Science.gov

Sample records for 2d bar codes

  1. Bar Code Labels

    NASA Technical Reports Server (NTRS)

    1988-01-01

    American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.

  2. Bar coded retroreflective target

    SciTech Connect

    Vann, C.S.

    2000-01-25

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  3. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  4. Property Control through Bar Coding.

    ERIC Educational Resources Information Center

    Kingma, Gerben J.

    1984-01-01

    A public utility company uses laser wands to read bar-coded labels on furniture and equipment. The system allows an 80 percent savings of the time required to create reports for inventory control. (MLF)

  5. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  6. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  7. Bar Coding and Tracking in Pathology.

    PubMed

    Hanna, Matthew G; Pantanowitz, Liron

    2015-06-01

    Bar coding and specimen tracking are intricately linked to pathology workflow and efficiency. In the pathology laboratory, bar coding facilitates many laboratory practices, including specimen tracking, automation, and quality management. Data obtained from bar coding can be used to identify, locate, standardize, and audit specimens to achieve maximal laboratory efficiency and patient safety. Variables that need to be considered when implementing and maintaining a bar coding and tracking system include assets to be labeled, bar code symbologies, hardware, software, workflow, and laboratory and information technology infrastructure as well as interoperability with the laboratory information system. This article addresses these issues, primarily focusing on surgical pathology.

  8. The Role of 2D Circulation in Sand Bar Migration

    NASA Astrophysics Data System (ADS)

    Splinter, K. D.; Holman, R. A.; Plant, N. G.; Holland, K. T.

    2006-12-01

    Models of bar dynamics typically involve moments of the cross-shore flow, with offshore movement associated with the strong offshore directed undertow and onshore migration related to wave asymmetry and skewness [Gallagher, et al., 1998]. Based on these hypotheses, models and laboratory studies have used the alongshore-mean bar position and alongshore-uniform wave conditions (a 1DH approach) to study bar response to varying wave conditions. Commonly, cases of offshore migration were reproduced with reasonable accuracy, but predictions of onshore migration were less successful. However, examination of time-exposure images of waves show that during periods of offshore migration, bars tend to be alongshore uniform and move rapidly offshore, but during onshore migration, sand bars are rarely straight, instead becoming very sinuous, violating the 1DH approach. We hypothesize that under milder wave conditions, the 2DH circulation associated with this alongshore-variable morphology is, in fact, largely responsible for increased onshore net sand transport and the resulting onshore bar movement. We extend the work of Plant et al. [in review] that relates bar position, sinuosity, and wave forcing within a dynamical feedback model. The model consists of coupled differential equations that govern the rates of change of cross-shore position and horizontal sinuosity as a function of the current cross-shore position and sinuosity and a proxy for wave forcing. Using a short data set from Duck, NC, they solve for the unknown coupling coefficients by doing a least-squares fit. They find that the coefficients for the self-interaction terms have a negative sign, indicating the overall system is stable. The coefficients of the cross-interaction terms (the effect of sinuosity on rate of change of bar position and visa versa), however, are non-zero and have opposite signs indicating the systems are coupled and stability is not affected by these terms. We expand this study, relating bar

  9. Bar code usage in nuclear materials accountability

    SciTech Connect

    Mee, W.T.

    1983-07-01

    The age old method of physically taking an inventory of materials by listing each item's identification number has lived beyond its usefulness. In this age of computerization, which offers the local grocery store a quick, sure, and easy means to inventory, it is time for nuclear materials facilities to automate accountability activities. The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At that time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable; however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented.

  10. Bar code usage in nuclear materials accountability

    SciTech Connect

    Mee, W.T.

    1983-01-01

    The Oak Ridge Y-12 Plant began investigating the use of automated data collection devices in 1979. At this time, bar code and optical-character-recognition (OCR) systems were reviewed with the purpose of directly entering data into DYMCAS (Dynamic Special Nuclear Materials Control and Accountability System). Both of these systems appeared applicable, however, other automated devices already employed for production control made implementing the bar code and OCR seem improbable. However, the DYMCAS was placed on line for nuclear material accountability, a decision was made to consider the bar code for physical inventory listings. For the past several months a development program has been underway to use a bar code device to collect and input data to the DYMCAS on the uranium recovery operations. Programs have been completed and tested, and are being employed to ensure that data will be compatible and useful. Bar code implementation and expansion of its use for all nuclear material inventory activity in Y-12 is presented.

  11. A Real-time D-bar Algorithm for 2-D Electrical Impedance Tomography Data

    PubMed Central

    Dodd, Melody; Mueller, Jennifer L.

    2014-01-01

    The aim of this paper is to show the feasibility of the D-bar method for real-time 2-D EIT reconstructions. A fast implementation of the D-bar method for reconstructing conductivity changes on a 2-D chest-shaped domain is described. Cross-sectional difference images from the chest of a healthy human subject are presented, demonstrating what can be achieved in real time. The images constitute the first D-bar images from EIT data on a human subject collected on a pairwise current injection system. PMID:25937856

  12. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  13. Recent update of the RPLUS2D/3D codes

    NASA Technical Reports Server (NTRS)

    Tsai, Y.-L. Peter

    1991-01-01

    The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.

  14. Bar-code automated waste tracking system

    SciTech Connect

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ``stop-and-go`` operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste.

  15. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Bar code label requirements. 201.25 Section 201.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL LABELING General Labeling Provisions § 201.25 Bar code label requirements. (a) Who is subject to these bar code...

  16. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... drug product from the bar code label requirements set forth in this section. The exemption request must... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Bar code label requirements. 201.25 Section 201.25...: GENERAL LABELING General Labeling Provisions § 201.25 Bar code label requirements. (a) Who is subject...

  17. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... drug product from the bar code label requirements set forth in this section. The exemption request must... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Bar code label requirements. 201.25 Section 201.25...: GENERAL LABELING General Labeling Provisions § 201.25 Bar code label requirements. (a) Who is subject...

  18. ELLIPT2D: A Flexible Finite Element Code Written Python

    SciTech Connect

    Pletzer, A.; Mollis, J.C.

    2001-03-22

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.

  19. CBEAM. 2-D: a two-dimensional beam field code

    SciTech Connect

    Dreyer, K.A.

    1985-05-01

    CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.

  20. 2D FEM Heat Transfer & E&M Field Code

    SciTech Connect

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

  1. 2D FEM Heat Transfer & E&M Field Code

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  2. CFD code comparison for 2D airfoil flows

    NASA Astrophysics Data System (ADS)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.; Sieros, G.; Jost, E.; Lutz, T.; Papadakis, G.; Voutsinas, S.; Barakos, G. N.; Colonia, S.; Baldacchino, D.; Baptista, C.; Ferreira, C.

    2016-09-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar-turbulent transitional results only three out of seven provided results, and the agreement is generally lower than for the fully turbulent case.

  3. Modelling RF sources using 2-D PIC codes

    SciTech Connect

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  4. Modelling RF sources using 2-D PIC codes

    SciTech Connect

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  5. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... gases; (E) Radiopharmaceuticals; and (F) Low-density polyethylene form fill and seal containers that are... minimum, the appropriate National Drug Code (NDC) number in a linear bar code that meets European...

  6. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gases; (E) Radiopharmaceuticals; and (F) Low-density polyethylene form fill and seal containers that are... minimum, the appropriate National Drug Code (NDC) number in a linear bar code that meets European...

  7. A Pilot Study of Bar Codes in a Canadian Hospital

    PubMed Central

    Brisseau, Lionel; Chiveri, Andrei; Lebel, Denis; Bussières, Jean-François

    2011-01-01

    Background: In 2004, the US Food and Drug Administration issued a new rule requiring most prescription and some over-the-counter pharmaceutical products to carry bar codes down to the level of individual doses, with the intent of reducing the number of medication errors. Despite these regulatory changes in the United States, Health Canada has not yet adopted any mandatory bar-coding of drugs. Objective: To evaluate the feasibility of using commercial bar codes for receipt and preparation of drug products and to evaluate the readability of the bar codes printed on various levels of drug packaging. Methods: This cross-sectional observational pilot study was conducted in the Pharmacy Department of a Canadian mother–child university hospital centre in July 2010. For the purposes of the study, research drugs and cytotoxic drugs in various storage areas, as well as locally compounded medications with bar codes generated in house, were excluded. For all other drug products, the presence or absence of bar codes was documented for each level of packaging, along with the trade and generic names, content (i.e., drug product), quantity of doses or level of packaging, therapeutic class (if applicable), type of bar code (1- or 2-dimensional symbology), alphanumeric value contained in the bar code, standard of reference used to generate the alphanumeric value (Universal Product Code [UPC], Global Trade Item Number [GTIN], or unknown), and readability of the bar codes by 2 scanners. Results: Only 33 (1.9%) of the 1734 products evaluated had no bar codes on any level of packaging. Of the 2875 levels of packaging evaluated, 2021 (70.3%) had at least one bar code. Of the 2384 bar codes evaluated, 2353 (98.7%) were linear (1-dimensional) and 31 (1.3%) were 2-dimensional. Well over three-quarters (2112 or 88.6%) of the evaluated bar codes were readable by at least 1 of the 2 scanners used in the study. Conclusions: On the basis of these results, bar-coding could be used for receipt

  8. Objectivity in Grading: The Promise of Bar Codes

    ERIC Educational Resources Information Center

    Jae, Haeran; Cowling, John

    2009-01-01

    This article proposes the use of a new technology to assure student anonymity and reduce bias hazards: identifying students by using bar codes. The limited finding suggests that the use of bar codes for assuring student anonymity could potentially cause students to perceive that grades are assigned more fairly and reassure teachers that they are…

  9. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label...

  10. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label...

  11. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label...

  12. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label...

  13. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  14. Application of laser bar code technology in power fitting evaluation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohong; Liu, Shuhuab

    2007-12-01

    In this work, an automatic encoding and management system on power fittings (PFEMS) is developed based on laser bar coding technology. The system can encode power fittings according to their types, structure, dimensions, materials, and technical characteristics. Both the character codes and the laser bar codes of power fittings can be produced from the system. The system can evaluate power fittings and search process-paper automatically. The system analyzes the historical values and technical information of congeneric fittings, and forms formulae of evaluation with recursive analytical method. And then stores the formulae and technical documents into the database for index. Scanning the bar code with a laser bar code reader, accurate evaluation and corresponding process-paper of the fittings can be produced. The software has already been applied in some power stations and worked very well.

  15. Optical System Design For High Speed Bar Code Scanning

    NASA Astrophysics Data System (ADS)

    Hellekson, Ronald; Reddersen, Brad; Campbell, Scott

    1987-04-01

    Spectra-Physics recently introduced the Model 750 SL scanner for use in the European point-of-sale market, to meet the European requirement for a scanner of less than 13 cm height. The model 750 SL uses a higher density computer designed scan pattern with a retrodirective collection system to scan and detect UPC, EAN, and JAN bar codes. The scanner "reads" these bar codes in such a way that the user need not precisely align the bar code symbol with respect to the window in the scanner even at package speeds up to 100 inches per second. By using a unique geometrical arrangement of mirrors, a polygonal mirror assembly, and a custom-designed plastic bifocal lens, a design was developed to meet these requirements. This paper describes the design of this new low cost scanner, the use of computer-aided design in the development of this scanner, and some observations on the future of bar code scanning.

  16. QUENCH2D. Two-Dimensional IHCP Code

    SciTech Connect

    Osman, A.; Beck, J.V.

    1995-01-01

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  17. 2-D skin-current toroidal-MHD-equilibrium code

    SciTech Connect

    Feinberg, B.; Niland, R.A.; Coonrod, J.; Levine, M.A.

    1982-09-01

    A two-dimensional, toroidal, ideal MHD skin-current equilibrium computer code is described. The code is suitable for interactive implementation on a minicomptuer. Some examples of the use of the code for design and interpretation of toroidal cusp experiments are presented.

  18. Bar Coding Platforms for Nucleic Acid and Protein Detection

    NASA Astrophysics Data System (ADS)

    Müller, Uwe R.

    A variety of novel bar coding systems has been developed as multiplex testing platforms for applications in biological, chemical, and biomedical diagnostics. Instead of identifying a target through capture at a specific locus on an array, target analytes are captured by a bar coded tag, which then uniquely identifies the target, akin to putting a UPC bar code on a product. This requires an appropriate surface functionalization to ensure that the correct target is captured with high efficiency. Moreover the tag, or bar code, has to be readable with minimal error and at high speed, typically by flow analysis. For quantitative assays the target may be labeled separately, or the tag may also serve as the label. A great variety of materials and physicochemical principles has been exploited to generate this plethora of novel bar coding platforms. Their advantages compared to microarray-based assay platforms include in-solution binding kinetics, flexibility in assay design, compatibility with microplate-based assay automation, high sample throughput, and with some assay formats, increased sensitivity.

  19. Denture bar-coding: An innovative technique in forensic dentistry

    PubMed Central

    Dineshshankar, Janardhanam; Venkateshwaran, Rajendran; Vidhya, J.; Anuradha, R.; Mary, Gold Pealin; Pradeep, R.; Senthileagappan, A. R.

    2015-01-01

    Denture markers play an important role in forensic odontology and also in identifying a person. A number of methods are there for identifying dentures from a less expensive technique to a more expensive technique. Out of different denture markers, the bar-coding system is a way of collecting data from the mobile. Even a huge amount of data can be stored in that. It can be easily incorporated during acrylization of the denture and thus could be helpful in identification. This article reviews the strengths of bar-coding and how easily it can be used in the routine procedure. PMID:26538876

  20. A program evaluation of classroom data collection with bar codes.

    PubMed

    Saunders, M D; Saunders, J L; Saunders, R R

    1993-01-01

    A technology incorporating bar code symbols and hand-held optical scanners was evaluated for its utility for routine data collection in a special education classroom. A different bar code symbol was created for each Individualized Educational Plan objective, each type of response occurrence, and each student in the first author's classroom. These symbols were organized by activity and printed as data sheets. The teacher and paraprofessionals scanned relevant codes with scanners when the students emitted targeted behaviors. The codes, dates, and approximate times of the scans were retained in the scanner's electronic memory until they could be transferred by communication software to a computer file. The data from the computer file were organized weekly into a printed report of student performance using a program written with commercially available database software. Advantages, disadvantages, and costs of using the system are discussed. PMID:8469795

  1. CAST2D: A finite element computer code for casting process modeling

    SciTech Connect

    Shapiro, A.B.; Hallquist, J.O.

    1991-10-01

    CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D has the following features in addition to all the features contained in the TOPAZ2D and NIKE2D codes: (1) a general purpose thermal-mechanical interface algorithm (i.e., slide line) that calculates the thermal contact resistance across the part-mold interface as a function of interface pressure and gap opening; (2) a new phase change algorithm, the delta function method, that is a robust method for materials undergoing isothermal phase change; (3) a constitutive model that transitions between fluid behavior and solid behavior, and accounts for material volume change on phase change; and (4) a modified plot file data base that allows plotting of thermal variables (e.g., temperature, heat flux) on the deformed geometry. Although the code is specialized for casting modeling, it can be used for other thermal stress problems (e.g., metal forming).

  2. NIKE2D: a vectorized, implicit, finite-deformation, finite-element code for analyzing the static and dynamic response of 2-D solids

    SciTech Connect

    Hallquist, J.O.

    1983-02-01

    This report provides a user's manual for NIKE2D and a brief description of the implicit algorithm. Sample applications are presented including a simulation of the necking of a uniaxial tension specimen, a static analysis of an O-ring seal, and a cylindrical bar impacting a rigid wall. NIKE2D is a fully vectorized, implicit, finite-deformation, large-strain, finite-element code for analyzing the response of two-dimensional axisymmetric and plane-strain solids. A variety of loading conditions can be handled including traction boundary conditions, displacement boundary conditions, concentrated nodal point laods, body force loads due to base accelerations, and body-force loads due to spinning. Slide-lines with interface friction are available. Elastic, orthotropic-elastic-plastic, thermo-elastic-plactic, soil and crushable foam, linear viscoelastic, thermo-orthotropic elastic, and elastic-creep materials models are implemented. Nearly incompressible behavior that arises in plasticity problems and elasticity problems with Poisson's ratio approaching 0.5 is accounted for in the element formulation to preclude mesh lock-ups and associated anomalous stress states. Four-node isoparametric elements are used for the spatial discretization, and profile (bandwidth) minimization is optional.

  3. Numerical Simulation of Supersonic Compression Corners and Hypersonic Inlet Flows Using the RPLUS2D Code

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.

  4. TOPAZ2D heat transfer code users manual and thermal property data base

    NASA Astrophysics Data System (ADS)

    Shapiro, A. B.; Edwards, A. L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available.

  5. Bar code, good for industry and trade--how does it benefit the dentist?

    PubMed

    Oehlmann, H

    2001-10-01

    Every dentist who attentively follows the change in product labelling can easily see that the HIBC bar code is on the increase. In fact, according to information from FIDE/VDDI and ADE/BVD, the dental industry and trade are firmly resolved to apply the HIBC bar code to all products used internationally in dental practices. Why? Indeed, at first it looks like extra expense to additionally print a bar code on the packages. Good reasons can only lie in advantages which manufacturers and the trade expect from the HIBC bar code, Indications in dental technician circles are that the HIBC bar code is coming. If there are advantages, what are these, and can the dentist also profit from them? What does HIBC bar code mean and what items of interest does it include? What does bar code cost and does only one code exist? This is explained briefly, concentrating on the benefits bar code can bring for different users.

  6. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  7. Improving radiopharmaceutical supply chain safety by implementing bar code technology.

    PubMed

    Matanza, David; Hallouard, François; Rioufol, Catherine; Fessi, Hatem; Fraysse, Marc

    2014-11-01

    The aim of this study was to describe and evaluate an approach for improving radiopharmaceutical supply chain safety by implementing bar code technology. We first evaluated the current situation of our radiopharmaceutical supply chain and, by means of the ALARM protocol, analysed two dispensing errors that occurred in our department. Thereafter, we implemented a bar code system to secure selected key stages of the radiopharmaceutical supply chain. Finally, we evaluated the cost of this implementation, from overtime, to overheads, to additional radiation exposure to workers. An analysis of the events that occurred revealed a lack of identification of prepared or dispensed drugs. Moreover, the evaluation of the current radiopharmaceutical supply chain showed that the dispensation and injection steps needed to be further secured. The bar code system was used to reinforce product identification at three selected key stages: at usable stock entry; at preparation-dispensation; and during administration, allowing to check conformity between the labelling of the delivered product (identity and activity) and the prescription. The extra time needed for all these steps had no impact on the number and successful conduct of examinations. The investment cost was reduced (2600 euros for new material and 30 euros a year for additional supplies) because of pre-existing computing equipment. With regard to the radiation exposure to workers there was an insignificant overexposure for hands with this new organization because of the labelling and scanning processes of radiolabelled preparation vials. Implementation of bar code technology is now an essential part of a global securing approach towards optimum patient management. PMID:25144560

  8. Improving radiopharmaceutical supply chain safety by implementing bar code technology.

    PubMed

    Matanza, David; Hallouard, François; Rioufol, Catherine; Fessi, Hatem; Fraysse, Marc

    2014-11-01

    The aim of this study was to describe and evaluate an approach for improving radiopharmaceutical supply chain safety by implementing bar code technology. We first evaluated the current situation of our radiopharmaceutical supply chain and, by means of the ALARM protocol, analysed two dispensing errors that occurred in our department. Thereafter, we implemented a bar code system to secure selected key stages of the radiopharmaceutical supply chain. Finally, we evaluated the cost of this implementation, from overtime, to overheads, to additional radiation exposure to workers. An analysis of the events that occurred revealed a lack of identification of prepared or dispensed drugs. Moreover, the evaluation of the current radiopharmaceutical supply chain showed that the dispensation and injection steps needed to be further secured. The bar code system was used to reinforce product identification at three selected key stages: at usable stock entry; at preparation-dispensation; and during administration, allowing to check conformity between the labelling of the delivered product (identity and activity) and the prescription. The extra time needed for all these steps had no impact on the number and successful conduct of examinations. The investment cost was reduced (2600 euros for new material and 30 euros a year for additional supplies) because of pre-existing computing equipment. With regard to the radiation exposure to workers there was an insignificant overexposure for hands with this new organization because of the labelling and scanning processes of radiolabelled preparation vials. Implementation of bar code technology is now an essential part of a global securing approach towards optimum patient management.

  9. Bar Coding MS(2) Spectra for Metabolite Identification.

    PubMed

    Spalding, Jonathan L; Cho, Kevin; Mahieu, Nathaniel G; Nikolskiy, Igor; Llufrio, Elizabeth M; Johnson, Stephen L; Patti, Gary J

    2016-03-01

    Metabolite identifications are most frequently achieved in untargeted metabolomics by matching precursor mass and full, high-resolution MS(2) spectra to metabolite databases and standards. Here we considered an alternative approach for establishing metabolite identifications that does not rely on full, high-resolution MS(2) spectra. First, we select mass-to-charge regions containing the most informative metabolite fragments and designate them as bins. We then translate each metabolite fragmentation pattern into a binary code by assigning 1's to bins containing fragments and 0's to bins without fragments. With 20 bins, this binary-code system is capable of distinguishing 96% of the compounds in the METLIN MS(2) library. A major advantage of the approach is that it extends untargeted metabolomics to low-resolution triple quadrupole (QqQ) instruments, which are typically less expensive and more robust than other types of mass spectrometers. We demonstrate a method of acquiring MS(2) data in which the third quadrupole of a QqQ instrument cycles over 20 wide isolation windows (coinciding with the location and width of our bins) for each precursor mass selected by the first quadrupole. Operating the QqQ instrument in this mode yields diagnostic bar codes for each precursor mass that can be matched to the bar codes of metabolite standards. Furthermore, our data suggest that using low-resolution bar codes enables QqQ instruments to make MS(2)-based identifications in untargeted metabolomics with a specificity and sensitivity that is competitive to high-resolution time-of-flight technologies.

  10. An efficient simulation method of a cyclotron sector-focusing magnet using 2D Poisson code

    NASA Astrophysics Data System (ADS)

    Gad Elmowla, Khaled Mohamed M.; Chai, Jong Seo; Yeon, Yeong H.; Kim, Sangbum; Ghergherehchi, Mitra

    2016-10-01

    In this paper we discuss design simulations of a spiral magnet using 2D Poisson code. The Independent Layers Method (ILM) is a new technique that was developed to enable the use of two-dimensional simulation code to calculate a non-symmetric 3-dimensional magnetic field. In ILM, the magnet pole is divided into successive independent layers, and the hill and valley shape around the azimuthal direction is implemented using a reference magnet. The normalization of the magnetic field in the reference magnet produces a profile that can be multiplied by the maximum magnetic field in the hill magnet, which is a dipole magnet made of the hills at the same radius. Both magnets are then calculated using the 2D Poisson SUPERFISH code. Then a fully three-dimensional magnetic field is produced using TOSCA for the original spiral magnet, and the comparison of the 2D and 3D results shows a good agreement between both.

  11. PiCode: A New Picture-Embedding 2D Barcode.

    PubMed

    Chen, Changsheng; Huang, Wenjian; Zhou, Baojian; Liu, Chenchen; Mow, Wai Ho

    2016-08-01

    Nowadays, 2D barcodes have been widely used as an interface to connect potential customers and advertisement contents. However, the appearance of a conventional 2D barcode pattern is often too obtrusive for integrating into an aesthetically designed advertisement. Besides, no human readable information is provided before the barcode is successfully decoded. This paper proposes a new picture-embedding 2D barcode, called PiCode, which mitigates these two limitations by equipping a scannable 2D barcode with a picturesque appearance. PiCode is designed with careful considerations on both the perceptual quality of the embedded image and the decoding robustness of the encoded message. Comparisons with the existing beautified 2D barcodes show that PiCode achieves one of the best perceptual qualities for the embedded image, and maintains a better tradeoff between image quality and decoding robustness in various application conditions. PiCode has been implemented in the MATLAB on a PC and some key building blocks have also been ported to Android and iOS platforms. Its practicality for real-world applications has been successfully demonstrated. PMID:27249833

  12. F2D users manual: A two-dimensional compressible gas flow code

    NASA Astrophysics Data System (ADS)

    Suo-Anttila, A.

    1993-08-01

    The F2D computer code is a general purpose, two-dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-corrector solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicability of the code in problems ranging from free fluid flow, shock tubes, and flow in heated porous media.

  13. F2D users manual: A two-dimensional compressible gas flow code

    SciTech Connect

    Suo-Anttila, A.

    1993-08-01

    The F2D computer code is a general purpose, two-dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-corrector solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicability of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.

  14. F2D. A Two-Dimensional Compressible Gas Flow Code

    SciTech Connect

    Suo-Anttila, A.

    1993-08-01

    F2D is a general purpose, two dimensional, fully compressible thermal-fluids code that models most of the phenomena found in situations of coupled fluid flow and heat transfer. The code solves momentum, continuity, gas-energy, and structure-energy equations using a predictor-correction solution algorithm. The corrector step includes a Poisson pressure equation. The finite difference form of the equation is presented along with a description of input and output. Several example problems are included that demonstrate the applicability of the code in problems ranging from free fluid flow, shock tubes and flow in heated porous media.

  15. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  16. CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1994-01-01

    An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.

  17. A 2D electrostatic PIC code for the Mark III Hypercube

    SciTech Connect

    Ferraro, R.D.; Liewer, P.C.; Decyk, V.K.

    1990-12-31

    We have implemented a 2D electrostastic plasma particle in cell (PIC) simulation code on the Caltech/JPL Mark IIIfp Hypercube. The code simulates plasma effects by evolving in time the trajectories of thousands to millions of charged particles subject to their self-consistent fields. Each particle`s position and velocity is advanced in time using a leap frog method for integrating Newton`s equations of motion in electric and magnetic fields. The electric field due to these moving charged particles is calculated on a spatial grid at each time by solving Poisson`s equation in Fourier space. These two tasks represent the largest part of the computation. To obtain efficient operation on a distributed memory parallel computer, we are using the General Concurrent PIC (GCPIC) algorithm previously developed for a 1D parallel PIC code.

  18. 19 CFR 142.45 - Use of bar code by entry filer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... filer and a product description below the bar code. (b) Multiple commodity processing. Multiple... variable allowed. The commodities should be listed on one invoice with C-4 Code labels for each...

  19. Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequence-Coded Polymer Barcodes.

    PubMed

    Laure, Chloé; Karamessini, Denise; Milenkovic, Olgica; Charles, Laurence; Lutz, Jean-François

    2016-08-26

    A 2D approach was studied for the design of polymer-based molecular barcodes. Uniform oligo(alkoxyamine amide)s, containing a monomer-coded binary message, were synthesized by orthogonal solid-phase chemistry. Sets of oligomers with different chain-lengths were prepared. The physical mixture of these uniform oligomers leads to an intentional dispersity (1st dimension fingerprint), which is measured by electrospray mass spectrometry. Furthermore, the monomer sequence of each component of the mass distribution can be analyzed by tandem mass spectrometry (2nd dimension sequencing). By summing the sequence information of all components, a binary message can be read. A 4-bytes extended ASCII-coded message was written on a set of six uniform oligomers. Alternatively, a 3-bytes sequence was written on a set of five oligomers. In both cases, the coded binary information was recovered. PMID:27484303

  20. 76 FR 12847 - Change of Address; Requests for Exemption From the Bar Code Label Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... From the Bar Code Label Requirements AGENCY: Food and Drug Administration, HHS. ACTION: Final rule...)(2) to read as follows: Sec. 201.25 Bar code label requirements. * * * * * (d) * * * (2) Requests for... (requests involving a drug product) or to the Office of Compliance and Biologics Quality (HFM-600),...

  1. Multipacting Simulation Study for 56 MHz Quarter Wave Resonator using 2D Code

    SciTech Connect

    Naik,D.; Ben-Zvi, I.

    2009-01-02

    A beam excited 56 MHz Radio Frequency (RF) Niobium Quarter Wave Resonator (QWR) has been proposed to enhance RHIC beam luminosity and bunching. Being a RF cavity, multipacting is expected; therefore an extensive study was carried out with the Multipac 2.1 2D simulation code. The study revealed that multipacting occurs in various bands up to peak surface electric field 50 kV/m and is concentrated mostly above the beam gap and on the outer conductor. To suppress multipacting, a ripple structure was introduced to the outer conductor and the phenomenon was successfully eliminated from the cavity.

  2. Accuracy and time requirements of a bar-code inventory system for medical supplies.

    PubMed

    Hanson, L B; Weinswig, M H; De Muth, J E

    1988-02-01

    The effects of implementing a bar-code system for issuing medical supplies to nursing units at a university teaching hospital were evaluated. Data on the time required to issue medical supplies to three nursing units at a 480-bed, tertiary-care teaching hospital were collected (1) before the bar-code system was implemented (i.e., when the manual system was in use), (2) one month after implementation, and (3) four months after implementation. At the same times, the accuracy of the central supply perpetual inventory was monitored using 15 selected items. One-way analysis of variance tests were done to determine any significant differences between the bar-code and manual systems. Using the bar-code system took longer than using the manual system because of a significant difference in the time required for order entry into the computer. Multiple-use requirements of the central supply computer system made entering bar-code data a much slower process. There was, however, a significant improvement in the accuracy of the perpetual inventory. Using the bar-code system for issuing medical supplies to the nursing units takes longer than using the manual system. However, the accuracy of the perpetual inventory was significantly improved with the implementation of the bar-code system.

