Science.gov

Sample records for 2d barcode detection

  1. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  2. PiCode: A New Picture-Embedding 2D Barcode.

    PubMed

    Chen, Changsheng; Huang, Wenjian; Zhou, Baojian; Liu, Chenchen; Mow, Wai Ho

    2016-08-01

    Nowadays, 2D barcodes have been widely used as an interface to connect potential customers and advertisement contents. However, the appearance of a conventional 2D barcode pattern is often too obtrusive for integrating into an aesthetically designed advertisement. Besides, no human readable information is provided before the barcode is successfully decoded. This paper proposes a new picture-embedding 2D barcode, called PiCode, which mitigates these two limitations by equipping a scannable 2D barcode with a picturesque appearance. PiCode is designed with careful considerations on both the perceptual quality of the embedded image and the decoding robustness of the encoded message. Comparisons with the existing beautified 2D barcodes show that PiCode achieves one of the best perceptual qualities for the embedded image, and maintains a better tradeoff between image quality and decoding robustness in various application conditions. PiCode has been implemented in the MATLAB on a PC and some key building blocks have also been ported to Android and iOS platforms. Its practicality for real-world applications has been successfully demonstrated. PMID:27249833

  3. Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    PubMed Central

    Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  4. Gold Nanoparticles-Based Barcode Analysis for Detection of Norepinephrine.

    PubMed

    An, Jeung Hee; Lee, Kwon-Jai; Choi, Jeong-Woo

    2016-02-01

    Nanotechnology-based bio-barcode amplification analysis offers an innovative approach for detecting neurotransmitters. We evaluated the efficacy of this method for detecting norepinephrine in normal and oxidative-stress damaged dopaminergic cells. Our approach use a combination of DNA barcodes and bead-based immunoassays for detecting neurotransmitters with surface-enhanced Raman spectroscopy (SERS), and provides polymerase chain reaction (PCR)-like sensitivity. This method relies on magnetic Dynabeads containing antibodies and nanoparticles that are loaded both with DNA barcords and with antibodies that can sandwich the target protein captured by the Dynabead-bound antibodies. The aggregate sandwich structures are magnetically separated from the solution and treated to remove the conjugated barcode DNA. The DNA barcodes are then identified by SERS and PCR analysis. The concentration of norepinephrine in dopaminergic cells can be readily detected using the bio-barcode assay, which is a rapid, high-throughput screening tool for detecting neurotransmitters. PMID:27305769

  5. Raman Barcode for Counterfeit Drug Product Detection.

    PubMed

    Lawson, Latevi S; Rodriguez, Jason D

    2016-05-01

    Potential infiltration of counterfeit drug products-containing the wrong or no active pharmaceutical ingredient (API)-into the bona fide drug supply poses a significant threat to consumers worldwide. Raman spectroscopy offers a rapid, nondestructive avenue to screen a high throughput of samples. Traditional qualitative Raman identification is typically done with spectral correlation methods that compare the spectrum of a reference sample to an unknown. This is often effective for pure materials but is quite challenging when dealing with drug products that contain different formulations of active and inactive ingredients. Typically, reliable identification of drug products using common spectral correlation algorithms can only be made if the specific product under study is present in the library of reference spectra, thereby limiting the scope of products that can be screened. In this paper, we introduce the concept of the Raman barcode for identification of drug products by comparing the known peaks in the API reference spectrum to the peaks present in the finished drug product under study. This method requires the transformation of the Raman spectra of both API and finished drug products into a barcode representation by assigning zero intensity to every spectral frequency except the frequencies that correspond to Raman peaks. By comparing the percentage of nonzero overlap between the expected API barcode and finished drug product barcode, the identity of API present can be confirmed. In this study, 18 approved finished drug products and nine simulated counterfeits were successfully identified with 100% accuracy utilizing this method. PMID:27043140

  6. Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequence-Coded Polymer Barcodes.

    PubMed

    Laure, Chloé; Karamessini, Denise; Milenkovic, Olgica; Charles, Laurence; Lutz, Jean-François

    2016-08-26

    A 2D approach was studied for the design of polymer-based molecular barcodes. Uniform oligo(alkoxyamine amide)s, containing a monomer-coded binary message, were synthesized by orthogonal solid-phase chemistry. Sets of oligomers with different chain-lengths were prepared. The physical mixture of these uniform oligomers leads to an intentional dispersity (1st dimension fingerprint), which is measured by electrospray mass spectrometry. Furthermore, the monomer sequence of each component of the mass distribution can be analyzed by tandem mass spectrometry (2nd dimension sequencing). By summing the sequence information of all components, a binary message can be read. A 4-bytes extended ASCII-coded message was written on a set of six uniform oligomers. Alternatively, a 3-bytes sequence was written on a set of five oligomers. In both cases, the coded binary information was recovered. PMID:27484303

  7. DNA Barcode Detects High Genetic Structure within Neotropical Bird Species

    PubMed Central

    Tavares, Erika Sendra; Gonçalves, Priscila; Miyaki, Cristina Yumi; Baker, Allan J.

