Science.gov

Sample records for 2c-methyl-d-erythritol 4-phosphate synthase

  1. 2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity.

    PubMed

    Bitok, J Kipchirchir; Meyers, Caren Freel

    2012-10-19

    There is significant progress toward understanding catalysis throughout the essential MEP pathway to isoprenoids in human pathogens; however, little is known about pathway regulation. The present study begins by testing the hypothesis that isoprenoid biosynthesis is regulated via feedback inhibition of the fifth enzyme cyclodiphosphate synthase IspF by downstream isoprenoid diphosphates. Here, we demonstrate recombinant E. coli IspF is not inhibited by downstream metabolites isopentenyl diphosphate (IDP), dimethylallyl diphosphate (DMADP), geranyl diphosphate (GDP), and farnesyl diphosphate (FDP) under standard assay conditions. However, 2C-methyl-d-erythritol 4-phosphate (MEP), the product of reductoisomerase IspC and first committed MEP pathway intermediate, activates and sustains this enhanced IspF activity, and the IspF-MEP complex is inhibited by FDP. We further show that the methylerythritol scaffold itself, which is unique to this pathway, drives the activation and stabilization of active IspF. Our results suggest a novel feed-forward regulatory mechanism for 2C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) production and support an isoprenoid biosynthesis regulatory mechanism via feedback inhibition of the IspF-MEP complex by FDP. The results have important implications for development of inhibitors against the IspF-MEP complex, which may be the physiologically relevant form of the enzyme.

  2. 2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity

    PubMed Central

    Bitok, J. Kipchirchir; Freel Meyers, Caren

    2012-01-01

    There is significant progress toward understanding catalysis throughout the essential MEP pathway to isoprenoids in human pathogens; however, little is known about pathway regulation. The present study begins by testing the hypothesis that isoprenoid biosynthesis is regulated via feedback inhibition of the fifth enzyme cyclodiphosphate IspF by downstream isoprenoid diphosphates. Here, we demonstrate recombinant E. coli IspF is not inhibited by downstream metabolites and isopentenyl diphosphate (IDP), dimethylallyl diphosphate (DMADP), geranyl diphosphate (GDP) and farnesyl diphosphate (FDP) under standard assay conditions. However, 2C-methyl-d-erythritol 4-phosphate (MEP), the product of reductoisomerase IspC and first committed MEP pathway intermediate, activates and sustains this enhanced IspF activity, and the IspF-MEP complex is inhibited by FDP. We further show that the methylerythritol scaffold itself, which is unique to this pathway, drives the activation and stabilization of active IspF. Our results suggest a novel feed-forward regulatory mechanism for 2Cmethyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) production and support an isoprenoid biosynthesis regulatory mechanism via feedback inhibition of the IspF-MEP complex by FDP. The results have important implications for development of inhibitors against the IspF-MEP complex, which may be the physiologically relevant form of the enzyme. PMID:22839733

  3. Analysis of the Expression of CLA1, a Gene That Encodes the 1-Deoxyxylulose 5-Phosphate Synthase of the 2-C-Methyl-d-Erythritol-4-Phosphate Pathway in Arabidopsis1

    PubMed Central

    Estévez, Juan M.; Cantero, Araceli; Romero, Cynthia; Kawaide, Hiroshi; Jiménez, Luis F.; Kuzuyama, Tomohisa; Seto, Haruo; Kamiya, Yuji; León, Patricia

    2000-01-01

    The discovery of the 2-C-methyl-d-erythritol-4-phosphate pathway for the biosynthesis of isoprenoids raises the important question of the nature and regulation of the enzymes involved in this pathway. CLA1, a gene previously isolated from Arabidopsis, encodes the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate pathway, 1-deoxy-d-xylulose-5-phosphate synthase. We demonstrate this enzyme activity by complementation of the cla1-1 mutant phenotype and by direct enzymatic assays. Based on mRNA and protein expression patterns this enzyme is expressed mainly in developing photosynthetic and non-photosynthetic tissues. The β-glucuronidase expression pattern driven from the CLA1 gene regulatory region supports the northern and protein data while also showing that this gene has some level of expression in most tissues of the plant. A mutation in the CLA1 gene interferes with the normal development of chloroplasts and etioplasts, but does not seem to affect amyloplast structure. Microscopic analysis also shows a pleiotropic effect of the CLA1 gene mutation in mesophyll tissue formation. PMID:10982425

  4. 2C-Methyl- D- erythritol 2,4-cyclodiphosphate synthase from Stevia rebaudiana Bertoni is a functional gene.

    PubMed

    Kumar, Hitesh; Singh, Kashmir; Kumar, Sanjay

    2012-12-01

    Stevia [Stevia rebaudiana (Bertoni)] is a perennial herb which accumulates sweet diterpenoid steviol glycosides (SGs) in its leaf tissue. SGs are synthesized by 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Of the various enzymes of the MEP pathway, 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MDS) (encoded by MDS) catalyzes the cyclization of 4-(cytidine 5' diphospho)-2C-methyl-D-erythritol 2-phosphate into 2C-methyl-D-erythritol 2,4-cyclodiphosphate. Complementation of the MDS knockout mutant strain of Escherichia coli, EB370 with putative MDS of stevia (SrMDS) rescued the lethal mutant, suggesting SrMDS to be a functional gene. Experiments conducted in plant growth chamber and in the field suggested SrMDS to be a light regulated gene. Indole 3-acetic acid (IAA; 50, 100 μM) down-regulated the expression of SrMDS at 4 h of the treatment, whereas, abscisic acid did not modulate its expression. A high expression of SrMDS was observed during the light hours of the day as compared to the dark hours. The present work established functionality of SrMDS and showed the role of light and IAA in regulating expression of SrMDS.

  5. Biosynthesis of terpenoids: 4-Diphosphocytidyl-2C-methyl-d-erythritol synthase of Arabidopsis thaliana

    PubMed Central

    Rohdich, Felix; Wungsintaweekul, Juraithip; Eisenreich, Wolfgang; Richter, Gerald; Schuhr, Christoph A.; Hecht, Stefan; Zenk, Meinhart H.; Bacher, Adelbert

    2000-01-01

    A hypothetical gene with similarity to the ispD gene of Escherichia coli was cloned from Arabidopsis thaliana cDNA. The ORF of 909 bp specifies a protein of 302 amino acid residues. The cognate chromosomal gene consists of 2,071 bp and comprises 11 introns with a size range of 78–202 bp. A fragment comprising amino acid residues 76–302 was expressed in a recombinant E. coli strain. The protein was purified to homogeneity and was shown to catalyze the formation of 4-diphosphocytidyl-2C-methyl-d-erythritol from 2C-methyl-d-erythritol 4-phosphate with a specific activity of 67 μmol⋅min−1 mg−1. The Michaelis constants for 4-diphosphocytidyl-2C-methyl-d-erythritol and CTP were 500 μM and 114 μM, respectively. PMID:10841550

  6. The diversion of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate from the 2-C-methyl-D-erythritol 4-phosphate pathway to hemiterpene glycosides mediates stress responses in Arabidopsis thaliana.

    PubMed

    González-Cabanelas, Diego; Wright, Louwrance P; Paetz, Christian; Onkokesung, Nawaporn; Gershenzon, Jonathan; Rodríguez-Concepción, Manuel; Phillips, Michael A

    2015-04-01

    2-C-Methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) is an intermediate of the plastid-localized 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co-factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds-3 mutant, defective in the 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2-C-methyl-D-erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds-3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds-3 mutant also showed enhanced resistance to the phloem-feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP-mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds-3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Biosynthesis of terpenoids. 2C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) from Plasmodium falciparum.

    PubMed

    Rohdich, F; Eisenreich, W; Wungsintaweekul, J; Hecht, S; Schuhr, C A; Bacher, A

    2001-06-01

    The putative catalytic domain of an open reading frame from Plasmodium falciparum with similarity to the ispF gene of Escherichia coli specifying 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase was expressed in a recombinant E. coli strain. The recombinant protein was purified to homogeneity and was found to catalyze the formation of 2C-methyl-D-erythritol 2,4-cyclodiphosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate at a rate of 4.3 micromol x mg(-1) x min(-1). At lower rates, the recombinant protein catalyzes the formation of 2-phospho-2C-methyl-D-erythritol 3,4-cyclophosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate and the formation of 2C-methyl-D-erythritol 3,4-cyclophosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol. Divalent metal ions such as magnesium or manganese are required for catalytic activity. The enzyme has a pH optimum at pH 7.0. Recombinant expression of the full-length open reading frame afforded insoluble protein that could not be folded in vitro. The enzyme is a potential target for antimalarial drugs directed at the nonmevalonate pathway of isoprenoid biosynthesis.

  8. Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis.

    PubMed

    Sando, Tomoki; Takeno, Shinya; Watanabe, Norie; Okumoto, Hiroshi; Kuzuyama, Tomohisa; Yamashita, Atsushi; Hattori, Masahira; Ogasawara, Naotake; Fukusaki, Eiichiro; Kobayashi, Akio

    2008-11-01

    Natural rubber is synthesized as rubber particles in the latex, the fluid cytoplasm of laticifers, of Hevea brasiliensis. Although it has been found that natural rubber is biosynthesized through the mevalonate pathway, the involvement of an alternative 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is uncertain. We obtained all series of the MEP pathway candidate genes by analyzing expressed sequence tag (EST) information and degenerate PCR in H. brasiliensis. Complementation experiments with Escherichia coli mutants were performed to confirm the functions of the MEP pathway gene products of H. brasiliensis together with those of Arabidopsis thaliana, and it was found that 1-deoxy-D-xylulose-5-phosphate reductoisomerase, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, and 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase of H. brasiliensis were functionally active in the E. coli mutants. Gene expression analysis revealed that the expression level of the HbDXS2 gene in latex was relatively high as compared to those of other MEP pathway genes. However, a feeding experiment with [1-(13)C] 1-deoxy-D-xylulose triacetate, an intermediate derivative of the MEP pathway, indicated that the MEP pathway is not involved in rubber biosynthesis, but is involved in carotenoids biosynthesis in H. brasiliensis.

  9. Deuterium-labelled isotopomers of 2-C-methyl-D-erythritol as tools for the elucidation of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis.

    PubMed Central

    Charon, L; Hoeffler, J F; Pale-Grosdemange, C; Lois, L M; Campos, N; Boronat, A; Rohmer, M

    2000-01-01

    Escherichia coli synthesizes its isoprenoids via the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. The MC4100dxs::CAT strain, defective in deoxyxylulose-5-phosphate synthase, which is the first enzyme in this metabolic route, exclusively synthesizes its isoprenoids from exogenous 2-C-methyl-D-erythritol (ME) added to the culture medium. The fate of the hydrogen atoms in the MEP pathway was followed by the incorporation of [1,1-(2)H(2)]ME and [3,5,5,5-(2)H(4)]ME. The two C-1 hydrogen atoms of ME were found without any loss in the prenyl chain of menaquinone and/or ubiquinone on the carbon atoms derived from C-4 of isopentenyl diphosphate (IPP) and on the E-methyl group of dimethylallyl diphosphate (DMAPP), the C-5 hydrogen atoms on the methyl groups derived from IPP C-5 methyl group and the Z-methyl group of DMAPP. This showed that no changes in the oxidation state of these carbon atoms occurred in the reaction sequence between MEP and IPP. Furthermore, no deuterium scrambling was observed between the carbon atoms derived from C-4 and C-5 of IPP or DMAPP, suggesting a completely stereoselective IPP isomerase or no significant activity of this enzyme. The C-3 deuterium atom of [3,5,5,5-(2)H(4)]ME was preserved only in the DMAPP starter unit and was completely missing from all those derived from IPP. This finding, aided by the non-essential role of the IPP isomerase gene, suggests the presence in E. coli of two different routes towards IPP and DMAPP, starting from a common intermediate derived from MEP. PMID:10698701

  10. The Mycobacterium tuberculosis MEP (2C-methyl-D-erythritol 4-phosphate) pathway as a new drug target

    PubMed Central

    Eoh, Hyungjin; Brennan, Patrick J.; Crick, Dean C.

    2009-01-01

    Tuberculosis (TB) is still a major public health problem, compounded by the human immunodeficiency virus (HIV)-TB co-infection and recent emergence of multidrug-resistant (MDR) and extensive drug resistant (XDR)-TB. Novel anti-TB drugs are urgently required. In this context, the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway of Mycobacterium tuberculosis has drawn attention; it is one of several pathways vital for M. tuberculosis viability and the human host lacks homologous enzymes. Thus, the MEP pathway promises bacterium-specific drug targets and the potential for identification of lead compounds unencumbered by target-based toxicity. Indeed, fosmidomycin is now known to inhibit the second step in the MEP pathway. This review describes the cardinal features of the main enzymes of the MEP pathway in M. tuberculosis and how these can be manipulated in high throughput screening campaigns in the search for new anti-infectives against TB. PMID:18793870

  11. Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae.

    PubMed

    Carlsen, Simon; Ajikumar, Parayil Kumaran; Formenti, Luca Riccardo; Zhou, Kang; Phon, Too Heng; Nielsen, Michael Lynge; Lantz, Anna Eliasson; Kielland-Brandt, Morten C; Stephanopoulos, Gregory

    2013-07-01

    Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the [4Fe-4S] iron sulfur cluster proteins encoded by ispG and ispH. In order to functionalize the last two steps of the MEP pathway, we co-expressed the genes for the E. coli iron sulfur cluster (ISC) assembly machinery. By deleting ERG13, thereby incapacitating the mevalonate pathway, in conjunction with labeling experiments with U-¹³C₆ glucose and growth experiments, we found that the ISC assembly machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron-sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron-sulfur cluster protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron-sulfur cluster proteins in its cytosol.

  12. Novel bioassay for the discovery of inhibitors of the 2-C-Methyl-D-Erythritol 4-Phosphate (MEP) and terpenoid pathways leading to carotenoid biosynthesis

    USDA-ARS?s Scientific Manuscript database

    The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl-phosphate (IPP) in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisi...

  13. [Cloning and expression analysis of 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase gene in Tripterygium wilfordii].

    PubMed

    Tong, Yu-ru; Su, Ping; Zhang, Meng; Zhao, Yu-jun; Wang, Xiu-juan; Gao, Wei; Huang, Lu-qi

    2015-11-01

    To clone the 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (TwMCT) full length cDNA from Tripterygium wilfordii, the specific primers were designed according to the transcriptome data and the LCPCR were carried out. After a series of bioinformatics analysis on the TwMCT, the MeJA induced expression content were investigated by real-time fluorescence quantification polymerase chain reaction (RT-qPCR). The result showed that the full of TwMCTcDNA was 1 318 bp nucleotides encoding 311 amino acids. The molecular weight of the deduced TwMCT protein was about 34.14 kDa and the theoretical isoelectric point was 8.65. Result of the RT-qPCR analysis indicated that the content of TwMCT mRNA expression in T. wilfordii suspension cell was rising after treating with MeJA and reached the maximum in 24 h. Cloning and analyzing TwMCT gene from T. wilfordii provided gene element for studying the function and expression regulation of secondary metabolites.

  14. Plasmodium IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target

    PubMed Central

    Imlay, Leah S.; Armstrong, Christopher M.; Masters, Mary Clare; Li, Ting; Price, Kathryn E.; Edwards, Rachel L.; Mann, Katherine M.; Li, Lucy X.; Stallings, Christina L.; Berry, Neil G.; O’Neill, Paul M.; Odom, Audrey R.

    2015-01-01

    As resistance to current therapies spreads, novel antimalarials are urgently needed. In this work, we examine the potential for therapeutic intervention via the targeting of Plasmodium IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase), the second dedicated enzyme of the essential methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis. Enzymes of this pathway represent promising therapeutic targets because the pathway is not present in humans. The Malaria Box compound, MMV008138, inhibits Plasmodium falciparum growth, and PfIspD has been proposed as a candidate intracellular target. We find that PfIspD is the sole intracellular target of MMV008138 and characterize the mode of inhibition and target-based resistance, providing chemical validation of this target. Additionally, we find that the Pf ISPD genetic locus is refractory to disruption in malaria parasites, providing independent genetic validation for efforts targeting this enzyme. This work provides compelling support for IspD as a druggable target for the development of additional, much-needed antimalarial agents. PMID:26783558

  15. A structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis

    PubMed Central

    Jin, Yun; Liu, Zhongchuan; Li, Yanjie; Liu, Weifeng; Tao, Yong; Wang, Ganggang

    2016-01-01

    2-C-Methyl-D-erythritol-4-phosphate cytidyltransferase (IspD) is an essential enzyme in the mevalonate-independent pathway of isoprenoid biosynthesis. This enzyme catalyzes 2-C-Methyl-d-erythritol 4-phosphate (MEP) and cytosine triphosphate (CTP) to 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDPME) and inorganic pyrophosphate (PPi). Bacillus subtilis was a kind of excellent isoprene producer. However, the studies on the key enzymes of MEP pathway in B. subtilis were still absent. In this work, the crystal structures of IspD and IspD complexed with CTP from B.subtilis were determined. For the first time, the intact P-loop was observed in the apo structure of IspD enzyme. Structural comparisons revealed that the concerted movements of the P-loop and loops close to the active site were essential in the reaction catalyzed by IspD. Meanwhile, kinetic analysis showed that the CTP hydrolytic activity of IspD from B.subtilis was over two times higher than that from Escherichia coli. These results will be useful for future target-based screening of potential inhibitors and the metabolic engineering for isoprenoid biosynthesis. PMID:27821871

  16. Cloning and characterization of 2-C-methyl-D-erythritol-4-phosphate pathway genes for isoprenoid biosynthesis from Indian ginseng, Withania somnifera.

    PubMed

    Gupta, Parul; Agarwal, Aditya Vikram; Akhtar, Nehal; Sangwan, Rajender Singh; Singh, Surya Pratap; Trivedi, Prabodh Kumar

    2013-02-01

    Withania somnifera (L.) is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicines. Pharmaceutical activities of this herb are associated with presence of secondary metabolites known as withanolides, a class of phytosteroids synthesized via mevalonate (MVA) and 2-C-methyl-D-erythritol-4-phosphate pathways. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, not much is known about the genes responsible for biosynthesis of these compounds. In this study, we have characterized two genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7) and 1-deoxy-D-xylulose-5-phosphate reductase (DXR; EC 1.1.1.267) enzymes involved in the biosynthesis of isoprenoids. The full-length cDNAs of W. somnifera DXS (WsDXS) and DXR (WsDXR) of 2,154 and 1,428 bps encode polypeptides of 717 and 475 amino acids residues, respectively. The expression analysis suggests that WsDXS and WsDXR are differentially expressed in different tissues (with maximal expression in flower and young leaf), chemotypes of Withania, and in response to salicylic acid, methyl jasmonate, as well as in mechanical injury. Analysis of genomic organization of WsDXS shows close similarity with tomato DXS in terms of exon-intron arrangements. This is the first report on characterization of isoprenoid biosynthesis pathway genes from Withania.

  17. Expression and Molecular Analysis of the Arabidopsis DXR Gene Encoding 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase, the First Committed Enzyme of the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway1

    PubMed Central

    Carretero-Paulet, Lorenzo; Ahumada, Iván; Cunillera, Nuria; Rodríguez-Concepción, Manuel; Ferrer, Albert; Boronat, Albert; Campos, Narciso

    2002-01-01

    1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the first committed step of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. In Arabidopsis, DXR is encoded by a single-copy gene. We have cloned a full-length cDNA corresponding to this gene. A comparative analysis of all plant DXR sequences known to date predicted an N-terminal transit peptide for plastids, with a conserved cleavage site, and a conserved proline-rich region at the N terminus of the mature protein, which is not present in the prokaryotic DXR homologs. We demonstrate that Arabidopsis DXR is targeted to plastids and localizes into chloroplasts of leaf cells. The presence of the proline-rich region in the mature Arabidopsis DXR was confirmed by detection with a specific antibody. A proof of the enzymatic function of this protein was obtained by complementation of an Escherichia coli mutant defective in DXR activity. The expression pattern of β-glucuronidase, driven by the DXR promoter in Arabidopsis transgenic plants, together with the tissue distribution of DXR transcript and protein, revealed developmental and environmental regulation of the DXR gene. The expression pattern of the DXR gene parallels that of the Arabidopsis 1-deoxy-d-xylulose 5-phosphate synthase gene, but the former is slightly more restricted. These genes are expressed in most organs of the plant including roots, with higher levels in seedlings and inflorescences. The block of the 2-C-methyl-d-erythritol 4-phosphate pathway in Arabidopsis seedlings with fosmidomycin led to a rapid accumulation of DXR protein, whereas the 1-deoxy-d-xylulose 5-phosphate synthase protein level was not altered. Our results are consistent with the participation of the Arabidopsis DXR gene in the control of the 2-C-methyl-d-erythritol 4-phosphate pathway. PMID:12177470

  18. The Plastidial 2-C-Methyl-d-Erythritol 4-Phosphate Pathway Provides the Isoprenyl Moiety for Protein Geranylgeranylation in Tobacco BY-2 Cells[C][W

    PubMed Central

    Gerber, Esther; Hemmerlin, Andréa; Hartmann, Michael; Heintz, Dimitri; Hartmann, Marie-Andrée; Mutterer, Jérôme; Rodríguez-Concepción, Manuel; Boronat, Albert; Van Dorsselaer, Alain; Rohmer, Michel; Crowell, Dring N.; Bach, Thomas J.

    2009-01-01

    Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation. PMID:19136647

  19. Kinetic analysis of Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids.

    PubMed

    Richard, Stéphane B; Lillo, Antonietta M; Tetzlaff, Charles N; Bowman, Marianne E; Noel, Joseph P; Cane, David E

    2004-09-28

    Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (YgbP or IspD) catalyzes the conversion of 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytidine triphosphate (CTP) to 4-diphosphocytidyl-2-C-methylerythritol (CDPME). Pulse chase experiments established that the reaction involves an ordered sequential mechanism with mandatory initial binding of CTP. On the basis of analysis of the previously reported crystal structures of apo-YgbP as well as YgbP complexed with both CTP.Mg(2+) and CDPME.Mg(2+) [Richard, S. B., Bowman, M. E., Kwiatkowski, W., Kang, I., Chow, C., Lillo, A. M., Cane, D. E., and Noel, J. P. (2001) Nat. Struct. Biol. 8, 641-648], a group of active site residues were selected for site-directed mutagenesis and steady-state kinetic analysis. Both Lys27 and Lys213 were shown to be essential to catalytic activity, consistent with their proposed role in stabilization of a pentacoordinate phosphate transition state resulting from in-line attack of the MEP phosphate on the alpha-phosphate of CTP. In addition, Thr140, Arg109, Asp106, and Thr165 were all shown to play critical roles in the binding and proper orientation of the MEP substrate.

  20. GcpE Is Involved in the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway of Isoprenoid Biosynthesis in Escherichia coli

    PubMed Central

    Altincicek, Boran; Kollas, Ann-Kristin; Sanderbrand, Silke; Wiesner, Jochen; Hintz, Martin; Beck, Ewald; Jomaa, Hassan

    2001-01-01

    In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. In this work, we demonstrate that the gcpE gene of Escherichia coli is involved in this pathway. E. coli cells were genetically engineered to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway. These cells were then deleted for the essential gcpE gene and were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of gcpE. PMID:11274098

  1. Development of inhibitors of the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway enzymes as potential anti-infective agents.

    PubMed

    Masini, Tiziana; Hirsch, Anna K H

    2014-12-11

    Important pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum, the causative agents of tuberculosis and malaria, respectively, and plants, utilize the 2C-methyl-D-erythritol 4-phosphate (MEP, 5) pathway for the biosynthesis of isopentenyl diphosphate (1) and dimethylallyl diphosphate (2), the universal precursors of isoprenoids, while humans exclusively utilize the alternative mevalonate pathway for the synthesis of 1 and 2. This distinct distribution, together with the fact that the MEP pathway is essential in numerous organisms, makes the enzymes of the MEP pathway attractive drug targets for the development of anti-infective agents and herbicides. Herein, we review the inhibitors reported over the past 2 years, in the context of the most important older developments and with a particular focus on the results obtained against enzymes of pathogenic organisms. We will also discuss new discoveries in terms of structural and mechanistic features, which can help to guide a rational development of inhibitors.

  2. Chemoenzymatic synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol: A substrate for IspE.

    PubMed

    Narayanasamy, Prabagaran; Eoh, Hyungjin; Crick, Dean C

    2008-07-21

    Enantiomerically pure 2-C-methyl-D-erythritol 4-phosphate 1 (MEP) is synthesized from 1,2-O-isopropylidene-α-D-xylofuranose via facile benzylation in good yield. Subsequently, 1 is used for enzymatic synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2 (CDP-ME) using 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD). The chemoenzymatically synthesized 2 can be used as substrate for assay of IspE and for high throughput screening to identify IspE inhibitors.

  3. Novel Bioassay for the Discovery of Inhibitors of the 2-C-Methyl-D-erythritol 4-Phosphate (MEP) and Terpenoid Pathways Leading to Carotenoid Biosynthesis

    PubMed Central

    Corniani, Natália; Velini, Edivaldo D.; Silva, Ferdinando M. L.; Nanayakkara, N. P. Dhammika; Witschel, Matthias; Dayan, Franck E.

    2014-01-01

    The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl diphosphate in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisic acid and gibberellins. Consequently, disruption of this pathway is harmful to plants. We developed an in vivo bioassay that can measure the carbon flow through the carotenoid pathway. Leaf cuttings are incubated in the presence of a phytoene desaturase inhibitor to induce phytoene accumulation. Any compound reducing the level of phytoene accumulation is likely to interfere with either one of the steps in the MEP pathway or the synthesis of geranylgeranyl diphosphate. This concept was tested with known inhibitors of steps of the MEP pathway. The specificity of this in vivo bioassay was also verified by testing representative herbicides known to target processes outside of the MEP and carotenoid pathways. This assay enables the rapid screen of new inhibitors of enzymes preceding the synthesis of phytoene, though there are some limitations related to the non-specific effect of some inhibitors on this assay. PMID:25077957

  4. Novel bioassay for the discovery of inhibitors of the 2-C-methyl-D-erythritol 4-phosphate (MEP) and terpenoid pathways leading to carotenoid biosynthesis.

    PubMed

    Corniani, Natália; Velini, Edivaldo D; Silva, Ferdinando M L; Nanayakkara, N P Dhammika; Witschel, Matthias; Dayan, Franck E

    2014-01-01

    The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the synthesis of isopentenyl diphosphate in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisic acid and gibberellins. Consequently, disruption of this pathway is harmful to plants. We developed an in vivo bioassay that can measure the carbon flow through the carotenoid pathway. Leaf cuttings are incubated in the presence of a phytoene desaturase inhibitor to induce phytoene accumulation. Any compound reducing the level of phytoene accumulation is likely to interfere with either one of the steps in the MEP pathway or the synthesis of geranylgeranyl diphosphate. This concept was tested with known inhibitors of steps of the MEP pathway. The specificity of this in vivo bioassay was also verified by testing representative herbicides known to target processes outside of the MEP and carotenoid pathways. This assay enables the rapid screen of new inhibitors of enzymes preceding the synthesis of phytoene, though there are some limitations related to the non-specific effect of some inhibitors on this assay.

  5. Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis.

    PubMed Central

    Campos, N; Rodríguez-Concepción, M; Sauret-Güeto, S; Gallego, F; Lois, L M; Boronat, A

    2001-01-01

    Isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) constitute the basic building block of isoprenoids, a family of compounds that is extraordinarily diverse in structure and function. IPP and DMAPP can be synthesized by two independent pathways: the mevalonate pathway and the recently discovered 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Although the MEP pathway is essential in most eubacteria, algae and plants and has enormous biotechnological interest, only some of its steps have been determined. We devised a system suitable for the genetic analysis of the MEP pathway in Escherichia coli. A synthetic operon coding for yeast 5-diphosphomevalonate decarboxylase, human 5-phosphomevalonate kinase, yeast mevalonate kinase and E. coli isopentenyl diphosphate isomerase was incorporated in the chromosome of this bacterium. The expression of this operon allowed the synthesis of IPP and DMAPP from mevalonate added exogenously and complementation of lethal mutants of the MEP pathway. We used this system to show that the ygbP, ychB and ygbB genes are essential in E. coli and that the steps catalysed by the products of these genes belong to the trunk line of the MEP pathway. PMID:11115399

  6. A double mutation of Escherichia coli 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase disrupts six hydrogen bonds with, yet fails to prevent binding of, an isoprenoid diphosphate

    PubMed Central

    Sgraja, Tanja; Kemp, Lauris E.; Ramsden, Nicola; Hunter, William N.

    2005-01-01

    The essential enzyme 2C-methyl-d-erythritol-2,4-cyclodiphosphate (MECP) synthase, found in most eubacteria and the apicomplexan parasites, participates in isoprenoid-precursor biosynthesis and is a validated target for the development of broad-spectrum antimicrobial drugs. The structure and mechanism of the enzyme have been elucidated and the recent exciting finding that the enzyme actually binds diphosphate-containing isoprenoids at the interface formed by the three subunits that constitute the active protein suggests the possibility of feedback regulation of MECP synthase. To investigate such a possibility, a form of the enzyme was sought that did not bind these ligands but which would retain the quaternary structure necessary to create the active site. Two amino acids, Arg142 and Glu144, in Escherichia coli MECP synthase were identified as contributing to ligand binding. Glu144 interacts directly with Arg142 and positions the basic residue to form two hydrogen bonds with the terminal phosphate group of the isoprenoid diphosphate ligand. This association occurs at the trimer interface and three of these arginines interact with the ligand phosphate group. A dual mutation was designed (Arg142 to methionine and Glu144 to leucine) to disrupt the electrostatic attractions between the enzyme and the phosphate group to investigate whether an enzyme without isoprenoid diphosphate could be obtained. A low-resolution crystal structure of the mutated MECP synthase Met142/Leu144 revealed that geranyl diphosphate was retained despite the removal of six hydrogen bonds normally formed with the enzyme. This indicates that these two hydrophilic residues on the surface of the enzyme are not major determinants of isoprenoid binding at the trimer interface but rather that hydrophobic interactions between the hydrocarbon tail and the core of the enzyme trimer dominate ligand binding. PMID:16511114

  7. Structure of 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase from Shewanella oneidensis at 1.6 A: identification of farnesyl pyrophosphate trapped in a hydrophobic cavity.

    PubMed

    Ni, Shuisong; Robinson, Howard; Marsing, Gregory C; Bussiere, Dirksen E; Kennedy, Michael A

    2004-11-01

    Isopentenyl pyrophosphate (IPP) is a universal building block for the ubiquitous isoprenoids that are essential to all organisms. The enzymes of the non-mevalonate pathway for IPP synthesis, which is unique to many pathogenic bacteria, have recently been explored as targets for antibiotic development. Several crystal structures of 2C-methyl-D-erythritol-2,4-cyclophosphate (MECDP) synthase, the fifth of seven enzymes involved in the non-mevalonate pathway for synthesis of IPP, have been reported; however, the composition of metal ions in the active site and the presence of a hydrophobic cavity along the non-crystallographic threefold symmetry axis has varied between the reported structures. Here, the structure of MEDCP from Shewanella oneidensis MR1 (SO3437) was determined to 1.6 A resolution in the absence of substrate. The presence of a zinc ion in the active-site cleft, tetrahedrally coordinated by two histidine side chains, an aspartic acid side chain and an ambiguous fourth ligand, was confirmed by zinc anomalous diffraction. Based on analysis of anomalous diffraction data and typical metal-to-ligand bond lengths, it was concluded that an octahedral sodium ion was 3.94 A from the zinc ion. A hydrophobic cavity was observed along the threefold non-crystallographic symmetry axis, filled by a well defined non-protein electron density that could be modeled as farnesyl pyrophosphate (FPP), a downstream product of IPP, suggesting a possible feedback mechanism for enzyme regulation. The high-resolution data clarified the FPP-binding mode compared with previously reported structures. Multiple sequence alignment indicated that the residues critical to the formation of the hydrophobic cavity and for coordinating the pyrophosphate group of FPP are present in the majority of MEDCP synthase enzymes, supporting the idea of a specialized biological function related to FPP binding in a subfamily of MEDCP synthase homologs.

  8. Synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF.

    PubMed

    Narayanasamy, Prabagaran; Eoh, Hyungjin; Brennan, Patrick J; Crick, Dean C

    2010-02-26

    Many pathogenic bacteria utilize the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, two major building blocks of isoprenoid compounds. The fifth enzyme in the MEP pathway, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) synthase (IspF), catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to ME-CPP with a corresponding release of cytidine 5-monophosphate (CMP). Because there is no ortholog of IspF in human cells, IspF is of interest as a potential drug target. However, study of IspF has been hindered by a lack of enantiopure CDP-ME2P. Herein, we report the first, to our knowledge, synthesis of enantiomerically pure CDP-ME2P from commercially available D-arabinose. Cloned, expressed, and purified M. tuberculosis IspF was able to utilize the synthetic CDP-ME2P as a substrate, a result confirmed by mass spectrometry. A convenient, sensitive, in vitro IspF assay was developed by coupling the CMP released during production of ME-CPP to mononucleotide kinase, which can be used for high throughput screening. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Synthesis of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF, a potential drug target

    PubMed Central

    Narayanasamy, Prabagaran; Eoh, Hyungjin; Brennan, Patrick J.; Crick, Dean C.

    2010-01-01

    SUMMARY Many pathogenic bacteria utilize the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, two major building blocks of isoprenoid compounds. The fifth enzyme in the MEP pathway, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-CPP) synthase (IspF), catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to ME-CPP with a corresponding release of cytidine 5-monophosphate (CMP). Since there is no ortholog of IspF in human cells IspF is of interest as a potential drug target. However, study of IspF has been hindered by a lack of enantiopure CDP-ME2P. Herein, we report the first synthesis of enantiomerically pure CDP-ME2P from commercially available D-arabinose. Cloned, expressed, and purified M. tuberculosis IspF was able to utilize the synthetic CDP-ME2P as a substrate, a result confirmed by mass spectrometry. A convenient, sensitive, in vitro IspF assay was developed by coupling the CMP released during production of ME-CPP to mononucleotide kinase, which can be used for high throughput screening. PMID:20189102

  10. Studies on the nonmevalonate pathway of terpene biosynthesis. The role of 2C-methyl-D-erythritol 2,4-cyclodiphosphate in plants.

    PubMed

    Fellermeier, M; Raschke, M; Sagner, S; Wungsintaweekul, J; Schuhr, C A; Hecht, S; Kis, K; Radykewicz, T; Adam, P; Rohdich, F; Eisenreich, W; Bacher, A; Arigoni, D; Zenk, M H

    2001-12-01

    2C-methyl-D-erythritol 2,4-cyclodiphosphate was recently shown to be formed from 2C-methyl-D-erythritol 4-phosphate by the consecutive action of IspD, IspE, and IspF proteins in the nonmevalonate pathway of terpenoid biosynthesis. To complement previous work with radiolabelled precursors, we have now demonstrated that [U-13C5]2C-methyl-D-erythritol 4-phosphate affords [U-13C5]2C-methyl-D-erythritol 2,4-cyclodiphosphate in isolated chromoplasts of Capsicum annuum and Narcissus pseudonarcissus. Moreover, chromoplasts are shown to efficiently convert 2C-methyl-D-erythritol 4-phosphate as well as 2C-methyl-D-erythritol 2,4-cyclodiphosphate into the carotene precursor phytoene. The bulk of the kinetic data collected in competition experiments with radiolabeled substrates is consistent with the notion that the cyclodiphosphate is an obligatory intermediate in the nonmevalonate pathway to terpenes. Studies with [2,2'-13C2]2C-methyl-D-erythritol 2,4-cyclodiphosphate afforded phytoene characterized by pairs of jointly transferred 13C atoms in the positions 17/1, 18/5, 19/9, and 20/13 and, at a lower abundance, in positions 16/1, 4/5, 8/9, and 12/13. A detailed scheme is presented for correlating the observed partial scrambling of label with the known lack of fidelity of the isopentenyl diphosphate/dimethylethyl diphosphate isomerase.

  11. A spectrophotometric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase activity.

    PubMed

    Bernal, Cristobal; Mendez, Eva; Terencio, José; Boronat, Albert; Imperial, Santiago

    2005-05-15

    We report an assay for the determination of the activity of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, the enzyme which catalyzes the fourth reaction step of the 2-C-methyl-D-erythritol 4-phosphate pathway for the synthesis of isoprenoids, which is based on the spectrophotometrical determination of adenosine 5'-diphosphate using pyruvate kinase and L-lactate dehydrogenase as auxiliary enzymes. This method can be adapted to microtiter plates, can be automated, and because of its simplicity and speed can be useful for the functional characterization of the enzyme and for the screening of inhibitors with potential antibiotic or antimalarial action.

  12. Structure of 2C-Methyl-D-erythritol-2,4-cyclodiphosphate Synthase from Shewanella oneidensis at 1.6 angstrom: Identification of Farnesyl pyrophosphate Trapped in a Hydrophobic Cavity

    SciTech Connect

    Ni, Shuisong; Robinson, Howard; Marsing, Gregory C.; Bussiere, Dirksen E.; Kennedy, Michael A.

    2004-11-01

    1. Introduction Enzymes in the non-mevalonate pathway for isoprenoid synthesis have gained recent attention because of their potential value as targets for antibiotic drug development. 2C-methyl-D-erythritol-2,4 cyclophosphate (MECDP) synthase is the fifth enzyme in the seven enzyme non-mevalonate pathway for synthesis of isopentenyl diphosphate. Four groups have published structures of MECDP synthase at resolutions varying from 1.6Å to 2.8Å, either in the presence or absence of substrate from Escherichia coli (Richard et al., 2002; Kemp et al., 2002; Steinbacher et al., 2002) or from Thermus thermophilus (Kishida et al., 2003). Among these structures, the protein always exists as a homotrimer either with a crystallographic or a non-crystallographic three-fold symmetry axis and an active site formed in a cleft between adjacent monomers. While the overall shape of the proteins is highly similar among these structures, each of the four reported structures contain different combinations of metal ions in the active site including a Zn2+ ion only (Steinbacher et al., 2002), a Mn2+ ion only (Richard et al., 2002), Zn2+ and Mn2+ ions (Kemp et al., 2002) or two Mg2+ ions (Kishida et al., 2003). Furthermore, two of the structures are reported to contain a hydrophobic channel along the three-fold symmetry axis that is capped by a cluster of three arginine side chains (one from each monomer) at one end of the cavity and a cluster of three glutamic acid side chains (one from each monomer) at the other side of the cavity. In a 1.8Å resolution structure, Kemp et al. (2002) reported a sulfate ion coordinated to the arginine cap and solvent trapped in a hydrophobic cavity. In a lower 2.8Å resolution structure, Richard et al. (2002) concluded that geranyl diphosphate, GPP, was most likely trapped by the arginine cap and hydrophobic cavity (Richard et al., 2002), however, the low resolution of the data together with the presence of the crystallographic symmetry axis prohibited a

  13. Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from bacterial pathogens.

    PubMed

    Eoh, Hyungjin; Narayanasamy, Prabagaran; Brown, Amanda C; Parish, Tanya; Brennan, Patrick J; Crick, Dean C

    2009-12-24

    Many bacterial pathogens utilize the 2-C-methyl-D-erythritol 4-phosphate pathway for biosynthesizing isoprenoid precursors, a pathway that is vital for bacterial survival and absent from human cells, providing a potential source of drug targets. However, the characterization of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase (IspE) has been hindered due to a lack of enantiopure CDP-ME and difficulty in obtaining pure IspE. Here, enantiopure CDP-ME was chemically synthesized and recombinant IspE from bacterial pathogens were purified and characterized. Although gene disruption was not possible in Mycobacterium tuberculosis, IspE is essential in Mycobacterium smegmatis. The biochemical and kinetic characteristics of IspE provide the basis for development of a high throughput screen and structural characterization. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase from bacterial pathogens

    PubMed Central

    Eoh, Hyungjin; Narayanasamy, Prabagaran; Brown, Amanda C.; Parish, Tanya; Brennan, Patrick J.; Crick, Dean C.

    2014-01-01

    Summary Many bacterial pathogens utilize the 2-C-methyl-D-erythritol 4-phosphate pathway for biosynthesizing isoprenoid precursors, a pathway that is vital for bacterial survival and absent from human cells, providing a potential source of drug targets. However, the characterization of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase (IspE) has been hindered due to a lack of enantiopure CDP-ME and difficulty in obtaining pure IspE. Here, enantiopure CDP-ME was chemically synthesized and recombinant IspE from bacterial pathogens were purified and characterized. Although gene disruption was not possible in Mycobacterium tuberculosis, IspE is essential in Mycobacterium smegmatis. The biochemical and kinetic characteristics of IspE provide the basis for development of a high throughput screen and structural characterization. PMID:20064433

  15. Crystal structure of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) from Mycobacterium tuberculosis.

    PubMed

    Shan, Shan; Chen, Xuehui; Liu, Ting; Zhao, Hanchao; Rao, Zihe; Lou, Zhiyong

    2011-05-01

    Isoprenoid precursors, which are a large group of natural products and play key roles in many biological pathways, can only be biosynthesized by the 2-C-methyl-d-erythritol 4-phosphate pathway in Mycobacterium tuberculosis. The 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (IspE), which is an essential enzyme in the isoprenoid precursor biosynthesis pathway, catalyzes ATP-dependent phosphorylation of 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDP-ME) to 4-diphosphocytidyl-2C-methyl-d-erythritol-2-phosphate and plays a crucial role in M. tuberculosis survival. Therefore, IspE is characterized as an attractive and potential target for antimicrobial drug discovery. However, no experimental structure of M. tuberculosis IspE has been reported, which has hindered our understanding of its structural details and mechanism of action. Here, we report the expression and purification of fully active full-length M. tuberculosis IspE and solve the high-resolution crystal structures of IspE alone and in complex with either the substrate CDP-ME or nonhydrolyzable ATP analog or ADP. The structures present a characteristic galactose/homoserine/mevalonate/phosphomevalonate kinase superfamily α/β-fold with a catalytic center located in a cleft between 2 domains and display clear substrate and ATP binding pockets. Our results also indicate distinct differences in ligand binding of M. tuberculosis IspE with other reported IspEs. Combined with the results of mutagenesis and enzymatic studies, our results provide useful information on the structural basis of IspE for future anti-M. tuberculosis drug discovery targeting this kinase.

  16. Crystallization and preliminary X-ray analysis of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) from Mycobacterium tuberculosis.

    PubMed

    Shan, Shan; Chen, Xuehui

    2011-07-01

    The 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE) from Mycobacterium tuberculosis, an enzyme from the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, is crucial and essential for the survival of this pathogenic bacterium. IspE catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) to 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) in an ATP-dependent manner. Solving the crystal structure of M. tuberculosis IspE will shed light on its structural details and mechanism of action and may provide the basis for the future design of drugs for the treatment of multidrug-resistant and extremely drug-resistant M. tuberculosis strains. Recombinant M. tuberculosis IspE was crystallized at 291 K using NaCl or Li2SO4 as a precipitant. A 2.1 Å resolution native data set was collected from a single flash-cooled crystal (100 K) belonging to space group P2(1)2(1)2(1), with unit-cell parameters a=52.5, b=72.3, c=107.3 Å. One molecule was assumed per asymmetric unit, which gives a Matthews coefficient of 3.4 Å3 Da(-1) with 63% solvent content.

  17. Biosynthesis of terpenoids: 4-Diphosphocytidyl-2-C-methyl-d-erythritol kinase from tomato

    PubMed Central

    Rohdich, Felix; Wungsintaweekul, Juraithip; Lüttgen, Holger; Fischer, Markus; Eisenreich, Wolfgang; Schuhr, Christoph A.; Fellermeier, Monika; Schramek, Nicholas; Zenk, Meinhart H.; Bacher, Adelbert

    2000-01-01

    The putative catalytic domain (residues 81–401) of a predicted tomato protein with similarity to 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase of Escherichia coli was expressed in a recombinant E. coli strain. The protein was purified to homogeneity and was shown to catalyze the phosphorylation of the position 2 hydroxy group of 4-diphosphocytidyl-2-C-methyl-d-erythritol at a rate of 33 μmol⋅mg−1⋅min−1. The structure of the reaction product, 4-diphosphocytidyl-2-C-methyl-d-erythritol 2-phosphate, was established by NMR spectroscopy. Divalent metal ions, preferably Mg2+, are required for activity. Neither the tomato enzyme nor the E. coli ortholog catalyzes the phosphorylation of isopentenyl monophosphate. PMID:10880567

  18. Glycosides of 2-C-methyl-D-erythritol from the fruits of anise, coriander and cumin.

    PubMed

    Kitajima, Junichi; Ishikawa, Toru; Fujimatu, Eiko; Kondho, Kyoko; Takayanagi, Tomomi

    2003-01-01

    Eight glycosides of 2-C-methyl-D-erythritol (1) were isolated from the fruit of anise, and their structures were clarified as 1-O-beta-D-glucopyranoside, 3-O-beta-D-glucopyranoside, 4-O-beta-D-glucopyranoside, 1-O-beta-D-fructofuranoside, 3-O-beta-D-fructofuranoside, 4-O-beta-D-fructofuranoside, 1-O-beta-D-(6-O-4-hydroxybenzoyl)-glucopyranoside and 1-O-beta-D-(6-O-4-methoxybenzoyl)-glucopyranoside of 2-C-methyl-D-erythritol (2-9), respectively. Furthermore, 2 and 4 were isolated from the fruit of coriander, and 2, 3 and 4 were isolated from the fruit of cumin. Though the phosphate of 1 was known to be one of the first precursors of isoprenoids in the non-mevalonate pathway, and 1 is considered to be a common constituent in Umbelliferous plants, the glycosides of 1 are found for the first time.

  19. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate to 2C-methyl-d-erythritol 2,4-cyclodiphosphate

    PubMed Central

    Herz, Stefan; Wungsintaweekul, Juraithip; Schuhr, Christoph A.; Hecht, Stefan; Lüttgen, Holger; Sagner, Sylvia; Fellermeier, Monika; Eisenreich, Wolfgang; Zenk, Meinhart H.; Bacher, Adelbert; Rohdich, Felix

    2000-01-01

    In many microorganisms, the putative orthologs of the Escherichia coli ygbB gene are tightly linked or fused to putative orthologs of ygbP, which has been shown earlier to be involved in terpenoid biosynthesis. The ygbB gene of E. coli was expressed in a recombinant E. coli strain and was shown to direct the synthesis of a soluble, 17-kDa polypeptide. The recombinant protein was found to convert 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate into 2C-methyl-d-erythritol 2,4-cyclodiphosphate and CMP. The structure of the reaction product was established by NMR spectroscopy using 13C-labeled substrate samples. The enzyme-catalyzed reaction requires Mn2+ or Mg2+ but no other cofactors. Radioactivity from [2-14C]2C-methyl-d-erythritol 2,4-cyclodiphosphate was diverted efficiently to carotenoids by isolated chromoplasts from Capsicum annuum and, thus, was established as an intermediate in the deoxyxylulose phosphate pathway of isoprenoid biosynthesis. YgbB protein also was found to convert 4-diphosphocytidyl-2C-methyl-d-erythritol into 2C-methyl-d-erythritol 3,4-cyclophosphate. This compound does not serve as substrate for the formation of carotenoids by isolated chromoplasts and is assumed to be an in vitro product without metabolic relevance. PMID:10694574

  20. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate.

    PubMed

    Herz, S; Wungsintaweekul, J; Schuhr, C A; Hecht, S; Luttgen, H; Sagner, S; Fellermeier, M; Eisenreich, W; Zenk, M H; Bacher, A; Rohdich, F

    2000-03-14

    In many microorganisms, the putative orthologs of the Escherichia coli ygbB gene are tightly linked or fused to putative orthologs of ygbP, which has been shown earlier to be involved in terpenoid biosynthesis. The ygbB gene of E. coli was expressed in a recombinant E. coli strain and was shown to direct the synthesis of a soluble, 17-kDa polypeptide. The recombinant protein was found to convert 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate into 2C-methyl-D-erythritol 2,4-cyclodiphosphate and CMP. The structure of the reaction product was established by NMR spectroscopy using (13)C-labeled substrate samples. The enzyme-catalyzed reaction requires Mn(2+) or Mg(2+) but no other cofactors. Radioactivity from [2-(14)C]2C-methyl-D-erythritol 2,4-cyclodiphosphate was diverted efficiently to carotenoids by isolated chromoplasts from Capsicum annuum and, thus, was established as an intermediate in the deoxyxylulose phosphate pathway of isoprenoid biosynthesis. YgbB protein also was found to convert 4-diphosphocytidyl-2C-methyl-D-erythritol into 2C-methyl-D-erythritol 3,4-cyclophosphate. This compound does not serve as substrate for the formation of carotenoids by isolated chromoplasts and is assumed to be an in vitro product without metabolic relevance.

  1. Biosynthesis of isoprenoids: crystal structure of 4-diphosphocytidyl-2C-methyl-D-erythritol kinase.

    PubMed

    Miallau, Linda; Alphey, Magnus S; Kemp, Lauris E; Leonard, Gordon A; McSweeney, Sean M; Hecht, Stefan; Bacher, Adelbert; Eisenreich, Wolfgang; Rohdich, Felix; Hunter, William N

    2003-08-05

    4-Diphosphocytidyl-2C-methyl-d-erythritol kinase, an essential enzyme in the nonmevalonate pathway of isopentenyl diphosphate and dimethylallyl diphosphate biosynthesis, catalyzes the single ATP-dependent phosphorylation stage affording 4-diphosphocytidyl-2C-methyl-d-erythritol-2-phosphate. The 2-A resolution crystal structure of the Escherichia coli enzyme in a ternary complex with substrate and a nonhydrolyzable ATP analogue reveals the molecular determinants of specificity and catalysis. The enzyme subunit displays the alpha/beta fold characteristic of the galactose kinase/homoserine kinase/mevalonate kinase/phosphomevalonate kinase superfamily, arranged into cofactor and substrate-binding domains with the catalytic center positioned in a deep cleft between domains. Comparisons with related members of this superfamily indicate that the core regions of each domain are conserved, whereas there are significant differences in the substrate-binding pockets. The nonmevalonate pathway is essential in many microbial pathogens and distinct from the mevalonate pathway used by mammals. The high degree of sequence conservation of the enzyme across bacterial species suggests similarities in structure, specificity, and mechanism. Our model therefore provides an accurate template to facilitate the structure-based design of broad-spectrum antimicrobial agents.

  2. Hexameric assembly of the bifunctional methylerythritol 2,4-cyclodiphosphate synthase and protein-protein associations in the deoxy-xylulose-dependent pathway of isoprenoid precursor biosynthesis.

    PubMed

    Gabrielsen, Mads; Bond, Charles S; Hallyburton, Irene; Hecht, Stefan; Bacher, Adelbert; Eisenreich, Wolfgang; Rohdich, Felix; Hunter, William N

    2004-12-10

    The bifunctional methylerythritol 4-phosphate cytidylyltransferase methylerythritol 2,4-cyclodiphosphate synthase (IspDF) is unusual in that it catalyzes nonconsecutive reactions in the 1-deoxy-D-xylulose 5-phosphate (DOXP) pathway of isoprenoid precursor biosynthesis. The crystal structure of IspDF from the bacterial pathogen Campylobacter jejuni reveals an elongated hexamer with D3 symmetry compatible with the dimeric 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase and trimeric 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase monofunctional enzymes. Complex formation of IspDF with 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE), the intervening enzyme activity in the pathway, has been observed in solution for the enzymes from C. jejuni and Agrobacterium tumefaciens. The monofunctional enzymes (2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, IspE, and 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase) involved in the DOXP biosynthetic pathway of Escherichia coli also show physical associations. We propose that complex formation of the three enzymes at the core of the DOXP pathway can produce an assembly localizing 18 catalytic centers for the early stages of isoprenoid biosynthesis.

  3. Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-d-erythritol kinase - ligand recognition in a template for antimicrobial drug discovery.

    PubMed

    Sgraja, Tanja; Alphey, Magnus S; Ghilagaber, Stephanos; Marquez, Rudi; Robertson, Murray N; Hemmings, Jennifer L; Lauw, Susan; Rohdich, Felix; Bacher, Adelbert; Eisenreich, Wolfgang; Illarionova, Victoria; Hunter, William N

    2008-06-01

    4-Diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE) catalyses the ATP-dependent conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol (CDPME) to 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate with the release of ADP. This reaction occurs in the non-mevalonate pathway of isoprenoid precursor biosynthesis and because it is essential in important microbial pathogens and absent from mammals it represents a potential target for anti-infective drugs. We set out to characterize the biochemical properties, determinants of molecular recognition and reactivity of IspE and report the cloning and purification of recombinant Aquifex aeolicus IspE (AaIspE), kinetic data, metal ion, temperature and pH dependence, crystallization and structure determination of the enzyme in complex with CDP, CDPME and ADP. In addition, 4-fluoro-3,5-dihydroxy-4-methylpent-1-enylphosphonic acid (compound 1) was designed to mimic a fragment of the substrate, a synthetic route to 1 was elucidated and the complex structure determined. Surprisingly, this ligand occupies the binding site for the ATP alpha-phosphate not the binding site for the methyl-D-erythritol moiety of CDPME. Gel filtration and analytical ultracentrifugation indicate that AaIspE is a monomer in solution. The enzyme displays the characteristic alpha/beta galacto-homoserine-mevalonate-phosphomevalonate kinase fold, with the catalytic centre positioned in a deep cleft between the ATP- and CDPME-binding domains. Comparisons indicate a high degree of sequence conservation on the IspE active site across bacterial species, similarities in structure, specificity of substrate recognition and mechanism. The biochemical characterization, attainment of well-ordered and reproducible crystals and the models resulting from the analyses provide reagents and templates to support the structure-based design of broad-spectrum antimicrobial agents.

  4. A triclinic crystal form of Escherichia coli 4-diphosphocytidyl-2C-methyl-D-erythritol kinase and reassessment of the quaternary structure.

    PubMed

    Kalinowska-Tłuścik, Justyna; Miallau, Linda; Gabrielsen, Mads; Leonard, Gordon A; McSweeney, Sean M; Hunter, William N

    2010-03-01

    4-Diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE; EC 2.7.1.148) contributes to the 1-deoxy-D-xylulose 5-phosphate or mevalonate-independent biosynthetic pathway that produces the isomers isopentenyl diphosphate and dimethylallyl diphosphate. These five-carbon compounds are the fundamental building blocks for the biosynthesis of isoprenoids. The mevalonate-independent pathway does not occur in humans, but is present and has been shown to be essential in many dangerous pathogens, i.e. Plasmodium species, which cause malaria, and gram-negative bacteria. Thus, the enzymes involved in this pathway have attracted attention as potential drug targets. IspE produces 4-diphosphosphocytidyl-2C-methyl-D-erythritol 2-phosphate by ATP-dependent phosphorylation of 4-diphosphocytidyl-2C-methyl-D-erythritol. A triclinic crystal structure of the Escherichia coli IspE-ADP complex with two molecules in the asymmetric unit was determined at 2 A resolution and compared with a monoclinic crystal form of a ternary complex of E. coli IspE also with two molecules in the asymmetric unit. The molecular packing is different in the two forms. In the asymmetric unit of the triclinic crystal form the substrate-binding sites of IspE are occluded by structural elements of the partner, suggesting that the ;triclinic dimer' is an artefact of the crystal lattice. The surface area of interaction in the triclinic form is almost double that observed in the monoclinic form, implying that the dimeric assembly in the monoclinic form may also be an artifact of crystallization.

  5. Characterization of Aquifex aeolicus 4-diphosphocytidyl-2C-methyl-d-erythritol kinase – ligand recognition in a template for antimicrobial drug discovery

    PubMed Central

    Sgraja, Tanja; Alphey, Magnus S; Ghilagaber, Stephanos; Marquez, Rudi; Robertson, Murray N; Hemmings, Jennifer L; Lauw, Susan; Rohdich, Felix; Bacher, Adelbert; Eisenreich, Wolfgang; Illarionova, Victoria; Hunter, William N

    2008-01-01

    4-Diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) catalyses the ATP-dependent conversion of 4-diphosphocytidyl-2C-methyl-d-erythritol (CDPME) to 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate with the release of ADP. This reaction occurs in the non-mevalonate pathway of isoprenoid precursor biosynthesis and because it is essential in important microbial pathogens and absent from mammals it represents a potential target for anti-infective drugs. We set out to characterize the biochemical properties, determinants of molecular recognition and reactivity of IspE and report the cloning and purification of recombinant Aquifex aeolicus IspE (AaIspE), kinetic data, metal ion, temperature and pH dependence, crystallization and structure determination of the enzyme in complex with CDP, CDPME and ADP. In addition, 4-fluoro-3,5-dihydroxy-4-methylpent-1-enylphosphonic acid (compound 1) was designed to mimic a fragment of the substrate, a synthetic route to 1 was elucidated and the complex structure determined. Surprisingly, this ligand occupies the binding site for the ATP α-phosphate not the binding site for the methyl-d-erythritol moiety of CDPME. Gel filtration and analytical ultracentrifugation indicate that AaIspE is a monomer in solution. The enzyme displays the characteristic α/β galacto-homoserine-mevalonate-phosphomevalonate kinase fold, with the catalytic centre positioned in a deep cleft between the ATP- and CDPME-binding domains. Comparisons indicate a high degree of sequence conservation on the IspE active site across bacterial species, similarities in structure, specificity of substrate recognition and mechanism. The biochemical characterization, attainment of well-ordered and reproducible crystals and the models resulting from the analyses provide reagents and templates to support the structure-based design of broad-spectrum antimicrobial agents. PMID:18422643

  6. Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-d-erythritol

    PubMed Central

    Lüttgen, Holger; Rohdich, Felix; Herz, Stefan; Wungsintaweekul, Juraithip; Hecht, Stefan; Schuhr, Christoph A.; Fellermeier, Monika; Sagner, Sylvia; Zenk, Meinhart H.; Bacher, Adelbert; Eisenreich, Wolfgang

    2000-01-01

    A comparative analysis of all published complete genomes indicated that the putative orthologs of the unannotated ychB gene of Escherichia coli follow the distribution of the dxs, dxr, and ygbP genes, which have been shown to specify enzymes of the deoxyxylulose phosphate pathway of terpenoid biosynthesis, thus suggesting that the hypothetical YchB protein also is involved in that pathway. To test this hypothesis, the E. coli ychB gene was expressed in a homologous host. The recombinant protein was purified to homogeneity and was shown to phosphorylate 4-diphosphocytidyl-2C-methyl-d-erythritol in an ATP-dependent reaction. The reaction product was identified as 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate by NMR experiments with various 13C-labeled substrate samples. A 14C-labeled specimen of this compound was converted efficiently into carotenoids by isolated chromoplasts of Capsicum annuum. The sequence of E. coli YchB protein is similar to that of the protein predicted by the tomato cDNA pTOM41 (30% identity), which had been implicated in the conversion of chloroplasts to chromoplasts. PMID:10655484

  7. Crystal structure of 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase, an enzyme in the non-mevalonate pathway of isoprenoid synthesis.

    PubMed

    Wada, Takashi; Kuzuyama, Tomohisa; Satoh, Shinya; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Unzai, Satoru; Tame, Jeremy R H; Park, Sam-Yong

    2003-08-08

    The crystal structure of the enzyme 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol (CDP-ME) kinase from the thermophilic bacterium Thermus thermophilus HB8 has been determined at 1.7-A resolution. This enzyme catalyzes phosphorylation of the 2-hydroxyl group of CDP-ME, the fourth step of the non-mevalonate pathway, which is essential for isoprenoid biosynthesis in several pathogenic microorganisms. Since this pathway is absent in humans, it is an important target for the development of novel antimicrobial compounds. The structure of the enzyme is similar to the structures of mevalonate kinase and homoserine kinase, members of the GHMP superfamily. Lys8 and Asp125 are active site residues in mevalonate kinase that also appear to play a catalytic role in CDP-ME kinase. Both the mevalonate and the non-mevalonate pathways therefore involve closely related kinases with similar mechanisms. Assaying the enzyme showed that CDP-ME kinase will phosphorylate CDP-ME but not 4-(uridine 5'-diphospho)-2-C-methyl-D-erythritol, indicating the substrate pyrimidine moiety is involved in important interactions with the enzyme.

  8. Measurement of carbon flux through the MEP pathway for isoprenoid synthesis by (31)P-NMR spectroscopy after specific inhibition of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate reductase. Effect of light and temperature.