  3. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-01

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis. PMID:26721199

  4. Efficient Bar-Code Watermark System to Protectagricultural Products Information Andcopyright

    NASA Astrophysics Data System (ADS)

    Deng, Lin; Wen, Xiaoming

    In order to protect agricultural product information and copyright, this paper proposes an efficient bar-code watermark system with digital signature. The proposed system adopts digital signature to prevent a buyer from unauthorized copies and to prevent a seller from forged unauthorized copies. The proposed system also encodes the signature with bar-code and embeds the bar-code image into the original image. As long as the similarity of watermark extracts from the damaged image over a threshold, the signature can be fully recovered. It is a novel idea to bring the bar-code concept into watermark system to protect agricultural product information and copyright. Detailed simulation results show that the proposed system gets much better results than that with error correcting code scheme, and prove that the proposed system can protect agricultural product information and copyright effectively.

  5. Position coding effects in a 2D scenario: the case of musical notation.

    PubMed

    Perea, Manuel; García-Chamorro, Cristina; Centelles, Arnau; Jiménez, María

    2013-07-01

    How does the cognitive system encode the location of objects in a visual scene? In the past decade, this question has attracted much attention in the field of visual-word recognition (e.g., "jugde" is perceptually very close to "judge"). Letter transposition effects have been explained in terms of perceptual uncertainty or shared "open bigrams". In the present study, we focus on note position coding in music reading (i.e., a 2D scenario). The usual way to display music is the staff (i.e., a set of 5 horizontal lines and their resultant 4 spaces). When reading musical notation, it is critical to identify not only each note (temporal duration), but also its pitch (y-axis) and its temporal sequence (x-axis). To examine note position coding, we employed a same-different task in which two briefly and consecutively presented staves contained four notes. The experiment was conducted with experts (musicians) and non-experts (non-musicians). For the "different" trials, the critical conditions involved staves in which two internal notes that were switched vertically, horizontally, or fully transposed--as well as the appropriate control conditions. Results revealed that note position coding was only approximate at the early stages of processing and that this encoding process was modulated by expertise. We examine the implications of these findings for models of object position encoding.

  6. Position coding effects in a 2D scenario: the case of musical notation.

    PubMed

    Perea, Manuel; García-Chamorro, Cristina; Centelles, Arnau; Jiménez, María

    2013-07-01

    How does the cognitive system encode the location of objects in a visual scene? In the past decade, this question has attracted much attention in the field of visual-word recognition (e.g., "jugde" is perceptually very close to "judge"). Letter transposition effects have been explained in terms of perceptual uncertainty or shared "open bigrams". In the present study, we focus on note position coding in music reading (i.e., a 2D scenario). The usual way to display music is the staff (i.e., a set of 5 horizontal lines and their resultant 4 spaces). When reading musical notation, it is critical to identify not only each note (temporal duration), but also its pitch (y-axis) and its temporal sequence (x-axis). To examine note position coding, we employed a same-different task in which two briefly and consecutively presented staves contained four notes. The experiment was conducted with experts (musicians) and non-experts (non-musicians). For the "different" trials, the critical conditions involved staves in which two internal notes that were switched vertically, horizontally, or fully transposed--as well as the appropriate control conditions. Results revealed that note position coding was only approximate at the early stages of processing and that this encoding process was modulated by expertise. We examine the implications of these findings for models of object position encoding. PMID:23692999

  7. 19 CFR 142.45 - Use of bar code by entry filer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with instructions from the port director, shall preprint invoices with the C-4 Code in bar code and... preprinted invoices also shall state the name of the shipper or manufacturer of the product and the name of... variable allowed. The commodities should be listed on one invoice with C-4 Code labels for each...

  8. 19 CFR 142.45 - Use of bar code by entry filer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... with instructions from the port director, shall preprint invoices with the C-4 Code in bar code and... preprinted invoices also shall state the name of the shipper or manufacturer of the product and the name of... variable allowed. The commodities should be listed on one invoice with C-4 Code labels for each...

  9. 19 CFR 142.45 - Use of bar code by entry filer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with instructions from the port director, shall preprint invoices with the C-4 Code in bar code and... preprinted invoices also shall state the name of the shipper or manufacturer of the product and the name of... variable allowed. The commodities should be listed on one invoice with C-4 Code labels for each...

  10. Modelling 2001 lahars at Popocatépetl volcano using FLO2D numerical code

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2013-12-01

    Popocatépetl volcano is located on the central part of the Transmexican Volcanic Belt. It is one of the most active volcanoes in Mexico and endanger more than 25 million people that lives in its surroundings. In the last months, the renewal of its volcanic activity put into alert scientific community. One of the possible scenarios is the 2001 explosive activity, which was characterized by a 8 km eruptive column and the subsequent formation of pumice flows up to 4 km from the crater. Lahars were generated few hours after, remobilizing the new deposits towards NE flank of the volcano, along Huiloac Gorge, almost reaching Santiago Xalitzintla town (Capra et al., 2004). The occurrence of a similar scenario makes very important to reproduce this event to delimitate accurately lahar hazard zones. In this work, 2001 lahar deposit is modeled using FLO2D numerical code. Geophone data is used to reconstruct initial hydrograph and sediment concentration. Sensitivity study of most important parameters used by this code like Manning, and α and β coefficients was conducted in order to achieve a good simulation. Results obtained were compared with field data and demonstrated a good agreement in thickness and flow distribution. A comparison with previously published data with laharZ program (Muñoz-Salinas, 2009) is also made. Additionally, lahars with fluctuating sediment concentrations but with similar volume are simulated to observe the influence of the rheological behavior on lahar distribution.

  11. Let's go bananas: revisiting the endocytic BAR code.

    PubMed

    Qualmann, Britta; Koch, Dennis; Kessels, Michael Manfred

    2011-08-31

    Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved. PMID:21878992

  12. Icarus: A 2-D Direct Simulation Monte Carlo (DSMC) Code for Multi-Processor Computers

    SciTech Connect

    BARTEL, TIMOTHY J.; PLIMPTON, STEVEN J.; GALLIS, MICHAIL A.

    2001-10-01

    Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird[11.1] and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modeled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modeled using steric factors derived from Arrhenius reaction rates or in a manner similar to continuum modeling. Surface chemistry is modeled with surface reaction probabilities; an optional site density, energy dependent, coverage model is included. Electrons are modeled by either a local charge neutrality assumption or as discrete simulational particles. Ion chemistry is modeled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electro-static fields can either be: externally input, a Langmuir-Tonks model or from a Green's Function (Boundary Element) based Poison Solver. Icarus has been used for subsonic to hypersonic, chemically reacting, and plasma flows. The Icarus software package includes the grid generation, parallel processor decomposition, post-processing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. All of the software packages are written in standard Fortran.

  13. Low-voltage coded excitation utilizing a miniaturized integrated ultrasound system employing piezoelectric 2-D arrays.

    PubMed

    Triger, Simon; Saillant, Jean-Francois; Demore, Christine E M; Cochran, Sandy; Cumming, David R S

    2010-01-01

    We describe the development of an integrated, miniaturized ultrasound system designed for use with low-voltage piezoelectric transducer arrays. The technology targets low-frequency NDT and medium- to high-frequency sonar applications, at 1.2 MHz frequency. We have constructed a flexible, reconfigurable, low cost building block capable of 3-D beam forming. The tessellation of multiple building blocks permits formation of scalable 2-D macro-arrays of increased size and varying shape. This differs from conventional ultrasound solutions by integrating the entire system in a single module. No long RF cables are required to link the array elements to the electronics. The close coupling of the array and electronics assists in achieving adequate receive signal amplitudes with differential transmission voltages as low as +/- 3.3 V, although the system can be used at higher voltages. The system has been characterized by identifying flat-bottomed holes as small as 1 mm in diameter located at depths up to 190 mm in aluminum, and holes as small as 3 mm in diameter at a depth of 160 mm in cast iron. The results confirm the ability of the highly integrated system to obtain reflections from the targets despite the +/- 3.3 V excitation voltage by exploiting coding in low-voltage ultrasound.

  14. Nurses' attitudes toward the use of the bar-coding medication administration system.

    PubMed

    Marini, Sana Daya; Hasman, Arie; Huijer, Huda Abu-Saad; Dimassi, Hani

    2010-01-01

    This study determines nurses' attitudes toward bar-coding medication administration system use. Some of the factors underlying the successful use of bar-coding medication administration systems that are viewed as a connotative indicator of users' attitudes were used to gather data that describe the attitudinal basis for system adoption and use decisions in terms of subjective satisfaction. Only 67 nurses in the United States had the chance to respond to the e-questionnaire posted on the CARING list server for the months of June and July 2007. Participants rated their satisfaction with bar-coding medication administration system use based on system functionality, usability, and its positive/negative impact on the nursing practice. Results showed, to some extent, positive attitude, but the image profile draws attention to nurses' concerns for improving certain system characteristics. The high bar-coding medication administration system skills revealed a more negative perception of the system by the nursing staff. The reasons underlying dissatisfaction with bar-coding medication administration use by skillful users are an important source of knowledge that can be helpful for system development as well as system deployment. As a result, strengthening bar-coding medication administration system usability by magnifying its ability to eliminate medication errors and the contributing factors, maximizing system functionality by ascertaining its power as an extra eye in the medication administration process, and impacting the clinical nursing practice positively by being helpful to nurses, speeding up the medication administration process, and being user-friendly can offer a congenial settings for establishing positive attitude toward system use, which in turn leads to successful bar-coding medication administration system use.

  15. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-08-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parameterizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  16. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  17. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are

  18. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... code requirements do not apply to devices regulated by the Center for Biologics Evaluation and Research or to blood and blood components intended for transfusion. For blood and blood components...

  19. Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D.

    PubMed

    Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E

    2014-11-01

    A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%.

  20. Biosensors and Bio-Bar Code Assays Based on Biofunctionalized Magnetic Microbeads

    PubMed Central

    Jaffrezic-Renault, Nicole; Martelet, Claude; Chevolot, Yann; Cloarec, Jean-Pierre

    2007-01-01

    This review paper reports the applications of magnetic microbeads in biosensors and bio-bar code assays. Affinity biosensors are presented through different types of transducing systems: electrochemical, piezo electric or magnetic ones, applied to immunodetection and genodetection. Enzymatic biosensors are based on biofunctionalization through magnetic microbeads of a transducer, more often amperometric, potentiometric or conductimetric. The bio-bar code assays relie on a sandwich structure based on specific biological interaction of a magnetic microbead and a nanoparticle with a defined biological molecule. The magnetic particle allows the separation of the reacted target molecules from unreacted ones. The nanoparticles aim at the amplification and the detection of the target molecule. The bio-bar code assays allow the detection at very low concentration of biological molecules, similar to PCR sensitivity.

  1. Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR

    SciTech Connect

    Zielinski, R.G.; Kazimi, M.S.

    1981-09-01

    Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.

  2. Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.

    SciTech Connect

    Mills, Brantley

    2016-01-01

    A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.

  3. The Impact of Bar Code Medication Administration Technology on Reported Medication Errors

    ERIC Educational Resources Information Center

    Holecek, Andrea

    2011-01-01

    The use of bar-code medication administration technology is on the rise in acute care facilities in the United States. The technology is purported to decrease medication errors that occur at the point of administration. How significantly this technology affects actual rate and severity of error is unknown. This descriptive, longitudinal research…

  4. 76 FR 66235 - Bar Code Technologies for Drugs and Biological Products; Retrospective Review Under Executive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ...'' (76 FR 3821). One of the provisions in the new Executive order is the affirmation of retrospective... published a notice in the Federal Register on April 27, 2011 (76 FR 23520), entitled ``Periodic Review of... the Federal Register of March 14, 2003 (68 FR 12500), FDA published a proposed rule (Bar Code...

  5. WHISTBT: a 1-1/2-D radial-transport code for bumpy tori

    SciTech Connect

    Hastings, D.E.; Houlberg, W.A.; Attenberger, S.E.; Lee, D.K.

    1983-10-01

    The computer code WHISTBT has been developed from the Oak Ridge National Laboratory WHIST code to study radial transport in bumpy tori. The code can handle both positive and negative ad hoc electric fields for devices ranging from the size of ELMO Bumpy Torus-Scale (EBT-S) to a reactor-type device, EBT-R. Fueling can be by gas puffing or pellets; heating can be by injection of rf power or neutral beams.

  6. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    SciTech Connect

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; Deutschbauer, Adam

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes

  7. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    DOE PAGES

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; et al

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore » transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are

  8. Investigations on the sensitivity of the computer code TURBO-2D

    NASA Astrophysics Data System (ADS)

    Amon, B.

    1994-12-01

    The two-dimensional computer model TURBO-2D for the calculation of two-phase flow was used to calculate the cold injection of fuel into a model chamber. Investigations of the influence of the input parameter on its sensitivity relative to the obtained results were made. In addition to that calculations were performed and compared using experimental injection pressure data and corresponding averaged injection parameter.

  9. A time dependent 2D divertor code with TVD scheme for complex divertor configurations

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Takizuka, T.; Hirayama, T.

    1999-11-01

    In order to study the transport of heat and particles in the SOL and divertor plasmas, a two-dimensional divertor code, SOLDOR has been developed. The model used in this code is identical to the B2-code. Fluid equations are discretized in space under a non orthogonal mesh to treat accurately the W shape divertor configuration of JT-60U. The total variation diminishing scheme (TVD), which is a most familiar one in computational fluid dynamics, is applied for convective terms. The equations obtained by a finite volume method (FVM) are discretized in time with a full implicit scheme and are solved time-dependently using the Newton-Raphson method. The discretized equations are solved efficiently using approximate factorization method (AF). Test calculations in the slab geometry successfully reproduced the B2 results (B.J. Braams, NET report 1987) . We are going to apply this code to JT-60U divertor plasma and investigate the flow reversal and impurity transport.

  10. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... description Code Arctic char, anadromous 521 Dolly varden, anadromous 531 Eels or eel-like fish 210 Eel, wolf..., Pacific (pilchard) 170 Sea cucumber, red 895 Shad 180 Skilfish 715 Snailfish, general (genus Liparis and... Arctic surf 812 Cockle 820 Eastern softshell 842 Pacific geoduck 815 Pacific littleneck 840 Pacific...

  11. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... description Code Arctic char, anadromous 521 Dolly varden, anadromous 531 Eels or eel-like fish 210 Eel, wolf..., Pacific (pilchard) 170 Sea cucumber, red 895 Shad 180 Skilfish 715 Snailfish, general (genus Liparis and... Arctic surf 812 Cockle 820 Eastern softshell 842 Pacific geoduck 815 Pacific littleneck 840 Pacific...

  12. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... description Code Arctic char, anadromous 521 Dolly varden, anadromous 531 Eels or eel-like fish 210 Eel, wolf..., Pacific (pilchard) 170 Sea cucumber, red 895 Shad 180 Skilfish 715 Snailfish, general (genus Liparis and... Arctic surf 812 Cockle 820 Eastern softshell 842 Pacific geoduck 815 Pacific littleneck 840 Pacific...

  13. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... description Code Arctic char, anadromous 521 Dolly varden, anadromous 531 Eels or eel-like fish 210 Eel, wolf..., Pacific (pilchard) 170 Sea cucumber, red 895 Shad 180 Skilfish 715 Snailfish, general (genus Liparis and... Arctic surf 812 Cockle 820 Eastern softshell 842 Pacific geoduck 815 Pacific littleneck 840 Pacific...

  14. TOPAZ - a finite element heat conduction code for analyzing 2-D solids

    SciTech Connect

    Shapiro, A.B.

    1984-03-01

    TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.

  15. Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons

    PubMed Central

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth

    2015-01-01

    ABSTRACT Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative d-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. PMID:25968644

  16. Patient Safety with Blood Products Administration Using Wireless and Bar-Code Technology

    PubMed Central

    Porcella, Aleta; Walker, Kristy

    2005-01-01

    Supported by a grant from the Agency for Healthcare Research and Quality, a University of Iowa Hospitals and Clinics interdisciplinary research team created an online data-capture-response tool utilizing wireless mobile devices and bar code technology to track and improve blood products administration process. The tool captures 1) sample collection, 2) sample arrival in the blood bank, 3) blood product dispense from blood bank, and 4) administration. At each step, the scanned patient wristband ID bar code is automatically compared to scanned identification barcode on requisition, sample, and/or product, and the system presents either a confirmation or an error message to the user. Following an eight-month, 5 unit, staged pilot, a ‘big bang,’ hospital-wide implementation occurred on February 7, 2005. Pilot period and preliminary house-wide data indicate improved error capture with the new barcode process over the old manual process. PMID:16779113

  17. Patient safety with blood products administration using wireless and bar-code technology.

    PubMed

    Porcella, Aleta; Walker, Kristy

    2005-01-01

    Supported by a grant from the Agency for Healthcare Research and Quality, a University of Iowa Hospitals and Clinics interdisciplinary research team created an online data-capture-response tool utilizing wireless mobile devices and bar code technology to track and improve blood products administration process. The tool captures 1) sample collection, 2) sample arrival in the blood bank, 3) blood product dispense from blood bank, and 4) administration. At each step, the scanned patient wristband ID bar code is automatically compared to scanned identification barcode on requisition, sample, and/or product, and the system presents either a confirmation or an error message to the user. Following an eight-month, 5 unit, staged pilot, a 'big bang,' hospital-wide implementation occurred on February 7, 2005. Preliminary results from pilot data indicate that the new barcode process captures errors 3 to 10 times better than the old manual process.

  18. An investigation of design optimization using a 2-D viscous flow code with multigrid

    NASA Technical Reports Server (NTRS)

    Doria, Michael L.

    1990-01-01

    Computational fluid dynamics (CFD) codes have advanced to the point where they are effective analytical tools for solving flow fields around complex geometries. There is also a need for their use as a design tool to find optimum aerodynamic shapes. In the area of design, however, a difficulty arises due to the large amount of computer resources required by these codes. It is desired to streamline the design process so that a large number of design options and constraints can be investigated without overloading the system. There are several techniques which have been proposed to help streamline the design process. The feasibility of one of these techniques is investigated. The technique under consideration is the interaction of the geometry change with the flow calculation. The problem of finding the value of camber which maximizes the ratio of lift over drag for a particular airfoil is considered. In order to test out this technique, a particular optimization problem was tried. A NACA 0012 airfoil was considered at free stream Mach number of 0.5 with a zero angle of attack. Camber was added to the mean line of the airfoil. The goal was to find the value of camber for which the ratio of lift over drag is a maximum. The flow code used was FLOMGE which is a two dimensional viscous flow solver which uses multigrid to speed up convergence. A hyperbolic grid generation program was used to construct the grid for each value of camber.

  19. Radioactive Sediment Transport on Ogaki Dam Reservoir in Fukushima Evacuated Zone: Numerical Simulation Studies by 2-D River Simulation Code

    NASA Astrophysics Data System (ADS)

    Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko

    2015-04-01

    Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the

  20. A 2D Benchmark for the Verification of the PEBBED Code

    SciTech Connect

    Barry D. Ganapol; Hans A. Gougar; A. O. Ougouag

    2008-09-01

    A new benchmarking concept is presented for verifying the PEBBED 3D multigroup finite difference/nodal diffusion code with application to pebble bed modular reactors (PBMRs). The key idea is to perform convergence acceleration, also called extrapolation to zero discretization, of a basic finite difference numerical algorithm to give extremely high accuracy. The method is first demonstrated on a 1D cylindrical shell and then on an r,8 wedge where the order of the second order finite difference scheme is confirmed to four places.

  1. 2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.

    2009-01-01

    A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.

  2. Efficient simulation of pitch angle collisions in a 2+2-D Eulerian Vlasov code

    NASA Astrophysics Data System (ADS)

    Banks, Jeff; Berger, R.; Brunner, S.; Tran, T.

    2014-10-01

    Here we discuss pitch angle scattering collisions in the context of the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The collision operator is discretized using 4th order accurate conservative finite-differencing. The treatment of the Vlasov operator in phase-space uses an approach based on a minimally diffuse, fourth-order-accurate discretization (Banks and Hittinger, IEEE T. Plasma Sci. 39, 2198). The overall scheme is therefore discretely conservative and controls unphysical oscillations. Some details of the numerical scheme will be presented, and the implementation on modern highly concurrent parallel computers will be discussed. We will present results of collisional effects on linear and non-linear Landau damping of electron plasma waves (EPWs). In addition we will present initial results showing the effect of collisions on the evolution of EPWs in two space dimensions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD program at LLNL under project tracking code 12-ERD-061.

  3. The design of the CMOS wireless bar code scanner applying optical system based on ZigBee

    NASA Astrophysics Data System (ADS)

    Chen, Yuelin; Peng, Jian

    2008-03-01

    The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.

  4. A 2D forward and inverse code for streaming potential problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.

    2013-12-01

    The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the groundwater. We can therefore apply the self- potential method to recover non-intrusively some information regarding the groundwater flow. We first solve the forward problem starting with the solution of the groundwater flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.

  5. SP2DINV: A 2D forward and inverse code for streaming potential problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2013-09-01

    The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the ground water. We can therefore apply the self-potential method to recover non-intrusively some information regarding the ground water flow. We first solve the forward problem starting with the solution of the ground water flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.

  6. 2D Resistive Magnetohydrodynamics Calculations with an Arbitrary Lagrange Eulerian Code

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.; Gianakon, T. A.; Lipnikov, K. N.; Nelson, E. M.

    2015-11-01

    Single fluid resistive MHD is useful for modeling Z-pinch configurations in cylindrical geometry. One such example is thin walled liners for shock physics or HEDP experiments driven by capacitor banks such as the LANL's PHELIX or Sandia-Z. MHD is also useful for modeling high-explosive-driven flux compression generators (FCGs) and their high-current switches. The resistive MHD in our arbitrary Lagrange Eulerian (ALE) code operates in one and two dimensions in both Cartesian and cylindrical geometry. It is implemented as a time-step split operator, which consists of, ideal MHD connected to the explicit hydro momentum and energy equations and a second order mimetic discretization solver for implicit solution of the magnetic diffusion equation. In a staggered grid scheme, a single-component of cell-centered magnetic flux is conserved in the Lagrangian frame exactly, while magnetic forces are accumulated at the nodes. Total energy is conserved to round off. Total flux is conserved under the ALE relaxation and remap. The diffusion solver consistently computes Ohmic heating. Both Neumann and Dirichlet boundary conditions are available with coupling to external circuit models. Example calculations will be shown.

  7. Analysis of the technology acceptance model in examining hospital nurses' behavioral intentions toward the use of bar code medication administration.

    PubMed

    Song, Lunar; Park, Byeonghwa; Oh, Kyeung Mi

    2015-04-01

    Serious medication errors continue to exist in hospitals, even though there is technology that could potentially eliminate them such as bar code medication administration. Little is known about the degree to which the culture of patient safety is associated with behavioral intention to use bar code medication administration. Based on the Technology Acceptance Model, this study evaluated the relationships among patient safety culture and perceived usefulness and perceived ease of use, and behavioral intention to use bar code medication administration technology among nurses in hospitals. Cross-sectional surveys with a convenience sample of 163 nurses using bar code medication administration were conducted. Feedback and communication about errors had a positive impact in predicting perceived usefulness (β=.26, P<.01) and perceived ease of use (β=.22, P<.05). In a multiple regression model predicting for behavioral intention, age had a negative impact (β=-.17, P<.05); however, teamwork within hospital units (β=.20, P<.05) and perceived usefulness (β=.35, P<.01) both had a positive impact on behavioral intention. The overall bar code medication administration behavioral intention model explained 24% (P<.001) of the variance. Identified factors influencing bar code medication administration behavioral intention can help inform hospitals to develop tailored interventions for RNs to reduce medication administration errors and increase patient safety by using this technology.

  8. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT

  9. User's manual for DYNA2D: an explicit two-dimensional hydrodynamic finite-element code with interactive rezoning

    SciTech Connect

    Hallquist, J.O.

    1982-02-01

    This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.

  10. Multidirectional Holographic Scanner For Point-Of-Sale Bar-Code Symbol Reader

    NASA Astrophysics Data System (ADS)

    Nishi, Kazuro; Kurahashi, Koichiro; Kubo, Takahiro

    1984-12-01

    A multidirectional laser beam scanning method using holographic zone plates is described. To increase the number of scanning directions, not only is a hologram disk rotated at fixed speed (col ), but a laser beam incident on the disk is reversely rotated at another speed (w2). The focus of the laser beam diffracted by the hologram disk draws multidirectional scanning lines. The number of scanning directions (n) is equal to (w1 /c02) + 1. Experimentally, the effectiveness of this method is demonstrated for nineteen scanning directions. This scan method is applied to a point-of-sale (POS) scanner to read a non-moving bar-code symbol.

  11. Animal house stock control based on bar-coded cage labels.

    PubMed

    Wootton, R

    1985-10-01

    In an animal house serving the needs of a large research institute, a regular inventory of the animals in stock is a considerable help towards effective management of the facility. In particular, advising the licence-holders of what animals are being held in their name and reminding them of the costs involved is a valuable exercise. The introduction of a computerized system of stock control, based on bar-coded cage labels, is described. The system has proved economical to operate, accurate, and can be run by persons without computer expertise. PMID:4068665

  12. Simulations of the C-2/C-2U Field Reversed Configurations with the Q2D code

    NASA Astrophysics Data System (ADS)

    Onofri, Marco; Dettrick, Sean; Barnes, Daniel; Tajima, Toshiki; TAE Team

    2015-11-01

    C-2U was built to sustain advanced beam-driven FRCs for 5 + ms. The Q2D transport code is used to simulate the evolution of C-2U discharges and to study sustainment via fast ion current and pressure, with the latter comparable to the thermal plasma pressure. The code solves the MHD equations together with source terms due to neutral beams, which are calculated by a Monte Carlo method. We compare simulations with experimental results obtained in the HPF14 regime of C-2 (6 neutral beams with energy of 20 keV and total power of 4.2 MW). All simulations start from an initial equilibrium and transport coefficients are chosen to match experimental data. The best agreement is obtained when utilizing an enhanced energy transfer between fast ions and the plasma, which may be an indication of anomalous heating due to beneficial beam-plasma instabilities. Similar simulations of C-2U (neutral beam power increased to 10 + MW and angled beam injection) are compared with experimental results, where a steady state has been obtained for 5 + ms, correlated with the neutral beam pulse and limited by engineering constraints.

  13. Verification and benchmarking of MAGNUM-2D: a finite element computer code for flow and heat transfer in fractured porous media

    SciTech Connect

    Eyler, L.L.; Budden, M.J.

    1985-03-01

    The objective of this work is to assess prediction capabilities and features of the MAGNUM-2D computer code in relation to its intended use in the Basalt Waste Isolation Project (BWIP). This objective is accomplished through a code verification and benchmarking task. Results are documented which support correctness of prediction capabilities in areas of intended model application. 10 references, 43 figures, 11 tables.

  14. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  15. Evaluation of the personalized bar-code identification card to verify high-risk, high-alert medications.

    PubMed

    Thomas, Maria

    2013-09-01

    An effective intervention to decrease medication errors related to high-risk, high-alert medications is to implement double checks and second verification using the five rights of medication administration. To evaluate the effectiveness and use of the Personalized Bar-Code Identification card in verifying high-risk, high-alert medications, the High-Risk, High-Alert Medication Verification Audit Tool was used to collect data from the medical records of patients who received high-risk, high-alert medications in four ICUs. Data were collected for administered high-risk, high-alert medication, primary registered nurses who administered the high-risk, high-alert medication, and secondary registered nurses who verified the medication. The percentage of medications that were "not verified," "Personalized Bar-Code Identification verified," and "verified" using a method other than the Personalized Bar-Code Identification was calculated and compared using Z tests for two proportions. The percentage of Personalized Bar-Code Identification-verified medications (83.5%) was significantly higher than the percentage of medications that were not verified (10.9%) (Z = 38.43, P < .05). Also, the difference between the proportion of the Personalized Bar-Code Identification-verified medications and those that were verified using another method (5.6%) was significant (Z = 41.42, P < .05). The results show that nurses generally tend to follow the standardized procedure for verifying high-risk, high-alert medications in the four ICUs.

  16. Ultrasensitive aptamer-based bio bar code immunomagnetic separation and electrochemiluminescence method for the detection of protein.

    PubMed

    Zhu, Debin; Zhou, Xiaoming; Xing, Da

    2012-05-01

    An ultrasensitive aptamer-based bio bar code immunomagnetic separation and electrochemiluminescence (IM-ECL) method for the detection of protein is developed. The target protein is captured by biotin-labeled aptamer (biotin probe) and [Ru(bpy)(3)](2+) (TBR)-Au bio bar code-labeled aptamer (ECL nanoprobe), to form a double aptamer-protein sandwich complex. The complex is then immobilized on the streptavidin microbeads through biotin-streptavidin linkage and detected by ECL assay. The ECL signal of the target protein is amplified by the TBR-bio bar code DNAs. As an example, platelet-derived growth factor B-chain homodimer (PDGF-BB) was detected by the method. Experimental results show that the detection limit of the assay is 1 pM of PDGF-BB. A calibration curve with a linearity range from 1 pM to 10 nM is established, thus, make quantitative analysis possible. The method has been used to detect PDGF-BB in fetal calf serum with minimum background interference. Due to the wide availability of aptamer for numerous proteins, this aptamer-based bio bar code IM-ECL method holds great promise in protein detection.

  17. 75 FR 54347 - Draft Guidance for Industry: Bar Code Label Requirements-Questions and Answers (Question 12...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... Guidance (October 5, 2006, 71 FR 58739). In this guidance, FDA is proposing to amend our response to... we believe that an alternative regulatory program, comprised of alternative technology such as two dimensional symbology, could render the use of linear bar codes unnecessary for patient safety and...