    2011-01-01

    Background Towards lower latitudes the number of recognized species is not only higher, but also phylogeographic subdivision within species is more pronounced. Moreover, new genetically isolated populations are often described in recent phylogenies of Neotropical birds suggesting that the number of species in the region is underestimated. Previous COI barcoding of Argentinean bird species showed more complex patterns of regional divergence in the Neotropical than in the North American avifauna. Methods and Findings Here we analyzed 1,431 samples from 561 different species to extend the Neotropical bird barcode survey to lower latitudes, and detected even higher geographic structure within species than reported previously. About 93% (520) of the species were identified correctly from their DNA barcodes. The remaining 41 species were not monophyletic in their COI sequences because they shared barcode sequences with closely related species (N = 21) or contained very divergent clusters suggestive of putative new species embedded within the gene tree (N = 20). Deep intraspecific divergences overlapping with among-species differences were detected in 48 species, often with samples from large geographic areas and several including multiple subspecies. This strong population genetic structure often coincided with breaks between different ecoregions or areas of endemism. Conclusions The taxonomic uncertainty associated with the high incidence of non-monophyletic species and discovery of putative species obscures studies of historical patterns of species diversification in the Neotropical region. We showed that COI barcodes are a valuable tool to indicate which taxa would benefit from more extensive taxonomic revisions with multilocus approaches. Moreover, our results support hypotheses that the megadiversity of birds in the region is associated with multiple geographic processes starting well before the Quaternary and extending to more recent geological periods

  8. Simultaneous detection of randomly arranged multiple barcodes using time division multiplexing technique

    NASA Astrophysics Data System (ADS)

    Haider, Saad Md. Jaglul; Islam, Md. Kafiul

    2010-02-01

    A method of detecting multiple barcodes simultaneously using time division multiplexing technique has been proposed in this paper to minimize the effective time needed for handling multiple tags of barcodes and to lessen the overall workload. Available barcode detection systems can handle multiple types of barcode but a single barcode at a time. This is not so efficient and can create large queue and chaos in places like mega shopping malls or large warehouses where we need to scan huge number of barcodes daily. Our proposed system is expected to improve the real time identification of goods or products on production lines and in automated warehouses or in mega shopping malls in a much more convenient and efficient way. For identifying of multiple barcodes simultaneously, a particular arrangement and orientation of LASER scanner and reflector have been used with a special curve shaped basement where the barcodes are placed. An effective and novel algorithm is developed to extract information from multiple barcodes which introduces starting pattern and ending pattern in barcodes with bit stuffing technique for the convenience of multiple detections. CRC technique is also used for trustworthiness of detection. The overall system enhances the existing single barcode detection system by a great amount although it is easy to implement and use.

  9. Detection and characterisation of the biopollutant Xenostrobus securis (Lamarck 1819) Asturian population from DNA Barcoding and eBarcoding.

    PubMed

    Devloo-Delva, Floriaan; Miralles, Laura; Ardura, Alba; Borrell, Yaisel J; Pejovic, Ivana; Tsartsianidou, Valentina; Garcia-Vazquez, Eva

    2016-04-15

    DNA efficiently contributes to detect and understand marine invasions. In 2014 the potential biological pollutant pygmy mussel (Xenostrobus securis) was observed for the first time in the Avilés estuary (Asturias, Bay of Biscay). The goal of this study was to assess the stage of invasion, based on demographic and genetic (DNA Barcoding) characteristics, and to develop a molecular tool for surveying the species in environmental DNA. A total of 130 individuals were analysed for the DNA Barcode cytochrome oxidase I gene in order to determine genetic diversity, population structure, expansion trends, and to inferring introduction hits. Reproduction was evidenced by bimodal size distributions of 1597 mussels. High population genetic variation and genetically distinct clades might suggest multiple introductions from several source populations. Finally, species-specific primers were developed within the DNA barcode for PCR amplification from water samples in order to enabling rapid detection of the species in initial expansion stages. PMID:26971231

  10. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  11. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  12. 3D surface configuration modulates 2D symmetry detection.

    PubMed

    Chen, Chien-Chung; Sio, Lok-Teng

    2015-02-01

    We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection.

  13. Genetic barcodes

    DOEpatents

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  14. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues.

    PubMed

    Guo, Juan; Wong, Jessica X H; Cui, Caie; Li, Xiaochun; Yu, Hua-Zhong

    2015-08-21

    In this paper, we present a smartphone-readable barcode assay for the qualitative detection of methyl parathion residues, a toxic organophosphorus pesticide that is popularly used in agriculture worldwide. The detection principle is based on the irreversible inhibition of the enzymatic activity of acetylcholinesterase (AchE) by methyl parathion; AchE catalytically hydrolyzes acetylthiocholine iodine to thiocholine that in turn dissociates dithiobis-nitrobenzoate to produce a yellow product (deprotonated thio-nitrobenzoate). The yellow intensity of the product was confirmed to be inversely dependent on the concentration of the pesticide. We have designed a barcode-formatted assay chip by using a PDMS (polydimethylsiloxane) channel plate (as the reaction reservoir), situated under a printed partial barcode, to complete the whole barcode such that it can be directly read by a barcode scanning app installed on a smartphone. The app is able to qualitatively present the result of the pesticide test; the absence or a low concentration of methyl parathion results in the barcode reading as "-", identifying the test as negative for pesticides. Upon obtaining a positive result (the app reads a "+" character), the captured image can be further analyzed to quantitate the methyl parathion concentration in the sample. Besides the portability and simplicity, this mobile-app based colorimetric barcode assay compares favorably with the standard spectrophotometric method. PMID:26087169

  15. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-01

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis. PMID:26721199

  16. A large 2D PSD for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.

    1997-02-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  17. A large 2D PSD for thermal neutron detection

    SciTech Connect

    Knott, R.B.; Watt, G.; Boldeman, J.W.; Smith, G.C.

    1996-12-31

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4} and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2{angstrom} neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  18. Novel antenna coupled 2D plasmonic terahertz detection.

