfortunately, some of the testing, particularly molecular genetics, is extremely expensive and frequently not covered by insurance. Careful consideration of the distribution of muscle weakness and attention to common patterns of involvement in the context of other aspects of the neurologic examination and laboratory evaluation should assist the clinician in making a timely and accurate diagnosis, and sometimes can minimize the expense of further testing PMID:25037080

  20. Late-onset polyglucosan body myopathy in five patients with a homozygous mutation in GYG1

    PubMed Central

    Akman, H. Orhan; Aykit, Yavuz; Amuk, Ozge Ceren; Malfatti, Edoardo; Romero, Norma B.; Maioli, Maria Antonietta; Piras, Rachele; DiMauro, Salvatore; Marrosu, Gianni

    2015-01-01

    Five Sardinian patients presented in their 5th or 6th decade with progressive limb girdle muscle weakness but their muscle biopsies showed vacuolar myopathy. The more or less abundant subsarcolemmal and intermyofibrillar vacuoles showed intense, partially α-amylase resistant, PAS-positive deposits consistent with polyglucosan. The recent description of late-onset polyglucosan myopathy has prompted us to find new genetic defects in the gene (GYG1) encoding glycogenin-1, the crucial primer enzyme of glycogen synthesis in muscle. We found a single homozygous intronic mutation harbored by five patients, who, except for two siblings, appear to be unrelated but all five live in central or south Sardinian villages. PMID:26652229

  1. Hereditary inclusion-body myopathy: clues on pathogenesis and possible therapy.

    PubMed

    Broccolini, Aldobrando; Gidaro, Teresa; Morosetti, Roberta; Mirabella, Massimiliano

    2009-09-01

    Hereditary inclusion-body myopathy (h-IBM), or distal myopathy with rimmed vacuoles (DMRV), is an autosomal recessive disorder with onset in early adult life and a progressive course leading to severe disability. h-IBM/DMRV is due to mutations of a gene (GNE) that codes for a rate-limiting enzyme in the sialic acid biosynthetic pathway. Despite the identification of the causative gene defect, it has not been unambiguously clarified how GNE gene mutations impair muscle metabolism. Although numerous studies have indicated a key role of hyposialylation of glycoproteins in h-IBM/DMRV pathogenesis, others have demonstrated new and unpredicted functions of the GNE gene, outside the sialic acid biosynthetic pathway, that may also be relevant. This review illustrates the clinical and pathologic characteristics of h-IBM/DMRV and the main clues available to date concerning the possible pathogenic mechanisms and therapeutic perspectives of this disorder.

  2. Salvaging hope: Is increasing NAD(+) a key to treating mitochondrial myopathy?

    PubMed

    Lightowlers, Robert N; Chrzanowska-Lightowlers, Zofia M A

    2014-06-01

    Mitochondrial diseases can arise from mutations either in mitochondrial DNA or in nuclear DNA encoding mitochondrially destined proteins. Currently, there is no cure for these diseases although treatments to ameliorate a subset of the symptoms are being developed. In this issue of EMBO Molecular Medicine, Khan et al (2014) use a mouse model to test the efficacy of a simple dietary supplement of nicotinamide riboside to treat and prevent mitochondrial myopathies.

  3. The Impact of Exercise on Statin-Associated Skeletal Muscle Myopathy

    PubMed Central

    Chung, Hae R.; Vakil, Mayand; Munroe, Michael; Parikh, Alay; Meador, Benjamin M.; Wu, Pei T.; Jeong, Jin H.; Woods, Jeffrey A.; Wilund, Kenneth R.; Boppart, Marni D.

    2016-01-01

    HMG-CoA reductase inhibitors (statins) are the most effective pharmacological means of reducing cardiovascular disease risk. The most common side effect of statin use is skeletal muscle myopathy, which may be exacerbated by exercise. Hypercholesterolemia and training status are factors that are rarely considered in the progression of myopathy. The purpose of this study was to determine the extent to which acute and chronic exercise can influence statin-induced myopathy in hypercholesterolemic (ApoE-/-) mice. Mice either received daily injections of saline or simvastatin (20 mg/kg) while: 1) remaining sedentary (Sed), 2) engaging in daily exercise for two weeks (novel, Nov), or 3) engaging in daily exercise for two weeks after a brief period of training (accustomed, Acct) (2x3 design, n = 60). Cholesterol, activity, strength, and indices of myofiber damage and atrophy were assessed. Running wheel activity declined in both exercise groups receiving statins (statin x time interaction, p<0.05). Cholesterol, grip strength, and maximal isometric force were significantly lower in all groups following statin treatment (statin main effect, p<0.05). Mitochondrial content and myofiber size were increased and 4-HNE was decreased by exercise (statin x exercise interaction, p<0.05), and these beneficial effects were abrogated by statin treatment. Exercise (Acct and Nov) increased atrogin-1 mRNA in combination with statin treatment, yet enhanced fiber damage or atrophy was not observed. The results from this study suggest that exercise (Nov, Acct) does not exacerbate statin-induced myopathy in ApoE-/- mice, yet statin treatment reduces activity in a manner that prevents muscle from mounting a beneficial adaptive response to training. PMID:27936249

  4. Paraneoplastic Necrotizing Autoimmune Myopathy in a Patient Undergoing Laparoscopic Pancreatoduodenectomy for Distal Cholangiocarcinoma

    PubMed Central

    van Dijk, Stefan; van der Kooi, Anneke J.; Aronica, Eleonora; van Gulik, Thomas M.; Busch, Olivier R.; Besselink, Marc G.

    2016-01-01

    A 73-year-old male presented with jaundice and severe muscle weakness. He was diagnosed with distal cholangiocarcinoma and paraneoplastic necrotizing autoimmune myopathy (NAM). Treatment of NAM consisted of dexamethasone pulse therapy, prednisone, and single-dose intravenous immunoglobulin. The distal cholangiocarcinoma was resected through a total laparoscopic pancreatoduodenectomy. After hospital discharge, muscle strength initially increased postoperatively; however, pneumonia resulted in the deterioration of his general condition and death 5 months after the diagnosis of paraneoplastic NAM. PMID:27843429

  5. Novel myosin-based therapies for congenital cardiac and skeletal myopathies

    PubMed Central

    Ochala, Julien; Sun, Yin-Biao

    2016-01-01

    The dysfunction in a number of inherited cardiac and skeletal myopathies is primarily due to an altered ability of myofilaments to generate force and motion. Despite this crucial knowledge, there are, currently, no effective therapeutic interventions for these diseases. In this short review, we discuss recent findings giving strong evidence that genetically or pharmacologically modulating one of the myofilament proteins, myosin, could alleviate the muscle pathology. This should constitute a research and clinical priority. PMID:27412953

  6. Acute Hemorrhagic Myositis in Inflammatory Myopathy and Review of the Literature

    PubMed Central

    Van Gelder, Howard; Wu, Kim M.; Gharibian, Nayiri; Patel, Dharmi B.; Clements, Philip J.; Heinze, Emil R.; Morris, Robert I.; Wong, Andrew L.

    2014-01-01

    We describe two patients with dermatomyositis that presented with interstitial lung disease, positive V and Shawl sign who developed acute spontaneous abdominal/retroperitoneal bleed. Both patients expired despite aggressive treatment and resuscitation. Hemorrhagic myositis in these two patients with inflammatory myopathy is a very rare complication. The association of anti-Ro52 with this potentially very serious complication remains unclear. This potential relationship should be further evaluated in future studies. PMID:25379317

  7. Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells

    PubMed Central

    Dahl-Halvarsson, Martin; Pokrzywa, Malgorzata; Rauthan, Manish; Pilon, Marc

    2017-01-01

    Myosin storage myopathy is a protein aggregate myopathy associated with the characteristic subsarcolemmal accumulation of myosin heavy chain in muscle fibers. Despite similar histological findings, the clinical severity and age of onset are highly variable, ranging from no weakness to severe impairment of ambulation, and usually childhood-onset to onset later in life. Mutations located in the distal end of the tail of slow/ß-cardiac myosin heavy chain are associated with myosin storage myopathy. Four missense mutations (L1793P, R1845W, E1883K and H1901L), two of which have been reported in several unrelated families, are located within or closed to the assembly competence domain. This location is critical for the proper assembly of sarcomeric myosin rod filaments. To assess the mechanisms leading to protein aggregation in myosin storage myopathy and to evaluate the impact of these mutations on myosin assembly and muscle function, we expressed mutated myosin proteins in cultured human muscle cells and in the nematode Caenorhabditis elegans. While L1793P mutant myosin protein efficiently incorporated into the sarcomeric thick filaments, R1845W and H1901L mutants were prone to formation of myosin aggregates without assembly into striated sarcomeric thick filaments in cultured muscle cells. In C. elegans, mutant alleles of the myosin heavy chain gene unc-54 corresponding to R1845W, E1883K and H1901L, were as effective as the wild-type myosin gene in rescuing the null mutant worms, indicating that they retain functionality. Taken together, our results suggest that the basis for the pathogenic effect of the R1845W and H1901L mutations are primarily structural rather than functional. Further analyses are needed to identify the primary trigger for the histological changes seen in muscle biopsies of patients with L1793P and E1883K mutations. PMID:28125727

  8. Idiopathic Inflammatory Myopathies: an Update on Classification and Treatment with Special Focus on Juvenile Forms.

    PubMed

    Pagnini, Ilaria; Vitale, Antonio; Selmi, Carlo; Cimaz, Rolando; Cantarini, Luca

    2017-02-01

    Juvenile inflammatory myopathies represent a heterogeneous group of rare and potentially fatal disorders of unknown aetiology, characterised by inflammation and proximal and symmetric muscle weakness. Beyond many similarities, specific clinical, laboratoristic and histopathologic features underlie different subsets with distinguishing demographic, prognostic and therapeutic peculiarities. Over time, several forms of inflammatory idiopathic myopathies have been described, including macrophagic myofascitis, immune-mediated necrozing myopathy and the spectrum of amyopathic dermatomyositis that include hypomyopathic dermatomyositis, inclusion body myositis and cancer-associated myositis occurring almost exclusively in adults. However, juvenile dermatomyositis is the most frequent in childhood, whereas polymyositis is relatively more frequent in adults. The aetiology is nowadays widely unclear; however, current theories contemplate a combination of environmental triggers, immune dysfunction and specific tissue responses involving muscle, skin and small vessels endothelium in genetically susceptible individuals. Myositis-specific autoantibodies, found almost exclusively in patients with myositis and myositis-associated autoantibodies, detectable both among patients with myositis and in subjects suffering from other autoimmune diseases, have an important clinical role because of their relation to specific clinical features, response to therapy and prognosis. The gold standard treatment for juvenile dermatomyositis is represented by corticosteroids, along with adjunctive steroid-sparing immunosuppressive therapies, which are used to counteract disease activity, prevent mortality, and reduce long-term disability. Further treatment approach such as biologic agents and autologous stem cell transplantation are emerging during the last years, in particular in patients difficult to treat and with poor prognosis. Therefore, a highly medical specialised approach is required for

  9. Whole-body MRI for full assessment and characterization of diffuse inflammatory myopathy

    PubMed Central

    Elessawy, Saleh Saleh; Abdel Razek, Eman; Tharwat, Samar

    2016-01-01

    Background Conventional magnetic resonance imaging (MRI) is a highly valuable tool for full assessment of the extent of bilateral symmetrical diffuse inflammatory myopathy, owing to its high sensitivity in the detection of edema which correlates with, and sometimes precedes, clinical findings. Purpose To evaluate the use of whole-body (WB)-MRI in characterization and full assessment of the extent and distribution of diffuse inflammatory myopathy. Material and Methods A prospective study on 15 patients presenting with clinical evidence of inflammatory myopathy. It included 4 boys/men and 11 girls/women (age range, 6–44 years; mean age, 25.5 years). 1.5 T WB-MRI was performed and the distribution and extent of disease severity was assessed according to muscle edema on STIR images. Results Four cases of dermatomyositis showed lower limb disease predilection with edema in gluteal, thigh, and calf muscles. The same finding was seen in one case with recurrent polymyositis and three cases with overlap myositis with systemic lupus erythematosus (SLE). Bilateral upper and lower limb myositis was demonstrated in three cases of polymyositis and one case of overlap myositis with scleroderma. Bilateral edema involving all scanned muscle groups was detected in three cases of polymyositis with paraneoplastic syndrome, SLE, and severe active dermatomyositis (including the neck muscles). Conclusion WB-MRI is the diagnostic modality of choice for cases of inflammatory myopathy. It accurately detects the most severely affected muscles candidate for biopsy and provides a reliable baseline study for follow-up of disease progression as well as response to treatment. PMID:27708860

  10. Myopathy, muscle atrophy and tongue lipid composition in MuSK myasthenia gravis.

    PubMed

    Nikolić, Ana V; Bačić, Goran G; Daković, Marko Ž; Lavrnić, Slobodan Đ; Rakočević Stojanović, Vidosava M; Basta, Ivana Z; Lavrnić, Dragana V

    2015-09-01

    Myasthenia gravis (MG) associated with anti-muscle-specific tyrosine kinase (MuSK) antibodies differs in many aspects from typical presentation of acetylcholine receptor (AChR)-positive MG. Myopathy and muscle atrophy are observed in MuSK-positive MG patients, unlike AChR-positive patients with MG. That is why the aim of this study was to assess the presence of myopathy and muscle atrophy as well as the tongue lipid composition in our cohort of MuSK-positive MG patients. Clinical examination, electromyography (EMG) and proton magnetic resonance spectroscopy were performed in 31 MuSK-positive and 28 AChR-positive MG patients. Myopathic EMG was more frequent in MuSK compared to AChR MG patients. In AChR MG patients, myopathic EMG in facial muscles was more frequent after long-term corticosteroid treatment, which was not the case with MuSK-positive MG patients. Facial and/or tongue muscle atrophy was registered in 23 % of MuSK MG patients. Longer disease duration was observed in patients with clinical signs of tongue and/or facial muscle atrophy compared to those with normal tongue muscle. Intramyocellular lipid deposition in the tongue was present in 85.2 % of MuSK and 20 % of AChR MG patients. Female MuSK MG patients had more frequently electrophysiological signs of myopathy on the facial muscles and signs of intramyocellular lipid deposition in the tongue, compared to male patients with MuSK-positive MG. Myopathy, muscle atrophy and intramyocellular lipid deposition in the tongue are more frequent in MuSK-positive compared to AChR-positive MG patients.

  11. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice.

    PubMed

    Yatsuga, Shuichi; Suomalainen, Anu

    2012-02-01

    Mitochondrial dysfunction is an important cause of metabolic disorders of children and adults, with no effective therapy options. Recently, induction of mitochondrial biogenesis, by transgenic overexpression of PGC1-alpha [peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1-alpha], was reported to delay progression of early-onset cytochrome-c-oxidase (COX) deficiency in skeletal muscle of two mouse models: a muscle-specific knock-out of COX10 (COX10-mKO) and a constitutive knock-out of Surf1 (Surf1-KO). A pan-PPAR agonist, bezafibrate, could similarly delay myopathy progression in COX10-mKOs, but not in SURF1-KOs. We asked whether bezafibrate affected disease progression in late-onset adult-type mitochondrial myopathy mice. These 'Deletor mice' express a dominant patient mutation in Twinkle-helicase, leading to accumulation of multiple mtDNA deletions and subsequent progressive respiratory chain (RC) deficiency with COX-negative muscle fibers at 12 months of age. The primary and secondary molecular findings in Deletor mice mimic closely those in patients with Twinkle myopathy. We applied 0.5% bezafibrate diet to Deletors for 22 weeks, starting at disease manifestation, mimicking patient treatment after diagnosis. Bezafibrate delayed significantly the accumulation of COX-negative fibers and multiple mtDNA deletions. However, mitochondrial biogenesis was not induced: mitochondrial DNA copy number, transcript and RC protein amounts decreased in both Deletors and wild-type mice. Furthermore, bezafibrate induced severe lipid oxidation effects, with hepatomegaly and loss of adipose tissue, the mechanism involving lipid mobilization by high hepatic expression of FGF21 cytokine. However, as bezafibrate has been tolerated well by humans, the beneficial muscle findings in Deletor mice support consideration of bezafibrate trials on adult patients with mitochondrial myopathy.

  12. Abnormalities in the expression of nebulin in chromosome-2 linked nemaline myopathy.

    PubMed

    Sewry, C A; Brown, S C; Pelin, K; Jungbluth, H; Wallgren-Pettersson, C; Labeit, S; Manzur, A; Muntoni, F

    2001-03-01

    Nemaline myopathy is clinically and genetically heterogeneous. The most common autosomal recessive form affecting infants (NEM2) links to chromosome 2q, and is caused by mutations in the gene for nebulin. We have examined the immunocytochemical expression of nebulin in skeletal muscle in 11 cases of nemaline myopathy, from ten families, with linkage compatible to chromosome 2q.22, the locus for nebulin. Mutations in the gene for nebulin have been found in eight of these cases. Immunolabelling with polyclonal antibodies to C-terminal regions of nebulin was compared with antibodies to fibre-type-specific myofibrillar proteins, including myosin heavy chain isoforms and alpha-actinin isoforms. No cases showed a complete absence of C-terminal nebulin, and no enhancement of labelling of the rods was seen with conventional fluorescence microscopy. In control muscle an antibody to the M176-181 repeat region of nebulin showed higher expression in fibres with slow myosin, while ones to the serine-rich domain and to the SH3 domain showed uniform expression. In some cases of nemaline myopathy differences in these patterns were observed. Two siblings with a homozygous mutation in exon 185, that produces a stop codon, showed an absence of labelling only with the SH3 antibody, and other cases showed uneven labelling with this antibody or some fibres devoid of label. Fibre type correlations also showed differences from controls, as some fibres had a fast isoform of one protein but a slow isoform of another. These results indicate that analysis of nebulin expression may detect abnormalities in some cases linked to the corresponding locus and may help to direct molecular analysis. In addition, they may also be relevant to studies of fibre type plasticity and diversity in nemaline myopathy.

  13. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy

    PubMed Central

    Garg, Ankit; O’Rourke, Jason; Long, Chengzu; Doering, Jonathan; Ravenscroft, Gianina; Bezprozvannaya, Svetlana; Nelson, Benjamin R.; Beetz, Nadine; Li, Lin; Chen, She; Laing, Nigel G.; Grange, Robert W.; Bassel-Duby, Rhonda; Olson, Eric N.

    2014-01-01

    Nemaline myopathy (NM) is a congenital myopathy that can result in lethal muscle dysfunction and is thought to be a disease of the sarcomere thin filament. Recently, several proteins of unknown function have been implicated in NM, but the mechanistic basis of their contribution to disease remains unresolved. Here, we demonstrated that loss of a muscle-specific protein, kelch-like family member 40 (KLHL40), results in a nemaline-like myopathy in mice that closely phenocopies muscle abnormalities observed in KLHL40-deficient patients. We determined that KLHL40 localizes to the sarcomere I band and A band and binds to nebulin (NEB), a protein frequently implicated in NM, as well as a putative thin filament protein, leiomodin 3 (LMOD3). KLHL40 belongs to the BTB-BACK-kelch (BBK) family of proteins, some of which have been shown to promote degradation of their substrates. In contrast, we found that KLHL40 promotes stability of NEB and LMOD3 and blocks LMOD3 ubiquitination. Accordingly, NEB and LMOD3 were reduced in skeletal muscle of both Klhl40–/– mice and KLHL40-deficient patients. Loss of sarcomere thin filament proteins is a frequent cause of NM; therefore, our data that KLHL40 stabilizes NEB and LMOD3 provide a potential basis for the development of NM in KLHL40-deficient patients. PMID:24960163

  14. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review.

    PubMed

    Canestaro, William J; Austin, Melissa A; Thummel, Kenneth E

    2014-11-01

    Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors, have proven efficacy in both lowering low-density-lipoprotein levels and preventing major coronary events, making them one of the most commonly prescribed drugs in the United States. Statins exhibit a class-wide side effect of muscle toxicity and weakness, which has led regulators to impose both dosage limitations and a recall. This review focuses on the best-characterized genetic factors associated with increased statin muscle concentrations, including the genes encoding cytochrome P450 enzymes (CYP2D6, CYP3A4, and CYP3A5), a mitochondrial enzyme (GATM), an influx transporter (SLCO1B1), and efflux transporters (ABCB1 and ABCG2). A systematic literature review was conducted to identify relevant research evaluating the significance of genetic variants predictive of altered statin concentrations and subsequent statin-related myopathy. Studies eligible for inclusion must have incorporated genotype information and must have associated it with some measure of myopathy, either creatine kinase levels or self-reported muscle aches and pains. After an initial review, focus was placed on seven genes that were adequately characterized to provide a substantive review: CYP2D6, CYP3A4, CYP3A5, GATM, SLCO1B1, ABCB1, and ABCG2. All statins were included in this review. Among the genetic factors evaluated, statin-related myopathy appears to be most strongly associated with variants in SLCO1B1.

  15. Subcellular Localization of Matrin 3 Containing Mutations Associated with ALS and Distal Myopathy

    PubMed Central

    Gallego-Iradi, M. Carolina; Clare, Alexis M.; Brown, Hilda H.; Janus, Christopher; Lewis, Jada; Borchelt, David R.

    2015-01-01

    Background Mutations in Matrin 3 [MATR3], an RNA- and DNA-binding protein normally localized to the nucleus, have been linked to amyotrophic lateral sclerosis (ALS) and distal myopathies. In the present study, we have used transient transfection of cultured cell lines to examine the impact of different disease-causing mutations on the localization of Matrin 3 within cells. Results Using CHO and human H4 neuroglioma cell models, we find that ALS/myopathy mutations do not produce profound changes in the localization of the protein. Although we did observe variable levels of Matrin 3 in the cytoplasm either by immunostaining or visualization of fluorescently-tagged protein, the majority of cells expressing either wild-type (WT) or mutant Matrin 3 showed nuclear localization of the protein. When cytoplasmic immunostaining, or fusion protein fluorescence, was seen in the cytoplasm, the stronger intensity of staining or fluorescence was usually evident in the nucleus. In ~80% of cells treated with sodium arsenite (Ars) to induce cytoplasmic stress granules, the nuclear localization of WT and F115C mutant Matrin 3 was not disturbed. Notably, over-expression of mutant Matrin 3 did not induce the formation of obvious large inclusion-like structures in either the cytoplasm or nucleus. Conclusions Our findings indicate that mutations in Matrin 3 that are associated with ALS and myopathy do not dramatically alter the normal localization of the protein or readily induce inclusion formation. PMID:26528920

  16. A novel perspective for burn-induced myopathy: Membrane repair defect

    PubMed Central

    Wang, Chao; Wang, Hongyu; Wu, Dan; Hu, Jianhong; Wu, Wei; Zhang, Yong; Peng, Xi

    2016-01-01

    Myopathy is a common complication of severe burn patients. One potential cause of this myopathy could be failure of the plasma membrane to undergo repair following injuries generated from toxin or exercise. The aim of this study is to assess systemic effect on muscle membrane repair deficiency in burn injury. Skeletal muscle fibers isolated from burn-injured mice were damaged with a UV laser and dye influx imaged confocally to evaluate membrane repair capacity. Membrane repair failure was also tested in burn-injured mice subjected to myotoxin or treadmill exercise. We further used C2C12 myotubules and animal models to investigate the role of MG53 in development of burn-induced membrane repair defect. We demonstrated that skeletal muscle myofibers in burn-injured mice showed significantly more dye uptake after laser damage than controls, indicating a membrane repair deficiency. Myotoxin or treadmill exercise also resulted in a higher-grade repair defect in burn-injured mice. Furthermore, we observed that burn injury induced a significant decrease in MG53 levels and its dimerization in skeletal muscles. Our findings highlight a new mechanism that implicates membrane repair failure as an underlying cause of burn-induced myopathy. And, the disorders in MG53 expression and MG53 dimerization are involved in this cellular pathology. PMID:27545095

  17. A new motor performance test in a prospective study on children with suspected myopathy.

    PubMed

    van den Beld, Willeke A; van der Sanden, Gitty A C; Feuth, Ton; Janssen, Anjo J W M; Sengers, Rob C A; Verbeek, André L M; Gabreëls, Fons J M

    2006-09-01

    In the development of a new diagnostic motor performance test to spare more children from painful muscle biopsy, seven functional items were used to measure muscle strength and muscle endurance in a prospective study on new patients. Over a 2-year period, 22 patients (12 males, 10 females; mean age 8y 1mo [SD 2y 6mo], range 4-11y) were recruited for the study. They had all been referred with suspected myopathy. The motor performance test was administered before muscle biopsy. Validity of the seven items was assessed using logistic regression analysis and receiver operating characteristic (ROC) analysis. Two items were withdrawn from the test because they were not suitable for children aged 4 to 5 years. The five remaining items were: Heels, Circuit, Stairs, Jump, and Gowers. A full logistic regression model including these five items was fitted to the total population of 90 patients suspected of having myopathy (from this study and our previous study) to make the best prediction of whether myopathy was present. The ROC area under the curve of the diagnostic prediction model was 0.92 (95% confidence interval [CI] 0.87-0.98) and 0.89 (95% CI 0.87-0.92) after bootstrap correction. This indicated the high diagnostic power that can be expected for future, similar patients. This non-invasive and child-friendly motor performance test can improve diagnostic procedure and, therefore, spare more children from unnecessary muscle biopsy.

  18. Oculopharyngeal Weakness, Hypophrenia, Deafness, and Impaired Vision: A Novel Autosomal Dominant Myopathy with Rimmed Vacuoles

    PubMed Central

    Chen, Ting; Lu, Xiang-Hui; Wang, Hui-Fang; Ban, Rui; Liu, Hua-Xu; Shi, Qiang; Wang, Qian; Yin, Xi; Pu, Chuan-Qiang

    2016-01-01

    Background: Myopathies with rimmed vacuoles are a heterogeneous group of muscle disorders with progressive muscle weakness and varied clinical manifestations but similar features in muscle biopsies. Here, we describe a novel autosomal dominant myopathy with rimmed vacuoles in a large family with 11 patients of three generations affected. Methods: A clinical study including family history, obstetric, pediatric, and development history was recorded. Clinical examinations including physical examination, electromyography (EMG), serum creatine kinase (CK), bone X-rays, and brain magnetic resonance imaging (MRI) were performed in this family. Open muscle biopsies were performed on the proband and his mother. To find the causative gene, the whole-exome sequencing was carried out. Results: Disease onset was from adolescence to adulthood, but the affected patients of the third generation presented an earlier onset and more severe clinical manifestations than the older generations. Clinical features were characterized as dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision. However, not every patient manifested all symptoms. Serum CK was mildly elevated and EMG indicated a myopathic pattern. Brain MRI showed cerebellum and brain stem mildly atrophy. Rimmed vacuoles and inclusion bodies were observed in muscle biopsy. The whole-exome sequencing was performed, but the causative gene has not been found. Conclusions: We reported a novel autosomal dominant myopathy with rimmed vacuoles characterized by dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision, but the causative gene has not been found and needs further study. PMID:27453229

  19. Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies.

    PubMed

    Jagla, Krzysztof; Kalman, Benoit; Boudou, Thomas; Hénon, Sylvie; Batonnet-Pichon, Sabrina

    2017-04-01

    The use of the adapted models to decipher patho-physiological mechanisms of human diseases is always a great challenge. This is of particular importance for early-onset myopathies, in which pathological mutations often impact not only on muscle structure and function but also on developmental processes. Mice are currently the main animal model used to study neuromuscular disorders including the early-onset myopathies. However strategies based on simple animal models and on transdisciplinary approaches exploring mechanical muscle cell properties emerge as attractive, non-exclusive alternatives. These new ways provide valuable opportunities to improve our knowledge on how mechanical, biochemical, and genetic/epigenetic cues modulate the formation, organization and function of muscle tissues. Here we provide an overview of how single cell and micro-tissue engineering in parallel to non-mammalian, Drosophila and zebrafish models could contribute to filling gaps in our understanding of pathogenic mechanisms underlying early-onset myopathies. We also discuss their potential impact on designing new diagnostic and therapeutic strategies.