  18. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    NASA Astrophysics Data System (ADS)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    boundary to the wall of the crack (so that the solute can accumulate due to evaporation on the crack block wall, and infiltrating fresh water can push the solute further down) - in order to do so, HYDRUS 2D/3D code had to be modified by its developers. Unconventionally, the main fitting parameters were: parameter a and n in the soil water retention curve and saturated hydraulic conductivity. The amount of infiltrated water (within a reasonable range), the infiltration function in the crack and the actual evaporation from the crack were also used as secondary fitting parameters. The model supports the previous findings that significant amount (~90%) of water from rain events must infiltrate through the crack. It was also noted that infiltration from the crack has to be increasing with depth and that the highest infiltration rate should be somewhere between 1-3m. This paper suggests a new way how to model vertisols in semi-arid regions. It also supports the previous findings about vertisols: especially, the utmost importance of soil cracks as preferential pathways for water and contaminants and soil cracks as deep evaporators.

  19. The effects of media color and laser wavelength on bar code symbol contrast

    NASA Astrophysics Data System (ADS)

    Sutton, Mathias Joseph

    The purpose of this study was to investigate the impact of media color and laser wavelength as they relate to bar code symbol contrast. The research employed a balanced 2 x 2 x 6 factorial experiment design. A random sample of 216 specimens was drawn from a population of 910 colors from the 1998 Pantone Color Formula Guide and assigned to one of 24 hue-saturation-wavelength cells. Hue was defined based on the CIE 1964 chromaticity diagram and standard illuminant D65. The chromaticity diagram was divided into six regions: blue, green, yellow, orange, red, and purple. The chromaticity coordinates (Yxy) of each Pantone specimen were transformed such that the coordinates of D65 was the origin. Lines extended from D65 to the spectral locus defined hue regions. Specimens whose transformed coordinates fell within a particular region were assigned that hue. Next, all specimens were classified as highly saturated if their white content was less than 50%. Otherwise, their saturation was defined as low. Finally, specimens from each hue-saturation group were randomly assigned to one of two wavelength levels: 633 or 670 rim. The measurement apparatus was constructed according the geometry defined in the ANSI Bar Code Print Quality Guideline-X3.182-1990. Data were collected following a random cell-order pattern to minimize the effect of any systematic, investigator-induced error. An analysis of variance was performed to test seven hypotheses: the main effects for each of the three independent variables and all possible interactions between them. The analysis indicated the ANOVA model of hue, saturation, and wavelength with all possible interactions was significant (p =.0001; R2 = 74.1) in explaining the variance in symbol contrast. Hue (p =.0001; R2 = 39.3) and saturation (p =.0001; R2 = 28.2) were significant independent variables. There was no significant difference detected between 633 nm and 670 nm wavelengths. The only significant interaction was between hue and saturation

  20. Identifying Objects via Encased X-Ray-Fluorescent Materials - the Bar Code Inside

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Systems for identifying objects by means of x-ray fluorescence (XRF) of encased labeling elements have been developed. The XRF spectra of objects so labeled would be analogous to the external bar code labels now used to track objects in everyday commerce. In conjunction with computer-based tracking systems, databases, and labeling conventions, the XRF labels could be used in essentially the same manner as that of bar codes to track inventories and to record and process commercial transactions. In addition, as summarized briefly below, embedded XRF labels could be used to verify the authenticity of products, thereby helping to deter counterfeiting and fraud. A system, as described above, is called an encased core product identification and authentication system (ECPIAS). The ECPIAS concept is a modified version of that of a related recently initiated commercial development of handheld XRF spectral scanners that would identify alloys or detect labeling elements deposited on the surfaces of objects. In contrast, an ECPIAS would utilize labeling elements encased within the objects of interest. The basic ECPIAS concept is best illustrated by means of an example of one of several potential applications: labeling of cultured pearls by labeling the seed particles implanted in oysters to grow the pearls. Each pearl farmer would be assigned a unique mixture of labeling elements that could be distinguished from the corresponding mixtures of other farmers. The mixture would be either incorporated into or applied to the surfaces of the seed prior to implantation in the oyster. If necessary, the labeled seed would be further coated to make it nontoxic to the oyster. After implantation, the growth of layers of mother of pearl on the seed would encase the XRF labels, making these labels integral, permanent parts of the pearls that could not be removed without destroying the pearls themselves. The XRF labels would be read by use of XRF scanners, the spectral data outputs of which

  1. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer.

    PubMed

    Wang, Gary P; Garrigue, Alexandrine; Ciuffi, Angela; Ronen, Keshet; Leipzig, Jeremy; Berry, Charles; Lagresle-Peyrou, Chantal; Benjelloun, Fatine; Hacein-Bey-Abina, Salima; Fischer, Alain; Cavazzana-Calvo, Marina; Bushman, Frederic D

    2008-05-01

    Gene transfer has been used to correct inherited immunodeficiencies, but in several patients integration of therapeutic retroviral vectors activated proto-oncogenes and caused leukemia. Here, we describe improved methods for characterizing integration site populations from gene transfer studies using DNA bar coding and pyrosequencing. We characterized 160,232 integration site sequences in 28 tissue samples from eight mice, where Rag1 or Artemis deficiencies were corrected by introducing the missing gene with gamma-retroviral or lentiviral vectors. The integration sites were characterized for their genomic distributions, including proximity to proto-oncogenes. Several mice harbored abnormal lymphoproliferations following therapy--in these cases, comparison of the location and frequency of isolation of integration sites across multiple tissues helped clarify the contribution of specific proviruses to the adverse events. We also took advantage of the large number of pyrosequencing reads to show that recovery of integration sites can be highly biased by the use of restriction enzyme cleavage of genomic DNA, which is a limitation in all widely used methods, but describe improved approaches that take advantage of the power of pyrosequencing to overcome this problem. The methods described here should allow integration site populations from human gene therapy to be deeply characterized with spatial and temporal resolution.

  2. Identification of mutations by RNA conformational polymorphism {open_quotes}bar code{close_quotes} analysis

    SciTech Connect

    Lenz, H.J.; Danenberg, K.D.; Schnieders, B. |

    1995-11-01

    DNA single-strand conformational polymorphism (SSCP) analysis is widely used for detection of point mutations in clinical specimens. Performing SSCP analysis with cRNA instead of DNA has been shown to improve mutation detection frequency. RNA can exist in numerous metastable conformations, which appear as patterns of bands on nondenaturing electrophoresis gels. Single base mutations can cause not only mobility shifts of major bands, but also loss of some conformations and appearance of new conformations. Unique RNA SSCP patterns associated with specific base sequences in many cases allow visual identification of point mutations. However, in some cases, the RNA SSCP pattern of a single base change in a sequence is not sufficiently different for a positive identification of the mutation. Improvement in the detection capability of RNA SSCP was obtained by adding 3{prime}-deoxy-nucleotides to the transcription reaction. The presence of chain-terminating nucleotides in the transcription reaction formed numerous new RNA fragments, thereby generating complex band patterns ({open_quotes}bar codes{close_quotes}) unique to each RNA sequence. This method was applied to analyzing p53 mutations in patients with colon cancer. 8 refs., 3 figs.

  3. Coupled 2-dimensional cascade theory for noise an d unsteady aerodynamics of blade row interaction in turbofans. Volume 2: Documentation for computer code CUP2D

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1994-01-01

    A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.

  4. Chandra Reads the Cosmic Bar Code of Gas Around a Black Hole

    NASA Astrophysics Data System (ADS)

    2000-02-01

    An international team of astronomers has used NASA's Chandra X-ray Observatory to make an energy bar code of hot gas in the vicinity of a giant black hole. These measurements, the most precise of their kind ever made with an X-ray telescope, demonstrate the existence of a blanket of warm gas that is expanding rapidly away from the black hole. The team consists of Jelle Kaastra, Rolf Mewe and Albert Brinkman of Space Research Organization Netherlands (SRON) in Utrecht, Duane Liedahl of Lawrence Livermore National Laboratory in Livermore, Calif., and Stefanie Komossa of Max Planck Institute in Garching, Germany. A report of their findings will be published in the March issue of the European journal Astronomy & Astrophysics. Kaastra and colleagues used the Low Energy Transmission Grating in conjunction with the High Resolution Camera to measure the number of X rays present at each energy. With this information they constructed an X-ray spectrum of the source. Their target was the central region, or nucleus of the galaxy NGC 5548, which they observed for 24 hours. This galaxy is one of a class of galaxies known to have unusually bright nuclei that are associated with gas flowing around and into giant black holes. This inflow produces an enormous outpouring of energy that blows some of the matter away from the black hole. Astronomers have used optical, ultraviolet, and X-ray telescopes in an effort to disentangle the complex nature of inflowing and outflowing gas at different distances from the black hole in NGC 5548. X-ray observations provide a ringside seat to the action around the black hole. By using the Low Energy Transmission Grating, the Dutch-US-German team concentrated on gas that forms a warm blanket that partially covers the innermost region where the highest energy X-rays are produced. As the high-energy X rays stream away from the vicinity of the black hole, they heat the blanketing gas to temperatures of a few million degrees, and the blanket absorbs some

  5. FACET: a radiation view factor computer code for axisymmetric, 2D planar, and 3D geometries with shadowing

    SciTech Connect

    Shapiro, A.B.

    1983-08-01

    The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.

  6. Construction and Analysis of Novel 2-D Optical Orthogonal Codes Based on Extended Quadratic Congruence Codes and Modified One-Coincidence Sequence

    NASA Astrophysics Data System (ADS)

    Ji, Jianhua; Li, Wenjun; Zheng, Hongxia

    2016-06-01

    A new two-dimensional optical orthogonal code (OOC) named EQC/MOCS is constructed, using Extended Quadratic Congruence (EQC) code for time spreading and modified one-coincidence sequence (MOCS) for wavelength hopping. Compared with EQC/Prime code (PC), the number of wavelengths for EQC/MOCS is not limited to a prime number. Compared with EQC/OCS, the length of MOCS need not be expanded to the same length of EQC. EQC/MOCS can be constructed flexibly, and also has larger code cardinality.

  7. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  8. TRAC code assessment using data from SCTF Core-III, a large-scale 2D/3D facility

    SciTech Connect

    Boyack, B.E.; Shire, P.R.; Harmony, S.C.; Rhee, G.

    1988-01-01

    Nine tests from the SCTF Core-III configuration have been analyzed using TRAC-PF1/MOD1. The objectives of these assessment activities were to obtain a better understanding of the phenomena occurring during the refill and reflood phases of a large-break loss-of-coolant accident, to determine the accuracy to which key parameters are calculated, and to identify deficiencies in key code correlations and models that provide closure for the differential equations defining thermal-hydraulic phenomena in pressurized water reactors. Overall, the agreement between calculated and measured values of peak cladding temperature is reasonable. In addition, TRAC adequately predicts many of the trends observed in both the integral effect and separate effect tests conducted in SCTF Core-III. The importance of assessment activities that consider potential contributors to discrepancies between the measured and calculated results arising from three sources are described as those related to (1) knowledge about the facility configuration and operation, (2) facility modeling for code input, and (3) deficiencies in code correlations and models. An example is provided. 8 refs., 7 figs., 2 tabs.

  9. HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems

    NASA Astrophysics Data System (ADS)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2015-12-01

    Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.

  10. Assessment of the effects of scrape-off layer fluctuations on first wall sputtering with the TOKAM-2D turbulence code

    NASA Astrophysics Data System (ADS)

    Marandet, Y.; Nace, N.; Valentinuzzi, M.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Genesio, P.; Mellet, N.

    2016-11-01

    Plasma material interactions on the first wall of future tokamaks such as ITER and DEMO are likely to play an important role, because of turbulent radial transport. The latter results to a large extent from the radial propagation of plasma filaments through a tenuous background. In such a situation, mean field descriptions (on which transport codes rely) become questionable. First wall sputtering is of particular interest, especially in a full W machine, since it has been shown experimentally that first wall sources control core contamination. In ITER, beryllium sources will be one of the important actors in determining the fuel retention level through codeposition. In this work, we study the effect of turbulent fluctuations on mean sputtering yields and fluxes, relying on a new version of the TOKAM-2D code which includes ion temperature fluctuations. We show that fluctuations enhance sputtering at sub-threshold impact energies, by more than an order of magnitude when fluctuation levels are of order unity.

  11. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  12. Color bar coding the BRCA1 gene on combed DNA: a useful strategy for detecting large gene rearrangements.

    PubMed

    Gad, S; Aurias, A; Puget, N; Mairal, A; Schurra, C; Montagna, M; Pages, S; Caux, V; Mazoyer, S; Bensimon, A; Stoppa-Lyonnet, D

    2001-05-01

    Genetic linkage data have shown that alterations of the BRCA1 gene are responsible for the majority of hereditary breast and ovarian cancers. BRCA1 germline mutations, however, are found less frequently than expected. Mutation detection strategies, which are generally based on the polymerase chain reaction, therefore focus on point and small gene alterations. These approaches do not allow for the detection of large gene rearrangements, which also can be involved in BRCA1 alterations. Indeed, a few of them, spread over the entire BRCA1 gene, have been detected recently by Southern blotting or transcript analysis. We have developed an alternative strategy allowing a panoramic view of the BRCA1 gene, based on dynamic molecular combing and the design of a full four-color bar code of the BRCA1 region. The strategy was tested with the study of four large BRCA1 rearrangements previously reported. In addition, when screening a series of 10 breast and ovarian cancer families negatively tested for point mutation in BRCA1/2, we found an unreported 17-kb BRCA1 duplication encompassing exons 3 to 8. The detection of rearrangements as small as 2 to 6 kb with respect to the normal size of the studied fragment is achieved when the BRCA1 region is divided into 10 fragments. In addition, as the BRCA1 bar code is a morphologic approach, the direct observation of complex and likely underreported rearrangements, such as inversions and insertions, becomes possible. PMID:11284038

  13. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  14. Icarus: A 2D direct simulation Monte Carlo (DSMC) code for parallel computers. User`s manual - V.3.0

    SciTech Connect

    Bartel, T.; Plimpton, S.; Johannes, J.; Payne, J.

    1996-10-01

    Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modelled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modelled using steric factors derived from Arrhenius reaction rates. Surface chemistry is modelled with surface reaction probabilities. The electron number density is either a fixed external generated field or determined using a local charge neutrality assumption. Ion chemistry is modelled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electrostatic fields can either be externally input or internally generated using a Langmuir-Tonks model. The Icarus software package includes the grid generation, parallel processor decomposition, postprocessing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. The majority of the software packages are written in standard Fortran.

  15. Bar code hotel: diverse interactions of semi-autonomous entities under the partial control of multiple operators

    NASA Astrophysics Data System (ADS)

    Hoberman, Perry

    1995-03-01

    In this paper I describe an interactive installation that was produced in 1994 as one of eight Art and Virtual Environments projects sponsored by the Banff Center for the Arts. The installation, Bar Code Hotel, makes use of a number of strategies to create a casual, social, multi-person interface. Among the goals was to investigate methods that would minimize any significant learning curve, allowing visitors to immediately interact with a virtual world in a meaningful way. By populating this virtual world with semi-independent entities that could be directed by participants even as these entities were interacting with each other, a rich and heterogeneous experience was produced in which a variety of relationships between human participants and virtual objects could be examined. The paper will describe some of the challenges of simultaneously processing multiple input sources affecting a virtual environment in which each object already has its own ongoing behavior.

  16. 76 FR 49772 - Guidance for Industry: Bar Code Label Requirements-Questions and Answers; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... technology to capture information from a two dimensional code because, through use of this technology, they... program, comprised of alternative technology such as two dimensional symbology used to facilitate... August 2011. In the Federal Register of February 26, 2004 (69 FR 9120), FDA published a final rule...

  17. Investigation of the thermal response of a gasdynamic heater with helical impellers. Calspan Report No. 6961-A-1. [MAZE and TACO2D codes

    SciTech Connect

    Rae, W. J.

    1981-12-01

    A gasdynamic heater, capable of producing contamination-free gas streams at temperatures up to 9000/sup 0/K, is being developed by the Vulcan project. The design of a cooling system for the case parts and the associated thermal analysis are a critical part of a successful design. The purpose of the present work was to perform a preliminary cooling passage design and complete thermal analysis for the center body liner, end plate liners and exit nozzle. The approach envisioned for this work was the use of a set of LLNL finite-element codes, called MAZE and TACO2D. These were to be used at LLNL in a series of visits by the Calspan principal investigator. The project was cancelled shortly after the first of these visits; this report contains a summary of the work accomplished during the abbreviated contract period, and a review of the items that will need to be considered when the work is resumed at some future date.

  18. Automation and adaptation: Nurses' problem-solving behavior following the implementation of bar coded medication administration technology.

    PubMed

    Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion

    2013-08-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.

  19. Identification of internal transcribed spacer sequence motifs in truffles: a first step toward their DNA bar coding.

    PubMed

    El Karkouri, Khalid; Murat, Claude; Zampieri, Elisa; Bonfante, Paola

    2007-08-01

    This work presents DNA sequence motifs from the internal transcribed spacer (ITS) of the nuclear rRNA repeat unit which are useful for the identification of five European and Asiatic truffles (Tuber magnatum, T. melanosporum, T. indicum, T. aestivum, and T. mesentericum). Truffles are edible mycorrhizal ascomycetes that show similar morphological characteristics but that have distinct organoleptic and economic values. A total of 36 out of 46 ITS1 or ITS2 sequence motifs have allowed an accurate in silico distinction of the five truffles to be made (i.e., by pattern matching and/or BLAST analysis on downloaded GenBank sequences and directly against GenBank databases). The motifs considered the intraspecific genetic variability of each species, including rare haplotypes, and assigned their respective species from either the ascocarps or ectomycorrhizas. The data indicate that short ITS1 or ITS2 motifs (< or = 50 bp in size) can be considered promising tools for truffle species identification. A dot blot hybridization analysis of T. magnatum and T. melanosporum compared with other close relatives or distant lineages allowed at least one highly specific motif to be identified for each species. These results were confirmed in a blind test which included new field isolates. The current work has provided a reliable new tool for a truffle oligonucleotide bar code and identification in ecological and evolutionary studies. PMID:17601808

  20. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  1. STEALTH - a Lagrange explicit finite-difference code for solid, structural, and thermohydraulic analysis. Volume 8A: STEALTH/WHAMSE - a 2-D fluid-structure interaction code. Computer code manual

    SciTech Connect

    Gross, M.B.

    1984-10-01

    STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structural response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.

  2. The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001-lahar scenario

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2014-07-01

    Lahar modelling represents an excellent tool to design hazard maps. It allows the definition of potential inundation zones for different lahar magnitude scenarios and sediment concentrations. Here we present the results obtained for the 2001 syneruptive lahar at Popocatépetl volcano, based on simulations performed with FLO2D software. An accurate delineation of this event is needed since it is one of the possible scenarios considered during a volcanic crisis. One of the main issues for lahar simulation using FLO2D is the calibration of the input hydrograph and rheologic flow properties. Here we verified that geophone data can be properly calibrated by means of peak discharge calculations obtained by superelevation method. Simulation results clearly show the influence of concentration and rheologic properties on lahar depth and distribution. Modifying rheologic properties during lahar simulation strongly affect lahar distribution. More viscous lahars have a more restricted aerial distribution, thicker depths, and resulting velocities are noticeable smaller. FLO2D proved to be a very successful tool to delimitate lahar inundation zones as well as to generate different lahar scenarios not only related to lahar volume or magnitude but also to take into account different sediment concentrations and rheologies widely documented to influence lahar prone areas.

  3. The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001 lahar scenario

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2014-12-01

    Lahar modeling represents an excellent tool for designing hazard maps. It allows the definition of potential inundation zones for different lahar magnitude scenarios and sediment concentrations. Here, we present the results obtained for the 2001 syneruptive lahar at Popocatépetl volcano, based on simulations performed with FLO2D software. An accurate delineation of this event is needed, since it is one of the possible scenarios considered if magmatic activity increases its magnitude. One of the main issues for lahar simulation using FLO2D is the calibration of the input hydrograph and rheological flow properties. Here, we verified that geophone data can be properly calibrated by means of peak discharge calculations obtained by the superelevation method. Digital elevation model resolution also resulted as an important factor in defining the reliability of the simulated flows. Simulation results clearly show the influence of sediment concentrations and rheological properties on lahar depth and distribution. Modifying rheological properties during lahar simulation strongly affects lahar distribution. More viscous lahars have a more restricted aerial distribution and thicker depths, and resulting velocities are noticeably smaller. FLO2D proved to be a very successful tool for delimitating lahar inundation zones as well as generating different lahar scenarios not only related to lahar volume or magnitude, but also taking into account different sediment concentrations and rheologies widely documented as influencing lahar-prone areas.

  4. Ruggedness of 2D code printed on grain tracers for implementing a prospective grain traceability system to the bulk grain delivery system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food-grade tracers were printed with two-dimensional Data Matrix (DM) barcode so that they could carry simulated identifying information about grain as part of a prospective traceability system. The key factor in evaluating the tracers was their ability to be read with a code scanner after being rem...

  5. Aptamer-conjugated bio-bar-code Au-Fe3O4 nanoparticles as amplification station for electrochemiluminescence detection of tumor cells.

    PubMed

    Chen, Min; Bi, Sai; Jia, Xiaoqiang; He, Peng

    2014-07-21

    An electrochemiluminescence (ECL) assay has been developed for highly sensitive and selective detection of tumor cells based on cell-SELEX aptamer-target cell interactions through a cascaded amplification process by using bio-bar-code Au-Fe3O4 as amplification station. Firstly, bio-bar-code toehold-aptamer/DNA primer/Au-Fe3O4 (TA/DP/Au-Fe3O4) nanoconjugates are fabricated with a ratio of 1:10 to efficiently avoid cross-linking reaction and recognize target cells, which are immobilized on the substrate by hybridizing aptamer to capture probe with 18-mer. Through strand displacement reaction (SDR), the TA/DP/Au-Fe3O4 composites further act as the amplification station to initiate rolling circle amplification (RCA). As a result, on the surface of TA/DP/Au-Fe3O4, a large number of Ru(bpy)2(dcbpy)NHS-labeled probes hybridize to RCA products, which are easily trapped by magnetic electrode to perform the magnetic particle-based ECL platform. Under isothermal conditions, this powerful amplification strategy permits detection of Ramos cells as low as 16 cells with an excellent selectivity. Moreover, analysis of Ramos cells in complex samples and whole blood samples further show the great potential of this ultrasensitive approach in clinical application involving cancer cells-related biological processes.

  6. Temporal and spatial trends in prey composition of wahoo Acanthocybium solandri: a diet analysis from the central North Pacific Ocean using visual and DNA bar-coding techniques.

    PubMed

    Oyafuso, Z S; Toonen, R J; Franklin, E C

    2016-04-01

    A diet analysis was conducted on 444 wahoo Acanthocybium solandri caught in the central North Pacific Ocean longline fishery and a nearshore troll fishery surrounding the Hawaiian Islands from June to December 2014. In addition to traditional observational methods of stomach contents, a DNA bar-coding approach was integrated into the analysis by sequencing the cytochrome c oxidase subunit 1 (COI) region of the mtDNA genome to taxonomically identify individual prey items that could not be classified visually to species. For nearshore-caught A. solandri, juvenile pre-settlement reef fish species from various families dominated the prey composition during the summer months, followed primarily by Carangidae in autumn months. Gempylidae, Echeneidae and Scombridae were dominant prey taxa from the offshore fishery. Molidae was a common prey family found in stomachs collected north-east of the Hawaiian Archipelago while tetraodontiform reef fishes, known to have extended pelagic stages, were prominent prey items south-west of the Hawaiian Islands. The diet composition of A. solandri was indicative of an adaptive feeder and thus revealed dominant geographic and seasonal abundances of certain taxa from various ecosystems in the marine environment. The addition of molecular bar-coding to the traditional visual method of prey identifications allowed for a more comprehensive range of the prey field of A. solandri to be identified and should be used as a standard component in future diet studies.

  7. The Langley Stability and Transition Analysis Code (LASTRAC) : LST, Linear and Nonlinear PSE for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2003-01-01

    During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary

  8. Application of surface-harmonics code SUHAM-U and Monte-Carlo code UNK-MC for calculations of 2D light water benchmark-experiment VENUS-2 with UO{sub 2} and MOX fuel

    SciTech Connect

    Boyarinov, V. F.; Davidenko, V. D.; Nevinitsa, V. A.; Tsibulsky, V. F.

    2006-07-01

    Verification of the SUHAM-U code has been carried out by the calculation of two-dimensional benchmark-experiment on critical light-water facility VENUS-2. Comparisons with experimental data and calculations by Monte-Carlo code UNK with the same nuclear data library B645 for basic isotopes have been fulfilled. Calculations of two-dimensional facility were carried out with using experimentally measured buckling values. Possibility of SUHAM code application for computations of PWR reactor with uranium and MOX fuel has been demonstrated. (authors)

  9. Numerical study of the unsteady flow and heat transfer in channels with periodically mounted square bars

    NASA Astrophysics Data System (ADS)

    Valencia, A.; Martin, J. S.; Gormaz, R.

    Numerical investigations of unsteady laminar flow and heat transfer in a channel of height H with periodically mounted square bars of height d = 0.2H arranged side by side to the approaching flow have been conducted for different transverse separation distances of the bars. Five cases with transverse separation distance of 0, 0.5, 1, 1.5 and 2d for a Reynolds number of 300 in a channel with a periodicity length of 2H were studied. The unsteady Navier-Stokes equations and the energy equation have been solved by a finite volume code with staggered grids combined with the SIMPLEC algorithm and a fine grid resolution. Due to the arrangement of bars detached from the channel walls the flow is unsteady with vortex shedding from the bars. The amplitude and mean values of the drag coefficients, skin friction coefficients, friction factor and Nusselt numbers have a strong dependence of the transverse separation distance of the bars.

  10. Retail pharmacy activities and their automation by bar code recorder, tablet counter and remote computer. A feasibility trial.

    PubMed

    Preece, J F; Finch, J D; Macdonald, A H

    1977-07-01

    The advent of mechanical tablet counters in retail pharmacy, and the development of methods of stock control involving mechanical code reading in other forms of retailing have prompted the trail of a machine which combines both these functions with support from a computer. The wide range of activities over which the combined machine can provide assistance to the pharmacist has been explored. An extension of the system utilising the same data would provide the basis for automation of the pharmaceutical wholesaler and manufacturer, and of the prescription pricing bureau. PMID:885641

  11. Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system.

    PubMed

    Yin, Huanshun; Zhou, Yunlei; Zhang, Haixia; Meng, Xiaomeng; Ai, Shiyun

    2012-03-15

    MicroRNAs (miRNAs), a kind of small, endogenous, noncoding RNAs (∼22 nucleotides), might play a crucial role in early cancer diagnose due to its abnormal expression in many solid tumors. As a result, label-free and PCR-amplification-free assay for miRNAs is of great significance. In this work, a highly sensitive biosensor for sequence specific miRNA-21 detection without miRNA-21 labeling and enrichment was constructed based on the substrate electrode of dendritic gold nanostructure (DenAu) and graphene nanosheets modified glassy carbon electrode. Sulfydryl functionalized locked nucleic acid (LNA) integrated hairpin molecule beacon (MB) probe was used as miRNA-21 capture probe. After hybridized with miRNA-21 and reported DNA loading in gold nanoparticles (AuNPs) and biotin multi-functionalized bio bar codes, streptavidin-HRP was brought to the electrode through the specific interaction with biotin to catalyze the chemical oxidation of hydroquinone by H(2)O(2) to form benzoquinone. The electrochemical reduction signal of benzoquinone was utilized to monitor the miRNA-21 hybridization event. The effect of experimental variables on the amperometric response was investigated and optimized. Based on the specific confirmation of probe and signal amplification, the biosensor showed excellent selectivity and high sensitivity with low detection limit of 0.06 pM. Successful attempts are made in miRNA-21 expression analysis of human hepatocarcinoma BEL-7402 cells and normal human hepatic L02 cells.

  12. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  13. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park.

    PubMed

    Miller, Scott R; Strong, Aaron L; Jones, Kenneth L; Ungerer, Mark C

    2009-07-01

    An understanding of how communities are organized is a fundamental goal of ecology but one which has historically been elusive for microbial systems. We used a bar-coded pyrosequencing approach targeting the V3 region of the bacterial small-subunit rRNA gene to address the factors that structure communities along the thermal gradients of two alkaline hot springs in the Lower Geyser Basin of Yellowstone National Park. The filtered data set included a total of nearly 34,000 sequences from 39 environmental samples. Each was assigned to one of 391 operational taxonomic units (OTUs) identified by their unique V3 sequence signatures. Although the two hot springs differed in their OTU compositions, community resemblance and diversity changed with strikingly similar dynamics along the two outflow channels. Two lines of evidence suggest that these community properties are controlled primarily by environmental temperature. First, community resemblance decayed exponentially with increasing differences in temperature between samples but was only weakly correlated with physical distance. Second, diversity decreased with increasing temperature at the same rate along both gradients but was uncorrelated with other measured environmental variables. This study also provides novel insights into the nature of the ecological interactions among important taxa in these communities. A strong negative association was observed between cyanobacteria and the Chloroflexi, which together accounted for approximately 70% of the sequences sampled. This pattern contradicts the longstanding hypothesis that coadapted lineages of these bacteria maintain tightly cooccurring distributions along these gradients as a result of a producer-consumer relationship. We propose that they instead compete for some limiting resource(s).

  14. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park.

    PubMed

    Miller, Scott R; Strong, Aaron L; Jones, Kenneth L; Ungerer, Mark C

    2009-07-01

    An understanding of how communities are organized is a fundamental goal of ecology but one which has historically been elusive for microbial systems. We used a bar-coded pyrosequencing approach targeting the V3 region of the bacterial small-subunit rRNA gene to address the factors that structure communities along the thermal gradients of two alkaline hot springs in the Lower Geyser Basin of Yellowstone National Park. The filtered data set included a total of nearly 34,000 sequences from 39 environmental samples. Each was assigned to one of 391 operational taxonomic units (OTUs) identified by their unique V3 sequence signatures. Although the two hot springs differed in their OTU compositions, community resemblance and diversity changed with strikingly similar dynamics along the two outflow channels. Two lines of evidence suggest that these community properties are controlled primarily by environmental temperature. First, community resemblance decayed exponentially with increasing differences in temperature between samples but was only weakly correlated with physical distance. Second, diversity decreased with increasing temperature at the same rate along both gradients but was uncorrelated with other measured environmental variables. This study also provides novel insights into the nature of the ecological interactions among important taxa in these communities. A strong negative association was observed between cyanobacteria and the Chloroflexi, which together accounted for approximately 70% of the sequences sampled. This pattern contradicts the longstanding hypothesis that coadapted lineages of these bacteria maintain tightly cooccurring distributions along these gradients as a result of a producer-consumer relationship. We propose that they instead compete for some limiting resource(s). PMID:19429553

  15. Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification.