    PubMed

    Mongélard, Gaëlle; Seemann, Myriam; Boisson, Anne-Marie; Rohmer, Michel; Bligny, Richard; Rivasseau, Corinne

    2011-08-01

    The methylerythritol 4-phosphate (MEP) and the mevalonate pathways are the unique synthesis routes for the precursors of all isoprenoids. An original mean to measure the carbon flux through the MEP pathway in plants is proposed by using cadmium as a total short-term inhibitor of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) reductase (GcpE) and measuring the accumulation rate of its substrate MEcDP by (31) P-NMR spectroscopy. The MEP pathway metabolic flux was determined in spinach (Spinacia oleracea), pea (Pisum sativum), Oregon grape (Mahonia aquifolium) and boxwood (Buxus sempervirens) leaves. In spinach, flux values were compared with the synthesis rate of major isoprenoids. The flux increases with light intensity (fourfold in the 200-1200 µmol m(-2) s(-1) PPFR range) and temperature (sevenfold in the 25-37 °C range). The relationship with the light and the temperature dependency of isoprenoid production downstream of the MEP pathway is discussed. © 2011 Blackwell Publishing Ltd.

  9. [Screening of potential antibiotics, inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis--2-C-methyl-D-erythritol-2,4-cyclodiphosphate derivatives].

    PubMed

    Ershov, Iu V; Mazikin, K V; Ostrovskiĭ, D N

    2010-01-01

    The recently discovered nonmevalonate pathway of isoprenoid biosynthesis is a prospective target in screening of new antibiotics. Because of the absence of the pathway in the animal cells, the specific inhibitors of the pathway will be a new class of antibiotics against many pathogens (which cause, e.g., malaria, tuberculosis, etc), combining high efficiency and low toxicity. Several derivatives of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEC) were synthesized. 4-Phospho-methyl-D-erythritol-1,2-cyclophosphate, benzyl ether and benzyliden derivative of MEC inhibited the 14C-MEC incorporation into isoprenoids of chromoplasts from red pepper with IC50 of 1.7-5 MM. Some inhibition (about 10%) was also observed with the use of dimethyl ether and isopropyliden derivative of MEC.

  10. Identification of novel small molecule inhibitors of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase of Gram-negative bacteria.

    PubMed

    Tang, M; Odejinmi, S I; Allette, Y M; Vankayalapati, H; Lai, K

    2011-10-01

    The biosyntheses of isoprenoids is essential for the survival in all living organisms, and requires one of the two biochemical pathways: (a) Mevalonate (MVA) Pathway or (b) Methylerythritol Phosphate (MEP) Pathway. The latter pathway, which is used by all Gram-negative bacteria, some Gram-positive bacteria and a few apicomplexan protozoa, provides an attractive target for the development of new antimicrobials because of its absence in humans. In this report, we describe two different approaches that we used to identify novel small molecule inhibitors of Escherichia coli and Yersinia pestis 4-diphosphocytidyl-2-C-methyl D-erythritol (CDP-ME) kinases, key enzymes of the MEP pathway encoded by the E. coli ispE and Y. pestisipk genes, respectively. In the first approach, we explored existing inhibitors of the GHMP kinases while in the second approach; we performed computational high-throughput screening of compound libraries by targeting the CDP-ME binding site of the two bacterial enzymes. From the first approach, we identified two compounds with 6-(benzylthio)-2-(2-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-1,3-thiazine-5-carbonitrile and (Z)-3-methyl-4-((5-phenylfuran-2-yl)methylene)isoxazol-5(4H)-one scaffolds which inhibited E. coli CDP-ME kinase in vitro. We then performed substructure search and docking experiments based on these two scaffolds and identified twenty three analogs for structure-activity relationship (SAR) studies. Three new compounds from the isoxazol-5(4H)-one series have shown inhibitory activities against E. coli and Y. pestis CDP-ME kinases with the IC(50) values ranging from 7 to 13 μM. The second approach by computational high-throughput screening (HTS) of two million drug-like compounds yielded two compounds with benzenesulfonamide and acetamide moieties which, at a concentration of 20 μM, inhibited 80% and 65%, respectively, of control CDP-ME kinase activity.

  11. Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway.

    PubMed

    Banerjee, Aparajita; Wu, Yan; Banerjee, Rahul; Li, Yue; Yan, Honggao; Sharkey, Thomas D

    2013-06-07

    The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway leads to the biosynthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the precursors for isoprene and higher isoprenoids. Isoprene has significant effects on atmospheric chemistry, whereas other isoprenoids have diverse roles ranging from various biological processes to applications in commercial uses. Understanding the metabolic regulation of the MEP pathway is important considering the numerous applications of this pathway. The 1-deoxy-D-xylulose-5-phosphate synthase (DXS) enzyme was cloned from Populus trichocarpa, and the recombinant protein (PtDXS) was purified from Escherichia coli. The steady-state kinetic parameters were measured by a coupled enzyme assay. An LC-MS/MS-based assay involving the direct quantification of the end product of the enzymatic reaction, 1-deoxy-D-xylulose 5-phosphate (DXP), was developed. The effect of different metabolites of the MEP pathway on PtDXS activity was tested. PtDXS was inhibited by IDP and DMADP. Both of these metabolites compete with thiamine pyrophosphate for binding with the enzyme. An atomic structural model of PtDXS in complex with thiamine pyrophosphate and Mg(2+) was built by homology modeling and refined by molecular dynamics simulations. The refined structure was used to model the binding of IDP and DMADP and indicated that IDP and DMADP might bind with the enzyme in a manner very similar to the binding of thiamine pyrophosphate. The feedback inhibition of PtDXS by IDP and DMADP constitutes an important mechanism of metabolic regulation of the MEP pathway and indicates that thiamine pyrophosphate-dependent enzymes may often be affected by IDP and DMADP.

  12. Feedback Inhibition of Deoxy-d-xylulose-5-phosphate Synthase Regulates the Methylerythritol 4-Phosphate Pathway*

    PubMed Central

    Banerjee, Aparajita; Wu, Yan; Banerjee, Rahul; Li, Yue; Yan, Honggao; Sharkey, Thomas D.

    2013-01-01

    The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway leads to the biosynthesis of isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the precursors for isoprene and higher isoprenoids. Isoprene has significant effects on atmospheric chemistry, whereas other isoprenoids have diverse roles ranging from various biological processes to applications in commercial uses. Understanding the metabolic regulation of the MEP pathway is important considering the numerous applications of this pathway. The 1-deoxy-d-xylulose-5-phosphate synthase (DXS) enzyme was cloned from Populus trichocarpa, and the recombinant protein (PtDXS) was purified from Escherichia coli. The steady-state kinetic parameters were measured by a coupled enzyme assay. An LC-MS/MS-based assay involving the direct quantification of the end product of the enzymatic reaction, 1-deoxy-d-xylulose 5-phosphate (DXP), was developed. The effect of different metabolites of the MEP pathway on PtDXS activity was tested. PtDXS was inhibited by IDP and DMADP. Both of these metabolites compete with thiamine pyrophosphate for binding with the enzyme. An atomic structural model of PtDXS in complex with thiamine pyrophosphate and Mg2+ was built by homology modeling and refined by molecular dynamics simulations. The refined structure was used to model the binding of IDP and DMADP and indicated that IDP and DMADP might bind with the enzyme in a manner very similar to the binding of thiamine pyrophosphate. The feedback inhibition of PtDXS by IDP and DMADP constitutes an important mechanism of metabolic regulation of the MEP pathway and indicates that thiamine pyrophosphate-dependent enzymes may often be affected by IDP and DMADP. PMID:23612965

  13. A mutant pyruvate dehydrogenase E1 subunit allows survival of Escherichia coli strains defective in 1-deoxy-D-xylulose 5-phosphate synthase.

    PubMed

    Sauret-Güeto, Susanna; Urós, Eva María; Ibáñez, Ester; Boronat, Albert; Rodríguez-Concepción, Manuel

    2006-02-06

    The 2-C-methyl-D-erythritol 4-phosphate pathway has been proposed as a promising target to develop new antimicrobial agents. However, spontaneous mutations in Escherichia coli were observed to rescue the otherwise lethal loss of the first two enzymes of the pathway, 1-deoxy-D-xylulose 5-phosphate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), with a relatively high frequency. A mutation in the gene encoding the E1 subunit of the pyruvate dehydrogenase complex was shown to be sufficient to rescue the lack of DXS but not DXR in vivo, suggesting that the mutant enzyme likely allows the synthesis of DXP or an alternative substrate for DXR.

  14. [Properties of 2-C-methyl-D-erythritol 2,4-cyclopyrophosphate--an intermediate in the non-mevalonate isoprenoid biosynthesis].

    PubMed

    Ostrovskiĭ, D N; Demina, G P; Deriabina, Iu I; Goncharenko, A V; Eberl, M; Shumaev, K B; Shashkov, A S

    2003-01-01

    Extraction and purification from the biomass of Corynebacterium ammoniagenes of 2-C-methyl-D-erhythritol 2,4-cyclopyrophosphate (MEC) was associated with its spontaneous transformation into a number of derivatives (which was due to pyrophosphate bond lability and the formation of complexes with metals). These derivatives included 1,2-cyclophospho-4-phosphate, 2,4-diphosphate, 2,3-cyclophosphate, 1,4-diphosphate, and 3,5-diphosphate (identified by 1H, 31P, and 13C NMR spectroscopy) and accounted for about 10% MEC. When added to a solution of DNA in the presence of the Fenton reagent, MEC prevented DNA decomposition. In addition, MEC slowed down the interaction of the reagent with tempol radicals, which indicates that complexation of ferrous ions by MEC attenuates their ability to catalyze the formation of hydroxyl radicals from hydrogen peroxide. In the presence of 0.23 mM MEC, the rate of respiration of rat liver mitochondria increased 1.8 times. At 0.1-1.0 mM, MEC activated in vitro proliferation of human Vgamma9 T-cells. It is suggested that MEC acts as an endogenous stabilizing agent for bacterial cells subjected to oxidative stress and as an immunomodulator for eukaryotic hosts.

  15. Characterization of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) gene from Ginkgo biloba.

    PubMed

    Kim, Sang-Min; Kim, Soo-Un

    2010-02-01

    Diterpene trilactone ginkgolides, one of the major constituents of Ginkgo biloba extract, have shown interesting bioactivities including platelet-activating factor antagonistic activity. 1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS), converting 2-C-methyl-d-erythritol-2,4-cyclodiphosphate into 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate, is the penultimate enzyme of the seven-step 2-C-methyl-d-erythritol 4-phosphate pathway that supplies building blocks for plant isoprenoids of plastid origin such as ginkgolides and carotenoids. Here, we report on the isolation and characterization of the full-length cDNA encoding HDS (GbHDS, GenBank accession number: DQ251630) from G. biloba. Full-length cDNA of GbHDS, 2,763 bp long, contained an ORF of 2,226 bp encoding a protein composed of 741 amino acids. The theoretical molecular weight and pI of the deduced mature GbHDS of 679 amino acid residues are 75.6 kDa and 5.5, respectively. From 2 weeks after initiation of the culture onward, transcription level of this gene in the ginkgo embryo roots increased to about two times higher than that in the leaves. GbHDS was predicted to possess chloroplast transit peptide of 62 amino acid residues, suggesting its putative localization in the plastids. The transient gene expression in Arabidopsis protoplasts confirmed that the transit peptide was capable of delivering the GbHDS protein from the cytosol into the chloroplasts. The isolation and characterization of GbHDS gene enabled us to further understand the role of GbHDS in the terpenoid biosynthesis in G. biloba.

  16. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.).

    PubMed

    Vickers, Claudia E; Possell, Malcolm; Nicholas Hewitt, C; Mullineaux, Philip M

    2010-07-01

    Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.

  17. Multi-Substrate Terpene Synthases: Their Occurrence and Physiological Significance

    PubMed Central

    Pazouki, Leila; Niinemets, Ülo

    2016-01-01

    Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles. PMID:27462341

  18. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    PubMed Central

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  19. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.

    PubMed

    Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G

    2015-04-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits.

  20. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum

    PubMed Central

    Luo, Shi-Hong; Schmidt, Axel; Sun, Gui-Ling; Kuang, Ce; Yang, Min-Jie; Jing, Shu-Xi; Li, Chun-Huan

    2016-01-01

    Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-d-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms. PMID:26941091

  1. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum.

    PubMed

    Liu, Yan; Luo, Shi-Hong; Schmidt, Axel; Wang, Guo-Dong; Sun, Gui-Ling; Grant, Marcus; Kuang, Ce; Yang, Min-Jie; Jing, Shu-Xi; Li, Chun-Huan; Schneider, Bernd; Gershenzon, Jonathan; Li, Sheng-Hong

    2016-03-01

    Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms. © 2016 American Society of Plant Biologists. All rights reserved.

  2. Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy-d-xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans.

    PubMed

    Henriquez, Maria Antonia; Soliman, Atta; Li, Genyi; Hannoufa, Abdelali; Ayele, Belay T; Daayf, Fouad

    2016-02-01

    1-Deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the initial step of the plastidial 2C-methyl-D-erythritol-4-phosphate (DOXP-MEP) pathway involved in isoprenoid biosynthesis. In this study, we cloned the complete cDNA of potato DXS gene that was designated StDXS1. StDXS1 cDNA encodes for 719 amino acid residues, with MW of 77.8 kDa, and is present in one copy in the potato genome. Phylogenetic analysis and protein sequence alignments assigned StDXS1 to a group with DXS homologues from closely related species and exhibited homodomain identity with known DXS proteins from other plant species. Late blight symptoms occurred in parallel with a reduction in StDXS1 transcript levels, which may be associated with the levels of isoprenoids that contribute to plant protection against pathogens. Subcellular localization indicated that StDXS1 targets the chloroplasts where isoprenoids are synthesized. Arabidopsis expressing StDXS1 showed a higher accumulation of carotenoids and chlorophyll as compared to wild type controls. Lower levels of ABA and GA were detected in the transgenic DXS lines as compared to control plants, which reflected on higher germination rates of the transgenic DXS lines. No changes were detected in JA or SA contents. Selected downstream genes in the DOXP-MEP pathway, especially GGPPS genes, were up-regulated in the transgenic lines.

  3. Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis.

    PubMed

    Kudoh, Kai; Kawano, Yusuke; Hotta, Shingo; Sekine, Midori; Watanabe, Takafumi; Ihara, Masaki

    2014-07-01

    Cyanobacteria have recently been receiving considerable attention owing to their potential as photosynthetic producers of biofuels and biomaterials. Here, we focused on the production of isoprenoids by cyanobacteria, and aimed to provide insight into metabolic engineering design. To this end, we examined the over-expression of a key enzyme in 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) in the cyanobacterium Synechocystis sp. PCC6803. In the DXS-over-expression strain (Dxs_ox), the mRNA and protein levels of DXS were 4-times and 1.5-times the levels in the wild-type (WT) strain, respectively. The carotenoid content of the Dxs_ox strain (8.4 mg/g dry cell weight [DCW]) was also up to 1.5-times higher than that in the WT strain (5.6 mg/g DCW), whereas the glycogen content dramatically decreased to an undetectable level. These observations suggested that the carotenoid content in the Dxs_ox strain was increased by consuming glycogen, which is a C-storage compound in cyanobacteria. We also quantified the total sugar (145 and 104 mg/g DCW), total fatty acids (31 and 24 mg/g DCW) and total protein (200 and 240 mg/g DCW) content in the WT and Dxs_ox strains, respectively, which were much higher than the carotenoid content. In particular, approximately 54% of the proteins were phycobiliproteins. This study demonstrated the major destinations of carbon flux in cyanobacteria, and provided important insights into metabolic engineering. Target yield can be improved through optimization of gene expression, the DXS protein stabilization, cell propagation depression and restriction of storage compound synthesis.

  4. The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps

    PubMed Central

    Saladié, Montserrat; Wright, Louwrance P.; Garcia-Mas, Jordi; Rodriguez-Concepcion, Manuel; Phillips, Michael A.

    2014-01-01

    The 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway provides the precursors for the biosynthesis of plastidial isoprenoids, which include the carotenoid pigments of many fruits. We have analysed the genes encoding the seven enzymes of the MEP pathway in melon (Cucumis melo L.) and determined that the first one, 1-deoxyxylulose 5-phosphate synthase (DXS), and the last one, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (HDR), are represented in the genome as a small gene family and paralogous pair, respectively. In the case of DXS, three genes encode functional DXS activities which fall into previously established type I (CmDXS1) and II (CmDXS2a and CmDXS2b) categories, while a fourth DXS-like gene belonging to the type III group did not encode a protein with DXS activity. Their expression patterns and phylogenies suggest that CmDXS1 is functionally specialized for developmental and photosynthetic processes, while CmDXS2a and CmDXS2b are induced in flowers and ripening fruit of orange- (but not white-) fleshed varieties, coinciding with β-carotene accumulation. This is the first instance connecting type II DXS genes to specialized isoprenoid biosynthesis in the fruit of an agronomically important species. Two HDR paralogues were shown to encode functional enzymes, although only CmHDR1 was highly expressed in the tissues and developmental stages tested. Phylogenetic analysis showed that in cucurbits such as melon, these HDR paralogues probably arose through individual gene duplications in a common angiosperm ancestor, mimicking a prior division in gymnosperms, while other flowering plants, including apple, soy, canola, and poplar, acquired HDR duplicates recently as homoeologues through large-scale genome duplications. We report the influence of gene duplication history on the regulation of the MEP pathway in melon and the role of specialized MEP-pathway isoforms in providing precursors for β-carotene production in orange-fleshed melon varieties. PMID

  5. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis.

    PubMed

    Liao, D I; Calabrese, J C; Wawrzak, Z; Viitanen, P V; Jordan, D B

    2001-01-10

    3,4-Dihydroxy-2-butanone-4-phosphate synthase catalyzes a commitment step in the biosynthesis of riboflavin. On the enzyme, ribulose 5-phosphate is converted to 3,4-dihydroxy-2-butanone 4-phosphate and formate in steps involving enolization, ketonization, dehydration, skeleton rearrangement, and formate elimination. The enzyme is absent in humans and an attractive target for the discovery of antimicrobials for pathogens incapable of acquiring sufficient riboflavin from their hosts. The homodimer of 23 kDa subunits requires Mg(2+) for activity. The first three-dimensional structure of the enzyme was determined at 1.4 A resolution using the multiwavelength anomalous diffraction (MAD) method on Escherichia coli protein crystals containing gold. The protein consists of an alpha + beta fold having a complex linkage of beta strands. Intersubunit contacts are mediated by numerous hydrophobic interactions and three hydrogen bond networks. A proposed active site was identified on the basis of amino acid residues that are conserved among the enzyme from 19 species. There are two well-separated active sites per dimer, each of which comprise residues from both subunits. In addition to three arginines and two threonines, which may be used for recognizing the phosphate group of the substrate, the active site consists of three glutamates, two aspartates, two histidines, and a cysteine which may provide the means for general acid and base catalysis and for coordinating the Mg(2+) cofactor within the active site.

  6. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis

    SciTech Connect

    Liao, D.-I.; Calabrese, J.C.; Wawrzak, Z.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    3,4-Dihydroxy-2-butanone-4-phosphate synthase catalyzes a commitment step in the biosynthesis of riboflavin. On the enzyme, ribulose 5-phosphate is converted to 3,4-dihydroxy-2-butanone 4-phosphate and formate in steps involving enolization, ketonization, dehydration, skeleton rearrangement, and formate elimination. The enzyme is absent in humans and an attractive target for the discovery of antimicrobials for pathogens incapable of acquiring sufficient riboflavin from their hosts. The homodimer of 23 kDa subunits requires Mg{sup 2+} for activity. The first three-dimensional structure of the enzyme was determined at 1.4 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on Escherichia coli protein crystals containing gold. The protein consists of an {alpha} + {beta} fold having a complex linkage of {beta} strands. Intersubunit contacts are mediated by numerous hydrophobic interactions and three hydrogen bond networks. A proposed active site was identified on the basis of amino acid residues that are conserved among the enzyme from 19 species. There are two well-separated active sites per dimer, each of which comprise residues from both subunits. In addition to three arginines and two threonines, which may be used for recognizing the phosphate group of the substrate, the active site consists of three glutamates, two aspartates, two histidines, and a cysteine which may provide the means for general acid and base catalysis and for coordinating the Mg{sup 2+} cofactor within the active site.

  7. Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content.

    PubMed

    Yan, Ning; Zhang, Hongbo; Zhang, Zhongfeng; Shi, John; Timko, Michael P; Du, Yongmei; Liu, Xinmin; Liu, Yanhua

    2016-11-15

    Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.). In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol biosynthesis genes. Six 1-deoxy-d-xylulose 5-phosphate synthase (DXS), two 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), two 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD), four 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (IspE), two 2-C-methyl-d-erythritol 2,4-cyclo-diphosphate synthase (IspF), four 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (IspG), two 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IspH), six isopentenyl diphosphate isomerase (IPI), and two solanesyl diphosphate synthase (SPS) candidate genes were identified in the solanesol biosynthetic pathway. Furthermore, the two N. tabacum SPS proteins (NtSPS1 and NtSPS2), which possessed two conserved aspartate-rich DDxxD domains, were highly homologous with SPS enzymes from other solanaceous plant species. In addition, the solanesol contents of three organs and of leaves from four growing stages of tobacco plants corresponded with the distribution of chlorophyll. Our findings provide a comprehensive evaluation of the correlation between the expression of different biosynthesis genes and the accumulation of solanesol, thus providing valuable insight into the regulation of solanesol biosynthesis in tobacco.

  8. Structural basis for competitive inhibition of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Vibrio cholerae.

    PubMed

    Islam, Zeyaul; Kumar, Adarsh; Singh, Suruchi; Salmon, Laurent; Karthikeyan, Subramanian

    2015-05-01

    The riboflavin biosynthesis pathway has been shown to be essential in many pathogens and is absent in humans. Therefore, enzymes involved in riboflavin synthesis are considered as potential antibacterial drug targets. The enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) catalyzes one of the two committed steps in the riboflavin pathway and converts d-ribulose 5-phosphate (Ru5P) to l-3,4-dihydroxy-2-butanone 4-phosphate and formate. Moreover, DHBPS is shown to be indispensable for Mycobacterium, Salmonella, and Helicobacter species. Despite the essentiality of this enzyme in bacteria, no inhibitor has been identified hitherto. Here, we describe kinetic and crystal structure characterization of DHBPS from Vibrio cholerae (vDHBPS) with a competitive inhibitor 4-phospho-d-erythronohydroxamic acid (4PEH) at 1.86-Å resolution. In addition, we also report the structural characterization of vDHBPS in its apo form and in complex with its substrate and substrate plus metal ions at 1.96-, 1.59-, and 2.04-Å resolution, respectively. Comparison of these crystal structures suggests that 4PEH inhibits the catalytic activity of DHBPS as it is unable to form a proposed intermediate that is crucial for DHBPS activity. Furthermore, vDHBPS structures complexed with substrate and metal ions reveal that, unlike Candida albicans, binding of substrate to vDHBPS induces a conformational change from an open to closed conformation. Interestingly, the position of second metal ion, which is different from that of Methanococcus jannaschii, strongly supports an active role in the catalytic mechanism. Thus, the kinetic and structural characterization of vDHBPS reveals the molecular mechanism of inhibition shown by 4PEH and that it can be explored further for designing novel antibiotics.

  9. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase.

    PubMed

    Liao, Der-Ing; Zheng, Ya-Jun; Viitanen, Paul V; Jordan, Douglas B

    2002-02-12

    X-ray crystal structures of L-3,4-dihydroxy-2-butanone-4-phosphate synthase from Magnaporthe grisea are reported for the E-SO(4)(2-), E-SO(4)(2-)-Mg(2+), E-SO(4)(2)(-)-Mn(2+), E-SO(4)(2)(-)-Mn(2+)-glycerol, and E-SO(4)(2)(-)-Zn(2+) complexes with resolutions that extend to 1.55, 0.98, 1.60, 1.16, and 1.00 A, respectively. Active-site residues of the homodimer are fully defined. The structures were used to model the substrate ribulose 5-phosphate in the active site with the phosphate group anchored at the sulfate site and the placement of the ribulose group guided by the glycerol site. The model includes two Mg(2+) cations that bind to the oxygen substituents of the C2, C3, C4, and phosphate groups of the substrate, the side chains of Glu37 and His153, and water molecules. The position of the metal cofactors and the substrate's phosphate group are further stabilized by an extensive hydrogen-bond and salt-bridge network. On the basis of their proximity to the substrate's reaction participants, the imidazole of an Asp99-His136 dyad from one subunit, the side chains of the Asp41, Cys66, and Glu174 residues from the other subunit, and Mg(2+)-activated water molecules are proposed to serve specific roles in the catalytic cycle as general acid-base functionalities. The model suggests that during the 1,2-shift step of the reaction, the substrate's C3 and C4 hydroxyl groups are cis to each other. A cis transition state is calculated to have an activation barrier that is 2 kcal/mol greater than that of the trans transition state in the absence of the enzyme.

  10. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone 4-phosphate synthase

    SciTech Connect

    Liao, D.-I.; Zheng, Y.-J.; Viitanen, P.V.; Jordan, D.B.

    2010-03-08

    X-ray crystal structures of L-3,4-dihydroxy-2-butanone-4-phosphate synthase from Magnaporthe grisea are reported for the E-SO{sub 4}{sup 2-}, E-{sub 4}{sup 2-}-Mg{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}, E-SO{sub 4}{sup 2-}-Mn{sup 2+}-glycerol, and E-SO{sub 4}{sup 2-}-Zn{sup 2+} complexes with resolutions that extend to 1.55, 0.98, 1.60, 1.16, and 1.00 {angstrom}, respectively. Active-site residues of the homodimer are fully defined. The structures were used to model the substrate ribulose 5-phosphate in the active site with the phosphate group anchored at the sulfate site and the placement of the ribulose group guided by the glycerol site. The model includes two Mg{sup 2+} cations that bind to the oxygen substituents of the C2, C3, C4, and phosphate groups of the substrate, the side chains of Glu37 and His153, and water molecules. The position of the metal cofactors and the substrate's phosphate group are further stabilized by an extensive hydrogen-bond and salt-bridge network. On the basis of their proximity to the substrate's reaction participants, the imidazole of an Asp99-His136 dyad from one subunit, the side chains of the Asp41, Cys66, and Glu174 residues from the other subunit, and Mg{sup 2+}-activated water molecules are proposed to serve specific roles in the catalytic cycle as general acid-base functionalities. The model suggests that during the 1,2-shift step of the reaction, the substrate's C3 and C4 hydroxyl groups are cis to each other. A cis transition state is calculated to have an activation barrier that is 2 kcal/mol greater than that of the trans transition state in the absence of the enzyme.

  11. Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    SciTech Connect

    Begley, Darren W.; Hartley, Robert C.; Davies, Douglas R.; Edwards, Thomas E.; Leonard, Jess T.; Abendroth, Jan; Burris, Courtney A.; Bhandari, Janhavi; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.

    2011-09-28

    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.

  12. Biosynthesis of isoprenoids: a bifunctional IspDF enzyme from Campylobacter jejuni.

    PubMed

    Gabrielsen, Mads; Rohdich, Felix; Eisenreich, Wolfgang; Gräwert, Tobias; Hecht, Stefan; Bacher, Adelbert; Hunter, William N

    2004-07-01

    In the nonmevalonate pathway of isoprenoid biosynthesis, the conversion of 2C-methyl-d-erythritol 4-phosphate into its cyclic diphosphate proceeds via nucleotidyl intermediates and is catalyzed by the products of the ispD, ispE and ispF genes. An open reading frame of Campylobacter jejuni with similarity to the ispD and ispF genes of Escherichia coli was cloned into an expression vector directing the formation of a 42 kDa protein in a recombinant E. coli strain. The purified protein was shown to catalyze the transformation of 2C-methyl-D-erythritol 4-phosphate into 4-diphosphocytidyl-2C-methyl-D-erythritol and the conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate into 2C-methyl-D-erythritol 2,4-cyclodiphosphate at catalytic rates of 19 micro mol x mg(-1) x min(-1) and 7 micro mol x mg(-1) x min(-1), respectively. Both enzyme-catalyzed reactions require divalent metal ions. The C. jejuni enzyme does not catalyze the formation of 2C-methyl-D-erythritol 3,4-cyclophosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol, a side reaction catalyzed in vitro by the IspF proteins of E. coli and Plasmodium falciparum. Comparative genomic analysis show that all sequenced alpha- and epsilon-proteobacteria have fused ispDF genes. These bifunctional proteins are potential drug targets in several human pathogens (e.g. Helicobacter pylori, C. jejuni and Treponema pallidum).

  13. Nonmevalonate terpene biosynthesis enzymes as antiinfective drug targets: substrate synthesis and high-throughput screening methods.

    PubMed

    Illarionova, Victoria; Kaiser, Johannes; Ostrozhenkova, Elena; Bacher, Adelbert; Fischer, Markus; Eisenreich, Wolfgang; Rohdich, Felix

    2006-11-10

    The nonmevalonate isoprenoid pathway is an established target for antiinfective drug development. This paper describes high-throughput methods for the screening of 2C-methyl-D-erythritol synthase (IspC protein), 4-diphosphocytidyl-2C-methyl-D-erythritol synthase (IspD protein), 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE protein), and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF protein) against large compound libraries. The assays use up to three auxiliary enzymes. They are all monitored photometrically at 340 nm and are robust as documented by Z-factors of >or=0.86. 13C NMR assays designed for hit verification via direct detection of the primary reaction product are also described. Enzyme-assisted methods for the preparation, on a multigram scale, of isoprenoid biosynthesis intermediates required as substrates for these assays are reported. Notably, these methods enable the introduction of single or multiple 13C labels as required for NMR-monitored assays. The preparation of 4-diphosphosphocytidyl-2C-methyl-D-erythritol 2-phosphate in multigram quantities is described for the first time.

  14. Comparative glandular trichome transcriptome based gene characterization reveals reasons for differential (-)-menthol biosynthesis in Mentha species.

    PubMed

    Akhtar, Md Qussen; Qamar, Nida; Yadav, Pallavi; Kulkarni, Pallavi; Kumar, Ajay; Shasany, Ajit Kumar

    2017-02-11

    , isopulegone isomerase; IPR, isopiperitenone reductase; L3H, limonene 3-hydroxylase; LS, limonene synthase; MCS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; MCT, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase; MD, menthol dehydrogenase; MEP, methylerythritol phosphate; MFS, menthofuran synthase; MVA, mevalonic acid; MVK, mevalonate kinase; NMD, neomenthol dehydrogenase, Nr, non-redundant; PMD, phosphomevalonate decarboxylase; PMK, phosphomevalonate kinase; PR, pulegone reductase; qRT-PCR, quantitative real-time polymerase chain reaction; SSR, simple sequence repeat; TPS, terpene synthase.

  15. Expression of the cytoplasmic mevalonate pathway in chloroplasts to reduce substrate limitations for cytoplasmically-produced terpenoid secondary products

    USDA-ARS?s Scientific Manuscript database

    All products of isoprenoid metabolism originate with the C5 non-allylic substrate, isopentenyl pyrophosphate (IPP). IPP is produced in plants by two distinct pathways, the mevalonate pathway (MEV) in the cytosol and the 2 C methyl-D-erythritol 4 phosphate (MEP) pathway in plastids. A multi-gene a...

  16. Absence of Substrate Channeling between Active Sites in the Agrobacterium tumefaciens IspDF and IspE Enzymes of the Methyl Erythritol Phosphate Pathway†

    PubMed Central

    Lherbet, Christian; Pojer, Florence; Richard, Stéphane B.; Noel, Joseph P.; Poulter, C. D.

    2008-01-01

    The conversion of 2C-methyl-d-erythritol 4-phosphate (MEP) to 2C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) in the MEP entry into the isoprenoid biosynthetic pathway occurs in three consecutive steps catalyzed by the IspD, IspE, and IspF enzymes, respectively. In Agrobacterium tumefaciens the ispD and ispF genes are fused to encode a bifunctional enzyme that catalyzes the first (synthesis of 4-diphosphocytidyl-2-C-methyl d-erythritol) and third (synthesis of 2C-methyl-d-erythritol 2,4-cyclodiphosphate) steps. Sedimentation velocity experiments indicate that the bifunctional IspDF enzyme and the IspE protein associate in solution raising the possibility of substrate channeling among the active sites in these two proteins. Kinetic evidence for substrate channeling was sought by measuring the time courses for product formation during incubations of MEP, CTP, and ATP with the IspDF and IspE proteins with and without an excess of the inactive IspE (D152A) mutant in presence or absence of 30% (v/v) glycerol. The time dependencies indicate that the enzyme-generated intermediates are not transferred from the IspD active site in IspDF to the active site of IspE or from the active site in IspE to the active site in the IspF module of IspDF. PMID:16533036

  17. Absence of substrate channeling between active sites in the Agrobacterium tumefaciens IspDF and IspE enzymes of the methyl erythritol phosphate pathway.

    PubMed

    Lherbet, Christian; Pojer, Florence; Richard, Stéphane B; Noel, Joseph P; Poulter, C D

    2006-03-21

    The conversion of 2-C-methyl-d-erythritol 4-phosphate (MEP) to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) in the MEP entry into the isoprenoid biosynthetic pathway occurs in three consecutive steps catalyzed by the IspD, IspE, and IspF enzymes, respectively. In Agrobacterium tumefaciens the ispD and ispF genes are fused to encode a bifunctional enzyme that catalyzes the first (synthesis of 4-diphosphocytidyl-2-C-methyl d-erythritol) and third (synthesis of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate) steps. Sedimentation velocity experiments indicate that the bifunctional IspDF enzyme and the IspE protein associate in solution, raising the possibility of substrate channeling among the active sites in these two proteins. Kinetic evidence for substrate channeling was sought by measuring the time courses for product formation during incubations of MEP, CTP, and ATP with the IspDF and IspE proteins with and without an excess of the inactive IspE(D152A) mutant in the presence or absence of 30% (v/v) glycerol. The time dependencies indicate that the enzyme-generated intermediates are not transferred from the IspD active site in IspDF to the active site of IspE or from the active site in IspE to the active site of the IspF module of IspDF.

  18. Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene1[W

    PubMed Central

    Ghirardo, Andrea; Wright, Louwrance Peter; Bi, Zhen; Rosenkranz, Maaria; Pulido, Pablo; Rodríguez-Concepción, Manuel; Niinemets, Ülo; Brüggemann, Nicolas; Gershenzon, Jonathan; Schnitzler, Jörg-Peter

    2014-01-01

    The plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-d-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties. PMID:24590857

  19. Overexpressing 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (HMGR) in the Lactococcal Mevalonate Pathway for Heterologous Plant Sesquiterpene Production

    PubMed Central

    Song, Adelene Ai-Lian; Abdullah, Janna Ong; Abdullah, Mohd. Puad; Shafee, Norazizah; Othman, Roohaida; Tan, Ee-Fun; Noor, Normah Mohd.; Raha, Abdul Rahim

    2012-01-01

    Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus). A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a β-sesquiphellandrene synthase as it was demonstrated to be functional in producing β-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing β-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain’s endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR), an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of β-sesquiphellandrene by 1.25–1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction. PMID:23300671

  20. Improving peppermint essential oil yield and composition by metabolic engineering

    PubMed Central

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R.; Turner, Glenn W.; Davis, Edward M.; Lange, Iris; Baker, Raymond C.; Boydston, Rick A.; Croteau, Rodney B.

    2011-01-01

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost. PMID:21963983

  1. Improving peppermint essential oil yield and composition by metabolic engineering.

    PubMed

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R; Turner, Glenn W; Davis, Edward M; Lange, Iris; Baker, Raymond C; Boydston, Rick A; Croteau, Rodney B

    2011-10-11

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost.

  2. Enhanced Diterpene Tanshinone Accumulation and Bioactivity of Transgenic Salvia miltiorrhiza Hairy Roots by Pathway Engineering.

    PubMed

    Shi, Min; Luo, Xiuqin; Ju, Guanhua; Li, Leilei; Huang, Shengxiong; Zhang, Tong; Wang, Huizhong; Kai, Guoyin

    2016-03-30

    Tanshinones are health-promoting diterpenoids found in Salvia miltiorrhiza and have wide applications. Here, SmGGPPS (geranylgeranyl diphosphate synthase) and SmDXSII (1-deoxy-D-xylulose-5-phosphate synthase) were introduced into hairy roots of S. miltiorrhiza. Overexpression of SmGGPPS and SmDXSII in hairy roots produces higher levels of tanshinone than control and single-gene transformed lines; tanshinone production in the double-gene transformed line GDII10 reached 12.93 mg/g dry weight, which is the highest tanshinone content that has been achieved through genetic engineering. Furthermore, transgenic hairy root lines showed higher antioxidant and antitumor activities than control lines. In addition, contents of chlorophylls, carotenoids, indoleacetic acid, and gibberellins were significantly elevated in transgenic Arabidopsis thaliana plants. These results demonstrate a promising method to improve the production of diterpenoids including tanshinone as well as other natural plastid-derived isoprenoids in plants by genetic manipulation of the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway.

  3. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations

    PubMed Central

    Wang, Xin; Liu, Wei; Xin, Changpeng; Zheng, Yi; Cheng, Yanbing; Sun, Su; Li, Runze; Zhu, Xin-Guang; Dai, Susie Y.; Rentzepis, Peter M.; Yuan, Joshua S.

    2016-01-01

    Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria. PMID:27911807

  4. Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway.

    PubMed

    Perez-Gil, Jordi; Uros, Eva Maria; Sauret-Güeto, Susanna; Lois, L Maria; Kirby, James; Nishimoto, Minobu; Baidoo, Edward E K; Keasling, Jay D; Boronat, Albert; Rodriguez-Concepcion, Manuel

    2012-01-01

    A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.

  5. A Genome-Wide Scenario of Terpene Pathways in Self-pollinated Artemisia annua.

    PubMed

    Ma, Dong-Ming; Wang, Zhilong; Wang, Liangjiang; Alejos-Gonzales, Fatima; Sun, Ming-An; Xie, De-Yu

    2015-11-02

    Scenarios of genes to metabolites in Artemisia annua remain uninvestigated. Here, we report the use of an integrated approach combining metabolomics, transcriptomics, and gene function analyses to characterize gene-to-terpene and terpene pathway scenarios in a self-pollinating variety of this species. Eighty-eight metabolites including 22 sesquiterpenes (e.g., artemisinin), 26 monoterpenes, two triterpenes, one diterpene and 38 other non-polar metabolites were identified from 14 tissues. These metabolites were differentially produced by leaves and flowers at lower to higher positions. Sequences from cDNA libraries of six tissues were assembled into 18 871 contigs and genome-wide gene expression profiles in tissues were strongly associated with developmental stages and spatial specificities. Sequence mining identified 47 genes that mapped to the artemisinin, non-amorphadiene sesquiterpene, monoterpene, triterpene, 2-C-methyl-D-erythritol 4-phosphate and mevalonate pathways. Pearson correlation analysis resulted in network integration that characterized significant correlations of gene-to-gene expression patterns and gene expression-to-metabolite levels in six tissues simultaneously. More importantly, manipulations of amorpha-4,11-diene synthase gene expression not only affected the activity of this pathway toward artemisinin, artemisinic acid, and arteannuin b but also altered non-amorphadiene sesquiterpene and genome-wide volatile profiles. Such gene-to-terpene landscapes associated with different tissues are fundamental to the metabolic engineering of artemisinin. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  6. Isoprenoid biosynthesis via the MEP pathway. Synthesis of (3,4)-3,4-dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of 1-deoxy-D-xylulose 5-phosphate, the substrate of the 1-deoxy-D-xylulose 5-phosphate reducto-isomerase.

    PubMed

    Meyer, Odile; Grosdemange-Billiard, Catherine; Tritsch, Denis; Rohmer, Michel

    2003-12-21

    (3,4)-3,4-Dihydroxy-5-oxohexylphosphonic acid, an isosteric analogue of 1-deoxy-D-xylulose 5-phosphate (DXP), was obtained in enantiomerically pure form from (+)-2,3--benzylidene--threitol by a seven-step sequence. This phosphonate did not affect the growth of. It did not inhibit the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), but was converted by this enzyme into (3,4)-3,4,5-trihydroxy-3-methylpentylphosphonic acid, an isosteric analogue of 2-C-methyl-D-erythritol 4-phosphate. The enzyme was, however, less efficient with the methylene phosphonate analogue than with the natural substrate.

  7. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Singh, Ved Pal; Kapoor, Rupam

    2015-04-01

    Stevia rebaudiana (Bertoni) produces steviol glycosides (SGs)--stevioside (stev) and rebaudioside-A (reb-A) that are valued as low calorie sweeteners. Inoculation with arbuscular mycorrhizal fungi (AMF) augments SGs production, though the effect of this interaction on SGs biosynthesis has not been studied at molecular level. In this study transcription profiles of eleven key genes grouped under three stages of the SGs biosynthesis pathway were compared. The transcript analysis showed upregulation of genes encoding 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway enzymes viz.,1-deoxy-D-xylulose 5-phospate synthase (DXS), 1-deoxy-D-xylulose 5-phospate reductoisomerase (DXR) and 2-C-methyl-D-erytrithol 2,4-cyclodiphosphate synthase (MDS) in mycorrhizal (M) plants. Zn and Mn are imperative for the expression of MDS and their enhanced uptake in M plants could be responsible for the increased transcription of MDS. Furthermore, in the second stage of SGs biosynthesis pathway, mycorrhization enhanced the transcription of copalyl diphosphate synthase (CPPS) and kaurenoic acid hydroxylase (KAH). Their expression is decisive for SGs biosynthesis as CPPS regulates flow of metabolites towards synthesis of kaurenoid precursors and KAH directs these towards steviol synthesis instead of gibberellins. In the third stage glucosylation of steviol to reb-A by four specific uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) occurs. While higher transcription of all the three characterized UGTs in M plants explains augmented production of SGs; higher transcript levels of UGT76G1, specifically improved reb-A to stev ratio implying increased sweetness. The work signifies that AM symbiosis upregulates the transcription of all eleven SGs biosynthesis genes as a result of improved nutrition and enhanced sugar concentration due to increased photosynthesis in M plants.

  8. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production.

    PubMed

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi; Wong, Limsoon; Chua, Nam-Hai; Jang, In-Cheol

    2015-12-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production1

    PubMed Central

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi

    2015-01-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. PMID:26438788

  10. Indirect Stimulation of Human Vγ2Vδ2 T cells Through Alterations in Isoprenoid Metabolism1

    PubMed Central

    Wang, Hong; Sarikonda, Ghanashyam; Puan, Kia-Joo; Tanaka, Yoshimasa; Feng, Ju; Giner, José-Luis; Cao, Rong; Mönkkönen, Jukka; Oldfield, Eric; Morita, Craig T.

    2011-01-01

    Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the 2-C-methyl-D-erythritol-4-phosphate pathway used by microbes, and isopentenyl pyrophosphate (IPP), an intermediate in the mevalonate pathway used by humans. Aminobisphosphonates and alkylamines indirectly stimulate Vγ2Vδ2 cells by inhibiting farnesyl diphosphate synthase (FDPS) in the mevalonate pathway, thereby increasing IPP/ApppI that directly stimulate. In this study, we further characterize stimulation by these compounds, and define pathways used by new classes of compounds. Consistent with FDPS inhibition, stimulation of Vγ2Vδ2 cells by aminobisphosphonates and alkylamines was much more sensitive to statin inhibition than stimulation by prenyl pyrophosphates. However, the continuous presence of aminobisphosphonates was toxic for T cells, and blocked their proliferation. Aminobisphosphonate stimulation was rapid and prolonged, independent of known antigen presenting molecules, and resistant to fixation. New classes of stimulatory compounds–mevalonate, the alcohol of HMBPP, and alkenyl phosphonates–likely stimulate differently. Mevalonate, a rate-limiting metabolite, appears to enter cells to increase IPP levels whereas the alcohol of HMBPP and alkenyl phosphonates are directly recognized. The critical chemical feature of bisphosphonates is the amino moiety, because its loss switched aminobisphosphonates to direct antigens. Transfection of APC with siRNA downregulating FDPS rendered them stimulatory for Vγ2Vδ2 cells, and increased cellular IPP. siRNAs for isopentenyl diphosphate isomerase functioned similarly. Our results show that a variety of manipulations affecting isoprenoid metabolism lead to stimulation of Vγ2Vδ2 T cells and that pulsing aminobisphosphonates would be more effective for the ex vivo expansion of Vγ2Vδ2 T cells for adoptive cancer immunotherapy. PMID:22013129

  11. S-Carvone Suppresses Cellulase-Induced Capsidiol Production in Nicotiana tabacum by Interfering with Protein Isoprenylation1[C][W

    PubMed Central

    Huchelmann, Alexandre; Gastaldo, Clément; Veinante, Mickaël; Zeng, Ying; Heintz, Dimitri; Tritsch, Denis; Schaller, Hubert; Rohmer, Michel; Bach, Thomas J.; Hemmerlin, Andréa

    2014-01-01

    S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway–dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism. PMID:24367019

  12. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis.

    PubMed

    Jadaun, Jyoti Singh; Sangwan, Neelam S; Narnoliya, Lokesh K; Singh, Neha; Bansal, Shilpi; Mishra, Bhawana; Sangwan, Rajender Singh

    2017-04-01

    Rose-scented geranium (Pelargonium spp.) is one of the most important aromatic plants and is well known for its diverse perfumery uses. Its economic importance is due to presence of fragrance rich essential oil in its foliage. The essential oil is a mixture of various volatile phytochemicals which are mainly terpenes (isoprenoids) in nature. In this study, on the geranium foliage genes related to isoprenoid biosynthesis (DXS, DXR and HMGR) were isolated, cloned and confirmed by sequencing. Further, the first gene of 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, 1-deoxy-d-xylulose-5-phosphate synthase (GrDXS), was made full length by using rapid amplification of cDNA ends strategy. GrDXS contained a 2157 bp open reading frame that encoded a polypeptide of 792 amino acids having calculated molecular weight 77.5 kDa. This study is first report on heterologous expression and kinetic characterization of any gene from this economically important plant. Expression analysis of these genes was performed in different tissues as well as at different developmental stages of leaves. In response to external elicitors, such as methyl jasmonate, salicylic acid, light and wounding, all the three genes showed differential expression profiles. Further GrDXS was over expressed in the homologous (rose-scented geranium) as well as in heterologous (Withania somnifera) plant systems through genetic transformation approach. The over-expression of GrDXS led to enhanced secondary metabolites production (i.e. essential oil in rose-scented geranium and withanolides in W. somnifera). To the best of our knowledge, this is the first report showing the expression profile of the three genes related to isoprenoid biosynthesis pathways operated in rose-scented geranium as well as functional characterization study of any gene from rose-scented geranium through a genetic transformation system.

  13. Complex Interplays between Phytosterols and Plastid Development.

    PubMed

    Andrade, Paola; Caudepon, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert; Manzano, David

    2017-10-09

    Isoprenoids comprise the largest class of natural compounds and are found in all kinds of organisms. In plants, they participate in both primary and specialized metabolism, playing essential roles in nearly all aspects of growth and development. The enormous diversity of this family of compounds is extensively exploited for biotechnological and biomedical applications as biomaterials, biofuels or drugs. Despite their variety of structures, all isoprenoids derive from the common C5 precursor Isopentenil diphosphate (IPP). Plants synthesize IPP through two different metabolic pathways, the mevalonic acid (MVA) and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways that operate in the cytosol-RE and plastids, respectively. MEP-derived isoprenoids include important compounds for chloroplast function and as such, knock-out mutant plants affected in different steps of this pathway display important alterations in plastid structure. These alterations often lead to albino phenotypes and lethality at seedling stage. MVA knock-out mutant plants show, on the contrary, lethal phenotypes already exhibited at the gametophyte or embryo developmental stage. However, the recent characterization of conditional knock-down mutant plants of Farnesyl diphosphate synthase (FPS), a central enzyme in cytosolic and mitochondrial isoprenoid biosynthesis, revealed an unexpected role of this pathway in chloroplast development and plastidial isoprenoid metabolism in post-embryonic stages. Upon FPS silencing, chloroplast structure is severely altered, together with a strong reduction in the levels of MEP pathway-derived major end products. This phenotype is associated to misregulation of genes involved in stress responses predominantly belonging to JA and Fe homeostasis pathways. Transcriptomic experiments and analysis of recent literature indicate that sterols are the cause of the observed alterations through an as yet undiscovered mechanism.

  14. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol

    PubMed Central

    May, Bianca; Lange, B. Markus; Wüst, Matthias

    2013-01-01

    The participation of the mevalonic acid (MVA) and 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-2H2]-1-deoxy-D-xylulose and [5,5-2H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries. PMID:23954075

  15. Transcriptome Sequencing and Expression Analysis of Terpenoid Biosynthesis Genes in Litsea cubeba

    PubMed Central

    Han, Xiao-Jiao; Wang, Yang-Dong; Chen, Yi-Cun; Lin, Li-Yuan; Wu, Qing-Ke

    2013-01-01

    Background Aromatic essential oils extracted from fresh fruits of Litsea cubeba (Lour.) Pers., have diverse medical and economic values. The dominant components in these essential oils are monoterpenes and sesquiterpenes. Understanding the molecular mechanisms of terpenoid biosynthesis is essential for improving the yield and quality of terpenes. However, the 40 available L. cubeba nucleotide sequences in the public databases are insufficient for studying the molecular mechanisms. Thus, high-throughput transcriptome sequencing of L. cubeba is necessary to generate large quantities of transcript sequences for the purpose of gene discovery, especially terpenoid biosynthesis related genes. Results Using Illumina paired-end sequencing, approximately 23.5 million high-quality reads were generated. De novo assembly yielded 68,648 unigenes with an average length of 834 bp. A total of 38,439 (56%) unigenes were annotated for their functions, and 35,732 and 25,806 unigenes could be aligned to the GO and COG database, respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 16,130 unigenes were assigned to 297 KEGG pathways, and 61 unigenes, which contained the mevalonate and 2-C-methyl-D-erythritol 4-phosphate pathways, could be related to terpenoid backbone biosynthesis. Of the 12,963 unigenes, 285 were annotated to the terpenoid pathways using the PlantCyc database. Additionally, 14 terpene synthase genes were identified from the transcriptome. The expression patterns of the 16 genes related to terpenoid biosynthesis were analyzed by RT-qPCR to explore their putative functions. Conclusion RNA sequencing was effective in identifying a large quantity of sequence information. To our knowledge, this study is the first exploration of the L. cubeba transcriptome, and the substantial amount of transcripts obtained will accelerate the understanding of the molecular mechanisms of essential oils biosynthesis. The results may help

  16. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.

    PubMed

    May, Bianca; Lange, B Markus; Wüst, Matthias

    2013-11-01

    The participation of the mevalonic acid (MVA) and 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-(2)H2]-1-deoxy-d-xylulose and [5,5-(2)H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Validation of a homology model of Mycobacterium tuberculosis DXS: rationalization of observed activities of thiamine derivatives as potent inhibitors of two orthologues of DXS.

    PubMed

    Masini, T; Lacy, B; Monjas, L; Hawksley, D; de Voogd, A R; Illarionov, B; Iqbal, A; Leeper, F J; Fischer, M; Kontoyianni, M; Hirsch, A K H

    2015-12-14

    The enzyme DXS catalyzes the first, rate-limiting step of the 2-C-methyl-d-erythritol-4-phosphate (MEP, 1) pathway using thiamine diphosphate (ThDP) as cofactor; the DXS-catalyzed reaction constitutes also the first step in vitamin B1 and B6 metabolism in bacteria. DXS is the least studied among the enzymes of this pathway in terms of crystallographic information, with only one complete crystal structure deposited in the Protein Data Bank (Deinococcus radiodurans DXS, PDB: ). We synthesized a series of thiamine and ThDP derivatives and tested them for their biochemical activity against two DXS orthologues, namely D. radiodurans DXS and Mycobacterium tuberculosis DXS. These experimental results, combined with advanced docking studies, led to the development and validation of a homology model of M. tuberculosis DXS, which, in turn, will guide medicinal chemists in rationally designing potential inhibitors for M. tuberculosis DXS.

  18. Differential incorporation of 1-deoxy-D-xylulose into (3S)-linalool and geraniol in grape berry exocarp and mesocarp.

    PubMed

    Luan, Fang; Wüst, Matthias

    2002-07-01

    In vivo feeding experiments with [5,5-(2)H(2)]mevalonic acid lactone (MVL) and [5,5-(2)H(2)]-1-deoxy-D-xylulose (DOX) indicate that the novel mevalonate-independent 1-deoxy- D-xylulose 5-phosphate/2C-methyl- D-erythritol 4-phosphate (DOXP/MEP) pathway is the dominant metabolic route for monoterpene biosynthesis in grape berry exocarp and mesocarp and in grape leaves. The highly uneven distribution of the monoterpene alcohols (3S)-linalool and geraniol between leaves, berry exocarp and berry mesocarp can be attributed to a compartmentation of monoterpene metabolism. In grape berries incorporation of [5,5-(2)H(2)]-DOX into geraniol is mainly restricted to the exocarp, whereas (3S)-linalool biosynthesis can be detected in exocarp as well as in mesocarp tissue. The results demonstrate that grape berries exhibit an autonomic monoterpene biosynthesis via the novel DOXP/MEP route throughout the ripening process.

  19. Antisense and chemical suppression of the nonmevalonate pathway affects ent-kaurene biosynthesis in Arabidopsis.

    PubMed

    Okada, Kazunori; Kawaide, Hiroshi; Kuzuyama, Tomohisa; Seto, Haruo; Curtis, Ian S; Kamiya, Yuji

    2002-06-01

    Transgenic plants of Arabidopsis thaliana (L.) Heynh. (ecotype Columbia) expressing the antisense AtMECT gene, encoding 2- C-methyl- D-erythritol 4-phosphate cytidylyltransferase, were generated to elucidate the physiological role of the nonmevalonate pathway for production of ent-kaurene, the latter being the plastidic precursor of gibberellins. In transformed plants pigmentation and accumulation of ent-kaurene were reduced compared to wild-type plants. Fosmidomycin, an inhibitor of 1-deoxy- D-xylulose 5-phosphate reductoisomerase (DXR), caused a similar depletion of these compounds in transgenic plants. These observations suggest that both AtMECT and DXR are important in the synthesis of isopentenyl diphosphate and dimethylallyl diphosphate and that ent-kaurene is mainly produced through the nonmevalonate pathway in the plastid.

  20. Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate.

    PubMed Central

    Hoeffler, Jean-François; Hemmerlin, Andréa; Grosdemange-Billiard, Catherine; Bach, Thomas J; Rohmer, Michel

    2002-01-01

    In the bacterium Escherichia coli, the mevalonic-acid (MVA)-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is characterized by two branches leading separately to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The signature of this branching is the retention of deuterium in DMAPP and the deuterium loss in IPP after incorporation of 1-[4-(2)H]deoxy-d-xylulose ([4-(2)H]DX). Feeding tobacco BY-2 cell-suspension cultures with [4-(2)H]DX resulted in deuterium retention in the isoprene units derived from DMAPP, as well as from IPP in the plastidial isoprenoids, phytoene and plastoquinone, synthesized via the MEP pathway. This labelling pattern represents direct evidence for the presence of the DMAPP branch of the MEP pathway in a higher plant, and shows that IPP can be synthesized from DMAPP in plant plastids, most probably via a plastidial IPP isomerase. PMID:12010124

  1. Combination of vascular targeting PDT with combretastatin A4 phosphate

    NASA Astrophysics Data System (ADS)

    He, Chong; Fateye, Babasola; Chen, Bin

    2009-06-01

    Tumor vasculature is an attractive target for cancer therapy due to its accessibility to blood-borne therapeutic agents and the dependence of tumor cells on a functional blood supply for survival and growth. Vascular targeting photodynamic therapy (vPDT) is a novel modality based on the selective laser light activation of photosensitizers localized inside tumor vasculature to shutdown tumor vascular function. Although this vascular targeting therapy is showing great promise for cancer treatment, tumor recurrence has been observed in both preclinical and clinical studies. In this study, we intend to enhance the therapeutic outcome of vascular targeting PDT by combining it with combretastatin A4 phosphate (CA4P), a blood flow inhibitor. We found that the combination of CA4P and vPDT significantly increased endothelial cell apoptosis than each single therapy. Western blot analysis suggests that myosin light chain kinase (MLCK) is a common target of CA4P and vPDT. In a PC-3 prostate tumor model, we found that CA4P was able to greatly enhance tumor response to vPDT. These results demonstrate that CA4P and vPDT can be combined to enhance the therapeutic effect.

  2. Multiphasic dynamics of phosphatidylinositol 4-phosphate during phagocytosis

    PubMed Central

    Levin, Roni; Hammond, Gerald R. V.; Balla, Tamas; De Camilli, Pietro; Fairn, Gregory D.; Grinstein, Sergio

    2017-01-01

    We analyzed the distribution, fate, and functional role of phosphatidylinositol 4-phosphate (PtdIns4P) during phagosome formation and maturation. To this end, we used genetically encoded probes consisting of the PtdIns4P-binding domain of the bacterial effector SidM. PtdIns4P was found to undergo complex, multiphasic changes during phagocytosis. The phosphoinositide, which is present in the plasmalemma before engagement of the target particle, is transiently enriched in the phagosomal cup. Soon after the phagosome seals, PtdIns4P levels drop precipitously due to the hydrolytic activity of Sac2 and phospholipase C, becoming undetectable for ∼10 min. PtdIns4P disappearance coincides with the emergence of phagosomal PtdIns3P. Conversely, the disappearance of PtdIns3P that signals the transition from early to late phagosomes is accompanied by resurgence of PtdIns4P, which is associated with the recruitment of phosphatidylinositol 4-kinase 2A. The reacquisition of PtdIns4P can be prevented by silencing expression of the kinase and can be counteracted by recruitment of a 4-phosphatase with a heterodimerization system. Using these approaches, we found that the secondary accumulation of PtdIns4P is required for proper phagosomal acidification. Defective acidification may be caused by impaired recruitment of Rab7 effectors, including RILP, which were shown earlier to displace phagosomes toward perinuclear lysosomes. Our results show multimodal dynamics of PtdIns4P during phagocytosis and suggest that the phosphoinositide plays important roles during the maturation of the phagosome. PMID:28035045

  3. Phosphatidylinositol 4-phosphate negatively regulates chloroplast division in Arabidopsis.

    PubMed

    Okazaki, Kumiko; Miyagishima, Shin-ya; Wada, Hajime

    2015-03-01

    Chloroplast division is performed by the constriction of envelope membranes at the division site. Although constriction of a ring-like protein complex has been shown to be involved in chloroplast division, it remains unknown how membrane lipids participate in the process. Here, we show that phosphoinositides with unknown function in envelope membranes are involved in the regulation of chloroplast division in Arabidopsis thaliana. PLASTID DIVISION1 (PDV1) and PDV2 proteins interacted specifically with phosphatidylinositol 4-phosphate (PI4P). Inhibition of phosphatidylinositol 4-kinase (PI4K) decreased the level of PI4P in chloroplasts and accelerated chloroplast division. Knockout of PI4Kβ2 expression or downregulation of PI4Kα1 expression resulted in decreased levels of PI4P in chloroplasts and increased chloroplast numbers. PI4Kα1 is the main contributor to PI4P synthesis in chloroplasts, and the effect of PI4K inhibition was largely abolished in the pdv1 mutant. Overexpression of DYNAMIN-RELATED PROTEIN5B (DRP5B), another component of the chloroplast division machinery, which is recruited to chloroplasts by PDV1 and PDV2, enhanced the effect of PI4K inhibition, whereas overexpression of PDV1 and PDV2 had additive effects. The amount of DRP5B that associated with chloroplasts increased upon PI4K inhibition. These findings suggest that PI4P is a regulator of chloroplast division in a PDV1- and DRP5B-dependent manner. © 2015 American Society of Plant Biologists. All rights reserved.

  4. Effects of Feeding Spodoptera littoralis on Lima Bean Leaves: IV. Diurnal and Nocturnal Damage Differentially Initiate Plant Volatile Emission1[W][OA

    PubMed Central

    Arimura, Gen-ichiro; Köpke, Sabrina; Kunert, Maritta; Volpe, Veronica; David, Anja; Brand, Peter; Dabrowska, Paulina; Maffei, Massimo E.; Boland, Wilhelm

    2008-01-01

    Continuous mechanical damage initiates the rhythmic emission of volatiles in lima bean (Phaseolus lunatus) leaves; the emission resembles that induced by herbivore damage. The effect of diurnal versus nocturnal damage on the initiation of plant defense responses was investigated using MecWorm, a robotic device designed to reproduce tissue damage caused by herbivore attack. Lima bean leaves that were damaged by MecWorm during the photophase emitted maximal levels of β-ocimene and (Z)-3-hexenyl acetate in the late photophase. Leaves damaged during the dark phase responded with the nocturnal emission of (Z)-3-hexenyl acetate, but with only low amounts of β-ocimene; this emission was followed by an emission burst directly after the onset of light. In the presence of 13CO2, this light-dependent synthesis of β-ocimene resulted in incorporation of 75% to 85% of 13C, demonstrating that biosynthesis of β-ocimene is almost exclusively fueled by the photosynthetic fixation of CO2 along the plastidial 2-C-methyl-d-erythritol 4-P pathway. Jasmonic acid (JA) accumulated locally in direct response to the damage and led to immediate up-regulation of the P. lunatus β-ocimene synthase gene (PlOS) independent of the phase, that is, light or dark. Nocturnal damage caused significantly higher concentrations of JA (approximately 2–3 times) along with enhanced expression levels of PlOS. Transgenic Arabidopsis thaliana transformed with PlOS promoter∷β-glucuronidase fusion constructs confirmed expression of the enzyme at the wounded sites. In summary, damage-dependent JA levels directly control the expression level of PlOS, regardless of light or dark conditions, and photosynthesis is the major source for the early precursors of the 2-C-methyl-d-erythritol 4-P pathway. PMID:18165324

  5. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus.