    SciTech Connect

    Allen, Jim; Dyer, Greg; Reno, John Louis; Shaner, Eric Arthur

    2010-03-01

    Resonant plasmonic detectors are potentially important for terahertz (THz) spectroscopic imaging. We have fabricated and characterized antenna coupled detectors that integrate a broad-band antenna, which improves coupling of THz radiation. The vertex of the antenna contains the tuning gates and the bolometric barrier gate. Incident THz radiation may excite 2D plasmons with wave-vectors defined by either a periodic grating gate or a plasmonic cavity determined by ohmic contacts and gate terminals. The latter approach of exciting plasmons in a cavity defined by a short micron-scale channel appears most promising. With this short-channel geometry, we have observed multiple harmonics of THz plasmons. At 20 K with detector bias optimized we report responsivity on resonance of 2.5 kV/W and an NEP of 5 x 10{sup -10} W/Hz{sup 1/2}.

  19. Enhanced detectability of small objects in correlated clutter using an improved 2-D adaptive lattice algorithm.

    PubMed

    Ffrench, P A; Zeidler, J H; Ku, W H

    1997-01-01

    Two-dimensional (2-D) adaptive filtering is a technique that can be applied to many image processing applications. This paper will focus on the development of an improved 2-D adaptive lattice algorithm (2-D AL) and its application to the removal of correlated clutter to enhance the detectability of small objects in images. The two improvements proposed here are increased flexibility in the calculation of the reflection coefficients and a 2-D method to update the correlations used in the 2-D AL algorithm. The 2-D AL algorithm is shown to predict correlated clutter in image data and the resulting filter is compared with an ideal Wiener-Hopf filter. The results of the clutter removal will be compared to previously published ones for a 2-D least mean square (LMS) algorithm. 2-D AL is better able to predict spatially varying clutter than the 2-D LMS algorithm, since it converges faster to new image properties. Examples of these improvements are shown for a spatially varying 2-D sinusoid in white noise and simulated clouds. The 2-D LMS and 2-D AL algorithms are also shown to enhance a mammogram image for the detection of small microcalcifications and stellate lesions.

  20. Dual-nanogold-linked bio-barcodes with superstructures for in situ amplified electronic detection of low-abundance proteins.

    PubMed

    Zhou, Jun; Zhuang, Junyang; Tang, Juan; Li, Qunfang; Tang, Dianping; Chen, Guonan

    2013-04-01

    A novel and nonenzyme immunosensing protocol is proposed for ultrahighly sensitive detection of low-abundance-proteins (carcinoembryonic antigen as a model) using dual nanogold-linked complementary bio-barcodes with superstructures for in situ amplified electronic signals.

  1. Interferometric Motion Detection in Atomic Layer 2D Nanostructures: Visualizing Signal Transduction Efficiency and Optimization Pathways.

    PubMed

    Wang, Zenghui; Feng, Philip X-L

    2016-01-01

    Atomic layer crystals are emerging building blocks for enabling new two-dimensional (2D) nanomechanical systems, whose motions can be coupled to other attractive physical properties in such 2D systems. Optical interferometry has been very effective in reading out the infinitesimal motions of these 2D structures and spatially resolving different modes. To quantitatively understand the detection efficiency and its dependence on the device parameters and interferometric conditions, here we present a systematic study of the intrinsic motion responsivity in 2D nanomechanical systems using a Fresnel-law-based model. We find that in monolayer to 14-layer structures, MoS2 offers the highest responsivity among graphene, h-BN, and MoS2 devices and for the three commonly used visible laser wavelengths (633, 532, and 405 nm). We also find that the vacuum gap resulting from the widely used 300 nm-oxide substrate in making 2D devices, fortunately, leads to close-to-optimal responsivity for a wide range of 2D flakes. Our results elucidate and graphically visualize the dependence of motion transduction responsivity upon 2D material type and number of layers, vacuum gap, oxide thickness, and detecting wavelength, thus providing design guidelines for constructing 2D nanomechanical systems with optimal optical motion readout. PMID:27464908

  2. Interferometric Motion Detection in Atomic Layer 2D Nanostructures: Visualizing Signal Transduction Efficiency and Optimization Pathways.

    PubMed

    Wang, Zenghui; Feng, Philip X-L

    2016-07-28

    Atomic layer crystals are emerging building blocks for enabling new two-dimensional (2D) nanomechanical systems, whose motions can be coupled to other attractive physical properties in such 2D systems. Optical interferometry has been very effective in reading out the infinitesimal motions of these 2D structures and spatially resolving different modes. To quantitatively understand the detection efficiency and its dependence on the device parameters and interferometric conditions, here we present a systematic study of the intrinsic motion responsivity in 2D nanomechanical systems using a Fresnel-law-based model. We find that in monolayer to 14-layer structures, MoS2 offers the highest responsivity among graphene, h-BN, and MoS2 devices and for the three commonly used visible laser wavelengths (633, 532, and 405 nm). We also find that the vacuum gap resulting from the widely used 300 nm-oxide substrate in making 2D devices, fortunately, leads to close-to-optimal responsivity for a wide range of 2D flakes. Our results elucidate and graphically visualize the dependence of motion transduction responsivity upon 2D material type and number of layers, vacuum gap, oxide thickness, and detecting wavelength, thus providing design guidelines for constructing 2D nanomechanical systems with optimal optical motion readout.

  3. Interferometric Motion Detection in Atomic Layer 2D Nanostructures: Visualizing Signal Transduction Efficiency and Optimization Pathways

    NASA Astrophysics Data System (ADS)

    Wang, Zenghui; Feng, Philip X.-L.