  20. Novel pathogenic variants and genes for myopathies identified by whole exome sequencing

    PubMed Central

    Hunter, Jesse M; Ahearn, Mary Ellen; Balak, Christopher D; Liang, Winnie S; Kurdoglu, Ahmet; Corneveaux, Jason J; Russell, Megan; Huentelman, Matthew J; Craig, David W; Carpten, John; Coons, Stephen W; DeMello, Daphne E; Hall, Judith G; Bernes, Saunder M; Baumbach-Reardon, Lisa

    2015-01-01

    Neuromuscular diseases (NMD) account for a significant proportion of infant and childhood mortality and devastating chronic disease. Determining the specific diagnosis of NMD is challenging due to thousands of unique or rare genetic variants that result in overlapping phenotypes. We present four unique childhood myopathy cases characterized by relatively mild muscle weakness, slowly progressing course, mildly elevated creatine phosphokinase (CPK), and contractures. We also present two additional cases characterized by severe prenatal/neonatal myopathy. Prior extensive genetic testing and histology of these cases did not reveal the genetic etiology of disease. Here, we applied whole exome sequencing (WES) and bioinformatics to identify likely causal pathogenic variants in each pedigree. In two cases, we identified novel pathogenic variants in COL6A3. In a third case, we identified novel likely pathogenic variants in COL6A6 and COL6A3. We identified a novel splice variant in EMD in a fourth case. Finally, we classify two cases as calcium channelopathies with identification of novel pathogenic variants in RYR1 and CACNA1S. These are the first cases of myopathies reported to be caused by variants in COL6A6 and CACNA1S. Our results demonstrate the utility and genetic diagnostic value of WES in the broad class of NMD phenotypes. PMID:26247046

  1. Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies.

    PubMed

    Merlini, Luciano; Angelin, Alessia; Tiepolo, Tania; Braghetta, Paola; Sabatelli, Patrizia; Zamparelli, Alessandra; Ferlini, Alessandra; Maraldi, Nadir M; Bonaldo, Paolo; Bernardi, Paolo

    2008-04-01

    Ullrich congenital muscular dystrophy and Bethlem myopathy are skeletal muscle diseases that are due to mutations in the genes encoding collagen VI, an extracellular matrix protein forming a microfibrillar network that is particularly prominent in the endomysium of skeletal muscle. Myoblasts from patients affected by Ullrich congenital muscular dystrophy display functional and ultrastructural mitochondrial alterations and increased apoptosis due to inappropriate opening of the permeability transition pore, a mitochondrial inner membrane channel. These alterations could be normalized by treatment with cyclosporin A, a widely used immunosuppressant that desensitizes the permeability transition pore independently of calcineurin inhibition. Here, we report the results of an open pilot trial with cyclosporin A in five patients with collagen VI myopathies. Before treatment, all patients displayed mitochondrial dysfunction and increased frequency of apoptosis, as determined in muscle biopsies. Both of these pathologic signs were largely normalized after 1 month of oral cyclosporin A administration, which also increased muscle regeneration. These findings demonstrate that collagen VI myopathies can be effectively treated with drugs acting on the pathogenic mechanism downstream of the genetic lesion, and they represent an important proof of principle for the potential therapy of genetic diseases.

  2. Magnetospheric Multiscale Mission (MMS) Phase 2B Navigation Performance

    NASA Technical Reports Server (NTRS)

    Scaperoth, Paige Thomas; Long, Anne; Carpenter, Russell

    2009-01-01

    The Magnetospheric Multiscale (MMS) formation flying mission, which consists of four spacecraft flying in a tetrahedral formation, has challenging navigation requirements associated with determining and maintaining the relative separations required to meet the science requirements. The baseline navigation concept for MMS is for each spacecraft to independently estimate its position, velocity and clock states using GPS pseudorange data provided by the Goddard Space Flight Center-developed Navigator receiver and maneuver acceleration measurements provided by the spacecraft's attitude control subsystem. State estimation is performed onboard in real-time using the Goddard Enhanced Onboard Navigation System flight software, which is embedded in the Navigator receiver. The current concept of operations for formation maintenance consists of a sequence of two maintenance maneuvers that is performed every 2 weeks. Phase 2b of the MMS mission, in which the spacecraft are in 1.2 x 25 Earth radii orbits with nominal separations at apogee ranging from 30 km to 400 km, has the most challenging navigation requirements because, during this phase, GPS signal acquisition is restricted to less than one day of the 2.8-day orbit. This paper summarizes the results from high-fidelity simulations to determine if the MMS navigation requirements can be met between and immediately following the maintenance maneuver sequence in Phase 2b.

  3. 2b or Not 2b: Experimental Evolution of Functional Exogenous Sequences in a Plant RNA Virus

    PubMed Central

    Zwart, Mark P.; Ambrós, Silvia; Carrasco, José L.; Elena, Santiago F.

    2017-01-01

    Horizontal gene transfer (HGT) is pervasive in viruses and thought to be a key mechanism in their evolution. On the other hand, strong selective constraints against increasing genome size are an impediment for HGT, rapidly purging horizontally transferred sequences and thereby potentially hindering evolutionary innovation. Here, we explore experimentally the evolutionary fate of viruses with simulated HGT events, using the plant RNA virus Tobacco etch virus (TEV), by separately introducing two functional, exogenous sequences to its genome. One of the events simulates the acquisition of a new function though HGT of a conserved AlkB domain, responsible for the repair of alkylation or methylation damage in many organisms. The other event simulates the acquisition of a sequence that duplicates an existing function, through HGT of the 2b RNA silencing suppressor from Cucumber mosaic virus. We then evolved these two viruses, tracked the maintenance of the horizontally transferred sequences over time, and for the final virus populations, sequenced their genome and measured viral fitness. We found that the AlkB domain was rapidly purged from the TEV genome, restoring fitness to wild-type levels. Conversely, the 2b gene was stably maintained and did not have a major impact on viral fitness. Moreover, we found that 2b is functional in TEV, as it provides a replicative advantage when the RNA silencing suppression domain of HC-Pro is mutated. These observations suggest a potentially interesting role for HGT of short functional sequences in ameliorating evolutionary constraints on viruses, through the duplication of functions. PMID:28137747

  4. 2b or not 2b: Experimental evolution of functional exogenous sequences in a plant RNA virus.

    PubMed

    Willemsen, Anouk; Zwart, Mark P; Ambrós, Silvia; Carrasco, José L; Elena, Santiago F

    2017-01-30

    Horizontal gene transfer (HGT) is pervasive in viruses, and thought to be a key mechanism in their evolution. On the other hand, strong selective constraints against increasing genome size are an impediment for HGT, rapidly purging horizontally transferred sequences and thereby potentially hindering evolutionary innovation. Here we explore experimentally the evolutionary fate of viruses with simulated HGT events, using the plant RNA virus Tobacco etch virus (TEV), by separately introducing two functional, exogenous sequences to its genome. One of the events simulates the acquisition of a new function though HGT of a conserved AlkB domain, responsible for the repair of alkylation or methylation damage in many organisms. The other event simulates the acquisition of a sequence that duplicates an existing function, through HGT of the 2b RNA silencing suppressor from Cucumber mosaic virus (CMV). We then evolved these two viruses, tracked the maintenance of the horizontally transferred sequences over time, and for the final virus populations, sequenced their genome and measured viral fitness. We found that the AlkB domain was rapidly purged from the TEV genome, restoring fitness to wild-type levels. Conversely, the 2b gene was stably maintained and did not have a major impact on viral fitness. Moreover, we found that 2b is functional in TEV, as it provides a replicative advantage when the RNA silencing suppression domain of HC-Pro is mutated. These observations suggest a potentially interesting role for HGT of short functional sequences in ameliorating evolutionary constraints on viruses, through the duplication of functions.

  5. 75 FR 30687 - Airworthiness Directives; Turbomeca Arriel 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... 2B1 Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY..., Engine Certification Office, FAA, Engine & Propeller Directorate, 12 New England Executive Park... Information The MCAI applies to the ARRIEL 2B1 and 2B1A engines. The ARRIEL 2B1A engine is not...

  6. 75 FR 71353 - Airworthiness Directives; Mitsubishi Heavy Industries, Ltd. Various Models MU-2B Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Industries, Ltd. Various Models MU-2B Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... September 24, 1986, of the MU-2B-60 airplane flight manual (AFM) in table 3 of the Compliance section (e)(1... certain MHI various Models MU-2B airplanes. As published, table 3 specific to the MHI MU-2B-60...

  7. Genetics Home Reference: RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal ...

    MedlinePlus

    ... Home Health Conditions RRM2B-MDS RRM2B-related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal tubulopathy Enable ... Open All Close All Description RRM2B -related mitochondrial DNA depletion syndrome, encephalomyopathic form with renal tubulopathy ( RRM2B - ...

  8. Rational Engineering of Cytochromes P450 2B6 and 2B11 for Enhanced Stability: Insights Into Structural Importance of Residue 334

    PubMed Central

    Talakad, Jyothi C.; Wilderman, P. Ross; Davydov, Dmitri R.; Kumar, Santosh; Halpert, James R.

    2009-01-01

    Rational mutagenesis was used to improve the thermal stability of human cytochrome P450 2B6 and canine P450 2B11. Comparison of the amino acid sequences revealed seven sites that are conserved between the stable 2B1 and 2B4 but different from those found in the less stable 2B6 and 2B11. P334S was the only mutant that showed increased heterologous expression levels and thermal stability in both 2B6 and 2B11. The mechanism of this effect was explored with pressure-perturbation spectroscopy. Compressibility of the heme pocket in variants of all four CYP2B enzymes containing proline at position 334 are characterized by lower compressibility than their more stable serine 334 counterpart. Therefore, the stabilizing effect of P334S is associated with increased conformational flexibility in the region of the heme pocket. Improved stability of P334S 2B6 and 2B11 may facilitate the studies of these enzymes by X-ray crystallography and biophysical techniques. PMID:19944064

  9. Technological quality, mineral profile, and sensory attributes of broiler chicken breasts affected by White Striping and Wooden Breast myopathies.

    PubMed

    Tasoniero, G; Cullere, M; Cecchinato, M; Puolanne, E; Dalle Zotte, A

    2016-11-01

    The aim of the research was to study the impact of white striping and wooden breast myopathies on the technological quality, mineral, and sensory profile of poultry meat. With this purpose, a total of 138 breasts were selected for a control group with normal breasts (N), a group of breasts characterised by white striping (WS) myopathy, and a group of breasts having both white striping and wooden breast myopathies (WSWB). Data revealed that the simultaneous presence of the two myopathies, with respect to the WS lesion individually considered, had a further detrimental effect on pH (6.04 vs. 5.96; P < 0.05), yellowness (11.4 vs. 10.3; P < 0.01), cooking losses (30.4 vs. 27.6%; P < 0.05), toughness instrumental values (22.8 vs. 20.0 N; P < 0.01), and perception (6.22 vs. 5.56; P < 0.01). In addition, mineral contents suggest that a defective ions regulation is also present in white striping and wooden breast myopathies.

  10. Diagnosis of myocardial involvement in patients with systemic myopathies with 15-(p-(I-123)iodophenyl) pentadecanoic acid (IPPA) SPECT

    SciTech Connect

    Kropp, J.; Briele, B.; Smekal, A.V.; Hotze, A.L.; Biersack, H.J.; Koehler, U.; Zierz, St. ); Knapp, F.F. )

    1992-01-01

    Involvement of the myocardium in non-infectious myopathies presents in most cases as systolic dysfunction or a disturbed cardiac rhythm. We are interested in exploring how often cardiac involvement can be evaluated with various diagnostic techniques in patients with proven myopathy. We investigated 41 patients with myopathies of various etiology, including mitochondrial and congenital myopathies, Curshmann-Steinert disease, muscular dystrophy, and others. Myopathy was proven by muscular biopsy usually from the bicep. Fatty acid imaging was performed with 15-(p-(I-123)iodophenyl)pentadecanoic acid (IP-PA) and sequential SPECT-scintigraphy with a 180 deg. rotation starting at the 45 deg. RAO position. 190 MBq were injected at the maximal stage of a submaximal exercise. Filtered backprojection and reorientation of the slices were achieved by standard techniques. The quantitative comparison of the oblique slices (bulls-eye technique) of the SPECT-studies revealed turnover-rates as a qualitative measure of {beta}-oxidation. Serum levels of lactate (L), pyruvate (P), glucose (G) and triglycerides (TG) were measured at rest and stress. Ventricular function was investigated by radionuclide ventriculography (MUGA) at rest and under stress with Tc-99m labeled red blood cells. In addition, ECG, 24 hour-ECG, and echocardiography were also performed with standard techniques.

  11. Diagnosis of myocardial involvement in patients with systemic myopathies with 15-(p-[I-123]iodophenyl) pentadecanoic acid (IPPA) SPECT

    SciTech Connect

    Kropp, J.; Briele, B.; Smekal, A.V.; Hotze, A.L.; Biersack, H.J.; Koehler, U.; Zierz, St.; Knapp, F.F.

    1992-03-01

    Involvement of the myocardium in non-infectious myopathies presents in most cases as systolic dysfunction or a disturbed cardiac rhythm. We are interested in exploring how often cardiac involvement can be evaluated with various diagnostic techniques in patients with proven myopathy. We investigated 41 patients with myopathies of various etiology, including mitochondrial and congenital myopathies, Curshmann-Steinert disease, muscular dystrophy, and others. Myopathy was proven by muscular biopsy usually from the bicep. Fatty acid imaging was performed with 15-(p-[I-123]iodophenyl)pentadecanoic acid (IP-PA) and sequential SPECT-scintigraphy with a 180 deg. rotation starting at the 45 deg. RAO position. 190 MBq were injected at the maximal stage of a submaximal exercise. Filtered backprojection and reorientation of the slices were achieved by standard techniques. The quantitative comparison of the oblique slices (bulls-eye technique) of the SPECT-studies revealed turnover-rates as a qualitative measure of {beta}-oxidation. Serum levels of lactate (L), pyruvate (P), glucose (G) and triglycerides (TG) were measured at rest and stress. Ventricular function was investigated by radionuclide ventriculography (MUGA) at rest and under stress with Tc-99m labeled red blood cells. In addition, ECG, 24 hour-ECG, and echocardiography were also performed with standard techniques.

  12. The influence of sex, ethnicity, and CYP2B6 genotype on bupropion metabolism as an index of hepatic CYP2B6 activity in humans.

    PubMed

    Ilic, Katarina; Hawke, Roy L; Thirumaran, Ranjit K; Schuetz, Erin G; Hull, J Heyward; Kashuba, Angela D M; Stewart, Paul W; Lindley, Celeste M; Chen, Mei-Ling

    2013-03-01

    The effects of sex, ethnicity, and genetic polymorphism on hepatic CYP2B6 (cytochrome P450 2B6) expression and activity were previously demonstrated in vitro. Race/ethnic differences in CYP2B6 genotype and phenotype were observed only in women. To identify important covariates associated with interindividual variation in CYP2B6 activity in vivo, we evaluated these effects in healthy volunteers using bupropion (Wellbutrin SR GlaxoSmithKline, Research Triangle Park, NC) as a CYP2B6 probe substrate. A fixed 150-mg oral sustained-release dose of bupropion was administered to 100 healthy volunteers comprising four sex/ethnicity cohorts (n = 25 each): Caucasian men and Caucasian, African American, and Hispanic women. Blood samples were obtained at 0 and 6 hours postdose for the measurement of serum bupropion (BU) and hydroxybupropion (HB) concentrations. Whole blood was obtained at baseline for CYP2B6 genotyping. To characterize the relationship between CYP2B6 activity and ethnicity, sex, and genotype when accounting for serum BU concentrations (dose-adjusted log(10)-transformed), analysis of covariance model was fitted in which the dependent variable was CYP2B6 activity represented as the log(10)-transformed, metabolic ratio of HB to BU concentrations. Several CYP2B6 polymorphisms were associated with CYP2B6 activity. Evidence of dependence of CYP2B6 activity on ethnicity or genotype-by-ethnicity interactions was not detected in women. These results suggest that CYP2B6 genotype is the most important patient variable for predicting the level of CYP2B6 activity in women, when measured by the metabolism of bupropion. The bupropion metabolic ratio appears to detect known differences in CYP2B6 activity associated with genetic polymorphism, across different ethnic groups. Prospective studies will be needed to validate the use of bupropion as a probe substrate for clinical use.

  13. SLCO1B1 genetic variant associated with statin-induced myopathy: a proof-of-concept study using the clinical practice research datalink.

    PubMed

    Carr, D F; O'Meara, H; Jorgensen, A L; Campbell, J; Hobbs, M; McCann, G; van Staa, T; Pirmohamed, M

    2013-12-01

    This study aimed to determine whether patients with statin-induced myopathy could be identified using the United Kingdom Clinical Practice Research Datalink, whether DNA could be obtained, and whether previously reported associations of statin myopathy with the SLCO1B1 c.521T>C and COQ2 rs4693075 polymorphisms could be replicated. Seventy-seven statin-induced myopathy patients (serum creatine phosphokinase (CPK) > 4× upper limit of normal (ULN)) and 372 statin-tolerant controls were identified and recruited. Multiple logistic regression analysis showed the SLCO1B1 c.521T>C single-nucleotide polymorphism to be a significant risk factor (P = 0.009), with an odds ratio (OR) per variant allele of 2.06 (1.32-3.15) for all myopathy and 4.09 (2.06-8.16) for severe myopathy (CPK > 10× ULN, and/or rhabdomyolysis; n = 23). COQ2 rs4693075 was not associated with myopathy. Meta-analysis showed an association between c.521C>T and simvastatin-induced myopathy, although power for other statins was limited. Our data replicate the association of SLCO1B1 variants with statin-induced myopathy. Furthermore, we demonstrate how electronic medical records provide a time- and cost-efficient means of recruiting patients with severe adverse drug reactions for pharmacogenetic studies.

  14. Integrated Product and Process Data for B2B Collaboration

    SciTech Connect

    Kulvatunyou, Boonserm; Ivezic, Nenad; Jones, Albert; Wysk, Richard A.

    2003-09-01

    Collaborative development of engineered products in a business-to-business (B2B) environment will require more than just the selection of components from an on-line catalogue. It will involve the electronic exchange of product, process, and production engineering information during both design and manufacturing. While the state-of-the-practice does include a variety of ways to exchange product data electronically, it does not extend to the exchange of manufacturing process data. The reason is simple; process data is usually tied to specific manufacturing resources. These resources are not known typically at product development time. This paper proposes an approach, called an Integrated Product and Process Data (IPPD), where manufacturing process data is considered during product development. This approach replaces traditional process plans, which are resource specific, with a resource-independent process representation. Such a representation will allow a much wider collaboration among business partners and provide the necessary base for collaborative product development.

  15. Semantic ETL into i2b2 with Eureka!

    PubMed

    Post, Andrew R; Krc, Tahsin; Rathod, Himanshu; Agravat, Sanjay; Mansour, Michel; Torian, William; Saltz, Joel H

    2013-01-01

    Clinical phenotyping is an emerging research information systems capability. Research uses of electronic health record (EHR) data may require the ability to identify clinical co-morbidities and complications. Such phenotypes may not be represented directly as discrete data elements, but rather as frequency, sequential and temporal patterns in billing and clinical data. These patterns' complexity suggests the need for a robust yet flexible extract, transform and load (ETL) process that can compute them. This capability should be accessible to investigators with limited ability to engage an IT department in data management. We have developed such a system, Eureka! Clinical Analytics. It extracts data from an Excel spreadsheet, computes a broad set of phenotypes of common interest, and loads both raw and computed data into an i2b2 project. A web-based user interface allows executing and monitoring ETL processes. Eureka! is deployed at our institution and is available for deployment in the cloud.

  16. Semantic ETL into i2b2 with Eureka!

    PubMed Central

    Post, Andrew R.; Krc, Tahsin; Rathod, Himanshu; Agravat, Sanjay; Mansour, Michel; Torian, William; Saltz, Joel H.

    Clinical phenotyping is an emerging research information systems capability. Research uses of electronic health record (EHR) data may require the ability to identify clinical co-morbidities and complications. Such phenotypes may not be represented directly as discrete data elements, but rather as frequency, sequential and temporal patterns in billing and clinical data. These patterns’ complexity suggests the need for a robust yet flexible extract, transform and load (ETL) process that can compute them. This capability should be accessible to investigators with limited ability to engage an IT department in data management. We have developed such a system, Eureka! Clinical Analytics. It extracts data from an Excel spreadsheet, computes a broad set of phenotypes of common interest, and loads both raw and computed data into an i2b2 project. A web-based user interface allows executing and monitoring ETL processes. Eureka! is deployed at our institution and is available for deployment in the cloud. PMID:24303265

  17. The cyclotron energization through auroral wave experiments (CENTAUR 2B)

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.

    1992-01-01

    The CENTAUR 2B mission, a dual payload program, is in many aspects the same as the previous missions from Cape Perry and Norway in 1985. It was planned that these payloads would be launched from Andoya, Norway, Nov. 1989 from the Universal II launcher. The payloads are identical, but would have been launched at different azimuths as far north and as far west as possible. Particle experiments include the angular resolving energy analyzer (AREA), the fast ion mass spectrometer (FIMS), the spectrographic particle images (SPI), and finally, the differential ion flux probe (DIFP). SwRI was responsible for the scientific payload, which includes the power supplies, the power supply interfacing, the manipulating of the data from the instruments to format it for the telemetry system, all mechanical structure and restraint mechanisms, and the payload subskin. The status of the various components of this program is given.

  18. SH2B regulation of growth, metabolism, and longevity in both insects and mammals.

    PubMed

    Song, Wei; Ren, Decheng; Li, Wenjun; Jiang, Lin; Cho, Kae Won; Huang, Ping; Fan, Chen; Song, Yiyun; Liu, Yong; Rui, Liangyou

    2010-05-05

    SH2B1 is a key regulator of body weight in mammals. Here, we identified dSH2B as the Drosophila homolog of SH2B1. dSH2B bound to Chico and directly promoted insulin-like signaling. Disruption of dSH2B decreased insulin-like signaling and somatic growth in flies. dSH2B deficiency also increased hemolymph carbohydrate levels, whole-body lipid levels, life span, and resistance to starvation and oxidative stress. Systemic overexpression of dSH2B resulted in opposite phenotypes. dSH2B overexpression in fat body decreased lipid and glucose levels, whereas neuron-specific overexpression of dSH2B decreased oxidative resistance and life span. Genetic deletion of SH2B1 also resulted in growth retardation, obesity, and type 2 diabetes in mice; surprisingly, life span and oxidative resistance were reduced in SH2B1 null mice. These data suggest that dSH2B regulation of insulin-like signaling, growth, and metabolism is conserved in SH2B1, whereas dSH2B regulation of oxidative stress and longevity may be conserved in other SH2B family members.

  19. SH2B Regulation of Growth, Metabolism and Longevity in Both Insects and Mammals

    PubMed Central

    Song, Wei; Ren, Decheng; Li, Wenjun; Jiang, Lin; Cho, Kae Won; Huang, Ping; Fan, Chen; Song, Yiyun; Liu, Yong; Rui, Liangyou

    2010-01-01

    Summary SH2B1 is a key regulator of body weight in mammals. Here we identified dSH2B as the Drosophila homolog of SH2B1. dSH2B bound to Chico and directly promoted insulin-like signaling. Disruption of dSH2B decreased insulin-like signaling and somatic growth in flies. dSH2B deficiency also increased hemolymph carbohydrate levels, whole body lipid levels, lifespan, and resistance to starvation and oxidative stress. Systemic overexpression of dSH2B resulted in opposite phenotypes. dSH2B overexpression in fat body decreased lipid and glucose levels, whereas neuron-specific overexpression of dSH2B decreased oxidative resistance and lifespan. Genetic deletion of SH2B1 also resulted in growth retardation, obesity, and type 2 diabetes in mice; surprisingly, lifespan and oxidative resistance were reduced in SH2B1 null mice. These data suggest that dSH2B regulation of insulin-like signaling, growth, and metabolism is conserved in SH2B1, whereas dSH2B regulation of oxidative stress and longevity may be conserved in other SH2B family members. PMID:20417156

  20. Structure of human nucleosome containing the testis-specific histone variant TSH2B

    SciTech Connect

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-03-25

    The crystal structure of human nucleosome containing the testis-specific TSH2B variant has been determined. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, and induces a local structural difference between TSH2B and H2B in nucleosomes. The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  1. Unilateral symptomatic intracranial arterial stenosis and myopathy in an adolescent with Graves disease: a case report of an high-resolution magnetic resonance imaging study.

    PubMed

    Yin, Jia; Zhu, Jiajia; Huang, Dongling; Shi, Changzheng; Guan, Yuqing; Zhou, Liang; Pan, Suyue

    2015-01-01

    Vascular and muscular involvements in Graves disease (GD) are rare. Here, we report a case of a 17-year-old patient with unilateral symptomatic middle cerebral artery stenosis concurrent with GD and myopathy. He presented with a 1-day history of acute severe right-sided hemiparesis and aphasia and a 3-week history of high metabolic syndrome. The pathogenesis of the stenosis is most likely vasculitis rather than atherosclerosis, based on contrast-enhanced high-resolution magnetic resonance imaging showing concentric wall enhancement. We suggest that lipid storage myopathy is secondary to GD, and it is likely mitochondrial dysfunction or immune dysfunction induced by GD responsible for the myopathy and that magnetic resonance spectroscopy (MRS) is capable of establishing the diagnosis of myopathy. Thus, MRS can be used for follow-up evaluations of the myopathy along with the pathology biopsy.

  2. UGT2B gene expression analysis in multiple tobacco carcinogen-targeted tissues.

    PubMed

    Jones, Nathan R; Lazarus, Philip

    2014-04-01

    The UDP-glucuronosyltransferase (UGT) 2B subfamily of enzymes plays an important role in the metabolism of numerous endogenous and exogenous compounds, including various carcinogens present in tobacco smoke. The goal of the present study was to examine the levels of expression of individual UGT2B genes in various tissues that are targets for tobacco carcinogenesis. Using MT-ATP6 as the experimentally validated housekeeping gene, the highest extrahepatic expression of UGT2B genes was observed in human tonsil, with UGT2B expression levels similar to that observed in human liver. UGT2B17 exhibited high relative expression in most tissues examined, including lung, most tissues of the aerodigestive tract, and pancreas. UGT2B7 expression was highest in pancreas but low or undetectable in most other tissues examined. UGT2B10 expression was high in both tonsil and tongue. There was wide variability between individuals in the magnitude of expression in each tissue site, and there were strong correlations between UGT2B expression levels in different individuals within many of the tissue sites, suggesting coordinated regulation of UGT2B gene expression in extrahepatic tissues. In the liver, UGTs 2B4, 2B7, 2B10, and 2B15 were significantly correlated with each other (all r(2) > 0.70, P < 0.0001). In all examined tissues of the aerodigestive tract, UGTs 2B10, 2B11, and 2B17 exhibited a strong correlation with each other (all r(2) > 0.75, P < 0.05). UGTs 2B7 and 2B10 exhibited a strong inverse correlation in the pancreas (r(2) = -0.95, P < 0.01). These data suggest that specific UGT2B enzymes important in tobacco carcinogen metabolism are expressed and coordinately regulated in various target sites for tobacco-related cancers.

  3. Chronic intestinal pseudo-obstruction caused by an intestinal inflammatory myopathy: case report and review of the literature.