    PubMed

    Han, Mei; Heppel, Simon C; Su, Tao; Bogs, Jochen; Zu, Yuangang; An, Zhigang; Rausch, Thomas

    2013-01-01

    In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  6. Enzyme Inhibitor Studies Reveal Complex Control of Methyl-D-Erythritol 4-Phosphate (MEP) Pathway Enzyme Expression in Catharanthus roseus

    PubMed Central

    Han, Mei; Heppel, Simon C.; Su, Tao; Bogs, Jochen; Zu, Yuangang; An, Zhigang; Rausch, Thomas

    2013-01-01

    In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation. PMID:23650515

  7. Induction of a Longer Term Component of Isoprene Release in Darkened Aspen Leaves: Origin and Regulation under Different Environmental Conditions1

    PubMed Central

    Rasulov, Bahtijor; Hüve, Katja; Laisk, Agu; Niinemets, Ülo

    2011-01-01

    After darkening, isoprene emission continues for 20 to 30 min following biphasic kinetics. The initial dark release of isoprene (postillumination emission), for 200 to 300 s, occurs mainly at the expense of its immediate substrate, dimethylallyldiphosphate (DMADP), but the origin and controls of the secondary burst of isoprene release (dark-induced emission) between approximately 300 and 1,500 s, are not entirely understood. We used a fast-response gas-exchange system to characterize the controls of dark-induced isoprene emission by light, temperature, and CO2 and oxygen concentrations preceding leaf darkening and the effects of short light pulses and changing gas concentrations during dark-induced isoprene release in hybrid aspen (Populus tremula × Populus tremuloides). The effect of the 2-C-methyl-d-erythritol-4-phosphate pathway inhibitor fosmidomycin was also investigated. The integral of postillumination isoprene release was considered to constitute the DMADP pool size, while the integral of dark-induced emission was defined as the “dark” pool. Overall, the steady-state emission rate in light and the maximum dark-induced emission rate responded similarly to variations in preceding environmental drivers and atmospheric composition, increasing with increasing light, having maxima at approximately 40°C and close to the CO2 compensation point, and were suppressed by lack of oxygen. The DMADP and dark pool sizes were also similar through their environmental dependencies, except for high temperatures, where the dark pool significantly exceeded the DMADP pool. Isoprene release could be enhanced by short lightflecks early during dark-induced isoprene release, but not at later stages. Fosmidomycin strongly suppressed both the isoprene emission rates in light and in the dark, but the dark pool was only moderately affected. These results demonstrate a strong correspondence between the steady-state isoprene emission in light and the dark-induced emission and suggest

  8. Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues. [Pisum sativum

    SciTech Connect

    Irvine, R.F.; Letcher, A.J.; Lander, D.J. ); Dawson, A.P. ); Musgrave, A. ); Drobak, B.K. )

    1989-03-01

    Pea (Pisum sativum) leaf discs or swimming suspensions of Chlamydomonas eugametos were radiolabeled with ({sup 3}H)myo-inositol or ({sup 32}P)Pi and the lipids were extracted, deacylated, and their glycerol moieties removed. The resulting inositol trisphosphate and bisphosphate fractions were examined by periodate degradation, reduction and dephosphorylation, or by incubation with human red cell membranes. Their likely structures were identified as D-myo-inositol(1,4,5)trisphosphate and D-myo-inositol(1,4,)-bisphosphate. It is concluded that plants contain phosphatidylinositol(4)phosphate and phosphatidylinositol(4,5)bisphosphate; no other polyphosphoinositides were detected.

  9. Type I phosphatidylinositol 4-phosphate 5-kinase homo- and heterodimerization determines its membrane localization and activity.

    PubMed

    Lacalle, Rosa Ana; de Karam, Juan C; Martínez-Muñoz, Laura; Artetxe, Ibai; Peregil, Rosa M; Sot, Jesús; Rojas, Ana M; Goñi, Félix M; Mellado, Mario; Mañes, Santos

    2015-06-01

    Type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KIs; α, β, and γ) are a family of isoenzymes that produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] using phosphatidylinositol 4-phosphate as substrate. Their structural homology with the class II lipid kinases [type II phosphatidylinositol 5-phosphate 4-kinase (PIP4KII)] suggests that PIP5KI dimerizes, although this has not been formally demonstrated. Neither the hypothetical structural dimerization determinants nor the functional consequences of dimerization have been studied. Here, we used Förster resonance energy transfer, coprecipitation, and ELISA to show that PIP5KIβ forms homo- and heterodimers with PIP5KIγ_i2 in vitro and in live human cells. Dimerization appears to be a general phenomenon for PIP5KI isoenzymes because PIP5KIβ/PIP5KIα heterodimers were also detected by mass spectrometry. Dimerization was independent of actin cytoskeleton remodeling and was also observed using purified proteins. Mutagenesis studies of PIP5KIβ located the dimerization motif at the N terminus, in a region homologous to that implicated in PIP4KII dimerization. PIP5KIβ mutants whose dimerization was impaired showed a severe decrease in PI(4,5)P2 production and plasma membrane delocalization, although their association to lipid monolayers was unaltered. Our results identify dimerization as an integral feature of PIP5K proteins and a central determinant of their enzyme activity.

  10. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella

    PubMed Central

    Barbier, Thibault; Collard, François; Zúñiga-Ripa, Amaia; Moriyón, Ignacio; Godard, Thibault; Becker, Judith; Wittmann, Christoph; Van Schaftingen, Emile; Letesson, Jean-Jacques

    2014-01-01

    Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to l-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to l-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that l-3-tetrulose-4-phosphate was converted to d-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (d-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (d-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on 13C-labeled erythritol. d-Erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via d-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of

  11. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella.

    PubMed

    Barbier, Thibault; Collard, François; Zúñiga-Ripa, Amaia; Moriyón, Ignacio; Godard, Thibault; Becker, Judith; Wittmann, Christoph; Van Schaftingen, Emile; Letesson, Jean-Jacques

    2014-12-16

    Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to L-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to L-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that L-3-tetrulose-4-phosphate was converted to D-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (D-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (D-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on (13)C-labeled erythritol. D-erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via D-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of

  12. Histones cause aggregation and fusion of lipid vesicles containing phosphatidylinositol-4-phosphate.

    PubMed

    Lete, Marta G; Sot, Jesus; Gil, David; Valle, Mikel; Medina, Milagros; Goñi, Felix M; Alonso, Alicia

    2015-02-17

    In a previous article, we demonstrated that histones (H1 or histone octamers) interact with negatively charged bilayers and induce extensive aggregation of vesicles containing phosphatidylinositol-4-phosphate (PIP) and, to a lesser extent, vesicles containing phosphatidylinositol (PI). Here, we found that vesicles containing PIP, but not those containing PI, can undergo fusion induced by histones. Fusion was demonstrated through the observation of intervesicular mixing of total lipids and inner monolayer lipids, and by ultrastructural and confocal microscopy studies. Moreover, in both PI- and PIP-containing vesicles, histones caused permeabilization and release of vesicular aqueous contents, but the leakage mechanism was different (all-or-none for PI and graded release for PIP vesicles). These results indicate that histones could play a role in the remodeling of the nuclear envelope that takes place during the mitotic cycle.

  13. Histones Cause Aggregation and Fusion of Lipid Vesicles Containing Phosphatidylinositol-4-Phosphate

    PubMed Central

    Lete, Marta G.; Sot, Jesus; Gil, David; Valle, Mikel; Medina, Milagros; Goñi, Felix M.; Alonso, Alicia

    2015-01-01

    In a previous article, we demonstrated that histones (H1 or histone octamers) interact with negatively charged bilayers and induce extensive aggregation of vesicles containing phosphatidylinositol-4-phosphate (PIP) and, to a lesser extent, vesicles containing phosphatidylinositol (PI). Here, we found that vesicles containing PIP, but not those containing PI, can undergo fusion induced by histones. Fusion was demonstrated through the observation of intervesicular mixing of total lipids and inner monolayer lipids, and by ultrastructural and confocal microscopy studies. Moreover, in both PI- and PIP-containing vesicles, histones caused permeabilization and release of vesicular aqueous contents, but the leakage mechanism was different (all-or-none for PI and graded release for PIP vesicles). These results indicate that histones could play a role in the remodeling of the nuclear envelope that takes place during the mitotic cycle. PMID:25692591

  14. Combretastatin A4-phosphate and its potential in veterinary oncology: a review.

    PubMed

    Abma, E; Daminet, S; Smets, P; Ni, Y; de Rooster, H

    2017-03-01

    For many years, research on anticancer therapy has focussed almost exclusively on targeting cancer cells directly, to selectively kill them or restrict their growth. But limited advances in this strategy have led researchers to shift their attention to other potential targets. Active research is now on-going on targeting tumour stroma. Vascular disrupting agents (VDAs) appear a promising class of anticancer drugs that are currently under investigation as a sole or combined therapy in human cancer patients. This article will briefly touch on the history and biology of combretastatin A4-phosphate (CA4P) as a typical example of VDAs and will concentrate on the side effects that can be expected when used in veterinary patients. Particularly, the pathogenesis of these side effects and how they may be prevented and/or treated will be discussed. The purpose of this article is to illustrate the potentials of CA4P as anticancer therapy in veterinary oncology patients.

  15. A phosphoethanolamine transferase specific for the 4'-phosphate residue of Cronobacter sakazakii lipid A.

    PubMed

    Liu, L; Li, Y; Wang, X; Guo, W

    2016-11-01

    Investigate how Cronobacter sakazakii modify their lipid A structure to avoid recognition by the host immune cells. Lipid A modification was observed in C. sakazakii BAA894 grown at pH 5·0 but not pH 7·0. Overexpression of C. sakazakii gene ESA_RS09200 in Escherichia coli W3110 caused a phosphoethanolamine (PEA) modification of lipid A; when ESA_RS09200 was deleted in C. sakazakii BAA894, this lipid A modification disappeared. Lipid A modification was observed in BAA894 grown at pH 5·0 when the 1- phosphate residue of lipid A was removed, but disappeared when the 4'- phosphate residue of lipid A was removed. When ESA_RS16430, the orthologous gene of E. coli pmrA, was deleted in C. sakazakii BAA894, this PEA modification of lipid A was still observed, suggesting that this modification was not regulated by the PmrA-PmrB system. Compared to the wild-type BAA894, ESA_RS09200 deletion mutant showed decreased resistance to cationic antimicrobial peptides (CAMP), increased recognition by TLR4/MD2, decreased ability to invade and persist in mammalian cells. ESA_RS09200 in C. sakazakii BAA894 encodes a PEA transferase that specifically adds a PEA to the 4'-phosphate residue of lipid A, but not regulated by the PmrA-PmrB system. PEA modification of lipid A reduces recognition and killing by the host innate immune system. This study showed that modification of the lipid A moiety of C. sakazakii with PEA increased resistance to CAMP and recognition of the immune response although signalling of TLR4/MD2 cascade, suggesting that the organism could not successfully evade the host innate immune system without the transference of PEA to its lipid A moiety. © 2016 The Society for Applied Microbiology.

  16. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.

  17. In situ localization of gene transcriptions for monoterpene synthesis in irregular parenchymic cells surrounding the secretory cavities in rough lemon (Citrus jambhiri).

    PubMed

    Yamasaki, Yumiko; Akimitsu, Kazuya

    2007-11-01

    A cDNA (RlemispF) encoding 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase, an enzyme of the methyl erythritol phosphate (MEP) pathway, and two homologs (RlemTPS1 and RlemTPS2) of citrus monoterpene synthase cDNA were isolated from the rough lemon (Citrus jambhiri). Transient localization of all or a part of RlemispF fused to a green fluorescence protein using particle gun-mediated DNA delivery localized RlemispF in the chloroplast. Transcripts of RlemispF and other monoterpene synthase genes are constitutively expressed in leaves of rough lemon. Transcript accumulations of RlemispF and RlemTPS1 were not induced by microbe attacks, but microbe attack weakly induced RlemTPS2 expression. Wounding decreased RlemispF expression. RlemispF and two different monoterpene synthase genes were specifically expressed in the epithelial tissue cells with dense cytoplasm that surround secretory cavities, which form a broadly round package containing a large volume of essential oils composed of monoterpenes. Interestingly, although expressions of RlemTPS1 and RlemTPS2 were detected at both mature and developing secretory cavities, the RlemispF-expressing cells were found more at around developing secretory cavities.

  18. Characterization of the Arabidopsis clb6 Mutant Illustrates the Importance of Posttranscriptional Regulation of the Methyl-d-Erythritol 4-Phosphate PathwayW⃞

    PubMed Central

    Guevara-García, Arturo; San Román, Carolina; Arroyo, Analilia; Cortés, María Elena; de la Luz Gutiérrez-Nava, María; León, Patricia

    2005-01-01

    The biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the two building blocks for isoprenoid biosynthesis, occurs by two independent pathways in plants. The mevalonic pathway operates in the cytoplasm, and the methyl-d-erythritol 4-phosphate (MEP) pathway operates in plastids. Plastidic isoprenoids play essential roles in plant growth and development. Plants must regulate the biosynthesis of isoprenoids to fulfill metabolic requirements in specific tissues and developmental conditions. The regulatory events that modulate the plant MEP pathway are not well understood. In this article, we demonstrate that the CHLOROPLAST BIOGENESIS6 (CLB6) gene, previously shown to be required for chloroplast development, encodes 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase, the last-acting enzyme of the MEP pathway. Comparative analysis of the expression levels of all MEP pathway gene transcripts and proteins in the clb6-1 mutant background revealed that posttranscriptional control modulates the levels of different proteins in this central pathway. Posttranscriptional regulation was also found during seedling development and during fosmidomycin inhibition of the pathway. Our results show that the first enzyme of the pathway, 1-deoxy-d-xylulose 5-phosphate synthase, is feedback regulated in response to the interruption of the flow of metabolites through the MEP pathway. PMID:15659625

  19. Lenz-Majewski mutations in PTDSS1 affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions

    PubMed Central

    Sohn, Mira; Ivanova, Pavlina; Brown, H. Alex; Varnai, Peter; Kim, Yeun Ju; Balla, Tamas

    2016-01-01

    Lenz-Majewski syndrome (LMS) is a rare disease characterized by complex craniofacial, dental, cutaneous, and limb abnormalities combined with intellectual disability. Mutations in the PTDSS1 gene coding one of the phosphatidylserine (PS) synthase enzymes, PSS1, were described as causative in LMS patients. Such mutations render PSS1 insensitive to feedback inhibition by PS levels. Here we show that expression of mutant PSS1 enzymes decreased phosphatidylinositol 4-phosphate (PI4P) levels both in the Golgi and the plasma membrane (PM) by activating the Sac1 phosphatase and altered PI4P cycling at the PM. Conversely, inhibitors of PI4KA, the enzyme that makes PI4P in the PM, blocked PS synthesis and reduced PS levels by 50% in normal cells. However, mutant PSS1 enzymes alleviated the PI4P dependence of PS synthesis. Oxysterol-binding protein–related protein 8, which was recently identified as a PI4P-PS exchanger between the ER and PM, showed PI4P-dependent membrane association that was significantly decreased by expression of PSS1 mutant enzymes. Our studies reveal that PS synthesis is tightly coupled to PI4P-dependent PS transport from the ER. Consequently, PSS1 mutations not only affect cellular PS levels and distribution but also lead to a more complex imbalance in lipid homeostasis by disturbing PI4P metabolism. PMID:27044099

  20. Methylerythritol phosphate pathway to isoprenoids: kinetic modeling and in silico enzyme inhibitions in Plasmodium falciparum.

    PubMed

    Singh, Vivek Kumar; Ghosh, Indira

    2013-09-02

    The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system. This study demonstrates that both types of enzyme targets, one acting via flux reduction and the other by metabolite accumulation, exist in P. falciparum MEP pathway. These groups of targets can be exploited for independent anti-malarial drugs.

  1. Metabolomic analysis of Arabidopsis reveals hemiterpenoid glycosides as products of a nitrate ion-regulated, carbon flux overflow.

    PubMed

    Ward, Jane L; Baker, John M; Llewellyn, Aimee M; Hawkins, Nathaniel D; Beale, Michael H

    2011-06-28

    An understanding of the balance between carbon and nitrogen assimilation in plants is key to future bioengineering for a range of applications. Metabolomic analysis of the model plant, Arabidopsis thaliana, using combined NMR-MS revealed the presence of two hemiterpenoid glycosides that accumulated in leaf tissue, to ~1% dry weight under repeated nitrate-deficient conditions. The formation of these isoprenoids was correlated with leaf nitrate concentrations that could also be assayed in the metabolomic data using a unique flavonoid-nitrate mass spectral adduct. Analysis of leaf and root tissue from plants grown in hydroponics with a variety of root stressors identified the conditions under which the isoprenoid pathway in leaves was diverted to the hemiterpenoids. These compounds were strongly induced by root wounding or oxidative stress and weakly induced by potassium deficiency. Other stresses such as cold, saline, and osmotic stress did not induce the compounds. Replacement of nitrate with ammonia failed to suppress the formation of the hemiterpenoids, indicating that nitrate sensing was a key factor. Feeding of intermediates was used to study aspects of 2-C-methyl-d-erythritol-4-phosphate pathway regulation leading to hemiterpenoid formation. The formation of the hemiterpenoids in leaves was strongly correlated with the induction of the phenylpropanoids scopolin and coniferin in roots of the same plants. These shunts of photosynthetic carbon flow are discussed in terms of overflow mechanisms that have some parallels with isoprene production in tree species.

  2. Metabolomic analysis of Arabidopsis reveals hemiterpenoid glycosides as products of a nitrate ion-regulated, carbon flux overflow

    PubMed Central

    Ward, Jane L.; Baker, John M.; Llewellyn, Aimee M.; Hawkins, Nathaniel D.; Beale, Michael H.

    2011-01-01

    An understanding of the balance between carbon and nitrogen assimilation in plants is key to future bioengineering for a range of applications. Metabolomic analysis of the model plant, Arabidopsis thaliana, using combined NMR-MS revealed the presence of two hemiterpenoid glycosides that accumulated in leaf tissue, to ~1% dry weight under repeated nitrate-deficient conditions. The formation of these isoprenoids was correlated with leaf nitrate concentrations that could also be assayed in the metabolomic data using a unique flavonoid–nitrate mass spectral adduct. Analysis of leaf and root tissue from plants grown in hydroponics with a variety of root stressors identified the conditions under which the isoprenoid pathway in leaves was diverted to the hemiterpenoids. These compounds were strongly induced by root wounding or oxidative stress and weakly induced by potassium deficiency. Other stresses such as cold, saline, and osmotic stress did not induce the compounds. Replacement of nitrate with ammonia failed to suppress the formation of the hemiterpenoids, indicating that nitrate sensing was a key factor. Feeding of intermediates was used to study aspects of 2-C-methyl-d-erythritol-4-phosphate pathway regulation leading to hemiterpenoid formation. The formation of the hemiterpenoids in leaves was strongly correlated with the induction of the phenylpropanoids scopolin and coniferin in roots of the same plants. These shunts of photosynthetic carbon flow are discussed in terms of overflow mechanisms that have some parallels with isoprene production in tree species. PMID:21670294

  3. Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis.

    PubMed

    Pankratov, Ilya; McQuinn, Ryan; Schwartz, Jochanan; Bar, Einat; Fei, Zhangjun; Lewinsohn, Efraim; Zamir, Dani; Giovannoni, James J; Hirschberg, Joseph

    2016-10-01

    Isoprenoids consist of a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP). In plants, IDP is synthesized in the cytoplasm from mevalonic acid via the MVA pathway, and in plastids from 2-C-methyl-d-erythritol-4-phosphate through the MEP pathway. The enzyme IDP isomerase (IDI) catalyzes the interconversion between IDP and DMADP. Most plants contain two IDI enzymes, the functions of which are characteristically compartmentalized in the cells. Carotenoids are isoprenoids that play essential roles in photosynthesis and provide colors to flowers and fruits. They are synthesized in the plastids via the MEP pathway. Fruits of Solanum lycopersicum (tomato) accumulate high levels of the red carotene lycopene. We have identified mutations in tomato that reduce overall carotenoid accumulation in fruits. Four alleles of a locus named FRUIT CAROTENOID DEFICIENT 1 (fcd1) were characterized. Map-based cloning of fcd1 indicated that this gene encodes the plastidial enzyme IDI1. Lack of IDI1 reduced the concentration of carotenoids in fruits, flowers and cotyledons, but not in mature leaves. These results indicate that the plastidial IDI plays an important function in carotenoid biosynthesis, thus highlighting its role in optimizing the ratio between IDP and DMADP as precursors for different downstream isoprenoid pathways.

  4. Effects of fosmidomycin on plant photosynthesis as measured by gas exchange and chlorophyll fluorescence.

    PubMed

    Possell, Malcolm; Ryan, Annette; Vickers, Claudia E; Mullineaux, Philip M; Hewitt, C Nicholas

    2010-04-01

    In higher plants, many isoprenoids are synthesised via the chloroplastic 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Attempts to elucidate the function of individual isoprenoids have used the antibiotic/herbicidal compound fosmidomycin (3-[N-formyl-N-hydroxy amino] propyl phosphonic acid) to inhibit this pathway. Examination of the effect of fosmidomycin on the major components of photosynthesis in leaves of white poplar (Populus alba) and tobacco (Nicotiana tabacum) was made. Fosmidomycin reduced net photosynthesis in both species within 1 h of application, but only when photosynthesis was light-saturated. In P. alba, these reductions were confounded by high light and fosmidomycin inducing stomatal patchiness. In tobacco, this was caused by significant reductions in PSII chlorophyll fluorescence and reductions in V(cmax) and J(max). Our data indicate that the diminution of photosynthesis is likely a complex effect resulting from the inhibition of multiple MEP pathway products, resulting in photoinhibition and photo-damage. These effects should be accounted for in experimental design and analysis when using fosmidomycin to avoid misinterpretation of results as measured by gas exchange and chlorophyll fluorescence.

  5. Accumulation of a potent γδ T-cell stimulator after deletion of the lytB gene in Escherichia coli

    PubMed Central

    Eberl, Matthias; Altincicek, Boran; Kollas, Ann-Kristin; Sanderbrand, Silke; Bahr, Ute; Reichenberg, Armin; Beck, Ewald; Foster, Donald; Wiesner, Jochen; Hintz, Martin; Jomaa, Hassan

    2002-01-01

    Activation of human Vγ9/Vδ2 T cells by many pathogens depends on the presence of small phosphorylated non-peptide compounds derived from the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis. We here demonstrate that in Escherichia coli mutants deficient in lytB, an essential gene of the MEP pathway, a potent Vγ9/Vδ2 T-cell activator accumulates by a factor of approximately 150 compared to wild-type E. coli. The compound responsible for the strong immunogenicity of this E. coli mutant was subsequently characterized and identified as a small pyrophosphorylated metabolite, with a molecular mass of 262 Da, derived from the MEP pathway. Stimulation of human peripheral blood mononuclear cells (PBMC) with extracts prepared from the lytB-deficient E. coli mutant led to upregulation of T-cell activation markers on the surface of Vγ9/Vδ2 T cells as well as proliferation and expansion of Vγ9/Vδ2 T cells. This response was dependent on costimulatory growth factors, such as interleukin (IL)-2, IL-15 and IL-21. Significant levels of interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α) were secreted in the presence of IL-2 and IL-15, but not in the presence of IL-21, demonstrating that proliferating phosphoantigen-reactive Vγ9/Vδ2 T cells do not necessarily produce proinflammatory cytokines. PMID:12047749

  6. The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite.

    PubMed

    Lichtenthaler, H K; Zeidler, J; Schwender, J; Müller, C

    2000-01-01

    Higher plants and several photosynthetic algae contain the plastidic 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate pathway (DOXP/MEP pathway) for isoprenoid biosynthesis. The first four enzymes and their genes are known of this novel pathway. All of the ca. 10 enzymes of this isoprenoid pathway are potential targets for new classes of herbicides. Since the DOXP/MEP pathway also occurs in several pathogenic bacteria, such as Mycobacterium tuberculosis, and in the malaria parasite Plasmodium falciparum, all inhibitors and potential herbicides of the DOXP/MEP pathway in plants are also potential drugs against pathogenic bacteria and the malaria parasite. Plants with their easily to handle DOXP/MEP-pathway are thus very suitable test-systems also for new drugs against pathogenic bacteria and the malaria parasite as no particular security measures are required. In fact, the antibiotic herbicide fosmidomycin specifically inhibited not only the DOXP reductoisomerase in plants, but also that in bacteria and in the parasite P. falciparum, and cures malaria-infected mice. This is the first successful application of a herbicide of the novel isoprenoid pathway as a possible drug against malaria.

  7. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    PubMed

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia.

  8. Enhancement of anthraquinone production in Morinda citrifolia cell suspension cultures after stimulation of the proline cycle with two proline analogs.

    PubMed

    Quevedo, Carla V; Perassolo, María; Giulietti, Ana M; Rodríguez Talou, Julián

    2012-03-01

    Synthesis of anthraquinones (AQs) involves the shikimate and 2-C-methyl-D-erythritol 4-phosphate pathways. The proline cycle is linked to the pentose phosphate pathway (PPP) to generate NADPH needed in the first steps of this pathway. The effect of two proline analogs, azetidine-2-carboxylic acid (A2C) and thiazolidine-4-carboxylic acid (T4C), were evaluated in Morinda citrifolia suspension cultures. Both analogs gave higher proline accumulation after 6 and 10 days (68 and 179% after 6 days with A2C at 25 and 50 μM, respectively, and 111% with T4C added at 100 μM). Induction of the proline cycle increased the AQ content after 6 days (~40% for 50 μM A2C and 100 μM T4C). Whereas A2C (50 μM) increased only AQ production, T4C also enhanced total phenolics. However, no induction of the PPP was observed with any of the treatments. This pathway therefore does not limit the supply of carbon skeletons to secondary metabolic pathways.

  9. Design of novel ligands of CDP-methylerythritol kinase by mimicking direct protein-protein and solvent-mediated interactions.

    PubMed

    Giménez-Oya, Victor; Villacañas, Oscar; Obiol-Pardo, Cristian; Antolin-Llovera, Meritxell; Rubio-Martinez, Jaime; Imperial, Santiago

    2011-01-01

    The methylerythritol 4-phosphate (MEP) pathway for the biosynthesis of the isoprenoid universal building blocks (isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP)) is present in most of human pathogens and is absent in animals, turning it into a promising therapeutic druggable pathway. Two different strategies, a pharmacophore-directed virtual screening and a protein-protein interaction (PPI)-mimicking cyclic peptide were used to search for compounds that bind to the PPI surface of the 4-(cytidine 5-diphospho)-2C-methyl-D-erythritol kinase (CMK), which catalyzes the fourth step of the MEP pathway. A significant part of the pharmacophore hypothesis used in this study was designed by mimicking water-mediated PPI relevant in the CMK homodimer complex stabilization. After database search and with the aid of docking and molecular dynamics (MD) simulations, a 7H-furo[3,2-g]chromen-7-one derivative and a cyclic peptide were chosen as candidates to be ligands of CMK. Their binding affinities were measured using surface plasmon resonance (SPR) technology.

  10. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells.

    PubMed

    Hemmerlin, Andréa; Hoeffler, Jean-François; Meyer, Odile; Tritsch, Denis; Kagan, Isabelle A; Grosdemange-Billiard, Catherine; Rohmer, Michel; Bach, Thomas J

    2003-07-18

    In plants, two pathways are utilized for the synthesis of isopentenyl diphosphate, the universal precursor for isoprenoid biosynthesis. The key enzyme of the cytoplasmic mevalonic acid (MVA) pathway is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Treatment of Tobacco Bright Yellow-2 (TBY-2) cells by the HMGR-specific inhibitor mevinolin led to growth reduction and induction of apparent HMGR activity, in parallel to an increase in protein representing two HMGR isozymes. Maximum induction was observed at 24 h. 1-Deoxy-d-xylulose (DX), the dephosphorylated first precursor of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, complemented growth inhibition by mevinolin in the low millimolar concentration range. Furthermore, DX partially re-established feedback repression of mevinolin-induced HMGR activity. Incorporation studies with [1,1,1,4-2H4]DX showed that sterols, normally derived from MVA, in the presence of mevinolin are synthesized via the MEP pathway. Fosmidomycin, an inhibitor of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, the second enzyme of the MEP pathway, was utilized to study the reverse complementation. Growth inhibition by fosmidomycin of TBY-2 cells could be partially overcome by MVA. Chemical complementation was further substantiated by incorporation of [2-13C]MVA into plastoquinone, representative of plastidial isoprenoids. Best rates of incorporation of exogenous stably labeled precursors were observed in the presence of both inhibitors, thereby avoiding internal isotope dilution.

  11. Transcriptional profiling of genes involved in steviol glycoside biosynthesis in Stevia rebaudiana bertoni during plant hardening.

    PubMed

    Modi, Arpan; Litoriya, Nitesh; Prajapati, Vijay; Rafalia, Rutul; Narayanan, Subhash

    2014-09-01

    Stevioside is a diterpene glycoside found in Stevia rebaudiana Bertoni (Asteraceae) and is 200-300 times sweeter than sucrose. It is synthesized through a plastid localized 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. Fifteen genes are involved in the formation of steviol glycosides (stevioside and rebaudioside A). In the present investigation, micropropagated plants were allowed to harden for one month during which transcriptional profiling of candidate genes was carried out. Sampling from all the plants was carried out during hardening at different time intervals (day 10, 20, and 30) along with control plants (day 0). Stevioside content was also measured. Of 15 genes, 9 were up-regulated two-fold or greater. Nine genes were expressed at higher levels after 30 days than in the untreated controls. Moreover, these transcriptional differences were correlated with a significant enhancement in stevioside content from 0- (11.48%) to 30- (13.57%) day-old plants. MEP pathway genes in stevia are expressed at higher levels during hardening, a change to vegetative growth from reproductive growth. Although there were higher transcript levels of candidate genes at the initial phase of hardening, the highest stevioside content was found after 30 days of hardening, suggesting translational/posttranslational regulatory mechanisms. Copyright © 2014 Wiley Periodicals, Inc.

  12. Overexpression and Suppression of Artemisia annua 4-Hydroxy-3-Methylbut-2-enyl Diphosphate Reductase 1 Gene (AaHDR1) Differentially Regulate Artemisinin and Terpenoid Biosynthesis

    PubMed Central

    Ma, Dongming; Li, Gui; Zhu, Yue; Xie, De-Yu

    2017-01-01

    4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) catalyzes the last step of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP). To date, little is known regarding effects of an increase or a decrease of a HDR expression on terpenoid and other metabolite profiles in plants. In our study, an Artemisia annua HDR cDNA (namely AaHDR1) was cloned from leaves. Expression profiling showed that it was highly expressed in leaves, roots, stems, and flowers with different levels. Green florescence protein fusion and confocal microscope analyses showed that AaHDR1 was localized in chloroplasts. The overexpression of AaHDR1 increased contents of artemisinin, arteannuin B and other sesquiterpenes, and multiple monoterpenes. By contrast, the suppression of AaHDR1 by anti-sense led to opposite results. In addition, an untargeted metabolic profiling showed that the overexpression and suppression altered non-polar metabolite profiles. In conclusion, the overexpression and suppression of AaHDR1 protein level in plastids differentially affect artemisinin and other terpenoid biosynthesis, and alter non-polar metabolite profiles of A. annua. Particularly, its overexpression leading to the increase of artemisinin production is informative to future metabolic engineering of this antimalarial medicine. PMID:28197158

  13. An Insight Into Structure, Function, and Expression Analysis of 3-Hydroxy-3-Methylglutaryl-CoA Reductase of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Patar, Lochana; Modi, Mahendra K; Sen, Priyabrata

    2017-01-01

    Citronella (Cymbopogon winterianus) is one of the richest sources of high-value isoprenoid aromatic compounds used as flavour, fragrance, and therapeutic elements. These isoprenoid compounds are synthesized by 2 independent pathways: mevalonate pathway and 2-C-methyl-d-erythritol-4-phosphate pathway. Evidence suggests that 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a rate-controlling enzyme for the synthesis of variety of isoprenoids. This study reports the isolation, characterization, and tissue-specific expression analysis of HMGR from citronella. The modelled HMGR is a class I type of HMGR enzyme with 3-domain architecture. The active site comprises a cofactor (nicotinamide adenine dinucleotide phosphate) and the substrate-binding motifs. The real-time and quantitative reverse transcription-polymerase chain reaction results revealed equal expression level in both leaf sheath and root tissue. The results from our study shall be a valuable resource for future molecular intervention to alter the metabolic flux towards improvement of key active ingredient in this important medicinal plant.

  14. An Insight Into Structure, Function, and Expression Analysis of 3-Hydroxy-3-Methylglutaryl-CoA Reductase of Cymbopogon winterianus

    PubMed Central

    Devi, Kamalakshi; Patar, Lochana; Modi, Mahendra K; Sen, Priyabrata

    2017-01-01

    Citronella (Cymbopogon winterianus) is one of the richest sources of high-value isoprenoid aromatic compounds used as flavour, fragrance, and therapeutic elements. These isoprenoid compounds are synthesized by 2 independent pathways: mevalonate pathway and 2-C-methyl-d-erythritol-4-phosphate pathway. Evidence suggests that 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) is a rate-controlling enzyme for the synthesis of variety of isoprenoids. This study reports the isolation, characterization, and tissue-specific expression analysis of HMGR from citronella. The modelled HMGR is a class I type of HMGR enzyme with 3-domain architecture. The active site comprises a cofactor (nicotinamide adenine dinucleotide phosphate) and the substrate-binding motifs. The real-time and quantitative reverse transcription-polymerase chain reaction results revealed equal expression level in both leaf sheath and root tissue. The results from our study shall be a valuable resource for future molecular intervention to alter the metabolic flux towards improvement of key active ingredient in this important medicinal plant. PMID:28469419

  15. Cloning, Characterization, and Immunolocalization of a Mycorrhiza-Inducible 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase in Arbuscule-Containing Cells of Maize1

    PubMed Central

    Hans, Joachim; Hause, Bettina; Strack, Dieter; Walter, Michael H.

    2004-01-01

    Colonization of plant roots by symbiotic arbuscular mycorrhizal fungi frequently leads to the accumulation of several apocarotenoids. The corresponding carotenoid precursors originate from the plastidial 2-C-methyl-d-erythritol 4-phosphate pathway. We have cloned and characterized 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), catalyzing the first committed step of the pathway, from maize (Zea mays). Functional identification was accomplished by heterologous expression of sequences coding for the mature protein in Escherichia coli. DXR is up-regulated in maize roots during mycorrhization as shown at transcript and protein levels, but is also abundant in leaves and young seedlings. Inspection of sequenced genomes and expressed sequence tag (EST) databases argue for a single-copy DXR gene. Immunolocalization studies in mycorrhizal roots using affinity-purified antibodies revealed a DXR localization in plastids around the main symbiotic structures, the arbuscules. DXR protein accumulation is tightly correlated with arbuscule development. The highest level of DXR protein is reached around maturity and initial senescence of these structures. We further demonstrate the formation of a DXR-containing plastidial network around arbuscules, which is highly interconnected in the mature, functional state of the arbuscules. Our findings imply a functional role of a still unknown nature for the apocarotenoids or their respective carotenoid precursors in the arbuscular life cycle. PMID:14764905

  16. Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme, IspD

    PubMed Central

    Price, Kathryn E.; Armstrong, Christopher M.; Imlay, Leah S.; Hodge, Dana M.; Pidathala, C.; Roberts, Natalie J.; Park, Jooyoung; Mikati, Marwa; Sharma, Raman; Lawrenson, Alexandre S.; Tolia, Niraj H.; Berry, Neil G.; O’Neill, Paul M.; John, Audrey R. Odom

    2016-01-01

    The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria. PMID:27857147

  17. Cloning and Expression Analysis of MEP Pathway Enzyme-encoding Genes in Osmanthus fragrans

    PubMed Central

    Xu, Chen; Li, Huogeng; Yang, Xiulian; Gu, Chunsun; Mu, Hongna; Yue, Yuanzheng; Wang, Lianggui

    2016-01-01

    The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is responsible for the biosynthesis of many crucial secondary metabolites, such as carotenoids, monoterpenes, plastoquinone, and tocopherols. In this study, we isolated and identified 10 MEP pathway genes in the important aromatic plant sweet osmanthus (Osmanthus fragrans). Multiple sequence alignments revealed that 10 MEP pathway genes shared high identities with other reported proteins. The genes showed distinctive expression profiles in various tissues, or at different flower stages and diel time points. The qRT-PCR results demonstrated that these genes were highly expressed in inflorescences, which suggested a tissue-specific transcript pattern. Our results also showed that OfDXS1, OfDXS2, and OfHDR1 had a clear diurnal oscillation pattern. The isolation and expression analysis provides a strong foundation for further research on the MEP pathway involved in gene function and molecular evolution, and improves our understanding of the molecular mechanism underlying this pathway in plants. PMID:27690108

  18. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex

    PubMed Central

    Chow, Keng-See; Mat-Isa, Mohd.-Noor; Bahari, Azlina; Ghazali, Ahmad-Kamal; Alias, Halimah; Mohd.-Zainuddin, Zainorlina; Hoh, Chee-Choong; Wan, Kiew-Lian

    2012-01-01

    The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees. PMID:22162870

  19. Reconstruction and Evaluation of the Synthetic Bacterial MEP Pathway in Saccharomyces cerevisiae

    PubMed Central

    Partow, Siavash; Siewers, Verena; Daviet, Laurent; Schalk, Michel; Nielsen, Jens

    2012-01-01

    Isoprenoids, which are a large group of natural and chemical compounds with a variety of applications as e.g. fragrances, pharmaceuticals and potential biofuels, are produced via two different metabolic pathways, the mevalonate (MVA) pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we attempted to replace the endogenous MVA pathway in Saccharomyces cerevisiae by a synthetic bacterial MEP pathway integrated into the genome to benefit from its superior properties in terms of energy consumption and productivity at defined growth conditions. It was shown that the growth of a MVA pathway deficient S. cerevisiae strain could not be restored by the heterologous MEP pathway even when accompanied by the co-expression of genes erpA, hISCA1 and CpIscA involved in the Fe-S trafficking routes leading to maturation of IspG and IspH and E. coli genes fldA and fpr encoding flavodoxin and flavodoxin reductase believed to be responsible for electron transfer to IspG and IspH. PMID:23285068

  20. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata.

    PubMed

    Sharma, Shiv Narayan; Jha, Zenu; Sinha, Rakesh Kumar; Geda, Arvind Kumar

    2015-02-01

    Andrographolide is a prominent secondary metabolite found in Andrographis paniculata that exhibits enormous pharmacological effects. In spite of immense value, the normal biosynthesis of andrographolide results in low amount of the metabolite. To induce the biosynthesis of andrographolide, we attempted elicitor-induced activation of andrographolide biosynthesis in cell cultures of A. paniculata. This was carried out by using methyl jasmonate (MeJA) as an elicitor. Among the various concentrations of MeJA tested at different time periods, 5 µM MeJA yielded 5.25 times more andrographolide content after 24 h of treatment. The accumulation of andrographolide was correlated with the expression level of known regulatory genes (hmgs, hmgr, dxs, dxr, isph and ggps) of mevalonic acid (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. These results established the involvement of MeJA in andrographolide biosynthesis by inducing the transcription of its biosynthetic pathways genes. The coordination of isph, ggps and hmgs expression highly influenced the andrographolide biosynthesis.

  1. Association Study Indicates a Protective Role of Phosphatidylinositol-4-Phosphate-5-Kinase against Tardive Dyskinesia

    PubMed Central

    Fedorenko, Olga Yu; Lang, Florian; Toshchakova, Valentina A.; Boyarko, Evgenia G.; Semke, Arkadiy V.; Bokhan, Nikolay A.; Govorin, Nikolay V.; Aftanas, Lyubomir I.; Ivanova, Svetlana A.

    2015-01-01

    Background: Tardive dyskinesia is a disorder characterized by involuntary muscle movements that occur as a complication of long-term treatment with antipsychotic drugs. It has been suggested to be related to a malfunctioning of the indirect pathway of the motor part of the cortical-striatal-thalamic-cortical circuit, which may be caused by oxidative stress-induced neurotoxicity. Methods: The purpose of our study was to investigate the possible association between phosphatidylinositol-4-phosphate-5-kinase type IIa (PIP5K2A) function and tardive dyskinesia in 491 Caucasian patients with schizophrenia from 3 different psychiatric institutes in West Siberia. The Abnormal Involuntary Movement Scale was used to assess tardive dyskinesia. Individuals were genotyped for 3 single nucleotide polymorphisms in PIP5K2A gene: rs10828317, rs746203, and rs8341. Results: A significant association was established between the functional mutation N251S-polymorphism of the PIP5K2A gene (rs10828317) and tardive dyskinesia, while the other 2 examined nonfunctional single nucleotide polymorphisms were not related. Conclusions: We conclude from this association that PIP5K2A is possibly involved in a mechanism protecting against tardive dyskinesia-inducing neurotoxicity. This corresponds to our hypothesis that tardive dyskinesia is related to neurotoxicity at striatal indirect pathway medium-sized spiny neurons. PMID:25548108

  2. Phosphatidylinositol 4-Phosphate 5-Kinase β Controls Recruitment of Lipid Rafts into the Immunological Synapse.

    PubMed

    Kallikourdis, Marinos; Trovato, Anna Elisa; Roselli, Giuliana; Muscolini, Michela; Porciello, Nicla; Tuosto, Loretta; Viola, Antonella

    2016-02-15

    Phosphatidylinositol 4,5-biphosphate (PIP2) is critical for T lymphocyte activation serving as a substrate for the generation of second messengers and the remodeling of actin cytoskeleton necessary for the clustering of lipid rafts, TCR, and costimulatory receptors toward the T:APC interface. Spatiotemporal analysis of PIP2 synthesis in T lymphocytes suggested that distinct isoforms of the main PIP2-generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K), play a differential role on the basis of their distinct localization. In this study, we analyze the contribution of PIP5Kβ to T cell activation and show that CD28 induces the recruitment of PIP5Kβ to the immunological synapse, where it regulates filamin A and lipid raft accumulation, as well as T cell activation, in a nonredundant manner. Finally, we found that Vav1 and the C-terminal 83 aa of PIP5Kβ are pivotal for the PIP5Kβ regulatory functions in response to CD28 stimulation. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. A dose-escalation study of combretastatin A4-phosphate in healthy dogs.

    PubMed

    Abma, E; Smets, P; Daminet, S; Cornelis, I; De Clercq, K; Ni, Y; Vlerick, L; de Rooster, H

    2017-06-16

    Combretastatin A4-Phosphate (CA4P) is a vascular disrupting agent revealing promising results in cancer treatments for humans. The aim of this study was to investigate the safety and adverse events of CA4P in healthy dogs as a prerequisite to application of CA4P in dogs with cancer. Ten healthy dogs were included. The effects of escalating doses of CA4P on physical, haematological and biochemical parameters, systolic arterial blood pressure, electrocardiogram, echocardiographic variables and general wellbeing were characterised. Three different doses were tested: 50, 75 and 100 mg m(-2) . At all 3 CA4P doses, nausea, abdominal discomfort as well as diarrhoea were observed for several hours following administration. Likewise, a low-grade neutropenia was observed in all dogs. Doses of 75 and 100 mg m(-2) additionally induced vomiting and elevation of serum cardiac troponine I levels. At 100 mg m(-2) , low-grade hypertension and high-grade neurotoxicity were also observed. In healthy dogs, doses up to 75 mg m(-2) seem to be well tolerated. The severity of the neurotoxicity observed at 100 mg m(-2) , although transient, does not invite to use this dose in canine oncology patients. © 2017 John Wiley & Sons Ltd.

  4. Phospholipase Cε Hydrolyzes Perinuclear Phosphatidylinositol 4-Phosphate to Regulate Cardiac Hypertrophy

    PubMed Central

    Zhang, Lianghui; Malik, Sundeep; Pang, Jinjiang; Wang, Huan; Park, Keigan M.; Yule, David I.; Blaxall, Burns C.; Smrcka, Alan V.

    2013-01-01

    Summary Phospholipase Cε (PLCε) is a multifunctional enzyme implicated in cardiovascular, pancreatic and inflammatory functions. Here we show that conditional deletion of PLCε in mouse cardiac myocytes protects from stress-induced pathological hypertrophy. PLCε siRNA in ventricular myocytes decreases endothelin-1 (ET-1)-dependent elevation of nuclear calcium and activation of nuclear protein kinase D (PKD). PLCε scaffolded to muscle-specific A kinase anchoring protein (mAKAP), along with PKCε and PKD, localizes these components at or near the nuclear envelope and this complex is required for nuclear PKD activation. Phosphatidylinositol 4-phosphate (PI4P) is identified as a perinuclear substrate in the Golgi apparatus for mAKAP-scaffolded PLCε. We conclude that perinuclear PLCε, scaffolded to mAKAP in cardiac myocytes, responds to hypertrophic stimuli to generate DAG from PI4P in the Golgi apparatus, in close proximity to the nuclear envelope, to regulate activation of nuclear PKD, and hypertrophic signaling pathways. PMID:23540699

  5. Characterizing the Tumor Response to Treatment With Combretastatin A4 Phosphate

    SciTech Connect

    Salmon, Beth A.; Siemann, Dietmar W. . E-mail: siemadw@ufl.edu

    2007-05-01

    Purpose: To examine the pathophysiologic impact of treatment with combretastatin A4 phosphate (CA4P) in regions of tumors that ultimately either necrose or survive treatment with this agent. Methods and Materials: Proliferation, perfusion, vessel density, and expression of vascular endothelial growth factor (VEGF) were analyzed in the KHT tumor model after treatment with CA4P. Analyses were conducted in the whole tumor and the tumor periphery. Results: Perfusion in the tumor periphery decreased 4 h after treatment, but returned to baseline 20 h later. Whole-tumor perfusion also decreased 4 h after treatment, but did not return to baseline. Vessel density decreased in the tumor as a whole, but not in the tumor periphery. No significant effect on the expression of VEGF was observed, but a decrease in proliferation in the whole tumor and the periphery was noted. Conclusions: The present study shows that those areas of a tumor that survive treatment with CA4P are affected by CA4P exposure, though only transiently. The decrease in perfusion could negatively affect therapies utilizing the combination of CA4P and conventional anticancer agents by decreasing drug delivery and tissue oxygenation. These findings suggest that the timing of CA4P treatments when used in conjunction with conventional anticancer therapies should be considered carefully.

  6. INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate.

    PubMed

    Moser von Filseck, Joachim; Čopič, Alenka; Delfosse, Vanessa; Vanni, Stefano; Jackson, Catherine L; Bourguet, William; Drin, Guillaume

    2015-07-24

    In eukaryotic cells, phosphatidylserine (PS) is synthesized in the endoplasmic reticulum (ER) but is highly enriched in the plasma membrane (PM), where it contributes negative charge and to specific recruitment of signaling proteins. This distribution relies on transport mechanisms whose nature remains elusive. Here, we found that the PS transporter Osh6p extracted phosphatidylinositol 4-phosphate (PI4P) and exchanged PS for PI4P between two membranes. We solved the crystal structure of Osh6p:PI4P complex and demonstrated that the transport of PS by Osh6p depends on PI4P recognition in vivo. Finally, we showed that the PI4P-phosphatase Sac1p, by maintaining a PI4P gradient at the ER/PM interface, drove PS transport. Thus, PS transport by oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) proteins is fueled by PI4P metabolism through PS/PI4P exchange cycles.

  7. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers

    PubMed Central

    de Saint-Jean, Maud; Delfosse, Vanessa; Douguet, Dominique; Chicanne, Gaëtan; Payrastre, Bernard; Bourguet, William

    2011-01-01

    Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Osh4p–PI(4)P complex and reveal how Osh4p selectively substitutes PI(4)P for sterol. Last, we show that Osh4p quickly exchanges DHE for PI(4)P and, thereby, can transport these two lipids between membranes along opposite routes. These results suggest a model in which Osh4p transports sterol from the ER to late compartments pinpointed by PI(4)P and, in turn, transports PI(4)P backward. Coupled to PI(4)P metabolism, this transport cycle would create sterol gradients. Because the residues that recognize PI(4)P are conserved in Osh4p homologues, other Osh/Orp are potential sterol/phosphoinositol phosphate exchangers. PMID:22162133

  8. The Clathrin Adaptor Gga2p Is a Phosphatidylinositol 4-phosphate Effector at the Golgi Exit

    PubMed Central

    Demmel, Lars; Gravert, Maike; Ercan, Ebru; Habermann, Bianca; Müller-Reichert, Thomas; Kukhtina, Viktoria; Haucke, Volker; Baust, Thorsten; Sohrmann, Marc; Kalaidzidis, Yannis; Klose, Christian; Beck, Mike; Peter, Matthias

    2008-01-01

    Phosphatidylinositol 4-phosphate (PI(4)P) is a key regulator of membrane transport required for the formation of transport carriers from the trans-Golgi network (TGN). The molecular mechanisms of PI(4)P signaling in this process are still poorly understood. In a search for PI(4)P effector molecules, we performed a screen for synthetic lethals in a background of reduced PI(4)P and found the gene GGA2. Our analysis uncovered a PI(4)P-dependent recruitment of the clathrin adaptor Gga2p to the TGN during Golgi-to-endosome trafficking. Gga2p recruitment to liposomes is stimulated both by PI(4)P and the small GTPase Arf1p in its active conformation, implicating these two molecules in the recruitment of Gga2p to the TGN, which ultimately controls the formation of clathrin-coated vesicles. PI(4)P binding occurs through a phosphoinositide-binding signature within the N-terminal VHS domain of Gga2p resembling a motif found in other clathrin interacting proteins. These data provide an explanation for the TGN-specific membrane recruitment of Gga2p. PMID:18287542

  9. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    PubMed

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. © 2015 John Wiley & Sons Ltd.

  10. Phosphatidylinositol 4-Phosphate Negatively Regulates Chloroplast Division in Arabidopsis[OPEN

    PubMed Central

    Okazaki, Kumiko; Miyagishima, Shin-ya; Wada, Hajime

    2015-01-01

    Chloroplast division is performed by the constriction of envelope membranes at the division site. Although constriction of a ring-like protein complex has been shown to be involved in chloroplast division, it remains unknown how membrane lipids participate in the process. Here, we show that phosphoinositides with unknown function in envelope membranes are involved in the regulation of chloroplast division in Arabidopsis thaliana. PLASTID DIVISION1 (PDV1) and PDV2 proteins interacted specifically with phosphatidylinositol 4-phosphate (PI4P). Inhibition of phosphatidylinositol 4-kinase (PI4K) decreased the level of PI4P in chloroplasts and accelerated chloroplast division. Knockout of PI4Kβ2 expression or downregulation of PI4Kα1 expression resulted in decreased levels of PI4P in chloroplasts and increased chloroplast numbers. PI4Kα1 is the main contributor to PI4P synthesis in chloroplasts, and the effect of PI4K inhibition was largely abolished in the pdv1 mutant. Overexpression of DYNAMIN-RELATED PROTEIN5B (DRP5B), another component of the chloroplast division machinery, which is recruited to chloroplasts by PDV1 and PDV2, enhanced the effect of PI4K inhibition, whereas overexpression of PDV1 and PDV2 had additive effects. The amount of DRP5B that associated with chloroplasts increased upon PI4K inhibition. These findings suggest that PI4P is a regulator of chloroplast division in a PDV1- and DRP5B-dependent manner. PMID:25736058

  11. Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements.

    PubMed

    Jung, Ji-Yul; Kim, Yong-Woo; Kwak, June M; Hwang, Jae-Ung; Young, Jared; Schroeder, Julian I; Hwang, Inhwan; Lee, Youngsook

    2002-10-01

    Phosphatidylinositol (PI) metabolism plays a central role in signaling pathways in both animals and higher plants. Stomatal guard cells have been reported to contain PI 3-phosphate (PI3P) and PI 4-phosphate (PI4P), the products of PI 3-kinase (PI3K) and PI 4-kinase (PI4K) activities. In this study, we tested the roles of PI3P and PI4P in stomatal movements. Both wortmannin (WM) and LY294002 inhibited PI3K and PI4K activities in guard cells and promoted stomatal opening induced by white light or the circadian clock. WM and LY294002 also inhibited stomatal closing induced by abscisic acid (ABA). Furthermore, overexpression in guard cells of GFP:EBD (green fluorescent protein:endosome binding domain of human EEA1) or GFP:FAPP1PH (PI-four-P adaptor protein-1 pleckstrin homology domain), which bind to PI3P and PI4P, respectively, increased stomatal apertures under darkness and white light and partially inhibited stomatal closing induced by ABA. The reduction in ABA-induced stomatal closing with reduced levels of PI monophosphate seemed to be attributable, at least in part, to impaired Ca(2+) signaling, because WM and LY294002 inhibited ABA-induced cytosolic Ca(2+) increases in guard cells. These results suggest that PI3P and PI4P play an important role in the modulation of stomatal closing and that reductions in the levels of functional PI3P and PI4P enhance stomatal opening.

  12. Lovastatin-Induced Phosphatidylinositol-4-Phosphate 5-Kinase Diffusion from Microvilli Stimulates ROMK Channels.

    PubMed

    Liu, Bing-Chen; Yang, Li-Li; Lu, Xiao-Yu; Song, Xiang; Li, Xue-Chen; Chen, Guangping; Li, Yichao; Yao, Xincheng; Humphrey, Donald R; Eaton, Douglas C; Shen, Bao-Zhong; Ma, He-Ping

    2015-07-01

    We recently showed that lovastatin attenuates cyclosporin A (CsA)-induced damage of cortical collecting duct (CCD) principal cells by reducing intracellular cholesterol. Previous studies showed that, in cell expression models or artificial membranes, exogenous cholesterol directly inhibits inward rectifier potassium channels, including Kir1.1 (Kcnj1; the gene locus for renal outer medullary K(+) [ROMK1] channels). Therefore, we hypothesized that lovastatin might stimulate ROMK1 by reducing cholesterol in CCD cells. Western blots showed that mpkCCDc14 cells express ROMK1 channels with molecular masses that approximate the molecular masses of ROMK1 in renal tubules detected before and after treatment with DTT. Confocal microscopy showed that ROMK1 channels were not in the microvilli, where cholesterol-rich lipid rafts are located, but rather, the planar regions of the apical membrane of mpkCCDc14 cells. Furthermore, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], an activator of ROMK channels, was detected mainly in the microvilli under resting conditions along with the kinase responsible for PI(4,5)P2 synthesis, phosphatidylinositol-4-phosphate 5-kinase, type I γ [PI(4)P5K I γ], which may explain the low basal open probability and increased sensitivity to tetraethylammonium observed here for this channel. Notably, lovastatin induced PI(4)P5K I γ diffusion into planar regions and elevated PI(4,5)P2 and ROMK1 open probability in these regions through a cholesterol-associated mechanism. However, exogenous cholesterol alone did not induce these effects. These results suggest that lovastatin stimulates ROMK1 channels, at least in part, by inducing PI(4,5)P2 synthesis in planar regions of the renal CCD cell apical membrane, suggesting that lovastatin could reduce cyclosporin-induced nephropathy and associated hyperkalemia. Copyright © 2015 by the American Society of Nephrology.

  13. Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria.

    PubMed

    Gao, Peng; Yang, Yanhui; Xiao, Chunling; Liu, Yishuang; Gan, Maoluo; Guan, Yan; Hao, Xueqin; Meng, Jianzhou; Zhou, Shuang; Chen, Xiaojuan; Cui, Jiafei

    2012-11-05

    Tuberculosis is a serious threat to world-wide public health usually caused in humans by Mycobacterium tuberculosis (M. tuberculosis). It exclusively utilizes the methylerythritol phosphate (MEP) pathway for biosynthesis of isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP), the precursors of all isoprenoid compounds. The 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase (IspD; EC 2.7.7.60) is the key enzyme of the MEP pathway. It is also of interest as a new chemotherapeutic target, as the enzyme is absent in mammals and ispD is an essential gene for growth. A high-throughput screening method was therefore developed to identify compounds that inhibit IspD. This process was applied to identify a lead compound, domiphen bromide (DMB), that may effectively inhibit IspD. The inhibitory action of DMB was confirmed by over-expressing or down-regulating IspD in Mycobacterium smegmatis (M. smegmatis), demonstrating that DMB inhibit M. smegmatis growth additionally through an IspD-independent pathway. This also led to higher levels of growth inhibition when combined with IspD knockdown. This novel IspD inhibitor was also reported to exhibit antimycobacterial activity in vitro, an effect that likely occurs as a result of perturbation of cell wall biosynthesis. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. An efficient synthetic strategy for obtaining 4-methoxy carbon isotope labeled combretastatin A-4 phosphate and other Z-combretastatins.

    PubMed

    Pettit, George R; Minardi, Mathew D; Hogan, Fiona; Price, Pat M

    2010-03-26

    Human cancer and other clinical trials under development employing combretastatin A-4 phosphate (1b, CA4P) should benefit from the availability of a [(11)C]-labeled derivative for positron emission tomography (PET). In order to obtain a suitable precursor for addition of a [(11)C]methyl group at the penultimate step, several new synthetic pathways to CA4P were evaluated. Geometrical isomerization (Z to E) proved to be a challenge, but it was overcome by development of a new CA4P synthesis suitable for 4-methoxy isotope labeling.

  15. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha x piperita L.).

    PubMed

    Dolzhenko, Yuliya; Bertea, Cinzia M; Occhipinti, Andrea; Bossi, Simone; Maffei, Massimo E

    2010-08-02

    Modulation of secondary metabolites by UV-B involves changes in gene expression, enzyme activity and accumulation of defence metabolites. After exposing peppermint (Mentha x piperita L.) plants grown in field (FP) and in a growth chamber (GCP) to UV-B irradiation, we analysed by qRT-PCR the expression of genes involved in terpenoid biosynthesis and encoding: 1-deoxy-D-xylulose-5-phosphate synthase (Dxs), 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (Mds), isopentenyl diphosphate isomerase (Ippi), geranyl diphosphate synthase (Gpps), (-)-limonene synthase (Ls), (-)-limonene-3-hydroxylase (L3oh), (+)-pulegone reductase (Pr), (-)-menthone reductase (Mr), (+)-menthofuran synthase (Mfs), farnesyl diphosphate synthase (Fpps) and a putative sesquiterpene synthase (S-TPS). GCP always showed a higher terpenoid content with respect to FP. We found that in both FP and GCP, most of these genes were regulated by the UV-B treatment. The amount of most of the essential oil components, which were analysed by gas chromatography-mass spectrometry (GC-MS), was not correlated to gene expression. The total phenol composition was found to be always increased after UV-B irradiation; however, FP always showed a higher phenol content with respect to GCP. Liquid chromatography-mass spectrometry (LC-ESI-MS/MS) analyses revealed the presence of UV-B absorbing flavonoids such as eriocitrin, hesperidin, and kaempferol 7-O-rutinoside whose content significantly increased in UV-B irradiated FP, when compared to GCP. The results of this work show that UV-B irradiation differentially modulates the expression of genes involved in peppermint essential oil biogenesis and the content of UV-B absorbing flavonoids. Plants grown in field were better adapted to increasing UV-B irradiation than plants cultivated in growth chambers. The interplay between terpenoid and phenylpropanoid metabolism is also discussed. 2010 Elsevier B.V. All rights reserved.

  16. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice.

    PubMed

    Welford, Abigail F; Biziato, Daniela; Coffelt, Seth B; Nucera, Silvia; Fisher, Matthew; Pucci, Ferdinando; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele; Tozer, Gillian M; Lewis, Claire E

    2011-05-01

    Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA4P-treated tumors either by interfering pharmacologically with the CXCL12/CXCR4 axis or by genetically depleting TEMs in tumor-bearing mice markedly increased the efficacy of CA4P treatment. These data suggest that TEMs limit VDA-induced tumor injury and represent a potential target for improving the clinical efficacy of VDA-based therapies.

  17. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice

    PubMed Central

    Welford, Abigail F.; Biziato, Daniela; Coffelt, Seth B.; Nucera, Silvia; Fisher, Matthew; Pucci, Ferdinando; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele; Tozer, Gillian M.; Lewis, Claire E.