    2016-07-01

    Atomic layer crystals are emerging building blocks for enabling new two-dimensional (2D) nanomechanical systems, whose motions can be coupled to other attractive physical properties in such 2D systems. Optical interferometry has been very effective in reading out the infinitesimal motions of these 2D structures and spatially resolving different modes. To quantitatively understand the detection efficiency and its dependence on the device parameters and interferometric conditions, here we present a systematic study of the intrinsic motion responsivity in 2D nanomechanical systems using a Fresnel-law-based model. We find that in monolayer to 14-layer structures, MoS2 offers the highest responsivity among graphene, h-BN, and MoS2 devices and for the three commonly used visible laser wavelengths (633, 532, and 405 nm). We also find that the vacuum gap resulting from the widely used 300 nm-oxide substrate in making 2D devices, fortunately, leads to close-to-optimal responsivity for a wide range of 2D flakes. Our results elucidate and graphically visualize the dependence of motion transduction responsivity upon 2D material type and number of layers, vacuum gap, oxide thickness, and detecting wavelength, thus providing design guidelines for constructing 2D nanomechanical systems with optimal optical motion readout.

  4. Interferometric Motion Detection in Atomic Layer 2D Nanostructures: Visualizing Signal Transduction Efficiency and Optimization Pathways

    PubMed Central

    Wang, Zenghui; Feng, Philip X.-L.

    2016-01-01

    Atomic layer crystals are emerging building blocks for enabling new two-dimensional (2D) nanomechanical systems, whose motions can be coupled to other attractive physical properties in such 2D systems. Optical interferometry has been very effective in reading out the infinitesimal motions of these 2D structures and spatially resolving different modes. To quantitatively understand the detection efficiency and its dependence on the device parameters and interferometric conditions, here we present a systematic study of the intrinsic motion responsivity in 2D nanomechanical systems using a Fresnel-law-based model. We find that in monolayer to 14-layer structures, MoS2 offers the highest responsivity among graphene, h-BN, and MoS2 devices and for the three commonly used visible laser wavelengths (633, 532, and 405 nm). We also find that the vacuum gap resulting from the widely used 300 nm-oxide substrate in making 2D devices, fortunately, leads to close-to-optimal responsivity for a wide range of 2D flakes. Our results elucidate and graphically visualize the dependence of motion transduction responsivity upon 2D material type and number of layers, vacuum gap, oxide thickness, and detecting wavelength, thus providing design guidelines for constructing 2D nanomechanical systems with optimal optical motion readout. PMID:27464908

  5. Liposome-based chemical barcodes for single molecule DNA detection using imaging mass spectrometry.

    PubMed

    Gunnarsson, Anders; Sjövall, Peter; Höök, Fredrik

    2010-02-10

    We report on a mass-spectrometry (time-of-flight secondary ion mass spectrometry, TOF-SIMS) based method for multiplexed DNA detection utilizing a random array, where the lipid composition of small unilamellar liposomes act as chemical barcodes to identify unique DNA target sequences down to the single molecule level. In a sandwich format, suspended target-DNA to be detected mediates the binding of capture-DNA modified liposomes to surface-immobilized probe-DNA. With the lipid composition of each liposome encoding a unique target-DNA sequence, TOF-SIMS analysis was used to determine the chemical fingerprint of the bound liposomes. Using high-resolution TOF-SIMS imaging, providing sub-200 nm spatial resolution, single DNA targets could be detected and identified via the chemical fingerprint of individual liposomes. The results also demonstrate the capability of TOF-SIMS to provide multiplexed detection of DNA targets on substrate areas in the micrometer range. Together with a high multiplexing capacity, this makes the concept an interesting alternative to existing barcode concepts based on fluorescence, Raman, or graphical codes for small-scale bioanalysis. PMID:20085369

  6. Decompression induced venous gas emboli in sport diving: detection with 2D echocardiography and pulsed Doppler.

    PubMed

    Boussuges, A; Carturan, D; Ambrosi, P; Habib, G; Sainty, J M; Luccioni, R

    1998-01-01

    The aim of this study was to determine the utility of pulsed Doppler and 2D echocardiography for the detection and the quantification of circulating bubbles after decompression. Twenty-three sport divers performed 60 SCUBA dives (mean 32 msw). An evaluation of circulating bubbles was performed using 2D images one hour after diving. Circulating bubbles were also detected with pulsed Doppler. The sample volume was placed in the outflow area of the right ventricle 1-2 cm below the pulmonary valve. 2D echocardiography showed circulating bubbles in right cavities of the heart in 32 cases. Short axis parasternal view and right cavities long axis view were the best incidences. Pulsed Doppler confirmed the results in these 32 cases and detected circulating bubbles in seven other cases. Isometric contraction of muscle limb must be performed to increase the sensitivity of detection. The count of the bubbles may be evaluated when using a combination of Spencer's and Powell's grading. We conclude that 2D echocardiography is less accurate than pulsed Doppler in the detection of circulating bubbles after decompression. Further studies are needed to compare pulsed Doppler guided by 2D echocardiography to continuous Doppler for the detection of circulating bubbles.

  7. Real-time multi-barcode reader for industrial applications

    NASA Astrophysics Data System (ADS)

    Zafar, Iffat; Zakir, Usman; Edirisinghe, Eran A.