    PubMed

    Dong, Haifeng; Meng, Xiangdan; Dai, Wenhao; Cao, Yu; Lu, Huiting; Zhou, Shufeng; Zhang, Xueji

    2015-04-21

    Herein, a highly sensitive and selective microRNA (miRNA) detection strategy using DNA-bio-bar-code amplification (BCA) and Nb·BbvCI nicking enzyme-assisted strand cycle for exponential signal amplification was designed. The DNA-BCA system contains a locked nucleic acid (LNA) modified DNA probe for improving hybridization efficiency, while a signal reported molecular beacon (MB) with an endonuclease recognition site was designed for strand cycle amplification. In the presence of target miRNA, the oligonucleotides functionalized magnetic nanoprobe (MNP-DNA) and gold nanoprobe (AuNP-DNA) with numerous reported probes (RP) can hybridize with target miRNA, respectively, to form a sandwich structure. After sandwich structures were separated from the solution by the magnetic field, the RP were released under high temperature to recognize the MB and cleaved the hairpin DNA to induce the dissociation of RP. The dissociated RP then triggered the next strand cycle to produce exponential fluorescent signal amplification for miRNA detection. Under optimized conditions, the exponential signal amplification system shows a good linear range of 6 orders of magnitude (from 0.3 pM to 3 aM) with limit of detection (LOD) down to 52.5 zM, while the sandwich structure renders the system with high selectivity. Meanwhile, the feasibility of the proposed strategy for cell miRNA detection was confirmed by analyzing miRNA-21 in HeLa lysates. Given the high-performance for miRNA analysis, the strategy has a promising application in biological detection and in clinical diagnosis.

  16. That’s nice, but what does IT do? Evaluating the impact of bar coded medication administration by measuring changes in the process of care

    PubMed Central

    Holden, Richard J.; Brown, Roger L.; Alper, Samuel J.; Scanlon, Matthew C.; Patel, Neal R.; Karsh, Ben-Tzion

    2011-01-01

    Health information technology (IT) is widely endorsed as a way to improve key health care outcomes, particularly patient safety. Applying a human factors approach, this paper models more explicitly how health IT might improve or worsen outcomes. The human factors model specifies that health IT transforms the work system, which transforms the process of care, which in turn transforms the outcome of care. This study reports on transformations of the medication administration process that resulted from the implementation of one type of IT: bar coded medication administration (BCMA). Registered nurses at two large pediatric hospitals in the US participated in a survey administered before and after one of the hospitals implemented BCMA. Nurses’ perceptions of the administration process changed at the hospital that implemented BCMA, whereas perceptions of nurses at the control hospital did not. BCMA appeared to improve the safety of the processes of matching medications to the medication administration record and checking patient identification. The accuracy, usefulness, and consistency of checking patient identification improved as well. In contrast, nurses’ perceptions of the usefulness, time efficiency, and ease of the documentation process decreased post-BCMA. Discussion of survey findings is supplemented by observations and interviews at the hospital that implemented BCMA. By considering the way that IT transforms the work system and the work process a practitioner can better predict the kind of outcomes that the IT might produce. More importantly, the practitioner can achieve or prevent outcomes of interest by using design and redesign aimed at controlling work system and process transformations. PMID:21686318

  17. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  18. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  19. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  20. NUBOW-2D Inelastic

    2002-01-31

    This program solves the two-dimensional mechanical equilbrium configuration of a core restraint system, which is subjected to radial temperature and flux gradients, on a time increment basis. At each time increment, the code calculates the irradiation creep and swelling strains for each duct from user-specified creep and swelling correlations. Using the calculated thermal bowing, inelastic bowing and the duct dilation, the corresponding equilibrium forces, beam deflections, total beam displacements, and structural reactivity changes are calculated.

  1. QR Codes 101

    ERIC Educational Resources Information Center

    Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark

    2012-01-01

    A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…

  2. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  3. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  4. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  5. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  6. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  7. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  8. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  9. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg’s and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula

    PubMed Central

    Castro-Chavez, Fernando

    2012-01-01

    Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen

  10. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg's and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula.

    PubMed

    Castro-Chavez, Fernando

    2012-01-01

    BACKGROUND: Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. METHODS: Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. RESULTS: One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. CONCLUSIONS: We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as

  11. Bar dimensions and bar shapes in estuaries

    NASA Astrophysics Data System (ADS)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  12. Measuring Displacement and Contact Forces Among the Particles in Unloading of Slope by PFC2D (Particle Flow Code) / Pomiary przemieszczeń i sił kontaktu pomiędzy cząstkami materialnymi w trakcie wybierania wyrobiska pochyłego przy pomocy programu PFC2D

    NASA Astrophysics Data System (ADS)

    Behbahani, Seyed Saleh; Moarefvand, Parviz; Ahangari, Kaveh; Goshtasbi, Kamran

    2013-06-01

    When instability is observed in the walls of open pit mining, at this time, engineers are faced with a moving mass which is a combination of materials that move on each other and on the main slip surface. Modeling of this movement can have an effective assistance to mining engineers to predict the movement behavior, displacement estimate, and the moving volumes. One of the suitable software which is capable of modeling of sliding behavior is PFC (Particle Flow Code). It is based on Discrete Element Method and released by the Itasca Company. In this paper, the modeling of sliding mass and unloading it in seven stages have been done. During the seven stages of unloading the maximum displacement and maximum contact forces among the particles are obtained. Maximum displacement happened in the fifth stage of the unloading and it is equal to 134.8 meters. Maximum contact forces occurred in the first stage of the unloading after initial equilibrium stage and it is equal to 1917 kN. The model for unloading of sliding mass presented in this paper is just an example and it is not a definite model for unloading of each sliding mass. Unloading of sliding mass depends on the situation of sliding mass and its volume and also mining limitations. W przypadku wystąpienia niestabilności ścian pochyłego wyrobiska odkrywkowego, inżynierowie mają do czynienia z przemieszczającą się masa - będącą kombinacją materiałów przesuwających się względem siebie a także zsuwających się w dół po powierzchni spadu. Modelowanie tego ruchu może znacznie pomóc inżynierom-górnikom w prognozowaniu zachowań terenu w trakcie tego ruchu, do szacowania wielkości przemieszczeń i objętości przemieszczających się mas materiału. Jednym z programów wspomagających modelowanie przemieszczeń tego typu jest oprogramowanie Particle Flow Code PFC, rozprowadzane przez firmę Itasca, wykorzystujące metodę elementów dyskretnych. W pracy tej przeprowadzono modelowanie ruchu

  13. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  14. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  15. EM 2dV1.0.F

    2012-01-05

    Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less

  16. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  17. Uncertainties in the Deprojection of the Observed Bar Properties

    NASA Astrophysics Data System (ADS)

    Zou, Yanfei; Shen, Juntai; Li, Zhao-Yu

    2014-08-01

    In observations, it is important to deproject the two fundamental quantities characterizing a bar, i.e., its length (a) and ellipticity (e), to face-on values before any careful analyses. However, systematic estimation on the uncertainties of the commonly used deprojection methods is still lacking. Simulated galaxies are well suited in this study. We project two simulated barred galaxies onto a two-dimensional (2D) plane with different bar orientations and disk inclination angles (i). Bar properties are measured and deprojected with the popular deprojection methods in the literature. Generally speaking, deprojection uncertainties increase with increasing i. All of the deprojection methods behave badly when i is larger than 60°, due to the vertical thickness of the bar. Thus, future statistical studies of barred galaxies should exclude galaxies more inclined than 60°. At moderate inclination angles (i <= 60°), 2D deprojection methods (analytical and image stretching), and Fourier-based methods (Fourier decomposition and bar-interbar contrast) perform reasonably well with uncertainties ~10% in both the bar length and ellipticity, whereas the uncertainties of the one-dimensional (1D) analytical deprojection can be as high as 100% in certain extreme cases. We find that different bar measurement methods show systematic differences in the deprojection uncertainties. We further discuss the deprojection uncertainty factors with the emphasis on the most important one, i.e., the three-dimensional structure of the bar itself. We construct two triaxial toy bar models that can qualitatively reproduce the results of the 1D and 2D analytical deprojections; they confirm that the vertical thickness of the bar is the main source of uncertainties.

  18. Uncertainties in the deprojection of the observed bar properties

    SciTech Connect

    Zou, Yanfei; Shen, Juntai; Li, Zhao-Yu

    2014-08-10

    In observations, it is important to deproject the two fundamental quantities characterizing a bar, i.e., its length (a) and ellipticity (e), to face-on values before any careful analyses. However, systematic estimation on the uncertainties of the commonly used deprojection methods is still lacking. Simulated galaxies are well suited in this study. We project two simulated barred galaxies onto a two-dimensional (2D) plane with different bar orientations and disk inclination angles (i). Bar properties are measured and deprojected with the popular deprojection methods in the literature. Generally speaking, deprojection uncertainties increase with increasing i. All of the deprojection methods behave badly when i is larger than 60°, due to the vertical thickness of the bar. Thus, future statistical studies of barred galaxies should exclude galaxies more inclined than 60°. At moderate inclination angles (i ≤ 60°), 2D deprojection methods (analytical and image stretching), and Fourier-based methods (Fourier decomposition and bar-interbar contrast) perform reasonably well with uncertainties ∼10% in both the bar length and ellipticity, whereas the uncertainties of the one-dimensional (1D) analytical deprojection can be as high as 100% in certain extreme cases. We find that different bar measurement methods show systematic differences in the deprojection uncertainties. We further discuss the deprojection uncertainty factors with the emphasis on the most important one, i.e., the three-dimensional structure of the bar itself. We construct two triaxial toy bar models that can qualitatively reproduce the results of the 1D and 2D analytical deprojections; they confirm that the vertical thickness of the bar is the main source of uncertainties.

  19. An observer's view of simulated galaxies: disc-to-total ratios, bars and (pseudo-)bulges

    NASA Astrophysics Data System (ADS)

    Scannapieco, Cecilia; Gadotti, Dimitri A.; Jonsson, Patrik; White, Simon D. M.

    2010-09-01

    We use cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies to study the relative importance of the main stellar components, i.e. discs, bulges and bars, at redshift zero. The main aim of this Letter is to understand if estimates of the structural parameters of these components determined from kinematics (as is usually done in simulations) agree well with those obtained using a photometric bulge/disc/bar decomposition (as done in observations). To perform such a comparison, we have produced synthetic observations of the simulation outputs with the Monte Carlo radiative transfer code SUNRISE and used the BUDDA code to make 2D photometric decompositions of the resulting images (in the i and g bands). We find that the kinematic disc-to-total (D/T) ratio estimates are systematically and significantly lower than the photometric ones. While the maximum D/T ratios obtained with the former method are of the order of 0.2, they are typically >0.4, and can be as high as 0.7, according to the latter. The photometric decomposition shows that many of the simulated galaxies have bars, with Bar/T ratios in the range 0.2-0.4, and that bulges have in all cases low Sérsic indices, resembling observed pseudo-bulges instead of classical ones. Simulated discs, bulges and bars generally have similar g - i colours, which are in the blue tail of the distribution of observed colours. This is not due to the presence of young stars, but rather due to low metallicities and poor gas content in the simulated galaxies, which makes dust extinction low. Photometric decompositions thus match the component ratios usually quoted for spiral galaxies better than kinematic decompositions, but the shift is insufficient to make the simulations consistent with observed late-type systems.

  20. Unitary matrix models and 2D quantum gravity

    SciTech Connect

    Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )

    1992-09-21

    In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.

  1. FPCAS2D user's guide, version 1.0

    NASA Astrophysics Data System (ADS)

    Bakhle, Milind A.

    1994-12-01

    The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.

  2. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  3. A Local Reference For Bar Studies In The Distant Universe

    NASA Astrophysics Data System (ADS)

    Menéndez-Delmestre, Karín; Sheth, Kartik; S4G Team

    2015-08-01

    Stellar bars are present in ~2/3 of nearby spirals and play a critical role in the evolution of their hosts. With the advent of large high-resolution imaging surveys, bar studies are being extended to distant galaxies. However, photometric studies of the distant universe are invariably subject to the effects of band-shifting, the progressive shift of the photometric band to bluer rest-frame wavelengths. In order to reliably characterize the intrinsic evolution of bars with redshift, safe from band-shifting effects, it is necessary to establish a local anchor of how bar properties vary with wavelength. We present a detailed multi-band study of bar properties from UV through mid-infrared for a sample of 16 large nearby barred galaxies. Based on ellipticity and position angle profiles resulting from fitting elliptical isophotes to the 2D light distribution of each galaxy, we find that both the bar length and the bar ellipticity increase at bluer wavebands. We attribute the increase in bar length to the frequent presence of prominent star forming knots at the end of bars: these regions are significantly brighter in bluer bands, resulting in the “artificial” lengthening of the bar. The increase in bar ellipticity, on the other hand, is driven by the bulge size: the bulge, composed primarily of old/red stars, is less prominent at bluer bands, allowing for thinner ellipses to be fit within the bar region. The resulting effect is that bars appear longer and thinner at bluer bands. Although we find that ~50% of the bars disappear in the UV, the results on bar ellipticity and length extend to those cases in which the bar is still visible in the UV. These results imply that careful correction for band-shifting effects is necessary for high-z studies to reliably gauge any intrinsic evolution of the bar properties with redshift. In the light of the ample space-based optical data now available, this study may be used as a reference to implement band-shifting corrections to

  4. Gas and Dust in the Orion Bar

    NASA Astrophysics Data System (ADS)

    Arab, H.; Compiègne, M.; Habart, E.; Abergel, A.

    2011-11-01

    We use the DustEM model coupled with a radiative transfer code to fit the Herschel and Spitzer emission of the Orion Bar. The thermal dust emission at the 250-μm peak position is well reproduced but we overestimate the stochastically heated grain emission. The dust model parameters are checked with the Meudon PDR code and are consistent with the spectroscopic data from the SPIRE FTS.

  5. The four bars problem

    NASA Astrophysics Data System (ADS)

    Mauroy, Alexandre; Taslakian, Perouz; Langerman, Stefan; Jungers, Raphaël

    2016-09-01

    A four-bar linkage is a mechanism consisting of four rigid bars which are joined by their endpoints in a polygonal chain and which can rotate freely at the joints (or vertices). We assume that the linkage lies in the 2-dimensional plane so that one of the bars is held horizontally fixed. In this paper we consider the problem of reconfiguring a four-bar linkage using an operation called a pop. Given a four-bar linkage, a pop reflects a vertex across the line defined by its two adjacent vertices along the polygonal chain. Our main result shows that for certain conditions on the lengths of the bars, the neighborhood of any configuration that can be reached by smooth motion can also be reached by pops. The proof relies on the fact that pops are described by a map on the circle with an irrational number of rotation.

  6. Composite carrier bar device

    SciTech Connect

    Felder, D.W.

    1981-09-01

    A composite carrier bar is disclosed for oil well pumping units that utilize sucker rod to operate bottom hole pumps. The bar includes a recessed cavity for receiving a hydraulic ram to operate as a polish rod jack and also a secondary carrier bar for receiving a secondary polish rod clamp for use in respacing bottom hole pumps and serve as a safety clamp during operation.

  7. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  8. Parafermion stabilizer codes

    NASA Astrophysics Data System (ADS)

    Güngördü, Utkan; Nepal, Rabindra; Kovalev, Alexey A.

    2014-10-01

    We define and study parafermion stabilizer codes, which can be viewed as generalizations of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions. Parafermion stabilizer codes can protect against low-weight errors acting on a small subset of parafermion modes in analogy to qudit stabilizer codes. Examples of several smallest parafermion stabilizer codes are given. A locality-preserving embedding of qudit operators into parafermion operators is established that allows one to map known qudit stabilizer codes to parafermion codes. We also present a local 2D parafermion construction that combines topological protection of Kitaev's toric code with additional protection relying on parity conservation.

  9. Observed and simulated power spectra of kinetic and magnetic energy retrieved with 2D inversions

    NASA Astrophysics Data System (ADS)

    Danilovic, S.; Rempel, M.; van Noort, M.; Cameron, R.

    2016-10-01

    Context. Information on the origin of internetwork magnetic field is hidden at the smallest spatial scales. Aims: We try to retrieve the power spectra with certainty to the highest spatial frequencies allowed by current instrumentation. Methods: To accomplish this, we use a 2D inversion code that is able to recover information up to the instrumental diffraction limit. Results: The retrieved power spectra have shallow slopes that extend further down to much smaller scales than has been found before. They do not seem to show any power law. The observed slopes at subgranular scales agree with those obtained from recent local dynamo simulations. Small differences are found for the vertical component of kinetic energy that suggest that observations suffer from an instrumental effect that is not taken into account. Conclusions: Local dynamo simulations quantitatively reproduce the observed magnetic energy power spectra on the scales of granulation down to the resolution limit of Hinode/SP, within the error bars inflicted by the method used and the instrumental effects replicated.

  10. FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide

    NASA Technical Reports Server (NTRS)

    Wawrzynek, Paul; Ingraffea, Anthony

    1994-01-01

    FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.

  11. PARCEQ2D heat transfer grid sensitivity analysis

    SciTech Connect

    Saladino, A.J.; Praharaj, S.C.; Collins, F.G. Tennessee Univ., Tullahoma )

    1991-01-01

    The material presented in this paper is an extension of two-dimensional Aeroassist Flight Experiment (AFE) results shown previously. This study has focused on the heating rate calculations to the AFE obtained from an equilibrium real gas code, with attention placed on the sensitivity of grid dependence and wall temperature. Heat transfer results calculated by the PARCEQ2D code compare well with those computed by other researchers. Temperature convergence in the case of kinetic transport has been accomplished by increasing the wall temperature gradually from 300 K to the wall temperature of 1700 K. 28 refs.

  12. PARCEQ2D heat transfer grid sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Saladino, Anthony J.; Praharaj, Sarat C.; Collins, Frank G.

    1991-01-01

    The material presented in this paper is an extension of two-dimensional Aeroassist Flight Experiment (AFE) results shown previously. This study has focused on the heating rate calculations to the AFE obtained from an equilibrium real gas code, with attention placed on the sensitivity of grid dependence and wall temperature. Heat transfer results calculated by the PARCEQ2D code compare well with those computed by other researchers. Temperature convergence in the case of kinetic transport has been accomplished by increasing the wall temperature gradually from 300 K to the wall temperature of 1700 K.

  13. Homological stabilizer codes

    SciTech Connect

    Anderson, Jonas T.

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  14. BOXER: Fine-flux Cross Section Condensation, 2D Few Group Diffusion and Transport Burnup Calculations

    2010-02-01

    Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).

  15. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  16. Changes in Smoking-Related Norms in Bars Resulting from California's Smoke-Free Workplace Act

    ERIC Educational Resources Information Center

    Satterlund, Travis D.; Lee, Juliet P.; Moore, Roland S.

    2012-01-01

    California's Smoke-Free Workplace Act--CA Labor Code Sec. 6404.5(a)--was extended to bars in 1998. This article analyzes changes in normative beliefs and behaviors related to bar smoking in the decade following the adoption of the Act. In a series of studies evaluating the smoke-free workplace law in bars, researchers conducted extensive…

  17. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  18. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  19. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  20. Short Nuss bar procedure

    PubMed Central

    2016-01-01

    The Nuss procedure is now the preferred operation for surgical correction of pectus excavatum (PE). It is a minimally invasive technique, whereby one to three curved metal bars are inserted behind the sternum in order to push it into a normal position. The bars are left in situ for three years and then removed. This procedure significantly improves quality of life and, in most cases, also improves cardiac performance. Previously, the modified Ravitch procedure was used with resection of cartilage and the use of posterior support. This article details the new modified Nuss procedure, which requires the use of shorter bars than specified by the original technique. This technique facilitates the operation as the bar may be guided manually through the chest wall and no additional stabilizing sutures are necessary. PMID:27747185

  1. Industrial Code Development

    NASA Technical Reports Server (NTRS)

    Shapiro, Wilbur

    1991-01-01

    The industrial codes will consist of modules of 2-D and simplified 2-D or 1-D codes, intended for expeditious parametric studies, analysis, and design of a wide variety of seals. Integration into a unified system is accomplished by the industrial Knowledge Based System (KBS), which will also provide user friendly interaction, contact sensitive and hypertext help, design guidance, and an expandable database. The types of analysis to be included with the industrial codes are interfacial performance (leakage, load, stiffness, friction losses, etc.), thermoelastic distortions, and dynamic response to rotor excursions. The first three codes to be completed and which are presently being incorporated into the KBS are the incompressible cylindrical code, ICYL, and the compressible cylindrical code, GCYL.

  2. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  3. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  4. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  5. 2D materials: to graphene and beyond.

    PubMed

    Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio; Zamora, Félix

    2011-01-01

    This review is an attempt to illustrate the different alternatives in the field of 2D materials. Graphene seems to be just the tip of the iceberg and we show how the discovery of alternative 2D materials is starting to show the rest of this iceberg. The review comprises the current state-of-the-art of the vast literature in concepts and methods already known for isolation and characterization of graphene, and rationalizes the quite disperse literature in other 2D materials such as metal oxides, hydroxides and chalcogenides, and metal-organic frameworks.

  6. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  7. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  8. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  9. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  10. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  11. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  12. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  13. Casting process modeling using CAST2D: The part mold interface

    SciTech Connect

    Shapiro, A.B.

    1991-10-01

    Correctly modeling the physics across the part-mold interface is crucial in predicting the quality of a cast part. Most metals undergo a volume change on solidification (e.g., aluminum -6.6%) and shrinkage on cooling. As the cast metal shrinks, it pulls away from the mol wall creating a gap. This gap effects the thermal contact resistance between the part and mold. The thermal contact resistance increase as the gap widens. This directly effects the cooling rate and ultimately the final cast shape, stress state, and quality of the cast part. CAST2D is a coupled thermal-stress finite element computer code for casting process modeling. This code can be used to predict the final shape and stress state of cast parts. CAST2D couples the heat transfer code TOPAZ2D and solid mechanics code NIKE2D. CAST2D is a code in development. This report presents the status of a general purpose thermal-mechanical interface algorithm. 3 refs., 3 figs.

  14. Toll Bar on Sea

    ERIC Educational Resources Information Center

    Hunter, Dave

    2008-01-01

    In the summer of 2007 the United Kingdom experienced some of the heaviest rainfall since records began. Toll Bar in South Yorkshire featured prominently in media coverage as the village and the homes surrounding it began to flood. Many people lost everything: their homes, their furniture, their possessions. In an effort to come to terms with what…

  15. BARS/SSC/SPHINX

    SciTech Connect

    Herrmann, W. )

    1993-06-06

    BARS is a program which allows retrieval of information from suitable bibliographic databases. Two databases are included, SSC and SPHINX, which together list bibliographic information for some 12,000 references related to the fields of shock compression of condensed media, high rate deformation of solids, and detonation.

  16. BARS/SSC/SPHINX

    SciTech Connect

    Herrmann, W. )

    1993-06-06

    BARS is a program which allows retrieval of information from suitable bibliographic databases. Two databases are included, SSC and SPHINX, which together list bibliographic information for some 12,000 references related to the fields of shoch compression of condensed media, high rate deformation of solids, and detonation.

  17. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  18. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  19. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  20. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  1. Copper damage modeling with the tensile hopkinson bar and gas gun

    SciTech Connect

    Tonks, D. L.; Thissell, W. R.; Trujillo, C. P.; Schwartz, D. S.

    2004-01-01

    Ductile damage nucleation in recovered copper tensile Hopkinson bar specimens has been modeled using the 2D EPIC code. The model has also been successfully applied to spallation gas gun data to greatly expand the pressure range. The split tensile Hopkinson pressure bar permits the creation of damage at fairly high strain rates (10{sup 4}/s) with large plastic strains (100%). Careful momentum trapping allows incipient damage states to be arrested and recovered for metallurgical examination. The use of notched samples allows the pressure - flow stress, or triaxiality, to be varied from 1/3 to about 1.2 to study the interplay of pressure and deviatoric stress. In this paper, we will concentrate on modeling the nucleation of ductile damage in pure copper (Hitachi). With the same material, we also study spallation in a gas gun experiment to obtain the nucleation stress under high pressure and small plastic strain. The goal of the modeling is to obtain a unified nucleation model suitable for both.

  2. Doubled Color Codes

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey

    Combining protection from noise and computational universality is one of the biggest challenges in the fault-tolerant quantum computing. Topological stabilizer codes such as the 2D surface code can tolerate a high level of noise but implementing logical gates, especially non-Clifford ones, requires a prohibitively large overhead due to the need of state distillation. In this talk I will describe a new family of 2D quantum error correcting codes that enable a transversal implementation of all logical gates required for the universal quantum computing. Transversal logical gates (TLG) are encoded operations that can be realized by applying some single-qubit rotation to each physical qubit. TLG are highly desirable since they introduce no overhead and do not spread errors. It has been known before that a quantum code can have only a finite number of TLGs which rules out computational universality. Our scheme circumvents this no-go result by combining TLGs of two different quantum codes using the gauge-fixing method pioneered by Paetznick and Reichardt. The first code, closely related to the 2D color code, enables a transversal implementation of all single-qubit Clifford gates such as the Hadamard gate and the π / 2 phase shift. The second code that we call a doubled color code provides a transversal T-gate, where T is the π / 4 phase shift. The Clifford+T gate set is known to be computationally universal. The two codes can be laid out on the honeycomb lattice with two qubits per site such that the code conversion requires parity measurements for six-qubit Pauli operators supported on faces of the lattice. I will also describe numerical simulations of logical Clifford+T circuits encoded by the distance-3 doubled color code. Based on a joint work with Andrew Cross.

  3. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  4. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  5. Measurements of vertical bar Vcb vertical bar and vertical bar Vub vertical bar at BaBar

    SciTech Connect

    Rotondo, M.

    2005-10-12

    We report results from the BABAR Collaboration on the semileptonic B decays, highlighting the measurements of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb. We describe the techniques used to obtain the matrix element |Vcb| using the measurement of the inclusive B {yields} Xclv process and a large sample of exclusive B {yields} D*lv decays. The vertical bar Vub vertical bar matrix elements has been measured studying different kinematic variables of the B {yields} Xulv process, and also with the exclusive reconstruction of B {yields} {pi}({rho})lv decays.

  6. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  7. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  8. Dark Matter Trapping by Stellar Bars: The Shadow Bar

    NASA Astrophysics Data System (ADS)

    Petersen, Michael S.; Weinberg, Martin D.; Katz, Neal

    2016-09-01

    We investigate the complex interactions between the stellar disc and the dark-matter halo during bar formation and evolution using N-body simulations with fine temporal resolution and optimally chosen spatial resolution. We find that the forming stellar bar traps dark matter in the vicinity of the stellar bar into bar-supporting orbits. We call this feature the shadow bar. The shadow bar modifies both the location and magnitude of the angular momentum transfer between the disc and dark matter halo and adds 10 per cent to the mass of the stellar bar over 4 Gyr. The shadow bar is potentially observable by its density and velocity signature in spheroid stars and by direct dark matter detection experiments. Numerical tests demonstrate that the shadow bar can diminish the rate of angular momentum transport from the bar to the dark matter halo by more than a factor of three over the rate predicted by dynamical friction with an untrapped dark halo, and thus provides a possible physical explanation for the observed prevalence of fast bars in nature.

  9. Parafermion stabilizer codes

    NASA Astrophysics Data System (ADS)

    Gungordu, Utkan; Nepal, Rabindra; Kovalev, Alexey

    2015-03-01

    We define and study parafermion stabilizer codes [Phys. Rev. A 90, 042326 (2014)] which can be viewed as generalizations of Kitaev's one dimensional model of unpaired Majorana fermions. Parafermion stabilizer codes can protect against low-weight errors acting on a small subset of parafermion modes in analogy to qudit stabilizer codes. Examples of several smallest parafermion stabilizer codes are given. Our results show that parafermions can achieve a better encoding rate than Majorana fermions. A locality preserving embedding of qudit operators into parafermion operators is established which allows one to map known qudit stabilizer codes to parafermion codes. We also present a local 2D parafermion construction that combines topological protection of Kitaev's toric code with additional protection relying on parity conservation. This work was supported in part by the NSF under Grants No. Phy-1415600 and No. NSF-EPSCoR 1004094.

  10. Breaking through the Bar

    ERIC Educational Resources Information Center

    Gray, Katti

    2011-01-01

    Howard University School of Law had a problem, and school officials knew it. Over a 20-year period, 40 percent of its graduates who took the Maryland bar exam failed it on their first try. During the next 24 months--the time frame required to determine its "eventual pass rate"--almost 90 percent of the students did pass. What they did not know was…

  11. A New Multi-dimensional General Relativistic Neutrino Hydrodynamics Code for Core-collapse Supernovae. IV. The Neutrino Signal

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Janka, Hans-Thomas

    2014-06-01

    Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M ⊙, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, langErang, of \\bar{\

  12. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  13. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  14. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  15. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  16. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  17. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  18. 2D photonic-crystal optomechanical nanoresonator.

    PubMed

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  19. Iterative 2D deconvolution of portal imaging radiographs.