    PubMed

    Dewit, S; de Hertogh, G; Geboes, K; Tack, J

    2008-04-01

    Chronic intestinal pseudo-obstruction (CIP) is an uncommon disorder that may be of primary or secondary origin. We report a case of a 37-year-old woman with CIP due to inflammatory disorder of unknown origin involving the skin (eosinophilic fasciitis), the lungs (decreased diffusion capacity) and the gastrointestinal tract. History, clinical examination, plain abdominal film, barium X-ray and colonoscopy established a diagnosis of recurrent pseudo-obstruction. A full-thickness biopsy was performed during explorative laparotomy, and histological examination revealed findings compatible with an inflammatory myopathy due to a dense lymphoid infiltrate and extensive loss of the muscularis propria layers. Immunosuppressive therapy with cyclosporin was initiated, with significant clinical improvement. This case illustrates another form of CIP, characterized by an inflammatory myopathy, which is histologically distinct from other known visceral myopathies and neuropathies.

  4. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    PubMed

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs.

  5. Centronuclear myopathy related to dynamin 2 mutations: Clinical, morphological, muscle imaging and genetic features of an Italian cohort

    PubMed Central

    Catteruccia, Michela; Fattori, Fabiana; Codemo, Valentina; Ruggiero, Lucia; Maggi, Lorenzo; Tasca, Giorgio; Fiorillo, Chiara; Pane, Marika; Berardinelli, Angela; Verardo, Margherita; Bragato, Cinzia; Mora, Marina; Morandi, Lucia; Bruno, Claudio; Santoro, Lucio; Pegoraro, Elena; Mercuri, Eugenio; Bertini, Enrico; D’Amico, Adele

    2013-01-01

    Mutations in dynamin 2 (DNM2) gene cause autosomal dominant centronuclear myopathy and occur in around 50% of patients with centronuclear myopathy. We report clinical, morphological, muscle imaging and genetic data of 10 unrelated Italian patients with centronuclear myopathy related to DNM2 mutations. Our results confirm the clinical heterogeneity of this disease, underlining some peculiar clinical features, such as severe pulmonary impairment and jaw contracture that should be considered in the clinical follow-up of these patients. Muscle MRI showed a distinct pattern of involvement, with predominant involvement of soleus and tibialis anterior in the lower leg muscles, followed by hamstring muscles and adductor magnus at thigh level and gluteus maximus. The detection of three novel DNM2 mutations and the first case of somatic mosaicism further expand the genetic spectrum of the disease. PMID:23394783

  6. SH2B1 regulation of energy balance, body weight, and glucose metabolism.

    PubMed

    Rui, Liangyou

    2014-08-15

    The Src homology 2B (SH2B) family members (SH2B1, SH2B2 and SH2B3) are adaptor signaling proteins containing characteristic SH2 and PH domains. SH2B1 (also called SH2-B and PSM) and SH2B2 (also called APS) are able to form homo- or hetero-dimers via their N-terminal dimerization domains. Their C-terminal SH2 domains bind to tyrosyl phosphorylated proteins, including Janus kinase 2 (JAK2), TrkA, insulin receptors, insulin-like growth factor-1 receptors, insulin receptor substrate-1 (IRS1), and IRS2. SH2B1 enhances leptin signaling by both stimulating JAK2 activity and assembling a JAK2/IRS1/2 signaling complex. SH2B1 promotes insulin signaling by both enhancing insulin receptor catalytic activity and protecting against dephosphorylation of IRS proteins. Accordingly, genetic deletion of SH2B1 results in severe leptin resistance, insulin resistance, hyperphagia, obesity, and type 2 diabetes in mice. Neuron-specific overexpression of SH2B1β transgenes protects against diet-induced obesity and insulin resistance. SH2B1 in pancreatic β cells promotes β cell expansion and insulin secretion to counteract insulin resistance in obesity. Moreover, numerous SH2B1 mutations are genetically linked to leptin resistance, insulin resistance, obesity, and type 2 diabetes in humans. Unlike SH2B1, SH2B2 and SH2B3 are not required for the maintenance of normal energy and glucose homeostasis. The metabolic function of the SH2B family is conserved from insects to humans.

  7. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis.

    PubMed

    Ren, Decheng; Zhou, Yingjiang; Morris, David; Li, Minghua; Li, Zhiqin; Rui, Liangyou

    2007-02-01

    SH2B1 (previously named SH2-B), a cytoplasmic adaptor protein, binds via its Src homology 2 (SH2) domain to a variety of protein tyrosine kinases, including JAK2 and the insulin receptor. SH2B1-deficient mice are obese and diabetic. Here we demonstrated that multiple isoforms of SH2B1 (alpha, beta, gamma, and/or delta) were expressed in numerous tissues, including the brain, hypothalamus, liver, muscle, adipose tissue, heart, and pancreas. Rat SH2B1beta was specifically expressed in neural tissue in SH2B1-transgenic (SH2B1(Tg)) mice. SH2B1(Tg) mice were crossed with SH2B1-knockout (SH2B1(KO)) mice to generate SH2B1(TgKO) mice expressing SH2B1 only in neural tissue but not in other tissues. Systemic deletion of the SH2B1 gene resulted in metabolic disorders in SH2B1(KO) mice, including hyperlipidemia, leptin resistance, hyperphagia, obesity, hyperglycemia, insulin resistance, and glucose intolerance. Neuron-specific restoration of SH2B1beta not only corrected the metabolic disorders in SH2B1(TgKO) mice, but also improved JAK2-mediated leptin signaling and leptin regulation of orexigenic neuropeptide expression in the hypothalamus. Moreover, neuron-specific overexpression of SH2B1 dose-dependently protected against high-fat diet-induced leptin resistance and obesity. These observations suggest that neuronal SH2B1 regulates energy balance, body weight, peripheral insulin sensitivity, and glucose homeostasis at least in part by enhancing hypothalamic leptin sensitivity.

  8. A fatal case of cor pulmonale with undetected chronic hypoventilation in an infant with a known congenital myopathy.

    PubMed

    Holst, John M; Willis, Mary J

    2012-01-01

    The authors of this paper wish to present a case of fatal cor pulmonale with right ventricular hypertrophy complicated by a congenital myopathy. It is our intention to demonstrate the importance of vigilant clinical assessment of children with a congenital myopathy, regardless of the exact etiology of their disease, or family history of disease severity. This case highlights the risk for fatal complications if hypoventilation and respiratory insufficiency go unrecognized in myopathic children. Consequently, we recommend respiratory and cardiac monitoring surveillance as well as appropriate referral to specialists in the management of such children.

  9. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill

    PubMed Central

    Friedrich, O.; Reid, M. B.; Van den Berghe, G.; Vanhorebeek, I.; Hermans, G.; Rich, M. M.; Larsson, L.

    2015-01-01

    Critical illness polyneuropathies (CIP) and myopathies (CIM) are common complications of critical illness. Several weakness syndromes are summarized under the term intensive care unit-acquired weakness (ICUAW). We propose a classification of different ICUAW forms (CIM, CIP, sepsis-induced, steroid-denervation myopathy) and pathophysiological mechanisms from clinical and animal model data. Triggers include sepsis, mechanical ventilation, muscle unloading, steroid treatment, or denervation. Some ICUAW forms require stringent diagnostic features; CIM is marked by membrane hypoexcitability, severe atrophy, preferential myosin loss, ultrastructural alterations, and inadequate autophagy activation while myopathies in pure sepsis do not reproduce marked myosin loss. Reduced membrane excitability results from depolarization and ion channel dysfunction. Mitochondrial dysfunction contributes to energy-dependent processes. Ubiquitin proteasome and calpain activation trigger muscle proteolysis and atrophy while protein synthesis is impaired. Myosin loss is more pronounced than actin loss in CIM. Protein quality control is altered by inadequate autophagy. Ca2+ dysregulation is present through altered Ca2+ homeostasis. We highlight clinical hallmarks, trigger factors, and potential mechanisms from human studies and animal models that allow separation of risk factors that may trigger distinct mechanisms contributing to weakness. During critical illness, altered inflammatory (cytokines) and metabolic pathways deteriorate muscle function. ICUAW prevention/treatment is limited, e.g., tight glycemic control, delaying nutrition, and early mobilization. Future challenges include identification of primary/secondary events during the time course of critical illness, the interplay between membrane excitability, bioenergetic failure and differential proteolysis, and finding new therapeutic targets by help of tailored animal models. PMID:26133937

  10. A Peculiar Formula of Essential Amino Acids Prevents Rosuvastatin Myopathy in Mice

    PubMed Central

    D'Antona, Giuseppe; Tedesco, Laura; Ruocco, Chiara; Corsetti, Giovanni; Ragni, Maurizio; Fossati, Andrea; Saba, Elisa; Fenaroli, Francesca; Montinaro, Mery; Carruba, Michele O.; Valerio, Alessandra

    2016-01-01

    Abstract Aims: Myopathy, characterized by mitochondrial oxidative stress, occurs in ∼10% of statin-treated patients, and a major risk exists with potent statins such as rosuvastatin (Rvs). We sought to determine whether a peculiar branched-chain amino acid-enriched mixture (BCAAem), found to improve mitochondrial function and reduce oxidative stress in muscle of middle-aged mice, was able to prevent Rvs myopathy. Results: Dietary supplementation of BCAAem was able to prevent the structural and functional alterations of muscle induced by Rvs in young mice. Rvs-increased plasma 3-methylhistidine (a marker of muscular protein degradation) was prevented by BCAAem. This was obtained without changes of Rvs ability to reduce cholesterol and triglyceride levels in blood. Rather, BCAAem promotes de novo protein synthesis and reduces proteolysis in cultured myotubes. Morphological alterations of C2C12 cells induced by statin were counteracted by amino acids, as were the Rvs-increased atrogin-1 mRNA and protein levels. Moreover, BCAAem maintained mitochondrial mass and density and citrate synthase activity in skeletal muscle of Rvs-treated mice beside oxygen consumption and ATP levels in C2C12 cells exposed to statin. Notably, BCAAem assisted Rvs to reduce oxidative stress and to increase the anti-reactive oxygen species (ROS) defense system in skeletal muscle. Innovation and Conclusions: The complex interplay between proteostasis and antioxidant properties may underlie the mechanism by which a specific amino acid formula preserves mitochondrial efficiency and muscle health in Rvs-treated mice. Strategies aimed at promoting protein balance and controlling mitochondrial ROS level may be used as therapeutics for the treatment of muscular diseases involving mitochondrial dysfunction, such as statin myopathy. Antioxid. Redox Signal. 25, 595–608. PMID:27245589

  11. BAG3-related myopathy, polyneuropathy and cardiomyopathy with long QT syndrome.

    PubMed

    Kostera-Pruszczyk, Anna; Suszek, Małgorzata; Płoski, Rafał; Franaszczyk, Maria; Potulska-Chromik, Anna; Pruszczyk, Piotr; Sadurska, Elżbieta; Karolczak, Justyna; Kamińska, Anna M; Rędowicz, Maria Jolanta

    2015-12-01

    BAG3 belongs to BAG family of molecular chaperone regulators interacting with HSP70 and anti-apoptotic protein Bcl-2. It is ubiquitously expressed with strong expression in skeletal and cardiac muscle, and is involved in a panoply of cellular processes. Mutations in BAG3 and aberrations in its expression cause fulminant myopathies, presenting with progressive limb and axial muscle weakness, and respiratory insufficiency and neuropathy. Herein, we report a sporadic case of a 15-years old girl with symptoms of myopathy, demyelinating polyneuropathy and asymptomatic long QT syndrome. Genetic testing demonstrated heterozygous mutation Pro209Leu (c.626C > T) in exon 3 of BAG3 gene causing severe myopathy and neuropathy, often associated with restrictive cardiomyopathy. We did not find a mutation in any known LQT syndrome genes. Analysis of muscle biopsy revealed profound disintegration of Z-discs with extensive accumulation of granular debris and large inclusions within fibers. We demonstrated profound alterations in BAG3 distribution as the protein localized to long filamentous structures present across the fibers that were positively stained not only for α-actinin but also for desmin and filamin indicating that those disintegrated Z-disc regions contained also other sarcomeric proteins. The mutation caused a decrease in the content of BAG3 and HSP70, and also of α-actinin desmin, filamin and fast myosin heavy chain, confirming its severe effect on the muscle fiber morphology and thus function. We provide further evidence that BAG3 is associated with Z-disc maintenance, and the Pro209Leu mutation may occur worldwide. We also provide a summary of cases associated with this mutation reported so far.

  12. The genetic basis of pectoralis major myopathies in modern broiler chicken lines

    PubMed Central

    Bailey, Richard A.; Watson, Kellie A.; Bilgili, S. F.; Avendano, Santiago

    2015-01-01

    This is the first report providing estimates of the genetic basis of breast muscle myopathies (BMM) and their relationship with growth and yield in broiler chickens. In addition, this paper addresses the hypothesis that genetic selection for increase breast yield has contributed to the onset of BMM. Data were analyzed from ongoing recording of BMM within the Aviagen breeding program. This study focused on three BMM: deep pectoral myopathy (DPM; binary trait), white striping (WS; 4 categories) and wooden breast (WB; 3 categories). Data from two purebred commercial broiler lines (A and B) were utilized providing greater than 40,000 meat quality records per line. The difference in selection history between these two lines has resulted in contrasting breast yield (BY): 29% for Line A and 21% for Line B. Data were analyzed to estimate genetic parameters using a multivariate animal model including six traits: body weight (BW), processing body weight (PW), BY, DPM, WB, and WS, in addition to the appropriate fixed effects and permanent environmental effect of the dam. Results indicate similar patterns of heritability and genetic correlations for the two lines. Heritabilities (h2) of BW, PW and BY ranged from 0.271–0.418; for DPM and WB h2 <0.1; and for WS h2 ≤0.338. Genetic correlations between the BMM and BW, PW, or BY were ≤0.132 in Line A and ≤0.248 in Line B. This paper demonstrates the polygenic nature of these traits and the low genetic relationships with BW, PW, and BY, which facilitates genetic improvement across all traits in a balanced breeding program. It also highlights the importance of understanding the environmental and/or management factors that contribute greater than 65% of the variance in the incidence of white striping of breast muscle and more than 90% of the variance of the incidence of wooden breast and deep pectoral myopathy in broiler chickens. PMID:26476091

  13. The genetic basis of pectoralis major myopathies in modern broiler chicken lines.

    PubMed

    Bailey, Richard A; Watson, Kellie A; Bilgili, S F; Avendano, Santiago

    2015-12-01

    This is the first report providing estimates of the genetic basis of breast muscle myopathies (BMM) and their relationship with growth and yield in broiler chickens. In addition, this paper addresses the hypothesis that genetic selection for increase breast yield has contributed to the onset of BMM. Data were analyzed from ongoing recording of BMM within the Aviagen breeding program. This study focused on three BMM: deep pectoral myopathy (DPM; binary trait), white striping (WS; 4 categories) and wooden breast (WB; 3 categories). Data from two purebred commercial broiler lines (A and B) were utilized providing greater than 40,000 meat quality records per line. The difference in selection history between these two lines has resulted in contrasting breast yield (BY): 29% for Line A and 21% for Line B. Data were analyzed to estimate genetic parameters using a multivariate animal model including six traits: body weight (BW), processing body weight (PW), BY, DPM, WB, and WS, in addition to the appropriate fixed effects and permanent environmental effect of the dam. Results indicate similar patterns of heritability and genetic correlations for the two lines. Heritabilities (h2) of BW, PW and BY ranged from 0.271-0.418; for DPM and WB h2<0.1; and for WS h2≤0.338. Genetic correlations between the BMM and BW, PW, or BY were ≤0.132 in Line A and ≤0.248 in Line B. This paper demonstrates the polygenic nature of these traits and the low genetic relationships with BW, PW, and BY, which facilitates genetic improvement across all traits in a balanced breeding program. It also highlights the importance of understanding the environmental and/or management factors that contribute greater than 65% of the variance in the incidence of white striping of breast muscle and more than 90% of the variance of the incidence of wooden breast and deep pectoral myopathy in broiler chickens.

  14. Autism in the Son of a Woman with Mitochondrial Myopathy and Dysautonomia: A Case Report

    PubMed Central

    Rais, Theodore

    2015-01-01

    The relationship between autism spectrum disorders and mitochondrial dysfunction, including mitochondrial myopathies and other mitochondrial diseases, is an area of ongoing research. All autism spectrum disorders are known to be heritable, via genetic and/or epigenetic mechanisms, but specific modes of inheritance are not well characterized. Nevertheless, autism spectrum disorders have been linked to many specific genes associated with mitochondrial function, especially to genes involved in mitochondrial tRNA and the electron transport chain, both particularly vulnerable to point mutations, and clinical research also supports a relationship between the two pathologies. Although only a small minority of patients with autism have a mitochondrial disease, many patients with mitochondrial myopathies have autism spectrum disorder symptoms, and these symptoms may be the presenting symptoms, which presents a diagnostic challenge for clinicians. The authors report the case of a 15-year-old boy with a history of autism spectrum disorder and neurocardiogenic syncope, admitted to the inpatient unit for self-injury, whose young mother, age 35, was discovered to suffer from mitochondrial myopathy, dysautonomia, neurocardiogenic syncope, Ehler-Danlos syndrome, and other uncommon multisystem pathologies likely related to mitochondrial dysfunction. This case illustrates the need for a high index of suspicion for mitochondrial disease in patients with autism, as they have two orders of magnitude greater risk for such diseases than the general population. The literature shows that mitochondrial disease is underdiagnosed in autism spectrum disorder patients and should not be viewed as a “zebra” (i.e., an obscure diagnosis that is made when a more common explanation is more likely). PMID:26634179

  15. Autism in the Son of a Woman with Mitochondrial Myopathy and Dysautonomia: A Case Report.

    PubMed

    Brown, Bradley D; Rais, Theodore

    2015-01-01

    The relationship between autism spectrum disorders and mitochondrial dysfunction, including mitochondrial myopathies and other mitochondrial diseases, is an area of ongoing research. All autism spectrum disorders are known to be heritable, via genetic and/or epigenetic mechanisms, but specific modes of inheritance are not well characterized. Nevertheless, autism spectrum disorders have been linked to many specific genes associated with mitochondrial function, especially to genes involved in mitochondrial tRNA and the electron transport chain, both particularly vulnerable to point mutations, and clinical research also supports a relationship between the two pathologies. Although only a small minority of patients with autism have a mitochondrial disease, many patients with mitochondrial myopathies have autism spectrum disorder symptoms, and these symptoms may be the presenting symptoms, which presents a diagnostic challenge for clinicians. The authors report the case of a 15-year-old boy with a history of autism spectrum disorder and neurocardiogenic syncope, admitted to the inpatient unit for self-injury, whose young mother, age 35, was discovered to suffer from mitochondrial myopathy, dysautonomia, neurocardiogenic syncope, Ehler-Danlos syndrome, and other uncommon multisystem pathologies likely related to mitochondrial dysfunction. This case illustrates the need for a high index of suspicion for mitochondrial disease in patients with autism, as they have two orders of magnitude greater risk for such diseases than the general population. The literature shows that mitochondrial disease is underdiagnosed in autism spectrum disorder patients and should not be viewed as a "zebra" (i.e., an obscure diagnosis that is made when a more common explanation is more likely).

  16. Rapid diagnosis of hypoglycin A intoxication in atypical myopathy of horses.

    PubMed

    Sander, Johannes; Cavalleri, Jessika-M V; Terhardt, Michael; Bochnia, Mandy; Zeyner, Annette; Zuraw, Aleksandra; Sander, Stefanie; Peter, Michael; Janzen, Nils

    2016-03-01

    Hypoglycin A (2-amino-3-(2-methylidenecyclopropyl)propanoic acid) is the plant toxin shown to cause atypical myopathy in horses. It is converted in vivo to methylenecyclopropyl acetic acid, which is transformed to a coenzyme A ester that subsequently blocks beta oxidation of fatty acids. Methylenecyclopropyl acetic acid is also conjugated with carnitine and glycine. Acute atypical myopathy may be diagnosed by quantifying the conjugates of methylenecyclopropyl acetic acid plus a selection of acyl conjugates in urine and serum. We describe a new mass spectrometric method for sample volumes of <0.5 mL. Samples were extracted with methanol containing 5 different internal standards. Extracts were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry focusing on 11 metabolites. The total preparation time for a series of 20 samples was 100 min. Instrument run time was 14 min per sample. For the quantification of carnitine and glycine conjugates of methylenecyclopropyl acetic acid in urine, the coefficients of variation for intraday quantification were 2.9% and 3.0%, respectively. The respective values for interday were 9.3% and 8.0%. Methylenecyclopropyl acetyl carnitine was detected as high as 1.18 µmol/L in serum (median: 0.46 µmol/L) and 1.98 mmol/mol creatinine in urine (median: 0.79 mmol/mol creatinine) of diseased horses, while the glycine derivative accumulated up to 1.97 mmol/mol creatinine in urine but was undetectable in most serum samples. In serum samples from horses with atypical myopathy, the intraday coefficients of variation for C4-C8 carnitines and glycines were ≤4.5%. Measured concentrations exceeded those in healthy horses by ~10 to 1,400 times.

  17. Modulating myosin restores muscle function in a mouse model of nemaline myopathy

    PubMed Central

    Lindqvist, Johan; Levy, Yotam; Pati‐Alam, Alisha; Hardeman, Edna C.; Gregorevic, Paul

    2016-01-01

    Objective Nemaline myopathy, one of the most common congenital myopathies, is associated with mutations in various genes including ACTA1. This disease is also characterized by various forms/degrees of muscle weakness, with most cases being severe and resulting in death in infancy. Recent findings have provided valuable insight into the underlying pathophysiological mechanisms. Mutations in ACTA1 directly disrupt binding interactions between actin and myosin, and consequently the intrinsic force‐generating capacity of muscle fibers. ACTA1 mutations are also associated with variations in myofiber size, the mechanisms of which have been unclear. In the present study, we sought to test the hypotheses that the compromised functional and morphological attributes of skeletal muscles bearing ACTA1 mutations (1) would be directly due to the inefficient actomyosin complex and (2) could be restored by manipulating myosin expression. Methods We used a knockin mouse model expressing the ACTA1 His40Tyr actin mutation found in human patients. We then performed in vivo intramuscular injections of recombinant adeno‐associated viral vectors harboring a myosin transgene known to facilitate muscle contraction. Results We observed that in the presence of the transgene, the intrinsic force‐generating capacity was restored and myofiber size was normal. Interpretation This demonstrates a direct link between disrupted attachment of myosin molecules to actin monomers and muscle fiber atrophy. These data also suggest that further therapeutic interventions should primarily target myosin dysfunction to alleviate the pathology of ACTA1‐related nemaline myopathy. Ann Neurol 2016;79:717–725 PMID:26891371

  18. Chronically ischemic mouse skeletal muscle exhibits myopathy in association with mitochondrial dysfunction and oxidative damage.

    PubMed

    Pipinos, Iraklis I; Swanson, Stanley A; Zhu, Zhen; Nella, Aikaterini A; Weiss, Dustin J; Gutti, Tanuja L; McComb, Rodney D; Baxter, B Timothy; Lynch, Thomas G; Casale, George P

    2008-07-01

    A myopathy characterized by mitochondrial pathology and oxidative stress is present in patients with peripheral arterial disease (PAD). Patients with PAD differ in disease severity, mode of presentation, and presence of comorbid conditions. In this study, we used a mouse model of hindlimb ischemia to isolate and directly investigate the effects of chronic inflow arterial occlusion on skeletal muscle microanatomy, mitochondrial function and expression, and oxidative stress. Hindlimb ischemia was induced by staged ligation/division of the common femoral and iliac arteries in C57BL/6 mice, and muscles were harvested 12 wk later. Muscle microanatomy was examined by bright-field microscopy, and mitochondrial content was determined as citrate synthase activity in muscle homogenates and ATP synthase expression by fluorescence microscopy. Electron transport chain (ETC) complexes I through IV were analyzed individually by respirometry. Oxidative stress was assessed as total protein carbonyls and 4-hydroxy-2-nonenal (HNE) adducts and altered expression and activity of manganese superoxide dismutase (MnSOD). Ischemic muscle exhibited histological features of myopathy and increased mitochondrial content compared with control muscle. Complex-dependent respiration was significantly reduced for ETC complexes I, III, and IV in ischemic muscle. Protein carbonyls, HNE adducts, and MnSOD expression were significantly increased in ischemic muscle. MnSOD activity was not significantly changed, suggesting MnSOD inactivation. Using a mouse model, we have demonstrated for the first time that inflow arterial occlusion alone, i.e., in the absence of other comorbid conditions, causes myopathy with mitochondrial dysfunction and increased oxidative stress, recapitulating the muscle pathology of PAD patients.

  19. Histomorphologic and ultrastructural recovery of myopathy in rats treated with low-level laser therapy.

    PubMed

    Servetto, Natalia; Cremonezzi, David; Simes, Juan Carlos; Di Pietro, Antonio; Campana, Vilma R

    2017-03-09

    The purpose of the present work was to study the effect of low-level laser therapy (LLLT): helium-neon (He-Ne) and gallium arsenide (Ga-As) laser on the histomorphology of muscle and mitochondria in experimental myopathy in rats. Thirty Suquía strain female rats were distributed in groups: (A) control (intact), (B) injured, (C) injured and treated with He-Ne laser, (D) injured and treated with Ga-As laser, (E) irradiated with He-Ne laser on the non-injured muscle, and (F) irradiated with Ga-As laser on the non-injured muscle. Myopathy was induced by injecting 0.05 mg/rat/day of adrenaline in the left gastrocnemius muscle at the same point on five consecutive days, in groups B, C, and D. LLLT was applied with 9.5 J cm(-2) daily for seven consecutive days in groups C, D, E, and F. The muscles were examined with optic and electronic microscopy. The inflammation was classified as absent, mild, and intense and the degree of mitochondrial alteration was graded I, II, III, and IV. Categorical data were statistically analyzed by Chi-square and the Fisher-Irwin Bilateral test, setting significant difference at p < 0.05. The damage found in muscle and mitochondria histomorphology in animals with induced myopathy (B) was intense or severe inflammation with grade III or IV of mitochondrial alteration. They underwent significant regression (p < 0.001) compared with the groups treated with He-Ne (C) and Ga-As (D) laser, in which mild or moderate inflammation was seen and mitochondrial alteration grades I and II, recovering normal myofibrillar architecture. No differences were found between the effects caused by the two lasers, or between groups A, E, and F. Group A was found to be different from B, C, and D (p < 0.001). LLLT in experimental myopathy caused significant muscular and mitochondrial morphologic recovery.

  20. Suspected myofibrillar myopathy in Arabian horses with a history of exertional rhabdomyolysis

    PubMed Central

    VALBERG, S. J.; McKENZIE, E. C.; EYRICH, L. V.; SHIVERS, J.; BARNES, N. E.; FINNO, C. J.