    2010-05-01

    The advances in automated production processes have resulted in the need for detecting, reading and decoding 2D datamatrix barcodes at very high speeds. This requires the correct combination of high speed optical devices that are capable of capturing high quality images and computer vision algorithms that can read and decode the barcodes accurately. Such barcode readers should also be capable of resolving fundamental imaging challenges arising from blurred barcode edges, reflections from possible polyethylene wrapping, poor and/or non-uniform illumination, fluctuations of focus, rotation and scale changes. Addressing the above challenges in this paper we propose the design and implementation of a high speed multi-barcode reader and provide test results from an industrial trial. To authors knowledge such a comprehensive system has not been proposed and fully investigated in existing literature. To reduce the reflections on the images caused due to polyethylene wrapping used in typical packaging, polarising filters have been used. The images captured using the optical system above will still include imperfections and variations due to scale, rotation, illumination etc. We use a number of novel image enhancement algorithms optimised for use with 2D datamatrix barcodes for image de-blurring, contrast point and self-shadow removal using an affine transform based approach and non-uniform illumination correction. The enhanced images are subsequently used for barcode detection and recognition. We provide experimental results from a factory trial of using the multi-barcode reader and evaluate the performance of each optical unit and computer vision algorithm used. The results indicate an overall accuracy of 99.6 % in barcode recognition at typical speeds of industrial conveyor systems.

  8. Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes.

    PubMed

    Lundqvist, E; Johansson, I; Ingelman-Sundberg, M

    1999-01-21

    The polymorphic CYP2D6 gene determines the rates at which several different classes of clinically important drugs are metabolized in vivo. A specific phenotype whereby a subject metabolizes drugs very rapidly (ultrarapid metabolizer, UM) has been shown to be caused by the presence of multiple active CYP2D6 genes on one allele. Hitherto, individuals with 1, 2, 3, 4, 5, or 13 CYP2D6 genes in tandem have been described for various ethnic groups. In the present investigation, we present results from restriction mapping of the CYP2D loci of individuals with two or more consecutive CYP2D6 genes, along with sequence analysis of this gene (CYP2D6*2). Our results indicate that alleles with duplicated or multiduplicated genes have occurred through unequal crossover at a specific breakpoint in the 3'-flanking region of the CYP2D6*2B allele with a specific repetitive sequence. In contrast, alleles with 13 copies of the gene are proposed to have been formed by unequal segregation and extrachromosomal replication of the acentric DNA. We present a rapid and efficient PCR-based allele-specific method for the detection of duplicated, multiduplicated, or amplified CYP2D6 genes.

  9. Presynaptic GluN2D receptors detect glutamate spillover and regulate cerebellar GABA release.

    PubMed

    Dubois, Christophe J; Lachamp, Philippe M; Sun, Lu; Mishina, Masayoshi; Liu, Siqiong June

    2016-01-01

    Glutamate directly activates N-methyl-d-aspartate (NMDA) receptors on presynaptic inhibitory interneurons and enhances GABA release, altering the excitatory-inhibitory balance within a neuronal circuit. However, which class of NMDA receptors is involved in the detection of glutamate spillover is not known. GluN2D subunit-containing NMDA receptors are ideal candidates as they exhibit a high affinity for glutamate. We now show that cerebellar stellate cells express both GluN2B and GluN2D NMDA receptor subunits. Genetic deletion of GluN2D subunits prevented a physiologically relevant, stimulation-induced, lasting increase in GABA release from stellate cells [long-term potentiation of inhibitory transmission (I-LTP)]. NMDA receptors are tetramers composed of two GluN1 subunits associated to either two identical subunits (di-heteromeric receptors) or to two different subunits (tri-heteromeric receptors). To determine whether tri-heteromeric GluN2B/2D NMDA receptors mediate I-LTP, we tested the prediction that deletion of GluN2D converts tri-heteromeric GluN2B/2D to di-heteromeric GluN2B NMDA receptors. We find that prolonged stimulation rescued I-LTP in GluN2D knockout mice, and this was abolished by GluN2B receptor blockers that failed to prevent I-LTP in wild-type mice. Therefore, NMDA receptors that contain both GluN2D and GluN2B mediate the induction of I-LTP. Because these receptors are not present in the soma and dendrites, presynaptic tri-heteromeric GluN2B/2D NMDA receptors in inhibitory interneurons are likely to mediate the cross talk between excitatory and inhibitory transmission.

  10. Two color DNA barcode detection in photoluminescence suppressed silicon nitride nanopores.

    PubMed

    Assad, Ossama N; Di Fiori, Nicolas; Squires, Allison H; Meller, Amit

    2015-01-14

    Optical sensing of solid-state nanopores is a relatively new approach that can enable high-throughput, multicolor readout from a collection of nanopores. It is therefore highly attractive for applications such as nanopore-based DNA sequencing and genotyping using DNA barcodes. However, to date optical readout has been plagued by the need to achieve sufficiently high signal-to-noise ratio (SNR) for single fluorophore sensing, while still maintaining millisecond resolution. One of the main factors degrading the optical SNR in solid-state nanopores is the high photoluminescence (PL) background emanating from the silicon nitride (SiNx) membrane in which pores are commonly fabricated. Focusing on the optical properties of SiNx nanopores we show that the local membrane PL intensity is substantially reduced, and its spectrum is shifted toward shorter wavelengths with increasing e-beam dose. This phenomenon, which is correlated with a marked photocurrent enhancement in these nanopores, is utilized to perform for the first time single molecule fluorescence detection using both green and red laser excitations. Specifically, the reduction in PL and the concurrent measurement of the nanopore photocurrent enhancement allow us to maximize the background suppression and to detect a dual color, five-unit DNA barcode with high SNR levels. PMID:25522780

  11. Optical detection of two-color-fluorophore barcode for nanopore DNA sensing

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sychugov, I.; Schmidt, T.; Linnros, J.