    PubMed

    Looe, Hui Khee; Harder, Dietrich; Willborn, Kay C; Poppe, Björn

    2011-01-01

    Portal imaging has become an integral part of modern radiotherapy techniques such as IMRT and IGRT. It serves to verify the accuracy of day-to-day patient positioning, a prerequisite for treatment success. However, image blurring attributable to different physical and geometrical effects, analysed in this work, impairs the image quality of the portal images, and anatomical structures cannot always be clearly outlined. A 2D iterative deconvolution method was developed to reduce this image blurring. The affiliated data basis was generated by the separate measurement of the components contributing to image blurring. Secondary electron transport and pixel size within the EPID, as well as geometrical penumbra due to the finite photon source size were found to be the major contributors, whereas photon scattering in the patient is less important. The underlying line-spread kernels of these components were shown to be Lorentz functions. This implies that each of these convolution kernels and also their combination can be characterized by a single characteristic, the width parameter λ of the Lorentz function. The overall resulting λ values were 0.5mm for 6 MV and 0.65 mm for 15 MV. Portal images were deconvolved using the point-spread function derived from the Lorentz function together with the experimentally determined λ values. The improvement of the portal images was quantified in terms of the modulation transfer function of a bar pattern. The resulting clinical images show a clear enhancement of sharpness and contrast.

  20. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  1. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  2. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  3. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  4. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  5. areaDetector: Software for 2-D Detectors in EPICS

    SciTech Connect

    Rivers, M.

    2011-09-23

    areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

  6. TOPAZ2D validation status report, August 1990

    SciTech Connect

    Davis, B.

    1990-08-01

    Analytic solutions to two heat transfer problems were used to partially evaluate the performance TOPAZ, and LLNL finite element heat transfer code. The two benchmark analytic solutions were for: 2D steady state slab, with constant properties, constant uniform temperature boundary conditions on three sides, and constant temperature distribution according to a sine function on the fourth side; 1D transient non-linear, with temperature dependent conductivity and specific heat (varying such that the thermal diffusivity remained constant), constant heat flux on the front face and adiabatic conditions on the other face. The TOPAZ solution converged to the analytic solution in both the transient and the steady state problem. Consistent mass matrix type of analysis yielded best performance for the transient problem, in the late-time response; but notable unnatural anomalies were observed in the early-time temperature response at nodal locations near the front face. 5 refs., 22 figs.

  7. areaDetector: Software for 2-D Detectors in EPICS

    SciTech Connect

    Rivers, Mark L.

    2010-06-23

    areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

  8. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  9. MAZE. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J.O.

    1992-02-10

    MAZE is an interactive input generator for two-dimensional finite element codes. MAZE has three phases. In the first phase, lines and parts are defined. The first phase is terminated by the `ASSM` or `PASSM` command which merges all parts. In the second phase, boundary conditions may be specified, slidelines may be defined, parts may be merged to eliminate nodes along common interfaces, boundary nodes may be moved for graded zoning, the mesh may be smoothed, and load curves may be defined. The second phase is terminated by the `WBCD` command which causes MAZE to write the output file as soon as the `T` terminate command is typed. In the third phase, material properties may be defined. Commands that apply to the first phase may not be used in the second or third; likewise, commands that apply in the second may not be used in the first and third, or commands that apply in the third in the first and second. Nine commands - TV, Z, GSET, PLOTS, GRID, NOGRID, FRAME, NOFRAME, and RJET are available in all phases. Comments may be added anywhere in the input stream by prefacing the comment with `C`. Any DYNA2D or NIKE2D material and equation-of-state model may be defined via the MAT and EOS commands, respectively. MAZE may be terminated after phase two; it is not necessary to define the materials.

  10. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on an equal footing. Electron bandstructure is treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are consistent with 1D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller leakage current than the longer gate length device without a significant trade-off in on-current.

  11. MAZE. Generates 2D Input for DYNA, NIKE & TOPAZ

    SciTech Connect

    Hallquist, J.O.

    1992-02-12

    MAZE is an interactive input generator for two-dimensional finite element codes. MAZE has three phases. In the first phase, lines and parts are defined. The first phase is terminated by the `ASSM` or `PASSM` command which merges all parts. In the second phase, boundary conditions may be specified, slidelines may be defined, parts may be merged to eliminate nodes along common interfaces, boundary nodes may be moved for graded zoning, the mesh may be smoothed, and load curves may be defined. The second phase is terminated by the `WBCD` command which causes MAZE to write the output file as soon as the `T` terminate command is typed. In the third phase, material properties may be defined. Commands that apply to the first phase may not be used in the second or third; likewise, commands that apply in the second may not be used in the first and third, or commands that apply in the third in the first and second. Nine commands - TV, Z, GSET, PLOTS, GRID, NOGRID, FRAME, NOFRAME, and RJET are available in all phases. Comments may be added anywhere in the input stream by prefacing the comment with `C`. Any DYNA2D or NIKE2D material and equation-of-state model may be defined via the MAT and EOS commands, respectively. MAZE may be terminated after phase two; it is not necessary to define the materials.

  12. MAZE. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J.O.

    1992-02-24

    MAZE is an interactive input generator for two-dimensional finite element codes. MAZE has three phases. In the first phase, lines and parts are defined. The first phase is terminated by the `ASSM` or `PASSM` command which merges all parts. In the second phase, boundary conditions may be specified, slidelines may be defined, parts may be merged to eliminate nodes along common interfaces, boundary nodes may be moved for graded zoning, the mesh may be smoothed, and load curves may be defined. The second phase is terminated by the `WBCD` command which causes MAZE to write the output file as soon as the `T` terminate command is typed. In the third phase, material properties may be defined. Commands that apply to the first phase may not be used in the second or third; likewise, commands that apply in the second may not be used in the first and third, or commands that apply in the third in the first and second. Nine commands - TV, Z, GSET, PLOTS, GRID, NOGRID, FRAME, NOFRAME, and RJET are available in all phases. Comments may be added anywhere in the input stream by prefacing the comment with `C`. Any DYNA2D or NIKE2D material and equation-of-state model may be defined via the MAT and EOS commands, respectively. MAZE may be terminated after phase two; it is not necessary to define the materials.

  13. MAZE. Generates 2D Input for DYNA, NIKE, & TOPAZ

    SciTech Connect

    Hallquist, J.O.

    1992-02-10

    MAZE is an interactive input generator for two-dimensional finite element codes. MAZE has three phases. In the first phase, lines and parts are defined. The first phase is terminated by the `ASSM` or `PASSM` command which merges all parts. In the second phase, boundary conditions may be specified, slidelines may be defined, parts may be merged to eliminate nodes along common interfaces, boundary nodes may be moved for graded zoning, the mesh may be smoothed, and load curves may be defined. The second phase is terminated by the `WBCD` command which causes MAZE to write the output file as soon as the `T` terminate command is typed. In the third phase, material properties may be defined. Commands that apply to the first phase may not be used in the second or third; likewise, commands that apply in the second may not be used in the first and third, or commands that apply in the third in the first and second. Nine commands - TV, Z, GSET, PLOTS, GRID, NOGRID, FRAME, NOFRAME, and RJET are available in all phases. Comments may be added anywhere in the input stream by prefacing the comment with `C`. Any DYNA2D or NIKE2D material and equation-of-state model may be defined via the MAT and EOS commands, respectively. MAZE may be terminated after phase two; it is not necessary to define the materials.

  14. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  15. Beyond Hopkinson's bar.

    PubMed

    Pierron, F; Zhu, H; Siviour, C

    2014-08-28

    In order to perform experimental identification of high strain rate material models, engineers have only a very limited toolbox based on test procedures developed decades ago. The best example is the so-called split Hopkinson pressure bar based on the bar concept introduced 100 years ago by Bertram Hopkinson to measure blast pulses. The recent advent of full-field deformation measurements using imaging techniques has allowed novel approaches to be developed and exciting new testing procedures to be imagined for the first time. One can use this full-field information in conjunction with efficient numerical inverse identification tools such as the virtual fields method (VFM) to identify material parameters at high rates. The underpinning novelty is to exploit the inertial effects developed in high strain rate loading. This paper presents results from a new inertial impact test to obtain stress-strain curves at high strain rates (here, up to 3000 s(-1)). A quasi-isotropic composite specimen is equipped with a grid and images are recorded with the new HPV-X camera from Shimadzu at 5 Mfps and the SIMX16 camera from Specialised Imaging at 1 Mfps. Deformation, strain and acceleration fields are then input into the VFM to identify the stiffness parameters with unprecedented quality.

  16. Bar piezoelectric ceramic transformers.

    PubMed

    Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.

  17. Comparison of 1D and 2D CSR Models with Application to the FERMI@ELETTRA Bunch Compressors

    SciTech Connect

    Bassi, G.; Ellison, J.A.; Heinemann, K.

    2011-03-28

    We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces [1]. The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi{at}Elettra first bunch compressor with the configuration described in [1].

  18. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  19. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  20. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  1. Stellar bar in NGC 1068

    SciTech Connect

    Scoville, N.Z.; Matthews, K.; Carico, D.P.; Sanders, D.B.

    1988-04-01

    High-resolution 2-micron mapping of the inner disk of NGC 1068 reveals a bar extending to + or - 16 arcsec from the nucleus at position angle 48 deg. The stellar mass distribution, presumably traced by the near-infrared light, is therefore strongly nonaxisymmetric with a contrast of approximately 3:1 between the major and minor axes of the bar. This large-scale galactic structure is probably responsible for the concentration of molecular clouds in a ring just outside the bar. The massive bar may also drive noncircular motions in the inner disk of the galaxy as possibly seen in the gaseous emission lines. 21 references.

  2. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    NASA Astrophysics Data System (ADS)

    Akca, Irfan

    2016-04-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  3. Forced bars induced by variations of channel width: Implications for incipient bifurcation

    NASA Astrophysics Data System (ADS)

    Wu, Fu-Chun; Yeh, Tzu-Hao

    2005-06-01

    In this study we investigate forced bars that form in a channel with periodic width variations. A depth-averaged two-dimensional (2-D) model incorporating a simplified correction for the helical flows induced by streamline curvature is used to obtain analytical solution of bed deformation. Flume experiments are conducted to verify the model results. With the correction included, the 2-D model will be comparable to the 3-D model. Because the no-slip condition is relaxed at the sidewalls, the model gives distorted results in the near-bank region, particularly at narrow sections, but the bed topography is satisfactory for the major part of the channel. The forced bars are classified into four types according to the locations of peak deformations. Transition from one type to another is controlled mainly by the aspect ratio β. Increasing the value of β exhibits sequentially the purely central bars (mode 1), transverse bars (central mode 1), side bars, and transverse bars (central mode 2). The analytical solution is used to derive a criterion for central bar formation, which implies a condition required for incipient bifurcation. Given the bank profile, flow, and sediment conditions, the central bars of mode 1 would develop for β < βc1 (a lower critical value), the central bars of mode 2 would develop for β > βc2 (an upper critical value), whereas side bars would form for βc1 < β < βc2. Such criteria for formation of different bar patterns are necessary but not sufficient conditions for establishing stable regimes.

  4. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  5. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  6. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  7. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  8. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  9. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  10. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  11. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  12. Applying Schwarzschild's orbit superposition method to barred or non-barred disc galaxies

    NASA Astrophysics Data System (ADS)

    Vasiliev, Eugene; Athanassoula, E.

    2015-07-01

    We present an implementation of the Schwarzschild orbit superposition method, which can be used for constructing self-consistent equilibrium models of barred or non-barred disc galaxies, or of elliptical galaxies with figure rotation. This is a further development of the publicly available code SMILE; its main improvements include a new efficient representation of an arbitrary gravitational potential using two-dimensional spline interpolation of Fourier coefficients in the meridional plane, as well as the ability to deal with rotation of the density profile and with multicomponent mass models. We compare several published methods for constructing composite axisymmetric disc-bulge-halo models and demonstrate that our code produces the models that are closest to equilibrium. We also apply it to create models of triaxial elliptical galaxies with cuspy density profiles and figure rotation, and find that such models can be found and are stable over many dynamical times in a wide range of pattern speeds and angular momenta, covering both slow- and fast-rotator classes. We then attempt to create models of strongly barred disc galaxies, using an analytic three-component potential, and find that it is not possible to make a stable dynamically self-consistent model for this density profile. Finally, we take snapshots of two N-body simulations of barred disc galaxies embedded in nearly-spherical haloes, and construct equilibrium models using only information on the density profile of the snapshots. We demonstrate that such reconstructed models are in near-stationary state, in contrast with the original N-body simulations, one of which displayed significant secular evolution.

  13. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  14. 2-D simulation of a waveguide free electron laser having a helical undulator

    SciTech Connect

    Kim, S.K.; Lee, B.C.; Jeong, Y.U.

    1995-12-31

    We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.

  15. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  16. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  17. 'Light bar' attitude indicator

    NASA Technical Reports Server (NTRS)

    Enevoldson, E. K.; Horton, V. W.

    1982-01-01

    The development and evaluation of a light bar attitude indicator to help maintain proper aircraft attitude during high altitude night flying is described. A standard four-inch ADI was modified to project an artificial horizon across the instrument panel for pitch and roll information. A light bulb was put in the center of the ADI and a thin slit cut on the horizon, resulting in a thin horizontal sheet of light projecting from the instrument. The intensity of the projected beam is such that it can only be seen in a darkened room or at night. The beam on the instrument panel of the T-37 jet trainer is shown, depicting various attitudes. The favorable comments of about 50 pilots who evaluated the instrument are summarized, including recommendations for improving the instrument. Possible uses for the instrument to ease the pilot task are listed. Two potential problems in using the device are the development of pilot complacency and an upright-inverted ambiguity in the instrument.

  18. Moving finite elements in 2-D

    NASA Technical Reports Server (NTRS)

    Gelinas, R. J.; Doss, S. K.; Vajk, J. P.; Djomehri, J.; Miller, K.

    1983-01-01

    The mathematical background regarding the moving finite element (MFE) method of Miller and Miller (1981) is discussed, taking into account a general system of partial differential equations (PDE) and the amenability of the MFE method in two dimensions to code modularization and to semiautomatic user-construction of numerous PDE systems for both Dirichlet and zero-Neumann boundary conditions. A description of test problem results is presented, giving attention to aspects of single square wave propagation, and a solution of the heat equation.

  19. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  20. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  1. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  2. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  3. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  4. Longshore Bars and Bragg Resonance

    NASA Astrophysics Data System (ADS)

    Mei, C. C.; Hara, T.; Yu, J.

    Longshore bars are often found on many gently sloping beaches of large lakes, bays and sea coasts. A beautiful example can be seen in Fig. 20.1 which gives the aerial view of the Escambia Bay in Florida. Several other typical observations are summarized in Table 20.1. In contrast to bars found in rivers where the flows are essentially unidirectional and characterized by very long time scales (see Chap. 15), coastal bars are usually the products of waves. Of scientific interests are the detailed physics of their generation by waves, as well as their influence on the propagation of waves.

  5. Changes in smoking-related norms in bars resulting from California's Smoke-Free Workplace Act.

    PubMed

    Satterlund, Travis D; Lee, Juliet P; Moore, Roland S

    2012-01-01

    California's Smoke-Free Workplace Act--CA Labor Code Sec. 6404.5(a)--was extended to bars in 1998. This article analyzes changes in normative beliefs and behaviors related to bar smoking in the decade following the adoption of the Act. In a series of studies evaluating the smoke-free workplace law in bars, researchers conducted extensive observations and interviews with bar staff and patrons, health officials, and law enforcement personnel in three California counties. Smoking outside became a normal pause in the social environment and created a new type of bar socializing for outside smokers. Although some bar owners and staff reported initially resenting the responsibility to uphold the law, once norms regarding cigarettes and smoking began changing, bar workers experienced less conflict in upholding the law. Non-smoking behavior within bars also became the normative behavior for bar patrons. California's Smoke-Free Workplace Act has both reflected and encouraged normative beliefs and behaviors related to smoking in bars. The findings indicate that such shifts are possible even in contexts where smoking behaviors and attitudes supporting smoking were deeply entrenched. Recommendations include attending to the synergistic effect of education and policy in effective tobacco control programs.

  6. Detection of Leptomeningeal Metastasis by Contrast-Enhanced 3D T1-SPACE: Comparison with 2D FLAIR and Contrast-Enhanced 2D T1-Weighted Images

    PubMed Central

    Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo

    2016-01-01

    Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of

  7. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  8. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  9. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  10. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  11. Triple bar, high efficiency mechanical sealer

    DOEpatents

    Pak, Donald J.; Hawkins, Samantha A.; Young, John E.

    2013-03-19

    A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.

  12. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  13. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  14. Position control using 2D-to-2D feature correspondences in vision guided cell micromanipulation.

    PubMed

    Zhang, Yanliang; Han, Mingli; Shee, Cheng Yap; Ang, Wei Tech

    2007-01-01

    Conventional camera calibration that utilizes the extrinsic and intrinsic parameters of the camera and the objects has certain limitations for micro-level cell operations due to the presence of hardware deviations and external disturbances during the experimental process, thereby invalidating the extrinsic parameters. This invalidation is often neglected in macro-world visual servoing and affects the visual image processing quality, causing deviation from the desired position in micro-level cell operations. To increase the success rate of vision guided biological micromanipulations, a novel algorithm monitoring the changing image pattern of the manipulators including the injection micropipette and cell holder is designed and implemented based on 2 dimensional (2D)-to 2D feature correspondences and can adjust the manipulator and perform position control simultaneously. When any deviation is found, the manipulator is retracted to the initial focusing plane before continuing the operation.

  15. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-08-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of x2 orbits. All roundish nuclear rings in our simulations settle in the range of x2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the x2 orbital family, i.e. round nuclear rings are allowed only in the radial range of x2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter f_ring measured from the rotation curve. We find an empirical relation between the bar parameters and f_ring, and apply it to measure bar pattern speed in a sample of barred galaxies with nuclear rings.

  16. Nanoporosity of Si (100) bars

    NASA Astrophysics Data System (ADS)

    Novikov, S. N.; Timoshenkov, S. P.; Minaev, V. S.; Goryunova, E. P.; Gerasimenko, N. N.; Smirnov, D. I.

    2016-09-01

    Si(100) samples cut from a typical bar (100 mm in diameter) prepared using industrial technology are studied. Measurements of the electron work function (EWF) show that the size effects in these samples (a reduction in thickness along with a sample's area and the EWF) detected earlier were due to nanostructure porosity that was buried by the technological treatment of a bar's surface. This hidden nanoporosity is assumed to be a manifestation of the secondary crystal structure.

  17. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  18. 'Brukin2D': a 2D visualization and comparison tool for LC-MS data

    PubMed Central

    Tsagkrasoulis, Dimosthenis; Zerefos, Panagiotis; Loudos, George; Vlahou, Antonia; Baumann, Marc; Kossida, Sophia

    2009-01-01

    Background Liquid Chromatography-Mass Spectrometry (LC-MS) is a commonly used technique to resolve complex protein mixtures. Visualization of large data sets produced from LC-MS, namely the chromatogram and the mass spectra that correspond to its compounds is the focus of this work. Results The in-house developed 'Brukin2D' software, built in Matlab 7.4, which is presented here, uses the compound data that are exported from the Bruker 'DataAnalysis' program, and depicts the mean mass spectra of all the chromatogram compounds from one LC-MS run, in one 2D contour/density plot. Two contour plots from different chromatograph runs can then be viewed in the same window and automatically compared, in order to find their similarities and differences. The results of the comparison can be examined through detailed mass quantification tables, while chromatogram compound statistics are also calculated during the procedure. Conclusion 'Brukin2D' provides a user-friendly platform for quick, easy and integrated view of complex LC-MS data. The software is available at . PMID:19534737

  19. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone.

    PubMed Central

    Wu, D; Otton, S V; Sproule, B A; Busto, U; Inaba, T; Kalow, W; Sellers, E M

    1993-01-01

    1. In microsomes prepared from three human livers, methadone competitively inhibited the O-demethylation of dextromethorphan, a marker substrate for CYP2D6. The apparent Ki value of methadone ranged from 2.5 to 5 microM. 2. Two hundred and fifty-two (252) white Caucasians, including 210 unrelated healthy volunteers and 42 opiate abusers undergoing treatment with methadone were phenotyped using dextromethorphan as the marker drug. Although the frequency of poor metabolizers was similar in both groups, the extensive metabolizers among the opiate abusers tended to have higher O-demethylation metabolic ratios and to excrete less of the dose as dextromethorphan metabolites than control extensive metabolizer subjects. These data suggest inhibition of CYP2D6 by methadone in vivo as well. 3. Because methadone is widely used in the treatment of opiate abuse, inhibition of CYP2D6 activity in these patients might contribute to exaggerated response or unexpected toxicity from drugs that are substrates of this enzyme. PMID:8448065

  20. Bar Formation from Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2016-05-01

    Both simulations and observations reveal that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar; bars form in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities >0.5, sizes on the order of the scale length of the disk, and persist to the end of our simulations, ~5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with flyby interactions than previously thought.

  1. Maximal dismounts from high bar.

    PubMed

    Hiley, Michael J; Yeadon, Maurice R

    2005-11-01

    In men's artistic gymnastics the triple straight somersault dismount from the high bar has yet to be performed in competition. The present study used a simulation model of a gymnast and the high bar apparatus (J. Appl. Biomech. 19(2003a) 119) to determine whether a gymnast could produce the required angular momentum and flight to complete a triple straight somersault dismount. Optimisations were carried out to maximise the margin for error in timing the bar release for a given number of straight somersaults in flight. The amount of rotation potential (number of straight somersaults) the model could produce whilst maintaining a realistic margin for error was determined. A simulation model of aerial movement (J. Biomech.23 (1990) 85) was used to find what would be possible with this amount of rotation potential. The model was able to produce sufficient angular momentum and time in the air to complete a triple straight somersault dismount. The margin for error when releasing the bar using the optimum technique was 28 ms, which is small when compared with the mean margin for error determined for high bar finalists at the 2000 Sydney Olympic Games (55 ms). Although the triple straight somersault dismount is theoretically possible, it would require close to maximum effort and precise timing of the release from the bar. However, when the model was required to have a realistic margin for error, it was able to produce sufficient angular momentum for a double twisting triple somersault dismount. PMID:16154409

  2. BAR FORMATION FROM GALAXY FLYBYS

    SciTech Connect

    Lang, Meagan; Holley-Bockelmann, Kelly; Sinha, Manodeep E-mail: k.holley@vanderbilt.edu

    2014-08-01

    Recently, both simulations and observations have revealed that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, nearing/comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar with bars forming in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities ≳ 0.5, sizes on the order of the host disk's scale length, and persist to the end of our simulations, ∼5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with interactions than previously thought.

  3. Gravitational Wave Signals from 2D and 3D Core Collapse Supernova Explosions

    NASA Astrophysics Data System (ADS)

    Yakunin, Konstantin; Mezzacappa, Anthony; Marronetti, Pedro; Bruenn, Stephen; Hix, W. Raphael; Lentz, Eric J.; Messer, O. E. Bronson; Harris, J. Austin; Endeve, Eirik; Blondin, John

    2016-03-01

    We study two- and three-dimensional (2D and 3D) core-collapse supernovae (CCSN) using our first-principles CCSN simulations performed with the neutrino hydrodynamics code CHIMERA. The following physics is included: Newtonian hydrodynamics with a nuclear equation of state capable of describing matter in both NSE and non-NSE, MGFLD neutrino transport with realistic neutrino interactions, an effective GR gravitational potential, and a nuclear reaction network. Both our 2D and 3D models achieve explosion, which in turn enables us to determine their complete gravitational wave signals. In this talk, we present them, and we analyze the similarities and differences between the 2D and 3D signals.

  4. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  5. 2D MHD test-particle simulations in modeling geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Li, Z.; Elkington, S. R.; Hudson, M. K.; Murphy, J. J.; Schmitt, P.; Wiltberger, M. J.

    2012-12-01

    The effects of magnetic storms on the evolution of the electron radiation belts are studied using MHD test-particle simulations. The 2D guiding center code developed by Elkington et al. (2002) has been used to simulate particle motion in the Solar Magnetic equatorial plane in the MHD fields calculated from the Lyon-Fedder-Mobarry global MHD code. However, our study shows that the B-minimum plane is well off the SM equatorial plane during solstice events. Since 3D test-particle simulation is computationally expensive, we improve the 2D model by pushing particles in the B-minimum surface instead of the SM equatorial plane. Paraview software is used to visualize the LFM data file and to find the B-minimum surface. Magnetic and electric fields on B-minimum surface are projected to the equatorial plane for particle pushing.

  6. Application of 2D graphic representation of protein sequence based on Huffman tree method.

    PubMed

    Qi, Zhao-Hui; Feng, Jun; Qi, Xiao-Qin; Li, Ling

    2012-05-01

    Based on Huffman tree method, we propose a new 2D graphic representation of protein sequence. This representation can completely avoid loss of information in the transfer of data from a protein sequence to its graphic representation. The method consists of two parts. One is about the 0-1 codes of 20 amino acids by Huffman tree with amino acid frequency. The amino acid frequency is defined as the statistical number of an amino acid in the analyzed protein sequences. The other is about the 2D graphic representation of protein sequence based on the 0-1 codes. Then the applications of the method on ten ND5 genes and seven Escherichia coli strains are presented in detail. The results show that the proposed model may provide us with some new sights to understand the evolution patterns determined from protein sequences and complete genomes.

  7. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  8. Self-Consistent Models of Barred Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Kaufmann, David E.

    1994-02-01

    Self-consistent models of barred spiral galaxies based on the observed properties of NGC3992, NGC1073, and NGC1398 are constructed and analyzed. The method of model construction is a slight modification of the technique developed by Contopoulos and Grosbol for the case of unbarred spirals. The main factors which influence self-consistency are the amplitude, pitch angle, scale length and z-thickness of the spirals, the mass of the bar, the angular velocity of the bar/spiral pattern, the central surface density and scale length of the disk, and the central value and slope of the velocity dispersion. Stochastic orbits whose Jacobi constants lie between the values at the Lagrange points L_1 and L_4 are found to play a significant role in supporting self-consistent spiral structure, especially in the regions just beyond the ends of the bar. Stochastic orbits whose Jacobi constants lie below this interval tend to fill more or less uniformly either rings in the outer disk or ovals in the bar region, depending on the regions to which they are confined. Stochastic orbits whose Jacobi constants lie above that of L_4 also tend not to support any imposed structure. The model bars are predominantly comprised of elongated orbits trapped around the x_1 family and terminate close to corotation. The response of gas to the forces of the most successful models is calculated using a two-dimensional smoothed particle hydrodynamics code. The results confirm that a bar alone is not sufficient to drive a strong spiral response in the gas of the outer disk. An underlying spiral structure in the more massive stellar component appears to be required. If stellar spirals are present, strong gas spirals may persist for long times. (SECTION: Dissertation Summaries)

  9. Self-consistent models of barred spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kaufmann, David Eugene

    1993-01-01

    Self-consistent models of barred spiral galaxies based on the observed properties of NGC 3992, NGC 1073, and NGC 1398 are constructed and analyzed. The method of model construction is a slight modification of the technique developed by Contopoulos and Grosbol for the case of unbarred spirals. The main factors which influence self-consistency are the amplitude, pitch angle, scale length and z-thickness of the spirals, the mass of the bar, the angular velocity of the bar/spiral pattern, the central surface density and scale length of the disk, and the central value and slope of the velocity dispersion. Stochastic orbits whose Jacobi constants lie between the values at the Lagrange points L1 and L4 are found to play a significant role in supporting self-consistent spiral structure, especially in the regions just beyond the ends of the bar. Stochastic orbits whose Jacobi constants lie below this interval tend to fill more or less uniformly either rings in the outer disk or ovals in the bar region, depending on the regions to which they are confined. Stochastic orbits whose Jacobi constants lie above that of L4 also tend not to support any imposed structure. The model bars are predominantly comprised of elongated orbits trapped around the chi1 family and terminate close to corotation. The response of gas to the forces of the most successful models is calculated using a two-dimensional smoothed particle hydrodynamics code. The results confirm that a bar alone is not sufficient to drive a strong spiral response in the gas of the outer disk. An underlying spiral structure in the more massive stellar component appears to be required. If stellar spirals are present, strong gas spirals may persist for long times.

  10. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  11. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  12. Nonlinear Heat Transfer 2d Structure

    1987-09-01

    DOT-BPMD is a general-purpose, finite-element, heat-transfer program used to predict thermal environments. The code considers linear and nonlinear transient or steady-state heat conduction in two-dimensional planar or axisymmetric representations of structures. Capabilities are provided for modeling anisotropic heterogeneous materials with temperature-dependent thermal properties and time-dependent temperature, heat flux, convection and radiation boundary conditions, together with time-dependent internal heat generation. DOT-BPMD may be used in the evaluation of steady-state geothermal gradients as well as in themore » transient heat conduction analysis of repository and waste package subsystems. Strengths of DOT-BPMD include its ability to account for a wide range of possible boundary conditions, nonlinear material properties, and its efficient equation solution algorithm. Limitations include the lack of a three-dimensional analysis capability, no radiative or convective internal heat transfer, and the need to maintain a constant time-step in each program execution.« less

  13. Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    NASA Technical Reports Server (NTRS)

    Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.

    1980-01-01

    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.

  14. 2-D Reflectometer Modeling for Optimizing the ITER Low-field Side Reflectometer System

    SciTech Connect

    Kramer, G.J.; Nazikian, R.; Valeo, E.J.; Budny, R.V.; Kessel, C.; Johnson, D.

    2005-09-02

    The response of a low-field side reflectometer system for ITER is simulated with a 2?D reflectometer code using a realistic plasma equilibrium. It is found that the reflected beam will often miss its launch point by as much as 40 cm and that a vertical array of receiving antennas is essential in order to observe a reflection on the low-field side of ITER.