    2011-01-01

    Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA4P-treated tumors either by interfering pharmacologically with the CXCL12/CXCR4 axis or by genetically depleting TEMs in tumor-bearing mice markedly increased the efficacy of CA4P treatment. These data suggest that TEMs limit VDA-induced tumor injury and represent a potential target for improving the clinical efficacy of VDA-based therapies. PMID:21490397

  18. The 1.9 A resolution structure of Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase, a potential drug target.

    PubMed

    Henriksson, Lena M; Björkelid, Christofer; Mowbray, Sherry L; Unge, Torsten

    2006-07-01

    1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzes the NADPH-dependent rearrangement and reduction of 1-deoxy-D-xylulose 5-phosphate to form 2-C-methyl-D-erythritol 4-phosphate, as the second step of the deoxyxylulose 5-phosphate/methylerythritol 4-phosphate pathway found in many bacteria and plants. The end product, isopentenyl diphosphate, is the precursor of various isoprenoids vital to all living organisms. The pathway is not found in humans; the mevalonate pathway is instead used for the formation of isopentenyl diphosphate. This difference, combined with its essentiality, makes the reductoisomerase an excellent drug target in a number of pathogenic organisms. The structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Mycobacterium tuberculosis (Rv2870c) was solved by molecular replacement and refined to a resolution of 1.9 A. The enzyme exhibited an estimated kcat of 5.3 s-1 and Km and kcat/Km values of 7.2 microM and 7.4x10(5) M-1 s-1 for NADPH and 340 microM and 1.6x10(4) M-1 s-1 for 1-deoxy-D-xylulose 5-phosphate. In the structure, a sulfate is bound at the expected site of the phosphate moiety of the sugar substrate. The M. tuberculosis enzyme displays a similar fold to the previously published structures from Escherichia coli and Zymomonas mobilis. Comparisons offer suggestions for the design of specific drugs. Furthermore, the new structure represents an intermediate conformation between the open apo form and the closed holo form observed previously, giving insights into the conformational changes associated with catalysis.

  19. Phosphatidylinositol 4-phosphate in the Golgi apparatus regulates cell-cell adhesion and invasive cell migration in human breast cancer.

    PubMed

    Tokuda, Emi; Itoh, Toshiki; Hasegawa, Junya; Ijuin, Takeshi; Takeuchi, Yukiko; Irino, Yasuhiro; Fukumoto, Miki; Takenawa, Tadaomi

    2014-06-01

    Downregulation of cell-cell adhesion and upregulation of cell migration play critical roles in the conversion of benign tumors to aggressive invasive cancers. In this study, we show that changes in cell-cell adhesion and cancer cell migration/invasion capacity depend on the level of phosphatidylinositol 4-phosphate [PI(4)P] in the Golgi apparatus in breast cancer cells. Attenuating SAC1, a PI(4)P phosphatase localized in the Golgi apparatus, resulted in decreased cell-cell adhesion and increased cell migration in weakly invasive cells. In contrast, silencing phosphatidylinositol 4-kinase IIIβ, which generates PI(4)P in the Golgi apparatus, increased cell-cell adhesion and decreased invasion in highly invasive cells. Furthermore, a PI(4)P effector, Golgi phosphoprotein 3, was found to be involved in the generation of these phenotypes in a manner that depends on its PI(4)P-binding ability. Our results provide a new model for breast cancer cell progression in which progression is controlled by PI(4)P levels in the Golgi apparatus.

  20. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis

    SciTech Connect

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban

    2013-09-20

    Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.

  1. GOLPH3 Bridges Phosphatidylinositol-4- Phosphate and Actomyosin to Stretch and Shape the Golgi to Promote Budding

    PubMed Central

    Dippold, Holly C.; Ng, Michelle M.; Farber-Katz, Suzette E.; Lee, Sun-Kyung; Kerr, Monica L.; Peterman, Marshall C.; Sim, Ronald; Wiharto, Patricia A.; Galbraith, Kenneth A.; Madhavarapu, Swetha; Fuchs, Greg J.; Meerloo, Timo; Farquhar, Marilyn G.; Zhou, Huilin; Field, Seth J.

    2009-01-01

    SUMMARY Golgi membranes, from yeast to humans, are uniquely enriched in phosphatidylinositol-4-phosphate (PtdIns(4)P), although the role of this lipid remains poorly understood. Using a proteomic lipid binding screen, we identify the Golgi protein GOLPH3 (also called GPP34, GMx33, MIDAS, or yeast Vps74p) as a PtdIns(4)P-binding protein that depends upon PtdIns(4)P for its Golgi localization. We further show that GOLPH3 binds the unconventional myosin MYO18A, thus connecting the Golgi to F-actin. We demonstrate that this linkage is necessary for normal Golgi trafficking and morphology. The evidence suggests that GOLPH3 binds to PtdIns(4)P-rich trans-Golgi membranes and MYO18A conveying a tensile force required for efficient tubule and vesicle formation. Consequently, this tensile force stretches the Golgi into the extended ribbon observed by fluorescence microscopy and the familiar flattened form observed by electron microscopy. PMID:19837035

  2. Phosphatidylinositol 4-phosphate 5-kinase α and Vav1 mutual cooperation in CD28-mediated actin remodeling and signaling functions.

    PubMed

    Muscolini, Michela; Camperio, Cristina; Porciello, Nicla; Caristi, Silvana; Capuano, Cristina; Viola, Antonella; Galandrini, Ricciarda; Tuosto, Loretta

    2015-02-01

    Phosphatidylinositol 4,5-biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4(+) T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4-phosphate 5-kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Nishikawa, K; Toker, A; Wong, K; Marignani, P A; Johannes, F J; Cantley, L C

    1998-09-04

    Protein kinase Cmu (PKCmu), also named protein kinase D, is an unusual member of the PKC family that has a putative transmembrane domain and pleckstrin homology domain. This enzyme has a substrate specificity distinct from other PKC isoforms (Nishikawa, K., Toker, A., Johannes, F. J., Songyang, Z., and Cantley, L. C. (1997) J. Biol. Chem. 272, 952-960), and its mechanism of regulation is not yet clear. Here we show that PKCmu forms a complex in vivo with a phosphatidylinositol 4-kinase and a phosphatidylinositol-4-phosphate 5-kinase. A region of PKCmu between the amino-terminal transmembrane domain and the pleckstrin homology domain is shown to be involved in the association with the lipid kinases. Interestingly, a kinase-dead point mutant of PKCmu failed to associate with either lipid kinase activity, indicating that autophosphorylation may be required to expose the lipid kinase interaction domain. Furthermore, the subcellular distribution of the PKCmu-associated lipid kinases to the particulate fraction depends on the presence of the amino-terminal region of PKCmu including the predicted transmembrane region. These results suggest a novel model in which the non-catalytic region of PKCmu acts as a scaffold for assembly of enzymes involved in phosphoinositide synthesis at specific membrane locations.

  4. Phosphatidylinositol 4-phosphate 5-kinase Its3 and calcineurin Ppb1 coordinately regulate cytokinesis in fission yeast.

    PubMed

    Zhang, Y; Sugiura, R; Lu, Y; Asami, M; Maeda, T; Itoh, T; Takenawa, T; Shuntoh, H; Kuno, T

    2000-11-10

    The ppb1(+) gene encodes a fission yeast homologue of the mammalian calcineurin. We have recently shown that Ppb1 is essential for chloride ion homeostasis, and acts antagonistically with Pmk1 mitogen-activated protein kinase pathway. In an attempt to identify genes that share an essential function with calcineurin, we screened for mutations that confer sensitivity to the calcineurin inhibitor FK506 and high temperature, and isolated a mutant, its3-1. its3(+) was shown to be an essential gene encoding a functional homologue of phosphatidylinositol-4-phosphate 5-kinase (PI(4)P5K). The temperature upshift or addition of FK506 induced marked disorganization of actin patches and dramatic increase in the frequency of septation in the its3-1 mutants but not in the wild-type cells. Expression of a green fluorescent protein-tagged Its3 and the phospholipase Cdelta pleckstrin homology domain indicated plasma membrane localization of PI(4)P5K and phosphatidylinositol 4,5-bisphosphate. These green fluorescent protein-tagged proteins were concentrated at the septum of dividing cells, and the mutant Its3 was no longer localized to the plasma membrane. These data suggest that fission yeast PI(4)P5K Its3 functions coordinately with calcineurin and plays a key role in cytokinesis, and that the plasma membrane localization of Its3 is the crucial event in cytokinesis.

  5. Fast receptor-induced formation of glycerophosphoinositol-4-phosphate, a putative novel intracellular messenger in the Ras pathway.

    PubMed Central

    Falasca, M; Carvelli, A; Iurisci, C; Qiu, R G; Symons, M H; Corda, D

    1997-01-01

    Glycerophosphoinositols are phosphoinositide metabolites whose levels are constitutively elevated in Ras-transformed cells. Here, we show that one of these compounds, glycerophosphoinositol-4-phosphate (GroPIns-4-P) responds acutely to the stimulation of the epidermal growth factor receptor, with a fast, massive and transient increase. The mechanism leading to GroPIns-4-P formation involves the activation of phosphoinositide-3 kinase and the small GTP-binding protein Rac, since GroPIns-4-P was neither formed in cells expressing the dominant negative form of Rac nor in cells treated with the phosphoinositide-3 kinase inhibitor wortmannin. GroPIns-4-P has been previously shown to inhibit adenylyl cyclase. Accordingly, epidermal growth factor also decreased the basal, cholera toxin-stimulated, and forskolin-stimulated cyclic AMP levels with kinetics similar to those of GroPIns-4-P formation, suggesting that GroPIns-4-P mediates this inhibitory effect. The hormone-induced formation of GroPIns-4-P was detected in several cell lines of various origin, suggesting that GroPIns-4-P is a novel intracellular messenger of the Ras pathway, possibly able to convey information from tyrosine kinase receptors to the cyclic AMP cascade. PMID:9188097

  6. Phosphatidylinositol 4-phosphate 5-kinase α is induced in ganglioside-stimulated brain astrocytes and contributes to inflammatory responses

    PubMed Central

    Kim, Bokyung; Yoon, Sarah; Kim, Yeon Joo; Liu, Tian; Woo, Joo Hong; Chwae, Yong-Joon; Joe, Eun-hye; Jou, Ilo

    2010-01-01

    In brain tissue, astrocytes play defensive roles in central nervous system integrity by mediating immune responses against pathological conditions. Type I phosphatidylinositol 4-phosphate 5-kinase α (PIP5Kα) that is responsible for production of phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) regulates many important cell functions at the cell surface. Here, we have examined whether PIP5Kα is associated with astrocyte inflammatory responses. Gangliosides are releasable from damaged cell membranes of neurons and capable of inducing inflammatory responses. We found that treatment of primary cultured astrocytes with gangliosides significantly enhanced PIP5Kα mRNA and protein expression levels. PI(4,5)P2 imaging using a fluorescent tubby (R332H) expression as a PI(4,5)P2-specific probe showed that ganglioside treatment increased PI(4,5)P2 level. Interestingly, microRNA-based PIP5Kα knockdown strongly reduced ganglioside-induced transcription of proinflammatory cytokines IL-1β and TNFα. PIP5Kα knockdown also suppressed ganglioside-induced phosphorylation and nuclear translocation of NF-κB and the degradation of IκB-α, indicating that PIP5Kα knockdown interfered with the ganglioside-activated NF-κB signaling. Together, these results suggest that PIP5Kα is a novel inflammatory mediator that undergoes upregulation and contributes to immune responses by facilitating NF-κB activation in ganglioside-stimulated astrocytes. PMID:20720456

  7. Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.

    PubMed

    Rasulov, Bahtijor; Talts, Eero; Kännaste, Astrid; Niinemets, Ülo

    2015-06-01

    Recently, a feedback inhibition of the chloroplastic 1-deoxy-D-xylulose 5-phosphate (DXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux.

  8. Metabolic Engineering of Salmonella Vaccine Bacteria to Boost Human Vγ2Vδ2 T Cell Immunity

    PubMed Central

    Workalemahu, Grefachew; Wang, Hong; Puan, Kia-Joo; Nada, Mohanad H.; Kuzuyama, Tomohisa; Jones, Bradley D.; Jin, Chenggang; Morita, Craig T.

    2014-01-01

    Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing foreign (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a metabolite in the 2-C-methyl-D-erythritol-4-phosphate pathway used by most eubacteria and apicomplexan parasites, and self isopentenyl pyrophosphate, a metabolite in the mevalonate pathway used by humans. Whereas microbial infections elicit prolonged expansion of memory Vγ2Vδ2 T cells, immunization with prenyl pyrophosphates or aminobisphosphonates elicit short-term Vγ2Vδ2 expansion with rapid anergy and deletion upon subsequent immunizations. We hypothesized that a live, attenuated bacterial vaccine that overproduces HMBPP would elicit long lasting Vγ2Vδ2 T cell immunity by mimicking a natural infection. Therefore, we metabolically engineered the avirulent aroA− Salmonella enterica serovar Typhimurium SL7207 strain by deleting the gene for LytB (the downstream enzyme from HMBPP) and functionally complementing for this loss with genes encoding mevalonate pathway enzymes. LytB− Salmonella SL7207 had high HMBPP levels, infected human cells as efficiently as the wild-type bacteria, and stimulated large ex vivo expansions of Vγ2Vδ2 T cells from human donors. Importantly, vaccination of a rhesus monkey with live lytB− Salmonella SL7207 stimulated a prolonged expansion of Vγ2Vδ2 T cells without significant side effects or anergy induction. These studies provide proof-of-principle that metabolic engineering can be used to derive live bacterial vaccines that boost Vγ2Vδ2 T cell immunity. Similar engineering of metabolic pathways to produce lipid Ags or B vitamin metabolite Ags could be used to derive live bacterial vaccine for other unconventional T cells that recognize nonpeptide Ags. PMID:24943221

  9. Metabolic engineering of Salmonella vaccine bacteria to boost human Vγ2Vδ2 T cell immunity.

    PubMed

    Workalemahu, Grefachew; Wang, Hong; Puan, Kia-Joo; Nada, Mohanad H; Kuzuyama, Tomohisa; Jones, Bradley D; Jin, Chenggang; Morita, Craig T

    2014-07-15

    Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing foreign (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a metabolite in the 2-C-methyl-D-erythritol-4-phosphate pathway used by most eubacteria and apicomplexan parasites, and self isopentenyl pyrophosphate, a metabolite in the mevalonate pathway used by humans. Whereas microbial infections elicit prolonged expansion of memory Vγ2Vδ2 T cells, immunization with prenyl pyrophosphates or aminobisphosphonates elicit short-term Vγ2Vδ2 expansion with rapid anergy and deletion upon subsequent immunizations. We hypothesized that a live, attenuated bacterial vaccine that overproduces HMBPP would elicit long-lasting Vγ2Vδ2 T cell immunity by mimicking a natural infection. Therefore, we metabolically engineered the avirulent aroA(-) Salmonella enterica serovar Typhimurium SL7207 strain by deleting the gene for LytB (the downstream enzyme from HMBPP) and functionally complementing for this loss with genes encoding mevalonate pathway enzymes. LytB(-) Salmonella SL7207 had high HMBPP levels, infected human cells as efficiently as did the wild-type bacteria, and stimulated large ex vivo expansions of Vγ2Vδ2 T cells from human donors. Importantly, vaccination of a rhesus monkey with live lytB(-) Salmonella SL7207 stimulated a prolonged expansion of Vγ2Vδ2 T cells without significant side effects or anergy induction. These studies provide proof-of-principle that metabolic engineering can be used to derive live bacterial vaccines that boost Vγ2Vδ2 T cell immunity. Similar engineering of metabolic pathways to produce lipid Ags or B vitamin metabolite Ags could be used to derive live bacterial vaccine for other unconventional T cells that recognize nonpeptide Ags.

  10. Divergent Regulation of Terpenoid Metabolism in the Trichomes of Wild and Cultivated Tomato Species1[W][OA

    PubMed Central

    Besser, Katrin; Harper, Andrea; Welsby, Nicholas; Schauvinhold, Ines; Slocombe, Stephen; Li, Yi; Dixon, Richard A.; Broun, Pierre

    2009-01-01

    The diversification of chemical production in glandular trichomes is important in the development of resistance against pathogens and pests in two species of tomato. We have used genetic and genomic approaches to uncover some of the biochemical and molecular mechanisms that underlie the divergence in trichome metabolism between the wild species Solanum habrochaites LA1777 and its cultivated relative, Solanum lycopersicum. LA1777 produces high amounts of insecticidal sesquiterpene carboxylic acids (SCAs), whereas cultivated tomatoes lack SCAs and are more susceptible to pests. We show that trichomes of the two species have nearly opposite terpenoid profiles, consisting mainly of monoterpenes and low levels of sesquiterpenes in S. lycopersicum and mainly of SCAs and very low monoterpene levels in LA1777. The accumulation patterns of these terpenoids are different during development, in contrast to the developmental expression profiles of terpenoid pathway genes, which are similar in the two species, but they do not correlate in either case with terpenoid accumulation. However, our data suggest that the accumulation of monoterpenes in S. lycopersicum and major sesquiterpenes in LA1777 are linked both genetically and biochemically. Metabolite analyses after targeted gene silencing, inhibitor treatments, and precursor feeding all show that sesquiterpene biosynthesis relies mainly on products from the plastidic 2-C-methyl-d-erythritol-4-phosphate pathway in LA1777 but less so in the cultivated species. Furthermore, two classes of sesquiterpenes produced by the wild species may be synthesized from distinct pools of precursors via cytosolic and plastidial cyclases. However, highly trichome-expressed sesquiterpene cyclase-like enzymes were ruled out as being involved in the production of major LA1777 sesquiterpenes. PMID:18997116

  11. Bisphosphonate Inhibitors Reveal a Large Elasticity of Plastidic Isoprenoid Synthesis Pathway in Isoprene-Emitting Hybrid Aspen1

    PubMed Central

    2015-01-01

    Recently, a feedback inhibition of the chloroplastic 1-deoxy-d-xylulose 5-phosphate (DXP)/2-C-methyl-d-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux. PMID:25926480

  12. Possible cellular regulation schemes of isoprene synthesis and emission under different ambient carbon dioxide levels. (Invited)

    NASA Astrophysics Data System (ADS)

    Noe, S. M.; Schnitzler, J.; Arneth, A.; Monson, R. K.; Niinemets, U.

    2010-12-01

    Research on the effects of higher atmospheric carbon dioxide (CO2) levels on isoprene synthesis and emission leaded to several newly proposed regulation schemes. They can be classified as substrate level control on one side and as energetic cofactor control of the plastidic 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway on the other one. Viewed on a whole cell scale, the precursors of isoprene, such as dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP), can be found in several cellular compartments such as chloroplasts, cytosol and mitochondria. Furthermore, necessary entry points into the isoprene synthesis pathway like phosphoenolpyruvate (PEP) and pyruvate are provided by two processes, photosynthesis and glycolysis, which are as well located in different cellular compartments. These findings imply, that the effect of modulating the isoprene emission under high levels of atmospheric CO2 have to take transport over membranes, possible concurrent pathways, i.e. Shikimi acid pathway or anaplerotic metabolism reactions and the availability of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) on a cellular scale into account. In this modeling study we applied box models that include several facets of the proposed regulation and transport schemes. The models have been set up such that at least two cellular compartments, chloroplast and cytosol are taken into account. The boxes itself represent metabolites and several possible regulation schemes have been realized by the formulation of rate equations between those metabolite pools. As many intermediates are not readily available as measured values, the models aim to build a set of tools to simulate possible regulatory schemes and provide parameter estimations for key processes. Inverse modeling techniques allow to assess certain parameter ranges within the proposed regulation schemes by fitting the models to data on isoprene emission and photosynthesis under

  13. De novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways.

    PubMed

    Mantello, Camila Campos; Cardoso-Silva, Claudio Benicio; da Silva, Carla Cristina; de Souza, Livia Moura; Scaloppi Junior, Erivaldo José; de Souza Gonçalves, Paulo; Vicentini, Renato; de Souza, Anete Pereira

    2014-01-01

    Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection.

  14. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle) Johnston

    PubMed Central

    2010-01-01

    Background Geranyl pyrophosphate (GPP) and p-hydroxybenzoate (PHB) are the basic precursors involved in shikonins biosynthesis. GPP is derived from mevalonate (MVA) and/or 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway(s), depending upon the metabolite and the plant system under consideration. PHB, however, is synthesized by only phenylpropanoid (PP) pathway. GPP and PHB are central moieties to yield shikonins through the synthesis of m-geranyl-p-hydroxybenzoate (GHB). Enzyme p-hydroxybenzoate-m-geranyltransferase (PGT) catalyses the coupling of GPP and PHB to yield GHB. The present research was carried out in shikonins yielding plant arnebia [Arnebia euchroma (Royle) Johnston], wherein no molecular work has been reported so far. The objective of the work was to identify the preferred GPP synthesizing pathway for shikonins biosynthesis, and to determine the regulatory genes involved in the biosynthesis of GPP, PHB and GHB. Results A cell suspension culture-based, low and high shikonins production systems were developed to facilitate pathway identification and finding the regulatory gene. Studies with mevinolin and fosmidomycin, inhibitors of MVA and MEP pathway, respectively suggested MVA as a preferred route of GPP supply for shikonins biosynthesis in arnebia. Accordingly, genes of MVA pathway (eight genes), PP pathway (three genes), and GHB biosynthesis were cloned. Expression studies showed down-regulation of all the genes in response to mevinolin treatment, whereas gene expression was not influenced by fosmidomycin. Expression of all the twelve genes vis-à-vis shikonins content in low and high shikonins production system, over a period of twelve days at frequent intervals, identified critical genes of shikonins biosynthesis in arnebia. Conclusion A positive correlation between shikonins content and expression of 3-hydroxy-3-methylglutaryl-CoA reductase (AeHMGR) and AePGT suggested critical role played by these genes in shikonins biosynthesis. Higher

  15. Alteration of the flexible loop in 1-deoxy-D-xylulose-5-phosphate reductoisomerase boosts enthalpy-driven inhibition by fosmidomycin.

    PubMed

    Kholodar, Svetlana A; Tombline, Gregory; Liu, Juan; Tan, Zhesen; Allen, C Leigh; Gulick, Andrew M; Murkin, Andrew S

    2014-06-03

    1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), which catalyzes the first committed step in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis used by Mycobacterium tuberculosis and other infectious microorganisms, is absent in humans and therefore an attractive drug target. Fosmidomycin is a nanomolar inhibitor of DXR, but despite great efforts, few analogues with comparable potency have been developed. DXR contains a strictly conserved residue, Trp203, within a flexible loop that closes over and interacts with the bound inhibitor. We report that while mutation to Ala or Gly abolishes activity, mutation to Phe and Tyr only modestly impacts kcat and Km. Moreover, pre-steady-state kinetics and primary deuterium kinetic isotope effects indicate that while turnover is largely limited by product release for the wild-type enzyme, chemistry is significantly more rate-limiting for W203F and W203Y. Surprisingly, these mutants are more sensitive to inhibition by fosmidomycin, resulting in Km/Ki ratios up to 19-fold higher than that of wild-type DXR. In agreement, isothermal titration calorimetry revealed that fosmidomycin binds up to 11-fold more tightly to these mutants. Most strikingly, mutation strongly tips the entropy-enthalpy balance of total binding energy from 50% to 75% and 91% enthalpy in W203F and W203Y, respectively. X-ray crystal structures suggest that these enthalpy differences may be linked to differences in hydrogen bond interactions involving a water network connecting fosmidomycin's phosphonate group to the protein. These results confirm the importance of the flexible loop, in particular Trp203, in ligand binding and suggest that improved inhibitor affinity may be obtained against the wild-type protein by introducing interactions with this loop and/or the surrounding structured water network.

  16. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire.

    PubMed

    Dimova, Tanya; Brouwer, Margreet; Gosselin, Françoise; Tassignon, Joël; Leo, Oberdan; Donner, Catherine; Marchant, Arnaud; Vermijlen, David

    2015-02-10

    γδ T cells are unconventional T cells recognizing antigens via their γδ T-cell receptor (TCR) in a way that is fundamentally different from conventional αβ T cells. γδ T cells usually are divided into subsets according the type of Vγ and/or Vδ chain they express in their TCR. T cells expressing the TCR containing the γ-chain variable region 9 and the δ-chain variable region 2 (Vγ9Vδ2 T cells) are the predominant γδ T-cell subset in human adult peripheral blood. The current thought is that this predominance is the result of the postnatal expansion of cells expressing particular complementary-determining region 3 (CDR3) in response to encounters with microbes, especially those generating phosphoantigens derived from the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid synthesis. However, here we show that, rather than requiring postnatal microbial exposure, Vγ9Vδ2 T cells are the predominant blood subset in the second-trimester fetus, whereas Vδ1(+) and Vδ3(+) γδ T cells are present only at low frequencies at this gestational time. Fetal blood Vγ9Vδ2 T cells are phosphoantigen responsive and display very limited diversity in the CDR3 of the Vγ9 chain gene, where a germline-encoded sequence accounts for >50% of all sequences, in association with a prototypic CDR3δ2. Furthermore, these fetal blood Vγ9Vδ2 T cells are functionally preprogrammed (e.g., IFN-γ and granzymes-A/K), with properties of rapidly activatable innatelike T cells. Thus, enrichment for phosphoantigen-responsive effector T cells has occurred within the fetus before postnatal microbial exposure. These various characteristics have been linked in the mouse to the action of selecting elements and would establish a much stronger parallel between human and murine γδ T cells than is usually articulated.

  17. Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis.

    PubMed

    Xing, Shufan; Miao, Jin; Li, Shuang; Qin, Genji; Tang, Si; Li, Haoni; Gu, Hongya; Qu, Li-Jia

    2010-06-01

    1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is an important enzyme involved in the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway which provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the role of the MEP pathway in plant development and metabolism, we carried out detailed analyses on a dxr mutant (GK_215C01) and two DXR transgenic co-suppression lines, OX-DXR-L2 and OX-DXR-L7. We found that the dxr mutant was albino and dwarf. It never bolted, had significantly reduced number of trichomes and most of the stomata could not close normally in the leaves. The two co-suppression lines produced more yellow inflorescences and albino sepals with no trichomes. The transcription levels of genes involved in trichome initiation were found to be strongly affected, including GLABRA1, TRANSPARENT TESTA GLABROUS 1, TRIPTYCHON and SPINDLY, expression of which is regulated by gibberellic acids (GAs). Exogenous application of GA(3) could partially rescue the dwarf phenotype and the trichome initiation of dxr, whereas exogenous application of abscisic acid (ABA) could rescue the stomata closure defect, suggesting that lower levels of both GA and ABA contribute to the phenotype in the dxr mutants. We further found that genes involved in the biosynthetic pathways of GA and ABA were coordinately regulated. These results indicate that disruption of the plastidial MEP pathway leads to biosynthetic deficiency of photosynthetic pigments, GAs and ABA, and thus the developmental abnormalities, and that the flux from the cytoplasmic mevalonate pathway is not sufficient to rescue the deficiency caused by the blockage of the plastidial MEP pathway. These results reveal a critical role for the MEP biosynthetic pathway in controlling the biosynthesis of isoprenoids.

  18. Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomato species.

    PubMed

    Besser, Katrin; Harper, Andrea; Welsby, Nicholas; Schauvinhold, Ines; Slocombe, Stephen; Li, Yi; Dixon, Richard A; Broun, Pierre

    2009-01-01

    The diversification of chemical production in glandular trichomes is important in the development of resistance against pathogens and pests in two species of tomato. We have used genetic and genomic approaches to uncover some of the biochemical and molecular mechanisms that underlie the divergence in trichome metabolism between the wild species Solanum habrochaites LA1777 and its cultivated relative, Solanum lycopersicum. LA1777 produces high amounts of insecticidal sesquiterpene carboxylic acids (SCAs), whereas cultivated tomatoes lack SCAs and are more susceptible to pests. We show that trichomes of the two species have nearly opposite terpenoid profiles, consisting mainly of monoterpenes and low levels of sesquiterpenes in S. lycopersicum and mainly of SCAs and very low monoterpene levels in LA1777. The accumulation patterns of these terpenoids are different during development, in contrast to the developmental expression profiles of terpenoid pathway genes, which are similar in the two species, but they do not correlate in either case with terpenoid accumulation. However, our data suggest that the accumulation of monoterpenes in S. lycopersicum and major sesquiterpenes in LA1777 are linked both genetically and biochemically. Metabolite analyses after targeted gene silencing, inhibitor treatments, and precursor feeding all show that sesquiterpene biosynthesis relies mainly on products from the plastidic 2-C-methyl-d-erythritol-4-phosphate pathway in LA1777 but less so in the cultivated species. Furthermore, two classes of sesquiterpenes produced by the wild species may be synthesized from distinct pools of precursors via cytosolic and plastidial cyclases. However, highly trichome-expressed sesquiterpene cyclase-like enzymes were ruled out as being involved in the production of major LA1777 sesquiterpenes.

  19. Function of AP2/ERF Transcription Factors Involved in the Regulation of Specialized Metabolism in Ophiorrhiza pumila Revealed by Transcriptomics and Metabolomics

    PubMed Central

    Udomsom, Nirin; Rai, Amit; Suzuki, Hideyuki; Okuyama, Jun; Imai, Ryosuke; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Yamazaki, Mami

    2016-01-01

    The hairy roots (HR) of Ophiorrhiza pumila produce camptothecin (CPT), a monoterpenoid indole alkaloid used as a precursor in the synthesis of chemotherapeutic drugs. O. pumila HR culture is considered as a promising alternative source of CPT, however, the knowledge about the biosynthetic pathway and regulatory mechanism is still limited. In this study, five genes that encode AP2/ERF transcription factors, namely OpERF1–OpERF5, were isolated from HR of O. pumila. Phylogenetic analysis of AP2/ERF protein sequences suggested the close evolutionary relationship of OpERF1 with stress-responsive ERF factors in Arabidopsis and of OpERF2 with ERF factors reported to regulate alkaloid production, such as ORCA3 in Catharanthus roseus, NIC2 locus ERF in tobacco, and JRE4 in tomato. We generated the transgenic HR lines of O. pumila, ERF1i and ERF2i, in which the expression of OpERF1 and OpERF2, respectively, was suppressed using RNA interference technique. The transcriptome and metabolome of these suppressed HR were analyzed for functional characterization of OpERF1 and OpERF2. Although significant changes were not observed in the metabolome, including CPT and related compounds, the suppression of OpERF2 resulted in reduced expression of genes in the 2-C-methyl-d-erythritol 4-phosphate and secologanin-strictosidine pathways, which supply a precursor, strictosidine, for CPT biosynthesis. Furthermore, while it was not conclusive for OpERF1, enrichment analysis of differentially expressed genes in the suppressed HR showed that the gene ontology terms for oxidation-reduction, presumably involved in secondary metabolite pathways, were enriched in the ERF2i downregulated gene set. These results suggest a positive role of OpERF2 in regulating specialized metabolism in O. pumila. PMID:28018397

  20. De Novo Assembly and Transcriptome Analysis of the Rubber Tree (Hevea brasiliensis) and SNP Markers Development for Rubber Biosynthesis Pathways

    PubMed Central

    Mantello, Camila Campos; Cardoso-Silva, Claudio Benicio; da Silva, Carla Cristina; de Souza, Livia Moura; Scaloppi Junior, Erivaldo José; de Souza Gonçalves, Paulo; Vicentini, Renato; de Souza, Anete Pereira

    2014-01-01

    Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection. PMID:25048025

  1. Tumor Antivascular Effects of Radiotherapy Combined with Combretastatin A4 Phosphate in Human Non-Small-Cell Lung Cancer

    SciTech Connect

    Ng, Q.-S.; Goh, Vicky; Carnell, Dawn; Meer, Khalda; Padhani, Anwar R.; Saunders, Michele I.; Hoskin, Peter J. . E-mail: peterhoskin@nhs.net

    2007-04-01

    Purpose: The tumor vascular effects of radiotherapy and subsequent administration of the vascular disrupting agent combretastatin A4 phosphate (CA4P) were studied in patients with advanced non-small-cell lung cancer using volumetric dynamic contrast-enhanced computed tomography (CT). Patients and Methods: Following ethical committee approval and informed consent, 8 patients receiving palliative radiotherapy (27 Gy in six fractions, twice weekly) also received CA4P (50 mg/m{sup 2}) after the second fraction of radiotherapy. Changes in dynamic CT parameters of tumor blood volume (BV) and permeability surface area product (PS) were measured for the whole tumor volume, tumor rim, and center after radiotherapy alone and after radiotherapy in combination with CA4P. Results: After the second fraction of radiotherapy, 6 of the 8 patients showed increases in tumor PS (23.6%, p = 0.011). Four hours after CA4P, a reduction in tumor BV (22.9%, p < 0.001) was demonstrated in the same 6 patients. Increase in PS after radiotherapy correlated with reduction in BV after CA4P (r = 0.77, p = 0.026). At 72 h after CA4P, there was a sustained reduction in tumor BV of 29.4% (p < 0.001). Both increase in PS after radiotherapy and reduction in BV after CA4P were greater at the rim of the tumor. The BV reduction at the rim was sustained to 72 h (51.4%, p 0.014). Conclusion: Radiotherapy enhances the tumor antivascular activity of CA4P in human non-small-cell lung cancer, resulting in sustained tumor vascular shutdown.

  2. Molecular Basis of Phosphatidylinositol 4-Phosphate and ARF1 GTPase Recognition by the FAPP1 Pleckstrin Homology (PH) Domain

    SciTech Connect

    He, J.; Heroux, A.; Scott, J. L.; Roy, S.; Lenoir, M.; Overduin, M.; Stahelin, R. V.; Kutateladze, T. G.

    2011-05-27

    Four-phosphate-adaptor protein 1 (FAPP1) regulates secretory transport from the trans-Golgi network (TGN) to the plasma membrane. FAPP1 is recruited to the Golgi through binding of its pleckstrin homology (PH) domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). Despite the critical role of FAPP1 in membrane trafficking, the molecular basis of its dual function remains unclear. Here, we report a 1.9 {angstrom} resolution crystal structure of the FAPP1 PH domain and detail the molecular mechanisms of the PtdIns(4)P and ARF1 recognition. The FAPP1 PH domain folds into a seven-stranded {beta}-barrel capped by an {alpha}-helix at one edge, whereas the opposite edge is flanked by three loops and the {beta}4 and {beta}7 strands that form a lipid-binding pocket within the {beta}-barrel. The ARF1-binding site is located on the outer side of the {beta}-barrel as determined by NMR resonance perturbation analysis, mutagenesis, and measurements of binding affinities. The two binding sites have little overlap, allowing FAPP1 PH to associate with both ligands simultaneously and independently. Binding to PtdIns(4)P is enhanced in an acidic environment and is required for membrane penetration and tubulation activity of FAPP1, whereas the GTP-bound conformation of the GTPase is necessary for the interaction with ARF1. Together, these findings provide structural and biochemical insight into the multivalent membrane anchoring by the PH domain that may augment affinity and selectivity of FAPP1 toward the TGN membranes enriched in both PtdIns(4)P and GTP-bound ARF1.

  3. Molecular basis of phosphatidylinositol 4-phosphate and ARF1 GTPase recognition by the FAPP1 pleckstrin homology (PH) domain.

    PubMed

    He, Ju; Scott, Jordan L; Heroux, Annie; Roy, Siddhartha; Lenoir, Marc; Overduin, Michael; Stahelin, Robert V; Kutateladze, Tatiana G

    2011-05-27

    Four-phosphate-adaptor protein 1 (FAPP1) regulates secretory transport from the trans-Golgi network (TGN) to the plasma membrane. FAPP1 is recruited to the Golgi through binding of its pleckstrin homology (PH) domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). Despite the critical role of FAPP1 in membrane trafficking, the molecular basis of its dual function remains unclear. Here, we report a 1.9 Å resolution crystal structure of the FAPP1 PH domain and detail the molecular mechanisms of the PtdIns(4)P and ARF1 recognition. The FAPP1 PH domain folds into a seven-stranded β-barrel capped by an α-helix at one edge, whereas the opposite edge is flanked by three loops and the β4 and β7 strands that form a lipid-binding pocket within the β-barrel. The ARF1-binding site is located on the outer side of the β-barrel as determined by NMR resonance perturbation analysis, mutagenesis, and measurements of binding affinities. The two binding sites have little overlap, allowing FAPP1 PH to associate with both ligands simultaneously and independently. Binding to PtdIns(4)P is enhanced in an acidic environment and is required for membrane penetration and tubulation activity of FAPP1, whereas the GTP-bound conformation of the GTPase is necessary for the interaction with ARF1. Together, these findings provide structural and biochemical insight into the multivalent membrane anchoring by the PH domain that may augment affinity and selectivity of FAPP1 toward the TGN membranes enriched in both PtdIns(4)P and GTP-bound ARF1.

  4. Synthesis of unsaturated phosphatidylinositol 4-phosphates and the effects of substrate unsaturation on SopB phosphatase activity.

    PubMed

    Furse, Samuel; Mak, LokHang; Tate, Edward W; Templer, Richard H; Ces, Oscar; Woscholski, Rüdiger; Gaffney, Piers R J

    2015-02-21

    In this paper evidence is presented that the fatty acid component of an inositide substrate affects the kinetic parameters of the lipid phosphatase Salmonella Outer Protein B (SopB). A succinct route was used to prepare the naturally occurring enantiomer of phosphatidylinositol 4-phosphate (PI-4-P) with saturated, as well as singly, triply and quadruply unsaturated, fatty acid esters, in four stages: (1) The enantiomers of 2,3:5,6-O-dicyclohexylidene-myo-inositol were resolved by crystallisation of their di(acetylmandelate) diastereoisomers. (2) The resulting diol was phosphorylated regio-selectively exclusively on the 1-O using the new reagent tri(2-cyanoethyl)phosphite. (3) With the 4-OH still unprotected, the glyceride was coupled using phosphate tri-ester methodology. (4) A final phosphorylation of the 4-O, followed by global deprotection under basic then acidic conditions, provided PI-4-P bearing a range of sn-1-stearoyl, sn-2-stearoyl, -oleoyl, -γ-linolenoyl and arachidonoyl, glycerides. Enzymological studies showed that the introduction of cis-unsaturated bonds has a measurable influence on the activity (relative Vmax) of SopB. Mono-unsaturated PI-4-P exhibited a five-fold higher activity, with a two-fold higher KM, over the saturated substrate, when presented in DOPC vesicles. Poly-unsaturated PI-4-P showed little further change with respect to the singly unsaturated species. This result, coupled with our previous report that saturated PI-4-P has much higher stored curvature elastic stress than PI, supports the hypothesis that the activity of inositide phosphatase SopB has a physical role in vivo.

  5. Local control of phosphatidylinositol 4-phosphate signaling in the Golgi apparatus by Vps74 and Sac1 phosphoinositide phosphatase

    PubMed Central

    Wood, Christopher S.; Hung, Chia-Sui; Huoh, Yu-San; Mousley, Carl J.; Stefan, Christopher J.; Bankaitis, Vytas; Ferguson, Kathryn M.; Burd, Christopher G.

    2012-01-01

    In the Golgi apparatus, lipid homeostasis pathways are coordinated with the biogenesis of cargo transport vesicles by phosphatidylinositol 4-kinases (PI4Ks) that produce phosphatidylinositol 4-phosphate (PtdIns4P), a signaling molecule that is recognized by downstream effector proteins. Quantitative analysis of the intra-Golgi distribution of a PtdIns4P reporter protein confirms that PtdIns4P is enriched on the trans-Golgi cisterna, but surprisingly, Vps74 (the orthologue of human GOLPH3), a PI4K effector required to maintain residence of a subset of Golgi proteins, is distributed with the opposite polarity, being most abundant on cis and medial cisternae. Vps74 binds directly to the catalytic domain of Sac1 (KD = 3.8 μM), the major PtdIns4P phosphatase in the cell, and PtdIns4P is elevated on medial Golgi cisternae in cells lacking Vps74 or Sac1, suggesting that Vps74 is a sensor of PtdIns4P level on medial Golgi cisternae that directs Sac1-mediated dephosphosphorylation of this pool of PtdIns4P. Consistent with the established role of Sac1 in the regulation of sphingolipid biosynthesis, complex sphingolipid homeostasis is perturbed in vps74Δ cells. Mutant cells lacking complex sphingolipid biosynthetic enzymes fail to properly maintain residence of a medial Golgi enzyme, and cells lacking Vps74 depend critically on complex sphingolipid biosynthesis for growth. The results establish additive roles of Vps74-mediated and sphingolipid-dependent sorting of Golgi residents. PMID:22553352

  6. skittles, a Drosophila phosphatidylinositol 4-phosphate 5-kinase, is required for cell viability, germline development and bristle morphology, but not for neurotransmitter release.

    PubMed

    Hassan, B A; Prokopenko, S N; Breuer, S; Zhang, B; Paululat, A; Bellen, H J

    1998-12-01

    The phosphatidylinositol pathway is implicated in the regulation of numerous cellular functions and responses to extracellular signals. An important branching point in the pathway is the phosphorylation of phosphatidylinositol 4-phosphate by the phosphatidylinositol 4-phosphate 5-kinase (PIP5K) to generate the second messenger phosphatidylinositol 4,5-bis-phosphate (PIP2). PIP5K and PIP2 have been implicated in signal transduction, cytoskeletal regulation, DNA synthesis, and vesicular trafficking. We have cloned and generated mutations in a Drosophila PIP5K type I (skittles). Our analysis indicates that skittles is required for cell viability, germline development, and the proper structural development of sensory bristles. Surprisingly, we found no evidence for PIP5KI involvement in neural secretion.

  7. skittles, a Drosophila phosphatidylinositol 4-phosphate 5-kinase, is required for cell viability, germline development and bristle morphology, but not for neurotransmitter release.

    PubMed Central

    Hassan, B A; Prokopenko, S N; Breuer, S; Zhang, B; Paululat, A; Bellen, H J

    1998-01-01

    The phosphatidylinositol pathway is implicated in the regulation of numerous cellular functions and responses to extracellular signals. An important branching point in the pathway is the phosphorylation of phosphatidylinositol 4-phosphate by the phosphatidylinositol 4-phosphate 5-kinase (PIP5K) to generate the second messenger phosphatidylinositol 4,5-bis-phosphate (PIP2). PIP5K and PIP2 have been implicated in signal transduction, cytoskeletal regulation, DNA synthesis, and vesicular trafficking. We have cloned and generated mutations in a Drosophila PIP5K type I (skittles). Our analysis indicates that skittles is required for cell viability, germline development, and the proper structural development of sensory bristles. Surprisingly, we found no evidence for PIP5KI involvement in neural secretion. PMID:9832529

  8. Eps15 homology domain 1-associated tubules contain phosphatidylinositol-4-phosphate and phosphatidylinositol-(4,5)-bisphosphate and are required for efficient recycling.

    PubMed

    Jović, Marko; Kieken, Fabien; Naslavsky, Naava; Sorgen, Paul L; Caplan, Steve

    2009-06-01

    The C-terminal Eps15 homology domain (EHD) 1/receptor-mediated endocytosis-1 protein regulates recycling of proteins and lipids from the recycling compartment to the plasma membrane. Recent studies have provided insight into the mode by which EHD1-associated tubular membranes are generated and the mechanisms by which EHD1 functions. Despite these advances, the physiological function of these striking EHD1-associated tubular membranes remains unknown. Nuclear magnetic resonance spectroscopy demonstrated that the Eps15 homology (EH) domain of EHD1 binds to phosphoinositides, including phosphatidylinositol-4-phosphate. Herein, we identify phosphatidylinositol-4-phosphate as an essential component of EHD1-associated tubules in vivo. Indeed, an EHD1 EH domain mutant (K483E) that associates exclusively with punctate membranes displayed decreased binding to phosphatidylinositol-4-phosphate and other phosphoinositides. Moreover, we provide evidence that although the tubular membranes to which EHD1 associates may be stabilized and/or enhanced by EHD1 expression, these membranes are, at least in part, pre-existing structures. Finally, to underscore the function of EHD1-containing tubules in vivo, we used a small interfering RNA (siRNA)/rescue assay. On transfection, wild-type, tubule-associated, siRNA-resistant EHD1 rescued transferrin and beta1 integrin recycling defects observed in EHD1-depleted cells, whereas expression of the EHD1 K483E mutant did not. We propose that phosphatidylinositol-4-phosphate is an essential component of EHD1-associated tubules that also contain phosphatidylinositol-(4,5)-bisphosphate and that these structures are required for efficient recycling to the plasma membrane.

  9. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  10. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  11. Effect of sucrose, erythrose-4-phosphate and phenylalanine on biomassa and flavonoid content of callus culture from leaves of Gynura procumbens Merr.

    NASA Astrophysics Data System (ADS)

    Nurisa, Aryana; Kristanti, Alfinda Novi; Manuhara, Yosephine Sri Wulan

    2017-08-01

    The aims of this study were to know the effect of concentration of sucrose, erythrose-4-phosphate and phenylalanine on biomass and flavonoid content of callus cultures from leaves of sambung nyawa (Gynura procumbens Merr.). This study was experimental research with complete randomized design. Callus induction was treated in MS medium supplemented with NAA 2 mg/L, BAP 1 mg/L and sucrose concentration (10 g/L, 30 g/L and 50 g/L) respectively were combined with erythrose-4-phosphate (0 µM, 2,5 µM and 5 µM) and phenylalanine (0 mg/L, 2 mg/L and 3 mg/L), each treatment were repeated four times. After six weeks of culture, fresh and dry weight of calli were measured and extracted with ethanol absolut. Crude extract ethanolic of callus was analyzed used by a modified colorimetric with spectrophotometer method. The best yield of calli biomass (0,672 ± 0,112 gram of fresh weight and 0,033 ± 0,009 gram of dry weight) was obtained in treatment of 30 g/L sucrose of and 5 µM erythrose-4-phosphate. The highest total flavonoid content was obtained of calli treated with 30 g/L of sucrose and 3 mg/L of phenylalanine (3633,4 ppm quercetin/gram dry weight and 15777,8 ppm kaempferol/gram dry weight).

  12. Hybrid polyketide synthases

    DOEpatents

    Fortman, Jeffrey L.; Hagen, Andrew; Katz, Leonard; Keasling, Jay D.; Poust, Sean; Zhang, Jingwei; Zotchev, Sergey

    2016-05-10

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an even-chain or odd-chain diacid or lactam or diamine. The present invention also provides for a host cell comprising the PKS and when cultured produces the even-chain diacid, odd-chain diacid, or KAPA. The present invention also provides for a host cell comprising the PKS capable of synthesizing a pimelic acid or KAPA, and when cultured produces biotin.

  13. Experimental and computational active site mapping as a starting point to fragment-based lead discovery.

    PubMed

    Behnen, Jürgen; Köster, Helene; Neudert, Gerd; Craan, Tobias; Heine, Andreas; Klebe, Gerhard

    2012-02-06

    Small highly soluble probe molecules such as aniline, urea, N-methylurea, 2-bromoacetate, 1,2-propanediol, nitrous oxide, benzamidine, and phenol were soaked into crystals of various proteins to map their binding pockets and to detect hot spots of binding with respect to hydrophobic and hydrophilic properties. The selected probe molecules were first tested at the zinc protease thermolysin. They were then applied to a wider range of proteins such as protein kinase A, D-xylose isomerase, 4-diphosphocytidyl-2C-methyl-D-erythritol synthase, endothiapepsin, and secreted aspartic protease 2. The crystal structures obtained clearly show that the probe molecules populate the protein binding pockets in an ordered fashion. The thus characterized, experimentally observed hot spots of binding were subjected to computational active site mapping using HotspotsX. This approach uses knowledge-based pair potentials to detect favorable binding positions for various atom types. Good agreement between the in silico hot spot predictions and the experimentally observed positions of the polar hydrogen bond forming functional groups and hydrophobic portions was obtained. Finally, we compared the observed poses of the small-molecule probes with those of much larger structurally related ligands. They coincide remarkably well with the larger ligands, considering their spatial orientation and the experienced interaction patterns. This observation confirms the fundamental hypothesis of fragment-based lead discovery: that binding poses, even of very small molecular probes, do not significantly deviate or move once a ligand is grown further into the binding site. This underscores the fact that these probes populate given hot spots and can be regarded as relevant seeds for further design.

  14. Improved Squalene Production via Modulation of the Methylerythritol 4-Phosphate Pathway and Heterologous Expression of Genes from Streptomyces peucetius ATCC 27952 in Escherichia coli▿ †

    PubMed Central

    Ghimire, Gopal Prasad; Lee, Hei Chan; Sohng, Jae Kyung

    2009-01-01

    Putative hopanoid genes from Streptomyces peucetius were introduced into Escherichia coli to improve the production of squalene, an industrially important compound. High expression of hopA and hopB (encoding squalene/phytoene synthases) together with hopD (encoding farnesyl diphosphate synthase) yielded 4.1 mg/liter of squalene. This level was elevated to 11.8 mg/liter when there was also increased expression of dxs and idi, E. coli genes encoding 1-deoxy-d-xylulose 5-phosphate synthase and isopentenyl diphosphate isomerase. PMID:19767465

  15. Mammalian Ceramide Synthases

    PubMed Central

    Levy, Michal; Futerman, Anthony H.

    2010-01-01

    Summary In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their stucture and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases. PMID:20222015

  16. Mammalian ceramide synthases.

    PubMed

    Levy, Michal; Futerman, Anthony H

    2010-05-01

    In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their structure and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases.

  17. Monoterpene synthases from common sage (Salvia officinalis)

    DOEpatents

    Croteau, Rodney Bruce; Wise, Mitchell Lynn; Katahira, Eva Joy; Savage, Thomas Jonathan

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  18. In Planta Recapitulation of Isoprene Synthases Evolution from Ocimene Synthases.

    PubMed

    Li, Mingai; Xu, Jia; Algarra Alarcon, Alberto; Carlin, Silvia; Barbaro, Enrico; Cappellin, Luca; Velikova, Violeta; Vrhovsek, Urska; Loreto, Francesco; Varotto, Claudio

    2017-06-16

    Isoprene is the most abundant biogenic volatile hydrocarbon compound naturally emitted by plants and plays a major role in atmospheric chemistry. It has been proposed that isoprene synthases (IspS) may readily evolve from other terpene synthases, but this hypothesis has not been experimentally investigated.We isolated and functionally validated in Arabidopsis the first isoprene synthase gene, AdoIspS, from a monocotyledonous species (Arundo donax L., Poaceae). Phylogenetic reconstruction indicates that AdoIspS and dicots isoprene synthases most likely originated by parallel evolution from TPS-b monoterpene synthases. Site-directed mutagenesis demonstrated in vivo the functional and evolutionary relevance of the residues considered diagnostic for IspS function. One of these positions was identified by saturating mutagenesis as a major determinant of substrate specificity in AdoIspS able to cause in vivo a dramatic change in total volatile emission from hemi- to monoterpenes and supporting evolution of isoprene synthases from ocimene synthases. The mechanism responsible for IspS neofunctionalization by active site size modulation by a single amino acid mutation demonstrated in this study might be general, as the very same amino acidic position is implicated in the parallel evolution of different short-chain terpene synthases from both angiosperms and gymnosperms.Based on these results, we present a model reconciling in a unified conceptual framework the apparently contrasting patterns previously observed for isoprene synthase evolution in plants. These results indicate that parallel evolution may be driven by relatively simple biophysical constraints, and illustrate the intimate molecular evolutionary links between the structural and functional bases of traits with global relevance. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Mechanisms of acetohydroxyacid synthases.

    PubMed

    Chipman, David M; Duggleby, Ronald G; Tittmann, Kai

    2005-10-01

    Acetohydroxyacid synthases are thiamin diphosphate- (ThDP-) dependent biosynthetic enzymes found in all autotrophic organisms. Over the past 4-5 years, their mechanisms have been clarified and illuminated by protein crystallography, engineered mutagenesis and detailed single-step kinetic analysis. Pairs of catalytic subunits form an intimate dimer containing two active sites, each of which lies across a dimer interface and involves both monomers. The ThDP adducts of pyruvate, acetaldehyde and the product acetohydroxyacids can be detected quantitatively after rapid quenching. Determination of the distribution of intermediates by NMR then makes it possible to calculate individual forward unimolecular rate constants. The enzyme is the target of several herbicides and structures of inhibitor-enzyme complexes explain the herbicide-enzyme interaction.

  20. Isolation of streptococcal hyaluronate synthase.

    PubMed

    Prehm, P; Mausolf, A

    1986-05-01

    Hyaluronate synthase was isolated from protoblast membranes of streptococci by Triton X-114 extraction and cetylpyridinium chloride precipitation. It was identified as a 52,000-Mr protein, which bound to nascent hyaluronate and was affinity-labelled by periodate-oxidized UDP-glucuronic acid and UDP-N-acetylglucosamine. Antibodies directed against the 52,000-Mr protein inhibited hyaluronate synthesis. Mutants defective in hyaluronate synthase activity lacked the 52,000-Mr protein in membrane extracts. Synthase activity was solubilized from membranes by cholate in active form and purified by ion-exchange chromatography.

  1. Isolation of streptococcal hyaluronate synthase.

    PubMed Central

    Prehm, P; Mausolf, A

    1986-01-01

    Hyaluronate synthase was isolated from protoblast membranes of streptococci by Triton X-114 extraction and cetylpyridinium chloride precipitation. It was identified as a 52,000-Mr protein, which bound to nascent hyaluronate and was affinity-labelled by periodate-oxidized UDP-glucuronic acid and UDP-N-acetylglucosamine. Antibodies directed against the 52,000-Mr protein inhibited hyaluronate synthesis. Mutants defective in hyaluronate synthase activity lacked the 52,000-Mr protein in membrane extracts. Synthase activity was solubilized from membranes by cholate in active form and purified by ion-exchange chromatography. Images Fig. 1. Fig. 2. PMID:3092808

  2. Phosphanilic Acid Inhibits Dihydropteroate Synthase

    DTIC Science & Technology

    1989-11-01

    dihydropteroate synthases of P. aeruginosa and E . coli were about equally susceptible to inhibition by PA. These results suggest that cells of P. aeruginosa...are more permeable to PA than cells of E . coli . Although a weak inhibitor, PA acted on dihydropteroate synthase in the same manner as the sulfonamides...with which PA is structurally related. Inhibition of E . coli by PA in a basal salts-glucose medium was prevented by p-aminobenzoic acid (pABA). However

  3. Bacterial nitric oxide synthases.

    PubMed

    Crane, Brian R; Sudhamsu, Jawahar; Patel, Bhumit A

    2010-01-01

    Nitric oxide synthases (NOSs) are multidomain metalloproteins first identified in mammals as being responsible for the synthesis of the wide-spread signaling and protective agent nitric oxide (NO). Over the past 10 years, prokaryotic proteins that are homologous to animal NOSs have been identified and characterized, both in terms of enzymology and biological function. Despite some interesting differences in cofactor utilization and redox partners, the bacterial enzymes are in many ways similar to their mammalian NOS (mNOS) counterparts and, as such, have provided insight into the structural and catalytic properties of the NOS family. In particular, spectroscopic studies of thermostable bacterial NOSs have revealed key oxyheme intermediates involved in the oxidation of substrate L-arginine (Arg) to product NO. The biological functions of some bacterial NOSs have only more recently come to light. These studies disclose new roles for NO in biology, such as taking part in toxin biosynthesis, protection against oxidative stress, and regulation of recovery from radiation damage.

  4. Studies on the nonmevalonate pathway to terpenes: The role of the GcpE (IspG) protein

    PubMed Central

    Hecht, Stefan; Eisenreich, Wolfgang; Adam, Petra; Amslinger, Sabine; Kis, Klaus; Bacher, Adelbert; Arigoni, Duilio; Rohdich, Felix

    2001-01-01

    Recombinant Escherichia coli cells engineered for the expression of the xylB gene in conjunction with genes of the nonmevalonate pathway were supplied with 13C-labeled 1-deoxy-d-xylulose. Cell extracts were analyzed directly by NMR spectroscopy. 13C-labeled 2C-methyl-d-erythritol 2,4-cyclodiphosphate was detected at high levels in cells expressing xylB, ispC, ispD, ispE, and ispF. The additional expression of the gcpE gene afforded 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate as an intermediate of the nonmevalonate pathway. Hypothetical mechanisms involving conserved cysteine residues are proposed for the enzymatic conversion of 2C-methyl-d-erythritol 2,4-cyclodiphosphate into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate catalyzed by the GcpE protein. PMID:11752431

  5. Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein.

    PubMed

    Hecht, S; Eisenreich, W; Adam, P; Amslinger, S; Kis, K; Bacher, A; Arigoni, D; Rohdich, F

    2001-12-18

    Recombinant Escherichia coli cells engineered for the expression of the xylB gene in conjunction with genes of the nonmevalonate pathway were supplied with (13)C-labeled 1-deoxy-D-xylulose. Cell extracts were analyzed directly by NMR spectroscopy. (13)C-labeled 2C-methyl-D-erythritol 2,4-cyclodiphosphate was detected at high levels in cells expressing xylB, ispC, ispD, ispE, and ispF. The additional expression of the gcpE gene afforded 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate as an intermediate of the nonmevalonate pathway. Hypothetical mechanisms involving conserved cysteine residues are proposed for the enzymatic conversion of 2C-methyl-D-erythritol 2,4-cyclodiphosphate into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate catalyzed by the GcpE protein.

  6. Lipoic Acid Synthase (LASY)

    PubMed Central

    Padmalayam, Indira; Hasham, Sumera; Saxena, Uday; Pillarisetti, Sivaram

    2009-01-01

    OBJECTIVE—Lipoic acid synthase (LASY) is the enzyme that is involved in the endogenous synthesis of lipoic acid, a potent mitochondrial antioxidant. The aim of this study was to study the role of LASY in type 2 diabetes. RESEARCH DESIGN AND METHODS—We studied expression of LASY in animal models of type 2 diabetes. We also looked at regulation of LASY in vitro under conditions that exist in diabetes. Additionally, we looked at effects of LASY knockdown on cellular antioxidant status, inflammation, mitochondrial function, and insulin-stimulated glucose uptake. RESULTS—LASY expression is significantly reduced in tissues from animal models of diabetes and obesity compared with age- and sex-matched controls. In vitro, LASY mRNA levels were decreased by the proinflammatory cytokine tumor necrosis factor (TNF)-α and high glucose. Downregulation of the LASY gene by RNA interference (RNAi) reduced endogenous levels of lipoic acid, and the activities of critical components of the antioxidant defense network, increasing oxidative stress. Treatment with exogenous lipoic acid compensated for some of these defects. RNAi-mediated downregulation of LASY induced a significant loss of mitochondrial membrane potential and decreased insulin-stimulated glucose uptake in skeletal muscle cells. In endothelial cells, downregulation of LASY aggravated the inflammatory response that manifested as an increase in both basal and TNF-α–induced expression of the proinflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1). Overexpression of the LASY gene ameliorated the inflammatory response. CONCLUSIONS—Deficiency of LASY results in an overall disturbance in the antioxidant defense network, leading to increased inflammation, insulin resistance, and mitochondrial dysfunction. PMID:19074983

  7. Protein Kinase D1 regulates focal adhesion dynamics and cell adhesion through Phosphatidylinositol-4-phosphate 5-kinase type-l γ

    PubMed Central

    Durand, Nisha; Bastea, Ligia I.; Long, Jason; Döppler, Heike; Ling, Kun; Storz, Peter

    2016-01-01

    Focal adhesions (FAs) are highly dynamic structures that are assembled and disassembled on a continuous basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion and spreading to directed cell migration. The turnover of FAs is regulated at multiple levels and involves a variety of signaling molecules and adaptor proteins. In the present study, we show that in response to integrin engagement, a subcellular pool of Protein Kinase D1 (PKD1) localizes to the FAs. PKD1 affects FAs by decreasing turnover and promoting maturation, resulting in enhanced cell adhesion. The effects of PKD1 are mediated through direct phosphorylation of FA-localized phosphatidylinositol-4-phosphate 5-kinase type-l γ (PIP5Klγ) at serine residue 448. This phosphorylation occurs in response to Fibronectin-RhoA signaling and leads to a decrease in PIP5Klγs’ lipid kinase activity and binding affinity for Talin. Our data reveal a novel function for PKD1 as a regulator of FA dynamics and by identifying PIP5Klγ as a novel PKD1 substrate provide mechanistic insight into this process. PMID:27775029

  8. Protein Kinase D1 regulates focal adhesion dynamics and cell adhesion through Phosphatidylinositol-4-phosphate 5-kinase type-l γ.