    2016-01-01

    Summary Reasons for performing study Although exertional rhabdomyolysis (ER) is common in Arabian horses, there are no dedicated studies describing histopathological characteristics of muscle from Arabian horses with ER. Objectives To prospectively identify distinctive histopathological features of muscle from Arabian endurance horses with a history of ER (pro-ER) and to retrospectively determine their prevalence in archived samples from Arabian horses with exertional myopathies (retro-ER). Study design Prospective and retrospective histopathological description. Methods Middle gluteal muscle biopsies obtained from Arabian controls (n = 14), pro-ER (n = 13) as well as archived retro-ER (n = 25) muscle samples previously classified with type 2 polysaccharide storage myopathy (15/25), recurrent exertional rhabdomyolysis (7/25) and no pathology (3/25) were scored for histopathology and immunohistochemical staining of cytoskeletal proteins. Glutaraldehyde-fixed samples (2 pro-ER, one control) were processed for electron microscopy. Pro-ER and retro-ER groups were compared with controls using Mann–Whitney U and Fisher's exact tests. Results Centrally located myonuclei in mature myofibres were found in significantly more (P<0.05) pro-ER (12/13) and retro-ER (21/25) horses than controls (4/14). Degenerating myofibres were not evident in any biopsies. Retro-ER horses had amylase-resistant polysaccharide (6/25, P<0.05) and higher scores for cytoplasmic glycogen, rimmed vacuoles and rod-like bodies. A few control horses (3/14) and significantly (P<0.05) more pro-ER (12/13) and retro-ER (18/25) horses had disrupted myofibrillar alignment and large desmin and αβ-crystallin positive cytoplasmic aggregates. Prominent Z-disc degeneration and focal myofibrillar disruption with regional accumulation of β-glycogen particles were identified on electron microscopy of the 2 pro-ER samples. Conclusions In a subset of Arabian horses with intermittent episodes of exertional

  1. Dominantly inherited proximal myotonic myopathy and leukoencephalopathy in a family with an incidental CLCN1 mutation

    PubMed Central

    Mastaglia, F; Harker, N; Phillips, B; Day, T; Hankey, G; Laing, N; Fabian, V; Kakulas, B

    1998-01-01

    A two generation family of Greek origin with mild myotonia, predominantly proximal muscle weakness, and cataracts compatible with the syndrome of proximal myotonic myopathy, is reported. In addition, brain MRI showed a diffuse leukoencephalopathy in the propositus. Molecular genetic studies showed the R894X mutation in exon 23 of the muscle chloride channel gene in the propositus but in only one of her two clinically affected offspring, indicating that it is not the mutation causing disease in this family.

 PMID:9576553

  2. Dysregulated innate immune function in the aetiopathogenesis of idiopathic inflammatory myopathies.

    PubMed

    Day, Jessica; Otto, Sophia; Proudman, Susanna; Hayball, John D; Limaye, Vidya

    2017-01-01

    The idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of systemic muscle conditions that are believed to be autoimmune in nature. They have distinct pathological features, but the aetiopathogenesis of each subtype remains largely unknown. Recently, there has been increased interest in the complex role the innate immune system plays in initiating and perpetuating these conditions, and how this may differ between subtypes. This article summarises the traditional paradigms of IIM pathogenesis and reviews the accumulating evidence for disturbances in innate immune processes in these rare, but debilitating chronic conditions.

  3. [Reduced synthesis of coenzyme Q10 may cause statin related myopathy].

    PubMed

    Nielsen, Mette Lundgren; Pareek, Manan; Henriksen, Jan Erik

    2011-11-14

    Statin treatment can cause muscular side effects. It has been suggested that the mechanism is reduced synthesis of coenzyme Q10 (coQ10) and a subsequent dysfunction of the respiratory chain. A literature review resulted in insufficient evidence supporting this theory. It is uncertain whether intramuscular levels of coQ10 and mitochondrial function are affected by statin therapy and whether the symptoms of myopathy can be alleviated with coQ10 supplementation. Nevertheless, due to a favourable safety profile, coQ10 can be tested in patients whose muscular symptoms cannot be managed otherwise.

  4. Remission of liver fibrosis by interferon-alpha 2b.

    PubMed

    Moreno, M G; Muriel, P

    1995-08-08

    Fibrosis is a dynamic process associated with the continuous deposition and resorption of connective tissue, mainly collagen. Therapeutic strategies are emerging by which this dynamic process can be modulated. Since interferons are known to inhibit collagen production, the aim of this study was to investigate if the administration of interferon-alpha 2b (IFN-alpha) can restore the normal hepatic content of collagen in rats with established fibrosis. Fibrosis was induced by prolonged bile duct ligation. IFN-alpha (100,000 IU/rat/day; s.c.) was administered to fibrotic rats for 15 days. Bile duct ligation increased liver collagen content 6-fold. In addition, serum and liver markers of hepatic injury increased significantly; liver histology showed an increase in collagen deposition, and the normal architecture was lost, with large zones of necrosis being observed frequently. IFN-alpha administration reversed to normal the values of all the biochemical markers measured and restored the normal architecture of the liver. Our results demonstrated that IFN-alpha is useful in reversing fibrosis and liver damage induced by biliary obstruction in the rat. However, further investigations are required to evaluate the therapeutic relevance of interferons on non-viral fibrosis and cholestasis.

  5. Molecular characterization of an. alpha. sub 2B -adrenergic receptor

    SciTech Connect

    Harrison, J.K.; Dewan Zeng; D'Angelo, D.D.; Tucker, A.L.; Zhihong Lu; Barber, C.M.; Lynch, K.R. )

    1990-02-26

    {alpha}{sub 2}-Adrenergic receptors comprise a heterogeneous population based on pharmacologic and molecular evidence. The authors have isolated a cDNA clone (pRNG{alpha}2) encoding a previously undescribed third subtype of an {alpha}{sub 2}-adrenergic receptor from a rat kidney cDNA library. The library was screened with an oligonucleotide encoding a highly conserved region found in all biogenic amine receptors described to date. The deduced amino acid sequence displays many features of G-protein coupled receptors with exception of the absence of the consensus N-linked glycosylation site at the amino terminus. Membranes prepared from COS-1 cells transfected with pRNG{alpha}2 display high affinity and saturable binding to {sup 3}H-rauwolscine (K{sub d}=2 nM).Competition curve data analysis shows that pRNG{alpha}2 protein binds to a variety of adrenergic drugs with the following rank order of potency: yohimbine {ge} cholorpromazine > prazosin {ge} clonidine > norepinephrine {ge} oxymetazoline. pRNG{alpha}2 RNA accumulates in both adult rat kidney and rat neonatal lung (predominant species is 4.0 kb). They conclude that pRNG{alpha}2 likely represents a cDNA for the {alpha}{sub 2B}-adrenergic receptor.

  6. LNK (SH2B3): paradoxical effects in ovarian cancer

    PubMed Central

    Ding, Ling-Wen; Sun, Qiao-Yang; Lin, De-Chen; Chien, Wenwen; Hattori, Norimichi; Dong, Xue-Ming; Gery, Sigal; Garg, Manoj; Doan, Ngan B.; Said, Jonathan W.; Xiao, Jin-Fen; Yang, Henry; Liu, Li-Zhen; Meng, Xuan; Huang, Ruby Yun-Ju; Tang, Kai; Koeffler, H Phillip

    2014-01-01

    LNK (SH2B3) is an adaptor protein studied extensively in normal and malignant hematopoietic cells. In these cells, it down-regulates activated tyrosine kinases at the cell surface resulting in an antiproliferative effect. To date, no studies have examined activities of LNK in solid tumors. In this study, we found by in silico analysis and staining tissue arrays that the levels of LNK expression were elevated in high grade ovarian cancer. To test the functional importance of this observation, LNK was either overexpressed or silenced in several ovarian cancer cell lines. Remarkably, overexpression of LNK rendered the cells resistant to death induced by either serum starvation or nutrient deprivation, and generated larger tumors using a murine xenograft model. In contrast, silencing of LNK decreased ovarian cancer cell growth in vitro and in vivo. Western blot studies indicated that overexpression of LNK upregulated and extended the transduction of the mitogenic signal, whereas silencing of the LNK produced the opposite effects. Furthermore, forced expression of LNK reduced cell size, inhibited cell migration and markedly enhanced cell adhesion. LC-MS identified 14-3-3 as one of the LNK binding partners. Our results suggest that in contrast to the findings in hematologic malignancies, the adaptor protein LNK acts as a positive signal transduction modulator in ovarian cancers. PMID:24704825

  7. Natural releases from contaminated groundwater, Example Reference Biosphere 2B.

    PubMed

    Simón, I; Naito, M; Thorne, M C; Walke, R

    2005-01-01

    Safety assessment is a tool which, by means of an iterative procedure, allows the evaluation of the performance of a disposal system and its potential impact on human health and the environment. Radionuclides from a deep geological disposal facility may not reach the surface environment until many tens of thousands of years after closure of the facility. The BIOMASS Programme on BIOsphere Modelling and ASSessment developed Examples of "Reference Biospheres" to illustrate the use of the methodology and to demonstrate how biosphere models can be developed and justified as being fit for purpose. The practical examples are also intended to be useful in their own right. The Example Reference Biosphere 2B presented here involves the consideration of alternative types of geosphere-biosphere interfaces and calculation of doses to members of hypothetical exposure groups arising from a wide range of exposure pathways within agricultural and semi-natural environments, but without allowing for evolution of the corresponding biosphere system. The example presented can be used as a generic analysis in some situations although it was developed around a relatively specific conceptual model. It should be a useful practical example, but the above numerical results are not intended to be understood as prescribed biosphere 'conversion factors'.

  8. Exon 32 Skipping of Dysferlin Rescues Membrane Repair in Patients’ Cells

    PubMed Central

    Barthélémy, Florian; Blouin, Cédric; Wein, Nicolas; Mouly, Vincent; Courrier, Sébastien; Dionnet, Eugénie; Kergourlay, Virginie; Mathieu, Yves; Garcia, Luis; Butler-Browne, Gillian; Lamaze, Christophe; Lévy, Nicolas; Krahn, Martin; Bartoli, Marc

    2015-01-01

    Abstract Dysferlinopathies are a family of disabling muscular dystrophies with LGMD2B and Miyoshi myopathy as the main phenotypes. They are associated with molecular defects in DYSF, which encodes dysferlin, a key player in sarcolemmal homeostasis. Previous investigations have suggested that exon skipping may be a promising therapy for a subset of patients with dysferlinopathies. Such an approach aims to rescue functional proteins when targeting modular proteins and specific tissues. We sought to evaluate the dysferlin functional recovery following exon 32 skipping in the cells of affected patients. Exon skipping efficacy was characterized at several levels by use of in vitro myotube formation assays and quantitative membrane repair and recovery tests. Data obtained from these assessments confirmed that dysferlin function is rescued by quasi-dysferlin expression in treated patient cells, supporting the case for a therapeutic antisense-based trial in a subset of dysferlin-deficient patients. PMID:27858744

  9. GluN2B-containing NMDA receptors promote glutamate synapse development in hippocampal interneurons.

    PubMed

    Kelsch, Wolfgang; Li, Zhijun; Wieland, Sebastian; Senkov, Oleg; Herb, Anne; Göngrich, Christina; Monyer, Hannah

    2014-11-26

    In postnatal development, GluN2B-containing NMDARs are critical for the functional maturation of glutamatergic synapses. GluN2B-containing NMDARs prevail until the second postnatal week when GluN2A subunits are progressively added, conferring mature properties to NMDARs. In cortical principal neurons, deletion of GluN2B results in an increase in functional AMPAR synapses, suggesting that GluN2B-containing NMDARs set a brake on glutamate synapse maturation. The function of GluN2B in the maturation of glutamatergic inputs to cortical interneurons is not known. To examine the function of GluN2B in interneurons, we generated mutant mice with conditional deletion of GluN2B in interneurons (GluN2B(ΔGAD67)). In GluN2B(ΔGAD67) mice interneurons distributed normally in cortical brain regions. After the second postnatal week, GluN2B(ΔGAD67) mice developed hippocampal seizures and died shortly thereafter. Before the onset of seizures, GluN2B-deficient hippocampal interneurons received fewer glutamatergic synaptic inputs than littermate controls, indicating that GluN2B-containing NMDARs positively regulate the maturation of glutamatergic input synapses in interneurons. These findings suggest that GluN2B-containing NMDARs keep the circuit activity under control by promoting the maturation of excitatory synapses in interneurons.

  10. Phytoremediation of metolachlor by transgenic rice plants expressing human CYP2B6.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2005-11-16

    We introduced the human cytochrome P450 gene CYP2B6 into rice plants (Oryza sativa L. cv. Nipponbare), and the CYP2B6-expressing rice plants became more tolerant to various herbicides than nontransgenic Nipponbare rice plants. In particular, CYP2B6 rice plants grown in soil showed tolerance to the chloroacetanilide herbicides alachlor and metolachlor. We evaluated the degradation of metolachlor by CYP2B6 rice plants to confirm the metabolic activity of the introduced CYP2B6. Although both CYP2B6 and nontransgenic Nipponbare rice plants could decrease the amount of metolachlor in plant tissue and culture medium, CYP2B6 rice plants could remove much greater amounts. In a greenhouse, the ability of CYP2B6 rice plants to remove metolachlor was confirmed in large-scale experiments, in which these plants appeared able to decrease residual quantities of metolachlor in water and soil.

  11. 75 FR 13451 - Airworthiness Directives; Turbomeca Arriel 2B1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... 2B1 Turboshaft Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Arriel 2B1 turboshaft engines. This proposed AD results from mandatory continuing airworthiness...-2251. FOR FURTHER INFORMATION CONTACT: Kevin Dickert, Aerospace Engineer, Engine Certification...

  12. Beyond the exchange--the future of B2B.

    PubMed

    Wise, R; Morrison, D

    2000-01-01

    Using the Internet to facilitate business-to-business commerce promises many benefits, such as dramatic cost reductions and greater access to buyers and sellers. Yet little is known about how B2B e-commerce will evolve. The authors argue that changes in the financial services industry over the past two decades provide important clues. Exchanges, they say, are not the primary source of value in information-intensive markets; value tends to accumulate among a diverse group of specialists that focus on such tasks as packaging, standard setting, arbitrage, and information management. Because scale and liquidity are vitally important to efficient trading, today's exchanges will consolidate into a relatively small set of mega-exchanges. Originators will handle the origination and aggregation of complex transactions before sending them on to mega-exchanges for execution. E-speculators, seeking to capitalize on an abundance of market information, will tend to concentrate where relatively standardized products can be transferred easily among a large group of buyers. In many markets, a handful of independent solution providers with well-known brand names and solid reputations will thrive alongside mega-exchanges. Sell-side asset exchanges will create the networks and provide the tools to allow suppliers to trade orders among themselves, sometimes after initial transactions with customers are made on the mega-exchanges. For many companies, traditional skills in such areas as product development, manufacturing, and marketing may become relatively less important, while the ability to understand and capitalize on market dynamics may become considerably more important.

  13. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1{sup I4895T/wt} mouse model of core myopathy

    SciTech Connect

    Zvaritch, Elena; MacLennan, David H.

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1{sup I4895T/wt} (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed.

  14. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    PubMed Central

    Wilderman, P. Ross; Jang, Hyun-Hee; Malenke, Jael R.; Salib, Mariam; Angermeier, Elizabeth; Lamime, Sonia; Dearing, M. Denise; Halpert, James R.

    2014-01-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in E. coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. PMID:24361551

  15. 20 CFR 655.11 - Registration of H-2B employers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Saturday, Sunday or Federal holiday. (g) Request for information (RFI). If the CO determines the H-2B... response to the RFI, the CO will review the H-2B Registration as well as any supplemental information and... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Registration of H-2B employers....

  16. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies.

    PubMed

    Rodríguez Cruz, Pedro M; Luo, Yue-Bei; Miller, James; Junckerstorff, Reimar C; Mastaglia, Frank L; Fabian, Victoria

    2014-12-01

    Although there have been several previous reports of immunohistochemical staining for MHC antigens in muscle biopsies, there appears to be a lack of consensus about its routine use in the diagnostic evaluation of biopsies from patients with suspected inflammatory myopathy. Positive MHC-I staining is nonspecific but is widely used as a marker for inflammatory myopathy, whilst the role of MHC-II staining is not clearly defined. We investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of inflammatory myopathy in a large group of biopsies from a single reference laboratory. Positive staining for MHC-I was found to have a high sensitivity in biopsies from patients with inflammatory myopathy but a very low specificity, as it was also common in other non-inflammatory myopathies and neurogenic disorders. On the other hand, MHC-II positivity had a much higher specificity in all major subgroups of inflammatory myopathy, especially inclusion body myositis. The findings indicate that the combination of MHC-I and MHC-II staining results in a higher degree of specificity for the diagnosis of inflammatory myopathy and that in biopsies with inflammation, positive MHC-II staining strongly supports the diagnosis of an immune-mediated myopathy. We recommend that immunohistochemical staining for both MHC-I and MHC-II should be included routinely in the diagnostic evaluation of muscle biopsies from patients with suspected inflammatory myopathy. However, as the sensitivity and interpretation of MHC staining may depend on the technique used, further studies are needed to compare procedures in different centres and develop standardised protocols.

  17. Gene Therapy Prolongs Survival and Restores Function in Murine and Canine Models of Myotubular Myopathy

    PubMed Central

    Childers, Martin K; Joubert, Romain; Poulard, Karine; Moal, Christelle; Grange, Robert W; Doering, Jonathan A; Lawlor, Michael W; Rider, Branden E.; Jamet, Thibaud; Danièle, Nathalie; Martin, Samia; Rivière, Christel; Soker, Thomas; Hammer, Caroline; Van Wittenberghe, Laetitia; Lockard, Mandy; Guan, Xuan; Goddard, Melissa; Mitchell, Erin; Barber, Jane; Williams, J. Koudy; Mack, David L; Furth, Mark E; Vignaud, Alban; Masurier, Carole; Mavilio, Fulvio; Moullier, Philippe; Beggs, Alan H; Buj-Bello, Anna

    2014-01-01

    Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype-8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged lifespan to more than one year in the absence of toxicity, humoral and cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small and large animal models, and provide proof of concept for future clinical trials in XLMTM patients. PMID:24452262

  18. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy.

    PubMed

    Childers, Martin K; Joubert, Romain; Poulard, Karine; Moal, Christelle; Grange, Robert W; Doering, Jonathan A; Lawlor, Michael W; Rider, Branden E; Jamet, Thibaud; Danièle, Nathalie; Martin, Samia; Rivière, Christel; Soker, Thomas; Hammer, Caroline; Van Wittenberghe, Laetitia; Lockard, Mandy; Guan, Xuan; Goddard, Melissa; Mitchell, Erin; Barber, Jane; Williams, J Koudy; Mack, David L; Furth, Mark E; Vignaud, Alban; Masurier, Carole; Mavilio, Fulvio; Moullier, Philippe; Beggs, Alan H; Buj-Bello, Anna

    2014-01-22

    Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype 8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology, and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged life span to more than 1 year in the absence of toxicity or a humoral or cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small- and large-animal models, and provide proof of concept for future clinical trials in XLMTM patients.

  19. [A case of inflammatory myopathy with widely skin rash following use of supplements containing Spirulina].

    PubMed

    Konno, Takuya; Umeda, Yoshitaka; Umeda, Maiko; Kawachi, Izumi; Oyake, Mutsuo; Fujita, Nobuya

    2011-05-01

    A 49-year old woman noticed her skin rash several days after taking supplements containing Spirulina, a planktonic blue-green alga. Her skin rash was spreading over large parts of her body, even after stop ingestion two months later. Five months later, she developed muscle weakness of neck flexor and left proximal upper extremity. On admission, creatine kinase (CK) was elevated to 1,268 IU/ml in the serum. A muscle specimen revealed many necrotizing muscle fibers and the infiltration of mononuclear cells in the peri- and endomysium including a lot of eosinophils. Immunohistochemical staining showed the infiltration of CD4 positive cells in the peri- and endomysium and that of CD20 positive B cells in the perivascular regions. She was diagnosed as having inflammatory myopathy with widely skin rash. Therapy with administration of prednisolone and cyclophosphamide followed by methyl-prednisolone pulse improved her clinical symptoms. There is a similar report describing a case of dermatomyositis after ingestion of Spirulina, which is known to have immune-stimulating property such as accelerating tumor necrosis factor (TNF)-alpha production. Also, TNF-alpha single nucleotide polymorphisms (TNF-308A) was demonstrated to have strong association with onset of myositis in Caucasians. The use of Spirulina could result in inflammatory myopathy under some specific conditions.

  20. Identification and Mechanistic Investigation of Drug-Drug Interactions Associated With Myopathy: A Translational Approach.

    PubMed

    Han, X; Quinney, S K; Wang, Z; Zhang, P; Duke, J; Desta, Z; Elmendorf, J S; Flockhart, D A; Li, L

    2015-09-01

    Myopathy is a group of muscle diseases that can be induced or exacerbated by drug-drug interactions (DDIs). We sought to identify clinically important myopathic DDIs and elucidate their underlying mechanisms. Five DDIs were found to increase the risk of myopathy based on analysis of observational data from the Indiana Network of Patient Care. Loratadine interacted with simvastatin (relative risk 95% confidence interval [CI] = [1.39, 2.06]), alprazolam (1.50, 2.31), ropinirole (2.06, 5.00), and omeprazole (1.15, 1.38). Promethazine interacted with tegaserod (1.94, 4.64). In vitro investigation showed that these DDIs were unlikely to result from inhibition of drug metabolism by CYP450 enzymes or from inhibition of hepatic uptake via the membrane transporter OATP1B1/1B3. However, we did observe in vitro synergistic myotoxicity of simvastatin and desloratadine, suggesting a role in loratadine-simvastatin interaction. This interaction was epidemiologically confirmed (odds ratio 95% CI = [2.02, 3.65]) using the data from the US Food and Drug Administration Adverse Event Reporting System.

  1. Distinct inflammatory properties of late-activated macrophages in inflammatory myopathies

    PubMed Central

    Rostasy, KM; Schmidt, J; Bahn, E; Pfander, T; Piepkorn, M; Wilichowski, E; Schulz-Schaeffer, J

    2008-01-01

    Summary Distinct mechanisms such as humeral immunity in dermatomyositis (DM) and T-cell-mediated cytotoxicity in polymyositis (PM) contribute to the pathology of inflammatory myopathies. In addition, different subsets of macrophages are present in both diseases. Herein, the characteristics of 25F9-positive macrophages in skeletal muscle inflammation are outlined. Muscle biopsies of subjects with DM and PM were studied by immunohistochemical multi-labelling using the late-activation marker 25F9, together with markers characterizing macrophage function including IFN-γ, iNOS, and TGF-β. In PM, a robust expression of IFN-γ, iNOS, and TGF-β was observed in inflammatory cells. Double- and serial-labelling revealed that a subset of 25F9-positive macrophages in the vicinity of injured muscle fibres expressed iNOS and TGF-β, but not IFN-γ. In DM, IFN-γ, iNOS and TGF-β were also expressed in inflammatory cells in the endomysium. Double- and serial-labelling studies in DM indicated that 25F9-positive macrophages expressed TGF-β and to a lesser degree iNOS, but not IFN-γ. In conclusion, our data suggest that late-activated macrophages contribute to the pathology of inflammatory myopathies. PMID:19364061

  2. Distinct inflammatory properties of late-activated macrophages in inflammatory myopathies.

    PubMed

    Rostasy, K M; Schmidt, J; Bahn, E; Pfander, T; Piepkorn, M; Wilichowski, E; Schulz-Schaeffer, J

    2008-10-01

    Distinct mechanisms such as humeral immunity in dermatomyositis (DM) and T-cell-mediated cytotoxicity in polymyositis (PM) contribute to the pathology of inflammatory myopathies. In addition, different subsets of macrophages are present in both diseases. Herein, the characteristics of 25F9-positive macrophages in skeletal muscle inflammation are outlined. Muscle biopsies of subjects with DM and PM were studied by immunohistochemical multi-labelling using the late-activation marker 25F9, together with markers characterizing macrophage function including IFN-gamma, iNOS, and TGF-beta. In PM, a robust expression of IFN-gamma, iNOS, and TGF-beta was observed in inflammatory cells. Double- and serial-labelling revealed that a subset of 25F9-positive macrophages in the vicinity of injured muscle fibres expressed iNOS and TGF-beta, but not IFN-gamma. In DM, IFN-gamma, iNOS and TGF-beta were also expressed in inflammatory cells in the endomysium. Double- and serial-labelling studies in DM indicated that 25F9-positive macrophages expressed TGF-beta and to a lesser degree iNOS, but not IFN-gamma. In conclusion, our data suggest that late-activated macrophages contribute to the pathology of inflammatory myopathies.

  3. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles

    PubMed Central

    Juo, Liang-Yi; Liao, Wern-Chir; Shih, Yen-Ling; Yang, Bih-Ying; Liu, An-Bang

    2016-01-01

    ABSTRACT HSPB7 belongs to the small heat-shock protein (sHSP) family, and its expression is restricted to cardiac and skeletal muscles from embryonic stages to adulthood. Here, we found that skeletal-muscle-specific ablation of the HspB7 does not affect myogenesis during embryonic stages to postnatal day 1 (P1), but causes subsequent postnatal death owing to a respiration defect, with progressive myopathy phenotypes in the diaphragm. Deficiency of HSPB7 in the diaphragm muscle resulted in muscle fibrosis, sarcomere disarray and sarcolemma integrity loss. We identified dimerized filamin C (FLNC) as an interacting partner of HSPB7. Immunofluorescence studies demonstrated that the aggregation and mislocalization of FLNC occurred in the muscle of HspB7 mutant adult mice. Furthermore, the components of dystrophin glycoprotein complex, γ- and δ-sarcoglycan, but not dystrophin, were abnormally upregulated and mislocalized in HSPB7 mutant muscle. Collectively, our findings suggest that HSPB7 is essential for maintaining muscle integrity, which is achieved through its interaction with FLNC, in order to prevent the occurrence and progression of myopathy. PMID:26929074

  4. Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure

    PubMed Central

    Middlekauff, Holly R.; Gomes-Santos, Igor L.; Antunes-Correa, Ligia M.

    2015-01-01

    Neurohormonal excitation and dyspnea are the hallmarks of heart failure (HF) and have long been associated with poor prognosis in HF patients. Sympathetic nerve activity (SNA) and ventilatory equivalent of carbon dioxide (VE/VO2) are elevated in moderate HF patients and increased even further in severe HF patients. The increase in SNA in HF patients is present regardless of age, sex, and etiology of systolic dysfunction. Neurohormonal activation is the major mediator of the peripheral vasoconstriction characteristic of HF patients. In addition, reduction in peripheral blood flow increases muscle inflammation, oxidative stress, and protein degradation, which is the essence of the skeletal myopathy and exercise intolerance in HF. Here we discuss the beneficial effects of exercise training on resting SNA in patients with systolic HF and its central and peripheral mechanisms of control. Furthermore, we discuss the exercise-mediated improvement in peripheral vasoconstriction in patients with HF. We will also focus on the effects of exercise training on ventilatory responses. Finally, we review the effects of exercise training on features of the skeletal myopathy in HF. In summary, exercise training plays an important role in HF, working synergistically with pharmacological therapies to ameliorate these abnormalities in clinical practice. PMID:25681428

  5. Constitutive Activation of the Calcium Sensor STIM1 Causes Tubular-Aggregate Myopathy

    PubMed Central

    Böhm, Johann; Chevessier, Frédéric; De Paula, André Maues; Koch, Catherine; Attarian, Shahram; Feger, Claire; Hantaï, Daniel; Laforêt, Pascal; Ghorab, Karima; Vallat, Jean-Michel; Fardeau, Michel; Figarella-Branger, Dominique; Pouget, Jean; Romero, Norma B.; Koch, Marc; Ebel, Claudine; Levy, Nicolas; Krahn, Martin; Eymard, Bruno; Bartoli, Marc; Laporte, Jocelyn

    2013-01-01

    Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca2+ sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca2+-binding EF hands. Ca2+ stores are refilled through a process called store-operated Ca2+ entry (SOCE). Upon Ca2+-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca2+ entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca2+ sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca2+ level in TAM cells and a dysregulation of intracellular Ca2+ homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function. PMID:23332920

  6. [Patient of myofibrillar myopathy associated with muscle cramp and distal muscle involvement].

    PubMed

    Okada, Yoichiro; Ayaki, Takashi; Matsumoto, Riki; Ito, Hidefumi; Takahashi, Ryosuke; Nakano, Satoshi

    2012-01-01

    A 53-year-old man presented mild, but gradually worsening, distal-dominant upper bilateral limbs weakness and muscle cramp in both legs from the age of 30. He had no obvious muscle atrophy during the course of the disease. Muscle biopsy of the right lateral vastus muscle showed myopathic changes with round or helical hyaline inclusions in eosinophilic on H&E staining and dark green on modified Gomori trichrome. There were also non-rimmed vacuoles. NADH-TR showed lack of enzymic activity in areas corresponding to the inclusions. Immunohistochemistry demonstrated abnormal accumulation of desmin and myotilin in fibers with inclusions. Given these pathological findings, he was diagnosed with myofibrillar myopathy (MFM). Because MFM is genetically heterogeneous, its clinical manifestations are reported as variable. While MFM patients are sometimes reported to develop serious conditions such as severe weakness, cardiomyopathy or respiratory failure, which require a pacemaker or mechanical ventilator, our case only had mild distal dominant limb weakness and muscle cramps. Our patient suggests that we must consider MFM as a differential diagnosis in adult onset distal myopathies.