  15. 2-D MHD numerical simulations of EML plasma armatures with ablation

    NASA Astrophysics Data System (ADS)

    Boynton, G. C.; Huerta, M. A.; Thio, Y. C.

    1993-01-01

    We use a 2-D) resistive MHD code to simulate an EML plasma armature. The energy equation includes Ohmic heating, radiation heat transport and the ideal gas equation of state, allowing for variable ionization using the Saha equations. We calculate rail ablation taking into account the flow of heat into the interior of the rails. Our simulations show the development of internal convective flows and secondary arcs. We use an explicit Flux Corrected Transport algorithm to advance all quantities in time.

  16. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-06-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of {x}2 orbits. All roundish nuclear rings in our simulations settle in the range of {x}2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the {x}2 orbital family, i.e., round nuclear rings are allowed only in the radial range of {x}2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter {f}{ring} measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.

  17. /bar p/p collider physics

    SciTech Connect

    Green, D.

    1989-03-01

    This note encompasses a set of six lectures given at the summer school held at Campos Do Jordao in January of 1989 near Sao Paulo, Brazil. The intent of the lectures was to describe the physics of /bar p/p at CERN and Fermilab. Particular attention has been paid to making a self contained presentation to a prospective audience of graduate students. Since large Monte Carlo codes might not be available to all members of this audience, great reliance was placed on ''back of the envelope estimates.'' Emphasis was also placed on experimental data rather than theoretical speculation, since predictions for, for example, supersymmetric particle production are easily obtained by transcription of formulae already obtained. 9 refs., 67 figs., 2 tabs.

  18. FLAC/SPECFEM2D coupled numerical simulation of wavefields near excavation boundaries in underground mines

    NASA Astrophysics Data System (ADS)

    Wang, X.; Cai, M.

    2016-11-01

    A nonlinear velocity model that considers the influence of confinement and rock mass failure on wave velocity is developed. A numerical method, which couples FLAC and SPECFEM2D, is developed for ground motion modeling near excavation boundaries in underground mines. The motivation of developing the FLAC/SPECFEM2D coupled approach is to take merits of each code, such as the stress analysis capability in FLAC and the powerful wave propagation analysis capability in SPECFEM2D. Because stress redistribution and failure of the rock mass around an excavation are considered, realistic non-uniform velocity fields for the SPECFEM2D model can be obtained, and this is a notable feature of this study. Very large differences in wavefields and ground motion are observed between the results from the non-uniform and the uniform velocity models. If the non-uniform velocity model is used, the ground motion around a stope can be amplified up to five times larger than that given by the design scaling law. If a uniform velocity model is used, the amplification factor is only about three. Using the FLAC/SPECFEM2D coupled modeling approach, accurate velocity models can be constructed and this in turn will assist in predicting ground motions accurately around underground excavations.

  19. Pareto joint inversion of 2D magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2015-04-01

    In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where

  20. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  1. Fast acceleration of 2D wave propagation simulations using modern computational accelerators.

    PubMed

    Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H; Kay, Matthew

    2014-01-01

    Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than 150x speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least 200x faster than the sequential implementation and 30x faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of 120x with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of

  2. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  3. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  4. BARS/SSC/SPHINX. BARS Bibliographic Data Retrieval System

    SciTech Connect

    Herrmann, W.

    1993-05-01

    BARS is a program which allows retrieval of information from suitable bibliographic databases. Two databases are included, SSC and SPHINX, which together list bibliographic information for some 12,000 references related to the fields of shock compression of condensed media, high rate deformation of solids, and detonation.

  5. BARS/SSC/SPHINX. BARS Bibliographic Data Retrieval System

    SciTech Connect

    Herrmann, W.

    1993-06-06

    BARS is a program which allows retrieval of information from suitable bibliographic databases. Two databases are included, SSC and SPHINX, which together list bibliographic information for some 12,000 references related to the fields of shock compression of condensed media, high rate deformation of solids, and detonation.

  6. Bar-spheroid interaction in galaxies

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Weinberg, Martin D.

    1992-01-01

    N-body simulation and linear analysis is employed to investigate the secular evolution of barred galaxies, with emphasis on the interaction between bars and spheroidal components of galaxies. This interaction is argued to drive secular transfer of angular momentum from bars to spheroids, primarily through resonant coupling. A moderately strong bar, having mass within corotation about 0.3 times the enclosed spheroid mass, is predicted to shed all its angular momentum typically in less than about 10 exp 9 yr. Even shorter depletion time scales are found for relatively more massive bars. It is suggested either that spheroids around barred galaxies are structured so as to inhibit strong coupling with bars, or that bars can form by unknown processes long after disks are established. The present models reinforce the notion that bars can drive secular evolution in galaxies.

  7. Installed Transonic 2D Nozzle Nacelle Boattail Drag Study

    NASA Technical Reports Server (NTRS)

    Malone, Michael B.; Peavey, Charles C.

    1999-01-01

    The Transonic Nozzle Boattail Drag Study was initiated in 1995 to develop an understanding of how external nozzle transonic aerodynamics effect airplane performance and how strongly those effects are dependent on nozzle configuration (2D vs. axisymmetric). MDC analyzed the axisymmetric nozzle. Boeing subcontracted Northrop-Grumman to analyze the 2D nozzle. AU participants analyzed the AGARD nozzle as a check-out and validation case. Once the codes were checked out and the gridding resolution necessary for modeling the separated flow in this region determined, the analysis moved to the installed wing/body/nacelle/diverter cases. The boat tail drag validation case was the AGARD B.4 rectangular nozzle. This test case offered both test data and previous CFD analyses for comparison. Results were obtained for test cases B.4.1 (M=0.6) and B.4.2 (M=0.938) and compared very well with the experimental data. Once the validation was complete a CFD grid was constructed for the full Ref. H configuration (wing/body/nacelle/diverter) using a combination of patched and overlapped (Chimera) grids. This was done to ensure that the grid topologies and density would be adequate for the full model. The use of overlapped grids allowed the same grids from the full configuration model to be used for the wing/body alone cases, thus eliminating the risk of grid differences affecting the determination of the installation effects. Once the full configuration model was run and deemed to be suitable the nacelle/diverter grids were removed and the wing/body analysis performed. Reference H wing/body results were completed for M=0.9 (a=0.0, 2.0, 4.0, 6.0 and 8.0), M=1.1 (a=4.0 and 6.0) and M=2.4 (a=0.0, 2.0, 4.4, 6.0 and 8.0). Comparisons of the M=0.9 and M=2.4 cases were made with available wind tunnel data and overall comparisons were good. The axi-inlet/2D nozzle nacelle was analyzed isolated. The isolated nacelle data coupled with the wing/body result enabled the interference effects of the

  8. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  9. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey (2dFGRS) (2dFGRS Team, 1998-2003)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2007-11-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is a major spectroscopic survey taking full advantage of the unique capabilities of the 2dF facility built by the Anglo-Australian Observatory. The 2dFGRS is integrated with the 2dF QSO survey (2QZ, Cat. VII/241). The 2dFGRS obtained spectra for 245591 objects, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of bJ=19.45. Reliable (quality>=3) redshifts were obtained for 221414 galaxies. The galaxies cover an area of approximately 1500 square degrees selected from the extended APM Galaxy Survey in three regions: a North Galactic Pole (NGP) strip, a South Galactic Pole (SGP) strip, and random fields scattered around the SGP strip. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS/. (6 data files).

  10. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  11. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-01

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs. PMID:27537619

  12. CVMAC 2D Program: A method of converting 3D to 2D

    SciTech Connect

    Lown, J.

    1990-06-20

    This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.

  13. Evaluation of help model replacement codes

    SciTech Connect

    Whiteside, Tad; Hang, Thong; Flach, Gregory

    2009-07-01

    This work evaluates the computer codes that are proposed to be used to predict percolation of water through the closure-cap and into the waste containment zone at the Department of Energy closure sites. This work compares the currently used water-balance code (HELP) with newly developed computer codes that use unsaturated flow (Richards’ equation). It provides a literature review of the HELP model and the proposed codes, which result in two recommended codes for further evaluation: HYDRUS-2D3D and VADOSE/W. This further evaluation involved performing actual simulations on a simple model and comparing the results of those simulations to those obtained with the HELP code and the field data. From the results of this work, we conclude that the new codes perform nearly the same, although moving forward, we recommend HYDRUS-2D3D.

  14. Computer program BL2D for solving two-dimensional and axisymmetric boundary layers

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1995-01-01

    This report presents the formulation, validation, and user's manual for the computer program BL2D. The program is a fourth-order-accurate solution scheme for solving two-dimensional or axisymmetric boundary layers in speed regimes that range from low subsonic to hypersonic Mach numbers. A basic implementation of the transition zone and turbulence modeling is also included. The code is a result of many improvements made to the program VGBLP, which is described in NASA TM-83207 (February 1982), and can effectively supersede it. The code BL2D is designed to be modular, user-friendly, and portable to any machine with a standard fortran77 compiler. The report contains the new formulation adopted and the details of its implementation. Five validation cases are presented. A detailed user's manual with the input format description and instructions for running the code is included. Adequate information is presented in the report to enable the user to modify or customize the code for specific applications.

  15. Computer program BL2D for solving two-dimensional and axisymmetric boundary layers

    NASA Astrophysics Data System (ADS)

    Iyer, Venkit

    1995-05-01

    This report presents the formulation, validation, and user's manual for the computer program BL2D. The program is a fourth-order-accurate solution scheme for solving two-dimensional or axisymmetric boundary layers in speed regimes that range from low subsonic to hypersonic Mach numbers. A basic implementation of the transition zone and turbulence modeling is also included. The code is a result of many improvements made to the program VGBLP, which is described in NASA TM-83207 (February 1982), and can effectively supersede it. The code BL2D is designed to be modular, user-friendly, and portable to any machine with a standard fortran77 compiler. The report contains the new formulation adopted and the details of its implementation. Five validation cases are presented. A detailed user's manual with the input format description and instructions for running the code is included. Adequate information is presented in the report to enable the user to modify or customize the code for specific applications.

  16. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    NASA Astrophysics Data System (ADS)

    Sezen, S.; Ertüzün, A.

    2006-12-01

    A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  17. In-situ Hydrogen Sorption 2D-ACAR Facility for the Study of Metal Hydrides for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Legerstee, W. J.; de Roode, J.; Anastasopol, A.; Falub, C. V.; Eijt, S. W. H.

    We developed a dedicated hydrogen sorption setup coupled to a positron 2D-ACAR (two-dimensional Angular Correlation of Annihilation Radiation) setup employing a 22Na-source, which will enable to collect 2D-ACAR momentum distributions in-situ as a function of temperature, hydrogen pressure and hydrogen content. In parallel, a dedicated glovebox was constructed for handling air-sensitive metal and metal hydride samples, with a special entrance for the 2D-ACAR sample insert. The 2D-ACAR setup was tested in first measurements on a Pd0.75Ag0.25 foil and on a ball-milled MgH2 powder in both the hydrogen loaded and desorbed states. The hydrogen loaded Pd0.75Ag0.25Hx sample was kept under a 1 bar hydrogen pressure to prevent partial desorption during measurements at room temperature. The collected 2D-ACAR distributions of Pd0.75Ag0.25 and Pd0.75Ag0.25Hx showed similar features as observed in previous studies. The broadening of the ACAR distributions observed for the Mg to MgH2 metal-insulator transition was compared in a quantitative manner to ab-initio calculations reported in the literature.

  18. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  19. Assessment and improvement of the 2D/1D method stability in DeCART

    SciTech Connect

    Stimpson, S.; Young, M.; Collins, B.; Kelley, B.; Downar, T.

    2013-07-01

    As part of ongoing work with Consortium for Advanced Simulation of Light Water Reactors (CASL), the 2D/1D code, DeCART, has demonstrated some of the advantages of the 2D/1D method with respect to realistic, full-core analysis, particularly over explicit 3D transport methods, which generally have higher memory and computation requirements. The 2D/1D method performs 2D-radial transport sweeps coupled with ID-axial diffusion calculations to provide a full 3D simulation. DeCART employs the 2D method of characteristics for the radial sweeps and ID one-node nodal diffusion for the axial sweeps, coupling the two methods with transverse leakages to ensure a more consistent representation of the transport equation. It has been observed that refinement of the axial plane thickness leads to instabilities in the calculation scheme. This work assesses the sources of these instabilities and the approaches to improve them, especially with respect to negative scattering cross sections and the tightness of the 2D-radial/ID-axial coupling schemes. Fourier analyses show that the existing iteration scheme is not unconditionally stable, suggesting a tighter coupling scheme is required. For this reason 3D-CMFD has been implemented, among other developments, to ensure more stable calculation. A matrix of test cases has been used to assess the convergence, with the primary parameter being the axial plane thickness, which has been refined down to 1 cm. These cases demonstrate the issues observed and how the modification improve the stability. However, it is apparent that more work is necessary to ensure unconditional stability. (authors)

  20. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  1. Microlensing by the galactic bar

    NASA Technical Reports Server (NTRS)

    Zhao, Hongsheng; Spergel, David N.; Rich, R. Michael

    1995-01-01

    We compute the optical depth and duration distribution of microlensing events towrd Baade's window in a model composed of a Galactic disk and a bar. The bar model is a self-consistent dynamical model built out of individual orbits that has been populated to be consistent with the COBE maps of the Galaxy and kinematic observations of the Galactic bulge. We find that most of the lenses are in the bulge with a line-of-sight distance 6.25 kpc (adopting R(sub 0) = 8 kpc). The microlensing optical depth of a 2 x 10(exp 10) solar mass bar plus a truncated disk is (2.2 +/- 0.45) x 10(exp -6), consistent with the large optical depth (3.2 +/- 1.2) x 10(exp -6) found by Udalski et al. (1994). This model optical depth is enhanced over the predictions of axisymmetric models by Kiraga & Paczynski (1994) by slightly more than a factor of 2, since the bar is elongated along the line of sight. The large Einstein radius and small transverse velocity dispersion also predict a longer event duration in the self-consistent bar model than in the Kiraga-Paczynski model. The event rate and duration distribution also depend on the lower mass cutoff of the lens mass function. With a 0.1 solar mass cutoff, five to seven events (depending on the contribution of disk lenses) with a logarithmic mean duration of 20 days are expected for the Optical Gravitational Lensing Experiment (OGLE) according to our model, while Udalski et al. (1994) observed nine events with durations from 8 to 62 days. On the other hand, if most of the lenses are brown dwarfs, our model predicts too many short-duration events. A Kolmogorov-Smirnov test finds only 7% probability for the model with 0.01 solar mass cutoff to be consistent with current data.

  2. 2-D Modeling of the Variability of the Solar Interior for Climate Studies

    NASA Astrophysics Data System (ADS)

    Sofia, S.; Li, L. H.; Spada, F.; Ventura, P.

    2012-07-01

    To establish the possible influence of solar variability on climate, it is necessary to understand the luminosity changes induced by a variable dynamo magnetic field. To accomplish this, we have developed a 2D code of the structure and evolution of the solar interior (based on the 1D YREC code), that includes rotation, magnetic fields of arbitrary configuration, and turbulence, that can be run on very short time scales (down to 1 year), and that represents all global parameters (R, L, Teff) with a relative accuracy of 1 part per million, or better. This paper discusses the motivation for this work, the structure and the physical components of the code, and its application to interpret the results of the SODISM experiment on the PICARD satellite, and of the balloon-borne Solar Disk Sextant (SDS) experiment.

  3. An investigation of DTNS2D for use as an incompressible turbulence modelling test-bed

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    1992-01-01

    This paper documents an investigation of a two dimensional, incompressible Navier-Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT). This code was created by Gorski at the David Taylor Research Center and incorporates the pseudo compressibility method. Two laminar benchmark flows are used to measure the performance and implementation of the method. The classical solution of the Blasius boundary layer is used for validating the flat plate flow, while experimental data is incorporated in the validation of backward facing step flow. Velocity profiles, convergence histories, and reattachment lengths are used to quantify these calculations. The organization and adaptability of the code are also examined in light of the role as a numerical test-bed.

  4. Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout

    NASA Astrophysics Data System (ADS)

    Jochym-O'Connor, Tomas; Bartlett, Stephen D.

    2016-02-01

    We introduce a class of three-dimensional color codes, which we call stacked codes, together with a fault-tolerant transformation that will map logical qubits encoded in two-dimensional (2D) color codes into stacked codes and back. The stacked code allows for the transversal implementation of a non-Clifford π /8 logical gate, which when combined with the logical Clifford gates that are transversal in the 2D color code give a gate set that is both fault-tolerant and universal without requiring nonstabilizer magic states. We then show that the layers forming the stacked code can be unfolded and arranged in a 2D layout. As only Clifford gates can be implemented transversally for 2D topological stabilizer codes, a nonlocal operation must be incorporated in order to allow for this transversal application of a non-Clifford gate. Our code achieves this operation through the transformation from a 2D color code to the unfolded stacked code induced by measuring only geometrically local stabilizers and gauge operators within the bulk of 2D color codes together with a nonlocal operator that has support on a one-dimensional boundary between such 2D codes. We believe that this proposed method to implement the nonlocal operation is a realistic one for 2D stabilizer layouts and would be beneficial in avoiding the large overheads caused by magic state distillation.

  5. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  6. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  7. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  8. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  9. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  10. Interaction Between Tropical Convection and its Embedding Environment: An Energetics Analysis of a 2-D Cloud Resolving Simulation

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    The phase relation between the perturbation kinetic energy (K') associated with the tropical convection and the horizontal-mean moist available potential energy (bar-P) associated with environmental conditions is investigated by an energetics analysis of a numerical experiment. This experiment is performed using a 2-D cloud resolving model forced by the TOGA-COARE derived vertical velocity. The imposed upward motion leads to a decrease of bar-P directly through the associated vertical advective cooling, and to an increase of K' directly through cloud related processes, feeding the convection. The maximum K' and its maximum growth rate lags and leads, respectively, the maximum imposed large-scale upward motion by about 1-2 hours, indicating that convection is phase locked with large-scale forcing. The dominant life cycle of the simulated convection is about 9 hours, whereas the time scales of the imposed large-scale forcing are longer than the diurnal cycle. In the convective events, maximum growth of K' leads maximum decay of the perturbation moist available potential energy (P') by about 3 hours through vertical heat transport by perturbation circulation, and perturbation cloud heating. Maximum decay of P' leads maximum decay of bar-P by about one hour through the perturbation radiative, processes, the horizontal-mean cloud heating, and the large-scale vertical advective cooling. Therefore, maximum gain of K' occurs about 4-5 hours before maximum decay of bar-P.

  11. Sensitivity and System Response of Pin Power Peaking in VVER-1000 Fuel Assembly Using TSUNAMI-2D

    NASA Astrophysics Data System (ADS)

    Frybort, J.

    2014-04-01

    Pin power peaking in a VVER-1000 fuel assembly and its sensitivity and uncertainty was analyzed by TSUNAMI-2D code. Several types of fuel assemblies were considered. They differ in number and position of gadolinium fuel pins. The calculations were repeated for several fuel compositions obtained by fuel depletion calculation. The results are quantified sensitivity data, which can be used for enrichment profiling.

  12. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  13. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  14. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  15. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    PubMed Central

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  16. Inspection design using 2D phased array, TFM and cueMAP software

    SciTech Connect

    McGilp, Ailidh; Dziewierz, Jerzy; Lardner, Tim; Mackersie, John; Gachagan, Anthony

    2014-02-18

    A simulation suite, cueMAP, has been developed to facilitate the design of inspection processes and sparse 2D array configurations. At the core of cueMAP is a Total Focusing Method (TFM) imaging algorithm that enables computer assisted design of ultrasonic inspection scenarios, including the design of bespoke array configurations to match the inspection criteria. This in-house developed TFM code allows for interactive evaluation of image quality indicators of ultrasonic imaging performance when utilizing a 2D phased array working in FMC/TFM mode. The cueMAP software uses a series of TFM images to build a map of resolution, contrast and sensitivity of imaging performance of a simulated reflector, swept across the inspection volume. The software takes into account probe properties, wedge or water standoff, and effects of specimen curvature. In the validation process of this new software package, two 2D arrays have been evaluated on 304n stainless steel samples, typical of the primary circuit in nuclear plants. Thick section samples have been inspected using a 1MHz 2D matrix array. Due to the processing efficiency of the software, the data collected from these array configurations has been used to investigate the influence sub-aperture operation on inspection performance.

  17. Turbulent Convection: Is 2D a good proxy of 3D?

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    2000-01-01

    Several authors have recently carried out 2D simulations of turbulent convection for both solar and massive stars. Fitting the 2D results with the MLT, they obtain that alpha(sub MLT) greater than 1 specifically, 1.4 less than alpha(sub MLT) less than 1.8. The authors further suggest that this methodology could be used to calibrate the MLT used in stellar evolutionary codes. We suggest the opposite viewpoint: the 2D results show that MLT is internally inconsistent because the resulting alpha(sub MLT) greater than 1 violates the MLT basic assumption that alpha(sub MLT) less than 1. When the 2D results are fitted with the CM model, alpha(sub CMT) less than 1, in accord with the basic tenet of the model. On the other hand, since both MLT and CM are local models, they should be replaced by the next generation of non-local, time dependent turbulence models which we discuss in some detail.

  18. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  19. Effect of bars on the galaxy properties

    NASA Astrophysics Data System (ADS)

    Vera, Matias; Alonso, Sol; Coldwell, Georgina

    2016-10-01

    Aims: With the aim of assessing the effects of bars on disk galaxy properties, we present an analysis of different characteristics of spiral galaxies with strong bars, weak bars and without bars. Methods: We identified barred galaxies from the Sloan Digital Sky Survey (SDSS). By visual inspection of SDSS images we classified the face-on spiral galaxies brighter than g< 16.5 mag into strong-bar, weak-bar, and unbarred galaxies. With the goal of providing an appropriate quantification of the influence of bars on galaxy properties, we also constructed a suitable control sample of unbarred galaxies with similar redshifts, magnitudes, morphology, bulge sizes, and local density environment distributions to those of barred galaxies. Results: We found 522 strong-barred and 770 weak-barred galaxies; this represents a bar fraction of 25.82% with respect to the full sample of spiral galaxies, in good agreement with several previous studies. We also found that strong-barred galaxies show lower efficiency in star formation activity and older stellar populations (as derived with the Dn(4000) spectral index) with respect to weak-barred and unbarred spirals from the control sample. In addition, there is a significant excess of strong-barred galaxies with red colors. The color-color and color-magnitude diagrams show that unbarred and weak-barred galaxies are more extended towards the blue zone, while strong-barred disk objects are mostly grouped in the red region. Strong-barred galaxies present an important excess of high metallicity values compared to unbarred and weak-barred disk objects, which show similar distributions. Regarding the mass-metallicity relation, we found that weak-barred and unbarred galaxies are fitted by similar curves, while strong-barred ones show a curve that falls abruptly with more significance in the range of low stellar masses (log (M∗/M⊙) < 10.0). These results would indicate that prominent bars produced an accelerating effect on the gas processing

  20. 2-D Time-Dependent Fuel Element, Thermal Analysis Code System.

    2001-09-24

    Version 00 WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric casemore » and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. KEYWORDS: FUEL MANAGEMENT; HEAT TRANSFER; LOCA; PWR« less

  1. 50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL USE Arctic char (anadromous) 521 Bering flounder (Hippoglossoides robustus) 116 Dolly varden...) 142 Rockfish, blue (GOA) 167 Rockfish, dark 173 Sardine, Pacific (pilchard) 170 Sea cucumber, red 895... 680 Wrymouths 211 SHELLFISH Abalone, northern (pinto) 860 CLAMS: Arctic surf 812 Cockle 820...

  2. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  3. Gas flow models in the Milky Way embedded bars

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, N. J.; Combes, F.

    2008-10-01

    Context: The gas distribution and dynamics in the inner Galaxy present many unknowns, such as the origin of the asymmetry of the lv-diagram of the Central Molecular Zone (CMZ). On the other hand, there is recent evidence in the stellar component of the presence of a nuclear bar that may be slightly lopsided. Aims: Our goal is to characterize the nuclear bar observed in 2MASS maps and to study the gas dynamics in the inner Milky Way taking into account this secondary bar. Methods: We have derived a realistic mass distribution by fitting the 2MASS star count map with a model including three components (disk, bulge and nuclear bar) and we have simulated the gas dynamics in the deduced gravitational potential using a sticky-particles code. Results: Our simulations of the gas dynamics successfully reproduce the main characteristics of the Milky Way for a bulge orientation of 20°-35°with respect to the Sun-Galactic Center (GC) line and a pattern speed of 30-40 km s-1 kpc-1. In our models the Galactic Molecular Ring (GMR) is not an actual ring but the inner parts of the spiral arms, while the 3-kpc arm and its far side counterpart are lateral arms that extend around the bar. Our simulations reproduce, for the first time, the parallelogram shape of the lv-diagram of the CMZ as the gas response to the nuclear bar. This bar should be oriented by an angle of ˜60°-75°with respect to the Sun-GC line and its mass amounts to (2-5.5) 109 M_⊙. We show that the observed asymmetry of the CMZ cannot be due to lopsidedness of the nuclear bar as suggested by the 2MASS maps. Conclusions: We do not find clear evidence of lopsidedness in the stellar potential. We propose that the observed asymmetry of the central gas layer can be due to the infalling of gas into the CMZ in the l = 1.3°-complex. Tables 3-6 are only available in electronic form at http://www.aanda.org

  4. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  5. Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions

    SciTech Connect

    Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.

    2009-01-21

    A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.

  6. 2D/3D Program work summary report, [January 1988--December 1992

    SciTech Connect

    Damerell, P. S.; Simons, J. W.

    1993-06-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants.

  7. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    NASA Astrophysics Data System (ADS)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  8. On 2-D recursive LMS algorithms using ARMA prediction for ADPCM encoding of images.

    PubMed

    Chung, Y S; Kanefsky, M

    1992-01-01

    A two-dimensional (2D) linear predictor which has an autoregressive moving average (ARMA) representation well as a bias term is adapted for adaptive differential pulse code modulation (ADPCM) encoding of nonnegative images. The predictor coefficients are updated by using a 2D recursive LMS (TRLMS) algorithm. A constraint on optimum values for the convergence factors and an updating algorithm based on the constraint are developed. The coefficient updating algorithm can be modified with a stability control factor. This realization can operate in real time and in the spatial domain. A comparison of three different types of predictors is made for real images. ARMA predictors show improved performance relative to an AR algorithm. PMID:18296174

  9. BILL2D - A software package for classical two-dimensional Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Solanpää, J.; Luukko, P. J. J.; Räsänen, E.

    2016-02-01

    We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).

  10. 2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches

    SciTech Connect

    Hammer, J.H.; Eddleman, J.L.; Springer, P.T.

    1995-11-06

    Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.

  11. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  12. Practical Algorithm For Computing The 2-D Arithmetic Fourier Transform

    NASA Astrophysics Data System (ADS)

    Reed, Irving S.; Choi, Y. Y.; Yu, Xiaoli

    1989-05-01

    Recently, Tufts and Sadasiv [10] exposed a method for computing the coefficients of a Fourier series of a periodic function using the Mobius inversion of series. They called this method of analysis the Arithmetic Fourier Transform(AFT). The advantage of the AFT over the FN 1' is that this method of Fourier analysis needs only addition operations except for multiplications by scale factors at one stage of the computation. The disadvantage of the AFT as they expressed it originally is that it could be used effectively only to compute finite Fourier coefficients of a real even function. To remedy this the AFT developed in [10] is extended in [11] to compute the Fourier coefficients of both the even and odd components of a periodic function. In this paper, the improved AFT [11] is extended to a two-dimensional(2-D) Arithmetic Fourier Transform for calculating the Fourier Transform of two-dimensional discrete signals. This new algorithm is based on both the number-theoretic method of Mobius inversion of double series and the complex conjugate property of Fourier coefficients. The advantage of this algorithm over the conventional 2-D FFT is that the corner-turning problem needed in a conventional 2-D Discrete Fourier Transform(DFT) can be avoided. Therefore, this new 2-D algorithm is readily suitable for VLSI implementation as a parallel architecture. Comparing the operations of 2-D AFT of a MxM 2-D data array with the conventional 2-D FFT, the number of multiplications is significantly reduced from (2log2M)M2 to (9/4)M2. Hence, this new algorithm is faster than the FFT algorithm. Finally, two simulation results of this new 2-D AFT algorithm for 2-D artificial and real images are given in this paper.

  13. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  14. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  15. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  16. Galaxy Zoo: Observing secular evolution through bars

    SciTech Connect

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-12-20

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  17. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2008-11-01

    In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.

  18. Computation of neutron fluxes in clusters of fuel pins arranged in hexagonal assemblies (2D and 3D)

    SciTech Connect

    Prabha, H.; Marleau, G.

    2012-07-01

    For computations of fluxes, we have used Carvik's method of collision probabilities. This method requires tracking algorithms. An algorithm to compute tracks (in 2D and 3D) has been developed for seven hexagonal geometries with cluster of fuel pins. This has been implemented in the NXT module of the code DRAGON. The flux distribution in cluster of pins has been computed by using this code. For testing the results, they are compared when possible with the EXCELT module of the code DRAGON. Tracks are plotted in the NXT module by using MATLAB, these plots are also presented here. Results are presented with increasing number of lines to show the convergence of these results. We have numerically computed volumes, surface areas and the percentage errors in these computations. These results show that 2D results converge faster than 3D results. The accuracy on the computation of fluxes up to second decimal is achieved with fewer lines. (authors)

  19. Upgrade of PARC2D to include real gas effects. [computer program for flowfield surrounding aeroassist flight experiment

    NASA Technical Reports Server (NTRS)

    Saladino, Anthony; Praharaj, Sarat C.; Collins, Frank G.; Seaford, C. Mark

    1990-01-01

    This paper presents a description of the changes and additions to the perfect gas PARC2D code to include chemical equilibrium effects, resulting in a code called PARCEQ2D. The work developed out of a need to have the capability of more accurately representing the flowfield surrounding the aeroassist flight experiment (AFE) vehicle. Use is made of the partition function of statistical mechanics in the evaluation of the thermochemical properties. This approach will allow the PARC code to be extended to thermal nonequilibrium when this task is undertaken in the future. The transport properties follow from formulae from the kinetic theory of gases. Results are presented for a two-dimensional AFE that compare perfect gas and real gas solutions at flight conditions, showing vast differences between the two cases.