    PubMed

    Durand, Nisha; Bastea, Ligia I; Long, Jason; Döppler, Heike; Ling, Kun; Storz, Peter

    2016-10-24

    Focal adhesions (FAs) are highly dynamic structures that are assembled and disassembled on a continuous basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion and spreading to directed cell migration. The turnover of FAs is regulated at multiple levels and involves a variety of signaling molecules and adaptor proteins. In the present study, we show that in response to integrin engagement, a subcellular pool of Protein Kinase D1 (PKD1) localizes to the FAs. PKD1 affects FAs by decreasing turnover and promoting maturation, resulting in enhanced cell adhesion. The effects of PKD1 are mediated through direct phosphorylation of FA-localized phosphatidylinositol-4-phosphate 5-kinase type-l γ (PIP5Klγ) at serine residue 448. This phosphorylation occurs in response to Fibronectin-RhoA signaling and leads to a decrease in PIP5Klγs' lipid kinase activity and binding affinity for Talin. Our data reveal a novel function for PKD1 as a regulator of FA dynamics and by identifying PIP5Klγ as a novel PKD1 substrate provide mechanistic insight into this process.

  9. ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase.

    PubMed

    Shimada, Hiroshi; Koizumi, Masato; Kuroki, Kouta; Mochizuki, Mariko; Fujimoto, Hitoshi; Ohta, Hiroyuki; Masuda, Tatsuru; Takamiya, Ken-ichiro

    2004-08-01

    The arc3 (accumulation and replication of chloroplast) mutant of Arabidopsis thaliana has a small number of abnormally large chloroplasts in the cell, suggesting that chloroplast division is arrested in the mutant and ARC3 has an important role in the initiation of chloroplast division. To elucidate the role of ARC3, first we identified the ARC3 gene, and determined the location of ARC3 protein during chloroplast division because the localization and spatial orientation of such division factors are vital for correct chloroplast division. Sequencing analysis showed that ARC3 was a fusion of the prokaryotic FtsZ and part of the eukaryotic phosphatidylinositol-4-phosphate 5-kinase (PIP5K) genes. The PIP5K-homologous region of ARC3 had no catalytic domain but a membrane-occupation-and-recognition-nexus (MORN) repeat motif. Immunofluorescence microscopy, Western blotting analysis and in vitro chloroplast import and protease protection assays revealed that ARC3 protein was soluble, and located on the outer surface of the chloroplast in a ring-like structure at the early stage of chloroplast division. Prokaryotes have one FtsZ as a gene for division but have no ARC3 counterparts, the chimera of FtsZ and PIP5K, suggesting that the ARC3 gene might have been generated from FtsZ as another division factor during the evolution of chloroplast by endosymbiosis.

  10. Combretastatin-A4 phosphate improves the distribution and antitumor efficacy of albumin-bound paclitaxel in W256 breast carcinoma model

    PubMed Central

    Gao, Meng; Zhang, Dongjian; Jin, Qiaomei; Jiang, Cuihua; Wang, Cong; Li, Jindian; Peng, Fei; Huang, Dejian; Zhang, Jian; Song, Shaoli

    2016-01-01

    Nanomedicine holds great promise for fighting against malignant tumors. However, tumor elevated interstitial fluid pressure (IFP) seriously hinders convective transvascular and interstitial transport of nanomedicines and thus damages its antitumor efficacy. In this study, combretastatin-A4 phosphate (CA4P) was utilized to reduce tumor IFP, and thereby to improve the intratumoral distribution and antitumor efficacy of nanoparticle albumin-bound paclitaxel (nab-paclitaxel). IFP was measured using the wick-in-needle method in tumors growing subcutaneously pretreatment and posttreatment with a single intravenous injection of CA4P. The tracing method of iodine 131 isotope was used for biodistribution analysis of nab-paclitaxel. Liquid chromatography coupled with tandem mass spectrometry was used to detect the intratumoral concentration of paclitaxel. Magnetic resonance imaging was applied to monitor tumor volume and ratios of necrosis. The tumor IFP continued to decline gradually over time following CA4P treatment, reaching approximately 31% of the pretreatment value by 1 h posttreatment. Biodistribution data indicated that both 131I-nab-paclitaxel and paclitaxel exhibited higher tumor uptake in CA4P + 131I-nab-paclitaxel group compared with I131-nab-paclitaxel group. Nab-paclitaxel combined with CA4Pshowed significant tumor growth inhibition and higher tumor necrosis ratio relative to PBS, CA4P and nab-paclitaxel group, respectively. In conclusion, CA4P improved the intratumoral distribution and antitumor efficacy of nab-paclitaxel in W256 tumor-bearing rats. PMID:27531898

  11. Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface.

    PubMed

    Roulin, Pascal S; Lötzerich, Mark; Torta, Federico; Tanner, Lukas B; van Kuppeveld, Frank J M; Wenk, Markus R; Greber, Urs F

    2014-11-12

    Similar to other positive-strand RNA viruses, rhinovirus, the causative agent of the common cold, replicates on a web of cytoplasmic membranes, orchestrated by host proteins and lipids. The host pathways that facilitate the formation and function of the replication membranes and complexes are poorly understood. We show that rhinovirus replication depends on host factors driving phosphatidylinositol 4-phosphate (PI4P)-cholesterol counter-currents at viral replication membranes. Depending on the virus type, replication required phosphatidylinositol 4-kinase class 3beta (PI4K3b), cholesteryl-esterase hormone-sensitive lipase (HSL) or oxysterol-binding protein (OSBP)-like 1, 2, 5, 9, or 11 associated with lipid droplets, endosomes, or Golgi. Replication invariably required OSBP1, which shuttles cholesterol and PI4P between ER and Golgi at membrane contact sites. Infection also required ER-associated PI4P phosphatase Sac1 and phosphatidylinositol (PI) transfer protein beta (PITPb) shunting PI between ER-Golgi. These data support a PI4P-cholesterol counter-flux model for rhinovirus replication.

  12. Relationship between phosphatidylinositol 4-phosphate synthesis, membrane organization, and lateral diffusion of PI4KIIalpha at the trans-Golgi network.

    PubMed

    Minogue, Shane; Chu, K M Emily; Westover, Emily J; Covey, Douglas F; Hsuan, J Justin; Waugh, Mark G

    2010-08-01

    Type II phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha) is the dominant phosphatidylinositol kinase activity measured in mammalian cells and has important functions in intracellular vesicular trafficking. Recently PI4KIIalpha has been shown to have important roles in neuronal survival and tumorigenesis. This study focuses on the relationship between membrane cholesterol levels, phosphatidylinositol 4-phosphate (PI4P) synthesis, and PI4KIIalpha mobility. Enzyme kinetic measurements, sterol substitution studies, and membrane fragmentation analyses all revealed that cholesterol regulates PI4KIIalpha activity indirectly through effects on membrane structure. In particular, we found that cholesterol levels determined the distribution of PI4KIIalpha to biophysically distinct membrane domains. Imaging studies on cells expressing enhanced green fluorescent protein (eGFP)-tagged PI4KIIalpha demonstrated that cholesterol depletion resulted in morphological changes to the juxtanuclear membrane pool of the enzyme. Lateral membrane diffusion of eGFP-PI4KIIalpha was assessed by fluorescence recovery after photobleaching (FRAP) experiments, which revealed the existence of both mobile and immobile pools of the enzyme. Sterol depletion decreased the size of the mobile pool of PI4KIIalpha. Further measurements revealed that the reduction in the mobile fraction of PI4KIIalpha correlated with a loss of trans-Golgi network (TGN) membrane connectivity. We conclude that cholesterol modulates PI4P synthesis through effects on membrane organization and enzyme diffusion.

  13. Phosphatidylinositol 4-phosphate 5-kinase α contributes to Toll-like receptor 2-mediated immune responses in microglial cells stimulated with lipoteichoic acid.

    PubMed

    Nguyen, Tu Thi Ngoc; Seo, Eunjeong; Choi, Juyong; Le, Oanh Thi Tu; Kim, Ji Yun; Jou, Ilo; Lee, Sang Yoon

    2017-10-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important lipid regulator of membrane signaling and remodeling processes. Accumulating evidence indicates a link between PIP2 metabolism and Toll-like receptor (TLR) signaling, a key transducer of immune responses such as inflammation, phagocytosis, and autophagy. Microglia are immune effector cells that serve as macrophages in the brain. Here, we examined the potential role of phosphatidylinositol 4-phosphate 5-kinase α (PIP5Kα), a PIP2-producing enzyme, in TLR2 signaling in microglial cells. Treatment of BV2 microglial cells with lipoteichoic acid (LTA), a TLR2 agonist, increased PIP5Kα expression in BV2 and primary microglial cells, but not in primary cultures from TLR2-deficient mice. PIP5Kα knockdown of BV2 cells with shRNA significantly suppressed LTA-induced activation of TLR2 downstream signaling, including the production of proinflammatory cytokines and phosphorylation of NF-κB, JNK, and p38 MAP kinase. Such suppression was reversed by complementation of PIP5Kα. PIP5Kα knockdown lowered PIP2 levels and impaired LTA-induced plasma membrane targeting of TIRAP, a PIP2-dependent adaptor required for TLR2 activation. Besides, PIP5Kα knockdown inhibited phagocytic uptake of E. coli particles and autophagy-related vesicle formation triggered by LTA. Taken together, these results support that PIP5Kα can positively mediate TLR2-associated immune responses through PIP2 production in microglial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Influence of Ca2+ and Mg2+ on the turnover of the phosphomonoester group of phosphatidylinositol 4-phosphate in human erythrocyte membranes.

    PubMed Central

    Hegewald, H; Müller, E; Klinger, R; Wetzker, R; Frunder, H

    1987-01-01

    In isolated erythrocyte membranes, increasing the free Mg2+ concentration from 0.5 to 10 mM progressively activates the membrane-bound phosphatidylinositol (PtdIns) kinase and leads to the establishment of a new equilibrium with higher phosphatidylinositol 4-phosphate (PtdIns4P) and lower PtdIns concentrations. The steady-state turnover of the phosphomonoester group of PtdIns4P also increases at high Mg2+ concentrations, indicating a simultaneous activation of PtdIns4P phosphomonoesterase by Mg2+. Half-maximum inhibition of PtdIns kinase occurs at 10 microM free Ca2+ in the presence of physiological free Mg2+ concentrations. Increasing free Mg2+ concentrations overcome Ca2+ inhibition of PtdIns kinase. In the presence of Ca2+, calmodulin activates Ca2+-transporting ATPase 5-fold, but does not alter pool size and radiolabelling of PtdIns4P. In intact erythrocytes, adding EGTA or EGTA plus Mg2+ and the ionophore A23187 to the external medium does not exert significant effects on concentration and radiolabelling of polyphosphoinositides when compared with controls in the presence of 1.4 mM free Ca2+. PMID:2821996

  15. Analysis of the metabolic turnover of the individual phosphate groups of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Validation of novel analytical techniques by using 32P-labelled lipids from erythrocytes.

    PubMed Central

    Hawkins, P T; Michell, R H; Kirk, C J

    1984-01-01

    We have developed methods that yield estimates of the 32P content of each of the individual phosphate groups of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, thus extending the information available from studies of the labelling of these lipids in intact cells or membrane preparations. The analyses are undertaken with the deacylated lipids. Assay of the 5-phosphate of phosphatidylinositol 4,5-bisphosphate is achieved by the use, under conditions of first-order kinetics, of a 5-phosphate-specific phosphomonoesterase present in isolated erythrocyte membranes [Downes, Mussat & Michell (1982) Biochem. J. 203, 169-177]. Assay of the 4-phosphate of phosphatidylinositol 4-phosphate and of the total monoester phosphate content (4-phosphate plus 5-phosphate) of phosphatidylinositol 4,5-bisphosphate employs alkaline phosphatase from bovine intestine. The radioactivity of the 1-phosphate is that remaining as organic phosphate after exhaustive alkaline phosphatase treatment. The methodology has been validated by using lipids from human erythrocytes: these contain no 32P in their 1-phosphate. These methods should be of substantial value in studies of the many cells that show rapid hormonal perturbations of phosphatidylinositol 4,5-bisphosphate metabolism. PMID:6326746

  16. Cloning and expression of IspDF from Mesorhizobium loti. Characterization of a bifunctional protein that catalyzes non-consecutive steps in the methylerythritol phosphate pathway.

    PubMed

    Testa, Charles A; Lherbet, Christian; Pojer, Florence; Noel, Joseph P; Poulter, C Dale

    2006-01-01

    Gram-negative bacteria, plant chloroplasts, green algae and some Gram-positive bacteria utilize the 2-C-methyl-d-erythritol phosphate (MEP) pathway for the biosynthesis of isoprenoids. IspD, ispE, and ispF encode the enzymes required to convert MEP to 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (cMEDP) during the biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate in the MEP pathway. Upon analysis of the Mesorhizobium loti genome, ORF mll0395 showed homology to both ispD and ispF and appeared to encode a fusion protein. M. loti ispE was located elsewhere on the chromosome. Purified recombinant IspDF protein was mostly a homodimer, MW approximately 46 kDa/subunit. Incubation of IspDF with MEP, CTP, and ATP gave 4-diphosphocytidyl-2-C-methyl-d-erythritol (CDP-ME) as the only product. When Escherichia coli IspE protein was added to the incubation mixture, cMEDP was formed. In addition, M. loti ORF mll0395 complements lethal disruptions in both ispD and ispF in Salmonella typhimurium. These results indicate that IspDF is a bifunctional protein, which catalyzes the first and third steps in the conversion of MEP to cMEDP.

  17. Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases.

    PubMed

    Herbst, Dominik A; Jakob, Roman P; Zähringer, Franziska; Maier, Timm

    2016-03-24

    Polyketide synthases (PKSs) are biosynthetic factories that produce natural products with important biological and pharmacological activities. Their exceptional product diversity is encoded in a modular architecture. Modular PKSs (modPKSs) catalyse reactions colinear to the order of modules in an assembly line, whereas iterative PKSs (iPKSs) use a single module iteratively as exemplified by fungal iPKSs (fiPKSs). However, in some cases non-colinear iterative action is also observed for modPKSs modules and is controlled by the assembly line environment. PKSs feature a structural and functional separation into a condensing and a modifying region as observed for fatty acid synthases. Despite the outstanding relevance of PKSs, the detailed organization of PKSs with complete fully reducing modifying regions remains elusive. Here we report a hybrid crystal structure of Mycobacterium smegmatis mycocerosic acid synthase based on structures of its condensing and modifying regions. Mycocerosic acid synthase is a fully reducing iPKS, closely related to modPKSs, and the prototype of mycobacterial mycocerosic acid synthase-like PKSs. It is involved in the biosynthesis of C20-C28 branched-chain fatty acids, which are important virulence factors of mycobacteria. Our structural data reveal a dimeric linker-based organization of the modifying region and visualize dynamics and conformational coupling in PKSs. On the basis of comparative small-angle X-ray scattering, the observed modifying region architecture may be common also in modPKSs. The linker-based organization provides a rationale for the characteristic variability of PKS modules as a main contributor to product diversity. The comprehensive architectural model enables functional dissection and re-engineering of PKSs.

  18. Sucrose Synthase: Expanding Protein Function

    USDA-ARS?s Scientific Manuscript database

    Sucrose synthase (SUS: EC 2.4.1.13), a key enzyme in plant sucrose catabolism, is uniquely able to mobilize sucrose into multiple pathways involved in metabolic, structural, and storage functions. Our research indicates that the biological function of SUS may extend beyond its catalytic activity. Th...

  19. In Vivo Near-Infrared Spectroscopy and Magnetic Resonance Imaging Monitoring of Tumor Response to Combretastatin A-4-Phosphate Correlated With Therapeutic Outcome

    SciTech Connect

    Zhao Dawen; Chang Chenghui; Kim, Jae G.; Liu Hanli; Mason, Ralph P.

    2011-06-01

    Purpose: To develop a combination treatment consisting of combretastatin A-4-phosphate (CA4P) with radiation based on tumor oxygenation status. Methods and Materials: In vivo near-infrared spectroscopy (NIRS) and diffusion-weighted (DW) magnetic resonance imaging (MRI) were applied to noninvasively monitor changes in tumor blood oxygenation and necrosis induced by CA4P (30 mg/kg) in rat mammary 13762NF adenocarcinoma, and the evidence was used to optimize combinations of CA4P and radiation treatment (a single dose of 5 Gy). Results: NIRS showed decreasing concentrations of tumor vascular oxyhemoglobin and total hemoglobin during the first 2 h after CA4P treatment, indicating significant reductions in tumor blood oxygenation and perfusion levels (p < 0.001). Twenty-four hours later, in response to oxygen inhalation, significant recovery was observed in tumor vascular and tissue oxygenation according to NIRS and pimonidazole staining results, respectively (p < 0.05). DW MRI revealed significantly increased water diffusion in tumors measured by apparent diffusion coefficient at 24 h (p < 0.05), suggesting that CA4P-induced central necrosis. In concordance with the observed tumor oxygen dynamics, we found that treatment efficacy depended on the timing of the combined therapy. The most significant delay in tumor growth was seen in the group of tumors treated with radiation while the rats breathed oxygen 24 h after CA4P administration. Conclusions: Noninvasive evaluation of tumor oxygen dynamics allowed us to rationally enhance the response of syngeneic rat breast tumors to combined treatment of CA4P with radiation.

  20. Plasma membrane phosphatidylinositol 4-phosphate and 4,5-bisphosphate determine the distribution and function of K-Ras4B but not H-Ras proteins.

    PubMed

    Gulyás, Gergö; Radvánszki, Glória; Matuska, Rita; Balla, András; Hunyady, László; Balla, Tamas; Várnai, Péter

    2017-09-22

    Plasma membrane (PM) localization of Ras proteins is crucial for transmitting signals upon mitogen stimulation. Posttranslational lipid modification of Ras proteins plays an important role in their recruitment to the PM. Electrostatic interactions between negatively charged PM phospholipids and basic amino acids found in K-Ras4B (K-Ras) but not in H-Ras are important for permanent K-Ras localization to the PM. Here, we investigated how acute depletion of negatively charged PM polyphosphoinositides (PPIns) from the PM alters the intracellular distribution and activity of K- and H-Ras proteins. PPIns depletion from the PM was achieved either by agonist-induced activation of phospholipase C β or with a rapamycin-inducible system in which various PI phosphatases were recruited to the PM. Redistribution of the two Ras proteins was monitored with confocal microscopy or with a recently developed bioluminescent energy transfer (BRET)-based approach involving fusion of the Ras C-terminal targeting sequences or the entire Ras proteins to Venus fluorescent protein. We found that PM PPIns depletion caused rapid translocation of K-Ras but not H-Ras from the PM to the Golgi. PM depletion of either phosphatidylinositol 4-phosphate (PtdIns4P) or PtdIns(4,5)P2, but not PtdIns(3,4,5)P3, was sufficient to evoke K-Ras translocation. This effect was diminished by deltarasine, an inhibitor of the Ras-phosphodiesterase interaction, or by simultaneous depletion of the Golgi PtdIns4P. The PPIns depletion decreased incorporation of [3H]-Leucine in K-Ras-expressing cells, suggesting that Golgi-localized K-Ras is not as signaling competent as its PM-bound form. We conclude that PPIns in the PM are important regulators of K-Ras mediated signals. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  1. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain.

    PubMed

    Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui; Li, Yong; Berkes, Dusan; Yao, Xiaolan

    2017-08-25

    De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this study we show that isolated PH and START domains interact with each other. The crystal structure of a PH-START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH-START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine-rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. ISA-2011B, a Phosphatidylinositol 4-Phosphate 5-Kinase α Inhibitor, Impairs CD28-Dependent Costimulatory and Pro-inflammatory Signals in Human T Lymphocytes

    PubMed Central

    Kunkl, Martina; Porciello, Nicla; Mastrogiovanni, Marta; Capuano, Cristina; Lucantoni, Federica; Moretti, Chiara; Persson, Jenny L.; Galandrini, Ricciarda; Buzzetti, Raffaella; Tuosto, Loretta

    2017-01-01

    Phosphatidylinositol 4,5-biphosphate (PIP2) is a membrane phospholipid that controls the activity of several proteins regulating cytoskeleton reorganization, cytokine gene expression, T cell survival, proliferation, and differentiation. Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are the main enzymes involved in PIP2 biosynthesis by phosphorylating phosphatidylinositol 4-monophosphate (PI4P) at the D5 position of the inositol ring. In human T lymphocytes, we recently found that CD28 costimulatory molecule is pivotal for PIP2 turnover by recruiting and activating PIP5Kα. We also found that PIP5Kα is the main regulator of both CD28 costimulatory signals integrating those delivered by TCR as well as CD28 autonomous signals regulating the expression of pro-inflammatory genes. Given emerging studies linking alterations of PIP2 metabolism to immune-based diseases, PIP5Kα may represent a promising target to modulate immunity and inflammation. Herewith, we characterized a recently discovered inhibitor of PIP5Kα, ISA-2011B, for its inhibitory effects on T lymphocyte functions. We found that the inhibition of PIP5Kα lipid-kinase activity by ISA-2011B significantly impaired CD28 costimulatory signals necessary for TCR-mediated Ca2+ influx, NF-AT transcriptional activity, and IL-2 gene expression as well as CD28 autonomous signals regulating the activation of NF-κB and the transcription of pro-inflammatory cytokine and chemokine genes. Moreover, our data on the inhibitory effects of ISA-2011B on CD28-mediated upregulation of inflammatory cytokines related to Th17 cell phenotype in type 1 diabetes patients suggest ISA-2011B as a promising anti-inflammatory drug. PMID:28491063

  3. Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis.

    PubMed

    Hsieh, Ming-Hsiun; Chang, Chiung-Yun; Hsu, Shih-Jui; Chen, Ju-Jiun

    2008-04-01

    Plant isoprenoids are derived from two independent pathways, the cytosolic mevalonate pathway and the plastid methylerythritol 4-phosphate (MEP) pathway. We used green fluorescent fusion protein assays to demonstrate that the Arabidopsis MEP pathway enzymes are localized to the chloroplast. We have also characterized three Arabidopsis albino mutants, ispD-1, ispD-2 and ispE-1, which have T-DNA insertions in the IspD and IspE genes of the MEP pathway. Levels of photosynthetic pigments are almost undetectable in these albino mutants. Instead of thylakoids, the ispD and ispE mutant chloroplasts are filled with large vesicles. Impairments in chloroplast development and functions may signal changes in the expression of nuclear, chloroplast and mitochondrial genes. We used northern blot analysis to examine the expression of photosynthetic and respiratory genes in the ispD and ispE albino mutants. Steady-state mRNA levels of nucleus- and chloroplast-encoded photosynthetic genes are significantly decreased in the albino mutants. In contrast, transcript levels of nuclear and mitochondrial genes encoding subunits of the mitochondrial electron transport chain are increased or not affected in these mutants. Genomic Southern blot analysis revealed that the DNA amounts of mitochondrial genes are not enhanced in the ispD and ispE albino mutants. These results support the notion that the functional state of chloroplasts may affect the expression of nuclear and mitochondrial genes. The up-regulation of mitochondrial genes in the albino mutants is not caused by changes of mitochondrial DNA copy number in Arabidopsis.

  4. Assessment of Tumor Response to the Vascular Disrupting Agents 5,6-Dimethylxanthenone-4-Acetic Acid or Combretastatin-A4-Phosphate by Intrinsic Susceptibility Magnetic Resonance Imaging

    SciTech Connect

    McPhail, Lesley D. Griffiths, John R. D.Phil.; Robinson, Simon P.

    2007-11-15

    Purpose: To investigate the use of the transverse magnetic resonance imaging (MRI) relaxation rate R{sub 2}* (s{sup -1}) as a biomarker of tumor vascular response to monitor vascular disrupting agent (VDA) therapy. Methods and Materials: Multigradient echo MRI was used to quantify R{sub 2}* in rat GH3 prolactinomas. R{sub 2}* is a sensitive index of deoxyhemoglobin in the blood and can therefore be used to give an index of tissue oxygenation. Tumor R{sub 2}* was measured before and up to 35 min after treatment, and 24 h after treatment with either 350 mg/kg 5,6-dimethylxanthenone-4-acetic acid (DMXAA) or 100 mg/kg combretastatin-A4-phosphate (CA4P). After acquisition of the MRI data, functional tumor blood vessels remaining after VDA treatment were quantified using fluorescence microscopy of the perfusion marker Hoechst 33342. Results: DMXAA induced a transient, significant (p < 0.05) increase in tumor R{sub 2}* 7 min after treatment, whereas CA4P induced no significant changes in tumor R{sub 2}* over the first 35 min. Twenty-four hours after treatment, some DMXAA-treated tumors demonstrated a decrease in R{sub 2}*, but overall, reduction in R{sub 2}* was not significant for this cohort. Tumors treated with CA4P showed a significant (p < 0.05) reduction in R{sub 2}* 24 h after treatment. The degree of Hoechst 33342 uptake was associated with the degree of R{sub 2}* reduction at 24 h for both agents. Conclusions: The reduction in tumor R{sub 2}* or deoxyhemoglobin levels 24 h after VDA treatment was a result of reduced blood volume caused by prolonged vascular collapse. Our results suggest that DMXAA was less effective than CA4P in this rat tumor model.

  5. Calcium-activated hydrolysis of phosphatidyl-myo-inositol 4-phosphate and phosphatidyl-myo-inositol 4,5-bisphosphate in guinea-pig synaptosomes

    PubMed Central

    Griffin, Harry D.; Hawthorne, John N.

    1978-01-01

    1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [32P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg2+ concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca2+ and was apparent at Ca2+ concentrations in the medium as low as 10−5m. 3. An increase in internal Mg2+ concentration stimulated incorporation of [32P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg2+ decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg2+ concentration and apparently only partly dependent on medium Ca2+ concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca2+ caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [3H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. 32P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca2+ influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has

  6. A specific process to purify 2-methyl-D-erythritol-4-phosphate enzymatically converted from D-glyceraldehyde-3-phosphate and pyruvate.

    PubMed

    Yang, Shao-Qing; Deng, Jian; Wu, Qian-Qian; Li, Heng; Gao, Wen-Yun

    2015-02-01

    A one-pot enzymatic cascade was established to synthesize MEP, one of the key intermediates in the MEP terpenoid biosynthetic pathway. D-GAP and sodium pyruvate were converted to MEP in a reaction catalyzed by DXP synthase and DXP reductoisomerase (DXR) in the presence of the coenzymes ThPP, NADPH, and Mg2+. The product was then isolated by using a specific two-step purification process and MEP was obtained in a yield of nearly 60% and high purity. Importantly, MEP prepared by this way was totally free from contamination by minor amounts of DXP that was not completely convertible by DXR.

  7. Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase[S

    PubMed Central

    Ternes, Philipp; Brouwers, Jos F. H. M.; van den Dikkenberg, Joep; Holthuis, Joost C. M.

    2009-01-01

    Sphingolipids are vital components of eukaryotic membranes involved in the regulation of cell growth, death, intracellular trafficking, and the barrier function of the plasma membrane (PM). While sphingomyelin (SM) is the major sphingolipid in mammals, previous studies indicate that mammalian cells also produce the SM analog ceramide phosphoethanolamine (CPE). Little is known about the biological role of CPE or the enzyme(s) responsible for CPE biosynthesis. SM production is mediated by the SM synthases SMS1 in the Golgi and SMS2 at the PM, while a closely related enzyme, SMSr, has an unknown biochemical function. We now demonstrate that SMS family members display striking differences in substrate specificity, with SMS1 and SMSr being monofunctional enzymes with SM and CPE synthase activity, respectively, and SMS2 acting as a bifunctional enzyme with both SM and CPE synthase activity. In agreement with the PM residency of SMS2, we show that both SM and CPE synthase activities are enhanced at the surface of SMS2-overexpressing HeLa cells. Our findings reveal an unexpected diversity in substrate specificity among SMS family members that should enable the design of specific inhibitors to target the biological role of each enzyme individually. PMID:19454763

  8. Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire

    PubMed Central

    Dimova, Tanya; Brouwer, Margreet; Gosselin, Françoise; Tassignon, Joël; Leo, Oberdan; Donner, Catherine; Marchant, Arnaud; Vermijlen, David

    2015-01-01

    γδ T cells are unconventional T cells recognizing antigens via their γδ T-cell receptor (TCR) in a way that is fundamentally different from conventional αβ T cells. γδ T cells usually are divided into subsets according the type of Vγ and/or Vδ chain they express in their TCR. T cells expressing the TCR containing the γ-chain variable region 9 and the δ-chain variable region 2 (Vγ9Vδ2 T cells) are the predominant γδ T-cell subset in human adult peripheral blood. The current thought is that this predominance is the result of the postnatal expansion of cells expressing particular complementary-determining region 3 (CDR3) in response to encounters with microbes, especially those generating phosphoantigens derived from the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid synthesis. However, here we show that, rather than requiring postnatal microbial exposure, Vγ9Vδ2 T cells are the predominant blood subset in the second-trimester fetus, whereas Vδ1+ and Vδ3+ γδ T cells are present only at low frequencies at this gestational time. Fetal blood Vγ9Vδ2 T cells are phosphoantigen responsive and display very limited diversity in the CDR3 of the Vγ9 chain gene, where a germline-encoded sequence accounts for >50% of all sequences, in association with a prototypic CDR3δ2. Furthermore, these fetal blood Vγ9Vδ2 T cells are functionally preprogrammed (e.g., IFN-γ and granzymes-A/K), with properties of rapidly activatable innatelike T cells. Thus, enrichment for phosphoantigen-responsive effector T cells has occurred within the fetus before postnatal microbial exposure. These various characteristics have been linked in the mouse to the action of selecting elements and would establish a much stronger parallel between human and murine γδ T cells than is usually articulated. PMID:25617367

  9. Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering

    PubMed Central

    Liu, Miaomiao; Lu, Shanfa

    2016-01-01

    Plastoquinone (PQ) and ubiquinone (UQ) are two important prenylquinones, functioning as electron transporters in the electron transport chain of oxygenic photosynthesis and the aerobic respiratory chain, respectively, and play indispensable roles in plant growth and development through participating in the biosynthesis and metabolism of important chemical compounds, acting as antioxidants, being involved in plant response to stress, and regulating gene expression and cell signal transduction. UQ, particularly UQ10, has also been widely used in people’s life. It is effective in treating cardiovascular diseases, chronic gingivitis and periodontitis, and shows favorable impact on cancer treatment and human reproductive health. PQ and UQ are made up of an active benzoquinone ring attached to a polyisoprenoid side chain. Biosynthesis of PQ and UQ is very complicated with more than thirty five enzymes involved. Their synthetic pathways can be generally divided into two stages. The first stage leads to the biosynthesis of precursors of benzene quinone ring and prenyl side chain. The benzene quinone ring for UQ is synthesized from tyrosine or phenylalanine, whereas the ring for PQ is derived from tyrosine. The prenyl side chains of PQ and UQ are derived from glyceraldehyde 3-phosphate and pyruvate through the 2-C-methyl-D-erythritol 4-phosphate pathway and/or acetyl-CoA and acetoacetyl-CoA through the mevalonate pathway. The second stage includes the condensation of ring and side chain and subsequent modification. Homogentisate solanesyltransferase, 4-hydroxybenzoate polyprenyl diphosphate transferase and a series of benzene quinone ring modification enzymes are involved in this stage. PQ exists in plants, while UQ widely presents in plants, animals and microbes. Many enzymes and their encoding genes involved in PQ and UQ biosynthesis have been intensively studied recently. Metabolic engineering of UQ10 in plants, such as rice and tobacco, has also been tested. In this

  10. Plastidic Phosphoglucose Isomerase Is an Important Determinant of Starch Accumulation in Mesophyll Cells, Growth, Photosynthetic Capacity, and Biosynthesis of Plastidic Cytokinins in Arabidopsis

    PubMed Central

    De Diego, Nuria; Muñoz, Francisco J.; Baroja-Fernández, Edurne; Li, Jun; Ricarte-Bermejo, Adriana; Baslam, Marouane; Aranjuelo, Iker; Almagro, Goizeder; Humplík, Jan F.; Novák, Ondřej; Spíchal, Lukáš; Doležal, Karel; Pozueta-Romero, Javier

    2015-01-01

    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding β-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic β-amylase encoding genes in pgi1 leaves, which was accompanied by increased β-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(P)H/NAD(P) ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy status, growth

  11. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.

    PubMed

    Li, Chun; Ying, Lan-Qing; Zhang, Sha-Sha; Chen, Nan; Liu, Wei-Feng; Tao, Yong

    2015-08-12

    In engineered strains of Escherichia coli, bioconversion efficiency is determined by not only metabolic flux but also the turnover efficiency of relevant pathways. Methyl-D-erythritol 4-phosphate (MEP)-dependent carotenoid biosynthesis in E. coli requires efficient turnover of precursors and balanced flux among precursors, cofactors, and cellular energy. However, the imbalanced supply of glyceraldehyde 3-phosphate (G3P) and pyruvate precursors remains the major metabolic bottleneck. To address this problem, we manipulated various genetic targets related to the Entner-Doudoroff (ED)/pentose phosphate (PP) pathways. Systematic target modification was conducted to improve G3P and pyruvate use and rebalance the precursor and redox fluxes. Carotenoid production was improved to different degrees by modifying various targets in the Embden-Meyerhof-Parnas (EMP) and ED pathways, which directed metabolic flux from the EMP pathway towards the ED pathway. The improvements in yield were much greater when the MEP pathway was enhanced. The coordinated modification of ED and MEP pathway targets using gene expression enhancement and protein coupling strategies in the pgi deletion background further improved carotenoid synthesis. The fine-tuning of flux at the branch point between the ED and PP pathways was important for carotenoid biosynthesis. Deletion of pfkAB instead of pgi reduced the carotenoid yield. This suggested that anaplerotic flux of G3P and pyruvate might be necessary for carotenoid biosynthesis. Improved carotenoid yields were accompanied by increased biomass and decreased acetate overflow. Therefore, efficient use of G3P and pyruvate precursors resulted in a balance among carotenoid biosynthesis, cell growth, and by-product metabolism. An efficient and balanced MEP-dependent carotenoid bioconversion strategy involving both the ED and PP pathways was implemented by the coordinated modification of diverse central metabolic pathway targets. In this strategy, enhancement

  12. SIRT3 Deacetylates Ceramide Synthases

    PubMed Central

    Novgorodov, Sergei A.; Riley, Christopher L.; Keffler, Jarryd A.; Yu, Jin; Kindy, Mark S.; Macklin, Wendy B.; Lombard, David B.; Gudz, Tatyana I.

    2016-01-01

    Experimental evidence supports the role of mitochondrial ceramide accumulation as a cause of mitochondrial dysfunction and brain injury after stroke. Herein, we report that SIRT3 regulates mitochondrial ceramide biosynthesis via deacetylation of ceramide synthase (CerS) 1, 2, and 6. Reciprocal immunoprecipitation experiments revealed that CerS1, CerS2, and CerS6, but not CerS4, are associated with SIRT3 in cerebral mitochondria. Furthermore, CerS1, -2, and -6 are hyperacetylated in the mitochondria of SIRT3-null mice, and SIRT3 directly deacetylates the ceramide synthases in a NAD+-dependent manner that increases enzyme activity. Investigation of the SIRT3 role in mitochondrial response to brain ischemia/reperfusion (IR) showed that SIRT3-mediated deacetylation of ceramide synthases increased enzyme activity and ceramide accumulation after IR. Functional studies demonstrated that absence of SIRT3 rescued the IR-induced blockade of the electron transport chain at the level of complex III, attenuated mitochondrial outer membrane permeabilization, and decreased reactive oxygen species generation and protein carbonyls in mitochondria. Importantly, Sirt3 gene ablation reduced the brain injury after IR. These data support the hypothesis that IR triggers SIRT3-dependent deacetylation of ceramide synthases and the elevation of ceramide, which could inhibit complex III, leading to increased reactive oxygen species generation and brain injury. The results of these studies highlight a novel mechanism of SIRT3 involvement in modulating mitochondrial ceramide biosynthesis and suggest an important role of SIRT3 in mitochondrial dysfunction and brain injury after experimental stroke. PMID:26620563

  13. Acetohydroxyacid synthases: evolution, structure, and function.

    PubMed

    Liu, Yadi; Li, Yanyan; Wang, Xiaoyuan

    2016-10-01

    Acetohydroxyacid synthase, a thiamine diphosphate-dependent enzyme, can condense either two pyruvate molecules to form acetolactate for synthesizing L-valine and L-leucine or pyruvate with 2-ketobutyrate to form acetohydroxybutyrate for synthesizing L-isoleucine. Because the key reaction catalyzed by acetohydroxyacid synthase in the biosynthetic pathways of branched-chain amino acids exists in plants, fungi, archaea, and bacteria, but not in animals, acetohydroxyacid synthase becomes a potential target for developing novel herbicides and antimicrobial compounds. In this article, the evolution, structure, and catalytic mechanism of acetohydroxyacid synthase are summarized.

  14. Shedding of hyaluronate synthase from streptococci.

    PubMed

    Mausolf, A; Jungmann, J; Robenek, H; Prehm, P

    1990-04-01

    Hyaluronate synthase was shed into the culture medium from growing streptococci (group C) together with nascent hyaluronate. The mechanism of solubilization was analysed using isolated protoplast membranes. Solubilization increased when membranes were suspended in larger volumes, but it was temperature-independent and was not inhibited by protease inhibitors. Increased hyaluronate chain length enhanced solubilization. The soluble synthase could re-integrate into Streptococcal membranes in a saturable manner. The soluble synthase behaved like an integral membrane protein, although it was not integrated into phospholipid vesicles. In sucrose velocity centrifugation the synthase had a higher sedimentation rate in detergent-free solution, indicating that it existed in an aggregated state.

  15. A complex comprising phosphatidylinositol 4-kinase IIIβ, ACBD3, and Aichi virus proteins enhances phosphatidylinositol 4-phosphate synthesis and is critical for formation of the viral replication complex.

    PubMed

    Ishikawa-Sasaki, Kumiko; Sasaki, Jun; Taniguchi, Koki

    2014-06-01

    Phosphatidylinositol 4-kinase IIIβ (PI4KB) is a host factor required for the replication of certain picornavirus genomes. We previously showed that nonstructural proteins 2B, 2BC, 2C, 3A, and 3AB of Aichi virus (AiV), a picornavirus, interact with the Golgi protein, acyl-coenzyme A binding domain containing 3 (ACBD3), which interacts with PI4KB. These five viral proteins, ACBD3, PI4KB, and the PI4KB product phosphatidylinositol 4-phosphate (PI4P) colocalize to the AiV RNA replication sites (J. Sasaki et al., EMBO J. 31:754-766, 2012). We here examined the roles of these viral and cellular molecules in the formation of AiV replication complexes. Immunofluorescence microscopy revealed that treatment of AiV polyprotein-expressing cells with a small interfering RNA targeting ACBD3 abolished colocalization of the viral 2B, 2C, and 3A proteins with PI4KB. A PI4KB-specific inhibitor also prevented their colocalization. Virus RNA replication increased the level of cellular PI4P without affecting that of PI4KB, and individual expression of 2B, 2BC, 2C, 3A, or 3AB stimulated PI4P generation. These results suggest that the viral protein/ACBD3/PI4KB complex plays an important role in forming the functional replication complex by enhancing PI4P synthesis. Of the viral proteins, 3A and 3AB were shown to stimulate the in vitro kinase activity of PI4KB through forming a 3A or 3AB/ACBD3/PI4KB complex, whereas the ACBD3-mediated PI4KB activation by 2B and 2C remains to be demonstrated. The phosphatidylinositol 4-kinase PI4KB is a host factor required for the replication of certain picornavirus genomes. Aichi virus, a picornavirus belonging to the genus Kobuvirus, forms a complex comprising one of the viral nonstructural proteins 2B, 2BC, 2C, 3A, and 3AB, the Golgi protein ACBD3, and PI4KB to synthesize PI4P at the sites for viral RNA replication. However, the roles of this protein complex in forming the replication complex are unknown. This study showed that virus RNA replication

  16. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  17. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  18. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time.

  19. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  20. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production.

    PubMed

    Kim, S W; Keasling, J D

    2001-02-20

    Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all carotenoids. IPP in Escherichia coli is synthesized through the nonmevalonate pathway, which has not been completely elucidated. The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phos- phate, catalyzed by DXP reductoisomerase and encoded by dxr. To determine if one or more of the reactions in the nonmevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains (DH5alpha, XL1-Blue, and JM101) that had been engineered to produce lycopene. Lycopene production was improved significantly in strains transformed with the dxs expression vectors. When the dxs gene was expressed from the arabinose-inducible araBAD promoter (P(BAD)) on a medium-copy plasmid, lycopene production was twofold higher than when dxs was expressed from the IPTG-inducible trc and lac promoters (P(trc) and P(lac), respectively) on medium-copy and high-copy plasmids. Given the low final densities of cells expressing dxs from IPTG-inducible promoters, the low lycopene production was probably due to the metabolic burden of plasmid maintenance and an excessive drain of central metabolic intermediates. At arabinose concentrations between 0 and 1.33 mM, cells expressing both dxs and dxr from P(BAD) on a medium-copy plasmid produced 1.4-2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene production in cells expressing both dxs and dxr was lower than in cells expressing dxs only. A comparison of the three E. coli strains transformed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XL1

  1. Synthesis and evaluation of hydroxyazolopyrimidines as herbicides; the generation of amitrole in planta.

    PubMed

    Clough, John M; Dale, Richard P; Elsdon, Barry; Hawkes, Timothy R; Hogg, Bridget V; Howell, Anushka; Kloer, Daniel P; Lecoq, Karine; McLachlan, Matthew Mw; Milnes, Phillip J; O'Riordan, Timothy Jc; Ranasinghe, Saranga; Shanahan, Stephen E; Sumner, Karen D; Tayab, Shanaaz

    2016-12-01

    Exploiting novel herbicidal modes of action is an important method to overcome the challenges faced by increasing resistance and regulatory pressure on existing commercial herbicides. Recent reports of inhibitors of enzymes in the non-mevalonate pathway of isoprenoid biosynthesis led to the design of a novel class of azolopyrimidines which were assessed for their herbicidal activity. Studies were also undertaken to determine the mode of action responsible for the observed herbicidal activity. In total, 30 novel azolopyrimidines were synthesised and their structures were unambiguously determined by (1) H NMR, mass spectroscopy and X-ray crystallographic analysis. The herbicidal activity of this new chemical class was assessed against six common weed species, with compounds from this series displaying bleaching symptomology in post-emergence tests. A structure-activity relationship for the novel compounds was determined, which showed that only those belonging to the hydroxytriazolopyrimidine subclass displayed significant herbicidal activity. Observed similarities between the bleaching symptomology displayed by these herbicides and amitrole suggested that hydroxytriazolopyrimidines could be acting as elaborate propesticides of amitrole, and this was subsequently demonstrated in plant metabolism studies using Amaranthus retroflexus. It was shown that selected hydroxytriazolopyrimidines that displayed promising herbicidal activity generated amitrole, with peak concentrations of amitrole generally being observed 1 day after application. Additionally, the herbicidal activity of selected compounds was profiled against tobacco plants engineered to overexpress 4-diphosphocytidyl-2C-methyl-d-erythritol synthase (IspD) or lycopene β-cyclase, and the results suggested that, where significant herbicidal activity was observed, inhibition of IspD was not responsible for the activity. Tobacco plants overexpressing lycopene β-cyclase showed tolerance to amitrole and the two most

  2. Influence of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses

    SciTech Connect

    El Moudane, M.; El Maniani, M.; Sabbar, A.; Ghanimi, A.; Tabyaoui, M.; Bellaouchou, A.; Guenbour, A.

    2015-12-15

    Highlights: • Results of ionic conductivities of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. • Determination of glass transition temperature using DSC method. • Study of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. - Abstract: Lithium–Lead–Bismuth phosphates glasses having, a composition 30Li{sub 3}PO{sub 4}–(70 − x)Pb{sub 3}(PO{sub 4}){sub 2}–xBiPO{sub 4} (45 ≤ x ≤ 60 mol%) were prepared by using the melt quenching method 1000 °C. The thermal stability of theses glasses increases with the substitution of Bi{sub 2}O{sub 3} with PbO. The ionic conductivity of all compositions have been measured over a wide temperature (200–500 °C) and frequency range (1–106 Hz). The ionic conductivity data below and above T{sub g} follows Arrhenius and Vogel–Tamman–Fulcher (VTF) relationship, respectively. The activation energies are estimated and discussed. The dependence in frequency of AC conductivity is found to obey Jonscher’s relation.

  3. Yeast dihydroxybutanone phosphate synthase, an enzyme of the riboflavin biosynthetic pathway, has a second unrelated function in expression of mitochondrial respiration.

    PubMed

    Jin, Can; Barrientos, Antoni; Tzagoloff, Alexander

    2003-04-25

    aE280/U1 is a pet mutant of Saccharomyces cerevisiae partially deficient in cytochromes a, a3, and cytochrome b. The ability of this mutant to respire is restored by RIB3, a gene previously shown to code for 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBP synthase), an enzyme of the riboflavin biosynthetic pathway. The sequences of RIB3 from wild type and aE280/U1 indicated a single base change resulting in an A137T substitution. The alanine 137 is a conserved residue located in a cavity on the surface of the protein distant from the active site and from the subunit interaction domain involved in homodimer formation. The respiratory defect elicited by this mutation cannot be explained by a flavin insufficiency based on the following evidence: 1) growth of the aE280/U1 on respiratory substrates is not rescued by exogenous riboflavin; 2) the levels of flavin nucleotides are not significantly different in the mutant and wild type. We proposed that in addition to its known function in riboflavin synthesis, RIB3 also functions in expression of mitochondrial respiration. Restoration by riboflavin of growth of a rib3 deletion mutant on glucose but not glycerol/ethanol also supported this conclusion. An antibody against the N-terminal half of DHBP synthase was used to study its subcellular distribution. Most of the protein was localized in the cytosolic fraction, but a small fraction was detected in the mitochondrial intermembrane space.

  4. Shedding of hyaluronate synthase from streptococci.

    PubMed Central

    Mausolf, A; Jungmann, J; Robenek, H; Prehm, P

    1990-01-01

    Hyaluronate synthase was shed into the culture medium from growing streptococci (group C) together with nascent hyaluronate. The mechanism of solubilization was analysed using isolated protoplast membranes. Solubilization increased when membranes were suspended in larger volumes, but it was temperature-independent and was not inhibited by protease inhibitors. Increased hyaluronate chain length enhanced solubilization. The soluble synthase could re-integrate into Streptococcal membranes in a saturable manner. The soluble synthase behaved like an integral membrane protein, although it was not integrated into phospholipid vesicles. In sucrose velocity centrifugation the synthase had a higher sedimentation rate in detergent-free solution, indicating that it existed in an aggregated state. Images Fig. 2. Fig. 3. Fig. 5. PMID:2109602

  5. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... Testing (1 link) Genetic Testing Registry: Amish infantile epilepsy syndrome Other Diagnosis and Management Resources (2 links) ...

  6. Chitin synthase inhibitors as antifungal agents.

    PubMed

    Chaudhary, Preeti M; Tupe, Santosh G; Deshpande, Mukund V

    2013-02-01

    Increased risk of fungal diseases in immunocompromised patients, emerging fungal pathogens, limited repertoire of antifungal drugs and resistance development against the drugs demands for development of new and effective antifungal agents. With greater knowledge of fungal metabolism efforts are being made to inhibit specific enzymes involved in different biochemical pathways for the development of antifungal drugs. Chitin synthase is one such promising target as it is absent in plants and mammals. Nikkomycin Z, a chitin synthase inhibitor is under clinical development. Chitin synthesis in fungi, chitin synthase as a target for antifungal agent development, different chitin synthase inhibitors isolated from natural sources, randomly synthesized and modified from nikkomycin and polyoxin are discussed in this review.

  7. Terpene synthases from Cannabis sativa

    PubMed Central

    Booth, Judith K.; Page, Jonathan E.

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety ‘Finola’ revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of ‘Finola’ resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties. PMID:28355238

  8. Terpene synthases from Cannabis sativa.

    PubMed

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  9. Energy transduction in ATP synthase

    NASA Astrophysics Data System (ADS)

    Elston, Timothy; Wang, Hongyun; Oster, George

    1998-01-01

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning Fo portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through Fo is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil γ-subunit. This acts as a rotating `cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this protonmotive force biases the rotor's diffusion so that Fo constitutes a rotary motor turning the γ shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility - supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump - can also be explained by our model.

  10. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  11. Malate synthase a membrane protein

    SciTech Connect

    Chapman, K.D.; Turley, R.B.; Hermerath, C.A.; Carrapico, F.; Trelease, R.N.

    1987-04-01

    Malate synthase (MS) is generally regarded as a peripheral membrane protein, and believed by some to be ontogenetically associated with ER. However, immuno- and cyto-chemical in situ localizations show MS throughout the matrix of cotton (and cucumber) glyoxysomes, not specifically near their boundary membranes, nor in ER. Only a maximum of 50% MS can be solubilized from cotton glyoxysomes with 1% Triton X-100, 2mM Zwittergen 14, or 10mM DOC +/- salts. Cotton MS does not incorporate /sup 3/H-glucosamine in vivo, nor does it react with Con A on columns or blots. Cotton MS banded with ER in sucrose gradients (20-40%) in Tricine after 3h, but not after 22h in Tricine or Hepes, or after 3h in Hepes or K-phosphate. Collectively the authors data are inconsistent with physiologically meaningful MS-membrane associations in ER or glyoxysomes. It appears that experimentally-induced aggregates of MS migrate in ER gradients and occur in isolated glyoxysomes. These data indicate that ER is not involved in synthesis or modification of cottonseed MS prior to its import into the glyoxysomal matrix.

  12. Assay of Deoxyhypusine Synthase Activity

    PubMed Central

    Wolff, Edith C.; Lee, Seung Bum; Park, Myung Hee

    2011-01-01

    Deoxyhypusine synthase catalyzes an unusual protein modification reaction. A portion of spermidine is covalently added to one specific lysine residue of one eukaryotic protein, eIF5A (eukaryotic initiation factor 5A) to form a deoxyhypusine residue. The assay measures the incorporation of radioactivity from [1,8-3H]spermidine into the eIF5A protein. The enzyme is specific for the eIF5A precursor protein and does not work on short peptides (<50 amino acids). Optimum conditions for the reaction and four detection methods for the product, deoxyhypusine-containing eIF5A, are described in this chapter. The first, and most specific, method is the measurement of the amount of [3H]deoxyhypusine in the protein hydrolysate after its separation by ion exchange chromatography. However, this method requires some specialized equipment. The second method is counting the radioactivity in TCA-precipitated protein after thorough washing. The third method involves determining the radioactivity in the band of [3H] deoxyhypusine-containing eIF5A after separation by SDS-PAGE. The fourth method is a filter-binding assay. It is important to minimize nonspecific binding of [3H]spermidine to proteins in the assay mixture, especially for methods 2 and 4, as illustrated in a comparison figure in the chapter. PMID:21318875

  13. Inhibitors of specific ceramide synthases.

    PubMed

    Schiffmann, Susanne; Hartmann, Daniela; Fuchs, Sina; Birod, Kerstin; Ferreiròs, Nerea; Schreiber, Yannick; Zivkovic, Aleksandra; Geisslinger, Gerd; Grösch, Sabine; Stark, Holger

    2012-02-01

    Ceramide synthases (CerSs) are key enzymes in the biosynthesis of ceramides and display a group of at least six different isoenzymes (CerS1-6). Ceramides itself are bioactive molecules. Ceramides with different N-acyl side chains (C(14:0)-Cer - C(26:0)-Cer) possess distinct roles in cell signaling. Therefore, the selective inhibition of specific CerSs which are responsible for the formation of a specific ceramide holds promise for a number of new clinical treatment strategies, e.g., cancer. Here, we identified four of hitherto unknown functional inhibitors of CerSs derived from the FTY720 (Fingolimod) lead structure and showed their inhibitory effectiveness by two in vitro CerS activity assays. Additionally, we tested the substances in two cell lines (HCT-116 and HeLa) with different ceramide patterns. In summary, the in vitro activity assays revealed out that ST1058 and ST1074 preferentially inhibit CerS2 and CerS4, while ST1072 inhibits most potently CerS4 and CerS6. Importantly, ST1060 inhibits predominately CerS2. First structure-activity relationships and the potential biological impact of these compounds are discussed.

  14. Isolation of fast purine nucleotide synthase ribozymes.

    PubMed

    Lau, Matthew W L; Cadieux, Kelly E C; Unrau, Peter J

    2004-12-08

    Here we report the in vitro selection of fast ribozymes capable of promoting the synthesis of a purine nucleotide (6-thioguanosine monophosphate) from tethered 5-phosphoribosyl 1-pyrophosphate (PRPP) and 6-thioguanine ((6S)Gua). The two most proficient purine synthases have apparent efficiencies of 284 and 230 M(-1) min(-1) and are both significantly more efficient than pyrimidine nucleotide synthase ribozymes selected previously by a similar approach. Interestingly, while both ribozymes showed good substrate discrimination, one ribozyme had no detectable affinity for 6-thioguanine while the second had a K(m) of approximately 80 muM, indicating that these ribozymes use considerably different modes of substrate recognition. The purine synthases were isolated after 10 rounds of selection from two high-diversity RNA pools. The first pool contained a long random sequence region. The second pool contained random sequence elements interspersed with the mutagenized helical elements of a previously characterized 4-thiouridine synthase ribozyme. While nearly all of the ribozymes isolated from this biased pool population appeared to have benefited from utilizing one of the progenitor's helical elements, little evidence for more complicated secondary structure preservation was evident. The discovery of purine synthases, in addition to pyrimidine synthases, demonstrates the potential for nucleotide synthesis in an 'RNA World' and provides a context from which to study small molecule RNA catalysis.

  15. Unique animal prenyltransferase with monoterpene synthase activity

    NASA Astrophysics Data System (ADS)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  16. Terpene synthases are widely distributed in bacteria

    PubMed Central

    Yamada, Yuuki; Kuzuyama, Tomohisa; Komatsu, Mamoru; Shin-ya, Kazuo; Omura, Satoshi; Cane, David E.; Ikeda, Haruo

    2015-01-01

    Odoriferous terpene metabolites of bacterial origin have been known for many years. In genome-sequenced Streptomycetaceae microorganisms, the vast majority produces the degraded sesquiterpene alcohol geosmin. Two minor groups of bacteria do not produce geosmin, with one of these groups instead producing other sesquiterpene alcohols, whereas members of the remaining group do not produce any detectable terpenoid metabolites. Because bacterial terpene synthases typically show no significant overall sequence similarity to any other known fungal or plant terpene synthases and usually exhibit relatively low levels of mutual sequence similarity with other bacterial synthases, simple correlation of protein sequence data with the structure of the cyclized terpene product has been precluded. We have previously described a powerful search method based on the use of hidden Markov models (HMMs) and protein families database (Pfam) search that has allowed the discovery of monoterpene synthases of bacterial origin. Using an enhanced set of HMM parameters generated using a training set of 140 previously identified bacterial terpene synthase sequences, a Pfam search of 8,759,463 predicted bacterial proteins from public databases and in-house draft genome data has now revealed 262 presumptive terpene synthases. The biochemical function of a considerable number of these presumptive terpene synthase genes could be determined by expression in a specially engineered heterologous Streptomyces host and spectroscopic identification of the resulting terpene products. In addition to a wide variety of terpenes that had been previously reported from fungal or plant sources, we have isolated and determined the complete structures of 13 previously unidentified cyclic sesquiterpenes and diterpenes. PMID:25535391

  17. The direct interaction between ASH2, a Drosophila trithorax group protein, and SKTL, a nuclear phosphatidylinositol 4-phosphate 5-kinase, implies a role for phosphatidylinositol 4,5-bisphosphate in maintaining transcriptionally active chromatin.

    PubMed Central

    Cheng, Mimi K; Shearn, Allen

    2004-01-01

    The products of trithorax group (trxG) genes maintain active transcription of many important developmental regulatory genes, including homeotic genes. Several trxG proteins have been shown to act in multimeric protein complexes that modify chromatin structure. ASH2, the product of the Drosophila trxG gene absent, small, or homeotic discs 2 (ash2) is a component of a 500-kD complex. In this article, we provide biochemical evidence that ASH2 binds directly to Skittles (SKTL), a predicted phosphatidylinositol 4-phosphate 5-kinase, and genetic evidence that the association of these proteins is functionally significant. We also show that histone H1 hyperphosphorylation is dramatically increased in both ash2 and sktl mutant polytene chromosomes. These results suggest that ASH2 maintains active transcription by binding a producer of nuclear phosphoinositides and downregulating histone H1 hyperphosphorylation. PMID:15280236

  18. The direct interaction between ASH2, a Drosophila trithorax group protein, and SKTL, a nuclear phosphatidylinositol 4-phosphate 5-kinase, implies a role for phosphatidylinositol 4,5-bisphosphate in maintaining transcriptionally active chromatin.

    PubMed

    Cheng, Mimi K; Shearn, Allen

    2004-07-01

    The products of trithorax group (trxG) genes maintain active transcription of many important developmental regulatory genes, including homeotic genes. Several trxG proteins have been shown to act in multimeric protein complexes that modify chromatin structure. ASH2, the product of the Drosophila trxG gene absent, small, or homeotic discs 2 (ash2) is a component of a 500-kD complex. In this article, we provide biochemical evidence that ASH2 binds directly to Skittles (SKTL), a predicted phosphatidylinositol 4-phosphate 5-kinase, and genetic evidence that the association of these proteins is functionally significant. We also show that histone H1 hyperphosphorylation is dramatically increased in both ash2 and sktl mutant polytene chromosomes. These results suggest that ASH2 maintains active transcription by binding a producer of nuclear phosphoinositides and downregulating histone H1 hyperphosphorylation.

  19. Distribution of Callose Synthase, Cellulose Synthase, and Sucrose Synthase in Tobacco Pollen Tube Is Controlled in Dissimilar Ways by Actin Filaments and Microtubules1[W

    PubMed Central

    Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C.; Cresti, Mauro

    2011-01-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules. PMID:21205616

  20. Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules.

    PubMed

    Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C; Cresti, Mauro

    2011-03-01

    Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules.

  1. Allene oxide synthases and allene oxides.

    PubMed

    Tijet, Nathalie; Brash, Alan R

    2002-08-01

    Allene oxides are unstable epoxides formed by the enzymatic dehydration of the lipoxygenase products of polyunsaturated fatty acids. The allene oxide synthases are of two structurally-unrelated types. In plants, a subfamily of cytochromes P450, designated as CYP74A, use the hydroperoxides of linoleic and linolenic acids as substrate. Both the 9- and 13-hydroperoxides may be converted to allene oxides and subsequently give rise to plant signaling molecules. In corals, a catalase-related hemoprotein functions as the allene oxide synthase. These marine invertebrates, as well as starfish, form allene oxides from the 8R-hydroperoxide of arachidonic acid. The coral allene oxide synthase from Plexaura homomalla occurs as the N-terminal domain of a natural fusion protein with the 8R-lipoxygenase that forms its substrate. This enzyme may be involved in biosynthesis of the cyclopentenone eicosanoids such as the clavulones.

  2. Biochemical characterization of the minimal polyketide synthase domains in the lovastatin nonaketide synthase LovB.

    PubMed

    Ma, Suzanne M; Tang, Yi

    2007-06-01

    The biosynthesis of lovastatin in Aspergillus terreus requires two megasynthases. The lovastatin nonaketide synthase, LovB, synthesizes the intermediate dihydromonacolin L using nine malonyl-coenzyme A molecules, and is a reducing, iterative type I polyketide synthase. The iterative type I polyketide synthase is mechanistically different from bacterial type I polyketide synthases and animal fatty acid synthases. We have cloned the minimal polyketide synthase domains of LovB as standalone proteins and assayed their activities and substrate specificities. The didomain proteins ketosynthase-malonyl-coenzyme A:acyl carrier protein acyltransferase (KS-MAT) and acyl carrier protein-condensation (ACP-CON) domain were expressed solubly in Escherichia coli. The monodomains MAT, ACP and CON were also obtained as soluble proteins. The MAT domain can be readily labeled by [1,2-(14)C]malonyl-coenzyme A and can transfer the acyl group to both the cognate LovB ACP and heterologous ACPs from bacterial type I and type II polyketide synthases. Using the LovB ACP-CON didomain as an acyl acceptor, LovB MAT transferred malonyl and acetyl groups with k(cat)/K(m) values of 0.62 min(-1).mum(-1) and 0.032 min(-1).mum(-1), respectively. The LovB MAT domain was able to substitute the Streptomyces coelicolor FabD in supporting product turnover in a bacterial type II minimal polyketide synthase assay. The activity of the KS domain was assayed independently using a KS-MAT (S656A) mutant in which the MAT domain was inactivated. The KS domain displayed no activity towards acetyl groups, but was able to recognize malonyl groups in the absence of cerulenin. The relevance of these finding to the priming mechanism of fungal polyketide synthase is discussed.