  7. A statin-dependent QTL for GATM expression is associated with statin-induced myopathy.

    PubMed

    Mangravite, Lara M; Engelhardt, Barbara E; Medina, Marisa W; Smith, Joshua D; Brown, Christopher D; Chasman, Daniel I; Mecham, Brigham H; Howie, Bryan; Shim, Heejung; Naidoo, Devesh; Feng, QiPing; Rieder, Mark J; Chen, Yii-Der I; Rotter, Jerome I; Ridker, Paul M; Hopewell, Jemma C; Parish, Sarah; Armitage, Jane; Collins, Rory; Wilke, Russell A; Nickerson, Deborah A; Stephens, Matthew; Krauss, Ronald M

    2013-10-17

    Statins are prescribed widely to lower plasma low-density lipoprotein (LDL) concentrations and cardiovascular disease risk and have been shown to have beneficial effects in a broad range of patients. However, statins are associated with an increased risk, albeit small, of clinical myopathy and type 2 diabetes. Despite evidence for substantial genetic influence on LDL concentrations, pharmacogenomic trials have failed to identify genetic variations with large effects on either statin efficacy or toxicity, and have produced little information regarding mechanisms that modulate statin response. Here we identify a downstream target of statin treatment by screening for the effects of in vitro statin exposure on genetic associations with gene expression levels in lymphoblastoid cell lines derived from 480 participants of a clinical trial of simvastatin treatment. This analysis identified six expression quantitative trait loci (eQTLs) that interacted with simvastatin exposure, including rs9806699, a cis-eQTL for the gene glycine amidinotransferase (GATM) that encodes the rate-limiting enzyme in creatine synthesis. We found this locus to be associated with incidence of statin-induced myotoxicity in two separate populations (meta-analysis odds ratio = 0.60). Furthermore, we found that GATM knockdown in hepatocyte-derived cell lines attenuated transcriptional response to sterol depletion, demonstrating that GATM may act as a functional link between statin-mediated lowering of cholesterol and susceptibility to statin-induced myopathy.

  8. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy

    PubMed Central

    Yuen, Michaela; Sandaradura, Sarah A.; Dowling, James J.; Kostyukova, Alla S.; Moroz, Natalia; Quinlan, Kate G.; Lehtokari, Vilma-Lotta; Ravenscroft, Gianina; Todd, Emily J.; Ceyhan-Birsoy, Ozge; Gokhin, David S.; Maluenda, Jérome; Lek, Monkol; Nolent, Flora; Pappas, Christopher T.; Novak, Stefanie M.; D’Amico, Adele; Malfatti, Edoardo; Thomas, Brett P.; Gabriel, Stacey B.; Gupta, Namrata; Daly, Mark J.; Ilkovski, Biljana; Houweling, Peter J.; Davidson, Ann E.; Swanson, Lindsay C.; Brownstein, Catherine A.; Gupta, Vandana A.; Medne, Livija; Shannon, Patrick; Martin, Nicole; Bick, David P.; Flisberg, Anders; Holmberg, Eva; Van den Bergh, Peter; Lapunzina, Pablo; Waddell, Leigh B.; Sloboda, Darcée D.; Bertini, Enrico; Chitayat, David; Telfer, William R.; Laquerrière, Annie; Gregorio, Carol C.; Ottenheijm, Coen A.C.; Bönnemann, Carsten G.; Pelin, Katarina; Beggs, Alan H.; Hayashi, Yukiko K.; Romero, Norma B.; Laing, Nigel G.; Nishino, Ichizo; Wallgren-Pettersson, Carina; Melki, Judith; Fowler, Velia M.; MacArthur, Daniel G.; North, Kathryn N.; Clarke, Nigel F.

    2014-01-01

    Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle. PMID:25250574

  9. Phenotypes of Myopathy-Related Beta-Tropomyosin Mutants in Human and Mouse Tissue Cultures

    PubMed Central

    Abdul-Hussein, Saba; Rahl, Karin; Moslemi, Ali-Reza; Tajsharghi, Homa

    2013-01-01

    Mutations in TPM2 result in a variety of myopathies characterised by variable clinical and morphological features. We used human and mouse cultured cells to study the effects of β-TM mutants. The mutants induced a range of phenotypes in human myoblasts, which generally changed upon differentiation to myotubes. Human myotubes transfected with the E41K-β-TMEGFP mutant showed perinuclear aggregates. The G53ins-β-TMEGFP mutant tended to accumulate in myoblasts but was incorporated into filamentous structures of myotubes. The K49del-β-TMEGFP and E122K-β-TMEGFP mutants induced the formation of rod-like structures in human cells. The N202K-β-TMEGFP mutant failed to integrate into thin filaments and formed accumulations in myotubes. The accumulation of mutant β-TMEGFP in the perinuclear and peripheral areas of the cells was the striking feature in C2C12. We demonstrated that human tissue culture is a suitable system for studying the early stages of altered myofibrilogenesis and morphological changes linked to myopathy-related β-TM mutants. In addition, the histopathological phenotype associated with expression of the various mutant proteins depends on the cell type and varies with the maturation of the muscle cell. Further, the phenotype is a combinatorial effect of the specific amino acid change and the temporal expression of the mutant protein. PMID:24039757

  10. Identification and Mechanistic Investigation of Drug–Drug Interactions Associated With Myopathy: A Translational Approach

    PubMed Central

    Han, X; Quinney, SK; Wang, Z; Zhang, P; Duke, J; Desta, Z; Elmendorf, JS; Flockhart, DA

    2015-01-01

    Myopathy is a group of muscle diseases that can be induced or exacerbated by drug–drug interactions (DDIs). We sought to identify clinically important myopathic DDIs and elucidate their underlying mechanisms. Five DDIs were found to increase the risk of myopathy based on analysis of observational data from the Indiana Network of Patient Care. Loratadine interacted with simvastatin (relative risk 95% confidence interval [CI] = [1.39, 2.06]), alprazolam (1.50, 2.31), ropinirole (2.06, 5.00), and omeprazole (1.15, 1.38). Promethazine interacted with tegaserod (1.94, 4.64). In vitro investigation showed that these DDIs were unlikely to result from inhibition of drug metabolism by CYP450 enzymes or from inhibition of hepatic uptake via the membrane transporter OATP1B1/1B3. However, we did observe in vitro synergistic myotoxicity of simvastatin and desloratadine, suggesting a role in loratadine–simvastatin interaction. This interaction was epidemiologically confirmed (odds ratio 95% CI = [2.02, 3.65]) using the data from the US Food and Drug Administration Adverse Event Reporting System. PMID:25975815

  11. Epigenetic changes as a common trigger of muscle weakness in congenital myopathies.

    PubMed

    Rokach, Ori; Sekulic-Jablanovic, Marijana; Voermans, Nicol; Wilmshurst, Jo; Pillay, Komala; Heytens, Luc; Zhou, Haiyan; Muntoni, Francesco; Gautel, Mathias; Nevo, Yoram; Mitrani-Rosenbaum, Stella; Attali, Ruben; Finotti, Alessia; Gambari, Roberto; Mosca, Barbara; Jungbluth, Heinz; Zorzato, Francesco; Treves, Susan

    2015-08-15

    Congenital myopathies are genetically and clinically heterogeneous conditions causing severe muscle weakness, and mutations in the ryanodine receptor gene (RYR1) represent the most frequent cause of these conditions. A common feature of diseases caused by recessive RYR1 mutations is a decrease of ryanodine receptor 1 protein content in muscle. The aim of the present investigation was to gain mechanistic insight into the causes of this reduced ryanodine receptor 1. We found that muscle biopsies of patients with recessive RYR1 mutations exhibit decreased expression of muscle-specific microRNAs, increased DNA methylation and increased expression of class II histone deacetylases. Transgenic mouse muscle fibres over-expressing HDAC-4/HDAC-5 exhibited decreased expression of RYR1 and of muscle-specific miRNAs, whereas acute knock-down of RYR1 in mouse muscle fibres by siRNA caused up-regulation of HDAC-4/HDAC-5. Intriguingly, increased class II HDAC expression and decreased ryanodine receptor protein and miRNAs expression were also observed in muscles of patients with nemaline myopathy, another congenital neuromuscular disorder. Our results indicate that a common pathophysiological pathway caused by epigenetic changes is activated in some forms of congenital neuromuscular disorders.

  12. Treatment options for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome.

    PubMed

    Santa, Kristin M

    2010-11-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a rare neurodegenerative disease caused by the decreased ability of cells to produce sufficient energy in the form of adenosine 5'-triphosphate. Although it is one of the most common maternally inherited mitochondrial disorders, its exact incidence is unknown. Caused most frequently by an A-to-G point mutation at the 3243 position in the mitochondrial DNA, MELAS syndrome has a broad range of clinical manifestations and a highly variable course. The classic neurologic characteristics include encephalopathy, seizures, and stroke-like episodes. In addition to its neurologic manifestations, MELAS syndrome exhibits multisystem effects including cardiac conduction defects, diabetes mellitus, short stature, myopathy, and gastrointestinal disturbances. Unfortunately, no consensus guidelines outlining standard drug regimens exist for this syndrome. Many of the accepted therapies used in treating MELAS syndrome have been identified through a small number of clinical trials or isolated case reports. Currently, the drugs most often used include antioxidants and various vitamins aimed at minimizing the demands on the mitochondria and supporting and maximizing their function. Some of the most frequently prescribed agents include coenzyme Q(10), l-arginine, B vitamins, and levocarnitine. Although articles describing MELAS syndrome are available, few specifically target education for clinical pharmacists. This article will provide pharmacists with a practical resource to enhance their understanding of MELAS syndrome in order to provide safe and effective pharmaceutical care.

  13. Intensive care unit acquired weakness in children: Critical illness polyneuropathy and myopathy

    PubMed Central

    Kukreti, Vinay; Shamim, Mosharraf; Khilnani, Praveen

    2014-01-01

    Background and Aims: Intensive care unit acquired weakness (ICUAW) is a common occurrence in patients who are critically ill. It is most often due to critical illness polyneuropathy (CIP) or to critical illness myopathy (CIM). ICUAW is increasingly being recognized partly as a consequence of improved survival in patients with severe sepsis and multi-organ failure, partly related to commonly used agents such as steroids and muscle relaxants. There have been occasional reports of CIP and CIM in children, but little is known about their prevalence or clinical impact in the pediatric population. This review summarizes the current understanding of pathophysiology, clinical presentation, diagnosis and treatment of CIP and CIM in general with special reference to published literature in the pediatric age group. Subjects and Methods: Studies were identified through MedLine and Embase using relevant MeSH and Key words. Both adult and pediatric studies were included. Results: ICUAW in children is a poorly described entity with unknown incidence, etiology and unclear long-term prognosis. Conclusions: Critical illness polyneuropathy and myopathy is relatively rare, but clinically significant sequelae of multifactorial origin affecting morbidity, length of intensive care unit (ICU) stay and possibly mortality in critically ill children admitted to pediatric ICU. PMID:24678152

  14. Next generation sequencing on patients with LGMD and nonspecific myopathies: Findings associated with ANO5 mutations

    PubMed Central

    Savarese, Marco; Di Fruscio, Giuseppina; Tasca, Giorgio; Ruggiero, Lucia; Janssens, Sandra; De Bleecker, Jan; Delpech, Marc; Musumeci, Olimpia; Toscano, Antonio; Angelini, Corrado; Sacconi, Sabrina; Santoro, Lucio; Ricci, Enzo; Claes, Kathleen; Politano, Luisa; Nigro, Vincenzo

    2015-01-01

    We studied 786 undiagnosed patients with LGMD or nonspecific myopathic features to investigate the role of ANO5 mutations in limb-girdle muscular dystrophies (LGMDs) and in nonspecific myopathies using the next generation sequencing (NGS) approach. In 160 LGMD patients, we first sequenced hotspot exons 5 and 20 and then sequenced the remaining part of the coding region. Another 626 patients, recruited using broader inclusion criteria, were directly analyzed by targeted NGS. By combining NGS and Sanger sequencing, we identified 33/786 (4%) patients carrying putative pathogenic changes in both alleles and 23 ANO5 heterozygotes (3%). The phenotypic spectrum is broader than expected, from hyperCKemia to myopathies, with lack of genotype/phenotype correlations. In particular, this is currently the largest screening of the ANO5 gene. The large number of heterozygotes for damaging mutations suggests that anoctaminopathies should be frequent and often nonpenetrant. We propose the multiple genetic testing by targeted NGS as a first step to analyze patients with nonspecific myopathic presentations. This represents a straightforward approach to overcome the difficulties of clinical heterogeneity of ANO5 patients, and to test, at the same time, many other genes involved in neuromuscular disorders. PMID:25891276

  15. Microneedle Electrode Array for Electrical Impedance Myography to Characterize Neurogenic Myopathy.

    PubMed

    Li, Zhao; Li, Yi; Liu, Mingsheng; Cui, Liying; Yu, Yude

    2016-05-01

    Electrical impedance myography (EIM) is a noninvasive technique for neuromuscular assessment, wherein a low-intensity alternating current is applied to a muscle, and the consequent surface voltage patterns are evaluated. Commercial wet electrodes are most commonly used for EIM. However, these electrodes are not suitable for use on small muscles, as they do not effectively solve the problem of high electrode-skin contact impedance (ESCI) that negatively influences the quality of recorded biopotentials. To address this problem, we fabricated a novel microneedle electrode array (MEA) that consists of 124-µm-long microneedles. Compared to wet electrodes, the MEA could pierce through the outer skin surface in a painless and micro-invasive manner, and could thus effectively reduce ESCI. The MEA has excellent test-retest reproducibility, with intraclass correlation coefficients exceeding 0.920. When used in combination with EIM, the MEA differentiated the affected muscles from the unaffected muscles in patients with neurogenic myopathy, by using EIM parameters of reactance and phase (p = 0.023 and 0.008, respectively). Thus, the novel MEA is a practical and reusable device for EIM assessment in cases of neurogenic myopathy. However, further refinement of the electrode is needed to enhance the clinical application of the system.

  16. Anemia, myopathy, and pansteatitis in vitamin E-deficient captive marmosets (Callithrix spp.).

    PubMed

    Juan-Sallés, C; Prats, N; Resendes, A; Domingo, M; Hilton, D; Ruiz, J M; Garner, M M; Valls, X; Marco, A J

    2003-09-01

    Five young adult pet marmosets (Callithrix spp.) were presented with weight loss (5/5); fecal retention (3/5); diarrhea (2/5); impaired locomotion (3/5); anemia (4/4); hypoproteinemia or hypoalbuminemia (3/4); elevations of creatine phosphokinase, lactic dehydrogenase, and alanine aminotransferase (3/4); and renal failure with hypercholesterolemia (2/4). All anemic marmosets had low serum vitamin E levels. The anemia responded to vitamin E and selenium therapy in two marmosets. One of the five marmosets died before presentation, and two others died despite therapy. The two marmosets necropsied had degenerative myopathy, pyogranulomatous pansteatitis, and increased erythrophagocytosis and hemosiderosis. The striated muscle and adipose tissue of both marmosets were negative for coxsackievirus ribonucleic acid by in situ hybridization. These findings suggest that vitamin E deficiency may be involved in the development of anemia, myopathy, and steatitis in callitrichids; however, in some marmosets, underlying diseases such as chronic colitis may have influenced the development of anemia and impaired vitamin E status.

  17. Semitendinosus myopathy and treatment with adipose-derived stem cells in working German shepherd police dogs.

    PubMed

    Gibson, Melissa A; Brown, S Gary; Brown, Nancy O

    2017-03-01

    Semitendinosus myopathy has been treated with numerous surgical and non-surgical therapies resulting in recurrence of lameness within 2 to 9 months. Eleven cases of semitendinosus myopathy diagnosed in 8 working police dogs that were treated with adipose-derived mesenchymal stem cells were retrospectively evaluated. At short-term follow-up < 6 mo, ultrasound and gait evaluations revealed a mean reduction in the overall intramuscular lesion size of 54.82% (SD +/- 18.02; range: 30.5% to 82.7%) and reduction in the Visual Assessment Score (VAS) of 1 to 3 points. At long-term follow-up > 1 y, in 8 cases the dogs had a normal gait and in 3 cases the dogs had an improved gait compared with initial examination, and all 8 dogs returned to active police work. Fisher's exact test resulted in P = 0.000008 when comparing published historical reports and these 11 cases for resolution of lameness and return to active duty.

  18. A centronuclear myopathy--dynamin 2 mutation impairs autophagy in mice.

    PubMed

    Durieux, Anne-Cécile; Vassilopoulos, Stéphane; Lainé, Jeanne; Fraysse, Bodvaël; Briñas, Laura; Prudhon, Bernard; Castells, Josiane; Freyssenet, Damien; Bonne, Gisèle; Guicheney, Pascale; Bitoun, Marc

    2012-06-01

    Dynamin 2 (Dnm2) is involved in endocytosis and intracellular membrane trafficking through its function in vesicle formation from distinct membrane compartments. Heterozygous (HTZ) mutations in the DNM2 gene cause dominant centronuclear myopathy or Charcot-Marie-Tooth neuropathy. We generated a knock-in Dnm2R465W mouse model expressing the most frequent human mutation and recently reported that HTZ mice progressively developed a myopathy. We investigated here the cause of neonatal lethality occurring in homozygous (HMZ) mice. We show that HMZ mice present at birth with a reduced body weight, hypoglycemia, increased liver glycogen content and hepatomegaly, in agreement with a defect in neonatal autophagy. In vitro studies performed in HMZ embryonic fibroblasts point out to a decrease in the autophagy flux prior to degradation at the autolysosome. We show that starved HMZ cells have a higher number of immature autophagy-related structures probably due to a defect of acidification. Our results highlight the role of Dnm2 in the cross talk between endosomal and autophagic pathways and evidence a new role of Dnm2-dependent membrane trafficking in autophagy which may be relevant in DNM2-related human diseases.

  19. Mice lacking TR4 nuclear receptor develop mitochondrial myopathy with deficiency in complex I.

    PubMed

    Liu, Su; Lee, Yi-Fen; Chou, Samuel; Uno, Hideo; Li, Gonghui; Brookes, Paul; Massett, Michael P; Wu, Qiao; Chen, Lu-Min; Chang, Chawnshang

    2011-08-01

    The estimated incidence of mitochondrial diseases in humans is approximately 1:5000 to 1:10,000, whereas the molecular mechanisms for more than 50% of human mitochondrial disease cases still remain unclear. Here we report that mice lacking testicular nuclear receptor 4 (TR4(-/-)) suffered mitochondrial myopathy, and histological examination of TR4(-/-) soleus muscle revealed abnormal mitochondrial accumulation. In addition, increased serum lactate levels, decreased mitochondrial ATP production, and decreased electron transport chain complex I activity were found in TR4(-/-) mice. Restoration of TR4 into TR4(-/-) myoblasts rescued mitochondrial ATP generation capacity and complex I activity. Further real-time PCR quantification and promoter studies found TR4 could modulate complex I activity via transcriptionally regulating the complex I assembly factor NDUFAF1, and restoration of NDUFAF1 level in TR4(-/-) myoblasts increased mitochondrial ATP generation capacity and complex I activity. Together, these results suggest that TR4 plays vital roles in mitochondrial function, which may help us to better understand the pathogenesis of mitochondrial myopathy, and targeting TR4 via its ligands/activators may allow us to develop better therapeutic approaches.

  20. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.

    PubMed

    Khan, Nahid A; Auranen, Mari; Paetau, Ilse; Pirinen, Eija; Euro, Liliya; Forsström, Saara; Pasila, Lotta; Velagapudi, Vidya; Carroll, Christopher J; Auwerx, Johan; Suomalainen, Anu

    2014-06-01

    Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD(+)/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD(+) precursor, was previously shown to boost NAD(+) levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early- and late-stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD(+) levels are a promising treatment strategy for mitochondrial myopathy.

  1. Red yeast rice and coenzyme Q10 as safe alternatives to surmount atorvastatin-induced myopathy in hyperlipidemic rats.

    PubMed

    Abdelbaset, Marwan; Safar, Marwa M; Mahmoud, Sawsan S; Negm, Seham A; Agha, Azza M

    2014-06-01

    Statins are the first line treatment for the management of hyperlipidemia. However, the primary adverse effect limiting their use is myopathy. This study examines the efficacy and safety of red yeast rice (RYR), a source of natural statins, as compared with atorvastatin, which is the most widely used synthetic statin. Statin interference with the endogenous synthesis of coenzyme Q10 (CoQ10) prompted the hypothesis that its deficiency may be implicated in the pathogenesis of statin-associated myopathy. Hence, the effects of combination of CoQ10 with either statin have been evaluated. Rats were rendered hyperlipidemic through feeding them a high-fat diet for 90 days, during the last 30 days of the diet they were treated daily with either atorvastatin, RYR, CoQ10, or combined regimens. Lipid profile, liver function tests, and creatine kinase were monitored after 15 and 30 days of drug treatments. Heart contents of CoQ9 and CoQ10 were assessed and histopathological examination of the liver and aortic wall was performed. RYR and CoQ10 had the advantage over atorvastatin in that they lower cholesterol without elevating creatine kinase, a hallmark of myopathy. RYR maintained normal levels of heart ubiquinones, which are essential components for energy production in muscles. In conclusion, RYR and CoQ10 may offer alternatives to overcome atorvastatin-associated myopathy.

  2. [Interindividual differences in the response to statin therapy and gene polymorphisms related to myopathy during statin therapy].

    PubMed

    Dendramis, Gregory

    2011-03-01

    The enzyme HMG-CoA reductase (HMGCR), the main site of action of statins, undergoes alternative splicing of exon 13, which encodes the binding domain of statins to the enzyme. The resulting isoform, called HMGCRv1, shows altered enzyme activity and sensitivity to statins compared to the classical isoform. This translates into interindividual differences in the response to treatment with these drugs. A recent discovery in the field of genetics has brought about the identification of the single nucleotide polymorphism rs4363657 of the SLCO1B1 gene located on chromosome 12. This polymorphism is strongly associated with myopathy induced by statins. From the available literature, a clinical study has evaluated the relationship between gene polymorphisms and myopathy during statin therapy. The study involved 12 000 patients treated with simvastatin at a dose of 80 mg/day. The odds ratio for myopathy was 4.5 (95% confidence interval 2.6-7.7) per copy of the C allele, and 16.9 (95% confidence interval 4.7-61.1) in CC as compared with TT homozygotes. Myopathy could be attributed to the C variant in more than 60% of cases. Genomic typing may allow the identification of these variants, leading to a tailored statin therapy with higher benefits to the patients and less adverse side effects.

  3. A novel DNAJB6 mutation causes dominantly-inherited distal-onset myopathy and compromises DNAJB6 function.

    PubMed

    Tsai, Pei-Chien; Tsai, Yu-Shuen; Soong, Bing-Wen; Huang, Yen-Hua; Wu, Hung-Ta; Chen, Ying-Hao; Lin, Kon-Ping; Liao, Yi-Chu; Lee, Yi-Chung

    2017-02-23

    Mutations in the DNAJB6 gene have been identified as a rare cause of dominantly-inherited limb-girdle muscular dystrophy or distal-onset myopathy. To identify the genetic cause of distal-onset myopathy in a Taiwanese family of Han Chinese origin, we performed exome sequencing for the two affected individuals and identified a heterozygous mutation, c.287C>T (p.Pro96Leu) in the DNAJB6 gene that co-segregated with myopathy in the family. Notably, this mutation is novel and localizes within the glycine and phenylalanine-rich (G/F) domain and alters an amino acid residue previously reported with a different mutation. Furthermore, in vitro functional studies demonstrated that the c.287C>T (p.Pro96Leu) mutation possessed a dominant negative effect on the anti-aggregation function of DNAJB6 protein. Taken together, these findings expand the molecular spectrum of DNAJB6 mutations and also emphasize the pathogenic role of DNAJB6 dysfunction in distal-onset myopathy.

  4. [Phosphorus NMR spectroscopy. Its value in the diagnosis of metabolic myopathies. A case of Mac Ardle's disease].

    PubMed

    Kaminsky, P; Melone, M; Brunotte, F; Escanye, J M; Robin, B; Floquet, J; Duc, M L; Robert, J; Duc, M

    1990-06-09

    Phosphorus nuclear magnetic resonance spectroscopy is a non-invasive method used to study muscle bioenergetics in vivo. A new case of Mc Ardle's disease (myophosphorylase deficiency) is reported here. In a context of metabolic myopathy this method can provide a diagnosis of glycogenosis. The spectra obtained at exercise and during recovery determine the degree of enzyme deficiency with satisfactory precision.

  5. Muscle weakness in respiratory and peripheral skeletal muscles in a mouse model for nebulin-based nemaline myopathy.

    PubMed

    Joureau, Barbara; de Winter, Josine M; Stam, Kelly; Granzier, Henk; Ottenheijm, Coen A C

    2017-01-01

    Nemaline myopathy is among the most common non-dystrophic congenital myopathies, and is characterized by the presence of nemaline rods in skeletal muscles fibers, general muscle weakness, and hypotonia. Although respiratory failure is the main cause of death in nemaline myopathy, only little is known regarding the contractile strength of the diaphragm, the main muscle of inspiration. To investigate diaphragm contractility, in the present study we took advantage of a mouse model for nebulin-based nemaline myopathy that we recently developed. In this mouse model, exon 55 of Neb is deleted (Neb(ΔExon55)), a mutation frequently found in patients. Diaphragm contractility was determined in permeabilized muscle fibers and was compared to the contractility of permeabilized fibers from three peripheral skeletal muscles: soleus, extensor digitorum longus, and gastrocnemius. The force generating capacity of diaphragm muscle fibers of Neb(ΔExon55) mice was reduced to 25% of wildtype levels, indicating severe contractile weakness. The contractile weakness of diaphragm fibers was more pronounced than that observed in soleus muscle, but not more pronounced than that observed in extensor digitorum longus and gastrocnemius muscles. The reduced muscle contractility was at least partly caused by changes in cross-bridge cycling kinetics which reduced the number of bound cross-bridges. The severe diaphragm weakness likely contributes to the development of respiratory failure in Neb(ΔExon55) mice and might explain their early, postnatal death.

  6. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in mitochondrial myopathy patients.

    PubMed

    Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; Le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F; Smeets, Hubert J M; Praet, Stephan F; van Loon, Luc J C; Prompers, Jeanine J

    2017-02-08

    Muscle weakness and exercise intolerance negatively affect the quality of life of mitochondrial myopathy patients. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated if 1 week of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in mitochondrial myopathy patients. Ten mitochondrial myopathy patients (40 ± 5 years, maximal whole-body oxygen uptake = 21.2 ± 3.2 mL/min/kg body weight, maximal workload = 122 ± 26 W) received 8.5 mg/kg body weight/day of inorganic nitrate (~7 mmol) for 8 days. Whole-body oxygen consumption at 50% of the maximal workload, in vivo skeletal muscle oxidative capacity (evaluated from post-exercise phosphocreatine recovery using (31)P magnetic resonance spectroscopy) and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a 6-fold increase in plasma nitrate levels, nitrate supplementation did not affect whole-body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for mitochondrial myopathy patients was evaluated. We conclude that 1 week of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested.

  7. The myopathy of peripheral arterial occlusive disease: part 1. Functional and histomorphological changes and evidence for mitochondrial dysfunction.