  20. Uplink Coding

    NASA Technical Reports Server (NTRS)

    Pollara, Fabrizio; Hamkins, Jon; Dolinar, Sam; Andrews, Ken; Divsalar, Dariush

    2006-01-01

    This viewgraph presentation reviews uplink coding. The purpose and goals of the briefing are (1) Show a plan for using uplink coding and describe benefits (2) Define possible solutions and their applicability to different types of uplink, including emergency uplink (3) Concur with our conclusions so we can embark on a plan to use proposed uplink system (4) Identify the need for the development of appropriate technology and infusion in the DSN (5) Gain advocacy to implement uplink coding in flight projects Action Item EMB04-1-14 -- Show a plan for using uplink coding, including showing where it is useful or not (include discussion of emergency uplink coding).

  1. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  2. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  3. 2D hexagonal quaternion Fourier transform in color image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2016-05-01

    In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the two-dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly considered. To calculate the transform, the image on the hexagonal lattice is described in the tensor representation when the image is presented by a set of 1-D signals, or splitting-signals which can be separately processed in the frequency domain. The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier transforms (QDFT) of the splitting-signals.

  4. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  5. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  6. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  7. Two-dimensional aperture coding for magnetic sector mass spectrometry.

    PubMed

    Russell, Zachary E; Chen, Evan X; Amsden, Jason J; Wolter, Scott D; Danell, Ryan M; Parker, Charles B; Stoner, Brian R; Gehm, Michael E; Brady, David J; Glass, Jeffrey T

    2015-02-01

    In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code. PMID:25510933

  8. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  9. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  10. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  11. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  12. Subsystem codes with spatially local generators

    SciTech Connect

    Bravyi, Sergey

    2011-01-15

    We study subsystem codes whose gauge group has local generators in two-dimensional (2D) geometry. It is shown that there exists a family of such codes defined on lattices of size LxL with the number of logical qubits k and the minimum distance d both proportional to L. The gauge group of these codes involves only two-qubit generators of type XX and ZZ coupling nearest-neighbor qubits (and some auxiliary one-qubit generators). Our proof is not constructive as it relies on a certain version of the Gilbert-Varshamov bound for classical codes. Along the way, we introduce and study properties of generalized Bacon-Shor codes that might be of independent interest. Secondly, we prove that any 2D subsystem [n,k,d] code with spatially local generators obeys upper bounds kd=O(n) and d{sup 2}=O(n). The analogous upper bound proved recently for 2D stabilizer codes is kd{sup 2}=O(n). Our results thus demonstrate that subsystem codes can be more powerful than stabilizer codes under the spatial locality constraint.

  13. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  14. Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations

    SciTech Connect

    Rosenberg, Z.; Dekel, E.; Hohler, V.; Stilp, A. J.; Weber, K.

    1998-07-10

    A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.

  15. Effects of 2D small-scale sedimentary basins on strong ground motion characteristics

    NASA Astrophysics Data System (ADS)

    Movahedasl, R.; Ghayamghamian, M. R.

    2015-08-01

    A lot of research on the 2D or 3D effects of large-scale basins (within several kilometers depth) have been conducted in the past. However, different 2D aspects of small-scale sedimentary basins (within tens of meters depth) remain in the developing stage. Here, an attempt is made to analyze different aspects of small-scale basins using both numerical and empirical investigations. In the first step, the 2D effects of small-scale basins on strong motion characteristics are numerically examined both in the time and frequency domains. In addition, the effects of input motion are also explained by the results of model excitation in different orthogonal directions. Then, the numerical outcomes are verified by the analysis of actual earthquake data recorded at a downhole array in the Fujisawa small basin, Japan. In the second step, since available recorded earthquake data in small basins with a clear understanding of subsurface geology are very limited, different 2D aspects of the small basin are parametrically investigated. For this purpose, extensive parametrical studies are carried out on the main features of a small basin such as slope angle, shape, infill soil properties, and basin thickness by using the finite difference numerical method. The horizontal and vertical peak ground accelerations of 2D with respect to 1D ones are defined as the horizontal and vertical aggravation factors (AGH and AGV). The AGH and AGV factors show large sensitivity to infill soil properties, shape and thickness, and small sensitivity to slope angle. The values of AGH and AGV factors vary in the range of 0.5-2 with large variations around small basin edges due to wave coupling, conversion, scattering and focusing in the vicinity of small basin edges. These cause a complicated pattern of 2D de-amplification and amplification, which mostly affect the motion in the high frequency range (>1 Hz). Finally, the outcomes provide numerical and field evidence on the 2D effects of small basins

  16. Molecular Gas, Dust, and Star Formation in the Barred Spiral NGC 5383

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Vogel, Stuart N.; Teuben, Peter J.

    2000-03-01

    We have mapped the barred spiral NGC 5383 using the Berkeley-Illinois-Maryland Association millimeter-wave array for observations of CO (J=1-0), the Palomar 1.5 m telescope for Hα and optical broadband, and the Kitt Peak 1.3 m telescope for near-IR broadband. We compare the observed central gas and dust morphology to the predictions of recent hydrodynamic simulations calculated using the Piner, Stone, and Teuben code. In the nuclear region, our observations reveal three peaks lying along an S-shaped gas and dust distribution: two of these are at the inner end of offset bar dust lanes at the presumed location of the inner Lindblad resonance (ILR), and the other lies closer to the nucleus. In contrast, the model predicts a circumnuclear ring, not the observed S-shaped distribution; moreover, the predicted surface density contrast between the central gas accumulation and the bar dust lanes is an order of magnitude larger than observed. These discrepancies remain for all our simulations which produce offset bar dust lanes and indicate that the model is missing an essential process or component. A small nuclear bar might account for the discrepancy, but we rule this out using a Hubble Space Telescope NICMOS (near-IR camera and multiobject spectrometer) image: this reveals a nuclear trailing spiral, not a bar; we show that coarser resolution (i.e., ground-based images) can produce artifacts that resemble bars or rings. We conclude that the discrepancies in morphology and contrast are due to the omission of star formation from the model; this is supported by the observed high rate of central star formation (7 Msolar yr-1), a rate that can consume most of the accumulating gas. As is common in similar bars, the star formation rate in the bar between the bar ends and the central region is low (0.5 Msolar yr-1), despite the high gas column density in the bar dust lanes; this is generally attributed to shear and shocks. We note a tendency for the H II regions to be associated

  17. Use of the 'Precessions' process for prepolishing and correcting 2D & 2(1/2)D form.

    PubMed

    Walker, David D; Freeman, Richard; Morton, Roger; McCavana, Gerry; Beaucamp, Anthony

    2006-11-27

    The Precessions process polishes complex surfaces from the ground state preserving the ground-in form, and subsequently rectifies measured form errors. Our first paper introduced the technology and focused on the novel tooling. In this paper we describe the unique CNC machine tools and how they operate in polishing and correcting form. Experimental results demonstrate both the '2D' and '2(1/2)D' form-correction modes, as applied to aspheres with rotationally-symmetric target-form.

  18. Wave propagation in layered piezoelectric rectangular bar: an extended orthogonal polynomial approach.

    PubMed

    Yu, J G; Zhang, Ch; Lefebvre, J E

    2014-08-01

    Wave propagation in multilayered piezoelectric structures has received much attention in past forty years. But the research objects of previous research works are only for semi-infinite structures and one-dimensional structures, i.e., structures with a finite dimension in only one direction, such as horizontally infinite flat plates and axially infinite hollow cylinders. This paper proposes an extension of the orthogonal polynomial series approach to solve the wave propagation problem in a two-dimensional (2-D) piezoelectric structure, namely, a multilayered piezoelectric bar with a rectangular cross-section. Through numerical comparison with the available reference results for a purely elastic multilayered rectangular bar, the validity of the extended polynomial series approach is illustrated. The dispersion curves and electric potential distributions of various multilayered piezoelectric rectangular bars are calculated to reveal their wave propagation characteristics.

  19. [Nutritional characteristics of cereal and peanut bars].

    PubMed

    Escobar, B; Estévez, A M; Tepper, A; Aguayo, M

    1998-06-01

    Snack with good nutritional value could play an important role in the physical and mental development of children and teenagers since they show a great preference for them. The tendency is increasing their nutritional value by supplying proteins, carbohydrates, fiber, vitamins and minerals in a balanced form. The purpose of this research was to evaluate the chemical, sensorial and nutritional quality of cereal and peanut bars. Three types of bars using different ratios of oat, wheat germ, peanut, toasted and expanded amaranthus and wheat extrudate were prepared. Bars proximate composition was determined according the AOAC methods, and their acceptability according Hedonic Scale. In the biological assays, rats fed with 10% protein diets, were used to obtain the Protein Efficiency Ratio (PER) Net Protein Ratio (NPR) and Apparent Digestibility (AD). Corrected PER, relative PER, relative AD, PER and NPR values did not showed difference between bars CM1 and CM2 (PER: 2.59-2.57; NPR: 3.99-3.95 respectively); CM3 bar showed a lower quality. There were not differences among bars in relation to AD. CM1 and CM2 bars had a better biological quality of the protein being CM3 bar of lower quality. From a chemical and sensorial point of view CM1 bar shows the highest protein content (14.23%) and acceptability (6.8) and CM2 bar shows a high raw fiber content (2.27%). PMID:9830492

  20. Electrostatic precipatator construction having ladder bar spacers

    SciTech Connect

    Jonelis, J.A.

    1984-10-30

    The present invention relates to an improved construction for an electrostatic precipitator having ladder bar spacers. The electrostatic precipitator collects solid particles carried by a flue gas from a source of combustion. The precipitator includes a plurality of spaced plates for collecting solid particles from the flue gas by electrostatic attraction of the solid particles to the plates. A second plurality of elongated electrodes is positioned among the plates. Each of the electrodes is mounted between a pair of adjacent plates. Each of the electrodes is parallel to the other electrodes and is parallel to the plates. A third plurality of ladder bars is positioned between adjacent plates to hold the plates in a flat attitude and to maintain adjacent surfaces of adjacent plates substantially equidistantly spaced from one another. Each of the ladder bars has a connector bar secured to one of the pair of adjacent surfaces. Each of the ladder bars has a fourth plurality of holder bars. Each of the holder bars having one end connected to its respective connector bar and extending outwardly from the connector bar toward the other of the pair of adjacent surfaces. A contact on the other end of each holder bar engages the other of the pair of adjacent surfaces to hold the pair of adjacent surfaces apart.

  1. A secularly evolved model for the Milky Way bar and bulge

    NASA Astrophysics Data System (ADS)

    Martinez-Valpuesta, Inma; Gerhard, Ortwin

    2015-03-01

    Bars are strong drivers of secular evolution in disk galaxies. Bars themselves can evolve secularly through angular momentum transport, producing different boxy/peanut and X-shaped bulges. Our Milky Way is an example of a barred galaxy with a boxy bulge. We present a self-consistent N-body simulation of a barred galaxy which matches remarkably well the structure of the inner Milky Way deduced from star counts. In particular, features taken as signatures of a second ``long bar`` can be explained by the interaction between the bar and the spiral arms of the galaxy (Martinez-Valpuesta & Gerhard 2011). Furthermore the structural change in the bulge inside l = 4° measured recently from VVV data can be explained by the high-density near-axisymmetric part of the inner boxy bulge (Gerhard & Martinez-Valpuesta 2012). We also compare this model with kinematic data from recent spectroscopic surveys. We use a modified version of the NMAGIC code (de Lorenzi et al. 2007) to study the properties of the Milky Way bar, obtaining an upper limit for the pattern speed of ~ 42 km/sec/kpc. See Fig. 1 for a comparison of one of our best models with BRAVA data (Kunder et al. 2012).

  2. Sharing code.

    PubMed

    Kubilius, Jonas

    2014-01-01

    Sharing code is becoming increasingly important in the wake of Open Science. In this review I describe and compare two popular code-sharing utilities, GitHub and Open Science Framework (OSF). GitHub is a mature, industry-standard tool but lacks focus towards researchers. In comparison, OSF offers a one-stop solution for researchers but a lot of functionality is still under development. I conclude by listing alternative lesser-known tools for code and materials sharing.

  3. Casting process modeling using ProCAST and CAST2D

    SciTech Connect

    Shapiro, A.; Stein, W.; Raboin, P.

    1990-12-01

    Correctly modeling the fluid flow and heat transfer during the filling of a mold with a molten metal, and the thermal-mechanical physics of solidification and cooldown is important in predicting the quality of a cast part. Determining the dynamics of the flow and the free surface shape during filling are essential in establishing the temperature gradients in the melt and in the mold. Correctly modeling the physics of volume change on solidification, shrinkage on cooling, and contact resistance across the part-mold interface directly affects the cooling rate and ultimately the final cast shape and stress state of the cast part. In this paper we describe our current research efforts on modeling fluid fill using the commercial code ProCAST by UES, and thermal-mechanical solidification modeling using the code CAST2D by LLNL.

  4. 2D full wave modeling for a synthetic Doppler backscattering diagnostic

    SciTech Connect

    Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.

    2012-10-15

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  5. 2D full wave modeling for a synthetic Doppler backscattering diagnostica)

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; Holland, C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.

    2012-10-01

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (kθρs ˜ 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  6. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  7. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide

    NASA Astrophysics Data System (ADS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Bredenbeck, Jens

    2015-06-01

    We demonstrate the coupling of ultrafast two-dimensional infrared (2D-IR) spectroscopy to electrochemistry in solution and apply it to flavin mononucleotide, an important cofactor of redox proteins. For this purpose, we designed a spectroelectrochemical cell optimized for 2D-IR measurements in reflection and measured the time-dependent 2D-IR spectra of the oxidized and reduced forms of flavin mononucleotide. The data show anharmonic coupling and vibrational energy transfer between different vibrational modes in the two redox species. Such information is inaccessible with redox-controlled steady-state FTIR spectroscopy. The wide range of applications offered by 2D-IR spectroscopy, such as sub-picosecond structure determination, IR band assignment via energy transfer, disentangling reaction mixtures through band connectivity in the 2D spectra, and the measurement of solvation dynamics and chemical exchange can now be explored under controlled redox potential. The development of this technique furthermore opens new horizons for studying the dynamics of redox proteins.

  8. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide.

    PubMed

    El Khoury, Youssef; Van Wilderen, Luuk J G W; Bredenbeck, Jens

    2015-06-01

    We demonstrate the coupling of ultrafast two-dimensional infrared (2D-IR) spectroscopy to electrochemistry in solution and apply it to flavin mononucleotide, an important cofactor of redox proteins. For this purpose, we designed a spectroelectrochemical cell optimized for 2D-IR measurements in reflection and measured the time-dependent 2D-IR spectra of the oxidized and reduced forms of flavin mononucleotide. The data show anharmonic coupling and vibrational energy transfer between different vibrational modes in the two redox species. Such information is inaccessible with redox-controlled steady-state FTIR spectroscopy. The wide range of applications offered by 2D-IR spectroscopy, such as sub-picosecond structure determination, IR band assignment via energy transfer, disentangling reaction mixtures through band connectivity in the 2D spectra, and the measurement of solvation dynamics and chemical exchange can now be explored under controlled redox potential. The development of this technique furthermore opens new horizons for studying the dynamics of redox proteins.

  9. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  10. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  11. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  12. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  13. Physical and numerical investigations of channel bar response to hydrograph form

    NASA Astrophysics Data System (ADS)

    Kenworthy, M.; Yager, E.; Yarnell, S. M.; Merritt, D.

    2013-12-01

    Physical and numerical modeling of river channel morphology often consider the influence of a single discharge or a series of individual discharges assumed to be in normal, steady conditions. However, the rate of change between these discharges may also affect channel morphology. Rapid flooding has been linked to poorly sorted, less armored beds compared to more gradual floods, but the influence on morphology is rarely considered. In addition, installation of vegetation is common in restoration projects though it is not always clear how this will impact morphological features such as bars. Here we present results from a set of flume experiments and 2D modeling designed to investigate the influence of hydrograph shape and vegetation on the morphology of a forced bar in sand-bed channel. Flume experiments were conducted in the Outdoor Stream Lab at Saint Anthony Falls Laboratory, Minneapolis, MN. We ran three falling limb only hydrographs with different recession rates (10, 30, and 70%). Minimum discharge, total volumetric water discharge, and estimated sediment transport capacity were held within 10% between runs. The ratio of sediment supply to estimated transport capacity was also held constant at all times. The 10% run peaked at 150 L/s, while the 30% and 70% runs peaked at 284 L/s. The 30 and 70% runs were repeated with vegetation (Juncus and Carex) that mimicked vegetation established at approximately bankful height. Similar initial conditions for all runs were established by running the flume to equilibrium at constant flow and feed rates. Detailed bar topography/bathymetry data were collected before, during, and following each run. Bar morphology at the conclusion of recession hydrographs indicated that bar development declines as recession rate increases. Both with and without vegetation, the faster recessions resulted in bar morphology that was less distinct. This observation is supported by bar-top widths and areas that both declined as recession rate

  14. Digit ratios (2D:4D), postnatal testosterone and eye contact in toddlers.

    PubMed

    Saenz, Janet; Alexander, Gerianne M

    2013-09-01

    Previous research has shown an association between eye contact and prenatal testosterone measured in amniocenteses samples. The purpose of this study was to test the association between eye contact and prenatal androgen action measured via second to fourth digit ratios (2D:4D ratios), and to explore the relationship between eye contact and postnatal testosterone levels. Participants included 72 children, between the ages of 18 and 24 months, and their parents. Salivary testosterone levels were obtained when children were 3-months old. At 18-months, 2D:4D ratios were measured and parent-child dyads participated in an 8-min play session that was recorded and later coded for duration and frequency of eye contact. Results indicated that larger 2D:4D ratios (indicative of lower androgen levels) significantly predicted longer duration and more frequency of eye contact, while postnatal testosterone levels were unrelated to eye contact. These novel findings suggest prenatal androgens may influence the emergence of social development.

  15. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  16. ON THE FRACTION OF BARRED SPIRAL GALAXIES

    SciTech Connect

    Nair, Preethi B.; Abraham, Roberto G. E-mail: abraham@astro.utoronto.c

    2010-05-10

    We investigate the stellar masses of strongly barred spiral galaxies. Our analysis is based on a sample of {approx}14,000 visually classified nearby galaxies given by Nair and Abraham. The fraction of barred spiral galaxies is found to be a strong function of stellar mass and star formation history, with a minimum near the characteristic mass at which bimodality is seen in the stellar populations of galaxies. We also find that bar fractions are very sensitive to the central concentration of galaxies below the transition mass but not above it. This suggests that whatever process is causing the creation of the red and blue sequences is either influencing, or being influenced by, structural changes which manifest themselves in the absence of bars. As a consequence of strong bar fractions being sensitive to the mass range probed, our analysis helps resolve discrepant results on the reported evolution of bar fractions with redshift.

  17. Boric Acid Reclamation System (BARS)

    SciTech Connect

    Kniazewycz, B.G.; Markind, J.

    1986-03-01

    KLM Technologies' personnel have identified a Boric Acid Reclamation System (BARS) utilizing reverse osmosis and ultrafiltration to produce a recyclable grade of otherwise waste boric acid at PWRs, thus reducing a major source of low-level radwaste. The design of a prototype BARS as a compact volume reduction system was the result of KLM's Phase 1 Program, and based upon a preliminary feasibility program, which assessed the applicability of membrane technology to refurbish and recycle waste boric acid from floor and equipment drain streams. The analysis of the overall program indicated a substantial savings regarding off-site disposal costs. Today's economic scenario indicates that optimization of volume reduction operation procedures could significantly reduce waste management costs, especially where burial penalties have become more severe. As a reaction to the economic burden imposed by final disposal, many nuclear plants are currently modifying their design and operating philosophies concerning liquid radwaste processing systems to meet stricter environmental regulations, and to derive potential economic benefits by reducing the ever-increasing volumes of wastes that are produced. To effect these changes, innovative practices in waste management and more efficient processing technologies are being successfully implemented.

  18. Long term 2D gravel-bed river morphodynamics simulations using morphological factor: are final configurations always reliable?

    NASA Astrophysics Data System (ADS)

    Vanzo, Davide; Siviglia, Annunziato; Zolezzi, Guido

    2014-05-01

    In last decades, pushed by an increasing interest in environmental problems and supported by an exponential growth of computational capability, novel numerical methods and models have been developed. Despite the progress in parallel computing, computational time is still one of the main bottlenecks when dealing with long term environmental simulations. To overcome such time constraint in morphodynamic models, artificial acceleration of bed evolution has been implemented with different strategies (e.g. Roelvink 2006). The key idea is to accelerate the morphological evolution increasing the discrete bottom variations of a given "morphological factor" during numerical integration thus considerably speeding up computational time. On the other hand, an artificial alteration of the governing equations is put forward, for which related numerical and physical consequences are not completely known. The present work investigates the role of the morphological factor in numerical simulations of a well-defined, 2D reach-scale process in river morphodynamics, which can be taken as a benchmark for the established knowledge made available from theoretical and physical scale models developed in the past decades. The chosen process is the evolution of free migrating bars in a straight channel. The numerical morphodynamic model used in this work is GIAMT2D (Siviglia et al. 2013), which solves the governing system of shallow water and Exner equations following a fully coupled approach with a finite volume method on unstructured triangular grids. By processing numerical outcomes also through Continuous Wavelet Transform, the differences in free migrating bars properties (temporal evolution and equilibrium values of wavelength, amplitude, celerity) are investigated in simple test cases with different values of the morphological factor. Numerical results are compared with available analytical theories for free bars. The outcomes highlight the consequences of using the morphological

  19. P{bar P} collider physics

    SciTech Connect

    Demarteau, M.

    1992-04-01

    A brief introduction to {bar p}p collider physics is given. Selected results from the collider experiments at the CERN S{bar p}pS and the Tevatron collider are described. The emphasis is on experimental aspects of {bar p}p collisions. Minimum bias physics and the production of jets, Intermediate Vector Bosons and heavy flavors is reviewed. The outlook for physics at hadron colliders for the near future is briefly discussed.

  20. {bar K}-NUCLEAR Deeply Bound States?

    NASA Astrophysics Data System (ADS)

    Gal, Avraham

    Following the prediction by Akaishi and Yamazaki of relatively narrow {bar K}-nuclear states, deeply bound by over 100 MeV where the main decay channel {bar K} N -> π Σ is closed, several experimental signals in stopped K- reactions on light nuclei have been interpreted recently as due to such states. In this talk I review (i) the evidence from K--atom data for a deep bar K-nucleus potential, as attractive as V{bar K}(ρ 0) ˜ -(150 - 200) MeV at nuclear matter density, that could support such states; and (ii) the theoretical arguments for a shallow potential, V{bar K}(ρ 0) ˜ -(40 - 60) MeV. I then review a recent work by Mareš, Friedman and Gal in which {bar K}-nuclear bound states are generated dynamically across the periodic table, using a RMF Lagrangian that couples the {bar K} to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for {bar K} absorption from these bound states is taken into account by adding a density- and energy-dependent imaginary term, underlying the corresponding {bar K}-nuclear level widths, with a strength constrained by K--atom fits. Substantial polarization of the core nucleus is found for light nuclei, with central nuclear densities enhanced by almost a factor of two. The binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. These calculations provide a lower limit of Γ {bar K} ˜ 50 ± 10 MeV on the width of nuclear bound states for {bar K} binding energy in the range B{bar K} = 100 - 200 MeV.

  1. Bar Impact Tests on Alumina (AD995)

    NASA Astrophysics Data System (ADS)

    Cazamias, James U.; Reinhart, William D.; Konrad, Carl H.; Chhabildas, Lalit C.; Bless, Stephan J.

    2002-07-01

    Dynamic strength may be inferred from bar impact tests, although interpretation of the data is affected by the time-to-failure of the target bar. To clarify the mechanics, tests with graded density impactors were conducted on bare and confined bars, 12 and 19 mm in diameter, cut from blocks of AD995 alumina. Manganin gauge and VISAR diagnostics were employed. Larger rods displayed higher strength. In some tests the "true" yield stress of ˜4.5 GPa was achieved.

  2. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  3. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  4. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  5. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  6. Secular evolution in action: unravelling the nature of bars and bulges

    NASA Astrophysics Data System (ADS)

    Seidel, Marja Kristin; Falcon Barroso, Jesus

    2015-01-01

    Studies of galactic bulges in relation with bars have provided powerful constraints on their formation and evolution. While spectroscopic measurements in 2D have mainly focused on the interstellar component, two dimensional studies of the stellar counterpart have only become possible with the advent of integral-field spectroscopic surveys. Here we present new results from the BaLROG project (Bars in Low Redshift Optical galaxies), using the integral field spectrograph SAURON. Our 2D maps, combining several SAURON pointings per galaxy, extend beyond corotation and allow us to probe radial dependencies within and past the bar. We develop a new method to measure bar strength based on radial and tangential velocities derived from our kinematic maps and find a good agreement with the torque found via the photometry of Spitzer images. A comparison with N-body simulations using the two distinct torque measurements shows that early-type bars might originate from distinct dark matter (DM) halos. This results in higher DM fractions within the bar region for later types (>50% DM). We also compute line-strength indices to derive SSP-equivalent ages and metallicities and find enhanced iron features likely associated to bar-driven resonances.To complement this stellar population study we observed three bulges using the high resolution gratings (R=7000) of the WiFeS IFU. The large wavelength coverage along with the high spectral resolution allow the use of full spectral fitting methods to extract the bulges' star formation histories. We find that at least 50% of the stellar mass already existed 12 Gyrs ago, more than currently predicted by simulations. A younger component (age between ˜1 to ˜8 Gyrs) is also prominent and its present day distribution seems to be affected much more strongly by morphological structures, especially bars, than the older one.In this talk, we link the observed bulge properties to diverse formation scenarios taking into account results from

  7. Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL.

    PubMed

    Molero, Miguel; Iturrarán-Viveros, Ursula

    2013-03-01

    We present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver. This experiment is numerically modeled by running a finite difference code covering a set of angles θ∈[-50°, 50°], and recorded the signals for the transmission and reflection results. Transversely anisotropic and weakly orthorhombic materials are considered. We accelerated the computation using an open-source toolkit called PyOpenCL, which lets one to easily access the OpenCL parallel computation API's from the high-level programming environment of Python. A speedup factor over 19 using the GPU is obtained when compared with the execution of the same program in parallel using a CPU multi-core (in this case we use the 4-cores that has the CPU). The performance for different graphic cards and operating systems is included together with the full 2-D finite difference code with PyOpenCL. PMID:23290584

  8. DO BARS DRIVE SPIRAL DENSITY WAVES?

    SciTech Connect

    Buta, Ronald J.; Knapen, Johan H.; Elmegreen, Bruce G.; Salo, Heikki; Laurikainen, Eija; Elmegreen, Debra Meloy; Puerari, Ivanio; Block, David L. E-mail: jhk@iac.es E-mail: hsalo@sun3.oulu.fi E-mail: elmegreen@vassar.edu E-mail: David.Block@wits.ac.za

    2009-05-15

    We present deep near-infrared K{sub s} -band Anglo-Australian Telescope Infrared Imager and Spectrograph observations of a selected sample of nearby barred spiral galaxies, including some with the strongest known bars. The sample covers a range of Hubble types from SB0{sup -} to SBc. The goal is to determine if the torque strengths of the spirals correlate with those of the bars, which might be expected if the bars actually drive the spirals as has been predicted by theoretical studies. This issue has implications for interpreting bar and spiral fractions at high redshift. Analysis of previous samples suggested that such a correlation exists in the near-infrared, where effects of extinction and star formation are less important. However, the earlier samples had only a few excessively strong bars. Our new sample largely confirms our previous studies, but still any correlation is relatively weak. We find two galaxies, NGC 7513 and UGC 10862, where there is only a weak spiral in the presence of a very strong bar. We suggest that some spirals probably are driven by their bars at the same pattern speed, but that this may be only when the bar is growing or if there is abundant gas and dissipation.

  9. Basic physics of xylophone and marimba bars

    NASA Astrophysics Data System (ADS)

    Suits, B. H.

    2001-07-01

    The frequency-dependent wave velocity and nonsinusoidal spatial dependence found for transverse waves in finite vibrating bars stands in stark contrast to the solutions to the one-dimensional wave equation, for example for the idealized vibrating string. The difference is particularly important when the resulting vibrations are used to produce music. Here, the appropriate approximate equations for transverse vibrations on a uniform bar are developed and compared to measurements using wooden bars. The results are extended using a simple finite element model to provide a means to predict normal mode behavior in nonuniform wooden bars such as those used for xylophones, marimbas, and related musical instruments.

  10. Dynamical mechanisms supporting barred-spiral structures

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.

    We review some recent results of the orbital theory, related with the dynamics of barred-spiral galaxies. The method we use is to study the responses of stellar and gaseous disks when time-independent, external potentials are imposed. These potentials are directly estimated from near-infrared images of disk galaxies. The goal of the work is to detect dynamical mechanisms that reinforce the bars and the spirals in realistic systems. Besides the known mechanism for building bars by quasiperiodic orbits trapped around stable orbits of the {xx} family, we find cases where bars can be supported, to a large extent, by chaotic orbits. These bars are of the ``ansae'' type and their effective potentials are characterized by multiple Lagrangian points roughly along the major axis of the bar. On the other hand the spirals are supported mainly by chaotic orbits and extend usually beyond corotation. We find that the spirals and the outer parts of the bars share the same orbital content. However, we have found also barred-spiral systems with spirals inside corotation, consisting mainly by chaotic orbits. Finally we indicate, that in barred-spiral systems with different pattern speeds for the two components, the dynamics of the spirals can be similar to the dynamics of the spirals of normal spiral galaxies.