  3. Identification of novel sesterterpene/triterpene synthase from Bacillus clausii.

    PubMed

    Sato, Tsutomu; Yamaga, Hiroaki; Kashima, Shoji; Murata, Yusuke; Shinada, Tetsuro; Nakano, Chiaki; Hoshino, Tsutomu

    2013-05-10

    Basic enzyme: The tetraprenyl-β-curcumene synthase homologue from the alkalophilic Bacillus clausii catalyses conversions of a geranylfarnesyl diphosphate and a hexaprenyl diphosphate into novel head-to-tail acyclic sesterterpene and triterpene. Tetraprenyl-β-curcumene synthase homologues represent a new family of terpene synthases that form not only sesquarterpene but also sesterterpene and triterpene.

  4. Producing dicarboxylic acids using polyketide synthases

    SciTech Connect

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  5. Producing dicarboxylic acids using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-05-26

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  6. Nitric oxide synthase in tiger salamander retina.

    PubMed

    Kurenni, D E; Thurlow, G A; Turner, R W; Moroz, L L; Sharkey, K A; Barnes, S

    1995-10-23

    Previous studies have indicated that nitric oxide, a labile freely diffusible biological messenger synthesized by nitric oxide synthase, may modulate light transduction and signal transmission in the retina. In the present work, the large size of retinal cells in tiger salamander (Ambystoma tigrinum) allowed the utilization of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry and nitric oxide synthase immunocytochemistry to delineate the cell-specific intracellular localization of nitric oxide synthase. NADPH-diaphorase activity was highly concentrated in the outer retina, in rod and cone inner segment ellipsoids, and between and adjacent to the photoreceptor cell bodies in the outer nuclear layer. Examination of enzymatically isolated retinal cells indicated that outer nuclear layer NADPH-diaphorase activity was localized to the distal processes of the retinal glial (Müller) cells and to putative bipolar cell Landolt clubs. Less intense NADPH-diaphorase activity was seen in the photoreceptor inner segment myoid region, in a small number of inner nuclear layer cells, in cap-like configurations at the distal poles of cells in the ganglion cell layer and surrounding ganglion cell layer somata, and in punctate form within both plexiform layers, the pigment epithelium, and the optic nerve. Nitric oxide synthase-like immunoreactivity was similarly localized, but was also concentrated along a thin sublamina centered within the inner plexiform layer. The potential for nitric oxide generation at multiple retinal sites suggests that this molecule may play a number of roles in the processing of visual information in the retina.

  7. Lessons from 455 Fusarium polyketide synthases

    USDA-ARS?s Scientific Manuscript database

    In fungi, polyketide synthases (PKSs) synthesize a structurally diverse array of secondary metabolites (SMs) with a range of biological activities. The most studied SMs are toxic to animals and/or plants, alter plant growth, have beneficial pharmaceutical activities, and/or are brightly colored pigm...

  8. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence.

    PubMed

    Jagielska, Elżbieta; Płucienniczak, Andrzej; Dąbrowska, Magdalena; Dowierciał, Anna; Rode, Wojciech

    2014-04-09

    Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae. Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene.

  9. Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases.

    PubMed

    Barajas, Jesus F; Shakya, Gaurav; Moreno, Gabriel; Rivera, Heriberto; Jackson, David R; Topper, Caitlyn L; Vagstad, Anna L; La Clair, James J; Townsend, Craig A; Burkart, Michael D; Tsai, Shiou-Chuan

    2017-05-23

    Product template (PT) domains from fungal nonreducing polyketide synthases (NR-PKSs) are responsible for controlling the aldol cyclizations of poly-β-ketone intermediates assembled during the catalytic cycle. Our ability to understand the high regioselective control that PT domains exert is hindered by the inaccessibility of intrinsically unstable poly-β-ketones for in vitro studies. We describe here the crystallographic application of "atom replacement" mimetics in which isoxazole rings linked by thioethers mimic the alternating sites of carbonyls in the poly-β-ketone intermediates. We report the 1.8-Å cocrystal structure of the PksA PT domain from aflatoxin biosynthesis with a heptaketide mimetic tethered to a stably modified 4'-phosphopantetheine, which provides important empirical evidence for a previously proposed mechanism of PT-catalyzed cyclization. Key observations support the proposed deprotonation at C4 of the nascent polyketide by the catalytic His1345 and the role of a protein-coordinated water network to selectively activate the C9 carbonyl for nucleophilic addition. The importance of the 4'-phosphate at the distal end of the pantetheine arm is demonstrated to both facilitate delivery of the heptaketide mimetic deep into the PT active site and anchor one end of this linear array to precisely meter C4 into close proximity to the catalytic His1345. Additional structural features, docking simulations, and mutational experiments characterize protein-substrate mimic interactions, which likely play roles in orienting and stabilizing interactions during the native multistep catalytic cycle. These findings afford a view of a polyketide "atom-replaced" mimetic in a NR-PKS active site that could prove general for other PKS domains.

  10. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  11. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk.

    PubMed

    Lima, Carmen S P; Ortega, Manoela M; Ozelo, Margareth C; Araujo, Renato C; De Souza, Cármino A; Lorand-Metze, Irene; Annichino-Bizzacchi, Joyce M; Costa, Fernando F

    2008-03-01

    We tested whether the polymorphisms of the methylenetetrahydrofolate reductase gene, MTHFR C677T and A1298C, the methionine synthase gene, MTR A2756G, the methionine synthase reductase gene, MTRR A66G, and the thymidylate synthase gene, TYMS 2R-->3R, involved in folate and methionine metabolism, altered the risk for multiple myeloma (MM). Genomic DNA from 123MM patients and 188 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. The frequency of the MTR 2756 AG plus GG genotype was higher in patients than in controls (39.8% versus 23.4%, P=0.001). Individual carriers of the variant allele G had a 2.31 (95% CI: 1.38-3.87)-fold increased risk for MM compared with others. In contrast, similar frequencies of the MTHFR, the MTRR and the TYMS genotypes were seen in patients and controls. These results suggest, for the first time, a role for the MTR A2756G polymorphism in MM risk in our country, but should be confirmed by large-scale epidemiological studies with patients and controls age matched.

  12. Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with recombinant isopentenyl diphosphate isomerase and isoprene synthase.

    PubMed

    Zhou, Changfang; Li, Ziru; Wiberley-Bradford, Amy E; Weise, Sean E; Sharkey, Thomas D

    2013-09-15

    Isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP) are building units for all isoprenoids; thus, intracellular pool sizes of IDP and DMADP play important roles in living organisms. Several methods have been used to quantify the amount of DMADP or the combined amount of IDP plus DMADP, but measuring the DMADP/IDP ratio has been difficult. In this study, a method was developed to measure the ratio of DMADP/IDP. Catalyzed by a recombinant IDP isomerase (IDI) together with a recombinant isoprene synthase (IspS), IDP was converted to isoprene, which was then detected by chemiluminescence. With this method, the in vitro equilibrium ratio of DMADP/IDP was found to be 2.11:1. IDP and DMADP pools were significantly increased in Escherichia coli transformed with methylerythritol 4-phosphate pathway genes; the ratio of DMADP/IDP was 3.85. An E. coli strain transformed with IspS but no additional IDI had a lower DMADP level and a DMADP/IDP ratio of 1.05. Approximately 90% of the IDP and DMADP pools in light-adapted kudzu leaves were light dependent and so presumably were located in the chloroplasts; the DMADP/IDP ratios in chloroplasts and cytosol were the same as the in vitro ratio (2.04 in the light and 2.32 in the dark).

  13. Benzophenone synthase from Garcinia mangostana L. pericarps.

    PubMed

    Nualkaew, Natsajee; Morita, Hiroyuki; Shimokawa, Yoshihiko; Kinjo, Keishi; Kushiro, Tetsuo; De-Eknamkul, Wanchai; Ebizuka, Yutaka; Abe, Ikuro

    2012-05-01

    The cDNA of a benzophenone synthase (BPS), a type III polyketide synthase (PKS), was cloned and the recombinant protein expressed from the fruit pericarps of Garcinia mangostana L., which contains mainly prenylated xanthones. The obtained GmBPS showed an amino acid sequence identity of 77-78% with other plant BPSs belonging to the same family (Clusiaceae). The recombinant enzyme produced 2,4,6-trihydroxybenzophenone as the predominant product with benzoyl CoA as substrate. It also accepted other substrates, such as other plant PKSs, and used 1-3 molecules of malonyl CoA to form various phloroglucinol-type and polyketide lactone-type compounds. Thus, providing GmBPS with various substrates in vivo might redirect the xanthone biosynthetic pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Caffeine synthase and related methyltransferases in plants.

    PubMed

    Misako, Kato; Kouichi, Mizuno

    2004-05-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid present in high concentrations in tea and coffee and it is also found in a number of beverages such as coca cola. It is necessary to elucidate the caffeine biosynthetic pathway and to clone the genes related to the production of caffeine not only to determine the metabolism of the purine alkaloid but also to control the content of caffeine in tea and coffee. The available data support the operation of a xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine pathway as the major route to caffeine. Since the caffeine biosynthetic pathway contains three S-adenosyl-L-methionine (SAM) dependent methylation steps, N-methyltransferases play important roles. This review focuses on the enzymes and genes involved in the methylation of purine ring. Caffeine synthase, the SAM-dependent methyltransferase involved in the last two steps of caffeine biosynthesis, was originally purified from young tea leaves (Camellia sinensis). The isolated cDNA, termed TCS1, consists of 1,483 base pairs and encodes a protein of 369 amino acids. Subsequently, the homologous genes that encode caffeine biosynthetic enzymes from coffee (Coffea arabica) were isolated. The recombinant proteins are classified into the three types on the basis of their substrate specificity i.e. 7-methylxanthosine synthase, theobromine synthase and caffeine synthase. The predicted amino acid sequences of caffeine biosynthetic enzymes derived from C. arabica exhibit more than 80% homology with those of the clones and but show only 40% homology with TCS1 derived from C. sinensis. In addition, they share 40% homology with the amino acid sequences of salicylic carboxyl methyltransferase, benzoic acid carboxyl methyltransferase and jasmonic acid carboxyl methyltransferase which belong to a family of motif B' methyltransferases which are novel plant methyltransferases with motif B' instead of motif B as the conserved region.

  15. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  16. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  17. Threonine Synthase of Lemna paucicostata Hegelm. 6746

    PubMed Central

    Giovanelli, John; Veluthambi, K.; Thompson, Gregory A.; Mudd, S. Harvey; Datko, Anne H.

    1984-01-01

    Threonine synthase (TS) was purified approximately 40-fold from Lemna paucicostata, and some of its properties determined by use of a sensitive and specific assay. During the course of its purification, TS was separated from cystathionine γ-synthase, establishing the separate identity of these enzymes. Compared to cystathionine γ-synthase, TS is relatively insensitive to irreversible inhibition by propargylglycine (both in vitro and in vivo) and to gabaculine, vinylglycine, or cysteine in vitro. TS is highly specific for O-phospho-l-homoserine (OPH) and water (hydroxyl ion). Nucleophilic attack by hydroxyl ion is restricted to carbon-3 of OPH and proceeds sterospecifically to form threonine rather than allo-threonine. The Km for OPH, determined at saturating S-adenosylmethionine (AdoMet), is 2.2 to 6.9 micromolar, two orders of magnitude less than values reported for TS from other plant tissues. AdoMet markedly stimulates the enzyme in a reversible and cooperative manner, consistent with its proposed role in regulation of methionine biosynthesis. Cysteine (1 millimolar) caused a slight (26%) reversible inhibition of the enzyme. Activities of TS isolated from Lemna were inversely related to the methionine nutrition of the plants. Down-regulation of TS by methionine may help to limit the overproduction of threonine that could result from allosteric stimulation of the enzyme by AdoMet. No evidence was obtained for feedback inhibition, repression, or covalent modification of TS by threonine and/or isoleucine. PMID:16663833

  18. Structure of a modular polyketide synthase

    PubMed Central

    Dutta, Somnath; Whicher, Jonathan R.; Hansen, Douglas A.; Hale, Wendi A.; Chemler, Joseph A.; Congdon, Grady R.; Narayan, Alison R.; Håkansson, Kristina; Sherman, David H.; Smith, Janet L.

    2014-01-01

    Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases, has an architecture in which successive modules catalyze two-carbon linear extensions and keto group processing reactions on intermediates covalently tethered to carrier domains. We employed electron cryo-microscopy to visualize a full-length module and determine sub-nanometer resolution 3D reconstructions that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intra-module carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time the structural basis for both intra-module and inter-module substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems. PMID:24965652

  19. Progress towards clinically useful aldosterone synthase inhibitors.

    PubMed

    Cerny, Matthew A

    2013-01-01

    Owing to the high degree of similarity between aldosterone synthase (CYP11B2) and cortisol synthase (CYP11B1), the design of selective inhibitors of one or the other of these two enzymes was, at one time, thought to be impossible. Through development of novel enzyme screening assays and significant medicinal chemistry efforts, highly potent inhibitors of CYP11B2 have been identified with selectivities approaching 1000-fold between the two enzymes. Many of these molecules also possess selectivity against other steroidogenic cytochromes P450 (e.g. CYP17A1 and CYP19A1) as well as hepatic drug metabolizing P450s. Though not as well developed or explored, inhibitors of CYP11B1, with selectivities approaching 50-fold, have also been identified. The therapeutic benefits of affecting the renin-angiotensin-aldosterone system have been well established with the therapeutically useful angiotensin-converting enzymes inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists. Data regarding the additional benefits of an aldosterone synthase inhibitor (ASi) are beginning to emerge from animal models and human clinical trials. Despite great promise and much progress, additional challenges still exist in the path towards development of a therapeutically useful ASi.

  20. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    SciTech Connect

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  1. Linear Free Energy Relationship Analysis of Transition State Mimicry by 3-Deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) Oxime, a DAHP Synthase Inhibitor and Phosphate Mimic.

    PubMed

    Balachandran, Naresh; To, Frederick; Berti, Paul J

    2017-01-31

    3-Deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase catalyzes an aldol-like reaction of phosphoenolpyruvate (PEP) with erythrose 4-phosphate (E4P) to form DAHP in the first step of the shikimate biosynthetic pathway. DAHP oxime, in which an oxime replaces the ketone, is a potent inhibitor, with Ki = 1.5 μM. Linear free energy relationship (LFER) analysis of DAHP oxime inhibition using DAHP synthase mutants revealed an excellent correlation between transition state stabilization and inhibition. The equations of LFER analysis were rederived to formalize the possibility of proportional, rather than equal, changes in the free energies of transition state stabilization and inhibitor binding, in accord with the fact that the majority of LFER analyses in the literature demonstrate nonunity slopes. A slope of unity, m = 1, indicates that catalysis and inhibitor binding are equally sensitive to perturbations such as mutations or modified inhibitor/substrate structures. Slopes <1 or >1 indicate that inhibitor binding is less sensitive or more sensitive, respectively, to perturbations than is catalysis. LFER analysis using the tetramolecular specificity constant, that is, plotting log(KM,MnKM,PEPKM,E4P/kcat) versus log(Ki), revealed a slope, m, of 0.34, with r(2) = 0.93. This provides evidence that DAHP oxime is mimicking the first irreversible transition state of the DAHP synthase reaction, presumably phosphate departure from the tetrahedral intermediate. This is evidence that the oxime group can act as a functional, as well as structural, mimic of phosphate groups.

  2. Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases*

    PubMed Central

    Jones, Christopher G.; Moniodis, Jessie; Zulak, Katherine G.; Scaffidi, Adrian; Plummer, Julie A.; Ghisalberti, Emilio L.; Barbour, Elizabeth L.; Bohlmann, Jörg

    2011-01-01

    Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. PMID:21454632

  3. A High and Phosphatidylinositol-4-phosphate (PI4P)-dependent ATPase Activity for the Drs2p/Cdc50p Flippase after Removal of its N- and C-terminal Extensions.

    PubMed

    Azouaoui, Hassina; Montigny, Cédric; Dieudonné, Thibaud; Champeil, Philippe; Jacquot, Aurore; Vázquez-Ibar, José Luis; Le Maréchal, Pierre; Ulstrup, Jakob; Ash, Miriam-Rose; Lyons, Joseph A; Nissen, Poul; Lenoir, Guillaume

    2017-03-16

    P4-ATPases, also known as phospholipid flippases, are responsible for creating and maintaining transbilayer lipid asymmetry in eukaryotic cell membranes. Here, we use limited proteolysis to investigate the role of the N- and C-termini in ATP hydrolysis and auto-inhibition of the yeast flippase Drs2p/Cdc50p. We show that limited proteolysis of the detergent-solubilized and purified yeast flippase may result in more than one order of magnitude increase of its ATPase activity, which remains dependent on phosphatidylinositol-4-phosphate (PI4P), a regulator of this lipid flippase, and specific to a phosphatidylserine substrate. Using thrombin as the protease, Cdc50p remains intact and in complex with Drs2p, which is cleaved at two positions, namely after R104 and after R1290, resulting in a homogenous sample lacking 104 and 65 residues from its N- and C-termini, respectively. Removal of the 1291-1302 region of the C-terminal extension is critical for relieving the auto-inhibition of full-length Drs2p, while the 1-104 N-terminal residues have an additional but more modest significance for activity. The present results therefore reveal that trimming off appropriate regions of the terminal extensions of Drs2p can greatly increase its ATPase activity in the presence of PI4P, and demonstrate that relief of such auto-inhibition remains compatible with subsequent regulation by PI4P. These experiments suggest that activation of the Drs2p/Cdc50p flippase follows a multi-step mechanism, with preliminary release of a number of constraints, possibly through the binding of regulatory proteins in the trans-Golgi network, followed by full activation by PI4P.

  4. NS5A Inhibitors Impair NS5A–Phosphatidylinositol 4-Kinase IIIα Complex Formation and Cause a Decrease of Phosphatidylinositol 4-Phosphate and Cholesterol Levels in Hepatitis C Virus-Associated Membranes

    PubMed Central

    Reghellin, V.; Donnici, L.; Fenu, S.; Berno, V.; Calabrese, V.; Pagani, M.; Abrignani, S.; Peri, F.

    2014-01-01

    The hepatitis C virus (HCV) nonstructural (NS) protein 5A is a multifunctional protein that plays a central role in viral replication and assembly. Antiviral agents directly targeting NS5A are currently in clinical development. Although the elucidation of the mechanism of action (MOA) of NS5A inhibitors has been the focus of intensive research, a detailed understanding of how these agents exert their antiviral effect is still lacking. In this study, we observed that the downregulation of NS5A hyperphosphorylation is associated with the actions of NS5A inhibitors belonging to different chemotypes. NS5A is known to recruit the lipid kinase phosphatidylinositol 4-kinase IIIα (PI4KIIIα) to the HCV-induced membranous web in order to generate phosphatidylinositol 4-phosphate (PI4P) at the sites of replication. We demonstrate that treatment with NS5A inhibitors leads to an impairment in the NS5A-PI4KIIIα complex formation that is paralleled by a significant reduction in PI4P and cholesterol levels within the endomembrane structures of HCV-replicating cells. A similar decrease in PI4P and cholesterol levels was also obtained upon treatment with a PI4KIIIα-targeting inhibitor. In addition, both the NS5A and PI4KIIIα classes of inhibitors induced similar subcellular relocalization of the NS5A protein, causing the formation of large cytoplasmic NS5A-containing clusters previously reported to be one of the hallmarks of inhibition of the action of PI4KIIIα. Because of the similarities between the effects induced by treatment with PI4KIIIα or NS5A inhibitors and the observation that agents targeting NS5A impair NS5A-PI4KIIIα complex formation, we speculate that NS5A inhibitors act by interfering with the function of the NS5A-PI4KIIIα complex. PMID:25224012

  5. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  6. Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants.

    PubMed

    Gray, Dennis W; Breneman, Steven R; Topper, Lauren A; Sharkey, Thomas D

    2011-06-10

    2-Methyl-3-buten-2-ol (MBO) is a five-carbon alcohol produced and emitted in large quantities by many species of pine native to western North America. MBO is structurally and biosynthetically related to isoprene and can have an important impact on regional atmospheric chemistry. The gene for MBO synthase was identified from Pinus sabiniana, and the protein encoded was functionally characterized. MBO synthase is a bifunctional enzyme that produces both MBO and isoprene in a ratio of ~90:1. Divalent cations are required for activity, whereas monovalent cations are not. MBO production is enhanced by K(+), whereas isoprene production is inhibited by K(+) such that, at physiologically relevant [K(+)], little or no isoprene emission should be detected from MBO-emitting trees. The K(m) of MBO synthase for dimethylallyl diphosphate (20 mm) is comparable with that observed for angiosperm isoprene synthases and 3 orders of magnitude higher than that observed for monoterpene and sesquiterpene synthases. Phylogenetic analysis showed that MBO synthase falls into the TPS-d1 group (gymnosperm monoterpene synthases) and is most closely related to linalool synthase from Picea abies. Structural modeling showed that up to three phenylalanine residues restrict the size of the active site and may be responsible for making this a hemiterpene synthase rather than a monoterpene synthase. One of these residues is homologous to a Phe residue found in the active site of isoprene synthases. The remaining two Phe residues do not have homologs in isoprene synthases but occupy the same space as a second Phe residue that closes off the isoprene synthase active site.

  7. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  8. Cellulose synthase interacting protein: a new factor in cellulose synthesis.

    PubMed

    Gu, Ying; Somerville, Chris

    2010-12-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities.

  9. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha.

    PubMed

    Kumar, Santosh; Kempinski, Chase; Zhuang, Xun; Norris, Ayla; Mafu, Sibongile; Zi, Jiachen; Bell, Stephen A; Nybo, Stephen Eric; Kinison, Scott E; Jiang, Zuodong; Goklany, Sheba; Linscott, Kristin B; Chen, Xinlu; Jia, Qidong; Brown, Shoshana D; Bowman, John L; Babbitt, Patricia C; Peters, Reuben J; Chen, Feng; Chappell, Joe

    2016-10-01

    Marchantia polymorpha is a basal terrestrial land plant, which like most liverworts accumulates structurally diverse terpenes believed to serve in deterring disease and herbivory. Previous studies have suggested that the mevalonate and methylerythritol phosphate pathways, present in evolutionarily diverged plants, are also operative in liverworts. However, the genes and enzymes responsible for the chemical diversity of terpenes have yet to be described. In this study, we resorted to a HMMER search tool to identify 17 putative terpene synthase genes from M. polymorpha transcriptomes. Functional characterization identified four diterpene synthase genes phylogenetically related to those found in diverged plants and nine rather unusual monoterpene and sesquiterpene synthase-like genes. The presence of separate monofunctional diterpene synthases for ent-copalyl diphosphate and ent-kaurene biosynthesis is similar to orthologs found in vascular plants, pushing the date of the underlying gene duplication and neofunctionalization of the ancestral diterpene synthase gene family to >400 million years ago. By contrast, the mono- and sesquiterpene synthases represent a distinct class of enzymes, not related to previously described plant terpene synthases and only distantly so to microbial-type terpene synthases. The absence of a Mg(2+) binding, aspartate-rich, DDXXD motif places these enzymes in a noncanonical family of terpene synthases. © 2016 American Society of Plant Biologists. All rights reserved.

  10. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  11. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A [East Lansing, MI; Itoh, Aya [Tsuruoka, JP

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  12. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    PubMed Central

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays. PMID:28883829

  13. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis.

    PubMed

    Alquézar, Berta; Rodríguez, Ana; de la Peña, Marcos; Peña, Leandro

    2017-01-01

    Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  14. Molecular cloning and characterization of isomultiflorenol synthase, a new triterpene synthase from Luffa cylindrica, involved in biosynthesis of bryonolic acid.

    PubMed

    Hayashi, H; Huang, P; Inoue, K; Hiraoka, N; Ikeshiro, Y; Yazaki, K; Tanaka, S; Kushiro, T; Shibuya, M; Ebizuka, Y

    2001-12-01

    An oxidosqualene cyclase cDNA, LcIMS1, was isolated from cultured cells of Luffa cylindrica Roem. by heterologous hybridization with cDNA of Glycyrrhiza glabra beta-amyrin synthase. Expression of LcIMS1 in yeast lacking endogenous oxidosqualene cyclase activity resulted in the accumulation of isomultiflorenol, a triterpene. This is consistent with LcIMS1 encoding isomultiflorenol synthase, an oxidosqualene cyclase involved in bryonolic acid biosynthesis in cultured Luffa cells. The deduced amino-acid sequence of LcIMS1 shows relatively low identity with other triterpene synthases, suggesting that isomultiflorenol synthase should be classified into a new group of triterpene synthases. The levels of isomultiflorenol synthase and cycloartenol synthase mRNAs, which were measured with gene-specific probes, correlated with the accumulation of bryonolic acid and phytosterols over a growth cycle of the Luffa cell cultures. Isomultiflorenol synthase mRNA was low during the early stages of cell growth and accumulated to relatively high levels in the late stages. Induction of this mRNA preceded accumulation of bryonolic acid. In contrast, cycloartenol synthase mRNA accumulated in the early stages of the culture cycle, whereas phytosterols accumulated at the same relative rate throughout the whole growth cycle. These results suggest independent regulation of these two genes and of the accumulation of bryonolic acid and phytosterols.

  15. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  16. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  17. A High-Yield Co-Expression System for the Purification of an Intact Drs2p-Cdc50p Lipid Flippase Complex, Critically Dependent on and Stabilized by Phosphatidylinositol-4-Phosphate

    PubMed Central

    Azouaoui, Hassina; Montigny, Cédric; Ash, Miriam-Rose; Fijalkowski, Frank; Jacquot, Aurore; Grønberg, Christina; López-Marqués, Rosa L.; Palmgren, Michael G.; Garrigos, Manuel; le Maire, Marc; Decottignies, Paulette; Gourdon, Pontus; Nissen, Poul; Champeil, Philippe; Lenoir, Guillaume

    2014-01-01

    P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼1–2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover a fraction that mainly contained a 1∶1 complex, which was assessed by size-exclusion chromatography and mass spectrometry. The functional properties of the purified complex were examined, including the dependence of its catalytic cycle on specific lipids. The dephosphorylation rate was stimulated in the simultaneous presence of the transported substrate, phosphatidylserine (PS), and the regulatory lipid phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide that plays critical roles in membrane trafficking events from the trans-Golgi network (TGN). Likewise, overall ATP hydrolysis by the complex was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and

  18. A high-yield co-expression system for the purification of an intact Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate.

    PubMed

    Azouaoui, Hassina; Montigny, Cédric; Ash, Miriam-Rose; Fijalkowski, Frank; Jacquot, Aurore; Grønberg, Christina; López-Marqués, Rosa L; Palmgren, Michael G; Garrigos, Manuel; le Maire, Marc; Decottignies, Paulette; Gourdon, Pontus; Nissen, Poul; Champeil, Philippe; Lenoir, Guillaume

    2014-01-01

    P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼ 1-2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover a fraction that mainly contained a 1:1 complex, which was assessed by size-exclusion chromatography and mass spectrometry. The functional properties of the purified complex were examined, including the dependence of its catalytic cycle on specific lipids. The dephosphorylation rate was stimulated in the simultaneous presence of the transported substrate, phosphatidylserine (PS), and the regulatory lipid phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide that plays critical roles in membrane trafficking events from the trans-Golgi network (TGN). Likewise, overall ATP hydrolysis by the complex was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and

  19. Evolution and function of phytochelatin synthases.

    PubMed

    Clemens, Stephan

    2006-02-01

    Both essential and non-essential transition metal ions can easily be toxic to cells. The physiological range for essential metals between deficiency and toxicity is therefore extremely narrow and a tightly controlled metal homeostasis network to adjust to fluctuations in micronutrient availability is a necessity for all organisms. One protective strategy against metal excess is the expression of high-affinity binding sites to suppress uncontrolled binding of metal ions to physiologically important functional groups. The synthesis of phytochelatins, glutathione-derived metal binding peptides, represents the major detoxification mechanism for cadmium and arsenic in plants and an unknown range of other organisms. A few years ago genes encoding phytochelatin synthases (PCS) were cloned from plants, fungi and nematodes. Since then it has become apparent that PCS genes are far more widespread than ever anticipated. Searches in sequence databases indicate PCS expression in representatives of all eukaryotic kingdoms and the presence of PCS-like proteins in several prokaryotes. The almost ubiquitous presence in the plant kingdom and beyond as well as the constitutive expression of PCS genes and PCS activity in all major plant tissues are still mysterious. It is unclear, how the extremely rare need to cope with an excess of cadmium or arsenic ions could explain the evolution and distribution of PCS genes. Possible answers to this question are discussed. Also, the molecular characterization of phytochelatin synthases and our current knowledge about the enzymology of phytochelatin synthesis are reviewed.

  20. Activities and regulation of peptidoglycan synthases.

    PubMed

    Egan, Alexander J F; Biboy, Jacob; van't Veer, Inge; Breukink, Eefjan; Vollmer, Waldemar

    2015-10-05

    Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein-protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein-protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN.

  1. Acetylation of prostaglandin synthase by aspirin.

    PubMed Central

    Roth, G J; Stanford, N; Majerus, P W

    1975-01-01

    When microsomes of sheep or bovine seminal vesicles are incubated with [acetyl-3H]aspirin (acetyl salicylic acid), 200 Ci/mol, we observe acetylation of a single protein, as measured by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The protein has a molecular weight of 85,000 and corresponds to a similar acetylated protein found in the particulate fraction of aspirin-treated human platelets. The aspirin-mediated acetylation reaction proceeds with the same time course and at the same concentration as does the inhibition of prostaglandin synthase (cyclo-oxygenase) (EC 1.14.99.1; 8,11,14-eicosatrienoate, hydrogen-donor:oxygen oxidoreductase) by the drug. At 100 muM aspirin, 50% inhibition of prostaglandin synthase and 50% of maximal acetylation are observed after 15 min at 37 degrees. Furthermore, the substrate for cyclo-oxygenase, arachidonic acid, inhibits protein acetylation by aspirin at concentrations (50% inhibition at 10-30 muM) which correlate with the Michaelis constant of arachidonic acid as a substrate for cyclooxygenase. Arachidonic acid analogues and indomethacin inhibit the acetylation reaction in proportion to their effectiveness as cyclo-oxygenase inhibitors. The results suggest that aspirin acts as an active-site acetylating agent for the enzyme cyclo-oxygenase. This action of aspirin may account for its anti-inflammatory and anti-platelet action. PMID:810797

  2. Rows of ATP Synthase Dimers in Native Mitochondrial Inner Membranes

    PubMed Central

    Buzhynskyy, Nikolay; Sens, Pierre; Prima, Valerie; Sturgis, James N.; Scheuring, Simon

    2007-01-01

    The ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, and their organization has been elucidated. However, the supramolecular assembly of ATP synthases in biological membranes remains unknown. Here we show with submolecular resolution the organization of ATP synthases in the yeast mitochondrial inner membranes. The atomic force microscopy images we have obtained show how these molecules form dimers with characteristic 15 nm distance between the axes of their rotors through stereospecific interactions of the membrane embedded portions of their stators. A different interaction surface is responsible for the formation of rows of dimers. Such an organization elucidates the role of the ATP synthase in mitochondrial morphology. Some dimers have a different morphology with 10 nm stalk-to-stalk distance, in line with ATP synthases that are accessible to IF1 inhibition. Rotation torque compensation within ATP synthase dimers stabilizes the ATP synthase structure, in particular the stator-rotor interaction. PMID:17557793

  3. Subcellular localization and regulation of coenzyme A synthase.

    PubMed

    Zhyvoloup, Alexander; Nemazanyy, Ivan; Panasyuk, Ganna; Valovka, Taras; Fenton, Tim; Rebholz, Heike; Wang, Mong-Lien; Foxon, Richard; Lyzogubov, Valeriy; Usenko, Vasylij; Kyyamova, Ramziya; Gorbenko, Olena; Matsuka, Genadiy; Filonenko, Valeriy; Gout, Ivan T

    2003-12-12

    CoA synthase mediates the last two steps in the sequence of enzymatic reactions, leading to CoA biosynthesis. We have recently identified cDNA for CoA synthase and demonstrated that it encodes a bifunctional enzyme possessing 4'-phosphopantetheine adenylyltransferase and dephospho-CoA kinase activities. Molecular cloning of CoA synthase provided us with necessary tools to study subcellular localization and the regulation of this bifunctional enzyme. Transient expression studies and confocal microscopy allowed us to demonstrate that full-length CoA synthase is associated with the mitochondria, whereas the removal of the N-terminal region relocates the enzyme to the cytosol. In addition, we showed that the N-terminal sequence of CoA synthase (amino acids 1-29) exhibits a hydrophobic profile and targets green fluorescent protein exclusively to mitochondria. Further analysis, involving subcellular fractionation and limited proteolysis, indicated that CoA synthase is localized on the mitochondrial outer membrane. Moreover, we demonstrate for the first time that phosphatidylcholine and phosphatidylethanolamine, which are the main components of the mitochondrial outer membrane, are potent activators of both enzymatic activities of CoA synthase in vitro. Taken together, these data provide the evidence that the final stages of CoA biosynthesis take place on mitochondria and the activity of CoA synthase is regulated by phospholipids.

  4. Argininosuccinate synthase: at the center of arginine metabolism.

    PubMed

    Haines, Ricci J; Pendleton, Laura C; Eichler, Duane C

    2011-01-01

    The levels of L-arginine, a cationic, semi-essential amino acid, are often controlled within a cell at the level of local availability through biosynthesis. The importance of this temporal and spatial control of cellular L-arginine is highlighted by the tissue specific roles of argininosuccinate synthase (argininosuccinate synthetase) (EC 6.3.4.5), as the rate-limiting step in the conversion of L-citrulline to L-arginine. Since its discovery, the function of argininosuccinate synthase has been linked almost exclusively to hepatic urea production despite the fact that alternative pathways involving argininosuccinate synthase were defined, such as its role in providing arginine for creatine and for polyamine biosynthesis. However, it was the discovery of nitric oxide that meaningfully extended our understanding of the metabolic importance of non-hepatic argininosuccinate synthase. Indeed, our knowledge of the number of tissues that manage distinct pools of arginine under the control of argininosuccinate synthase has expanded significantly.

  5. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  6. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases

    PubMed Central

    Aaron, Julie A.; Christianson, David. W.

    2011-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure. PMID:21562622

  7. A Comparative Analysis of Acyl-Homoserine Lactone Synthase Assays.

    PubMed

    Shin, Daniel; Frane, Nicole D; Brecht, Ryan M; Keeler, Jesse; Nagarajan, Rajesh

    2015-12-01

    Quorum sensing is cell-to-cell communication that allows bacteria to coordinate attacks on their hosts by inducing virulent gene expression, biofilm production, and other cellular functions, including antibiotic resistance. AHL synthase enzymes synthesize N-acyl-l-homoserine lactones, commonly referred to as autoinducers, to facilitate quorum sensing in Gram-negative bacteria. Studying the synthases, however, has proven to be a difficult road. Two assays, including a radiolabeled assay and a colorimetric (DCPIP) assay are well-documented in literature to study AHL synthases. In this paper, we describe additional methods that include an HPLC-based, C-S bond cleavage and coupled assays to investigate this class of enzymes. In addition, we compare and contrast each assay for both acyl-CoA- and acyl-ACP-utilizing synthases. The expanded toolkit described in this study should facilitate mechanistic studies on quorum sensing signal synthases and expedite discovery of antivirulent compounds.

  8. Evaluation of coriander spice as a functional food by using in vitro bioassays.

    PubMed

    Zhang, Chuan-Rui; Dissanayake, Amila A; Kevseroğlu, Kudret; Nair, Muraleedharan G

    2015-01-15

    Coriander leaves and seeds are widely used as a condiment and spice. The use of roasted coriander seeds in food and beverage is very common. In this study, we investigated raw and roasted coriander seeds for their functional food quality using antioxidant, anti-inflammatory and human tumour cell proliferation inhibitory assays. The hexane and methanolic extracts of raw and roasted coriander seeds showed identical chromatographic and bioassay profiles. Chromatographic purification of the roasted seed extracts afforded tripetroselinin as the predominant component. Other isolates were petroselinic acid, 1,3-dipetroselinin, 2-C-methyl-d-erythritol, 2-C-methyl-d-erythritol 4-O-β-d-glucopyranoside and linalool. Hexane and methanolic extracts of both raw and roasted seeds and pure isolates from them showed comparable antioxidant and anti-inflammatory activities to the positive controls used in the assays, and inhibited the growth of human tumour cells AGS (gastric carcinoma), DU-145 and LNCaP (prostate carcinoma), HCT-116 (colon carcinoma), MCF-7 (breast carcinoma) and NCI-H460 (lung carcinoma) by 4-34%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Functional Contribution of Chorismate Synthase, Anthranilate Synthase, and Chorismate Mutase to Penetration Resistance in Barley-Powdery Mildew Interactions

    USDA-ARS?s Scientific Manuscript database

    Plant processes resulting from primary or secondary metabolism have been hypothesized to contribute to defense against microbial attack. Barley chorismate synthase (HvCS), anthranilate synthase alpha subunit 2 (HvASa2) and chorismate mutase 1 (HvCM1) occupy pivotal branch-points downstream of the s...

  10. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage.

    PubMed

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Komur, Baran; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  11. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  12. Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes.

    PubMed

    Plach, Maximilian G; Löffler, Patrick; Merkl, Rainer; Sterner, Reinhard

    2015-09-14

    Chorismate-utilizing enzymes play a vital role in the biosynthesis of metabolites in plants as well as free-living and infectious microorganisms. Among these enzymes are the homologous primary metabolic anthranilate synthase (AS) and secondary metabolic isochorismate synthase (ICS). Both catalyze mechanistically related reactions by using ammonia and water as nucleophiles, respectively. We report that the nucleophile specificity of AS can be extended from ammonia to water by just two amino acid exchanges in a channel leading to the active site. The observed ICS/AS bifunctionality demonstrates that a secondary metabolic enzyme can readily evolve from a primary metabolic enzyme without requiring an initial gene duplication event. In a general sense, these findings add to our understanding how nature has used the structurally predetermined features of enzyme superfamilies to evolve new reactions.

  13. Identification of cystathionine γ-synthase and threonine synthase from Cicer arietinum and Lens culinaris.

    PubMed

    Morneau, Dominique J K; Jaworski, Allison F; Aitken, Susan M

    2013-04-01

    In plants, cystathionine γ-synthase (CGS) and threonine synthase (TS) compete for the branch-point metabolite O-phospho-L-homoserine. These enzymes are potential targets for metabolic engineering studies, aiming to alter the flux through the competing methionine and threonine biosynthetic pathways, with the goal of increasing methionine production. Although CGS and TS have been characterized in the model organisms Escherichia coli and Arabidopsis thaliana, little information is available on these enzymes in other, particularly plant, species. The functional CGS and TS coding sequences from the grain legumes Cicer arietinum (chickpea) and Lens culinaris (lentil) identified in this study share approximately 80% amino acid sequence identity with the corresponding sequences from Glycine max. At least 7 active-site residues of grain legume CGS and TS are conserved in the model bacterial enzymes, including the catalytic base. Putative processing sites that remove the targeting sequence and result in functional TS were identified in the target species.

  14. Heterologous expression in Saccharopolyspora erythraea of a pentaketide synthase derived from the spinosyn polyketide synthase.

    PubMed

    Martin, Christine J; Timoney, Máire C; Sheridan, Rose M; Kendrew, Steven G; Wilkinson, Barrie; Staunton, James C; Leadlay, Peter F

    2003-12-07

    A truncated version of the spinosyn polyketide synthase comprising the loading module and the first four extension modules fused to the erythromycin thioesterase domain was expressed in Saccharopolyspora erythraea. A novel pentaketide lactone product was isolated, identifying cryptic steps of spinosyn biosynthesis and indicating the potential of this approach for the biosynthetic engineering of spinosyn analogues. A pathway for the formation of the tetracyclic spinosyn aglycone is proposed.

  15. Endothelial nitric oxide synthase in the microcirculation

    PubMed Central

    Shu, Xiaohong; Keller, T.C. Stevenson; Begandt, Daniela; Butcher, Joshua T.; Biwer, Lauren; Keller, Alexander S.; Columbus, Linda; Isakson, Brant E.

    2015-01-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO) - a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells. PMID:26390975

  16. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  17. Kinetic studies on muscle glycogen synthase.

    PubMed

    Salsas, E; Larner, J

    1975-05-10

    Using the I form of rabbit muscle glycogen synthase essentially free of glycogen, the kinetics and mechanism of action was investigated. No evidence for an exchange between [14C]UDP and UDP-glucose was found. The bisubstrate kinetics of the enzyme for UDP-glucose and glycogen, as well as for UDP-glucose and maltose, was determined. An intersecting pattern in the double reciprocal plot (velocity versus substrate concentration) suggestive of a sequential mechanism (ordered or random) was found in all cases. The K-m for UDP-glucose (45 to 48 mM) was the same with either maltose or glycogen as acceptor. The K-m for maltose (230 mM) and for glycogen (1.5 mug/ml) differed.

  18. Inducible nitric oxide synthase: Good or bad?

    PubMed

    Lind, Maggie; Hayes, Alan; Caprnda, Martin; Petrovic, Daniel; Rodrigo, Luis; Kruzliak, Peter; Zulli, Anthony

    2017-09-01

    Nitric oxide synthases (NOS) are a family of isoforms responsible for the synthesis of the potent dilator nitric oxide (NO). Expression of inducible NOS (iNOS) occurs in conditions of inflammation, and produces large amounts of NO. In pathological conditions iNOS is regarded as a harmful enzyme and is proposed to be a major contributor to diseases of the cardiovascular system such as atherosclerosis. In this review, we address the notion that iNOS is a detrimental enzyme in disease and discuss its potentially beneficial roles. Additionally, we describe other molecules associated with iNOS in diseases such as atherosclerosis, and current research on therapeutic inhibitors tested to reduced pathology associated with cardiovascular diseases (CVD). Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Nitric Oxide Synthases and Atrial Fibrillation

    PubMed Central

    Bonilla, Ingrid M.; Sridhar, Arun; Györke, Sandor; Cardounel, Arturo J.; Carnes, Cynthia A.

    2012-01-01

    Oxidative stress has been implicated in the pathogenesis of atrial fibrillation. There are multiple systems in the myocardium which contribute to redox homeostasis, and loss of homeostasis can result in oxidative stress. Potential sources of oxidants include nitric oxide synthases (NOS), which normally produce nitric oxide in the heart. Two NOS isoforms (1 and 3) are normally expressed in the heart. During pathologies such as heart failure, there is induction of NOS 2 in multiple cell types in the myocardium. In certain conditions, the NOS enzymes may become uncoupled, shifting from production of nitric oxide to superoxide anion, a potent free radical and oxidant. Multiple lines of evidence suggest a role for NOS in the pathogenesis of atrial fibrillation. Therapeutic approaches to reduce atrial fibrillation by modulation of NOS activity may be beneficial, although further investigation of this strategy is needed. PMID:22536189

  20. The Rotary Mechanism of the ATP Synthase

    PubMed Central

    Nakamoto, Robert K.; Scanlon, Joanne A. Baylis; Al-Shawi, Marwan K.

    2008-01-01

    The FOF1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous FO sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium. PMID:18515057

  1. Nuclear glycogen and glycogen synthase kinase 3.

    PubMed

    Ragano-Caracciolo, M; Berlin, W K; Miller, M W; Hanover, J A

    1998-08-19

    Glycogen is the principal storage form of glucose in animal cells. It accumulates in electron-dense cytoplasmic granules and is synthesized by glycogen synthase (GS), the rate-limiting enzyme of glycogen deposition. Glycogen synthase kinase-3 (GSK-3) is a protein kinase that phosphorylates GS. Two nearly identical forms of GSK-3 exist: GSK-3 alpha and GSK-3 beta. Both are constitutively active in resting cells and their activity can be modulated by hormones and growth factors. GSK-3 is implicated in the regulation of many physiological responses in mammalian cells by phosphorylating substrates including neuronal cell adhesion molecule, neurofilaments, synapsin I, and tau. Recent observations point to functions for glycogen and glycogen metabolism in the nucleus. GSK-3 phosphorylates several transcription factors, and we have recently shown that it modifies the major nuclear pore protein p62. It also regulates PK1, a protein kinase required for maintaining the interphase state and for DNA replication in cycling Xenopus egg extracts. Recently, glycogen was shown to be required for nuclear reformation in vitro using ovulated Xenopus laevis egg lysates. Because neither glycogen nor GSK-3 has been localized to the nuclear envelope or intranuclear sites, glycogen and GSK-3 activites were measured in rat liver nuclei and nuclear reformation extracts. Significant quantities of glycogen-like material co-purified with the rat-liver nuclear envelope. GSK-3 is also highly enriched in the glycogen pellet of egg extracts of Xenopus that is required for nuclear assembly in vitro. Based on the finding that enzymes of glycogen metabolism copurify with glycogen, we propose that glycogen may serve a structural role as a scaffold for nuclear assembly and sequestration of critical kinases and phosphatases in the nucleus. Copyright 1998 Academic Press.

  2. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity

    PubMed Central

    Strittmatter, Laura; Li, Yang; Nakatsuka, Nathan J.; Calvo, Sarah E.; Grabarek, Zenon; Mootha, Vamsi K.

    2014-01-01

    CLYBL is a human mitochondrial enzyme of unknown function that is found in multiple eukaryotic taxa and conserved to bacteria. The protein is expressed in the mitochondria of all mammalian organs, with highest expression in brown fat and kidney. Approximately 5% of all humans harbor a premature stop polymorphism in CLYBL that has been associated with reduced levels of circulating vitamin B12. Using comparative genomics, we now show that CLYBL is strongly co-expressed with and co-evolved specifically with other components of the mitochondrial B12 pathway. We confirm that the premature stop polymorphism in CLYBL leads to a loss of protein expression. To elucidate the molecular function of CLYBL, we used comparative operon analysis, structural modeling and enzyme kinetics. We report that CLYBL encodes a malate/β-methylmalate synthase, converting glyoxylate and acetyl-CoA to malate, or glyoxylate and propionyl-CoA to β-methylmalate. Malate synthases are best known for their established role in the glyoxylate shunt of plants and lower organisms and are traditionally described as not occurring in humans. The broader role of a malate/β-methylmalate synthase in human physiology and its mechanistic link to vitamin B12 metabolism remain unknown. PMID:24334609

  3. A Single Amino Acid Substitution Converts Benzophenone Synthase into Phenylpyrone Synthase*

    PubMed Central

    Klundt, Tim; Bocola, Marco; Lütge, Maren; Beuerle, Till; Liu, Benye; Beerhues, Ludger

    2009-01-01

    Benzophenone metabolism provides a number of plant natural products with fascinating chemical structures and intriguing pharmacological activities. Formation of the carbon skeleton of benzophenone derivatives from benzoyl-CoA and three molecules of malonyl-CoA is catalyzed by benzophenone synthase (BPS), a member of the superfamily of type III polyketide synthases. A point mutation in the active site cavity (T135L) transformed BPS into a functional phenylpyrone synthase (PPS). The dramatic change in both substrate and product specificities of BPS was rationalized by homology modeling. The mutation may open a new pocket that accommodates the phenyl moiety of the triketide intermediate but limits polyketide elongation to two reactions, resulting in phenylpyrone formation. 3-Hydroxybenzoyl-CoA is the second best starter molecule for BPS but a poor substrate for PPS. The aryl moiety of the triketide intermediate may be trapped in the new pocket by hydrogen bond formation with the backbone, thereby acting as an inhibitor. PPS is a promising biotechnological tool for manipulating benzoate-primed biosynthetic pathways to produce novel compounds. PMID:19710020

  4. Enhanced gastric nitric oxide synthase activity in duodenal ulcer patients.

    PubMed Central

    Rachmilewitz, D; Karmeli, F; Eliakim, R; Stalnikowicz, R; Ackerman, Z; Amir, G; Stamler, J S

    1994-01-01

    Nitric oxide, the product of nitric oxide synthase in inflammatory cells, may have a role in tissue injury through its oxidative metabolism. Nitric oxide may have a role in the pathogenesis of duodenal ulcer and may be one of the mechanisms responsible for the association between gastric infection with Helicobacter pylori and peptic disease. In this study, calcium independent nitric oxide synthase activity was detected in human gastric mucosa suggesting expression of the inducible isoform. In 17 duodenal ulcer patients gastric antral and fundic nitric oxide synthase activity was found to be two and 1.5-fold respectively higher than its activity in the antrum and fundus of 14 normal subjects (p < 0.05). H pylori was detected in the antrum of 15 of 17 duodenal ulcer patients and only in 7 of 14 of the control subjects. Antral nitric oxide synthase activity in H pylori positive duodenal ulcer patients was twofold higher than in H pylori positive normal subjects (p < 0.05). In duodenal ulcer patients antral and fundic nitric oxide synthase activity resumed normal values after induction of ulcer healing with ranitidine. Eradication of H pylori did not further affect gastric nitric oxide synthase activity. These findings suggest that in duodenal ulcer patients stimulated gastric mucosal nitric oxide synthase activity, though independent of the H pylori state, may contribute to the pathogenesis of the disease. PMID:7525417

  5. Regulation of phosphatidylserine synthase from Saccharomyces cerevisiae by phospholipid precursors.

    PubMed Central

    Poole, M A; Homann, M J; Bae-Lee, M S; Carman, G M

    1986-01-01

    The addition of ethanolamine or choline to inositol-containing growth medium of Saccharomyces cerevisiae wild-type cells resulted in a reduction of membrane-associated phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activity in cell extracts. The reduction of activity did not occur when inositol was absent from the growth medium. Under the growth conditions where a reduction of enzyme activity occurred, there was a corresponding qualitative reduction of enzyme subunit as determined by immunoblotting with antiserum raised against purified phosphatidylserine synthase. Water-soluble phospholipid precursors did not effect purified phosphatidylserine synthase activity. Phosphatidylserine synthase (activity and enzyme subunit) was not regulated by the availability of water-soluble phospholipid precursors in S. cerevisiae VAL2C(YEp CHO1) and the opi1 mutant. VAL2C(YEp CHO1) is a plasmid-bearing strain that over produces phosphatidylserine synthase activity, and the opi1 mutant is an inositol biosynthesis regulatory mutant. The results of this study suggest that the regulation of phosphatidylserine synthase by the availability of phospholipid precursors occurs at the level of enzyme formation and not at the enzyme activity level. Furthermore, the regulation of phosphatidylserine synthase is coupled to inositol synthesis. Images PMID:3023284

  6. CTP synthase forms cytoophidia in the cytoplasm and nucleus.

    PubMed

    Gou, Ke-Mian; Chang, Chia-Chun; Shen, Qing-Ji; Sung, Li-Ying; Liu, Ji-Long

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. Copyright © 2014. Published by Elsevier Inc.

  7. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus.

    PubMed

    Tsuge, Takeharu; Hyakutake, Manami; Mizuno, Kouhei

    2015-08-01

    This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.

  8. Purification and Characterization of Chorismate Synthase from Euglena gracilis 1

    PubMed Central

    Schaller, Andreas; van Afferden, Manfred; Windhofer, Volker; Bülow, Sven; Abel, Gernot; Schmid, Jürg; Amrhein, Nikolaus

    1991-01-01

    Chorismate synthase was purified 1200-fold from Euglena gracilis. The molecular mass of the native enzyme is in the range of 110 to 138 kilodaltons as judged by gel filtration. The molecular mass of the subunit was determined to be 41.7 kilodaltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified chorismate synthase is associated with an NADPH-dependent flavin mononucleotide reductase that provides in vivo the reduced flavin necessary for catalytic activity. In vitro, flavin reduction can be mediated by either dithionite or light. The enzyme obtained from E. gracilis was compared with chorismate synthases purified from a higher plant (Corydalis sempervirens), a bacterium (Escherichia coli), and a fungus (Neurospora crassa). These four chorismate synthases were found to be very similar in terms of cofactor specificity, kinetic properties, isoelectric points, and pH optima. All four enzymes react with polyclonal antisera directed against chorismate synthases from C. sempervirens and E. coli. The closely associated flavin mononucleotide reductase that is present in chorismate synthase preparations from E. gracilis and N. crassa is the main difference between those synthases and the monofunctional enzymes from C. sempervirens and E. coli. ImagesFigure 2Figure 3 PMID:16668543

  9. Subcellular localization of the homocitrate synthase in Penicillium chrysogenum.

    PubMed

    Bañuelos, O; Casqueiro, J; Steidl, S; Gutiérrez, S; Brakhage, A; Martín, J F

    2002-01-01

    There are conflicting reports regarding the cellular localization in Saccharomyces cerevisiae and filamentous fungi of homocitrate synthase, the first enzyme in the lysine biosynthetic pathway. The homocitrate synthase (HS) gene (lys1) of Penicillium chrysogenum was disrupted in three transformants (HS(-)) of the Wis 54-1255 pyrG strain. The three mutants named HS1(-), HS2(-) and HS3(-) all lacked homocitrate synthase activity and showed lysine auxotrophy, indicating that there is a single gene for homocitrate synthase in P. chrysogenum. The lys1 ORF was fused in frame to the gene for the green fluorescent protein (GFP) gene of the jellyfish Aequorea victoria. Homocitrate synthase-deficient mutants transformed with a plasmid containing the lys1-GFP fusion recovered prototrophy and showed similar levels of homocitrate synthase activity to the parental strain Wis 54-1255, indicating that the hybrid protein retains the biological function of wild-type homocitrate synthase. Immunoblotting analysis revealed that the HS-GFP fusion protein is maintained intact and does not release the GFP moiety. Fluorescence microscopy analysis of the transformants showed that homocitrate synthase was mainly located in the cytoplasm in P. chrysogenum; in S. cerevisiae the enzyme is targeted to the nucleus. The control nuclear protein StuA was properly targeted to the nucleus when the StuA (targeting domain)-GFP hybrid protein was expressed in P. chrysogenum. The difference in localization of homocitrate synthase between P. chrysogenum and S. cerevisiae suggests that this protein may play a regulatory function, in addition to its catalytic function, in S. cerevisiae but not in P. chrysogenum.

  10. Thioredoxin-insensitive plastid ATP synthase that performs moonlighting functions

    PubMed Central

    Kohzuma, Kaori; Dal Bosco, Cristina; Kanazawa, Atsuko; Dhingra, Amit; Nitschke, Wolfgang; Meurer, Jörg; Kramer, David M.

    2012-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and acts as a key feedback regulatory component of photosynthesis. Arabidopsis possesses two homologues of the regulatory γ subunit of the ATP synthase, encoded by the ATPC1 and ATPC2 genes. Using a series of mutants, we show that both these subunits can support photosynthetic ATP synthesis in vivo with similar specific activities, but that in wild-type plants, only γ1 is involved in ATP synthesis in photosynthesis. The γ1-containing ATP synthase shows classical light-induced redox regulation, whereas the mutant expressing only γ2-ATP synthase (gamma exchange-revised ATP synthase, gamera) shows equally high ATP synthase activity in the light and dark. In situ redox titrations demonstrate that the regulatory thiol groups on γ2-ATP synthase remain reduced under physiological conditions but can be oxidized by the strong oxidant diamide, implying that the redox potential for the thiol/disulphide transition in γ2 is substantially higher than that for γ1. This regulatory difference may be attributed to alterations in the residues near the redox-active thiols. We propose that γ2-ATP synthase functions to catalyze ATP hydrolysis-driven proton translocation in nonphotosynthetic plastids, maintaining a sufficient transthylakoid proton gradient to drive protein translocation or other processes. Consistent with this interpretation, ATPC2 is predominantly expressed in the root, whereas modifying its expression results in alteration of root hair development. Phylogenetic analysis suggests that γ2 originated from ancient gene duplication, resulting in divergent evolution of functionally distinct ATP synthase complexes in dicots and mosses. PMID:22328157

  11. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution

    SciTech Connect

    Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2010-02-26

    The gene of (all-E) geranylfarnesyl diphosphate synthase that is responsible for the biosynthesis of methanophenazine, an electron carrier utilized for methanogenesis, was cloned from a methanogenic archaeon Methanosarcina mazei Goe1. The properties of the recombinant enzyme and the results of phylogenetic analysis suggest that the enzyme is closely related to (all-E) prenyl diphosphate synthases that are responsible for the biosynthesis of respiratory quinones, rather than to the enzymes involved in the biosynthesis of archaeal membrane lipids, including (all-E) geranylfarnesyl diphosphate synthase from a thermophilic archaeon.

  12. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    PubMed

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  13. Peroxisomal and mitochondrial citrate synthase in CAM plants.

    PubMed

    Zafra, M F; Segovia, J L; Alejandre, M J; García-Peregrín, E

    1981-12-01

    Citrate synthase wa studied for the first time in peroxisomes and mitochondria of crassulacean acid metabolism plants. Cellular organelles were isolated from Agave americana leaves by sucrose density gradient centrifugation and characterized by the use of catalase and cytochrome oxidase as marker enzymes, respectively. 48,000 X g centrifugation caused the breakdown of the cellular organelles. The presence of a glyoxylate cycle enzyme (citrate synthase) and a glycollate pathway enzyme (catalase) in the same organelles, besides the absence of another glyoxalate cycle enzyme (malate synthase) is reported for the first time, suggesting that peroxisomal and glyoxysomal proteins are synthesized at the same time and housed in he same organelle.

  14. O-Nucleoside, S-Nucleoside, and N-Nucleoside Probes of Lumazine Synthase and Riboflavin Synthase

    PubMed Central

    Talukdar, Arindam; Zhao, Yujie; Lv, Wei; Bacher, Adelbert; Illarionov, Boris; Fischer, Markus; Cushman, Mark

    2012-01-01

    Lumazine synthase catalyzes the penultimate step in the biosynthesis of riboflavin, while riboflavin synthase catalyzes the last step. O-Nucleoside, S-nucleoside and N-nucleoside analogues of hypothetical lumazine biosynthetic intermediates have been synthesized in order to obtain structure and mechanism probes of these two enzymes, as well as inhibitors of potential value as antibiotics. Methods were devised for the selective cleavage of benzyl protecting groups in the presence of other easily reduced functionality by controlled hydrogenolysis over Lindlar catalyst. The deprotection reaction was performed in the presence of other reactive functionality including nitro groups, alkenes, and halogens. The target compounds were tested as inhibitors of lumazine synthase and riboflavin synthase obtained from a variety of microorganisms. In general, the S-nucleosides and N-nucleosides were more potent than the corresponding O-nucleosides as lumazine synthase and riboflavin synthase inhibitors, while the C-nucleosides were the least potent. A series of molecular dynamics simulations followed by free energy calculations using the Poisson-Boltzmann/surface area (MM-PBSA) method were carried out in order to rationalize the results of ligand binding to lumazine synthase, and the results provide insight into the dynamics of ligand binding as well as the molecular forces stabilizing the intermediates in the enzyme-catalyzed reaction. PMID:22780198

  15. Characterization of chitin synthases from Entamoeba.

    PubMed

    Campos-Góngora, Eduardo; Ebert, Frank; Willhoeft, Ute; Said-Fernández, S; Tannich, Egbert

    2004-09-01

    A major component of the Entamoeba cyst wall is chitin, a homopolymer of beta-(1,4)-linked N-acetyl-D-glucosamine. Polymerization of chitin requires the presence of active chitin synthases (CHS), a group of enzymes belonging to the family of beta-glycosyl transferases. CHS have been described for fungi, insects, and nematodes; however, information is lacking about the structure and expression of this class of enzymes in protozoons such as Entamoeba. In this study, the primary structures of two putative E. histolytica CHS (EhCHS-1 and EhCHS-2) were determined by gene cloning and homologous proteins were identified in databases from E. dispar and the reptilian parasite E. invadens. The latter constitutes the widely used model organism for the study of Entamoeba cyst development. The two ameba enzymes revealed between 23% and 33% sequence similarity to CHS from other organisms with full conservation of all residues critically important for CHS activity. Interestingly, EhCHS-1 and EhCHS-2 differed substantially in their predicted molecular weights (73 kD vs. 114 kD) as well as in their isoelectric points (5.04 vs. 8.05), and homology was restricted to a central stretch of about 400 amino acid residues containing the catalytic domain. Outside the catalytic domain, EhCHS-1 was predicted to have seven transmembrane helices (TMH) of which the majority is located within the C-terminal part, resembling the situation found in yeast; whereas, EhCHS-2 is structurally related to nematode or insect chitin synthases, as it contained 17 predicted TMHs of which the majority is located within the N-terminal part of the molecule. Northern blot analysis revealed that genes corresponding to CHS-1 and CHS-2 are not expressed in Entamoeba trophozoites, but substantial amounts of CHS-1 and CHS-2 RNA were present 4 to 8 hours after induction of cyst formation by glucose deprivation of E. invadens. The time-courses of expression differed slightly between the two ameba CHS genes, as in

  16. Rare structural variants of human and murine uroporphyrinogen I synthase

    SciTech Connect

    Meisler, M.H.; Carter, M.L.C.