    2015-06-01

    A simple schematic on parallel optical detection of two-fluorophore barcode for single-molecule nanopore sensing is presented. The chosen two fluorophores, ATTO-532 and DY-521-XL, emitting in well-separated spectrum range can be excited at the same wavelength. A beam splitter was employed to separate signals from the two fluorophores and guide them to the same CCD camera. Based on a conventional microscope, sources of background in the nanopore sensing system, including membranes, compounds in buffer solution, and a detection cell was characterized. By photoluminescence excitation measurements, it turned out that silicon membrane has a negligible photoluminescence under the examined excitation from 440 nm to 560 nm, in comparison with a silicon nitrite membrane. Further, background signals from the detection cell were suppressed. Brownian motion of 450 bps DNA labelled with single ATTO-532 or DY-521-XL was successfully recorded by our optical system.

  12. 2D view aggregation for lymph node detection using a shallow hierarchy of linear classifiers.

    PubMed

    Seff, Ari; Lu, Le; Cherry, Kevin M; Roth, Holger R; Liu, Jiamin; Wang, Shijun; Hoffman, Joanne; Turkbey, Evrim B; Summers, Ronald M

    2014-01-01

    Enlarged lymph nodes (LNs) can provide important information for cancer diagnosis, staging, and measuring treatment reactions, making automated detection a highly sought goal. In this paper, we propose a new algorithm representation of decomposing the LN detection problem into a set of 2D object detection subtasks on sampled CT slices, largely alleviating the curse of dimensionality issue. Our 2D detection can be effectively formulated as linear classification on a single image feature type of Histogram of Oriented Gradients (HOG), covering a moderate field-of-view of 45 by 45 voxels. We exploit both max-pooling and sparse linear fusion schemes to aggregate these 2D detection scores for the final 3D LN detection. In this manner, detection is more tractable and does not need to perform perfectly at instance level (as weak hypotheses) since our aggregation process will robustly harness collective information for LN detection. Two datasets (90 patients with 389 mediastinal LNs and 86 patients with 595 abdominal LNs) are used for validation. Cross-validation demonstrates 78.0% sensitivity at 6 false positives/volume (FP/vol.) (86.1% at 10 FP/vol.) and 73.1% sensitivity at 6 FP/vol. (87.2% at 10 FP/vol.), for the mediastinal and abdominal datasets respectively. Our results compare favorably to previous state-of-the-art methods. PMID:25333161

  13. Multiplex pathogen detection based on spatially addressable microarrays of barcoded resins.

    PubMed

    Blais, David R; Alvarez-Puebla, Ramon A; Bravo-Vasquez, Juan P; Fenniri, Hicham; Pezacki, John Paul

    2008-07-01

    Suspension microsphere immunoassays are rapidly gaining recognition in antigen identification and infectious disease biodetection due to their simplicity, versatility and high-throughput multiplex screening. We demonstrate a multiplex assay based on antibody-functionalized barcoded resins (BCRs) to identify pathogen antigens in complex biological fluids. The binding event of a particular antibody on given bead (fluorescence) and the identification of the specific pathogen agent (vibrational fingerprint of the bead) can be achieved in a dispersive Raman system by exciting the sample with two different laser lines. Anthrax protective antigen, Franciscella tularensis lipopolysaccharide and CD14 antigens were accurately identified and quantified in tetraplex assays with a detection limit of 1 ng/mL. The rapid, versatile and simple analysis enabled by the BCRs demonstrates their potential for multiplex antigen detection and identification in a reconfigurable microarray format. PMID:18566958

  14. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing.

    PubMed

    Ståhlberg, Anders; Krzyzanowski, Paul M; Jackson, Jennifer B; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E

    2016-06-20

    Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. PMID:27060140

  15. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing

    PubMed Central

    Ståhlberg, Anders; Krzyzanowski, Paul M.; Jackson, Jennifer B.; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E.

    2016-01-01

    Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. PMID:27060140

  16. A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data

    PubMed Central

    Liu, Zhao; Wang, Jinling; Liu, Daxue

    2013-01-01

    Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV) operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM) is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments. PMID:23325170

  17. A new curb detection method for unmanned ground vehicles using 2D sequential laser data.

    PubMed

    Liu, Zhao; Wang, Jinling; Liu, Daxue

    2013-01-01

    Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV) operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM) is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments. PMID:23325170

  18. Night vision image fusion for target detection with improved 2D maximum entropy segmentation

    NASA Astrophysics Data System (ADS)

    Bai, Lian-fa; Liu, Ying-bin; Yue, Jiang; Zhang, Yi

    2013-08-01

    Infrared and LLL image are used for night vision target detection. In allusion to the characteristics of night vision imaging and lack of traditional detection algorithm for segmentation and extraction of targets, we propose a method of infrared and LLL image fusion for target detection with improved 2D maximum entropy segmentation. Firstly, two-dimensional histogram was improved by gray level and maximum gray level in weighted area, weights were selected to calculate the maximum entropy for infrared and LLL image segmentation by using the histogram. Compared with the traditional maximum entropy segmentation, the algorithm had significant effect in target detection, and the functions of background suppression and target extraction. And then, the validity of multi-dimensional characteristics AND operation on the infrared and LLL image feature level fusion for target detection is verified. Experimental results show that detection algorithm has a relatively good effect and application in target detection and multiple targets detection in complex background.