  11. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. PMID:25965703

  12. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  13. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  14. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  15. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  16. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  17. Self-dual strings and 2D SYM

    NASA Astrophysics Data System (ADS)

    Hosomichi, Kazuo; Lee, Sungjay

    2015-01-01

    We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.

  18. Finite temperature corrections in 2d integrable models

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Hasenbusch, M.

    2002-09-01

    We study the finite size corrections for the magnetization and the internal energy of the 2d Ising model in a magnetic field by using transfer matrix techniques. We compare these corrections with the functional form recently proposed by Delfino and LeClair-Mussardo for the finite temperature behaviour of one-point functions in integrable 2d quantum field theories. We find a perfect agreement between theoretical expectations and numerical results. Assuming the proposed functional form as an input in our analysis we obtain a relevant improvement in the precision of the continuum limit estimates of both quantities.

  19. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  20. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  1. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  2. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    PubMed

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory. PMID:15278693

  3. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  4. Quantum process tomography by 2D fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  5. 2D and 3D numerical simulations of morphodynamics structures in a large-amplitude meanders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the pioneering study of the Ishikari River, Japan, Kinoshita (Kinoshita 1957, 1961) described two types of meandering channels: (1) channel with two bars per meander wavelength (one bar per bend), and (2) channel with three or more bars per meander wavelength (multiple bars per bend). Based on th...

  6. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  7. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.

    PubMed

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T; Engelsen, Søren B

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T(2)-D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T(2)-D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T(2)-D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D=3 x 10(-12) m(2) s(-1) and T(2)=180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D=10(-9) m(2) s(-1), T(2)=10 ms and D=3 x 10(-13) m(2) s(-1), T(2)=13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  8. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  9. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  10. 2D/3D Monte Carlo Feature Profile Simulator FPS-3D

    NASA Astrophysics Data System (ADS)

    Moroz, Paul

    2010-11-01

    Numerical simulation of etching/deposition profiles is important for semiconductor industry, as it allows analysis and prediction of the outcome of materials processing on a micron and sub-micron scale. The difficulty, however, is in making such a simulator a reliable, general, and easy to use tool applicable to different situations, for example, with different ratios of ion to neutral fluxes, different chemistries, different energies of incoming particles, and different angular and energy dependencies for surface reactions, without recompiling the code each time when the parameters change. The FPS-3D simulator [1] does not need recompilation when the features, materials, gases, or plasma are changed -- modifications to input, chemistry, and flux files are enough. The code allows interaction of neutral low-energy species with the surface mono-layer, while considering finite penetration depth into the volume for fast particles and ions. The FPS-3D code can simulate etching and deposition processes, both for 2D and 3D geometries. FPS-3D is using an advanced graphics package from HFS for presenting real-time process and profile evolution. The presentation will discuss the FPS-3D code with examples for different process conditions. The author is thankful to Drs. S.-Y. Kang of TEL TDC and P. Miller of HFS for valuable discussions. [4pt] [1] P. Moroz, URP.00101, GEC, Saratoga, NY, 2009.

  11. Too Much Bar and Not Enough Mitzvah? A Proposed Research Agenda on Bar/Bat Mitzvah

    ERIC Educational Resources Information Center

    Schoenfeld, Stuart

    2010-01-01

    Jewish educators are understandably interested in research on how bar/bat mitzvah affect Jewish education or research on what Jewish schools have done to avoid the distortions of a focus on bar/bat mitzvah. Research might also focus on the somewhat different and more ambitious topic of the role that bar/bat mitzvah play in contemporary Jewish…

  12. Taylor impact of glass bars

    NASA Astrophysics Data System (ADS)

    Murray, Natalie; Bourne, Neil; Field, John

    1997-07-01

    Brar and Bless pioneeered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass. We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test. In this configuration two rods impact one upon the other in a symmetrical version of the Taylor test geometry in which the impact is perfectly rigid in the centre of mass frame. Previous work in the laboratory has characterised the three glass types (float, borosilicate and a high density lead glass). These experiments will identify the 1D stress failure mechanisms from high-speed photography and the stress and particle velocity histories will be interpreted in the light of these results. The differences in response of the three glasses will be highlighted.

  13. Bars Triggered By Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2015-05-01

    Galaxy mergers drive galaxy evolution and are a key mechanism by which galaxies grow and transform. Unlike galaxy mergers where two galaxies combine into one remnant, galaxy flybys occur when two independent galaxy halos interpenetrate but detach at a later time; these one-time events are surprisingly common and can even out-number galaxy mergers at low redshift for massive halos. Although these interactions are transient and occur far outside the galaxy disk, flybys can still drive a rapid and large pertubations within both the intruder and victim halos. We explored how flyby encounters can transform each galaxy using a suite of N-body simulations. We present results from three co-planar flybys between disk galaxies, demonstrating that flybys can both trigger strong bar formation and can spin-up dark matter halos.

  14. Gas flow in barred potentials

    NASA Astrophysics Data System (ADS)

    Sormani, Mattia C.; Binney, James; Magorrian, John

    2015-05-01

    We use a Cartesian grid to simulate the flow of gas in a barred Galactic potential and investigate the effects of varying the sound speed in the gas and the resolution of the grid. For all sound speeds and resolutions, streamlines closely follow closed orbits at large and small radii. At intermediate radii shocks arise and the streamlines shift between two families of closed orbits. The point at which the shocks appear and the streamlines shift between orbit families depends strongly on sound speed and resolution. For sufficiently large values of these two parameters, the transfer happens at the cusped orbit as hypothesized by Binney et al. over two decades ago. For sufficiently high resolutions, the flow downstream of the shocks becomes unsteady. If this unsteadiness is physical, as appears to be the case, it provides a promising explanation for the asymmetry in the observed distribution of CO.

  15. Orbital kinematics of edge-on bars with and without supermassive black holes

    NASA Astrophysics Data System (ADS)

    Abbott, Caleb; Valluri, Monica; Shen, Juntai; Debattista, Victor P.

    2016-01-01

    Observations of external disk galaxies with bars frequently show boxy or peanut shaped bulges, which have a distinct X-shaped structure when the system is viewed edge-on. Such features are also well documented in N-body simulations, where they arise from the buckling of the bar. The precise nature of the orbits that create this structure is still uncertain. Some studies argue that the bulge/X-shape structure is formed and supported by resonant 2:1 "banana" orbit family, while other argue that they arise from 5:3 "brezel" orbits. Here we examine a set of N-body models of a barred disk galaxy (with and without a central black hole). We generate 2-D maps of projected kinematics both for specific orbit families as well as the full simulation of the bars at different orientations. By examining the line-of-sight velocities, velocity dispersions and 3rd and 4th Gauss-Hermite polynomials we attempt to deduce the type of orbits most likely to produce the X-shaped features. We also generate mock kinematics for the Milky Way bar and predict the kinematical features associated with the X-shape that will be observed with upcoming stellar surveys.

  16. Gap Formations Along Specimen-Bar Interfaces in Numerical Simulations of SHPB Tests on Elastic Materials Soft in Shear

    NASA Astrophysics Data System (ADS)

    Raftenberg, Martin N.; Scheidler, Mike

    2009-06-01

    Simulations of split Hopkinson pressure bar (SHPB) tests on elastic materials were performed using LS-DYNA. The specimens were much stiffer in dilatation than in shear. A compressible form of Mooney-Rivlin elasticity was applied with parameters evaluated from ballistic gelatin data. The bars were aluminum. The velocity prescribed on the incident bar increased over a rise time until attaining a steady-state value corresponding to a nominal strain rate of 2500/s. The rise time was varied to observe effects of pulse shaping. All calculations were 2D axisymmetric. A penalty-based contact algorithm was applied at the specimen-bar interfaces. This algorithm introduced a stiffness and a viscosity parameter. In sensitivity studies we varied the radius of the bars, the specimen's mesh, and the two contact parameters. In all calculations with the Mooney-Rivlin model, gaps formed at both specimen-bar interfaces over a wide range of strains. This gap phenomenon appears not to have been previously reported in the SHPB literature. We replaced the Mooney-Rivlin model with linear elasticity in order to explore whether the gaps were associated with material nonlinearity. We fixed Young's modulus at a value much smaller than that of aluminum. For sufficiently large Poisson ratios, we again observed gap formations at both specimen-bar interfaces.

  17. Discrepant Results in a 2-D Marble Collision

    ERIC Educational Resources Information Center

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  18. THz devices based on 2D electron systems

    NASA Astrophysics Data System (ADS)

    Xing, Huili Grace; Yan, Rusen; Song, Bo; Encomendero, Jimy; Jena, Debdeep

    2015-05-01

    In two-dimensional electron systems with mobility on the order of 1,000 - 10,000 cm2/Vs, the electron scattering time is about 1 ps. For the THz window of 0.3 - 3 THz, the THz photon energy is in the neighborhood of 1 meV, substantially smaller than the optical phonon energy of solids where these 2D electron systems resides. These properties make the 2D electron systems interesting as a platform to realize THz devices. In this paper, I will review 3 approaches investigated in the past few years in my group toward THz devices. The first approach is the conventional high electron mobility transistor based on GaN toward THz amplifiers. The second approach is to employ the tunable intraband absorption in 2D electron systems to realize THz modulators, where I will use graphene as a model material system. The third approach is to exploit plasma wave in these 2D electron systems that can be coupled with a negative differential conductance element for THz amplifiers/sources/detectors.

  19. NKG2D ligands mediate immunosurveillance of senescent cells.

    PubMed

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  20. Proteomic Profiling of Macrophages by 2D Electrophoresis

    PubMed Central

    Bouvet, Marion; Turkieh, Annie; Acosta-Martin, Adelina E.; Chwastyniak, Maggy; Beseme, Olivia; Amouyel, Philippe; Pinet, Florence

    2014-01-01

    The goal of the two-dimensional (2D) electrophoresis protocol described here is to show how to analyse the phenotype of human cultured macrophages. The key role of macrophages has been shown in various pathological disorders such as inflammatory, immunological, and infectious diseases. In this protocol, we use primary cultures of human monocyte-derived macrophages that can be differentiated into the M1 (pro-inflammatory) or the M2 (anti-inflammatory) phenotype. This in vitro model is reliable for studying the biological activities of M1 and M2 macrophages and also for a proteomic approach. Proteomic techniques are useful for comparing the phenotype and behaviour of M1 and M2 macrophages during host pathogenicity. 2D gel electrophoresis is a powerful proteomic technique for mapping large numbers of proteins or polypeptides simultaneously. We describe the protocol of 2D electrophoresis using fluorescent dyes, named 2D Differential Gel Electrophoresis (DIGE). The M1 and M2 macrophages proteins are labelled with cyanine dyes before separation by isoelectric focusing, according to their isoelectric point in the first dimension, and their molecular mass, in the second dimension. Separated protein or polypeptidic spots are then used to detect differences in protein or polypeptide expression levels. The proteomic approaches described here allows the investigation of the macrophage protein changes associated with various disorders like host pathogenicity or microbial toxins. PMID:25408153

  1. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  2. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  3. On the sensitivity of the 2D electromagnetic invisibility cloak

    NASA Astrophysics Data System (ADS)

    Kaproulias, S.; Sigalas, M. M.

    2012-10-01

    A computational study of the sensitivity of the two dimensional (2D) electromagnetic invisibility cloaks is performed with the finite element method. A circular metallic object is covered with the cloak and the effects of absorption, gain and disorder are examined. Also the effect of covering the cloak with a thin dielectric layer is studied.

  4. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  5. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  6. The NH2D hyperfine structure revealed by astrophysical observations

    NASA Astrophysics Data System (ADS)

    Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J. E.

    2016-02-01

    Context. The 111-101 lines of ortho- and para-NH2D (o/p-NH2D) at 86 and 110 GHz, respectively, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure that is due to the nitrogen (14N) nucleus is resolved. To date, this splitting is the only one that is taken into account in the NH2D column density estimates. Aims: We investigate how including the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH2D. Methods: We present 30 m IRAM observations of the above mentioned lines and APEX o/p-NH2D observations of the 101-000 lines at 333 GHz. The hyperfine patterns of the observed lines were calculated taking into account the splitting induced by the D nucleus. The analysis then relies on line lists that either neglect or include the splitting induced by the D nucleus. Results: The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting that is due to the 14N nucleus. We find inconsistencies between the line widths of the 101-000 and 111-101 lines, the latter being larger by a factor of ~1.6 ± 0.3. Such a large difference is unexpected because the two sets of lines probably originate from the same region. We next employed a newly computed line list for the o/p-NH2D transitions where the hyperfine structure induced by both nitrogen and deuterium nuclei was included. With this new line list, the analysis of the previous spectra leads to compatible line widths. Conclusions: Neglecting the hyperfine structure caused by D leads to overestimating the line widths of the o/p-NH2D lines at 3 mm. The error for a cold molecular core is about 50%. This error propagates directly to the column density estimate. We therefore recommend to take the hyperfine splittings caused by both the 14N and D nuclei into account in any analysis that relies on these lines. Based on observations carried out with the IRAM

  7. Fast 2D FWI on a multi and many-cores workstation.

    NASA Astrophysics Data System (ADS)

    Thierry, Philippe; Donno, Daniela; Noble, Mark

    2014-05-01

    Following the introduction of x86 co-processors (Xeon Phi) and the performance increase of standard 2-socket workstations using the latest 12 cores E5-v2 x86-64 CPU, we present here a MPI + OpenMP implementation of an acoustic 2D FWI (full waveform inversion) code which simultaneously runs on the CPUs and on the co-processors installed in a workstation. The main advantage of running a 2D FWI on a workstation is to be able to quickly evaluate new features such as more complicated wave equations, new cost functions, finite-difference stencils or boundary conditions. Since the co-processor is made of 61 in-order x86 cores, each of them having up to 4 threads, this many-core can be seen as a shared memory SMP (symmetric multiprocessing) machine with its own IP address. Depending on the vendor, a single workstation can handle several co-processors making the workstation as a personal cluster under the desk. The original Fortran 90 CPU version of the 2D FWI code is just recompiled to get a Xeon Phi x86 binary. This multi and many-core configuration uses standard compilers and associated MPI as well as math libraries under Linux; therefore, the cost of code development remains constant, while improving computation time. We choose to implement the code with the so-called symmetric mode to fully use the capacity of the workstation, but we also evaluate the scalability of the code in native mode (i.e running only on the co-processor) thanks to the Linux ssh and NFS capabilities. Usual care of optimization and SIMD vectorization is used to ensure optimal performances, and to analyze the application performances and bottlenecks on both platforms. The 2D FWI implementation uses finite-difference time-domain forward modeling and a quasi-Newton (with L-BFGS algorithm) optimization scheme for the model parameters update. Parallelization is achieved through standard MPI shot gathers distribution and OpenMP for domain decomposition within the co-processor. Taking advantage of the 16

  8. Half-metallicity in 2D organometallic honeycomb frameworks

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  9. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  10. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  11. Outreach to bar workers in Bangkok.

    PubMed

    Sittitrai, W

    1990-12-01

    In the course of a campaign to provide AIDS education, information and related services to bar workers, outreach is a necessary strategy. This paper describes what "outreach" is, the direction it may take, who the bar workers are, where outreach is conducted, who performs the outreach, what "community preparation" or prior work is necessary, and useful tips for effective, ethical, outreach programmes.

  12. Adjustable drill bar replaces complex jigs

    NASA Technical Reports Server (NTRS)

    Coventry, J. H.

    1970-01-01

    Adjustable drill bar incorporates a micrometer screw which, when used in conjunction with standard gage blocks, provides rapid method of drill hole location and reduces time and skill requirements for precision drilling on large surfaces. Device picks up oddly dimensioned tool hole points and acts as sine drill bar.

  13. Constraints from microlensing on the COBE bar

    NASA Astrophysics Data System (ADS)

    Zhao, H. S.

    Since the first review of converging evidences for a bar in the center of the Galaxy by de Zeeuw (1992) at the IAU Sym. 153 in Gent five years ago, the Galactic bar idea has been put on a solid footing by an influx of new data (COBE/DIRBE maps, star count data of bulge red clump giants, microlensing optical depth, and bulge stellar proper motions, etc.) and a burst of increasingly sophisticated theoretical models (triaxial luminosity models of Dwek et al. 1994, and Binney, Gerhard & Spergel 1997, steady state stellar bar dynamical model of Zhao 1996, combined luminosity, microlensing and gas kinematics models of Zhao, Rich & Spergel 1996, and Bissantz et al. 1997, etc.), which fit new data and improve upon earlier simple bulge/bar models (Kent 1992, Binney et al. 1991, Blitz & Spergel 1991). While research in this field shifts more and more to constraining the exact phase space and parameter space of the bar, both the non-uniqueness of and the mismatches among bars from different datasets start to show up. I compare the bar from microlensing data with the COBE bar and point out the effects the non-uniqueness.

  14. Bar Study Stories. Issues in Prevention

    ERIC Educational Resources Information Center

    Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2012

    2012-01-01

    This issue of "Issues in Prevention" focuses on the impact of the availability of drinks in licensed establishments, such as bars and taverns on student drinking. This issue contains the following articles: (1) Cheap Drinks at College Bars Can Escalate Student Drinking (John D. Clapp); (2) High Alcohol Outlet Density: A Problem for Campuses and…

  15. Conservative Groups Threaten to Sue Bar Association

    ERIC Educational Resources Information Center

    Jacobson, Jennifer

    2006-01-01

    A proposed revision in the American Bar Association's accrediting standards for law schools is coming under fire from the U.S. Commission on Civil Rights, which says the proposal seems to require the schools to use racial preferences in hiring and admissions despite federal and state laws limiting such policies. Although a bar-association official…

  16. Needle bar for warp knitting machines

    DOEpatents

    Hagel, Adolf; Thumling, Manfred

    1979-01-01

    Needle bar for warp knitting machines with a number of needles individually set into slits of the bar and having shafts cranked to such an extent that the head section of each needle is in alignment with the shaft section accommodated by the slit. Slackening of the needles will thus not influence the needle spacing.

  17. Evaluation of the entropy consistent euler flux on 1D and 2D test problems

    NASA Astrophysics Data System (ADS)

    Roslan, Nur Khairunnisa Hanisah; Ismail, Farzad

    2012-06-01

    Perhaps most CFD simulations may yield good predictions of pressure and velocity when compared to experimental data. Unfortunately, these results will most likely not adhere to the second law of thermodynamics hence comprising the authenticity of predicted data. Currently, the test of a good CFD code is to check how much entropy is generated in a smooth flow and hope that the numerical entropy produced is of the correct sign when a shock is encountered. Herein, a shock capturing code written in C++ based on a recent entropy consistent Euler flux is developed to simulate 1D and 2D flows. Unlike other finite volume schemes in commercial CFD code, this entropy consistent flux (EC) function precisely satisfies the discrete second law of thermodynamics. This EC flux has an entropy-conserved part, preserving entropy for smooth flows and a numerical diffusion part that will accurately produce the proper amount of entropy, consistent with the second law. Several numerical simulations of the entropy consistent flux have been tested on two dimensional test cases. The first case is a Mach 3 flow over a forward facing step. The second case is a flow over a NACA 0012 airfoil while the third case is a hypersonic flow passing over a 2D cylinder. Local flow quantities such as velocity and pressure are analyzed and then compared with mainly the Roe flux. The results herein show that the EC flux does not capture the unphysical rarefaction shock unlike the Roe-flux and does not easily succumb to the carbuncle phenomenon. In addition, the EC flux maintains good performance in cases where the Roe flux is known to be superior.

  18. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    SciTech Connect

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.

  19. [Development of cereal bar with pineapple skin].

    PubMed

    Fonseca, Renata Siqueira; Del Santo, Victor Rogério; Souza, Gilberto Batista de; Pereira, Cíntia Alessandra Matiucci

    2011-06-01

    The cereal bars are multi-component products consisting of cereals, dried fruit and syrup binder and may be added to the consumable parts of fruits and vegetables which usually are not exploited and have high nutritional value, thereby reducing food waste. It was developed a jam with pineapple skin, which it was utilized in 13.5% in the cereal bar formulation. The cereal bar was sensorial evaluated and had its centesimal and mineral composition determined. The new product achieved average of 8.3 for global impression using 9 points hedonic scale, 91% of acceptance rate and 67% of purchase intent. In this first use of pineapple skin jam as food ingredient it can be concluded that its aggregation in the cereal bar formula is feasible, making an accepted product with fibers, proteins and minerals, as an alternative to traditional cereal bars.

  20. [Development of cereal bar with pineapple skin].

    PubMed

    Fonseca, Renata Siqueira; Del Santo, Victor Rogério; Souza, Gilberto Batista de; Pereira, Cíntia Alessandra Matiucci

    2011-06-01

    The cereal bars are multi-component products consisting of cereals, dried fruit and syrup binder and may be added to the consumable parts of fruits and vegetables which usually are not exploited and have high nutritional value, thereby reducing food waste. It was developed a jam with pineapple skin, which it was utilized in 13.5% in the cereal bar formulation. The cereal bar was sensorial evaluated and had its centesimal and mineral composition determined. The new product achieved average of 8.3 for global impression using 9 points hedonic scale, 91% of acceptance rate and 67% of purchase intent. In this first use of pineapple skin jam as food ingredient it can be concluded that its aggregation in the cereal bar formula is feasible, making an accepted product with fibers, proteins and minerals, as an alternative to traditional cereal bars. PMID:22308949

  1. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  2. Accurate coronary modeling procedure using 2D calibrated projections based on 2D centerline points on a single projection

    NASA Astrophysics Data System (ADS)

    Movassaghi, Babak; Rasche, Volker; Viergever, Max A.; Niessen, Wiro J.

    2004-05-01

    For the diagnosis of ischemic heart disease, accurate quantitative analysis of the coronary arteries is important. In coronary angiography, a number of projections is acquired from which 3D models of the coronaries can be reconstructed. A signifcant limitation of the current 3D modeling procedures is the required user interaction for defining the centerlines of the vessel structures in the 2D projections. Currently, the 3D centerlines of the coronary tree structure are calculated based on the interactively determined centerlines in two projections. For every interactively selected centerline point in a first projection the corresponding point in a second projection has to be determined interactively by the user. The correspondence is obtained based on the epipolar-geometry. In this paper a method is proposed to retrieve all the information required for the modeling procedure, by the interactive determination of the 2D centerline-points in only one projection. For every determined 2D centerline-point the corresponding 3D centerline-point is calculated by the analysis of the 1D gray value functions of the corresponding epipolarlines in space for all available 2D projections. This information is then used to build a 3D representation of the coronary arteries using coronary modeling techniques. The approach is illustrated on the analysis of calibrated phantom and calibrated coronary projection data.

  3. CHALLENGES TO IMPLEMENTING AND ENFORCING CALIFORNIA’S SMOKE-FREE WORKPLACE ACT IN BARS

    PubMed Central

    Satterlund, Travis D.; Lee, Juliet P.; Moore, Roland S.; Antin, Tamar M.J.

    2009-01-01

    California’s 1995 Smoke-Free Workplace Act—Assembly Bill 13 (AB 13)—was extended to bars in 1998. This paper examines the challenges faced by officials responsible for implementing and enforcing the law. As part of a series of studies evaluating AB 13 in bars, researchers conducted confidential in-depth interviews with 35 state, county and municipal authorities and representatives of non-governmental agencies. The interviews were recorded, transcribed, coded and analyzed by themes and respondent categories. Data from structured observations in sampled bars and interviews with bar staff and patrons offer contextual information. Analyses indicated the following challenges: 1) an ineffective administrative structure, 2) problems associated with the complaint-driven system used to enforce the law, 3) lack of funding for enforcement, 4) low prioritization of enforcement, and 5) the minimal deterrence effect of the sanctioning penalties. The findings indicate why indoor smoking may continue in some bars despite the state law prohibiting smoking in workplaces. Many municipalities, states and countries may be considering restricting smoking in workplaces including bars, and our findings show that clear delineation of procedures and enforcement criteria, as well as funding and substantive penalties, should be considered in drafting these laws. PMID:20161559

  4. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  5. The Environment of Barred Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Cervantes Sodi, B.; Li, C.; Park, C.; Wang, L.

    We present a study of the environment of barred galaxies using galaxies drawn from the SDSS. We use several different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number counts of neighbor galaxies, the overdensity of the local environment, the membership of our galaxies to galaxy groups to segregate central and satellite systems, and, for central galaxies, the stellar to halo mass ratio (M∗/Mh). When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within ˜ 50 kpc around the barred galaxies when compared to unbarred galaxies from the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. For central late-type galaxies, bars are more common on galaxies with high M∗/Mh values, as expected from early theoretical works which showed that systems with massive dark matter halos are more stable against bar instabilities. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.

  6. Hot Disks and Delayed Bar Formation

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Melbourne, Jason; Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Athanassoula, E.; Abraham, Roberto G.; Weiner, Benjamin J.

    2012-10-01

    We present observational evidence for the inhibition of bar formation in dispersion-dominated (dynamically hot) galaxies by studying the relationship between galactic structure and host galaxy kinematics in a sample of 257 galaxies between 0.1 < z <= 0.84 from the All-Wavelength Extended Groth Strip International Survey and the Deep Extragalactic Evolutionary Probe 2 survey. We find that bars are preferentially found in galaxies that are massive and dynamically cold (rotation-dominated) and on the stellar Tully-Fisher relationship, as is the case for barred spirals in the local universe. The data provide at least one explanation for the steep (×3) decline in the overall bar fraction from z = 0 to z = 0.84 in L* and brighter disks seen in previous studies. The decline in the bar fraction at high redshift is almost exclusively in the lower mass (10 < log M *(M ⊙) < 11), later-type, and bluer galaxies. A proposed explanation for this "downsizing" of the bar formation/stellar structure formation is that the lower mass galaxies may not form bars because they could be dynamically hotter than more massive systems from the increased turbulence of accreting gas, elevated star formation, and/or increased interaction/merger rate at higher redshifts. The evidence presented here provides observational support for this hypothesis. However, the data also show that not every disk galaxy that is massive and cold has a stellar bar, suggesting that mass and dynamic coldness of a disk are necessary but not sufficient conditions for bar formation—a secondary process, perhaps the interaction history between the dark matter halo and the baryonic matter, may play an important role in bar formation.

  7. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  8. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  9. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  10. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  11. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  12. A technique for relining bar-retained overdentures.

    PubMed

    Mosharraf, Ramin; Abolhasani, Majid; Givehchian, Pirooz

    2014-12-01

    This article describes a technique for relining a mandibular bar-retained overdenture that allows recording the soft tissue beneath the bar and makes it possible to replace or modify the retentive bar attachment simultaneously with the reline procedure.

  13. Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, M.

    2016-05-01

    In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.

  14. Continuum Nonsimple Loops and 2D Critical Percolation

    NASA Astrophysics Data System (ADS)

    Camia, Federico; Newman, Charles M.

    2004-08-01

    Substantial progress has been made in recent years on the 2D critical percolation scaling limit and its conformal invariance properties. In particular, chordal SLE 6(the Stochastic Loewner Evolution with parameter κ=6) was, in the work of Schramm and of Smirnov, identified as the scaling limit of the critical percolation "exploration process." In this paper we use that and other results to construct what we argue is the fullscaling limit of the collection of allclosed contours surrounding the critical percolation clusters on the 2D triangular lattice. This random process or gas of continuum nonsimple loops in Bbb R2is constructed inductively by repeated use of chordal SLE 6. These loops do not cross but do touch each other—indeed, any two loops are connected by a finite "path" of touching loops.

  15. Functionalized 2D atomic sheets with new properties

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2011-03-01

    Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.

  16. A Better 2-D Mechanical Energy Conservation Experiment

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    2012-02-01

    A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.

  17. Critical Dynamics in Quenched 2D Atomic Gases

    NASA Astrophysics Data System (ADS)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  18. Defect Dynamics in Active 2D Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Decamp, Stephen; Redner, Gabriel; Hagan, Michael; Dogic, Zvonimir

    2014-03-01

    Active materials are assemblies of animate, energy-consuming objects that exhibit continuous dynamics. As such, they have properties that are dramatically different from those found in conventional materials made of inanimate objects. We present a 2D active nematic liquid crystal composed of bundled microtubules and kinesin motor proteins that exists in a dynamic steady-state far from equilibrium. The active nematic exhibits spontaneous binding and unbinding of charge +1/2 and -1/2 disclination defects as well as streaming of +1/2 defects. By tuning ATP concentration, we precisely control the amount of activity, a key parameter of the system. We characterize the dynamics of streaming defects on a large, flat, 2D interface using quantitative polarization light microscopy. We report fundamental characteristics of the active nematics such as defect velocities, defect creation and annihilation rates, and emergent length scales in the system.

  19. Controlling avalanche criticality in 2D nano arrays.

    PubMed

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  20. Visualization of 2-D and 3-D Tensor Fields

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus

    1997-01-01

    In previous work we have developed a novel approach to visualizing second order symmetric 2-D tensor fields based on degenerate point analysis. At degenerate points the eigenvalues are either zero or equal to each other, and the hyper-streamlines about these points give rise to tri-sector or wedge points. These singularities and their connecting hyper-streamlines determine the topology of the tensor field. In this study we are developing new methods for analyzing and displaying 3-D tensor fields. This problem is considerably more difficult than the 2-D one, as the richness of the data set is much larger. Here we report on our progress and a novel method to find , analyze and display 3-D degenerate points. First we discuss the theory, then an application involving a 3-D tensor field, the Boussinesq problem with two forces.