    PubMed

    Pipinos, Iraklis I; Judge, Andrew R; Selsby, Joshua T; Zhu, Zhen; Swanson, Stanley A; Nella, Aikaterini A; Dodd, Stephen L

    In recent years, an increasing number of studies have demonstrated that a myopathy is present, contributes, and, to a certain extent, determines the pathogenesis of peripheral arterial occlusive disease (PAD). These works provide evidence that a state of repetitive cycles of exercise-induced ischemia followed by reperfusion at rest operates in PAD patients and mediates a large number of structural and metabolic changes in the muscle, resulting in reduced strength and function. The key players in this process appear to be defective mitochondria that, through multilevel failure in their roles as energy, oxygen radical species, and apoptosis regulators, produce and sustain a progressive decline in muscle performance. In this 2-part review, we highlight the currently available evidence that characterizes the nature and mechanisms responsible for this myopathy. In part 1, the authors review the functional and histomorphological characteristics of the myopathy and focus on the biochemistry and bioenergetics of its mitochondriopathy. In part 2, they then review accumulating evidence that oxidative stress related to ischemia reperfusion is probably the major operating mechanism of PAD myopathy. Important new findings of a possible neuropathy and a shift in muscle fiber type are also reviewed. Learning more about these mechanisms will enhance our understanding of the degree to which they are preventable and treatable.

  8. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B).

    PubMed

    Donella-Deana, A; Krinks, M H; Ruzzene, M; Klee, C; Pinna, L A

    1994-01-15

    38 (6-32 residues) enzymically phosphorylated synthetic peptides have been assayed as substrates for calcineurin, a Ca2+/calmodulin-dependent protein phosphatase (PP-2B) belonging to the family of Ser/Thr-specific enzymes but also active on phosphotyrosine residues. Many peptides reproduce, with suitable modifications, naturally occurring phosphoacceptor sites. While protein phosphatases 2A and 2C are also very active on short phosphopeptides, an extended N-terminal stretch appears to be a necessary, albeit not sufficient, condition for an optimal dephosphorylation, comparable to that of protein substrates, of both phosphoseryl and phosphotyrosyl peptides by calcineurin. This finding corroborates the view that higher-order structure is an important determinant for the substrate specificity of calcineurin. However, a number of shorter peptides are also appreciably dephosphorylated by this enzyme, their efficiency as substrates depending on local structural features. All the peptides that are appreciably dephosphorylated by calcineurin contain basic residue(s) on the N-terminal side. A basic residue located at position -3 relative to the phosphorylated residue plays a particularly relevant positive role in determining the dephosphorylation of short phosphopeptides. Acidic residue(s) adjacent to the C-terminal side of the phosphoamino acid are conversely powerful negative determinants, preventing the dephosphorylation of otherwise suitable peptide substrates. However, calcineurin displays an only moderate preference for phosphothreonyl peptides which are conversely strikingly preferred over their phosphoseryl counterparts by the other classes of Ser/Thr-specific protein phosphatases. Moreover calcineurin does not perceive as a strong negative determinant the motif Ser/Thr-Pro in peptides where this motif prevents dephosphorylation by the other classes of Ser/Thr protein phosphatases. Whenever tested on phosphotyrosyl peptides, calcineurin exhibits a specificity which

  9. A 12p13 GRIN2B deletion is associated with developmental delay and macrocephaly

    PubMed Central

    Morisada, Naoya; Ioroi, Tomoaki; Taniguchi-Ikeda, Mariko; Juan Ye, Ming; Okamoto, Nobuhiko; Yamamoto, Toshiyuki; Iijima, Kazumoto

    2016-01-01

    N-methyl D-aspartate receptor subtype 2B (GluN2B), encoded by GRIN2B, is one of the components of the N-methyl D-aspartate receptor protein. Aberrations in GRIN2B have been reported to be responsible for various types of neurodevelopmental disorders. We report a Japanese boy with an ~2 Mb interstitial deletion in 12p13 involving the entire GRIN2B gene, who presented with intellectual disability, motor developmental delay and marked macrocephaly. PMID:27656287

  10. Role of adenosine A2b receptor overexpression in tumor progression.

    PubMed

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  11. Homo- and hetero-dimerization of human UDP-glucuronosyltransferase 2B7 (UGT2B7) wild type and its allelic variants affect zidovudine glucuronidation activity.

    PubMed

    Yuan, Lingmin; Qian, Sainan; Xiao, Yongsheng; Sun, Hongying; Zeng, Su

    2015-05-01

    Most human UDP-glucuronosyltransferase (UGT; EC 2.4.1.17) genes contain non-synonymous single nucleotide polymorphisms (nsSNPs) which cause amino acid substitutions. Allelic variants caused by nsSNPs may exhibit absent or reduced enzyme activity. UGT2B7 is one of the most important UGTs that glucuronidates abundant endobiotics and xenobiotics, such as estriol, morphine, and anticancer drugs. Three nsSNPs, UGT2B7*71S (211G>T), UGT2B7*2 (802C>T) and UGT2B7*5 (1192G>A) are observed in the UGT2B7 gene, and they code for allozymes UGT2B7*71S (A71S), UGT2B7*2 (H268Y), and UGT2B7*5 (D398N). UGT2B7 has been observed to form oligomers that affect its enzymatic activity and in this study, we investigated protein-protein interactions among UGT2B7 allozymes wild type (WT), A71S, H268Y and D398N, by performing a systematic quantitative fluorescence resonance energy transfer (FRET) analysis in combination with co-immunoprecipitation assay. Quantitative FRET analysis revealed that UGT2B7 allozymes formed homo- and hetero-dimers and showed distinct features in donor-acceptor distances. Both codon 71 and codon 268 in the N-terminal domain were involved in the dimeric interaction. Co-immunoprecipitation experiments also proved that UGT2B7 allozymes formed stable dimers. The glucuronidation activities of homo- and hetero-dimers were further tested with zidovudine as the substrate. An increase in activity was observed when WT hetero-dimerized with A71S compared with homo-dimers, while both H268Y and D398N impaired the activity of WT and A71S by forming hetero-dimers. In addition, zidovudine glucuronidation activity is associated with FRET distance. These findings provide insights into the consequences of amino acid substitution in UGT2B7 on zidovudine glucuronidation and the association between protein-protein interaction and glucuronidation activity.

  12. SH2B1 and IRSp53 proteins promote the formation of dendrites and dendritic branches.

    PubMed

    Chen, Chien-Jen; Shih, Chien-Hung; Chang, Yu-Jung; Hong, Shao-Jing; Li, Tian-Neng; Wang, Lily Hui-Ching; Chen, Linyi

    2015-03-06

    SH2B1 is an adaptor protein known to enhance neurite outgrowth. In this study, we provide evidence suggesting that the SH2B1 level is increased during in vitro culture of hippocampal neurons, and the β isoform (SH2B1β) is the predominant isoform. The fact that formation of filopodia is prerequisite for neurite initiation suggests that SH2B1 may regulate filopodium formation and thus neurite initiation. To investigate whether SH2B1 may regulate filopodium formation, the effect of SH2B1 and a membrane and actin regulator, IRSp53 (insulin receptor tyrosine kinase substrate p53), is investigated. Overexpressing both SH2B1β and IRSp53 significantly enhances filopodium formation, neurite outgrowth, and branching. Both in vivo and in vitro data show that SH2B1 interacts with IRSp53 in hippocampal neurons. This interaction depends on the N-terminal proline-rich domains of SH2B1. In addition, SH2B1 and IRSp53 co-localize at the plasma membrane, and their levels increase in the Triton X-100-insoluble fraction of developing neurons. These findings suggest that SH2B1-IRSp53 complexes promote the formation of filopodia, neurite initiation, and neuronal branching.

  13. SH2B1 and IRSp53 Proteins Promote the Formation of Dendrites and Dendritic Branches*

    PubMed Central

    Chen, Chien-Jen; Shih, Chien-Hung; Chang, Yu-Jung; Hong, Shao-Jing; Li, Tian-Neng; Wang, Lily Hui-Ching; Chen, Linyi

    2015-01-01

    SH2B1 is an adaptor protein known to enhance neurite outgrowth. In this study, we provide evidence suggesting that the SH2B1 level is increased during in vitro culture of hippocampal neurons, and the β isoform (SH2B1β) is the predominant isoform. The fact that formation of filopodia is prerequisite for neurite initiation suggests that SH2B1 may regulate filopodium formation and thus neurite initiation. To investigate whether SH2B1 may regulate filopodium formation, the effect of SH2B1 and a membrane and actin regulator, IRSp53 (insulin receptor tyrosine kinase substrate p53), is investigated. Overexpressing both SH2B1β and IRSp53 significantly enhances filopodium formation, neurite outgrowth, and branching. Both in vivo and in vitro data show that SH2B1 interacts with IRSp53 in hippocampal neurons. This interaction depends on the N-terminal proline-rich domains of SH2B1. In addition, SH2B1 and IRSp53 co-localize at the plasma membrane, and their levels increase in the Triton X-100-insoluble fraction of developing neurons. These findings suggest that SH2B1-IRSp53 complexes promote the formation of filopodia, neurite initiation, and neuronal branching. PMID:25586189

  14. Structure of human nucleosome containing the testis-specific histone variant TSH2B.

    PubMed

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-04-01

    The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  15. The Macrophage A2b Adenosine Receptor Regulates Tissue Insulin Sensitivity

    PubMed Central

    Koupenova, Milka; Carroll, Shannon; Ravid, Katya

    2014-01-01

    High fat diet (HFD)-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR), an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice. PMID:24892847

  16. Two Cases of Chronic Intestinal Pseudo-obstruction: A Comparison of Staining Characteristics of Enteric Visceral Myopathy With Hirschsprung Disease.

    PubMed

    Chaffin, Joanna; Lee, Jeffrey R; Rao, Satish S C; Sharma, Suash J

    2016-09-01

    Chronic intestinal pseudo-obstruction (CIPO), a rare, debilitating disorder of bowel motility dysfunction, is largely a clinical diagnosis, without any universally accepted diagnostic criteria. Three subgroups are generally acknowledged based on the cell-type affected: enteric visceral myopathy (the most common subgroup), neuropathy, and mesenchymopathy. A fourth subgroup includes abnormalities of neurohormonal peptides. Although immunohistochemical staining is reportedly useful for identifying the mesenchymopathic type, its role in diagnosing enteric visceral myopathy and neuropathy has been fraught with difficulties. We present two cases of chronic intestinal pseudo-obstruction that are clinically and histopathologically suggestive of type III visceral enteric myopathy, aiming to expound upon the diagnostic and pathogenic features. We found that the outer-longitudinal layer of the muscularis propria was more severely affected as compared with the inner circular layer. To investigate the value of this finding, we performed immunostains in the one case in which a paraffin block was available. We found increased peripherin and calretinin immunopositive nerve fibers in the outer layer as compared with inner, but without any significant increase in S-100 positivity or alteration in neuronal morphology of myenteric plexus, a novel finding. This differential staining pattern was completely different from Hirschsprung disease, in which we found rare to absent peripherin and calretinin staining. It is unclear if this increase in the outer layer in visceral myopathy reflects a reactive change or dysfunctional axons. In addition, the history of volvulus in one patient and transmural inflammatory changes in the second raise concerns about the higher propensity of clinical complications secondary to the attenuated outer muscular layer. This study suggests that enteric visceral myopathy has histologic and staining characteristics different from Hirschsprung disease, a finding

  17. Roles of proinflammatory cytokines and the Fas/Fas ligand interaction in the pathogenesis of inflammatory myopathies.

    PubMed

    Kondo, Masahiro; Murakawa, Yohko; Harashima, Nanae; Kobayashi, Shotai; Yamaguchi, Shuhei; Harada, Mamoru

    2009-09-01

    Within the lesions of inflammatory myopathies, muscle fibres and invading mononuclear cells express Fas and Fas ligand (FasL), respectively. However, the roles of the Fas/FasL interaction in the pathogenesis of inflammatory myopathies are not fully understood. In the present study, we investigated the roles of proinflammatory cytokines and the Fas/FasL system in the pathogenesis of inflammatory myopathies. In vitro culturing of muscle cells with the proinflammatory cytokines interferon-gamma, tumour necrosis factor-alpha, and interleukin (IL)-1beta synergistically increased Fas expression, susceptibility to Fas-mediated apoptosis, and the expression of cytoplasmic caspases 8 and 3. In addition, culturing of muscle cells with activated CD4(+) T cells induced muscle cell apoptosis, which was partially inhibited by anti-FasL antibody. We also tested the possibility that T helper (Th) 17, which is an IL-17-producing helper T-cell subset that plays crucial roles in autoimmune and inflammatory responses, participates in the pathogenesis of inflammatory myopathies. Interestingly, in vitro culturing of dendritic cells with anti-Fas immunoglobulin M (IgM) or activated CD4(+) T cells induced the expression of mRNA for IL-23p19, but not for IL-12p35, in addition to proinflammatory cytokines. Furthermore, IL-23p19 and IL-17 mRNAs were detected in the majority of biopsy samples from patients with inflammatory myopathies. Taken together, these results suggest that proinflammatory cytokines enhance Fas-mediated apoptosis of muscle cells, and that the Fas/FasL interaction between invading dendritic cells and CD4(+) T cells induces local production of IL-23 and proinflammatory cytokines, which can promote the proliferation of Th17 cells and enhance Fas-mediated apoptosis of muscle cells, respectively.

  18. Myopathy in Marinesco-Sjögren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology.

    PubMed

    Roos, Andreas; Buchkremer, Stephan; Kollipara, Laxmikanth; Labisch, Thomas; Gatz, Christian; Zitzelsberger, Manuela; Brauers, Eva; Nolte, Kay; Schröder, J Michael; Kirschner, Janbernd; Jesse, Christopher Marvin; Goebel, Hans Hilmar; Goswami, Anand; Zimmermann, Richard; Zahedi, René Peiman; Senderek, Jan; Weis, Joachim

    2014-05-01

    Marinesco-Sjögren syndrome (MSS) features cerebellar ataxia, mental retardation, cataracts, and progressive vacuolar myopathy with peculiar myonuclear alterations. Most MSS patients carry homozygous or compound heterozygous SIL1 mutations. SIL1 is a nucleotide exchange factor for the endoplasmic reticulum resident chaperone BiP which controls a plethora of essential processes in the endoplasmic reticulum. In this study we made use of the spontaneous Sil1 mouse mutant woozy to explore pathomechanisms leading to Sil1 deficiency-related skeletal muscle pathology. We found severe, progressive myopathy characterized by alterations of the sarcoplasmic reticulum, accumulation of autophagic vacuoles, mitochondrial changes, and prominent myonuclear pathology including nuclear envelope and nuclear lamina alterations. These abnormalities were remarkably similar to the myopathy in human patients with MSS. In particular, the presence of perinuclear membranous structures which have been reported as an ultrastructural hallmark of MSS-related myopathy could be confirmed in woozy muscles. We found that these structures are derived from the nuclear envelope and nuclear lamina and associate with proliferations of the sarcoplasmic reticulum. In line with impaired function of BiP secondary to loss of its nucleotide exchange factor Sil1, we observed activation of the unfolded protein response and the endoplasmic-reticulum-associated protein degradation-pathway. Despite initiation of the autophagy-lysosomal system, autophagic clearance was found ineffective which is in agreement with the formation of autophagic vacuoles. This report identifies woozy muscle as a faithful phenocopy of the MSS myopathy. Moreover, we provide a link between two well-established disease mechanisms in skeletal muscle, dysfunction of chaperones and nuclear envelope pathology.

  19. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    SciTech Connect

    Wilderman, P. Ross; Jang, Hyun-Hee; Malenke, Jael R.; Salib, Mariam; Angermeier, Elisabeth; Lamime, Sonia; Dearing, M. Denise; Halpert, James R.

    2014-02-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. - Highlights: • Three CYP2B enzymes from Neotoma lepida were cloned, engineered, and expressed. • A mix of catalytic and binding assays yields unique results for each enzyme. • Mutational analysis indicates CYP{sub 2}B substrate recognition remains to be clarified. • Reported N. lepida gene

  20. NR2B antagonist CP-101,606 inhibits NR2B phosphorylation at tyrosine-1472 and its interactions with Fyn in levodopa-induced dyskinesia rat model.

    PubMed

    Kong, Min; Ba, Maowen; Liu, Chuanyu; Zhang, Yanxiang; Zhang, Hongli; Qiu, Haiyan

    2015-04-01

    The augmented tyrosine phosphorylation of NR2B subunit of N-methyl-d-aspartate receptors (NMDAR) dependent on Fyn kinase has been associated with levodopa (l-dopa)-induced dyskinesia (LID). CP-101,606, one selective NR2B subunit antagonist, can improve dyskinesia. Yet, the accurate action mechanism is less well understood. In the present study, the evidences were investigated. Valid 6-hydroxydopamine-lesioned parkinsonian rats were treated with l-dopa intraperitoneally for 22 days to induce LID rat model. On day 23, rats received either CP-101,606 (0.5mg/kg) or vehicle with each l-dopa dose. On the day of 1, 8, 15, 22, and 23 during l-dopa treatment, we determined abnormal involuntary movements (AIMs) in rats. The levels of NR2B phosphorylation at tyrosine-1472 (pNR2B-Tyr1472) and interactions of NR2B with Fyn in LID rat model were detected by immunoblotting and immunoprecipitation. Results showed that CP-101,606 attenuated l-dopa-induced AIMs. In agreement with behavioral analysis, CP-101,606 reduced the augmented pNR2B-Tyr1472 and its interactions with Fyn triggered during the l-dopa administration in the lesioned striatum of parkinsonian rats. Moreover, CP-101,606 also decreased the level of Ca(2+)/calmodulin-dependent protein kinase II at threonine-286 hyperphosphorylation (pCaMKII-Thr286), which was the downstream signaling amplification molecule of NMDAR overactivation and closely associated with LID. However, the protein level of NR2B and Fyn had no difference under the above conditions. These data indicate that the inhibition of the interactions of NR2B with Fyn and NR2B tyrosine phosphorylation may contribute to the CP-101,606-induced downregulation of NMDAR function and provide benefit for the therapy of LID.

  1. Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy.

    PubMed

    Nalbandian, Angèle; Khan, Arif A; Srivastava, Ruchi; Llewellyn, Katrina J; Tan, Baichang; Shukr, Nora; Fazli, Yasmin; Kimonis, Virginia E; BenMohamed, Lbachir

    2017-02-01

    Aberrant activation of the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, triggers a pathogenic inflammatory response in many inherited neurodegenerative disorders. Inflammation has recently been associated with valosin-containing protein (VCP)-associated diseases, caused by missense mutations in the VCP gene. This prompted us to investigate whether NLRP3 inflammasome plays a role in VCP-associated diseases, which classically affects the muscles, bones, and brain. In this report, we demonstrate (i) an elevated activation of the NLRP3 inflammasome in VCP myoblasts, derived from induced pluripotent stem cells (iPSCs) of VCP patients, which was significantly decreased following in vitro treatment with the MCC950, a potent and specific inhibitor of NLRP3 inflammasome; (ii) a significant increase in the expression of NLRP3, caspase 1, IL-1β, and IL-18 in the quadriceps muscles of VCP(R155H/+) heterozygote mice, an experimental mouse model that has many clinical features of human VCP-associated myopathy; (iii) a significant increase of number of IL-1β((+))F4/80((+))Ly6C((+)) inflammatory macrophages that infiltrate the muscles of VCP(R155H/+) mice; (iv) NLRP3 inflammasome activation and accumulation IL-1β((+))F4/80((+))Ly6C((+)) macrophages positively correlated with high expression of TDP-43 and p62/SQSTM1 markers of VCP pathology in damaged muscle; and (v) treatment of VCP(R155H/+) mice with MCC950 inhibitor suppressed activation of NLRP3 inflammasome, reduced the F4/80((+))Ly6C((+))IL-1β((+)) macrophage infiltrates in the muscle, and significantly ameliorated muscle strength. Together, these results suggest that (i) NLRP3 inflammasome and local IL-1β((+))F4/80((+))Ly6C((+)) inflammatory macrophages contribute to pathogenesis of VCP-associated myopathy and (ii) identified MCC950 specific inhibitor of the NLRP3 inflammasome with promising therapeutic potential for the treatment of VCP-associated myopathy.

  2. A Comprehensive Overview on Myositis-Specific Antibodies: New and Old Biomarkers in Idiopathic Inflammatory Myopathy.

    PubMed

    Satoh, Minoru; Tanaka, Shin; Ceribelli, Angela; Calise, S John; Chan, Edward K L

    2017-02-01

    Autoantibodies specific for idiopathic inflammatory myopathy (myositis-specific autoantibodies (MSAs)) are clinically useful biomarkers to help the diagnosis of polymyositis/dermatomyositis (PM/DM). Many of these are also associated with a unique clinical subset of PM/DM, making them useful in predicting and monitoring certain clinical manifestations. Classic MSAs known for over 30 years include antibodies to Jo-1 (histidyl transfer RNA (tRNA) synthetase) and other aminoacyl tRNA synthetases (ARS), anti-Mi-2, and anti-signal recognition particle (SRP). Anti-Jo-1 is the first autoantibodies to ARS detected in 15-25 % of patients. In addition to anti-Jo-1, antibodies to seven other aminoacyl tRNA synthetases (ARS) have been reported with prevalence, usually 1-5 % or lower. Patients with any anti-ARS antibodies are associated with anti-synthetase syndrome characterized by myositis, interstitial lung disease (ILD), arthritis, Raynaud's phenomenon, and others. Several recent studies suggested heterogeneity in clinical features among different anti-ARS antibody-positive patients and anti-ARS may also be found in idiopathic ILD without myositis. Anti-Mi-2 is a classic marker for DM and associated with good response to steroid treatment and good prognosis. Anti-SRP is specific for PM and associated with treatment-resistant myopathy histologically characterized as necrotizing myopathy. In addition to classic MSAs, several new autoantibodies with strong clinical significance have been described in DM. Antibodies to transcription intermediary factor 1γ/α (TIF1γ/α, p155/140) are frequently found in DM associated with malignancy while anti-melanoma differentiation-associated gene 5 (MDA5; CADM140) are associated with clinically amyopathic DM (CADM) complicated by rapidly progressive ILD. Also, anti-MJ/nuclear matrix protein 2 (NXP-2) and anti-small ubiquitin-like modifier-1 (SUMO-1) activating enzyme (SAE) are recognized as new DM-specific autoantibodies. Addition of

  3. A novel large deletion in the RYR1 gene in a Belgian family with late-onset and recessive core myopathy.

    PubMed

    Remiche, Gauthier; Kadhim, Hazim; Abramowicz, Marc; Mavroudakis, Nicolas; Monnier, Nicole; Lunardi, Joël

    2015-05-01

    We report a novel and particularly unusual type of mutation, namely, large deletion in the RYR1 gene, in a Belgian family with myopathy: Patients were found to be compound heterozygous and presented a clinico-pathological phenotype characterized by late-onset and recessive myopathy with cores. We depict the clinical, electrophysiological, pathological and molecular genetic characteristics of family members. To date, large deletions in the RYR1 gene have been reported in only two cases. Both involved different mutations and, in sharp contrast to our cases, presented with a very early-onset, neonatal, and a very severe or lethal phenotype. Overview of reported clinico-pathologic phenotypes, also highlights the rarity of combined late-onset/recessive co-occurrence in this group of myopathies with cores. Finally, this report underlines the broadening spectrum in this group of myopathologic disorders and highlights the concept of 'RYR1-associated/related core myopathies'.

  4. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1(I4895T/wt) mouse model of core myopathy.

    PubMed

    Zvaritch, Elena; MacLennan, David H

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1(I4895T/wt) (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies.

  5. A Phox2b::FLPo transgenic mouse line suitable for intersectional genetics

    PubMed Central

    Hirsch, Marie-Rose; d’Autréaux, Fabien; Dymecki, Susan M.; Brunet, Jean-François; Goridis, Christo

    2014-01-01

    Phox2b is a transcription factor expressed in the central and peripheral neurons that control cardiovascular, respiratory and digestive functions and essential for their development. Several populations known or suspected to regulate visceral functions express Phox2b in the developing hindbrain. Extensive cell migration and lack of suitable markers have greatly hampered studying their development. Reasoning that intersectional fate mapping may help to overcome these impediments, we have generated a BAC transgenic mouse line, P2b::FLPo, which expresses codon-optimized FLP recombinase in Phox2b expressing cells. By partnering the P2b::FLPo with the FLP-responsive RC::Fela allele, we show that FLP recombination switches on lineage tracers in the cells that express or have expressed Phox2b, permanently marking them for study across development. Taking advantage of the dualrecombinase feature of RC::Fela, we further show that the P2b::FLPo transgene can be partnered with Lbx1Cre as Cre driver to generate triple transgenics in which neurons having a history of both Phox2b and Lbx1 expression are specifically labelled. Hence, the P2b::FLPo line when partnered with a suitable Cre driver provides a tool for tracking and accessing genetically subsets of Phox2b-expressing neuronal populations, which has not been possible by Cremediated recombination alone. PMID:23592597

  6. CYP2B6*6 is associated with increased breast cancer risk.

    PubMed

    Justenhoven, Christina; Pentimalli, Daniela; Rabstein, Sylvia; Harth, Volker; Lotz, Anne; Pesch, Beate; Brüning, Thomas; Dörk, Thilo; Schürmann, Peter; Bogdanova, Natalia; Park-Simon, Tjoung-Won; Couch, Fergus J; Olson, Janet E; Fasching, Peter A; Beckmann, Matthias W; Häberle, Lothar; Ekici, Arif; Hall, Per; Czene, Kamilla; Liu, Janjun; Li, Jingmei; Baisch, Christian; Hamann, Ute; Ko, Yon-Dschun; Brauch, Hiltrud

    2014-01-15

    The cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of testosterone. Functional changes in this enzyme may influence endogenous hormone exposure, which has been associated with risk of breast cancer. To assess potential associations between two functional polymorphisms CYP2B6_516_G>T (rs3745274) and CYP2B6_785_A>G (rs2279343) and breast cancer risk, we established a specific matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay. The GENICA breast cancer case-control study showed associations between the variant genotypes CYP2B6_516_TT and CYP2B6_785_GG and breast cancer risk with odds ratios (ORs) of 1.34 (p = 0.001) and 1.31 (p = 0.002), respectively. A similar effect was observed for carriers of the CYP2B6_516_T allele in a validation study including four independent studies from Germany, Sweden and USA. In a pooled analysis of all five studies involving 4,638 breast cancer cases and 3,594 controls of European ancestry, carriers of the CYP2B6_516_G and the CYP2B6_785_G variant had an increased breast cancer risk with ORs of 1.10 (p = 0.027) and 1.10 (p = 0.031), respectively. We conclude that the genetic variants CYP2B6_516_G and CYP2B6_785_G (designated CYP2B6*6), which are known to decrease activity of the CYP2B6 enzyme, contribute to an increased breast cancer risk.

  7. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients.

    PubMed

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  8. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients

    PubMed Central

    Romero-Lorca, Alicia; Novillo, Apolonia; Gaibar, María; Bandrés, Fernando; Fernández-Santander, Ana

    2015-01-01

    Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B

  9. Expression of NR2B in different brain regions and effect of NR2B antagonism on learning deficits after experimental subarachnoid hemorrhage.