  19. DETECTION OF N{sub 2}D{sup +} IN A PROTOPLANETARY DISK

    SciTech Connect

    Huang, Jane; Öberg, Karin I.

    2015-08-20

    Observations of deuterium fractionation in the solar system, and in interstellar and circumstellar material, are commonly used to constrain the formation environment of volatiles. Toward protoplanetary disks, this approach has been limited by the small number of detected deuterated molecules, i.e., DCO{sup +} and DCN. Based on ALMA Cycle 2 observations toward the disk around the T Tauri star AS 209, we report the first detection of N{sub 2}D{sup +} (J = 3–2) in a protoplanetary disk. These data are used together with previous Submillimeter Array observations of N{sub 2}H{sup +} (J = 3–2) to estimate a disk-averaged D/H ratio of 0.3–0.5, an order of magnitude higher than disk-averaged ratios previously derived for DCN/HCN and DCO{sup +}/HCO{sup +} around other young stars. The high fractionation in N{sub 2}H{sup +} is consistent with model predictions. The presence of abundant N{sub 2}D{sup +} toward AS 209 also suggests that N{sub 2}D{sup +} and the N{sub 2}D{sup +}/N{sub 2}H{sup +} ratio can be developed into effective probes of deuterium chemistry, kinematics, and ionization processes outside the CO snow line of disks.

  20. Detection of Leptomeningeal Metastasis by Contrast-Enhanced 3D T1-SPACE: Comparison with 2D FLAIR and Contrast-Enhanced 2D T1-Weighted Images

    PubMed Central

    Gil, Bomi; Hwang, Eo-Jin; Lee, Song; Jang, Jinhee; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-soo

    2016-01-01

    Introduction To compare the diagnostic accuracy of contrast-enhanced 3D(dimensional) T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions (T1-SPACE), 2D fluid attenuated inversion recovery (FLAIR) images and 2D contrast-enhanced T1-weighted image in detection of leptomeningeal metastasis except for invasive procedures such as a CSF tapping. Materials and Methods Three groups of patients were included retrospectively for 9 months (from 2013-04-01 to 2013-12-31). Group 1 patients with positive malignant cells in CSF cytology (n = 22); group 2, stroke patients with steno-occlusion in ICA or MCA (n = 16); and group 3, patients with negative results on MRI, whose symptom were dizziness or headache (n = 25). A total of 63 sets of MR images are separately collected and randomly arranged: (1) CE 3D T1-SPACE; (2) 2D FLAIR; and (3) CE T1-GRE using a 3-Tesla MR system. A faculty neuroradiologist with 8-year-experience and another 2nd grade trainee in radiology reviewed each MR image- blinded by the results of CSF cytology and coded their observations as positives or negatives of leptomeningeal metastasis. The CSF cytology result was considered as a gold standard. Sensitivity and specificity of each MR images were calculated. Diagnostic accuracy was compared using a McNemar’s test. A Cohen's kappa analysis was performed to assess inter-observer agreements. Results Diagnostic accuracy was not different between 3D T1-SPACE and CSF cytology by both raters. However, the accuracy test of 2D FLAIR and 2D contrast-enhanced T1-weighted GRE was inconsistent by the two raters. The Kappa statistic results were 0.657 (3D T1-SPACE), 0.420 (2D FLAIR), and 0.160 (2D contrast-enhanced T1-weighted GRE). The 3D T1-SPACE images showed the highest inter-observer agreements between the raters. Conclusions Compared to 2D FLAIR and 2D contrast-enhanced T1-weighted GRE, contrast-enhanced 3D T1 SPACE showed a better detection rate of

  1. Improving object detection in 2D images using a 3D world model

    NASA Astrophysics Data System (ADS)

    Viggh, Herbert E. M.; Cho, Peter L.; Armstrong-Crews, Nicholas; Nam, Myra; Shah, Danelle C.; Brown, Geoffrey E.

    2014-05-01

    A mobile robot operating in a netcentric environment can utilize offboard resources on the network to improve its local perception. One such offboard resource is a world model built and maintained by other sensor systems. In this paper we present results from research into improving the performance of Deformable Parts Model object detection algorithms by using an offboard 3D world model. Experiments were run for detecting both people and cars in 2D photographs taken in an urban environment. After generating candidate object detections, a 3D world model built from airborne Light Detection and Ranging (LIDAR) and aerial photographs was used to filter out false alarm using several types of geometric reasoning. Comparison of the baseline detection performance to the performance after false alarm filtering showed a significant decrease in false alarms for a given probability of detection.

  2. Noninvasive fetal trisomy detection by multiplexed semiconductor sequencing: a barcoding analysis strategy.

    PubMed

    Shen, Jiawei; Wen, Zujia; Qin, Xiaolan; Shi, Yongyong

    2016-03-01

    Noninvasive prenatal detection of fetal chromosomal aneuploidies by high-throughput next-generation sequencing proves to be accurate and sensitive. Currently, most of the data analysis methods involve a Z-score test based on the reference distribution of at least dozens of normal samples. This is not only costly but also time consuming. Moreover, as the experimental condition varies between every single run, noises cannot be eliminated and will skew the results. In order to overcome these drawbacks, we have proposed a new analytical strategy based on the multiplex barcoding sequencing of both normal and unknown samples in a single run on Ion Torrent PGM. In this method, only one normal sample is required. By applying this method to 13 single runs with a total number of 44 samples, we achieved the sensitivity and specificity of 100 and 95.181% for T13 detection, 100 and 100% for T18 detection, 90 and 100% for T21 detection, respectively. PMID:26657936