    1980-05-01

    An isoelectric focusing method for detection of structural variants of the enzyme uroporphyrinogen I synthase (porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8) in mammalian tissues has been developed. Mouse and human erythrocytes contain one or two major isozymes of uroporphyrinogen I synthase, respectively. Other tissues contain a set of more acidic isozymes that are encoded by the same structural gene as the erythrocyte isozymes. Mouse populations studied with this method were monomorphic for uroporphyrinogen I synthase, with the exception of one feral mouse population. The pedigree of a human family with a rare structural variant is consistent with autosomal linkage of the structural gene. This system provides a convenient isozyme marker for genetic studies and will facilitate determination of the chromosomal location of the uroporphyrinogen I synthase locus.

  17. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    PubMed

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  18. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  19. Construction and Evaluation of Desulfovibrio vulgaris Whole-Genome Oligonucleotide Microarrays

    SciTech Connect

    Z. He; Q. He; L. Wu; M.E. Clark; J.D. Wall; Jizhong Zhou; Matthew W. Fields

    2004-03-17

    Desulfovibrio vulgaris Hildenborough has been the focus of biochemical and physiological studies in the laboratory, and the metabolic versatility of this organism has been largely recognized, particularly the reduction of sulfate, fumarate, iron, uranium and chromium. In addition, a Desulfovibrio sp. has been shown to utilize uranium as the sole electron acceptor. D. vulgaris is a d-Proteobacterium with a genome size of 3.6 Mb and 3584 ORFs. The whole-genome microarrays of D. vulgaris have been constructed using 70mer oligonucleotides. All ORFs in the genome were represented with 3471 (97.1%) unique probes and 103 (2.9%) non-specific probes that may have cross-hybridization with other ORFs. In preparation for use of the experimental microarrays, artificial probes and targets were designed to assess specificity and sensitivity and identify optimal hybridization conditions for oligonucleotide microarrays. The results indicated that for 50mer and 70mer oligonucleotide arrays, hybridization at 45 C to 50 C, washing at 37 C and a wash time of 2.5 to 5 minutes obtained specific and strong hybridization signals. In order to evaluate the performance of the experimental microarrays, growth conditions were selected that were expected to give significant hybridization differences for different sets of genes. The initial evaluations were performed using D. vulgaris cells grown at logarithmic and stationary phases. Transcriptional analysis of D. vulgaris cells sampled during logarithmic phase growth indicated that 25% of annotated ORFs were up-regulated and 3% of annotated ORFs were downregulated compared to stationary phase cells. The up-regulated genes included ORFs predicted to be involved with acyl chain biosynthesis, amino acid ABC transporter, translational initiation factors, and ribosomal proteins. In the stationary phase growth cells, the two most up-regulated ORFs (70-fold) were annotated as a carboxynorspermidine decarboxylase and a 2C-methyl-D-erythritol-2

  20. Myocardial Regulation of Lipidomic Flux by Cardiolipin Synthase

    PubMed Central

    Kiebish, Michael A.; Yang, Kui; Sims, Harold F.; Jenkins, Christopher M.; Liu, Xinping; Mancuso, David J.; Zhao, Zhongdan; Guan, Shaoping; Abendschein, Dana R.; Han, Xianlin; Gross, Richard W.

    2012-01-01

    Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic

  1. Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum.

    PubMed Central

    Eberhardt, S; Korn, S; Lottspeich, F; Bacher, A

    1997-01-01

    Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria. PMID:9139911

  2. Type III polyketide synthases in microorganisms.

    PubMed

    Katsuyama, Yohei; Ohnishi, Yasuo

    2012-01-01

    Type III polyketide synthases (PKSs) are simple homodimers of ketosynthases which catalyze the condensation of one to several molecules of extender substrate onto a starter substrate through iterative decarboxylative Claisen condensation reactions. Type III PKSs have been found in bacteria and fungi, as well as plants. Microbial type III PKSs, which are involved in the biosynthesis of some lipidic compounds and various secondary metabolites, have several interesting characteristics that are not shared by plant type III PKSs. Further, many compounds produced by microbial type III PKSs have significant biological functions and/or important pharmaceutical activities. Thus, studies on this class of enzymes will expand our knowledge of the biosynthetic machineries that generate natural products and generate new findings about microbial physiology. The recent development of next-generation DNA sequencing has allowed for an increase in the number of microbial genomes sequenced and the discovery of many microbial type III PKS genes. Here, we describe basic methods to study microbial type III PKSs whose genes are easy to clone. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Human Isoprenoid Synthase Enzymes as Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Park, Jaeok; Matralis, Alexios; Berghuis, Albert; Tsantrizos, Youla

    2014-07-01

    The complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids in the human body, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently, pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

  4. Structure of Leishmania major cysteine synthase

    PubMed Central

    Fyfe, Paul K.; Westrop, Gareth D.; Ramos, Tania; Müller, Sylke; Coombs, Graham H.; Hunter, William N.

    2012-01-01

    Cysteine biosynthesis is a potential target for drug development against parasitic Leishmania species; these protozoa are responsible for a range of serious diseases. To improve understanding of this aspect of Leishmania biology, a crystallographic and biochemical study of L. major cysteine synthase has been undertaken, seeking to understand its structure, enzyme activity and modes of inhibition. Active enzyme was purified, assayed and crystallized in an orthorhombic form with a dimer in the asymmetric unit. Diffraction data extending to 1.8 Å resolution were measured and the structure was solved by molecular replacement. A fragment of γ-poly-d-glutamic acid, a constituent of the crystallization mixture, was bound in the enzyme active site. Although a d-­glutamate tetrapeptide had insignificant inhibitory activity, the enzyme was competitively inhibited (K i = 4 µM) by DYVI, a peptide based on the C-­terminus of the partner serine acetyltransferase with which the enzyme forms a complex. The structure surprisingly revealed that the cofactor pyridoxal phosphate had been lost during crystallization. PMID:22750854

  5. Inverted stereocontrol of iridoid synthase in snapdragon

    PubMed Central

    Kries, Hajo; Kellner, Franziska; Kamileen, Mohamed Omar; O'Connor, Sarah E.

    2017-01-01

    The natural product class of iridoids, found in various species of flowering plants, harbors astonishing chemical complexity. The discovery of iridoid biosynthetic genes in the medicinal plant Catharanthus roseus has provided insight into the biosynthetic origins of this class of natural product. However, not all iridoids share the exact five- to six-bicyclic ring scaffold of the Catharanthus iridoids. For instance, iridoids in the ornamental flower snapdragon (Antirrhinum majus, Plantaginaceae family) are derived from the C7 epimer of this scaffold. Here we have cloned and characterized the iridoid synthase enzyme from A. majus (AmISY), the enzyme that is responsible for converting 8-oxogeranial into the bicyclic iridoid scaffold in a two-step reduction–cyclization sequence. Chiral analysis of the reaction products reveals that AmISY reduces C7 to generate the opposite stereoconfiguration in comparison with the Catharanthus homologue CrISY. The catalytic activity of AmISY thus explains the biosynthesis of 7-epi-iridoids in Antirrhinum and related genera. However, although the stereoselectivity of the reduction step catalyzed by AmISY is clear, in both AmISY and CrISY, the cyclization step produces a diastereomeric mixture. Although the reduction of 8-oxogeranial is clearly enzymatically catalyzed, the cyclization step appears to be subject to less stringent enzyme control. PMID:28701463

  6. Transmembrane topology of ceramide synthase in yeast

    PubMed Central

    Kageyama-Yahara, Natsuko; Riezman, Howard

    2006-01-01

    Ceramide plays a crucial role as a basic building block of sphingolipids, but also as a signalling molecule mediating cell-fate decisions. Three genes, LAG1, LAC1 and LIP1, have been shown to be required for ceramide synthase activity in Saccharomyces cerevisiae [Guillas, Kirchman, Chuard, Pfefferli, Jiang, Jazwinski and Conzelman (2001) EMBO J. 20, 2655–2665; Schorling, Vallee, Barz, Reizman and Oesterhelt (2001) Mol. Biol. Cell 12, 3417–3427; Vallee and Riezman (2005) EMBO J. 24, 730–741]. In the present study, the topology of the Lag1p and Lac1p subunits was investigated. The N- and C-termini of the proteins are in the cytoplasm and eight putative membrane-spanning domains were identified in Lag1p and Lac1p by insertion of glycosylation and factor Xa cleavage sites at various positions. The conserved Lag motif, potentially containing the active site, is most likely embedded in the membrane. We also present evidence that histidine and aspartic acid residues in the Lag motif are essential for the function of Lag1p in vivo. PMID:16756512

  7. Human isoprenoid synthase enzymes as therapeutic targets

    PubMed Central

    Park, Jaeok; Matralis, Alexios N.; Berghuis, Albert M.; Tsantrizos, Youla S.

    2014-01-01

    In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies. PMID:25101260

  8. Nitric Oxide Synthases in Heart Failure

    PubMed Central

    Carnicer, Ricardo; Crabtree, Mark J.; Sivakumaran, Vidhya

    2013-01-01

    Abstract Significance: The regulation of myocardial function by constitutive nitric oxide synthases (NOS) is important for the maintenance of myocardial Ca2+ homeostasis, relaxation and distensibility, and protection from arrhythmia and abnormal stress stimuli. However, sustained insults such as diabetes, hypertension, hemodynamic overload, and atrial fibrillation lead to dysfunctional NOS activity with superoxide produced instead of NO and worse pathophysiology. Recent Advances: Major strides in understanding the role of normal and abnormal constitutive NOS in the heart have revealed molecular targets by which NO modulates myocyte function and morphology, the role and nature of post-translational modifications of NOS, and factors controlling nitroso-redox balance. Localized and differential signaling from NOS1 (neuronal) versus NOS3 (endothelial) isoforms are being identified, as are methods to restore NOS function in heart disease. Critical Issues: Abnormal NOS signaling plays a key role in many cardiac disorders, while targeted modulation may potentially reverse this pathogenic source of oxidative stress. Future Directions: Improvements in the clinical translation of potent modulators of NOS function/dysfunction may ultimately provide a powerful new treatment for many hearts diseases that are fueled by nitroso-redox imbalance. Antioxid. Redox Signal. 18, 1078–1099. PMID:22871241

  9. The Eucalyptus terpene synthase gene family.

    PubMed

    Külheim, Carsten; Padovan, Amanda; Hefer, Charles; Krause, Sandra T; Köllner, Tobias G; Myburg, Alexander A; Degenhardt, Jörg; Foley, William J

    2015-06-11

    Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

  10. Concerted versus Stepwise Mechanism in Thymidylate Synthase

    PubMed Central

    2015-01-01

    Thymidylate synthase (TSase) catalyzes the intracellular de novo formation of thymidylate (a DNA building block) in most living organisms, making it a common target for chemotherapeutic and antibiotic drugs. Two mechanisms have been proposed for the rate-limiting hydride transfer step in TSase catalysis: a stepwise mechanism in which the hydride transfer precedes the cleavage of the covalent bond between the enzymatic cysteine and the product and a mechanism where both happen concertedly. Striking similarities between the enzyme-bound enolate intermediates formed in the initial and final step of the reaction supported the first mechanism, while QM/MM calculations favored the concerted mechanism. Here, we experimentally test these two possibilities using secondary kinetic isotope effect (KIE), mutagenesis study, and primary KIEs. The findings support the concerted mechanism and demonstrate the critical role of an active site arginine in substrate binding, activation of enzymatic nucleophile, and the hydride transfer studied here. The elucidation of this reduction/substitution sheds light on the critical catalytic step in TSase and may aid future drug or biomimetic catalyst design. PMID:24949852

  11. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  12. Electric field driven torque in ATP synthase.

    PubMed

    Miller, John H; Rajapakshe, Kimal I; Infante, Hans L; Claycomb, James R

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.

  13. Inducible nitric oxide synthase in the myocard.

    PubMed

    Buchwalow, I B; Schulze, W; Karczewski, P; Kostic, M M; Wallukat, G; Morwinski, R; Krause, E G; Müller, J; Paul, M; Slezak, J; Luft, F C; Haller, H

    2001-01-01

    Recognition of significance of nitric oxide synthases (NOS) in cardiovascular regulations has led to intensive research and development of therapies focused on NOS as potential therapeutic targets. However, the NOS isoform profile of cardiac tissue and subcellular localization of NOS isoforms remain a matter of debate. The aim of this study was to investigate the localization of an inducible NOS isoform (NOS2) in cardiomyocytes. Employing a novel immunocytochemical technique of a catalyzed reporter deposition system with tyramide and electron microscopical immunocytochemistry complemented with Western blotting and RT-PCR, we detected NOS2 both in rat neonatal and adult cultured cardiomyocytes and in the normal myocard of adult rats as well as in the human myocard of patients with dilative cardiomyopathy. NOS2 was targeted predominantly to a particulate component of the cardiomyocyte--along contractile fibers, in the plasma membrane including T-tubules, as well as in the nuclear envelope, mitochondria and Golgi complex. Our results point to an involvement of NOS2 in maintaining cardiac homeostasis and contradict to the notion that NOS2 is expressed in cardiac tissue only in response to various physiological and pathogenic factors. NOS2 targeting to mitochondria and contractile fibers suggests a relationship of NO with contractile function and energy production in the cardiac muscle.

  14. Structures of human constitutive nitric oxide synthases

    PubMed Central

    Li, Huiying; Jamal, Joumana; Plaza, Carla; Pineda, Stephanie Hai; Chreifi, Georges; Jing, Qing; Cinelli, Maris A.; Silverman, Richard B.; Poulos, Thomas L.

    2014-01-01

    Mammals produce three isoforms of nitric oxide synthase (NOS): neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The overproduction of NO by nNOS is associated with a number of neurodegenerative disorders; therefore, a desirable therapeutic goal is the design of drugs that target nNOS but not the other isoforms. Crystallography, coupled with computational approaches and medicinal chemistry, has played a critical role in developing highly selective nNOS inhibitors that exhibit exceptional neuroprotective properties. For historic reasons, crystallography has focused on rat nNOS and bovine eNOS because these were available in high quality; thus, their structures have been used in structure–activity–relationship studies. Although these constitutive NOSs share more than 90% sequence identity across mammalian species for each NOS isoform, inhibitor-binding studies revealed that subtle differences near the heme active site in the same NOS isoform across species still impact enzyme–inhibitor interactions. Therefore, structures of the human constitutive NOSs are indispensible. Here, the first structure of human neuronal NOS at 2.03 Å resolution is reported and a different crystal form of human endothelial NOS is reported at 1.73 Å resolution. PMID:25286850

  15. Nitric oxide synthase in the pineal gland.

    PubMed

    López-Figueroa, M O; Møller, M

    1996-10-01

    The recent discovery of nitric oxide (NO) as a biological messenger molecule with unique characteristics has opened a new field in pineal research. This free radical gas is synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine. The activation of adrenoreceptors in the membrane of the pinealocytes mediates the increase in NO through a mechanism that involves G proteins. In the pinealocyte, NO stimulates guanylyl cyclase resulting in an increased intracellular content of cGMP. The role of cGMP in pineal metabolism, however, is still enigmatic. Using enzyme histochemistry and immunohistochemistry, the presence of NOS has been confirmed in the pineal gland of some species. In the rat and especially in the sheep, NOS is located in nerve fibres innervating the gland. These nerve fibres also contain the neuropeptides vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI), and are probably of parasympathetic origin. In cell cultures and tissue sections NOS immunoreactivity has been shown to be present in pinealocytes of the rat and bovine but not in the sheep. Finally, NOS is also present in the endothelial cells of the blood vessels of the pineal gland. Accordingly, in the mammalian pineal gland, NO is synthesized in both presynaptic nerve fibers and pinealocytes, as well as in blood vessels. However, the anatomical location of NO synthesis varies considerably among species. NO released in the pineal gland, might influence both the pineal metabolism and the blood flow of the gland.

  16. Anthranilate synthase subunit organization in Chromobacterium violaceum.

    PubMed

    Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M

    2008-09-16

    Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).

  17. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase.

    PubMed

    Bergstrom, J D; Bostedor, R G; Masarachia, P J; Reszka, A A; Rodan, G

    2000-01-01

    Alendronate, a nitrogen-containing bisphosphonate, is a potent inhibitor of bone resorption used for the treatment and prevention of osteoporosis. Recent findings suggest that alendronate and other N-containing bisphosphonates inhibit the isoprenoid biosynthesis pathway and interfere with protein prenylation, as a result of reduced geranylgeranyl diphosphate levels. This study identified farnesyl disphosphate synthase as the mevalonate pathway enzyme inhibited by bisphosphonates. HPLC analysis of products from a liver cytosolic extract narrowed the potential targets for alendronate inhibition (IC(50) = 1700 nM) to isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Recombinant human farnesyl diphosphate synthase was inhibited by alendronate with an IC(50) of 460 nM (following 15 min preincubation). Alendronate did not inhibit isopentenyl diphosphate isomerase or GGPP synthase, partially purified from liver cytosol. Recombinant farnesyl diphosphate synthase was also inhibited by pamidronate (IC(50) = 500 nM) and risedronate (IC(50) = 3.9 nM), negligibly by etidronate (IC50 = 80 microM), and not at all by clodronate. In osteoclasts, alendronate inhibited the incorporation of [(3)H]mevalonolactone into proteins of 18-25 kDa and into nonsaponifiable lipids, including sterols. These findings (i) identify farnesyl diphosphate synthase as the selective target of alendronate in the mevalonate pathway, (ii) show that this enzyme is inhibited by other N-containing bisphosphonates, such as risendronate, but not by clodronate, supporting a different mechanism of action for different bisphosphonates, and (iii) document in purified osteoclasts alendronate inhibition of prenylation and sterol biosynthesis.

  18. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    PubMed Central

    Xu, Ting; Pagadala, Vijayakanth; Mueller, David M.

    2015-01-01

    The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs. PMID:25938092

  19. The chloroplast ATP synthase features the characteristic redox regulation machinery.

    PubMed

    Hisabori, Toru; Sunamura, Ei-Ichiro; Kim, Yusung; Konno, Hiroki

    2013-11-20

    Regulation of the activity of the chloroplast ATP synthase is largely accomplished by the chloroplast thioredoxin system, the main redox regulation system in chloroplasts, which is directly coupled to the photosynthetic reaction. We review the current understanding of the redox regulation system of the chloroplast ATP synthase. The thioredoxin-targeted portion of the ATP synthase consists of two cysteines located on the central axis subunit γ. The redox state of these two cysteines is under the influence of chloroplast thioredoxin, which directly controls rotation during catalysis by inducing a conformational change in this subunit. The molecular mechanism of redox regulation of the chloroplast ATP synthase has recently been determined. Regulation of the activity of the chloroplast ATP synthase is critical in driving efficiency into the ATP synthesis reaction in chloroplasts. The molecular architecture of the chloroplast ATP synthase, which confers redox regulatory properties requires further investigation, in light of the molecular structure of the enzyme complex as well as the physiological significance of the regulation system.

  20. Effect of chronologic age on induction of cystathionine synthase, uroporphyrinogen I synthase, and glucose-6-phosphate dehydrogenase activities in lymphocytes.

    PubMed Central

    Gartler, S M; Hornung, S K; Motulsky, A G

    1981-01-01

    The activities of cystathionine synthase [L-serine hydro-lyase (adding homocysteine), EC 4.2.1.22], uroporphyrinogen I synthase [porphobilinogen ammonia-lyase (polymerizing), EC 4.3.1.8], and glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) have been measured in phytohemagglutinin-stimulated lymphocytes of young and old human subjects. A significant decrease in activity with age was observed for cystathionine synthase and uroporphyrinogen I synthase but not for glucose-6-phosphate dehydrogenase. These changes could not be related to declining phytohemagglutinin response with aging. Age-related decreases in activity of some enzymes may be relevant for an understanding of the biology of aging. False assignment of heterozygosity, and even homozygosity, for certain genetic disorders, such as homocystinuria, may result when low enzyme levels are detected in the lymphocytes of older people. PMID:6940198

  1. Binding modes of zaragozic acid A to human squalene synthase and staphylococcal dehydrosqualene synthase.

    PubMed

    Liu, Chia-I; Jeng, Wen-Yih; Chang, Wei-Jung; Ko, Tzu-Ping; Wang, Andrew H-J

    2012-05-25

    Zaragozic acids (ZAs) belong to a family of fungal metabolites with nanomolar inhibitory activity toward squalene synthase (SQS). The enzyme catalyzes the committed step of sterol synthesis and has attracted attention as a potential target for antilipogenic and antiinfective therapies. Here, we have determined the structure of ZA-A complexed with human SQS. ZA-A binding induces a local conformational change in the substrate binding site, and its C-6 acyl group also extends over to the cofactor binding cavity. In addition, ZA-A effectively inhibits a homologous bacterial enzyme, dehydrosqualene synthase (CrtM), which synthesizes the precursor of staphyloxanthin in Staphylococcus aureus to cope with oxidative stress. Size reduction at Tyr(248) in CrtM further increases the ZA-A binding affinity, and it reveals a similar overall inhibitor binding mode to that of human SQS/ZA-A except for the C-6 acyl group. These structures pave the way for further improving selectivity and development of a new generation of anticholesterolemic and antimicrobial inhibitors.

  2. Identification of a Dolabellane Type Diterpene Synthase and other Root-Expressed Diterpene Synthases in Arabidopsis

    PubMed Central

    Wang, Qiang; Jia, Meirong; Huh, Jung-Hyun; Muchlinski, Andrew; Peters, Reuben J.; Tholl, Dorothea

    2016-01-01

    Arabidopsis thaliana maintains a complex metabolism for the production of secondary or specialized metabolites. Such metabolites include volatile and semivolatile terpenes, which have been associated with direct and indirect defensive activities in flowers and leaves. In comparison, the structural diversity and function of terpenes in Arabidopsis roots has remained largely unexplored despite a substantial number of root-expressed genes in the Arabidopsis terpene synthase (TPS) gene family. We show that five root-expressed TPSs of an expanded subfamily-a type clade in the Arabidopsis TPS family function as class I diterpene synthases that predominantly convert geranylgeranyl diphosphate (GGPP) to different semi-volatile diterpene products, which are in part detectable at low levels in the ecotypes Columbia (Col) and Cape Verde Island (Cvi). The enzyme TPS20 produces a macrocyclic dolabellane diterpene alcohol and a dolabellane-related diterpene olefin named dolathaliatriene with a so far unknown C6-C11 bicyclic scaffold besides several minor olefin products. The TPS20 compounds occur in all tissues of Cvi but are absent in the Col ecotype because of deletion and substitution mutations in the Col TPS20 sequence. The primary TPS20 diterpene products retard the growth of the root rot pathogen Pythium irregulare but only at concentrations exceeding those in planta. Together, our results demonstrate that divergence and pseudogenization in the Arabidopsis TPS gene family allow for structural plasticity in diterpene profiles of above- and belowground tissues. PMID:27933080

  3. Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii.

    PubMed

    Zhao, Huan; Tang, Qi; Mo, Changming; Bai, Longhua; Tu, Dongping; Ma, Xiaojun

    2017-03-01

    Mogrosides and steroid saponins are tetracyclic triterpenoids found in Siraitia grosvenorii. Squalene synthase (SQS) and cycloartenol synthase (CAS) are key enzymes in triterpenoid and steroid biosynthesis. In this study, full-length cDNAs of SgSQS and SgCAS were cloned by a rapid amplification of cDNA-ends with polymerase chain reaction (RACE-PCR) approach. The SgSQS cDNA has a 1254 bp open reading frame (ORF) encoding 417 amino acids, and the SgCAS cDNA contains a 2298 bp ORF encoding 765 amino acids. Bioinformatic analysis showed that the deduced SgSQS protein has two transmembrane regions in the C-terminal. Both SgSQS and SgCAS have significantly higher levels in fruits than in other tissues, suggesting that steroids and mogrosides are competitors for the same precursors in fruits. Combined in silico prediction and subcellular localization, experiments in tobacco indicated that SgSQS was probably in the cytoplasm or on the cytoskeleton, and SgCAS was likely located in the nucleus or cytosol. These results will provide a foundation for further study of SgSQS and SgCAS gene functions in S. grosvenorii, and may facilitate improvements in mogroside content in fruit by regulating gene expression.

  4. The rice ent-KAURENE SYNTHASE LIKE 2 encodes a functional ent-beyerene synthase.

    PubMed

    Tezuka, Daisuke; Ito, Akira; Mitsuhashi, Wataru; Toyomasu, Tomonobu; Imai, Ryozo

    2015-05-08

    The rice genome contains a family of kaurene synthase-like (OsKSL) genes that are responsible for the biosynthesis of various diterpenoids, including gibberellins and phytoalexins. While many OsKSL genes have been functionally characterized, the functionality of OsKSL2 is still unclear and it has been proposed to be a pseudogene. Here, we found that OsKSL2 is drastically induced in roots by methyl jasmonate treatment and we successfully isolated a full-length cDNA for OsKSL2. Sequence analysis of the OsKSL2 cDNA revealed that the open reading frame of OsKSL2 is mispredicted in the two major rice genome databases, IRGSP-RAP and MSU-RGAP. In vitro conversion assay indicated that recombinant OsKSL2 catalyzes the cyclization of ent-CDP into ent-beyerene as a major and ent-kaurene as a minor product. ent-Beyerene is an antimicrobial compound and OsKSL2 is induced by methyl jasmonate; these data suggest that OsKSL2 is a functional ent-beyerene synthase that is involved in defense mechanisms in rice roots.

  5. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars.

    PubMed

    Verma, A K; Upadhyay, S K; Verma, P C; Solomon, S; Singh, S B

    2011-03-01

    Sucrose phosphate synthase (SPS; EC 2.4.1.14) and sucrose synthase (SS; EC 2.4.1.13) are key enzymes in the synthesis and breakdown of sucrose in sugarcane. The activities of internodal SPS and SS, as well as transcript expression were determined using semi-quantitative RT-PCR at different developmental stages of high and low sucrose accumulating sugarcane cultivars. SPS activity and transcript expression was higher in mature internodes compared with immature internodes in all the studied cultivars. However, high sugar cultivars showed increased transcript expression and enzyme activity of SPS compared to low sugar cultivars at all developmental stages. SS activity was higher in immature internodes than in mature internodes in all cultivars; SS transcript expression showed a similar pattern. Our studies demonstrate that SPS activity was positively correlated with sucrose and negatively correlated with hexose sugars. However, SS activity was negatively correlated with sucrose and positively correlated with hexose sugars. The present study opens the possibility for improvement of sugarcane cultivars by increasing expression of the respective enzymes using transgene technology. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Nitric oxide synthase in cardiac sarcoplasmic reticulum.

    PubMed

    Xu, K Y; Huso, D L; Dawson, T M; Bredt, D S; Becker, L C

    1999-01-19

    NO. is a free radical that modulates heart function and metabolism. We report that a neuronal-type NO synthase (NOS) is located on cardiac sarcoplasmic reticulum (SR) membrane vesicles and that endogenous NO. produced by SR-associated NOS inhibits SR Ca2+ uptake. Ca2+-dependent biochemical conversion of L-arginine to L-citrulline was observed from isolated rabbit cardiac SR vesicles in the presence of NOS substrates and cofactors. Endogenous NO. was generated from the vesicles and detected by electron paramagnetic resonance spin-trapping measurements. Immunoelectron microscopy demonstrated labeling of cardiac SR vesicles by using anti-neuronal NOS (nNOS), but not anti-endothelial NOS (eNOS) or anti-inducible NOS (iNOS) antibodies, whereas skeletal muscle SR vesicles had no nNOS immunoreactivity. The nNOS immunoreactivity also displayed a pattern consistent with SR localization in confocal micrographs of sections of human myocardium. Western blotting demonstrated that cardiac SR NOS is larger than brain NOS (160 vs. 155 kDa). No immunodetection was observed in cardiac SR vesicles from nNOS knockout mice or with an anti-nNOS mu antibody, suggesting the possibility of a new nNOS-type isoform. 45Ca uptake by cardiac SR vesicles, catalyzed by Ca2+-ATPase, was inhibited by NO. produced endogenously from cardiac SR NOS, and 7-nitroindazole, a selective nNOS inhibitor, completely prevented this inhibition. These results suggest that a cardiac muscle nNOS isoform is located on SR of cardiac myocytes, where it may respond to intracellular Ca2+ concentration and modulate SR Ca2+ ion active transport in the heart.

  7. Nitric oxide synthase in cardiac sarcoplasmic reticulum

    PubMed Central

    Xu, Kai Y.; Huso, David L.; Dawson, Ted M.; Bredt, David S.; Becker, Lewis C.

    1999-01-01

    NO⋅ is a free radical that modulates heart function and metabolism. We report that a neuronal-type NO synthase (NOS) is located on cardiac sarcoplasmic reticulum (SR) membrane vesicles and that endogenous NO⋅ produced by SR-associated NOS inhibits SR Ca2+ uptake. Ca2+-dependent biochemical conversion of l-arginine to l-citrulline was observed from isolated rabbit cardiac SR vesicles in the presence of NOS substrates and cofactors. Endogenous NO⋅ was generated from the vesicles and detected by electron paramagnetic resonance spin-trapping measurements. Immunoelectron microscopy demonstrated labeling of cardiac SR vesicles by using anti-neuronal NOS (nNOS), but not anti-endothelial NOS (eNOS) or anti-inducible NOS (iNOS) antibodies, whereas skeletal muscle SR vesicles had no nNOS immunoreactivity. The nNOS immunoreactivity also displayed a pattern consistent with SR localization in confocal micrographs of sections of human myocardium. Western blotting demonstrated that cardiac SR NOS is larger than brain NOS (160 vs. 155 kDa). No immunodetection was observed in cardiac SR vesicles from nNOS knockout mice or with an anti-nNOSμ antibody, suggesting the possibility of a new nNOS-type isoform. 45Ca uptake by cardiac SR vesicles, catalyzed by Ca2+-ATPase, was inhibited by NO⋅ produced endogenously from cardiac SR NOS, and 7-nitroindazole, a selective nNOS inhibitor, completely prevented this inhibition. These results suggest that a cardiac muscle nNOS isoform is located on SR of cardiac myocytes, where it may respond to intracellular Ca2+ concentration and modulate SR Ca2+ ion active transport in the heart. PMID:9892689

  8. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  9. Allosteric inhibition of human porphobilinogen synthase.

    PubMed

    Lawrence, Sarah H; Ramirez, Ursula D; Selwood, Trevor; Stith, Linda; Jaffe, Eileen K

    2009-12-18

    Porphobilinogen synthase (PBGS) catalyzes the first common step in tetrapyrrole (e.g. heme, chlorophyll) biosynthesis. Human PBGS exists as an equilibrium of high activity octamers, low activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. It is posited that small molecules can be found that inhibit human PBGS activity by stabilizing the hexamer. Such molecules, if present in the environment, could potentiate disease states associated with reduced PBGS activity, such as lead poisoning and ALAD porphyria, the latter of which is associated with human PBGS variants whose quaternary structure equilibrium is shifted toward the hexamer (Jaffe, E. K., and Stith, L. (2007) Am. J. Hum. Genet. 80, 329-337). Hexamer-stabilizing inhibitors of human PBGS were identified using in silico prescreening (docking) of approximately 111,000 structures to a hexamer-specific surface cavity of a human PBGS crystal structure. Seventy-seven compounds were evaluated in vitro; three provided 90-100% conversion of octamer to hexamer in a native PAGE mobility shift assay. Based on chemical purity, two (ML-3A9 and ML-3H2) were subjected to further evaluation of their effect on the quaternary structure equilibrium and enzymatic activity. Naturally occurring ALAD porphyria-associated human PBGS variants are shown to have an increased susceptibility to inhibition by both ML-3A9 and ML-3H2. ML-3H2 is a structural analog of amebicidal drugs, which have porphyria-like side effects. Data support the hypothesis that human PBGS hexamer stabilization may explain these side effects. The current work identifies allosteric ligands of human PBGS and, thus, identifies human PBGS as a medically relevant allosteric enzyme.

  10. Allosteric Inhibition of Human Porphobilinogen Synthase*

    PubMed Central

    Lawrence, Sarah H.; Ramirez, Ursula D.; Selwood, Trevor; Stith, Linda; Jaffe, Eileen K.

    2009-01-01

    Porphobilinogen synthase (PBGS) catalyzes the first common step in tetrapyrrole (e.g. heme, chlorophyll) biosynthesis. Human PBGS exists as an equilibrium of high activity octamers, low activity hexamers, and alternate dimer configurations that dictate the stoichiometry and architecture of further assembly. It is posited that small molecules can be found that inhibit human PBGS activity by stabilizing the hexamer. Such molecules, if present in the environment, could potentiate disease states associated with reduced PBGS activity, such as lead poisoning and ALAD porphyria, the latter of which is associated with human PBGS variants whose quaternary structure equilibrium is shifted toward the hexamer (Jaffe, E. K., and Stith, L. (2007) Am. J. Hum. Genet. 80, 329–337). Hexamer-stabilizing inhibitors of human PBGS were identified using in silico prescreening (docking) of ∼111,000 structures to a hexamer-specific surface cavity of a human PBGS crystal structure. Seventy-seven compounds were evaluated in vitro; three provided 90–100% conversion of octamer to hexamer in a native PAGE mobility shift assay. Based on chemical purity, two (ML-3A9 and ML-3H2) were subjected to further evaluation of their effect on the quaternary structure equilibrium and enzymatic activity. Naturally occurring ALAD porphyria-associated human PBGS variants are shown to have an increased susceptibility to inhibition by both ML-3A9 and ML-3H2. ML-3H2 is a structural analog of amebicidal drugs, which have porphyria-like side effects. Data support the hypothesis that human PBGS hexamer stabilization may explain these side effects. The current work identifies allosteric ligands of human PBGS and, thus, identifies human PBGS as a medically relevant allosteric enzyme. PMID:19812033

  11. Nitric oxide synthases: structure, function and inhibition.

    PubMed Central

    Alderton, W K; Cooper, C E; Knowles, R G

    2001-01-01

    This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated. PMID:11463332

  12. Modulation of ceramide synthase activity via dimerization.

    PubMed

    Laviad, Elad L; Kelly, Samuel; Merrill, Alfred H; Futerman, Anthony H

    2012-06-15

    Ceramide, the backbone of all sphingolipids, is synthesized by a family of ceramide synthases (CerS) that each use acyl-CoAs of defined chain length for N-acylation of the sphingoid long chain base. CerS mRNA expression and enzymatic activity do not always correlate with the sphingolipid acyl chain composition of a particular tissue, suggesting post-translational mechanism(s) of regulation of CerS activity. We now demonstrate that CerS activity can be modulated by dimer formation. Under suitable conditions, high M(r) CerS complexes can be detected by Western blotting, and various CerS co-immunoprecipitate. CerS5 activity is inhibited in a dominant-negative fashion by co-expression with catalytically inactive CerS5, and CerS2 activity is enhanced by co-expression with a catalytically active form of CerS5 or CerS6. In a constitutive heterodimer comprising CerS5 and CerS2, the activity of CerS2 depends on the catalytic activity of CerS5. Finally, CerS dimers are formed upon rapid stimulation of ceramide synthesis by curcumin. Together, these data demonstrate that ceramide synthesis can be regulated by the formation of CerS dimers and suggest a novel way to generate the acyl chain composition of ceramide (and downstream sphingolipids), which may depend on the interaction of CerS with each other.

  13. In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase.

    PubMed

    Peters, Verena; Rehm, Bernd H A

    2006-03-01

    This study demonstrated that engineered polyhydroxyalkanoate (PHA) synthases can be employed as molecular tools to covalently immobilize enzymes at the PHA granule surface. The beta-galactosidase was fused to the N terminus of the class II PHA synthase from Pseudomonas aeruginosa. The open reading frame was confirmed to encode the complete fusion protein by T7 promoter-dependent overexpression. Restoration of PHA biosynthesis in the PHA-negative mutant of P. aeruginosa PAO1 showed a PHA synthase function of the fusion protein. PHA granules were isolated and showed beta-galactosidase activity. PHA granule attached proteins were analyzed and confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Surprisingly, the beta-galactosidase-PHA synthase fusion protein was detectable at a high copy number at the PHA granule, compared with PHA synthase alone, which was barely detectable at PHA granules. Localization of the beta-galactosidase at the PHA granule surface was confirmed by enzyme-linked immunosorbent assay using anti-beta-galactosidase antibodies. Treatment of these beta-galactosidase-PHA granules with urea suggested a covalent binding of the beta-galactosidase-PHA synthase to the PHA granule. The immobilized beta-galactosidase was enzymologically characterized, suggesting a Michaelis-Menten reaction kinetics. A Km of 630 microM and a Vmax of 17.6 nmol/min for orthonitrophenyl-beta-D-galactopyranoside as a substrate was obtained. The immobilized beta-galactosidase was stable for at least several months under various storage conditions. This study demonstrated that protein engineering of PHA synthase enables the manufacture of PHA granules with covalently attached enzymes, suggesting an application in recycling of biocatalysts, such as in fine-chemical production.

  14. The Tomato Terpene Synthase Gene Family1[W][OA

    PubMed Central

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  15. Genetic organization of the cellulose synthase operon in Acetobacter xylinum.

    PubMed Central

    Wong, H C; Fear, A L; Calhoon, R D; Eichinger, G H; Mayer, R; Amikam, D; Benziman, M; Gelfand, D H; Meade, J H; Emerick, A W

    1990-01-01

    An operon encoding four proteins required for bacterial cellulose biosynthesis (bcs) in Acetobacter xylinum was isolated via genetic complementation with strains lacking cellulose synthase activity. Nucleotide sequence analysis indicated that the cellulose synthase operon is 9217 base pairs long and consists of four genes. The four genes--bcsA, bcsB, bcsC, and bcsD--appear to be translationally coupled and transcribed as a polycistronic mRNA with an initiation site 97 bases upstream of the coding region of the first gene (bcsA) in the operon. Results from genetic complementation tests and gene disruption analyses demonstrate that all four genes in the operon are required for maximal bacterial cellulose synthesis in A. xylinum. The calculated molecular masses of the proteins encoded by bcsA, bcsB, bcsC, and bcsD are 84.4, 85.3, 141.0, and 17.3 kDa, respectively. The second gene in the operon (bcsB) encodes the catalytic subunit of cellulose synthase. The functions of the bcsA, bcsC, and bcsD gene products are unknown. Bacterial strains mutated in the bcsA locus were found to be deficient in cellulose synthesis due to the lack of cellulose synthase and diguanylate cyclase activities. Mutants in the bcsC and bcsD genes were impaired in cellulose production in vivo, even though they had the capacity to make all the necessary metabolic precursors and cyclic diguanylic acid, the activator of cellulose synthase, and exhibit cellulose synthase activity in vitro. When the entire operon was present on a multicopy plasmid in the bacterial cell, both cellulose synthase activity and cellulose biosynthesis increased. When the promoter of the cellulose synthase operon was replaced on the chromosome by E. coli tac or lac promoters, cellulose production was reduced in parallel with decreased cellulose synthase activity. These observations suggest that the expression of the bcs operon is rate-limiting for cellulose synthesis in A. xylinum. Images PMID:2146681

  16. Plasticity and evolution of (+)-3-carene synthase and (-)-sabinene synthase functions of a sitka spruce monoterpene synthase gene family associated with weevil resistance.

    PubMed

    Roach, Christopher R; Hall, Dawn E; Zerbe, Philipp; Bohlmann, Jörg

    2014-08-22

    The monoterpene (+)-3-carene is associated with resistance of Sitka spruce against white pine weevil, a major North American forest insect pest of pine and spruce. High and low levels of (+)-3-carene in, respectively, resistant and susceptible Sitka spruce genotypes are due to variation of (+)-3-carene synthase gene copy number, transcript and protein expression levels, enzyme product profiles, and enzyme catalytic efficiency. A family of multiproduct (+)-3-carene synthase-like genes of Sitka spruce include the three (+)-3-carene synthases, PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and the (-)-sabinene synthase PsTPS-sab. Of these, PsTPS-3car2 is responsible for the relatively higher levels of (+)-3-carene in weevil-resistant trees. Here, we identified features of the PsTPS-3car1, PsTPS-3car2, PsTPS-3car3, and PsTPS-sab proteins that determine different product profiles. A series of domain swap and site-directed mutations, supported by structural comparisons, identified the amino acid in position 596 as critical for product profiles dominated by (+)-3-carene in PsTPS-3car1, PsTPS-3car2, and PsTPS-3car3, or (-)-sabinene in PsTPS-sab. A leucine in this position promotes formation of (+)-3-carene, whereas phenylalanine promotes (-)-sabinene. Homology modeling predicts that position 596 directs product profiles through differential stabilization of the reaction intermediate. Kinetic analysis revealed position 596 also plays a role in catalytic efficiency. Mutations of position 596 with different side chain properties resulted in a series of enzymes with different product profiles, further highlighting the inherent plasticity and potential for evolution of alternative product profiles of these monoterpene synthases of conifer defense against insects. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells.

    PubMed Central

    Eldar-Finkelman, H; Argast, G M; Foord, O; Fischer, E H; Krebs, E G

    1996-01-01

    In these studies we expressed and characterized wild-type (WT) GSK-3 (glycogen synthase kinase-3) and its mutants, and examined their physiological effect on glycogen synthase activity. The GSK-3 mutants included mutation at serine-9 either to alanine (S9A) or glutamic acid (S9E) and an inactive mutant, K85,86MA. Expression of WT and the various mutants in a cell-free system indicated that S9A and S9E exhibit increased kinase activity as compared with WT. Subsequently, 293 cells were transiently transfected with WT GSK-3 and mutants. Cells expressing the S9A mutant exhibited higher kinase activity (2.6-fold of control cells) as compared with cells expressing WT and S9E (1.8- and 2.0-fold, respectively, of control cells). Combined, these results suggest serine-9 as a key regulatory site of GSK-3 inactivation, and indicate that glutamic acid cannot mimic the function of the phosphorylated residue. The GSK-3-expressing cell system enabled us to examine whether GSK-3 can induce changes in the endogenous glycogen synthase activity. A decrease in glycogen synthase activity (50%) was observed in cells expressing the S9A mutant. Similarly, glycogen synthase activity was suppressed in cells expressing WT and the S9E mutant (20-30%, respectively). These studies indicate that activation of GSK-3 is sufficient to inhibit glycogen synthase in intact cells, and provide evidence supporting a physiological role for GSK-3 in regulating glycogen synthase and glycogen metabolism. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8816781

  18. ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry

    PubMed Central

    Hoffmann, Jan; Sokolova, Lucie; Preiss, Laura; Hicks, David B.; Krulwich, Terry A.; Morgner, Nina; Wittig, Ilka; Schägger, Hermann; Meier, Thomas; Brutschy, Bernd

    2010-01-01

    Mass spectrometry of membrane protein complexes is still a methodological challenge due to hydrophobic and hydrophilic parts of the species and the fact that all subunits are bound non-covalently together. The present study with the novel laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) reports on the determination of the subunit composition of the F1Fo-ATP synthase from Bacillus pseudofirmus OF4, that of both bovine heart and, for the first time, of human heart mitochondrial F1Fo-ATP synthases. Under selected buffer conditions the mass of the intact F1Fo-ATP synthase of B. pseudofirmus OF4 could be measured, allowing the analysis of complex subunit stoichiometry. The agreement with theoretical masses derived from sequence databases is very good. A comparison of the ATP synthase subunit composition of 5 different ATPases reveals differences in the complexity of eukaryotic and bacterial ATP synthases. However, whereas the overall construction of eukaryotic enzymes is more complex than the bacterial ones, functionally important subunits are conserved among all ATPases. PMID:20820587

  19. Insulin stimulation of glycogen synthase in cultured human diploid fibroblasts.

    PubMed

    Hidaka, H; Howard, B V; Kosmakos, F C; Fields, R M; Craig, J W; Bennett, P H; Larner, J

    1980-10-01

    The effect of insulin on glycogen synthase activity in human diploid fibroblasts has been studied. As little as 2 X 10(-10) M insulin increased the glycogen synthase / activity without changing the total activity. Stimulation occurred within 5 min and became maximal in 30 min. A half-maximal increase of / activity was achieved at 3 X 10(-9) M insulin. Glucose starvation increased the magnitude of response of glycogen synthase to insulin but did not change the insulin concentration necessary to give a half-maximal stimulation. Glucose increased the basal level of / activity in human diploid fibroblasts; the effect of insulin was additive. During in vitro senescence the total glycogen synthase activity declined, but the concentration of insulin that produced a half-maximal stimulation remained unchanged. These data indicate that regulation of glycogen synthase activity in human diploid fibroblasts is responsive to physiologic insulin levels and that the system provides a useful model for the in vitro study of insulin sensitivity.

  20. Saccharomyces cerevisiae contains two functional citrate synthase genes.

    PubMed Central

    Kim, K S; Rosenkrantz, M S; Guarente, L

    1986-01-01

    The tricarboxylic acid cycle occurs within the mitochondria of the yeast Saccharomyces cerevisiae. A nuclear gene encoding the tricarboxylic acid cycle enzyme citrate synthase has previously been isolated (M. Suissa, K. Suda, and G. Schatz, EMBO J. 3:1773-1781, 1984) and is referred to here as CIT1. We report here the isolation, by an immunological method, of a second nuclear gene encoding citrate synthase (CIT2). Disruption of both genes in the yeast genome was necessary to produce classical citrate synthase-deficient phenotypes: glutamate auxotrophy and poor growth on rich medium containing lactate, a nonfermentable carbon source. Therefore, the citrate synthase produced from either gene was sufficient for these metabolic roles. Transcription of both genes was maximally repressed in medium containing both glucose and glutamate. However, transcription of CIT1 but not of CIT2 was derepressed in medium containing a nonfermentable carbon source. The significance of the presence of two genes encoding citrate synthase in S. cerevisiae is discussed. Images PMID:3023912

  1. Heterologous expression of an active chitin synthase from Rhizopus oryzae.

    PubMed

    Salgado-Lugo, Holjes; Sánchez-Arreguín, Alejandro; Ruiz-Herrera, José

    2016-12-01

    Chitin synthases are highly important enzymes in nature, where they synthesize structural components in species belonging to different eukaryotic kingdoms, including kingdom Fungi. Unfortunately, their structure and the molecular mechanism of synthesis of their microfibrilar product remain largely unknown, probably because no fungal active chitin synthases have been isolated, possibly due to their extreme hydrophobicity. In this study we have turned to the heterologous expression of the transcript from a small chitin synthase of Rhizopus oryzae (RO3G_00942, Chs1) in Escherichia coli. The enzyme was active, but accumulated mostly in inclusion bodies. High concentrations of arginine or urea solubilized the enzyme, but their dilution led to its denaturation and precipitation. Nevertheless, use of urea permitted the purification of small amounts of the enzyme. The properties of Chs1 (Km, optimum temperature and pH, effect of GlcNAc) were abnormal, probably because it lacks the hydrophobic transmembrane regions characteristic of chitin synthases. The product of the enzyme showed that, contrasting with chitin made by membrane-bound Chs's and chitosomes, was only partially in the form of short microfibrils of low crystallinity. This approach may lead to future developments to obtain active chitin synthases that permit understanding their molecular mechanism of activity, and microfibril assembly.

  2. Identification of two distinct Bacillus subtilis citrate synthase genes.

    PubMed

    Jin, S; Sonenshein, A L

    1994-08-01

    Two distinct Bacillus subtilis genes (citA and citZ) were found to encode citrate synthase isozymes that catalyze the first step of the Krebs cycle. The citA gene was cloned by genetic complementation of an Escherichia coli citrate synthase mutant strain (W620) and was in a monocistronic transcriptional unit. A divergently transcribed gene, citR, could encode a protein with strong similarity to the bacterial LysR family of regulatory proteins. A null mutation in citA had little effect on citrate synthase enzyme activity or sporulation. The residual citrate synthase activity was purified from a citA null mutant strain, and the partial amino acid sequence for the purified protein (CitZ) was determined. The citZ gene was cloned from B. subtilis chromosomal DNA by using a PCR-generated probe synthesized with oligonucleotide primers derived from the partial amino acid sequence of purified CitZ. The citZ gene proved to be the first gene in a tricistronic cluster that also included citC (coding for isocitrate dehydrogenase) and citH (coding for malate dehydrogenase). A mutation in citZ caused a substantial loss of citrate synthase enzyme activity, glutamate auxotrophy, and a defect in sporulation.

  3. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus

    PubMed Central

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-01-01

    SUMMARY Fungi are a rich source of bioactive secondary metabolites and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared to the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as a α-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes δ-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homolog, but instead was found to catalyze highly specific the synthesis of α-cuprenene. Co-expression of cop6 and the two monooxygenase genes next to it yields oxygenated α-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species. PMID:19400802

  4. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus.

    PubMed

    Agger, Sean; Lopez-Gallego, Fernando; Schmidt-Dannert, Claudia

    2009-06-01

    Fungi are a rich source of bioactive secondary metabolites, and mushroom-forming fungi (Agaricomycetes) are especially known for the synthesis of numerous bioactive and often cytotoxic sesquiterpenoid secondary metabolites. Compared with the large number of sesquiterpene synthases identified in plants, less than a handful of unique sesquiterpene synthases have been described from fungi. Here we describe the functional characterization of six sesquiterpene synthases (Cop1 to Cop6) and two terpene-oxidizing cytochrome P450 monooxygenases (Cox1 and Cox2) from Coprinus cinereus. The genes were cloned and, except for cop5, functionally expressed in Escherichia coli and/or Saccharomyces cerevisiae. Cop1 and Cop2 each synthesize germacrene A as the major product. Cop3 was identified as an alpha-muurolene synthase, an enzyme that has not been described previously, while Cop4 synthesizes delta-cadinene as its major product. Cop6 was originally annotated as a trichodiene synthase homologue but instead was found to catalyse the highly specific synthesis of alpha-cuprenene. Coexpression of cop6 and the two monooxygenase genes next to it yields oxygenated alpha-cuprenene derivatives, including cuparophenol, suggesting that these genes encode the enzymes for the biosynthesis of antimicrobial quinone sesquiterpenoids (known as lagopodins) that were previously isolated from C. cinereus and other Coprinus species.

  5. Methionine synthase and thymidylate synthase gene polymorphisms and colorectal adenoma risk: the self defense forces study.

    PubMed

    Yoshimitsu, Shinichiro; Morita, Makiko; Hamachi, Tadamichi; Tabata, Shinji; Abe, Hiroshi; Tajima, Osamu; Uezono, Kousaku; Ohnaka, Keizo; Kono, Suminori

    2012-10-01

    Folate-mediated one-carbon metabolism has been implicated in colorectal carcinogenesis. We investigated associations of functional genetic polymorphisms of methionine synthase (MTR), MTR reductase (MTRR), and thymidylate synthase (TS) with colorectal adenomas. The study subjects were 455 cases of colorectal adenomas and 1052 controls with no polyp at colonoscopy. Genotypes were determined for MTR A2756G, MTRR A66G and two polymorphisms in the TS gene, 28-bp tandem repeat polymorphism in the promoter enhancer region (TSER) and 6-bp deletion polymorphism at position 1494 in the 3' untranslated region (TS 1494del6). We also examined the alcohol-genotype and gene-gene interactions on adenoma risk. The GG genotype of MTR A2756G was associated with an increased risk of colorectal adenomas; odds ratios for AG and GG versus AA genotype were 0.99 (95% confidence interval 0.78-1.26) and 1.72 (1.04-2.82), respectively. The increase in the risk associated with MTR 2756GG genotype was evident in men with high alcohol consumption (≥30 mL/d), but not in those with low alcohol consumption (interaction P = 0.03). Men who were homozygous for the TSER double-repeat allele had a slightly decreased risk of colorectal adenomas as compared with those homozygous for the TSER triple-repeat allele. Neither MTRR A66G nor TS 1494del6 was associated with colorectal adenomas. There was no measurable interaction either between MTR A2756G and MTRR A66G or between TSER and TS 1494del6. MTR A2756G appears to be associated with colorectal adenoma risk differently according to alcohol consumption. The MTR-catalyzed reaction may play an important role in the development of colorectal adenomas.

  6. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    PubMed

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221.

  7. Nucleotide sequence of the chicken 5-aminolevulinate synthase gene.

    PubMed Central

    Maguire, D J; Day, A R; Borthwick, I A; Srivastava, G; Wigley, P L; May, B K; Elliott, W H

    1986-01-01

    5-Aminolevulinate synthase, the first and rate-controlling enzyme of heme biosynthesis, is regulated in the liver by the end-product heme. To study this negative control mechanism, we have isolated the chicken gene for ALA-synthase and determined the nucleotide sequence. The structural gene is 6.9 kb long and contains 10 exons. The transcriptional start site for ALA-synthase was determined by primer extension analysis. A fragment of 291 bp from the 5' flanking region including 34 bp of the first exon shows promoter activity when introduced upstream of a chicken histone H2B gene and injected into the nuclei of Xenopus laevis oocytes. Images PMID:3005973

  8. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria.

    PubMed

    Whitney, J C; Howell, P L

    2013-02-01

    The biosynthesis and export of bacterial cell-surface polysaccharides is known to occur through several distinct mechanisms. Recent advances in the biochemistry and structural biology of several proteins in synthase-dependent polysaccharide secretion systems have identified key conserved components of this pathway in Gram-negative bacteria. These components include an inner-membrane-embedded polysaccharide synthase, a periplasmic tetratricopeptide repeat (TPR)-containing scaffold protein, and an outer-membrane β-barrel porin. There is also increasing evidence that many synthase-dependent systems are post-translationally regulated by the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we compare these core proteins in the context of the alginate, cellulose, and poly-β-D-N-acetylglucosamine (PNAG) secretion systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria

    PubMed Central

    Whitney, J.C.; Howell, P.L.

    2014-01-01

    The biosynthesis and export of bacterial cell-surface polysaccharides is known to occur through several distinct mechanisms. Recent advances in the biochemistry and structural biology of several proteins in synthase-dependent polysaccharide secretion systems have identified key conserved components of this pathway in Gram-negative bacteria. These components include an inner-membrane-embedded polysaccharide synthase, a periplasmic tetratricopeptide repeat (TPR)-containing scaffold protein, and an outer-membrane β-barrel porin. There is also increasing evidence that many synthase-dependent systems are post-translationally regulated by the bacterial second messenger bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we compare these core proteins in the context of the alginate, cellulose, and poly-β-D-N-acetylglucosamine (PNAG) secretion systems. PMID:23117123

  10. Properties of peroxisomal and mitochondrial citrate synthase from Agave americana.

    PubMed

    Segovia, J L; Zafra, M F; Alejandre, M J; García-Peregrín, E

    1982-09-01

    Adenine nucleotides were tested as effectors of peroxisomal and mitochondrial citrate synthase from Agave americana leaves in the presence of different concentrations of acetyl-CoA and oxalacetate substrates. ATP inhibited both enzyme activities but with a different inhibition profile. 1.0-7.5 mM ADP did not inhibit the peroxisomal citrate synthase in the presence of high substrate concentrations, while the mitochondrial enzyme was strongly inhibited by 1.0 mM ADP in the same conditions. Likewise, a different pattern was obtained with AMP on both peroxisomal and mitochondrial activities. The rate of citrate formation as function of acetyl-CoA and oxalacetate concentration was also studied in both fractions. Maximal velocity was highest in the peroxisomal fraction, whether acetyl-CoA or oxalacetate were the variable substrates. These differences indicate that peroxisomal and mitochondrial citrate synthases seem to be two different isoenzymes.

  11. The hyaluronate synthase from a eukaryotic cell line.

    PubMed Central

    Klewes, L; Turley, E A; Prehm, P

    1993-01-01

    The hyaluronate synthase complex was identified in plasma membranes from B6 cells. It contained two subunits of molecular masses 52 kDa and 60 kDa which bound the precursor UDP-GlcA in digitonin solution and partitioned into the aqueous phase, together with nascent hyaluronate upon Triton X-114 phase separation. The 52 kDa protein cross-reacted with poly- and monoclonal antibodies raised against the streptococcal hyaluronate synthase and the 60 kDa protein was recognized by monoclonal antibodies raised against a hyaluronate receptor. The 52 kDa protein was purified to homogeneity by affinity chromatography with monoclonal anti-hyaluronate synthase. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 7 PMID:8457208

  12. Directed evolution of squalene synthase for dehydrosqualene biosynthesis.

    PubMed

    Furubayashi, Maiko; Li, Ling; Katabami, Akinori; Saito, Kyoichi; Umeno, Daisuke

    2014-09-17

    Squalene synthase (SQS) catalyzes the first step of sterol/hopanoid biosynthesis in various organisms. It has been long recognized that SQSs share a common ancestor with carotenoid synthases, but it is not known how these enzymes selectively produce their own product. In this study, SQSs from yeast, human, and bacteria were independently subjected to directed evolution for the production of the C30 carotenoid backbone, dehydrosqualene. This was accomplished via high-throughput screening with Pantoea ananatis phytoene desaturase, which can selectively convert dehydrosqualene into yellow carotenoid pigments. Genetic analysis of the resultant mutants revealed various mutations that could effectively convert SQS into a "dehydrosqualene synthase." All of these mutations are clustered around the residues that have been proposed to be important for NADPH binding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Kinetic characteristics of nitric oxide synthase from rat brain.

    PubMed Central

    Knowles, R G; Palacios, M; Palmer, R M; Moncada, S

    1990-01-01

    The relationship between the rate of synthesis of nitric oxide (NO) and guanylate cyclase stimulation was used to characterize the kinetics of the NO synthase from rat forebrain and of some inhibitors of this enzyme. The NO synthase had an absolute requirement for L-arginine and NADPH and did not require any other cofactors. The enzyme had a Vmax. of 42 pmol of NO formed.min-1.mg of protein-1 and a Km for L-arginine of 8.4 microM. Three analogues of L-arginine, namely NG-monomethyl-L-arginine, NG-nitro-L-arginine and NG-iminoethyl-L-ornithine inhibited the brain NO synthase. All three compounds were competitive inhibitors of the enzyme with Ki values of 0.7, 0.4 and 1.2 microM respectively. PMID:1695842

  14. Utility of Aspergillus niger citrate synthase promoter for heterologous expression.

    PubMed

    Dave, Kashyap; Punekar, Narayan S

    2011-09-10

    Citrate synthase is a central player in the acidogenic metabolism of Aspergillus niger. The 5' upstream sequence (0.9kb DNA) of citrate synthase gene (citA) from A. niger NCIM 565 was analyzed and its promoter function demonstrated through the heterologous expression of two proteins. The cloned citrate synthase promoter (PcitA) sequence was able to express bar coding sequence thereby conferring phosphinothricin resistance. This sequence was further analyzed by systematic deletions to define an effective but compact functional promoter. The PcitA driven egfp expression showed that PcitA was active in all differentiation cell-stages of A. niger. EGFP expression was highest on non-repressible carbon sources like acetate and glycerol. Mycelial EGFP levels increased during acidogenic growth suggesting that PcitA is functional throughout this cultivation. A. niger PcitA is the first Krebs cycle gene promoter used to express heterologous proteins in filamentous fungi.

  15. Evolutionary and functional analysis of mulberry type III polyketide synthases.

    PubMed

    Li, Han; Liang, Jiubo; Chen, Hu; Ding, Guangyu; Ma, Bi; He, Ningjia

    2016-08-04

    Type III polyketide synthases are important for the biosynthesis of flavonoids and various plant polyphenols. Mulberry plants have abundant polyphenols, but very little is known about the mulberry type III polyketide synthase genes. An analysis of these genes may provide new targets for genetic improvement to increase relevant secondary metabolites and enhance the plant tolerance to biotic and abiotic stresses. Eighteen genes encoding type III polyketide synthases were identified, including six chalcone synthases (CHS), ten stilbene synthases (STS), and two polyketide synthases (PKS). Functional characterization of four genes representing most of the MnCHS and MnSTS genes by coexpression with 4-Coumaroyl-CoA ligase in Escherichia coli indicated that their products were able to catalyze p-coumaroyl-CoA and malonyl-CoA to generate naringenin and resveratrol, respectively. Microsynteny analysis within mulberry indicated that segmental and tandem duplication events contributed to the expansion of the MnCHS family, while tandem duplications were mainly responsible for the generation of the MnSTS genes. Combining the evolution and expression analysis results of the mulberry type III PKS genes indicated that MnCHS and MnSTS genes evolved mainly under purifying selection to maintain their original functions, but transcriptional subfunctionalization occurred during long-term species evolution. Moreover, mulberry leaves can rapidly accumulated oxyresveratrol after UV-C irradiation, suggesting that resveratrol was converted to oxyresveratrol. Characterizing the functions and evolution of mulberry type III PKS genes is crucial for advancing our understanding of these genes and providing the basis for further studies on the biosynthesis of relevant secondary metabolites in mulberry plants.