    PubMed

    Chen, G; Li, Q; Feng, D; Hu, T; Fang, Q; Wang, Z

    2013-02-12

    Approximately 50% of patients who survived after aneurysmal subarachnoid hemorrhage (SAH) have cognitive or neurobehavioral dysfunction. The mechanisms are not known. NR2B, one of the subunits of N-methyl-d-aspartate (NMDA) receptors, has been proved to be an important factor for synapse function and behavior cognition. Experiment 1 aimed to investigate the timecourse of the NR2B expression in the cortex, hippocampus, and cerebellum after SAH in rats. In experiment 2, we assessed the effect of Ro 25-6981 (a specific NR2B antagonist) on regulation of learning deficits and behavioral activity following SAH. All SAH animals were subjected to injection of autologous blood into the prechiasmatic cistern once on day 0. NR2B was assessed by Western blot analysis and immunohistochemistry. Cognitive and memory changes were investigated in the Morris water maze. As a result, the expression of NR2B was decreased remarkably in SAH groups compared with the control group and the low ebb was on days 1-3. The immunohistochemical staining demonstrated expression of NR2B was present mainly in the neurons in all of the three different regions, such as the cortex, hippocampus, and cerebellum. After Ro 25-6981 intraperitoneal administration, learning deficits induced by SAH was markedly aggravated and clinical behavior scale was also significantly decreased. Our results suggest that NR2B expression is down-regulated in the brain after experimental SAH and NR2B antagonism resulted in augmentation of the development of cognitive dysfunction after SAH.

  10. Acute forearm compressive myopathy syndrome secondary to upper limb entrapment: an unusual cause of renal failure.

    PubMed

    Tachtsi, Maria D; Kalogirou, Thomas E; Atmatzidis, Stefanos K; Papadimitriou, Dimitrios K; Atmatzidis, Konstantinos S

    2011-05-01

    Compressive myopathy syndrome (SCM) is a syndrome characterized by the lesion of skeletal muscle resulting in subsequent release of intracellular contents (myoglobin, creatine phosphokinase, potassium, etc.) into the circulatory system, which can cause potentially lethal complications. There are numerous causes that can lead to SCM resulting to acute rhabdomyolysis, and many patients present with multiple causes. The most common potentially lethal complication is acute renal failure. The occurrence of acute rhabdomyolysis should be considered as a possibility in any patient who can remain stationary for long periods, or is in a coma, or is intoxicated in any form. We report the rare case of a 26-year-old patient who developed SCM caused by ischemia reperfusion, with subsequent acute rhabdomyolysis and acute renal failure after prolonged compression of the right upper extremity.

  11. A girl with 1p36 deletion syndrome and congenital fiber type disproportion myopathy.

    PubMed

    Okamoto, Nobuhiko; Toribe, Yasuhisa; Nakajima, Tohru; Okinaga, Takeshi; Kurosawa, Kenji; Nonaka, Ikuya; Shimokawa, Osamu; Matsumoto, Noamichi

    2002-01-01

    Chromosome 1p36 deletion syndrome is characterized by hypotonia, moderate to severe developmental and growth retardation, and characteristic craniofacial dysmorphism. Muscle hypotonia and delayed motor development are almost constant features of the syndrome. We report a 4-year-old Japanese girl with 1p36 deletion syndrome whose muscle pathology showed congenital fiber type disproportion (CFTD) myopathy. This is the first case report of 1p36 deletion associated with CFTD. This association may indicate that one of the CFTD loci is located at 1p36. Ski proto-oncogene -/- mice have phenotypes that resemble some of the features observed in patients with 1p36 deletion syndrome. Because fluorescent in situ hybridization analysis revealed that the human SKI gene is deleted in our patient, some genes in 1p36, including SKI proto-oncogene, may be involved in muscle hypotonia and delayed motor development in this syndrome.

  12. Multiple Viral Determinants Mediate Myopathogenicity in Coxsackievirus B1-Induced Chronic Inflammatory Myopathy

    PubMed Central

    Tam, Patricia E.; Weber-Sanders, Melissa L.; Messner, Ronald P.

    2003-01-01

    Mice infected with myopathic coxsackievirus B1 Tucson (CVB1T) develop chronic inflammatory myopathy (CIM) consisting of hind limb weakness and inflammation. Amyopathic virus variants are infectious but attenuated for CIM. In this report, viral clones, chimeras, and sequencing were used to identify viral determinants of CIM. Chimeras identified several regions involved in CIM and localized a weakness determinant to nucleotides 2493 to 3200 of VP1. Sequencing of multiple clones and viruses identified five candidate determinants that were strictly conserved in myopathic viruses with one located in the 5′ untranslated region (UTR), three in the VP1 capsid, and one in the 3C protease. Taken together, these studies implicate Tyr-87 and/or Val-136 as candidate determinants of weakness. They also indicate that there are at least two determinants of inflammation and one additional determinant of weakness encoded by myopathic CVB1T. PMID:14557670

  13. Ascending paresis as presentation of an unusual association between necrotizing autoimmune myopathy and systemic lupus erythematosus.

    PubMed

    García-Reynoso, Marco Julio; Veramendi-Espinoza, Liz Eliana; Ruiz-Garcia, Henry Jeison

    2014-01-01

    A 45 year-old man went to the emergency room due to disease duration of 15 days of insidious onset and progressive course. It began with symmetrical weakness and pain in feet and ankles that extends upward to the knees. Later, this progressed to paraparesis with Creatine phosphokinase levels of 44,270 U/L and respiratory failure that required mechanical ventilation. Electromyography and muscle biopsy of quadriceps were made. The patient responded to corticotherapy in pulses and supporting management. The presentation of ascending paresis suggested the diagnosis of Guillain-Barré syndrome. However, the degree of muscle involvement with rhabdomyolysis explains the neurological damage by itself. The biopsy revealed pathological criteria for necrotizing autoimmune myopathy (NAM), as well as other clinical and laboratory evidence. Patient disease continued and reached criteria for systemic lupus erythematosus (SLE). To our best knowledge, this is the first report of the NAM and SLE association.

  14. Adult-onset nemaline myopathy in a dog presenting with persistent atrial standstill and primary hypothyroidism.

    PubMed

    Nakamura, R K; Russell, N J; Shelton, G D

    2012-06-01

    A nine-year-old neutered female mixed breed dog presented for evaluation following a five-day history of lethargy, inappetence, weakness, abdominal distension and generalised muscle atrophy. Persistent vatrial standstill with a junctional rhythm was identified on electrocardiogram. Echocardiogram identified moderate dilation of all cardiac chambers and mild thickening of the mitral and tricuspid valves. Serology was negative for Neospora caninum and Toxoplasma gondii. Permanent pacemaker implantation was performed in addition to endomyocardial and skeletal muscle biopsies. Cryosections from the biceps femoris muscle showed numerous nemaline rod bodies while endomyocardial biopsies were possibly consistent with end-stage myocarditis. Rod bodies have rarely been reported in the veterinary literature. To the authors' knowledge, this is the first report of adult-onset nemaline rod myopathy and hypothyroidism with concurrent cardiac disease in a dog.

  15. Inspiratory Muscle Training in a Child with Nemaline Myopathy and Organ Transplantation

    PubMed Central

    Smith, Barbara K.; Bleiweis, Mark S.; Zauhar, Joni; Martin, A. Daniel

    2013-01-01

    Objective To report the use of inspiratory muscle strength training (IMST) to treat repeated ventilatory insufficiency in a child with nemaline myopathy (NM) who underwent cardiac and renal transplantation. Design Case report. Setting Pediatric intensive care unit of a tertiary care university teaching hospital. Intervention IMST was provided five days weekly for two weeks, accompanied by progressive weaning from non-invasive ventilation. Measurements and Main Results Maximal inspiratory pressure (MIP) increased from −36.7 cm H2O to −77.8 cm H2O, accompanied by improved inspiratory flow, volume, pressure activation and power. During the training period, the patient weaned from continuous non-invasive ventilatory assist to her pre-operative level of ventilatory function. Conclusions Inspiratory muscle training may be a beneficial component of care for children with NM who experience acute ventilatory insufficiency. PMID:20407395

  16. Late Na+ current and protracted electrical recovery are critical determinants of the aging myopathy

    PubMed Central

    Signore, Sergio; Sorrentino, Andrea; Borghetti, Giulia; Cannata, Antonio; Meo, Marianna; Zhou, Yu; Kannappan, Ramaswamy; Pasqualini, Francesco; O'Malley, Heather; Sundman, Mark; Tsigkas, Nikolaos; Zhang, Eric; Arranto, Christian; Mangiaracina, Chiara; Isobe, Kazuya; Sena, Brena F.; Kim, Junghyun; Goichberg, Polina; Nahrendorf, Matthias; Isom, Lori L.; Leri, Annarosa; Anversa, Piero; Rota, Marcello

    2015-01-01

    The aging myopathy manifests itself with diastolic dysfunction and preserved ejection fraction. We raised the possibility that, in a mouse model of physiological aging, defects in electromechanical properties of cardiomyocytes are important determinants of the diastolic characteristics of the myocardium, independently from changes in structural composition of the muscle and collagen framework. Here we show that an increase in the late Na+ current (INaL) in aging cardiomyocytes prolongs the action potential (AP) and influences temporal kinetics of Ca2+ cycling and contractility. These alterations increase force development and passive tension. Inhibition of INaL shortens the AP and corrects dynamics of Ca2+ transient, cell contraction and relaxation. Similarly, repolarization and diastolic tension of the senescent myocardium are partly restored. Thus, INaL offers inotropic support, but negatively interferes with cellular and ventricular compliance, providing a new perspective of the biology of myocardial aging and the aetiology of the defective cardiac performance in the elderly. PMID:26541940

  17. Guillain–Barré syndrome mimics primary biliary cirrhosis-related myopathy

    PubMed Central

    Munday, William R.; DiCapua, Daniel; Vortmeyer, Alexander; Gomez, Jose Luis

    2015-01-01

    Guillain–Barré syndrome (GBS) is an immune-mediated disorder characterized by acute polyneuropathy, ascending paralysis and post infectious polyneuritis. Two-thirds of patients present with a history of recent upper respiratory tract or gastrointestinal infection. The clinical history, neurologic examination and laboratory assessment allow for a straightforward diagnosis in the majority of cases. However, primary biliary cirrhosis (PBC) is known to cause clinically detectable muscular weakness. It is therefore critical to differentiate between PBC-associated muscular weakness and GBS-induced paralysis. Here, we report a patient with a longstanding history of PBC who developed progressive weakness and respiratory failure due to GBS, which clinically mimicked PBC myopathy. This is the first reported association between GBS and PBC. PMID:26634144

  18. Mitochondrial Myopathy in Follow-up of a Patient With Chronic Fatigue Syndrome

    PubMed Central

    Galán, Fernando; de Lavera, Isabel; Cotán, David; Sánchez-Alcázar, José A.

    2015-01-01

    Introduction. Symptoms of mitochondrial diseases and chronic fatigue syndrome (CFS) frequently overlap and can easily be mistaken. Methods. We report the case of a patient diagnosed with CFS and during follow-up was finally diagnosed with mitochondrial myopathy by histochemical study of muscle biopsy, spectrophotometric analysis of the complexes of the mitochondrial respiratory chain, and genetic studies. Results. The results revealed 3% fiber-ragged blue and a severe deficiency of complexes I and IV and several mtDNA variants. Mother, sisters, and nephews showed similar symptoms, which strongly suggests a possible maternal inheritance. The patient and his family responded to treatment with high doses of riboflavin and thiamine with a remarkable and sustained fatigue and muscle symptoms improvement. Conclusions. This case illustrates that initial symptoms of mitochondrial disease in adults can easily be mistaken with CFS, and in these patients a regular reassessment and monitoring of symptoms is recommended to reconfirm or change the diagnosis. PMID:26904705

  19. Inflammatory myopathy in a patient with Aicardi-Goutières syndrome.

    PubMed

    Tumienė, Birutė; Voisin, Norine; Preikšaitienė, Eglė; Petroška, Donatas; Grikinienė, Jurgita; Samaitienė, Rūta; Utkus, Algirdas; Reymond, Alexandre; Kučinskas, Vaidutis

    2017-03-01

    Aicardi-Goutières syndrome (AGS) is an inflammatory disorder belonging to the recently characterized group of type I interferonopathies. The most consistently affected tissues in AGS are the central nervous system and skin, but various organ systems and tissues have been reported to be affected, pointing to the systemic nature of the disease. Here we describe a patient with AGS due to a homozygous p.Arg114His mutation in the TREX1 gene. The histologically proven inflammatory myopathy in our patient expands the range of clinical features of AGS. Histological signs of muscle biopsies in the proband, and in two other AGS patients described earlier, are similar to those seen in various autoimmune myositises and could be ascribed to inapproapriate IFN I activation. In view of signs of possible mitochondrial damage in AGS, we propose that mitochondrial DNA could be a trigger of autoimmune responses in AGS.

  20. Aborted Sudden Cardiac Death and a Mother with Suspected Metabolic Myopathy

    PubMed Central

    Finsterer, Josef; Stöllberger, Claudia; Keller, Hans

    2014-01-01

    Aborted sudden cardiac death (SCD) has not been reported as initial manifestation of cardiac involvement in metabolic myopathy (MM). A 20-year-old female with a previous history of three syncopes, hyperhidrosis, and recurrent tick bites experienced aborted SCD. Her mother presented with MM, and a history of pituitary adenoma, nephroptosis, arterial hypertension, depression, migraine, goiter, pancreatitis, osteoporosis, hyperhidrosis, multiple muscle ruptures, and hyperlipidemia. After a few days of disorientation and amnesia, the young female recovered completely. Clinical neurological examination was noticeable for partial ophthalmoparesis and mild hyperprolactinemia. She received an implantable cardioverter defibrillator, which did not discharge so far. Recurrent syncopes and aborted SCD may be the initial manifestation of MM with multiple organ involvement. The family history is important in cases with aborted SCD to guide the diagnostic work-up. Phenotypic heterogeneity between the family members may be an indicator of MM. PMID:25187745

  1. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    PubMed

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  2. Biomarkers and Autoantibodies of Interstitial Lung Disease with Idiopathic Inflammatory Myopathies

    PubMed Central

    Yoshifuji, Hajime

    2015-01-01

    Various autoantibodies are seen in idiopathic inflammatory myopathies. Among myositis-specific antibodies, anti-aminoacyl-tRNA synthetase and anti-melanoma differentiation-associated protein 5 (MDA5) antibodies are associated with interstitial lung disease (ILD). Anti-MDA5 antibodies are associated with dermatomyositis (DM) or clinically amyopathic DM complicated with rapidly progressive ILD. In anti-MDA5-positive patients, a random ground-glass attenuation pattern is a characteristic finding of ILD in chest high-resolution computed tomography. Conversely, anti-aminoacyl-tRNA synthetase antibodies are not associated with rapidly progressive ILD but with chronic ILD. DM or clinically amyopathic DM patients with anti-MDA5, and characteristic high-resolution computed tomography findings are highly likely to have devastating ILD and need aggressive treatment. PMID:27081322

  3. Exertional myopathy in a grizzly bear (Ursus arctos) captured by leghold snare.

    PubMed

    Cattet, Marc; Stenhouse, Gordon; Bollinger, Trent

    2008-10-01

    We diagnosed exertional myopathy (EM) in a grizzly bear (Ursus arctos) that died approximately 10 days after capture by leghold snare in west-central Alberta, Canada, in June 2003. The diagnosis was based on history, post-capture movement data, gross necropsy, histopathology, and serum enzyme levels. We were unable to determine whether EM was the primary cause of death because autolysis precluded accurate evaluation of all tissues. Nevertheless, comparison of serum aspartate aminotransferase and creatine kinase concentrations and survival between the affected bear and other grizzly bears captured by leghold snare in the same research project suggests EM also occurred in other bears, but that it is not generally a cause of mortality. We propose, however, occurrence of nonfatal EM in grizzly bears after capture by leghold snare has potential implications for use of this capture method, including negative effects on wildlife welfare and research data.

  4. [Myopathy-lipomatosis associated with A8344G mitochondrial DNA mutation].

    PubMed

    Auré, K; Sternberg, D; Maisonobe, T; Herson, S; Jardel, C; Blondy, P; Lombès, A; Eymard, B; Laforêt, P

    2003-12-01

    We report the clinical features of two unrelated patients, a 51-year-old woman and a 54-year-old man, presenting proximal myopathy with lipomatosis. In both patients, muscle biopsies showed numerous ragged-red fibers. Molecular analysis were performed with denaturating gradient gel electrophoresis (DGGE) on muscle, blood, hair, buccal and urinary cells. The A8344G mutation of the tRNA-lysine gene of the mitochondrial DNA was detected in all tissues at high levels (more than 80 p cent). None of the patients had a contributive family history, and signs of central nervous system involvement were absent. These observations confirm that lipomatosis may be encountered in mitochondrial disorders and is tightly associated with the A8344G mutation.

  5. [How can we diagnose and better understand inflammatory myopathies? The usefulness of auto-antibodies].

    PubMed

    Sibilia, Jean; Chatelus, Emmanuel; Meyer, Alain; Gottenberg, Jacques-Eric; Sordet, Christelle; Goetz, Joëlle

    2010-10-01

    The inflammatory myopathies are a group of quite proteiform, systemic auto-immune diseases which include polymyositis, dermatomyositis and inclusion body myopathies. To facilitate the diagnosis, classification criteria (Bohan and Peter, 1975) have been proposed, based essentially on clinical criteria. In addition, over the past fifteen years, auto-antibodies characterizing certain forms of inflammatory myopathy have been identified. One distinguishes schematically: auto-antibodies specific for myositis and auto-antibodies sometimes associated with myositis. Concerning the myositis specific auto-antibodies (MSA), schematically there are a dozen specificities which are classed according to the cellular distribution of the auto-antigen. The most characteristic are certainly the auto-antibodies directed against cytoplasmic antigens: the anti-tRNA synthetases (anti-Jo-1 (PL-1), anti-PL-7, PL-12, EJ, OJ, JS, KS, ZO, YRS), anti-SRP (signal recognition particle), anti-Mas and anti-KJ, anti-Fer (eEF1), anti-Wa and anti-CADM p140. Other auto-antibodies are directed against nuclear auto-antigens: the anti-Mi-2, anti-PMS (PMS1, PMS2) and related antibodies (MLH1, DNA PKcs…), anti-56 kDa, anti-MJ (NXP-2), anti-SAE and anti-p155/p140 (TIF-1γ). Concerning the auto-antibodies sometimes associated with myositis (myositis associated auto-antibodies or MAA), they can also be observed in other auto-immune diseases. These auto-antibodies are directed against nuclear or nucleolar auto-antigens: the anti-PM-Scl, anti-Ku, anti-RNP (U1 RNP and U2 RNP, U4/U6 RNP and U5 RNP), anti-Ro 52 kDa and more rarely, anti-Ro 60 kDa and anti-La. The auto-antibodies related to myositis are biological tools which are of interest in two main ways. They have allowed us to sort out the nosology of these inflammatory myopathies, in particular by defining anti-tRNA synthetase syndrome. It now remains to determine how they might be employed to complement the classical clinico-biological diagnostic criteria

  6. A novel mitochondrial MTND5 frameshift mutation causing isolated complex I deficiency, renal failure and myopathy.

    PubMed

    Alston, Charlotte L; Morak, Monika; Reid, Christopher; Hargreaves, Iain P; Pope, Simon A S; Land, John M; Heales, Simon J; Horvath, Rita; Mundy, Helen; Taylor, Robert W

    2010-02-01

    Isolated complex I deficiency is the most commonly reported enzyme defect in paediatric mitochondrial disorders, and may arise due to mutations in nuclear-encoded structural or assembly genes, or the mitochondrial genome. We present the clinical, biochemical and molecular genetic data in a young girl whose clinical picture is dominated by chronic renal failure, myopathy and persistent lactic acidosis. An isolated complex I deficiency in muscle was identified due to a novel mutation (m.12425delA) in the MTND5 gene. This single nucleotide deletion is heteroplasmic and detectable in several tissues from the proband but not her mother, suggesting a de novo mutation event. The description of the first frameshift mutation in a mitochondrial complex I gene affirms mitochondrial DNA mutations as an important cause of isolated complex I deficiency in children and the importance of whole mitochondrial genome sequencing in the diagnostic work-up to elucidate the underlying molecular genetic abnormality and provide important genetic advice.

  7. Rapid hydrothermal synthesis of VO2 (B) and its conversion to thermochromic VO2 (M1).

    PubMed

    Popuri, Srinivasa Rao; Miclau, Marinela; Artemenko, Alla; Labrugere, Christine; Villesuzanne, Antoine; Pollet, Michaël

    2013-05-06

    The present study provides a rapid way to obtain VO2 (B) under economical and environmentally friendly conditions. VO2 (B) is one of the well-known polymorphs of vanadium dioxide and is a promising cathode material for aqueous lithium ion batteries. VO2 (B) was successfully synthesized by rapid single-step hydrothermal process using V2O5 and citric acid as precursors. The present study shows that phase-pure VO2 (B) polytype can be easily obtained at 180 °C for 2 h and 220 °C for 1 h, that is, the lowest combination of temperature and duration reported so far. The obtained VO2 (B) is characterized by X-ray powder diffraction, high-resolution scanning electron microscopy, and Fourier transform infrared spectroscopy. In addition, we present an indirect way to obtain VO2 (M1) by annealing VO2 (B) under vacuum for 1 h.

  8. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy.

    PubMed

    Ravenscroft, Gianina; Miyatake, Satoko; Lehtokari, Vilma-Lotta; Todd, Emily J; Vornanen, Pauliina; Yau, Kyle S; Hayashi, Yukiko K; Miyake, Noriko; Tsurusaki, Yoshinori; Doi, Hiroshi; Saitsu, Hirotomo; Osaka, Hitoshi; Yamashita, Sumimasa; Ohya, Takashi; Sakamoto, Yuko; Koshimizu, Eriko; Imamura, Shintaro; Yamashita, Michiaki; Ogata, Kazuhiro; Shiina, Masaaki; Bryson-Richardson, Robert J; Vaz, Raquel; Ceyhan, Ozge; Brownstein, Catherine A; Swanson, Lindsay C; Monnot, Sophie; Romero, Norma B; Amthor, Helge; Kresoje, Nina; Sivadorai, Padma; Kiraly-Borri, Cathy; Haliloglu, Goknur; Talim, Beril; Orhan, Diclehan; Kale, Gulsev; Charles, Adrian K; Fabian, Victoria A; Davis, Mark R; Lammens, Martin; Sewry, Caroline A; Manzur, Adnan; Muntoni, Francesco; Clarke, Nigel F; North, Kathryn N; Bertini, Enrico; Nevo, Yoram; Willichowski, Ekkhard; Silberg, Inger E; Topaloglu, Haluk; Beggs, Alan H; Allcock, Richard J N; Nishino, Ichizo; Wallgren-Pettersson, Carina; Matsumoto, Naomichi; Laing, Nigel G

    2013-07-11

    Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM.

  9. Mutations in KLHL40 Are a Frequent Cause of Severe Autosomal-Recessive Nemaline Myopathy

    PubMed Central

    Ravenscroft, Gianina; Miyatake, Satoko; Lehtokari, Vilma-Lotta; Todd, Emily J.; Vornanen, Pauliina; Yau, Kyle S.; Hayashi, Yukiko K.; Miyake, Noriko; Tsurusaki, Yoshinori; Doi, Hiroshi; Saitsu, Hirotomo; Osaka, Hitoshi; Yamashita, Sumimasa; Ohya, Takashi; Sakamoto, Yuko; Koshimizu, Eriko; Imamura, Shintaro; Yamashita, Michiaki; Ogata, Kazuhiro; Shiina, Masaaki; Bryson-Richardson, Robert J.; Vaz, Raquel; Ceyhan, Ozge; Brownstein, Catherine A.; Swanson, Lindsay C.; Monnot, Sophie; Romero, Norma B.; Amthor, Helge; Kresoje, Nina; Sivadorai, Padma; Kiraly-Borri, Cathy; Haliloglu, Goknur; Talim, Beril; Orhan, Diclehan; Kale, Gulsev; Charles, Adrian K.; Fabian, Victoria A.; Davis, Mark R.; Lammens, Martin; Sewry, Caroline A.; Manzur, Adnan; Muntoni, Francesco; Clarke, Nigel F.; North, Kathryn N.; Bertini, Enrico; Nevo, Yoram; Willichowski, Ekkhard; Silberg, Inger E.; Topaloglu, Haluk; Beggs, Alan H.; Allcock, Richard J.N.; Nishino, Ichizo; Wallgren-Pettersson, Carina; Matsumoto, Naomichi; Laing, Nigel G.

    2013-01-01

    Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM. PMID:23746549

  10. Calcium homeostasis alterations in a mouse model of the Dynamin 2-related centronuclear myopathy

    PubMed Central

    Fraysse, Bodvaël; Guicheney, Pascale

    2016-01-01

    ABSTRACT Autosomal dominant centronuclear myopathy (CNM) is a rare congenital myopathy characterized by centrally located nuclei in muscle fibers. CNM results from mutations in the gene encoding dynamin 2 (DNM2), a large GTPase involved in endocytosis, intracellular membrane trafficking, and cytoskeleton regulation. We developed a knock-in mouse model expressing the most frequent DNM2-CNM mutation; i.e. the KI-Dnm2R465W model. Heterozygous (HTZ) KI-Dnm2 mice progressively develop muscle atrophy, impairment of contractile properties, histopathological abnormalities, and elevated cytosolic calcium concentration. Here, we aim at better characterizing the calcium homeostasis impairment in extensor digitorum longus (EDL) and soleus muscles from adult HTZ KI-Dnm2 mice. We demonstrate abnormal contractile properties and cytosolic Ca2+ concentration in EDL but not soleus muscles showing that calcium impairment is correlated with muscle weakness and might be a determinant factor of the spatial muscle involvement. In addition, the elevated cytosolic Ca2+ concentration in EDL muscles is associated with an increased sarcolemmal permeability to Ca2+ and releasable Ca2+ content from the sarcoplasmic reticulum. However, amplitude and kinetics characteristics of the calcium transient appear unchanged. This suggests that calcium defect is probably not a primary cause of decreased force generation by compromised sarcomere shortening but may be involved in long-term deleterious consequences on muscle physiology. Our results highlight the first pathomechanism which may explain the spatial muscle involvement occurring in DNM2-related CNM and open the way toward development of a therapeutic approach to normalize calcium content. PMID:27870637

  11. The Effect of Nutritional Status in the Pathogenesis of Critical Illness Myopathy (CIM).

    PubMed

    Ogilvie, Hannah; Larsson, Lars

    2014-05-30

    The muscle wasting and loss of specific force associated with Critical Illness Myopathy (CIM) is, at least in part, due to a preferential loss of the molecular motor protein myosin. This acquired myopathy is common in critically ill immobilized and mechanically ventilated intensive care patients (ICU). There is a growing understanding of the mechanisms underlying CIM, but the role of nutritional factors triggering this serious complication of modern intensive care remains unknown. This study aims at establishing the effect of nutritional status in the pathogenesis of CIM. An experimental ICU model was used where animals are mechanically ventilated, pharmacologically paralysed post-synaptically and extensively monitored for up to 14 days. Due to the complexity of the experimental model, the number of animals included is small. After exposure to this ICU condition, animals develop a phenotype similar to patients with CIM. The results from this study show that the preferential myosin loss, decline in specific force and muscle fiber atrophy did not differ between low vs. eucaloric animals. In both experimental groups, passive mechanical loading had a sparing effect of muscle weight independent on nutritional status. Thus, this study confirms the strong impact of the mechanical silencing associated with the ICU condition in triggering CIM, overriding any potential effects of caloric intake in triggering CIM. In addition, the positive effects of passive mechanical loading on muscle fiber size and force generating capacity was not affected by the nutritional status in this study. However, due to the small sample size these pilot results need to be validated in a larger cohort.

  12. Deletion of hexose-6-phosphate dehydrogenase activates the unfolded protein response pathway and induces skeletal myopathy.

    PubMed

    Lavery, Gareth G; Walker, Elizabeth A; Turan, Nil; Rogoff, Daniela; Ryder, Jeffery W; Shelton, John M; Richardson, James A; Falciani, Francesco; White, Perrin C; Stewart, Paul M; Parker, Keith L; McMillan, Daniel R

    2008-03-28

    Hexose-6-phosphate dehydrogenase (H6PD) is the initial component of a pentose phosphate pathway inside the endoplasmic reticulum (ER) that generates NADPH for ER enzymes. In liver H6PD is required for the 11-oxoreductase activity of 11beta-hydroxysteroid dehydrogenase type 1, which converts inactive 11-oxo-glucocorticoids to their active 11-hydroxyl counterparts; consequently, H6PD null mice are relatively insensitive to glucocorticoids, exhibiting fasting hypoglycemia, increased insulin sensitivity despite elevated circulating levels of corticosterone, and increased basal and insulin-stimulated glucose uptake in muscles normally enriched in type II (fast) fibers, which have increased glycogen content. Here, we show that H6PD null mice develop a severe skeletal myopathy characterized by switching of type II to type I (slow) fibers. Running wheel activity and electrically stimulated force generation in isolated skeletal muscle are both markedly reduced. Affected muscles have normal sarcomeric structure at the electron microscopy level but contain large intrafibrillar membranous vacuoles and abnormal triads indicative of defects in structure and function of the sarcoplasmic reticulum (SR). SR proteins involved in calcium metabolism, including the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), calreticulin, and calsequestrin, show dysregulated expression. Microarray analysis and real-time PCR demonstrate overexpression of genes encoding proteins in the unfolded protein response pathway. We propose that the absence of H6PD induces a progressive myopathy by altering the SR redox state, thereby impairing protein folding and activating the unfolded protein response pathway. These studies thus define a novel metabolic pathway that links ER stress to skeletal muscle integrity and function.

  13. Clinical course and treatment of anti-HMGCR antibody–associated necrotizing autoimmune myopathy

    PubMed Central

    Ramanathan, Sudarshini; Langguth, Daman; Hardy, Todd A.; Garg, Nidhi; Bundell, Chris; Rojana-Udomsart, Arada; Dale, Russell C.; Robertson, Thomas; Mammen, Andrew L.

    2015-01-01

    Objective: We examined a cohort of Australian patients with statin exposure who developed a necrotizing autoimmune myopathy (NAM) associated with a novel autoantibody against 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and describe the clinical and therapeutic challenges of managing these patients and an optimal therapeutic strategy. Methods: Clinical, laboratory, EMG, and histopathologic results and response to immunomodulation are reported in 6 Australian patients with previous statin exposure and antibodies targeting HMGCR. Results: All patients presented with painless proximal weakness following statin therapy, which persisted after statin cessation. Serum creatine kinase (CK) levels ranged from 2,700 to 16,200 IU/L. EMG was consistent with a myopathic picture. Muscle biopsies revealed a pauci-immune necrotizing myopathy. Detailed graphical representation of the clinical course of these patients showed a close association with rising CK and an increase in clinical weakness signifying relapses, particularly upon weaning or ceasing steroids. All 6 patients were responsive to initial steroid therapy, with 5 relapsing upon attempts to wean steroids. Both CK and clinical strength improved with the reinstitution of immunotherapy, in particular steroids and IV immunoglobulin (IVIg). All patients required treatment with varying multiagent immunosuppressive regimens to achieve clinical remission, including prednisone (n = 6), IVIg (n = 5), plasmapheresis (n = 2), and additional therapy including methotrexate (n = 6), cyclophosphamide (n = 2), rituximab (n = 2), azathioprine (n = 1), and cyclosporine (n = 1). Conclusions: Recognition of HMGCR antibody–associated NAM is important because these patients are responsive to immunosuppression, and early multiagent therapy and a slow and cautious approach to withdrawing steroids may improve outcomes. PMID:25866831

  14. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions

    PubMed Central

    Barrey, Eric; Mucher, Elodie; Jeansoule, Nicolas; Larcher, Thibaut; Guigand, Lydie; Herszberg, Bérénice; Chaffaux, Stéphane; Guérin, Gérard; Mata, Xavier; Benech, Philippe; Canale, Marielle; Alibert, Olivier; Maltere, Péguy; Gidrol, Xavier

    2009-01-01

    Background Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Results Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA) and 5 heterozygous (GA) PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses. Gene expression analysis revealed 129 genes significantly modulated (p < 0.05). The following genes were up-regulated over 2 fold: IL18, CTSS, LUM, CD44, FN1, GST01. The most down-regulated genes were the following: mitochondrial tRNA, SLC2A2, PRKCα, VEGFα. Data mining analysis showed that protein synthesis, apoptosis, cellular movement, growth and proliferation were the main cellular functions significantly associated with the modulated genes (p < 0.05). Several up-regulated genes, especially IL18, revealed a severe muscular inflammation in PSSM muscles. The up-regulation of glycogen synthase kinase-3 (GSK3β) under its active form could be responsible for glycogen synthase (GYS1) inhibition and hypoxia-inducible factor

  15. Enhanced muscle shortening and impaired Ca2+ channel function in an acute septic myopathy model.

    PubMed

    Friedrich, Oliver; Hund, Ernst; von Wegner, Frederic

    2010-04-01

    Myopathies in critically ill patients are increasingly documented. Various animal models of chronic sepsis have been employed to investigate reduced membrane excitability or altered isometric contractility of skeletal muscle. In contrast, immediate changes occurring during acute sepsis are significantly under-characterised; L-type Ca(2+) channel function or isotonic shortening are examples. We recorded slowly activating L-type Ca(2+) currents (I (Ca)) in voltage-clamped single intact mouse skeletal muscle fibres and tested the effects of acute challenge with serum fractions from critical illness myopathy patients (CIM). Using a high-speed camera system, we simultaneously recorded unloaded fibre shortening during isotonic contractions with unprecedented temporal resolution (approximately 1,600 frames/s). Time courses of fibre lengths and shortening velocity were determined from automated imaging algorithms. CIM fractions acutely induced depression of I (Ca) amplitudes with no shifts in I (Ca)-V-relations. Voltage-dependent inactivation was unaltered and I (Ca) activation and inactivation kinetics were prolonged compared to controls. Unexpectedly, maximum unloaded speed of shortening was slightly faster following CIM serum applications, suggesting a direct action of CIM serum on weak-binding-state cross-bridges. Our results are compatible with a model where CIM serum might acutely reduce a fraction of functional L-type Ca(2+) channels and could account for reduced SR Ca(2+) release and force production in CIM patients. Acute increase in isotonic shortening velocity might be an early diagnostic feature suitable for testing in clinical studies. The acute challenge model is also robust against atrophy or fibre type changes that ordinarily would have to be considered in chronic sepsis models.

  16. Decreased skeletal muscle mitochondrial DNA in patients with statin-induced myopathy.

    PubMed

    Stringer, Henry A J; Sohi, Gurmeet K; Maguire, John A; Côté, Hélène C F

    2013-02-15

    Statins are widely used to treat hyperlipidemia and lower cardiovascular disease risk. While statins are generally well tolerated, some patients experience statin-induced myopathy (SIM). Statin treatment has been associated with mitochondrial dysfunction and mitochondrial DNA (mtDNA) depletion. In this retrospective study, skeletal muscle biopsies from patients diagnosed with SIM were studied. These were compared with biopsies from patients clinically assessed as having statin-unrelated myopathy but whose biopsy showed no or negligible pathology. For each biopsy sample, mtDNA was quantified relative to nuclear DNA (mtDNA content) by qPCR, mtDNA deletions were investigated by long-template PCR followed by gel densitometry, and mtDNA oxidative damage was quantified using a qPCR-based assay. For a subset of matched samples, mtDNA heteroplasmy and mutations were investigated by cloning/sequencing. Skeletal muscle mtDNA content was significantly lower in SIM patients (N=23, mean±SD, 2036±1146) than in comparators (N=24, 3220±1594), p=0.006. There was no difference in mtDNA deletion score or oxidative mtDNA damage between the two groups, and no evidence of increased mtDNA heteroplasmy or somatic mutations was detected. The significant difference in skeletal muscle mtDNA suggests that SIM or statin treatments are associated with depletion of skeletal muscle mtDNA or that patients with an underlying predisposition to SIM have lower mtDNA levels. If statins induce mtDNA depletion, this would likely reflect decreased mitochondria biogenesis and/or increased mitochondria autophagy. Further work is necessary to distinguish between the lower mtDNA as a predisposition to SIM or an effect of SIM or statin treatment.

  17. Risk factors and drug interactions predisposing to statin-induced myopathy: implications for risk assessment, prevention and treatment.

    PubMed

    Chatzizisis, Yiannis S; Koskinas, Konstantinos C; Misirli, Gesthimani; Vaklavas, Christos; Hatzitolios, Apostolos; Giannoglou, George D

    2010-03-01

    HMG-CoA reductase inhibitors ('statins') represent the most effective and widely prescribed drugs currently available for the reduction of low-density lipoprotein cholesterol, a critical therapeutic target for primary and secondary prevention of cardiovascular atherosclerotic disease. In the face of the established lipid lowering and the emerging pleiotropic properties of statins, the patient population suitable for long-term statin treatment is expected to further expand. An overall positive safety and tolerability profile of statins has been established, although adverse events have been reported. Skeletal muscle-related events are the most common adverse events of statin treatment. Statin-induced myopathy can (rarely) manifest with severe and potentially fatal cases of rhabdomyolysis, thus rendering the identification of the underlying predisposing factors critical. The purpose of this review is to summarize the factors that increase the risk of statin-related myopathy. Data from published clinical trials, meta-analyses, postmarketing studies, spontaneous report systems and case reports for rare effects were reviewed. Briefly, the epidemiology, clinical spectrum and molecular mechanisms of statin-associated myopathy are discussed. We further analyse in detail the risk factors that precipitate or increase the likelihood of statin-related myopathy. Individual demographic features, genetic factors and co-morbidities that may account for the significant interindividual variability in the myopathic risk are presented. Physicochemical properties of statins have been implicated in the differential risk of currently marketed statins. Pharmacokinetic interactions with concomitant medications that interfere with statin metabolism and alter their systemic bioavailability are reviewed. Of particular clinical interest in cases of resistant dyslipidaemia is the interaction of statins with other classes of lipid-lowering agents; current data on the relative safety of available

  18. Allele and genotype frequencies of CYP2B6 in a Turkish population.

    PubMed

    Yuce-Artun, Nazan; Kose, Gulcin; Suzen, H Sinan

    2014-06-01

    Increasing interest in cytochrome P450 2B6 (CYP2B6) genetic polymorphism was stimulated by revelations of a specific CYP2B6 genotype significantly affecting the metabolism of various drugs in common clinical use in terms of increasing drug efficacy and avoiding adverse drug reactions. The present study aimed to determine the frequencies of CYP2B6*4 CYP2B6*5, CYP2B6*6, CYP2B6*7 and CYP2B6*9 alleles in healthy Turkish individuals (n = 172). Frequencies of three single nucleotide polymorphisms were 516G>T (28%), 785A>G (33%), and 1459C>T (12%). The frequencies of CYP2B6*1, *4, *5, *6, *7, and *9 alleles were 54.3 (95% CI 49.04-59.56), 6.4% (95% CI 3.81-8.99), 11% (95% CI 7.69-14.31), 25.3% (95% CI 20.71-29.89), 0.87% (95% CI -0.11-1.85) and 2.0% (95% CI 0.52-3.48), respectively. Allele *6 was more frequent (25.3%) than the other variant alleles in Turkish subjects. The frequencies of CYP2B6*4, *5, *6, *7, and *9 alleles were similar to European populations but significantly different from that reported for Asian populations. This is the first study to document the frequencies of the CYP2B6*4, *5, *6, *7, *9 alleles in the healthy Turkish individuals and our results could provide clinically useful information on drug metabolism by CYP2B6 in Turkish population.

  19. Solution structure of the isolated histone H2A-H2B heterodimer

    PubMed Central

    Moriwaki, Yoshihito; Yamane, Tsutomu; Ohtomo, Hideaki; Ikeguchi, Mitsunori; Kurita, Jun-ichi; Sato, Masahiko; Nagadoi, Aritaka; Shimojo, Hideaki; Nishimura, Yoshifumi

    2016-01-01

    During chromatin-regulated processes, the histone H2A-H2B heterodimer functions dynamically in and out of the nucleosome. Although detailed crystal structures of nucleosomes have been established, that of the isolated full-length H2A-H2B heterodimer has remained elusive. Here, we have determined the solution structure of human H2A-H2B by NMR coupled with CS-Rosetta. H2A and H2B each contain a histone fold, comprising four α-helices and two β-strands (α1–β1–α2–β2–α3–αC), together with the long disordered N- and C-terminal H2A tails and the long N-terminal H2B tail. The N-terminal αN helix, C-terminal β3 strand, and 310 helix of H2A observed in the H2A-H2B nucleosome structure are disordered in isolated H2A-H2B. In addition, the H2A α1 and H2B αC helices are not well fixed in the heterodimer, and the H2A and H2B tails are not completely random coils. Comparison of hydrogen-deuterium exchange, fast hydrogen exchange, and {1H}-15N hetero-nuclear NOE data with the CS-Rosetta structure indicates that there is some conformation in the H2A 310 helical and H2B Lys11 regions, while the repression domain of H2B (residues 27–34) exhibits an extended string-like structure. This first structure of the isolated H2A-H2B heterodimer provides insight into its dynamic functions in chromatin. PMID:27181506

  20. Detection and characterization of ubiquitylated H2B in mammalian cells.

    PubMed

    Shema, Efrat; Oren, Moshe; Minsky, Neri

    2011-07-01

    Histone H2B ubiquitylation was shown to be associated with actively transcribed genes in mammalian cells and has been suggested to be involved in transcriptional regulation. Despite the limited applicability of genetic tools to analyze H2B ubiquitylation in mammals, several biochemical and immunological approaches have been successfully implemented to study this modification. Here we describe several techniques to detect ubiquitylated H2B in mammalian cells and to dissect its genomic localization.

  1. 77 FR 28764 - Temporary Non-agricultural Employment of H-2B Aliens in the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... H-2B Aliens in the United States AGENCY: Employment and Training Administration, Labor. ] ACTION... Aliens in the United States, published February 21, 2012 (the 2012 H-2B Final Rule). The 2012 H-2B...

  2. SCN2B in the Rat Trigeminal Ganglion and Trigeminal Sensory Nuclei.

    PubMed

    Shimada, Yusuke; Sato, Tadasu; Yajima, Takehiro; Fujita, Masatoshi; Hashimoto, Naoya; Shoji, Noriaki; Sasano, Takashi; Ichikawa, Hiroyuki

    2016-11-01

    The beta-2 subunit of the mammalian brain voltage-gated sodium channel (SCN2B) was examined in the rat trigeminal ganglion (TG) and trigeminal sensory nuclei. In the TG, 42.6 % of sensory neurons were immunoreactive (IR) for SCN2B. These neurons had various cell body sizes. In facial skins and oral mucosae, corpuscular nerve endings contained SCN2B-immunoreactivity. SCN2B-IR nerve fibers formed nerve plexuses beneath taste buds in the tongue and incisive papilla. However, SCN2B-IR free nerve endings were rare in cutaneous and mucosal epithelia. Tooth pulps, muscle spindles and major salivary glands were also innervated by SCN2B-IR nerve fibers. A double immunofluorescence method revealed that about 40 % of SCN2B-IR neurons exhibited calcitonin gene-related peptide (CGRP)-immunoreactivity. However, distributions of SCN2B- and CGRP-IR nerve fibers were mostly different in facial, oral and cranial structures. By retrograde tracing method, 60.4 and 85.3 % of TG neurons innervating the facial skin and tooth pulp, respectively, showed SCN2B-immunoreactivity. CGRP-immunoreactivity was co-localized by about 40 % of SCN2B-IR cutaneous and tooth pulp TG neurons. In trigeminal sensory nuclei of the brainstem, SCN2B-IR neuronal cell bodies were common in deep laminae of the subnucleus caudalis, and the subnuclei interpolaris and oralis. In the mesencephalic trigeminal tract nucleus, primary sensory neurons also exhibited SCN2B-immunoreactivity. In other regions of trigeminal sensory nuclei, SCN2B-IR cells were very infrequent. SCN2B-IR neuropil was detected in deep laminae of the subnucleus caudalis as well as in the subnuclei interpolaris, oralis and principalis. These findings suggest that SCN2B is expressed by various types of sensory neurons in the TG. There appears to be SCN2B-containing pathway in the TG and trigeminal sensory nuclei.

  3. Mechanism-Based Inactivation of Human Cytochrome P450 2B6 by Chlorpyrifos.

    PubMed

    D'Agostino, Jaime; Zhang, Haoming; Kenaan, Cesar; Hollenberg, Paul F

    2015-07-20

    Chlorpyrifos (CPS) is a commonly used pesticide which is metabolized by P450s into the toxic metabolite chlorpyrifos-oxon (CPO). Metabolism also results in the release of sulfur, which has been suggested to be involved in mechanism-based inactivation (MBI) of P450s. CYP2B6 was previously determined to have the greatest catalytic efficiency for CPO formation in vitro. Therefore, we characterized the MBI of CYP2B6 by CPS. CPS inactivated CYP2B6 in a time- and concentration-dependent manner with a kinact of 1.97 min(-1), a KI of 0.47 μM, and a partition ratio of 17.7. We further evaluated the ability of other organophosphate pesticides including chorpyrifos-methyl, diazinon, parathion-methyl, and azinophos-methyl to inactivate CYP2B6. These organophosphate pesticides were also potent MBIs of CYP2B6 characterized by similar kinact and KI values. The inactivation of CYP2B6 by CPS was accompanied by the loss of P450 detectable in the CO reduced spectrum and loss of detectable heme. High molecular weight aggregates were observed when inactivated CYP2B6 was run on SDS-PAGE gels indicating protein aggregation. Interestingly, we found that the rat homologue of CYP2B6, CYP2B1, was not inactivated by CPS despite forming CPO to a similar extent. On the basis of the locations of the Cys residues in the two proteins which could react with released sulfur during the metabolism of CPS, we investigated whether the C475 in CYP2B6, which is not conserved in CYP2B1, was the critical residue for inactivation by mutating it to a Ser. CYP2B6 C475S was inactivated to a similar extent as wild type CYP2B6 indicating that C475 is not likely the key difference between CYP2B1 and CYP2B6 with respect to inactivation. These results indicate that CPS and other organophosphate pesticides are potent MBIs of CYP2B6 which may have implications for the toxicity of these pesticides as well as the potential for pesticide-drug interactions.

  4. Mechano-Sensitive PPAP2B Regulates Endothelial Responses to Athero-Relevant Hemodynamic Forces

    PubMed Central

    Kuo, Cheng-Hsiang; Kumar, Sandeep; Kim, Chan Woo; Lin, Yen-Chen; Chen, Yen-Ju; Birukova, Anna; Birukov, Konstantin G.; Dulin, Nickolai O.; Civelek, Mete; Lusis, Aldons J.; Loyer, Xavier; Tedgui, Alain; Dai, Guohao; Jo, Hanjoong; Fang, Yun

    2015-01-01

    Rationale PhosPhatidic-Acid-Phosphatase-type-2B (PPAP2B), an integral membrane protein that inactivates lysophosphatidic acid, was implicated in coronary artery disease (CAD) by genome-wide-association-studies (GWAS). However, it is unclear whether GWAS-identified CAD genes including PPAP2B participate in mechanotransduction mechanisms by which vascular endothelia respond to local athero-relevant hemodynamics that contribute to the regional nature of atherosclerosis. Objective To establish the critical role of PPAP2B in endothelial responses to hemodynamics. Methods and Results Reduced PPAP2B was detected in vivo in mouse and swine aortic arch endothelia exposed to chronic disturbed flow, and in mouse carotid artery endothelia subjected to surgically-induced acute disturbed flow. In humans, PPAP2B was reduced in the downstream part of carotid plaques where low shear stress prevails. In culture, reduced PPAP2B was measured in human aortic endothelial cells (HAEC) under athero-susceptible waveform mimicking flow in human carotid sinus. Flow-sensitive microRNA-92a and transcription factor KLF2 were identified as upstream inhibitor and activator of endothelial PPAP2B, respectively. PPAP2B suppression abrogated athero-protection of unidirectional flow; Inhibition of lysophosphatidic acid receptor 1 (LPAR1) restored the flow-dependent, anti-inflammatory phenotype in PPAP2B-deficient cells. PPAP2B inhibition resulted in myosin-light-chain phosphorylation and intercellular gaps, which were abolished by LPAR1/2 inhibition. Expression-quantitative-trait-locus-mapping demonstrated PPAP2B CAD risk allele is not linked to PPAP2B expression in various human tissues but significantly associated with reduced PPAP2B in HAEC. Conclusions Athero-relevant flows dynamically modulate endothelial PPAP2B expression through miR-92a and KLF2. Mechano-sensitive PPAP2B plays a critical role in promoting anti-inflammatory phenotype and maintaining vascular integrity of endothelial monolayer

  5. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain.

    PubMed

    Miksys, Sharon; Lerman, Caryn; Shields, Peter G; Mash, Deborah C; Tyndale, Rachel F

    2003-07-01

    CYP2B6 metabolizes drugs such as nicotine and bupropion, and many toxins and carcinogens. Nicotine induces CYP2B1 in rat brain and in humans polymorphic variation in CYP2B6 affects smoking cessation rates. The aim of this study was to compare CYP2B6 expression in brains of human smokers and non-smokers and alcoholics and non-alcoholics (n=26). CYP2B6 expression was brain region-specific, and was observed in both neurons and astrocytes. CYP2B6 levels were higher in brains of smokers and alcoholics, particularly in cerebellar Purkinje cells and hippocampal pyramidal neurons, cells known to be damaged in alcoholics. Significantly more (p<0.05) CYP2B6 protein was seen in four brain regions of smoking alcoholics compared to non-smoking non-alcoholics: hippocampus (5.8-fold), caudate nucleus (3.3-fold), putamen (3.0-fold) and cerebellar hemisphere (1.6-fold). The genetic variant C1459T (R487C) has been associated with reduced hepatic enzyme levels, stability and activity. Preliminary genotyping of this small sample (n=24) suggested that individuals with the CC genotype had higher brain CYP2B6 than those with the CT or TT genotype. Higher brain CYP2B6 activity in smokers and alcoholics may cause altered sensitivity to centrally acting drugs, increased susceptibility to neurotoxins and carcinogenic xenobiotics and contribute to central tolerance to nicotine.

  6. Mitochondrial Myopathy

    MedlinePlus

    ... diseases caused by damage to the mitochondria—small, energy-producing structures that serve as the cells' "power ... brain and muscles require a great deal of energy, and thus appear to be particularly damaged when ...

  7. Inflammatory Myopathies

    MedlinePlus

    ... symptoms that include proximal muscle weakness and inflammation, edema (an abnormal collection of fluids within body tissues ... A low-sodium diet may help to counter edema and cardiovascular complications. Many individuals with dermatomyositis may ...

  8. [Metabolic myopathies].

    PubMed

    Papazian, Óscar; Rivas-Chacón, Rafael

    2013-09-06

    Objetivo. Revisar las miopatias metabolicas manifestadas solamente por crisis de mialgias, calambres y rigidez musculares con dificultad para contraer los musculos afectados y el examen neurologico normal entre las crisis en niños y adolescentes. Desarrollo. Estas miopatias metabolicas se deben a deficits enzimaticos heredados en forma autosomica recesiva del metabolismo de los carbohidratos y lipidos. El resultado final es una reduccion del trifosfato de adenosina principalmente a traves de la fosforilacion oxidativa mitocondrial con disminucion de la energia disponible para la contraccion muscular. Las secundarias a trastornos del metabolismo de los carbohidratos se producen por ejercicios de alta intensidad y breves (< 10 min) y las secundarias a trastornos de los lipidos, por ejercicios de baja intensidad y prolongados (> 10 min). Los deficits enzimaticos en el primer grupo son de miofosforilasa (glucogenosis V), fosfofructocinasa muscular (glucogenosis VII), fosfoglicerato mutasa 1 (glucogenosis X) y beta enolasa (glucogenosis XIII), y en el segundo, de carnitina palmitol transferasa tipo II y de acil-CoA deshidrogenasa de cadena muy larga. Conclusiones. Las caracteristicas diferenciales de los pacientes en cada grupo y dentro de cada grupo permitiran el diagnostico clinico presuntivo inicial en la mayoria y solicitar solamente los examenes necesarios para corroborar el diagnostico. El tratamiento de las crisis consiste en hidratacion, glucosa y alcalinizacion de la orina. Las medidas preventivas son evitar el tipo de ejercicio que induce las crisis y el ayuno. No existe cura o tratamiento especifico. El pronostico es bueno con la excepcion de casos raros de insuficiencia renal aguda debido a la elevacion sanguinea de la mioglobina producto de una rabdomiolisis grave.

  9. Thyrotoxic Myopathy

    MedlinePlus

    ... Strategy Current Research Research Funded by NINDS Basic Neuroscience Clinical Research Translational Research Research at NINDS Focus ... Information Current Research Research Funded by NINDS Basic Neuroscience Clinical Research Translational Research Research at NINDS Focus ...

  10. Metabolic Myopathies

    MedlinePlus

    ... Fellows Evidence-Based Practice for Academic Researchers Responsible Data Management in Research Career Planning Treatments Patient and Caregiver ... Fellows Evidence-Based Practice for Academic Researchers Responsible Data Management in Research Career Planning Treatments Patient and Caregiver ...

  11. Mitochondrial Myopathy

    MedlinePlus

    ... mutations: Autosomal recessive means that it takes two mutant copies of a gene—one inherited from each ... disease. Autosomal dominant means it takes just one mutant copy of a gene—inherited from one parent— ...

  12. Mitochondrial Myopathies

    MedlinePlus

    ... of mitochondria. A single cell can contain both mutant mitochondria and normal mitochondria, and the balance between ... cells in her body) contain both normal and mutant mitochondria, and that some have just a few ...

  13. Regulation of PI-2b Pilus Expression in Hypervirulent Streptococcus agalactiae ST-17 BM110

    PubMed Central

    du Merle, Laurence; Rosinski-Chupin, Isabelle; Gominet, Myriam; Bellais, Samuel; Poyart, Claire; Trieu-Cuot, Patrick

    2017-01-01

    The widely spread Streptococcus agalactiae (also known as Group B Streptococcus, GBS) “hypervirulent” ST17 clone is strongly associated with neonatal meningitis. The PI-2b locus is mainly found in ST17 strains but is also present in a few non ST17 human isolates such as the ST-7 prototype strain A909. Here, we analysed the expression of the PI-2b pilus in the ST17 strain BM110 as compared to the non ST17 A909. Comparative genome analyses revealed the presence of a 43-base pair (bp) hairpin-like structure in the upstream region of PI-2b operon in all 26 ST17 genomes, which was absent in the 8 non-ST17 strains carrying the PI-2b locus. Deletion of this 43-bp sequence in strain BM110 resulted in a 3- to 5-fold increased transcription of PI-2b. Characterization of PI-2b promoter region in A909 and BM110 strains was carried out by RNAseq, primer extension, qRT-PCR and transcriptional fusions with gfp as reporter gene. Our results indicate the presence of a single promoter (Ppi2b) with a transcriptional start site (TSS) mapped 37 bases upstream of the start codon of the first PI-2b gene. The large operon of 16 genes located upstream of PI-2b codes for the group B carbohydrate (also known as antigen B), a major constituent of the bacterial cell wall. We showed that the hairpin sequence located between antigen B and PI-2b operons is a transcriptional terminator. In A909, increased expression of PI-2b probably results from read-through transcription from antigen B operon. In addition, we showed that an extended 5’ promoter region is required for maximal transcription of gfp as a reporter gene in S. agalactiae from Ppi2b promoter. Gene reporter assays performed in Lactococcus lactis strain NZ9000, a related non-pathogenic Gram-positive species, revealed that GBS-specific regulatory factors are required to drive PI-2b transcription. PI-2b expression is up-regulated in the BM110ΔcovR mutant as compared to the parental BM110 strain, but this effect is probably indirect

  14. Regulation of PI-2b Pilus Expression in Hypervirulent Streptococcus agalactiae ST-17 BM110.