  16. Solubilization of microsomal-associated phosphatidylinositol synthase from germinating soybeans.

    PubMed

    Robinson, M L; Carman, G M

    1982-01-01

    CDP-1,2-diacyl-sn-glycerol (CDP-diacylglycerol):myo-inositol phosphatidyltransferase (EC 2.7.8.11, phosphatidylinositol synthase) catalyzes the final step in the de novo synthesis of phosphatidylinositol in the endoplasmic reticulum fraction of germinating soybeans (Glycine max L. var Cutler 71). A variety of solubilization agents were examined for their ability to release phosphatidylinositol synthase activity from the microsome fraction. The most effective agent to solubilize the enzyme was the nonionic detergent Brij W-1. A 2.1-fold increase in specific activity was achieved using 1% Brij W-1 with 69% activity solubilized.Maximal solubilization of phosphatidylinositol synthase was completely dependent on Brij W-1 (1%), potassium ions (0.3 m), and manganese ions (0.5 mm). Solubilization of the enzyme was not affected by the protein concentration of microsomes between 3 to 20 milligrams per milliliter. Solubilization was not affected by the pH of solubilization buffer between 6.5 to 8.5. To our knowledge, this is the first phospholipid biosynthetic enzyme solubilized from plant membranes. The Brij W-1-solubilized phosphatidylinositol synthase remained at the top of a glycerol gradient, whereas the membrane-associated enzyme sedimented to the bottom of the gradient. Maximal activity of the Brij W-1-solubilized phosphatidylinositol synthase was dependent on manganese (5 mm) or magnesium (30 mm) ions, and Triton X-100 (3.6 mm) at pH 8.0 with Tris-HCl buffer. The apparent K(m) values for CDP-diacylglycerol and myo-inositol for the solubilized enzyme was 0.1 mm and 46 mum, respectively. Solubilized phosphatidylinositol synthase activity was thermally inactivated at temperatures above 30 degrees C.

  17. Phosphorylation of Yeast Phosphatidylserine Synthase by Protein Kinase A

    PubMed Central

    Choi, Hyeon-Son; Han, Gil-Soo; Carman, George M.

    2010-01-01

    The CHO1-encoded phosphatidylserine synthase from Saccharomyces cerevisiae is phosphorylated and inhibited by protein kinase A in vitro. CHO1 alleles bearing Ser46 → Ala and/or Ser47 → Ala mutations were constructed and expressed in a cho1Δ mutant lacking phosphatidylserine synthase. In vitro, the S46A/S47A mutation reduced the total amount of phosphorylation by 90% and abolished the inhibitory effect protein kinase A had on phosphatidylserine synthase activity. The enzyme phosphorylation by protein kinase A, which was time- and dose-dependent and dependent on the concentration of ATP, caused a electrophoretic mobility shift from a 27-kDa form to a 30-kDa form. The two electrophoretic forms of phosphatidylserine synthase were present in exponential phase cells, whereas only the 27-kDa form was present in stationary phase cells. In vivo labeling with 32Pi and immune complex analysis showed that the 30-kDa form was predominantly phosphorylated when compared with the 27-kDa form. However, the S46A/S47A mutations abolished the protein kinase A-mediated electrophoretic mobility shift. The S46A/S47A mutations also caused a 55% reduction in the total amount of phosphatidylserine synthase in exponential phase cells and a 66% reduction in the amount of enzyme in stationary phase cells. In phospholipid composition analysis, cells expressing the S46A/S47A mutant enzyme exhibited a 57% decrease in phosphatidylserine and a 40% increase in phosphatidylinositol. These results indicate that phosphatidylserine synthase is phosphorylated on Ser46 and Ser47 by protein kinase A, which results in a higher amount of enzyme for the net effect of stimulating the synthesis of phosphatidylserine. PMID:20145252

  18. Mapping a kingdom-specific functional domain of squalene synthase.

    PubMed

    Linscott, Kristin B; Niehaus, Thomas D; Zhuang, Xun; Bell, Stephen A; Chappell, Joe

    2016-09-01

    Squalene synthase catalyzes the first committed step in sterol biosynthesis and consists of both an amino-terminal catalytic domain and a carboxy-terminal domain tethering the enzyme to the ER membrane. While the overall architecture of this enzyme is identical in eukaryotes, it was previously shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implied a unique component of the fungal carboxy-terminal domain was responsible for the complementation phenotype. To identify this motif, we used Saccharomyces cerevisiae with a squalene synthase knockout mutation, and expressed intact and chimeric squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. However, when highly expressed, non-fungal squalene synthases could not complement the yeast mutation and instead led to the accumulation of a toxic intermediate(s) as defined by mutations of genes downstream in the ergosterol pathway. Restoration of the complete complementation phenotype was mapped to a 26-amino acid hinge region linking the catalytic and membrane-spanning domains specific to fungal squalene synthases. Over-expression of the C-terminal domain containing a hinge domain from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Because this hinge region is unique to and highly conserved within each kingdom of life, the data suggests that the hinge domain plays an essential functional role, such as assembly of ergosterol multi-enzyme complexes in fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Allosteric regulation of glycogen synthase in liver. A physiological dilemma.

    PubMed

    Nuttall, F Q; Gannon, M C

    1993-06-25

    Glycogen synthase catalyzes the transfer of the glucosyl moiety from UDP-glucose to the terminal branch of the glycogen molecule and is considered to be the rate-limiting enzyme for glycogen synthesis. However, under ideal assay conditions, i.e. 37 degrees C with saturating concentrations of UDP-glucose and the activator, glucose-6-P, the maximal catalytic activity of glycogen synthase was only 78% of the in vivo glycogen synthetic rate. Using concentrations of UDP-glucose and glucose-6-P likely to be present in vivo, the rate was only approximately 30%. This prompted us to reassess a possible role of allosteric effectors on synthase activity. Glycogen synthase was assayed at 37 degrees C using dilute, pH 7.0, buffered extracts, initial rate conditions, and UDP-glucose and glucose-6-P concentrations, which approximate those calculated to be present in total liver cell water. Several allosteric effectors were tested. Magnesium and AMP had little effect on activity. Pi, ADP, ATP, and UTP inhibited activity. When a combination of effectors were added at concentrations approximating those present in cell water, synthase activity could account for only 2% of the glycogen synthetic rate. Thus, although allosteric effectors are likely to be playing a major role in regulating synthase enzymic activity in liver cells, to date, a metabolite that can stimulate activity and/or overcome nucleotide inhibition has yet to be identified. If such a metabolite cannot be identified, an additional or alternative pathway for glycogen synthesis must be considered.

  20. Inhibitors of Fatty Acid Synthase for Prostate Cancer

    DTIC Science & Technology

    2010-05-31

    targeting. Ursolic acid , a pentacyclic triterpenoid acid , as well as the tea polyphenols, epigallocatechin gallate (EGCG) and epicatechin gallate...2007,  6(7), 2120‐2126.  73.  Liu, Y., Tian, W., Ma, X., and Ding, W. Evaluation of  inhibition of  fatty  acid  synthase by  ursolic   acid : positive...AD_________________ Award Number: W81XWH-09-1-0204 TITLE: Inhibitors of Fatty Acid Synthase for

  1. Engineered biosynthesis of plant polyketides: manipulation of chalcone synthase.

    PubMed

    Abe, Ikuro; Watanabe, Tatsuya; Morita, Hiroyuki; Kohno, Toshiyuki; Noguchi, Hiroshi

    2006-02-02

    [reaction: see text]. Chalcone synthase (CHS) is a plant-specific type III polyketide synthase catalyzing condensation of 4-coumaroyl-CoA with three molecules of malonyl-CoA. Surprisingly, it was demonstrated that S338V mutant of Scutellaria baicalensis CHS produced octaketides SEK4/SEK4b from eight molecules of malonyl-CoA. Further, the octaketides-forming activity was dramatically increased in a CHS triple mutant (T197G/G256L/S338T). The functional conversion is based on the simple steric modulation of a chemically inert residue lining the active-site cavity.

  2. Molecular aspects of beta-ketoacyl synthase (KAS) catalysis.

    PubMed

    von Wettstein-Knowles, P; Olsen, J; Arnvig Mcguire, K; Larsen, S

    2000-12-01

    Crystal structure data for Escherichia coli beta-ketoacyl synthase (KAS) I with C(10) and C(12) fatty acid substrates bound in conjunction with results from mutagenizing residues in the active site leads to a model for catalysis. Differences from and similarities to the other Claisen enzymes carrying out decarboxylations reveal two catalytic mechanisms, one for KAS I and KAS II, the other for KAS III and chalcone synthase. A comparison of the structures of KAS I and KAS II does not reveal the basis of chain-length specificity. The structures of the Arabidopsis thaliana KAS family are compared.

  3. Twisting and subunit rotation in single FOF1-ATP synthase

    PubMed Central

    Sielaff, Hendrik; Börsch, Michael

    2013-01-01

    FOF1-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single FOF1-ATP synthases. PMID:23267178

  4. Brucella spp. lumazine synthase: a novel antigen delivery system.

    PubMed

    Sciutto, Edda; Toledo, Andrea; Cruz, Carmen; Rosas, Gabriela; Meneses, Gabriela; Laplagne, Diego; Ainciart, Natalia; Cervantes, Jacquelynne; Fragoso, Gladis; Goldbaum, Fernando A

    2005-04-15

    Lumazine synthase from Brucella spp. (BLS) was evaluated as a protein carrier to improve antigen delivery of KETc1, one of the peptides of the anti-cysticercosis vaccine. KETc1 becomes antigenic, preserved its immunogenicity and its protective capacity when expressed as a recombinant chimeric protein using Brucella spp. lumazine synthase. KETc1 and BLS-KETc1 were not MHC H-2(d), H-2(k) nor H-2(b) haplotype-restricted albeit KETc1 is preferentially presented in the H-2(b) haplotype. These findings support that BLS is a potent new delivery system for the improvement of subunit vaccines.

  5. Enzymatic proof for the identity of the S-sulfocysteine synthase and cysteine synthase B of Salmonella typhimurium.

    PubMed Central

    Nakamura, T; Iwahashi, H; Eguchi, Y

    1984-01-01

    S-Sulfocysteine synthase was isolated from Salmonella typhimurium LT-2 to homogeneous form with polyacrylamide gel electrophoresis. The molecular weight of this enzyme was determined to be ca. 55,000. The enzyme consisted of two identically sized subunits, and it contained one pyridoxal phosphate per subunit. The enzyme catalyzed the biosynthesis of cysteine or S-methylcysteine from sulfide or methanethiol and O-acetylserine, respectively, in addition to the formation of S-sulfocysteine from thiosulfate and O-acetylserine. The enzyme is identical to cysteine synthase B. The intracellular level of this enzyme was regulated by lesser extents of the same factors as those effective for cysteine synthase A. Images PMID:6373737

  6. The CELLULOSE SYNTHASE-LIKE A and CELLULOSE SYNTHASE-LIKE C families: recent advances and future perspectives

    PubMed Central

    Liepman, Aaron H.; Cavalier, David M.

    2012-01-01

    The CELLULOSE SYNTHASE (CESA) superfamily of proteins contains several sub-families of closely related CELLULOSE SYNTHASE-LIKE (CSL) sequences. Among these, the CSLA and CSLC families are closely related to each other and are the most evolutionarily divergent from the CESA family. Significant progress has been made with the functional characterization of CSLA and CSLC genes, which have been shown to encode enzymes with 1,4-β-glycan synthase activities involved in the biosynthesis of mannan and possibly xyloglucan backbones, respectively. This review examines recent work on the CSLA and CSLC families from evolutionary, molecular, and biochemical perspectives. We pose a series of questions, whose answers likely will provide further insight about the specific functions of members of the CSLA and CSLC families and about plant polysaccharide biosynthesis is general. PMID:22654891

  7. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    PubMed Central

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  8. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    PubMed

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents.

  9. Analysis of the cercosporin polyketide synthase CTB1 reveals a new fungal thioesterase function

    PubMed Central

    Newman, Adam G.; Vagstad, Anna L.; Belecki, Katherine; Scheerer, Jonathan R.

    2012-01-01

    The polyketide synthase CTB1 is demonstrated to catalyze pyrone formation thereby expanding the known biosynthetic repertoire of thioesterase domains in iterative, non-reducing polyketide synthases. PMID:23108075

  10. The Remarkable Character of Porphobilinogen Synthase.

    PubMed

    Jaffe, Eileen K

    2016-11-15

    Porphobilinogen synthase (PBGS), also known as 5-aminolevulinate dehydratase, is an essential enzyme in the biosynthesis of all tetrapyrroles, which function in respiration, photosynthesis, and methanogenesis. Throughout evolution, PBGS adapted to a diversity of cellular niches and evolved to use an unusual variety of metal ions both for catalytic function and to control protein multimerization. With regard to the active site, some PBGSs require Zn(2+); a subset of those, including human PBGS, contain a constellation of cysteine residues that acts as a sink for the environmental toxin Pb(2+). PBGSs that do not require the soft metal ion Zn(2+) at the active site instead are suspected of using the hard metal Mg(2+). The most unexpected property of the PBGS family of enzymes is a dissociative allosteric mechanism that utilizes an equilibrium of architecturally and functionally distinct protein assemblies. The high-activity assembly is an octamer in which intersubunit interactions modulate active-site lid motion. This octamer can dissociate to dimer, the dimer can undergo a hinge twist, and the twisted dimer can assemble to a low-activity hexamer. The hexamer does not have the intersubunit interactions required to stabilize a closed conformation of the active site lid. PBGS active site chemistry benefits from a closed lid because porphobilinogen biosynthesis includes Schiff base formation, which requires deprotonated lysine amino groups. N-terminal and C-terminal sequence extensions dictate whether a specific species of PBGS can sample the hexameric assembly. The bulk of species (nearly all except animals and yeasts) use Mg(2+) as an allosteric activator. Mg(2+) functions allosterically by binding to an intersubunit interface that is present in the octamer but absent in the hexamer. This conformational selection allosteric mechanism is purported to be essential to avoid the untimely accumulation of phototoxic chlorophyll precursors in plants. For those PBGSs that do

  11. Characterization of spermidine synthase and spermine synthase--The polyamine-synthetic enzymes that induce early flowering in Gentiana triflora.

    PubMed

    Imamura, Tomohiro; Fujita, Kohei; Tasaki, Keisuke; Higuchi, Atsumi; Takahashi, Hideyuki

    2015-08-07

    Polyamines are essential for several living processes in plants. However, regulatory mechanisms of polyamines in herbaceous perennial are almost unknown. Here, we identified homologs of two Arabidopsis polyamine-synthetic enzymes, spermidine synthase (SPDS) and spermine synthase (SPMS) denoted as GtSPDS and GtSPMS, from the gentian plant, Gentiana triflora. Our results showed that recombinant proteins of GtSPDS and GtSPMS possessed SPDS and SPMS activities, respectively. The expression levels of GtSPDS and GtSPMS increased transiently during vegetative to reproductive growth phase and overexpression of the genes hastened flowering, suggesting that these genes are involved in flowering induction in gentian plants.

  12. Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases.

    PubMed

    Liu, Benye; Falkenstein-Paul, Hildegard; Schmidt, Werner; Beerhues, Ludger

    2003-06-01

    Benzophenone derivatives, such as polyprenylated benzoylphloroglucinols and xanthones, are biologically active secondary metabolites. The formation of their C13 skeleton is catalyzed by benzophenone synthase (BPS; EC 2.3.1.151) that has been cloned from cell cultures of Hypericum androsaemum. BPS is a novel member of the superfamily of plant polyketide synthases (PKSs), also termed type III PKSs, with 53-63% amino acid sequence identity. Heterologously expressed BPS was a homodimer with a subunit molecular mass of 42.8 kDa. Its preferred starter substrate was benzoyl-CoA that was stepwise condensed with three malonyl-CoAs to give 2,4,6-trihydroxybenzophenone. BPS did not accept activated cinnamic acids as starter molecules. In contrast, recombinant chalcone synthase (CHS; EC 2.3.1.74) from the same cell cultures preferentially used 4-coumaroyl-CoA and also converted CoA esters of benzoic acids. The enzyme shared 60.1% amino acid sequence identity with BPS. In a phylogenetic tree, the two PKSs occurred in different clusters. One cluster was formed by CHSs including the one from H. androsaemum. BPS grouped together with the PKSs that functionally differ from CHS. Site-directed mutagenesis of amino acids shaping the initiation/elongation cavity of CHS yielded a triple mutant (L263M/F265Y/S338G) that preferred benzoyl-CoA over 4-coumaroyl-CoA.

  13. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer.

    PubMed

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results.

  14. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    PubMed Central

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  15. Sucrose synthase in wild tomato Lycopersicon chmielewskii and tomato fruit sink strength

    Treesearch

    Shi-Jean S. Sung; T. Loboda; S.S. Sung; C.C. Black

    1992-01-01

    Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers.In mature, nongrowing fruits, sucrose synthase activities approached nil values.Therefore, sucrose synthase...

  16. Isoelectric focusing of wound-induced tomato ACC synthase

    SciTech Connect

    White, J.A.; Kende, H. )

    1990-05-01

    Several techniques of electrofocusing have been used to determine whether 1-aminocyclopropane-1-carboxylate (ACC) synthase isolated from wounded tomato pericarp tissue exists in different isoforms, each with its characteristic isoelectric point (pI). The pI of the native enzyme was found to be 6.0 {plus minus} 0.2. When radiolabeled, denatured ACC synthase was electrofocused by non-equilibrium pH gradient electrophoresis (NEpHGE), the enzyme separated into four discernible spots which, upon reaching equilibrium, ranged in pI from 6.6 to 6.9. Immunopurified ACC synthase from four tomato cultivars (Duke, Cornell, Mountain Pride and Pik Red) migrated in each case as a 50-kDa protein on sodium dodecyl sulfate polyacrylamide gels (SDS-PAGE). We propose that native ACC synthase in extracts of tomato pericarp tissue exists in one single form and that the charge heterogeneities observed upon electrofocusing of denatured enzyme result from modifications of preexisting protein.

  17. Substituted 2-aminopyridines as inhibitors of nitric oxide synthases.

    PubMed

    Hagmann, W K; Caldwell, C G; Chen, P; Durette, P L; Esser, C K; Lanza, T J; Kopka, I E; Guthikonda, R; Shah, S K; MacCoss, M; Chabin, R M; Fletcher, D; Grant, S K; Green, B G; Humes, J L; Kelly, T M; Luell, S; Meurer, R; Moore, V; Pacholok, S G; Pavia, T; Williams, H R; Wong, K K

    2000-09-04

    A series of substituted 2-aminopyridines was prepared and evaluated as inhibitors of human nitric oxide synthases (NOS). 4,6-Disubstitution enhanced both potency and specificity for the inducible NOS with the most potent compound having an IC50 of 28 nM.

  18. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... of reactions that occurs in liver cells. This cycle processes excess nitrogen, generated when protein is used by the body, to make a compound called urea that is excreted by the kidneys. The ... cycle. In people with N-acetylglutamate synthase deficiency , N- ...

  19. Biosynthesis of polyketides by trans-AT polyketide synthases.

    PubMed

    Helfrich, Eric J N; Piel, Jörn

    2016-02-01

    This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides. The article includes 609 references and covers the literature from 2009 through June 2015.

  20. Biosynthesis of polyketides by trans-AT polyketide synthases.

    PubMed

    Piel, Jörn

    2010-07-01

    This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.

  1. Functional characterization of sesquiterpene synthase from Polygonum minus.

    PubMed

    Ee, Su-Fang; Mohamed-Hussein, Zeti-Azura; Othman, Roohaida; Shaharuddin, Noor Azmi; Ismail, Ismanizan; Zainal, Zamri

    2014-01-01

    Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS) has a complete open reading frame (ORF) of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β -sesquiphellandrene.

  2. Characteristic alatoid 'cineole cassette' monoterpene synthase present in Nicotiana noctiflora.

    PubMed

    Fähnrich, Anke; Neumann, Madeleine; Piechulla, Birgit

    2014-05-01

    Nicotiana species of the section Alatae emit a characteristic floral scent comprising the' cineole cassette' monoterpenes 1,8-cineole, limonene, myrcene, β-pinene, α-pinene, sabinene and α-terpineol. All previously isolated 'cineole cassette'-monoterpene synthase genes are multi product enzymes that synthesize the seven compounds of the 'cineole cassette'. Interestingly, so far this 'alatoid' trait was only shared with the eponymous species Nicotiana suaveolens of the sister section Suaveolentes. To determine the origin of the 'cineole cassette' monoterpene phenotype other potential parent species of section Noctiflorae or Petunoides as well as of the distantly related section Trigonophyllae were analysed. A monoterpene synthase producing the set of 'cineole cassette' compounds was isolated from N. noctiflorae. N. obtusifolia emitted solely 1,8-cineole and no monoterpenes were found in floral scents of N. petunoides and N. palmeri. Interestingly, the phylogenetic analysis clustered the new gene of N. noctiflora closely to the terpineol synthase genes of e.g. N. alata rather than to cineole synthase genes of e.g. N. forgetiana.

  3. Mammalian fatty acid synthase: closure on a textbook mechanism?

    PubMed

    Leadlay, Peter; Baerga-Ortiz, Abel

    2003-02-01

    Mammalian fatty acid synthase is a classic example of a chain-building multienzyme. A cornerstone of its mechanism has been the obligatory collaboration of two identical subunits, with fatty acyl intermediates transferring between them. Now, fresh evidence has upset this view.

  4. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases

    PubMed Central

    Manczak, Tom; Simonsen, Henrik Toft

    2016-01-01

    A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data. PMID:27721652

  5. Inhibition of ATP Synthase by Chlorinated Adenosine Analogue

    PubMed Central

    Chen, Lisa S.; Nowak, Billie J.; Ayres, Mary L.; Krett, Nancy L.; Rosen, Steven T.; Zhang, Shuxing; Gandhi, Varsha

    2009-01-01

    8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; FO intermembrane base and F1 domain, containing α and β subunits. Crystal structures of both α and β subunits that bind to the substrate, ADP, are known in tight binding (αdpβdp) and loose binding (αtpβtp) states. Molecular docking demonstrated that 8-Cl-ADP/8-Cl-ATP occupied similar binding modes as ADP/ATP in the tight and loose binding sites of ATP synthase, respectively, suggesting that the chlorinated nucleotide metabolites may be functional substrates and inhibitors of the enzyme. The computational predictions were consistent with our whole cell biochemical results. Oligomycin, an established pharmacological inhibitor of ATP synthase, decreased both ATP and 8-Cl-ATP formation from exogenous substrates, however, did not affect pyrimidine nucleoside analogue triphosphate accumulation. Synthesis of ATP from ADP was inhibited in cells loaded with 8-Cl-ATP. These biochemical studies are in consent with the computational modeling; in the αtpβtp state 8-Cl-ATP occupies similar binding as ANP, a non-hydrolyzable ATP mimic that is a known inhibitor. Similarly, in the substrate binding site (αdpβdp) 8-Cl-ATP occupies a similar position as ATP mimic ADP-BeF3 −. Collectively, our current work suggests that 8-Cl-ADP may serve as a substrate and the 8-Cl-ATP may be an inhibitor of ATP synthase. PMID:19477165

  6. Phytochelatin synthase: of a protease a peptide polymerase made.

    PubMed

    Rea, Philip A

    2012-05-01

    Of the mechanisms known to protect vascular plants and some algae, fungi and invertebrates from the toxic effects of non-essential heavy metals such as As, Cd or Hg, one of the most sophisticated is the enzyme-catalyzed synthesis of phytochelatins (PCs). PCs, (γ-Glu-Cys)(n) Gly polymers, which serve as high-affinity, thiol-rich cellular chelators and contribute to the detoxification of heavy metal ions, are derived from glutathione (GSH; γ-Glu-Cys-Gly) and related thiols in a reaction catalyzed by phytochelatin synthases (PC synthases, EC 2.3.2.15). Using the enzyme from Arabidopsis thaliana (AtPCS1) as a model, the reasoning and experiments behind the conclusion that PC synthases are novel papain-like Cys protease superfamily members are presented. The status of S-substituted GSH derivatives as generic PC synthase substrates and the sufficiency of the N-terminal domain of the enzyme from eukaryotic and its half-size equivalents from prokaryotic sources, for net PC synthesis and deglycylation of GSH and its derivatives, respectively, are emphasized. The question of the common need or needs met by PC synthases and their homologs is discussed. Of the schemes proposed to account for the combined protease and peptide polymerase capabilities of the eukaryotic enzymes vs the limited protease capabilities of the prokaryotic enzymes, two that will be considered are the storage and homeostasis of essential heavy metals in eukaryotes and the metabolism of S-substituted GSH derivatives in both eukaryotes and prokaryotes. Copyright © Physiologia Plantarum 2012.

  7. Transgene silencing of sucrose synthase in alfalfa stem vascular tissue by a truncated phosphoenolpyruvate carboxylase: sucrose synthase construct

    USDA-ARS?s Scientific Manuscript database

    An important role of sucrose synthase (SUS, EC 2.4.1.13) in plants is to provide UDP-glucose needed for cellulose synthesis in cell walls. We examined if over-expressing SUS in alfalfa (Medicago sativa L.) would increase cellulose content of stem cell walls. Alfalfa plants were transformed with two ...

  8. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia.

    PubMed

    Jullien, Frédéric; Moja, Sandrine; Bony, Aurélie; Legrand, Sylvain; Petit, Cécile; Benabdelkader, Tarek; Poirot, Kévin; Fiorucci, Sébastien; Guitton, Yann; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis

    2014-01-01

    In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.

  9. Mechanism-oriented redesign of an isomaltulose synthase to an isomelezitose synthase by site-directed mutagenesis.

    PubMed

    Görl, Julian; Timm, Malte; Seibel, Jürgen

    2012-01-02

    An isomelezitose synthase was redesigned out of the sucrose isomerase from Protaminobacter rubrum for the synthesis of isomelezitose (6-O(F)-glucosylsucrose), a potential nutraceutical. The variants F297A, F297P, R333K, F321A_F319A and E428D catalyze the formation of isomelezitose in up to 70 % yield.

  10. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    SciTech Connect

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  11. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa.

    PubMed

    Taura, Futoshi; Sirikantaramas, Supaart; Shoyama, Yoshinari; Yoshikai, Kazuyoshi; Shoyama, Yukihiro; Morimoto, Satoshi

    2007-06-26

    Cannabidiolic-acid (CBDA) synthase is the enzyme that catalyzes oxidative cyclization of cannabigerolic-acid into CBDA, the dominant cannabinoid constituent of the fiber-type Cannabis sativa. We cloned a novel cDNA encoding CBDA synthase by reverse transcription and polymerase chain reactions with degenerate and gene-specific primers. Biochemical characterization of the recombinant enzyme demonstrated that CBDA synthase is a covalently flavinylated oxidase. The structural and functional properties of CBDA synthase are quite similar to those of tetrahydrocannabinolic-acid (THCA) synthase, which is responsible for the biosynthesis of THCA, the major cannabinoid in drug-type Cannabis plants.

  12. Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity.

    PubMed

    Banerjee, Aparajita; Preiser, Alyssa L; Sharkey, Thomas D

    2016-01-01

    Deoxyxylulose 5-phosphate synthase (DXS), a thiamine diphosphate (ThDP) dependent enzyme, plays a regulatory role in the methylerythritol 4-phosphate (MEP) pathway. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the end products of this pathway, inhibit DXS by competing with ThDP. Feedback inhibition of DXS by IDP and DMADP constitutes a significant metabolic regulation of this pathway. The aim of this work was to experimentally test the effect of key residues of recombinant poplar DXS (PtDXS) in binding both ThDP and IDP. This work also described the engineering of PtDXS to improve the enzymatic activity by reducing its inhibition by IDP and DMADP. We have designed and tested modifications of PtDXS in an attempt to reduce inhibition by IDP. This could possibly be valuable by removing a feedback that limits the usefulness of the MEP pathway in biotechnological applications. Both ThDP and IDP use similar interactions for binding at the active site of the enzyme, however, ThDP being a larger molecule has more anchoring sites at the active site of the enzyme as compared to the inhibitors. A predicted enzyme structure was examined to find ligand-enzyme interactions, which are relatively more important for inhibitor-enzyme binding than ThDP-enzyme binding, followed by their modifications so that the binding of the inhibitors can be selectively affected compared to ThDP. Two alanine residues important for binding ThDP and the inhibitors were mutated to glycine. In two of the cases, both the IDP inhibition and the overall activity were increased. In another case, both the IDP inhibition and the overall activity were reduced. This provides proof of concept that it is possible to reduce the feedback from IDP on DXS activity.

  13. Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity

    PubMed Central

    Banerjee, Aparajita; Preiser, Alyssa L.

    2016-01-01

    Deoxyxylulose 5-phosphate synthase (DXS), a thiamine diphosphate (ThDP) dependent enzyme, plays a regulatory role in the methylerythritol 4-phosphate (MEP) pathway. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the end products of this pathway, inhibit DXS by competing with ThDP. Feedback inhibition of DXS by IDP and DMADP constitutes a significant metabolic regulation of this pathway. The aim of this work was to experimentally test the effect of key residues of recombinant poplar DXS (PtDXS) in binding both ThDP and IDP. This work also described the engineering of PtDXS to improve the enzymatic activity by reducing its inhibition by IDP and DMADP. We have designed and tested modifications of PtDXS in an attempt to reduce inhibition by IDP. This could possibly be valuable by removing a feedback that limits the usefulness of the MEP pathway in biotechnological applications. Both ThDP and IDP use similar interactions for binding at the active site of the enzyme, however, ThDP being a larger molecule has more anchoring sites at the active site of the enzyme as compared to the inhibitors. A predicted enzyme structure was examined to find ligand-enzyme interactions, which are relatively more important for inhibitor-enzyme binding than ThDP-enzyme binding, followed by their modifications so that the binding of the inhibitors can be selectively affected compared to ThDP. Two alanine residues important for binding ThDP and the inhibitors were mutated to glycine. In two of the cases, both the IDP inhibition and the overall activity were increased. In another case, both the IDP inhibition and the overall activity were reduced. This provides proof of concept that it is possible to reduce the feedback from IDP on DXS activity. PMID:27548482

  14. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    PubMed Central

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  15. Kinetic mechanism of rabbit muscle glycogen synthase I.

    PubMed

    Gold, A M

    1980-08-05

    The kinetic mechanism of rabbit muscle glycogen synthase I was investigated by determining isotope-exchange rates at chemical equilibrium between uridine diphosphoglucose (UDPG) and glycogen and between UDPG and uridine 5'-diphosphate (UDP). The rates were followed simultaneously by use of UDPG labeled with 14C in the glucose moiety and with 3H in the uracil group. They were found to be independent of the concentrations of glycogen and the UDPG-UDP pair, averaging 6 X 10(-9) mol min-1 mg-1, with a ratio of UDPG-glycogen exchange to UDPG-UDP exchange of 0.85-0.95. The conclusion is that glycogen synthase has a rapid equilibrium random bi bi mechanism. The previously reported slow activation of glycogen-free synthase in the presence of glycogen was examined kinetically. The activation rate appears to be independent of glycogen concentration over a wide range, while the maximum activation is related to the third or fourth root of the glycogen concentration. This suggest that the slow bimolecular reaction mechanism proposed for human polymorphonuclear leucocyte glycogen synthase I [Sølling, H., & Esmann, V. (1977) Eur. J. Biochem. 81, 129] does not apply to rabbit muscle synthase I. The rate of exchange of glycogen molecules in the complex between glycogen and rabbit muscle synthase I under conditions where the enzyme is catalytically active was estimated by a novel method. The enzyme-glycogen complex was treated with [glucose-14C]UDPG and glycogen of different molecular weight. The distribution of isotope between the two forms of glycogen was determined after their separation by agarose gel chromatography. A rate constant of 0.3 min-1 was estimated for the exchange. It can be calculated, on the basis of the specific activity of the enzyme (20 mumol min-1 mg-1) and its action pattern, that hundreds of individual chains in the glycogen molecule must be available to the enzyme during the average lifetime of the complex. A mechanism is proposed for this process.

  16. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture.

    PubMed

    Grundy, Daniel J; Chen, Mengbin; González, Verónica; Leoni, Stefano; Miller, David J; Christianson, David W; Allemann, Rudolf K

    2016-04-12

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D(80)DQFD and N(218)DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H2(18)O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-(2)H2]FDP and (R)-[1-(2)H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues

  17. Hematopoetic Prostaglandin D Synthase: An ESR1-Dependent Oviductal Epithelial Cell Synthase

    PubMed Central

    Jeoung, Myoungkun; Shim, Sarah; Park, Ji Yeon; Lee, Jae Eun; Sapsford, Lindsay A.; Trudgen, Kourtney; Ko, Chemyong; Gye, Myung Chan; Jo, Misung

    2012-01-01

    Oviductal disease is a primary cause of infertility, a problem that largely stems from excessive inflammation of this key reproductive organ. Our poor understanding of the mechanisms regulating oviductal inflammation restricts our ability to diagnose, treat, and/or prevent oviductal disease. Using mice, our objective was to determine the spatial localization, regulatory mechanism, and functional attributes of a hypothesized regulator of oviductal inflammation, the hematopoietic form of prostaglandin D synthase (HPGDS). Immunohistochemistry revealed specific localization of HPGDS to the oviduct's epithelium. In the isthmus, expression of HPGDS was consistent. In the ampulla, expression of HPGDS appeared dependent upon stage of the estrous cycle. HPGDS was expressed in the epithelium of immature and cycling mice but not in the oviducts of estrogen receptor α knockouts. Two receptor subtypes bind PGD2: PGD2 receptor and G protein-coupled receptor 44. Expression of mRNA for Ptgdr was higher in the epithelial cells (EPI) than in the stroma (P < 0.05), whereas mRNA for Gpr44 was higher in the stroma than epithelium (P < 0.05). Treatment of human oviductal EPI with HQL-79, an inhibitor of HPGDS, decreased cell viability (P < 0.05). Treatment of mice with HQL-79 increased mRNA for chemokine (C-C motif) ligands 3, 4, and 19; chemokine (C-X-C motif) ligands 11 and 12; IL-13 and IL-17B; and TNF receptor superfamily, member 1b (P < 0.02 for each mRNA). Overall, these results suggest that HPGDS may play a role in the regulation of inflammation and EPI health within the oviduct. PMID:22374975

  18. Deficiency of sphingomyelin synthase-1 but not sphingomyelin synthase-2 causes hearing impairments in mice

    PubMed Central

    Lu, Mei-Hong; Takemoto, Makoto; Watanabe, Ken; Luo, Huan; Nishimura, Masataka; Yano, Masato; Tomimoto, Hidekazu; Okazaki, Toshiro; Oike, Yuichi; Song, Wen-Jie

    2012-01-01

    Sphingomyelin (SM) is a sphingolipid reported to function as a structural component of plasma membranes and to participate in signal transduction. The role of SM metabolism in the process of hearing remains controversial. Here, we examined the role of SM synthase (SMS), which is subcategorized into the family members SMS1 and SMS2, in auditory function. Measurements of auditory brainstem response (ABR) revealed hearing impairment in SMS1−/− mice in a low frequency range (4–16 kHz). As a possible mechanism of this impairment, we found that the stria vascularis (SV) in these mice exhibited atrophy and disorganized marginal cells. Consequently, SMS1−/− mice exhibited significantly smaller endocochlear potentials (EPs). As a possible mechanism for EP reduction, we found altered expression patterns and a reduced level of KCNQ1 channel protein in the SV of SMS1−/− mice. These mice also exhibited reduced levels of distortion product otoacoustic emissions. Quantitative comparison of the SV atrophy, KCNQ1 expression, and outer hair cell density at the cochlear apical and basal turns revealed no location dependence, but more macrophage invasion into the SV was observed in the apical region than the basal region, suggesting a role of cochlear location-dependent oxidative stress in producing the frequency dependence of hearing loss in SMS1−/− mice. Elevated ABR thresholds, decreased EPs, and abnormal KCNQ1 expression patterns in SMS1−/− mice were all found to be progressive with age. Mice lacking SMS2, however, exhibited neither detectable hearing loss nor changes in their EPs. Taken together, our results suggest that hearing impairments occur in SMS1−/− but not SMS2−/− mice. Defects in the SV with subsequent reductions in EPs together with hair cell dysfunction may account, at least partially, for hearing impairments in SMS1−/− mice. PMID:22641779

  19. Deficiency of sphingomyelin synthase-1 but not sphingomyelin synthase-2 causes hearing impairments in mice.

    PubMed

    Lu, Mei-Hong; Takemoto, Makoto; Watanabe, Ken; Luo, Huan; Nishimura, Masataka; Yano, Masato; Tomimoto, Hidekazu; Okazaki, Toshiro; Oike, Yuichi; Song, Wen-Jie

    2012-08-15

    Sphingomyelin (SM) is a sphingolipid reported to function as a structural component of plasma membranes and to participate in signal transduction. The role of SM metabolism in the process of hearing remains controversial. Here, we examined the role of SM synthase (SMS), which is subcategorized into the family members SMS1 and SMS2, in auditory function. Measurements of auditory brainstem response (ABR) revealed hearing impairment in SMS1−/− mice in a low frequency range (4–16 kHz). As a possible mechanism of this impairment, we found that the stria vascularis (SV) in these mice exhibited atrophy and disorganized marginal cells. Consequently, SMS1−/− mice exhibited significantly smaller endocochlear potentials (EPs). As a possible mechanism for EP reduction, we found altered expression patterns and a reduced level of KCNQ1 channel protein in the SV of SMS1−/− mice. These mice also exhibited reduced levels of distortion product otoacoustic emissions. Quantitative comparison of the SV atrophy, KCNQ1 expression, and outer hair cell density at the cochlear apical and basal turns revealed no location dependence, but more macrophage invasion into the SV was observed in the apical region than the basal region, suggesting a role of cochlear location-dependent oxidative stress in producing the frequency dependence of hearing loss in SMS1−/− mice. Elevated ABR thresholds, decreased EPs, and abnormal KCNQ1 expression patterns in SMS1−/− mice were all found to be progressive with age. Mice lacking SMS2, however, exhibited neither detectable hearing loss nor changes in their EPs. Taken together, our results suggest that hearing impairments occur in SMS1−/− but not SMS2−/− mice. Defects in the SV with subsequent reductions in EPs together with hair cell dysfunction may account, at least partially, for hearing impairments in SMS1−/− mice.

  20. Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency

    PubMed Central

    Spassieva, Stefka D.; Ji, Xiaojie; Liu, Ye; Gable, Kenneth; Bielawski, Jacek; Dunn, Teresa M.; Bieberich, Erhard; Zhao, Lihong

    2016-01-01

    Sphingolipids exhibit extreme functional and chemical diversity that is in part determined by their hydrophobic moiety, ceramide. In mammals, the fatty acyl chain length variation of ceramides is determined by six (dihydro)ceramide synthase (CerS) isoforms. Previously, we and others showed that mutations in the major neuron-specific CerS1, which synthesizes 18-carbon fatty acyl (C18) ceramide, cause elevation of long-chain base (LCB) substrates and decrease in C18 ceramide and derivatives in the brain, leading to neurodegeneration in mice and myoclonus epilepsy with dementia in humans. Whether LCB elevation or C18 ceramide reduction leads to neurodegeneration is unclear. Here, we ectopically expressed CerS2, a nonneuronal CerS producing C22–C24 ceramides, in neurons of Cers1-deficient mice. Surprisingly, the Cers1 mutant pathology was almost completely suppressed. Because CerS2 cannot replenish C18 ceramide, the rescue is likely a result of LCB reduction. Consistent with this hypothesis, we found that only LCBs, the substrates common for all of the CerS isoforms, but not ceramides and complex sphingolipids, were restored to the wild-type levels in the Cers2-rescued Cers1 mutant mouse brains. Furthermore, LCBs induced neurite fragmentation in cultured neurons at concentrations corresponding to the elevated levels in the CerS1-deficient brain. The strong association of LCB levels with neuronal survival both in vivo and in vitro suggests high-level accumulation of LCBs is a possible underlying cause of the CerS1 deficiency-induced neuronal death. PMID:27162368

  1. Structural analysis of substrate-mimicking inhibitors in complex with Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase - The importance of accommodating the active site water.

    PubMed

    Heyes, Logan C; Reichau, Sebastian; Cross, Penelope J; Jameson, Geoffrey B; Parker, Emily J

    2014-12-01

    3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first committed step of the shikimate pathway, which produces the aromatic amino acids as well as many other aromatic metabolites. DAH7PS catalyses an aldol-like reaction between phosphoenolpyruvate and erythrose 4-phosphate. Three phosphoenolpyruvate mimics, (R)-phospholactate, (S)-phospholactate and vinyl phosphonate [(E)-2-methyl-3-phosphonoacrylate], were found to competitively inhibit DAH7PS from Neisseria meningitidis, which is the pathogen responsible for bacterial meningitis. The most potent inhibitor was the vinyl phosphonate with a Ki value of 3.9±0.4μM. We report for the first time crystal structures of these compounds bound in the active site of a DAH7PS enzyme which reveals that the inhibitors bind to the active site of the enzyme in binding modes that mimic those of the predicted oxocarbenium and tetrahedral intermediates of the enzyme-catalysed reaction. Furthermore, the inhibitors accommodate the binding of a key active site water molecule. Together, these observations provide strong evidence that this active site water participates directly in the DAH7PS reaction, enabling the facial selectivity of the enzyme-catalysed reaction sequence to be delineated.

  2. Defining the Product Chemical Space of Monoterpenoid Synthases

    PubMed Central

    Tian, Boxue; Poulter, C. Dale; Jacobson, Matthew P.

    2016-01-01

    Terpenoid synthases create diverse carbon skeletons by catalyzing complex carbocation rearrangements, making them particularly challenging for enzyme function prediction. To begin to address this challenge, we have developed a computational approach for the systematic enumeration of terpenoid carbocations. Application of this approach allows us to systematically define a nearly complete chemical space for the potential carbon skeletons of products from monoterpenoid synthases. Specifically, 18758 carbocations were generated, which we cluster into 74 cyclic skeletons. Five of the 74 skeletons are found in known natural products; some of the others are plausible for new functions, either in nature or engineered. This work systematizes the description of function for this class of enzymes, and provides a basis for predicting functions of uncharacterized enzymes. To our knowledge, this is the first computational study to explore the complete product chemical space of this important class of enzymes. PMID:27517297

  3. Sucrose Synthase Expression during Cold Acclimation in Wheat 1

    PubMed Central

    Crespi, Martin D.; Zabaleta, Eduardo J.; Pontis, Horacio G.; Salerno, Graciela L.

    1991-01-01

    When wheat (Triticum aestivum) seedlings are exposed to a cold temperature (2-4°C) above 0°C, sucrose accumulates and sucrose synthase activity increases. The effect of a cold period on the level of sucrose synthase (SS) was investigated. Using antibodies against wheat germ SS, Western blots studies showed that the amount of the SS peptide increased during 14 days in the cold, when plants were moved from 23°C to 4°C. The level of SS diminished when plants were moved back to 23°C. Northern blots of poly(A)+ RNA, confirmed a five- to sixfold induction of SS in wheat leaves during cold acclimation. These results indicate that SS is involved in the plant response to a chilling stress. ImagesFigure 1Figure 2Figure 3 PMID:16668270

  4. Structure of isochorismate synthase DhbC from Bacillus anthracis.

    PubMed

    Domagalski, M J; Tkaczuk, K L; Chruszcz, M; Skarina, T; Onopriyenko, O; Cymborowski, M; Grabowski, M; Savchenko, A; Minor, W

    2013-09-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg(2+)-dependent catalytic mechanism.

  5. Structure of isochorismate synthase DhbC from Bacillus anthracis

    PubMed Central

    Domagalski, M. J.; Tkaczuk, K. L.; Chruszcz, M.; Skarina, T.; Onopriyenko, O.; Cymborowski, M.; Grabowski, M.; Savchenko, A.; Minor, W.

    2013-01-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg2+-dependent catalytic mechanism. PMID:23989140

  6. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    PubMed

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

  7. Phylogenetic relationships of rhizobia based on citrate synthase gene sequences.

    PubMed

    Hernández-Lucas, Ismael; Rogel-Hernández, Marco Antonio; Segovia, Lorenzo; Rojas-Jiménez, Keilor; Martínez-Romero, Esperanza

    2004-11-01

    Partial nucleotide sequences of the citrate synthase (gltA) gene from different rhizobia genera were determined. Tree topologies based on this housekeeping gene were similar to that obtained using 16S rRNA sequences. However gltA appeared to be more reliable at determining phylogenetic relationships of closely related taxa. We propose gltA sequences as an additional tool to be used in molecular phylogenetic studies.

  8. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  9. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  10. Piriformospora indica requires kaurene synthase activity for successful plant colonization.

    PubMed

    Li, Liang; Chen, Xi; Ma, Chaoyang; Wu, Hongqing; Qi, Shuting

    2016-05-01

    Ent-kaurene (KS) synthases and ent-kaurene-like (KSL) synthases are involved in the biosynthesis of phytoalexins and/or gibberellins which play a role in plant immunity and development. The relationship between expression of five synthase genes (HvKSL1, HvKS2, HvKS4, HvKS5, HvKSL4) and plant colonization by the endophytic fungus Piriformospora indica was assessed in barley (Hordeum vulgare). The KS gene family is differently up-regulated at 1, 3 and 7 day after P. indica inoculation. By comparison, the HvKSL4 gene expression pattern is more significantly affected by UV irradiation and P. indica colonization. The characterizations of two silencing lines (HvKSL1-RNAi, HvKSL4-RNAi) also were analyzed. HvKSL1-RNAi and HvKSL4-RNAi lines in the first generation lead to less dark green leaves and slower plant development. Further, reduced spikelet fertility in progenies of RNAi plants heterozygous for HvKSL1 were observed, but not for HvKSL4. T2 generation of HvKSL1-RNAi line showed semi-dwarf phenotype while the wild type phenotype could be restored by applying GA3. Silencing of HvKSL4 and HvKSL1 resulted in reduced colonization by P. indica especially in the HvKSL1-RNAi line. These results probably suggest the presence of two ent-KS synthase in barley, one (HvKSL1) that participates in the biosynthesis of GAs and another (HvKSL4) that is involved in the biosynthesis of phytoalexins.

  11. From bacterial to human dihydrouridine synthase: automated structure determination

    SciTech Connect

    Whelan, Fiona Jenkins, Huw T.; Griffiths, Samuel C.; Byrne, Robert T.; Dodson, Eleanor J.; Antson, Alfred A.

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  12. Effect of calcofluor white on chitin synthases from Saccharomyces cerevisiae.

    PubMed Central

    Roncero, C; Valdivieso, M H; Ribas, J C; Durán, A

    1988-01-01

    The growths of Saccharomyces cerevisiae wild-type strain and another strain containing a disrupted structural gene for chitin synthase (chs1::URA3), defective in chitin synthase 1 (Chs1) but showing a new chitin synthase activity (Chs2), were affected by Calcofluor. To be effective, the interaction of Calcofluor with growing cells had to occur at around pH 6. Treatment of growing cells from these strains with the fluorochrome led to an increase in the total levels of Chs1 and Chs2 activities measured on permeabilized cells. During treatment, basal levels (activities expressed in the absence of exogenous proteolytic activation) of Chs1 and Chs2 increased nine- and fourfold, respectively, through a mechanism dependent on protein synthesis, since the effect was abolished by cycloheximide. During alpha-factor treatment, both Chs1 and Chs2 levels increased; however, as opposed to what occurred during the mitotic cell cycle, there was no further increase in Chs1 or Chs2 activities by Calcofluor treatment. Images PMID:2965145

  13. Mechanism of Action and Inhibition of dehydrosqualene Synthase

    SciTech Connect

    F Lin; C Liu; Y Liu; Y Zhang; K Wang; W Jeng; T Ko; R Cao; A Wang; E Oldfield

    2011-12-31

    'Head-to-head' terpene synthases catalyze the first committed steps in sterol and carotenoid biosynthesis: the condensation of two isoprenoid diphosphates to form cyclopropylcarbinyl diphosphates, followed by ring opening. Here, we report the structures of Staphylococcus aureus dehydrosqualene synthase (CrtM) complexed with its reaction intermediate, presqualene diphosphate (PSPP), the dehydrosqualene (DHS) product, as well as a series of inhibitors. The results indicate that, on initial diphosphate loss, the primary carbocation so formed bends down into the interior of the protein to react with C2,3 double bond in the prenyl acceptor to form PSPP, with the lower two-thirds of both PSPP chains occupying essentially the same positions as found in the two farnesyl chains in the substrates. The second-half reaction is then initiated by the PSPP diphosphate returning back to the Mg{sup 2+} cluster for ionization, with the resultant DHS so formed being trapped in a surface pocket. This mechanism is supported by the observation that cationic inhibitors (of interest as antiinfectives) bind with their positive charge located in the same region as the cyclopropyl carbinyl group; that S-thiolo-diphosphates only inhibit when in the allylic site; activity results on 11 mutants show that both DXXXD conserved domains are essential for PSPP ionization; and the observation that head-to-tail isoprenoid synthases as well as terpene cyclases have ionization and alkene-donor sites which spatially overlap those found in CrtM.

  14. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    PubMed

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  15. Iterative Polyketide Biosynthesis by Modular Polyketide Synthases in Bacteria

    PubMed Central

    Chen, Haotong; Du, Liangcheng

    2015-01-01

    Modular polyketide synthases (type I PKSs) in bacteria are responsible for synthesizing a significant percentage of bioactive natural products. This group of synthases has a characteristic modular organization, and each module within a PKS carries out one cycle of polyketide chain elongation; thus each module is “non-iterative” in function. It was possible to predict the basic structure of a polyketide product from the module organization of the PKSs, since there generally existed a co-linearity between the number of modules and the number of chain elongations. However, more and more bacterial modular PKSs fail to conform to the “canonical rules”, and a particularly noteworthy group of non-canonical PKSs is the bacterial iterative type I PKSs. This review covers recent examples of iteratively-used modular PKSs in bacteria. These non-canonical PKSs give rise to a large array of natural products with impressive structural diversity. The molecular mechanism behind the iterations is often unclear, presenting a new challenge to the rational engineering of these PKSs with the goal of generating new natural products. Structural elucidation of these synthase complexes and better understanding of potential PKS-PKS interactions as well as PKS-substrate recognition may provide new prospects and inspirations for the discovery and engineering of new bioactive polyketides. PMID:26549236

  16. The structural basis of Erwinia rhapontici isomaltulose synthase.

    PubMed

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.

  17. Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase.

    PubMed

    Carman, George M; Han, Gil-Soo

    2017-08-16

    The yeast Saccharomyces cerevisiae serves as a model eukaryote to elucidate the regulation of lipid metabolism. In exponentially growing yeast, a diverse set of membrane lipids are synthesized from the precursor phosphatidate via the liponucleotide intermediate CDP-diacylglycerol. As cells exhaust nutrients and progress into the stationary phase, phosphatidate is channeled via diacylglycerol to the synthesis of triacylglycerol. The CHO1-encoded phosphatidylserine synthase, which catalyzes the committed step in membrane phospholipid synthesis via CDP-diacylglycerol, and the PAH1-encoded phosphatidate phosphatase, which catalyzes the committed step in triacylglycerol synthesis are regulated throughout cell growth by genetic and biochemical mechanisms to control the balanced synthesis of membrane phospholipids and triacylglycerol. The loss of phosphatidate phosphatase activity (e.g., pah1Δ mutation) increases the level of phosphatidate and its conversion to membrane phospholipids by inducing Cho1 expression and phosphatidylserine synthase activity. The regulation of the CHO1 expression is mediated through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. Consequently, phosphatidate phosphatase activity regulates phospholipid synthesis through the transcriptional regulation of the phosphatidylserine synthase enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Structural Basis of Erwinia rhapontici Isomaltulose Synthase

    PubMed Central

    Xu, Zheng; Li, Sha; Li, Jie; Li, Yan; Feng, Xiaohai; Wang, Renxiao; Xu, Hong; Zhou, Jiahai

    2013-01-01

    Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop330-339 in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations. PMID:24069347

  19. [Progress and application prospects of glutamine synthase in plants].

    PubMed

    Feng, Wanjun; Xing, Guofang; Niu, Xulong; Dou, Chen; Han, Yuanhuai

    2015-09-01

    Nitrogen is one of the most important nutrient elements for plants and a major limiting factor in plant growth and crop productivity. Glutamine synthase (GS) is a key enzyme involved in the nitrogen assimilation and recycling in plants. So far, members of the glutamine synthase gene family have been characterized in many plants such as Arabidopsis, rice, wheat, and maize. Reports show that GS are involved in the growth and development of plants, in particular its role in seed production. However, the outcome has generally been inconsistent, which are probably derived from the transcriptional and post-translational regulation of GS genes. In this review, we outlined studies on GS gene classification, QTL mapping, the relationship between GS genes and plant growth with nitrogen and the distribution characters, the biological functions of GS genes, as well as expression control at different regulation levels. In addition, we summarized the application prospects of glutamine synthetase genes in enhancing plant growth and yield by improving the nitrogen use efficiency. The prospects were presented on the improvement of nitrogen utility efficiency in crops and plant nitrogen status diagnosis on the basis of glutamine synthase gene regulation.

  20. Regulation of expression, activity and localization of fungal chitin synthases

    PubMed Central

    Rogg, Luise E.; Fortwendel, Jarrod R.; Juvvadi, Praveen R.; Steinbach, William J.

    2013-01-01

    The fungal cell wall represents an attractive target for pharmacologic inhibition, as many of the components are fungal-specific. Though targeted inhibition of β-glucan synthesis is effective treatment for certain fungal infections, the ability of the cell wall to dynamically compensate via the cell wall integrity pathway may limit overall efficacy. To date, chitin synthesis inhibitors have not been successfully deployed in the clinical setting. Fungal chitin synthesis is a complex and highly regulated process. Regulation of chitin synthesis occurs on multiple levels, thus targeting of these regulatory pathways may represent an exciting alternative approach. A variety of signaling pathways have been implicated in chitin synthase regulation, at both transcriptional and post-transcriptional levels. Recent research suggests that localization of chitin synthases likely represents a major regulatory mechanism. However, much of the regulatory machinery is not necessarily shared among different chitin synthases. Thus, an in depth understanding of the precise roles of each protein in cell wall maintenance and repair will be essential to identifying the most likely therapeutic targets. PMID:21526913

  1. Virus-Induced Silencing of a Plant Cellulose Synthase Gene

    PubMed Central

    Burton, Rachel A.; Gibeaut, David M.; Bacic, Antony; Findlay, Kim; Roberts, Keith; Hamilton, Andrew; Baulcombe, David C.; Fincher, Geoffrey B.

    2000-01-01

    Specific cDNA fragments corresponding to putative cellulose synthase genes (CesA) were inserted into potato virus X vectors for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing. Plants infected with one group of cDNAs had much shorter internode lengths, small leaves, and a “dwarf” phenotype. Consistent with a loss of cell wall cellulose, abnormally large and in many cases spherical cells ballooned from the undersurfaces of leaves, particularly in regions adjacent to vascular tissues. Linkage analyses of wall polysaccharides prepared from infected leaves revealed a 25% decrease in cellulose content. Transcript levels for at least one member of the CesA cellulose synthase gene family were lower in infected plants. The decrease in cellulose content in cell walls was offset by an increase in homogalacturonan, in which the degree of esterification of carboxyl groups decreased from ∼50 to ∼33%. The results suggest that feedback loops interconnect the cellular machinery controlling cellulose and pectin biosynthesis. On the basis of the phenotypic features of the infected plants, changes in wall composition, and the reduced abundance of CesA mRNA, we concluded that the cDNA fragments silenced one or more cellulose synthase genes. PMID:10810144

  2. Rotation and structure of FoF1-ATP synthase.

    PubMed

    Okuno, Daichi; Iino, Ryota; Noji, Hiroyuki

    2011-06-01

    F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background.

  3. The Spatial Distribution of Sucrose Synthase Isozymes in Barley.

    PubMed Central

    Guerin, J.; Carbonero, P.

    1997-01-01

    The sucrose (Suc) synthase enzyme purified from barley (Hordeum vulgare L.) roots is a homotetramer that is composed of 90-kD type 1 Suc synthase (SS1) subunits. Km values for Suc and UDP were 30 mM and 5 [mu]M, respectively. This enzyme can also utilize ADP at 25% of the UDP rate. Anti-SS1 polyclonal antibodies, which recognized both SS1 and type 2 Suc synthase (SS2) (88-kD) subunits, and antibodies raised against a synthetic peptide, LANGSTDNNFV, which were specific for SS2, were used to study the spatial distribution of these subunits by immunoblot analysis and immunolocalization. Both SS1 and SS2 were abundantly expressed in endosperm, where they polymerize to form the five possible homo- and heterotetramers. Only SS1 homotetramers were detected in young leaves, where they appeared exclusively in phloem cells, and in roots, where expression was associated with cap cells and the vascular bundle. In the seed both SS1 and SS2 were present in endosperm, but only SS1 was apparent in the chalazal region, the nucellar projection, and the vascular bundle. The physiological implications for the difference in expression patterns observed are discussed with respect to the maize (Zea mays L.) model. PMID:12223688

  4. Molecular characterisation of Trypanosoma brucei alkyl dihydroxyacetone-phosphate synthase.

    PubMed

    Zomer, A W; Michels, P A; Opperdoes, F R

    1999-10-25

    Alkyl dihydroxyacetone-phosphate synthase is the second enzyme of the ether-lipid biosynthetic pathway which is responsible for the introduction of the ether linkage between a fatty alcohol and a glycerol present in a subclass of phospholipids, the plasmalogens and possibly in glycolipid membrane anchors. In this study the gene coding for alkyl dihydroxyacetone-phosphate synthase was isolated from Trypanosoma brucei. Southern blot analysis of total genomic DNA suggested the presence of a single copy gene. The analysis, together with sequencing of different cDNA clones showed that the two alleles of the gene differ in only one nucleotide. The gene encodes a protein of 612 amino acids with a calculated molecular mass of 68,891, not counting the initiator methionine. It carries a type-1 peroxisomal targeting signal (a C-terminal tripeptide--AHL) and a calculated overall positive charge of +10. The gene was expressed in a bacterial system and the corresponding protein carrying a His-tag was purified. The recombinant alkyl dihydroxyacetone-phosphate synthase and the enzyme isolated directly from the glycosomes of bloodstream-form trypanosomes have comparable kinetics. The Km for hexadecanol was 42 microM, while approximately 100 microM of palmitoyl dihydroxyacetone phosphate (DHAP) was necessary for optimal activity. Sodium chloride inhibited both the His-tagged protein and the enzyme isolated from the glycosomes of bloodstream-form and insect stage T. brucei.

  5. Screening for latent acute intermittent porphyria: the value of measuring both leucocyte delta-aminolaevulinic acid synthase and erythrocyte uroporphyrinogen-1-synthase activities.

    PubMed Central

    McColl, K E; Moore, M R; Thompson, G G; Goldberg, A

    1982-01-01

    Acute intermittent porphyria (AIP) is an autosomal dominantly inherited disorder of haem biosynthesis characterised by reduced activity of the enzyme uroporphyrinogen-1-(URO) synthase and compensatory increased activity of the rate controlling enzyme delta-aminolaevulinic acid (ALA) synthase. Subjects with the disorder should be identified as they are at risk of developing severe porphyric attacks if exposed to a variety of drugs or chemicals. We have assessed the value of measuring the activities of ALA synthase and URO synthase in peripheral blood cells as a means of identifying latent cases in affected families. In AIP subjects, ALA synthase activity was increased and URO synthase decreased compared to controls, through there was considerable overlap between the two groups when either enzyme was examined alone. When both enzymes were examined together, all but one of the 19 AIP patients had both increased ALA synthase activity (greater than 250 nmol ALA/g protein/h) and reduced URO synthase activity (less than 25.1 nmol URO/l RBC/h), whereas none of the 62 controls showed this enzyme pattern. Examination of 35 asymptomatic first degree blood relatives of AIP patients showed that 17 (49%) had the porphyric enzyme pattern with no sex bias. The combined study of these two enzymes permits accurate detection of latent cases of AIP and confirms its autosomal dominant inheritance. PMID:7120315

  6. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    PubMed

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  7. Biochemical Characterization of Stromal and Thylakoid-Bound Isoforms of Isoprene Synthase in Willow Leaves1

    PubMed Central

    Wildermuth, Mary C.; Fall, Ray

    1998-01-01

    Isoprene synthase is the enzyme responsible for the foliar emission of the hydrocarbon isoprene (2-methyl-1,3-butadiene) from many C3 plants. Previously, thylakoid-bound and soluble forms of isoprene synthase had been isolated separately, each from different plant species using different procedures. Here we describe the isolation of thylakoid-bound and soluble isoprene synthases from a single willow (Salix discolor L.) leaf-fractionation protocol. Willow leaf isoprene synthase appears to be plastidic, with whole-leaf and intact chloroplast fractionations yielding approximately equal soluble (i.e. stromal) and thylakoid-bound isoprene synthase activities. Although thylakoid-bound isoprene synthase is tightly bound to the thylakoid membrane (M.C. Wildermuth, R. Fall [1996] Plant Physiol 112: 171–182), it can be solubilized by pH 10.0 treatment. The solubilized thylakoid-bound and str