  3. Fully automatic detection of the vertebrae in 2D CT images

    NASA Astrophysics Data System (ADS)

    Graf, Franz; Kriegel, Hans-Peter; Schubert, Matthias; Strukelj, Michael; Cavallaro, Alexander

    2011-03-01

    Knowledge about the vertebrae is a valuable source of information for several annotation tasks. In recent years, the research community spent a considerable effort for detecting, segmenting and analyzing the vertebrae and the spine in various image modalities like CT or MR. Most of these methods rely on prior knowledge like the location of the vertebrae or other initial information like the manual detection of the spine. Furthermore, the majority of these methods require a complete volume scan. With the existence of use cases where only a single slice is available, there arises a demand for methods allowing the detection of the vertebrae in 2D images. In this paper, we propose a fully automatic and parameterless algorithm for detecting the vertebrae in 2D CT images. Our algorithm starts with detecting candidate locations by taking the density of bone-like structures into account. Afterwards, the candidate locations are extended into candidate regions for which certain image features are extracted. The resulting feature vectors are compared to a sample set of previously annotated and processed images in order to determine the best candidate region. In a final step, the result region is readjusted until convergence to a locally optimal position. Our new method is validated on a real world data set of more than 9 329 images of 34 patients being annotated by a clinician in order to provide a realistic ground truth.

  4. Tetrodotoxin detection and species identification of pufferfish in retail roasted fish fillet by DNA barcoding in China.

    PubMed

    Li, Nan; Shen, Qing; Wang, Jiahui; Han, Chunhui; Ji, Rong; Li, Fengqin; Jiang, Tao

    2015-01-01

    This study identifies the pufferfish species and detects tetrodotoxin (TTX) in roasted fish fillet samples collected in Beijing, Qingdao and Xiamen, China. The cytochrome c oxidase I (COI) gene was used as the target gene for identification of the pufferfish species in the samples. Enzyme-linked immunosorbent assay (ELISA) screened the TTX levels in samples that had been detected as containing pufferfish by DNA barcode. A total of 125 samples were identified by DNA barcodes; 32 (26%) samples contained pufferfish composition and, among them, 26 (81%) were the highly toxic species Lagocephalus lunaris. All 32 samples containing the pufferfish composition were positive for TTX with levels ranging from 100 to 63,800 ng g(-1). Most of the 32 samples contained the highly toxic L. lunaris. Based on the results, we suggest that the monitoring of roasted fish fillet should be strengthened and the processing procedures should be standardised to minimise TTX poisoning caused by pufferfish. PMID:26413972

  5. Ultrafast state detection and 2D ion crystals in a Paul trap

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2016-05-01

    Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.

  6. Database-guided breast tumor detection and segmentation in 2D ultrasound images

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdan; Zhou, Shaohua K.; Brunke, Shelby; Lowery, Carol; Comaniciu, Dorin

    2010-03-01

    Ultrasonography is a valuable technique for diagnosing breast cancer. Computer-aided tumor detection and segmentation in ultrasound images can reduce labor cost and streamline clinic workflows. In this paper, we propose a fully automatic system to detect and segment breast tumors in 2D ultrasound images. Our system, based on database-guided techniques, learns the knowledge of breast tumor appearance exemplified by expert annotations. For tumor detection, we train a classifier to discriminate between tumors and their background. For tumor segmentation, we propose a discriminative graph cut approach, where both the data fidelity and compatibility functions are learned discriminatively. The performance of the proposed algorithms is demonstrated on a large set of 347 images, achieving a mean contour-to-contour error of 3.75 pixels with about 4.33 seconds.

  7. Holographic method for site-resolved detection of a 2D array of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes

    2016-08-01

    We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.

  8. 2D Fast Vessel Visualization Using a Vessel Wall Mask Guiding Fine Vessel Detection.

    PubMed

    Raptis, Sotirios; Koutsouris, Dimitris

    2010-01-01

    The paper addresses the fine retinal-vessel's detection issue that is faced in diagnostic applications and aims at assisting in better recognizing fine vessel anomalies in 2D. Our innovation relies in separating key visual features vessels exhibit in order to make the diagnosis of eventual retinopathologies easier to detect. This allows focusing on vessel segments which present fine changes detectable at different sampling scales. We advocate that these changes can be addressed as subsequent stages of the same vessel detection procedure. We first carry out an initial estimate of the basic vessel-wall's network, define the main wall-body, and then try to approach the ridges and branches of the vasculature's using fine detection. Fine vessel screening looks into local structural inconsistencies in vessels properties, into noise, or into not expected intensity variations observed inside pre-known vessel-body areas. The vessels are first modelled sufficiently but not precisely by their walls with a tubular model-structure that is the result of an initial segmentation. This provides a chart of likely Vessel Wall Pixels (VWPs) yielding a form of a likelihood vessel map mainly based on gradient filter's intensity and spatial arrangement parameters (e.g., linear consistency). Specific vessel parameters (centerline, width, location, fall-away rate, main orientation) are post-computed by convolving the image with a set of pre-tuned spatial filters called Matched Filters (MFs). These are easily computed as Gaussian-like 2D forms that use a limited range sub-optimal parameters adjusted to the dominant vessel characteristics obtained by Spatial Grey Level Difference statistics limiting the range of search into vessel widths of 16, 32, and 64 pixels. Sparse pixels are effectively eliminated by applying a limited range Hough Transform (HT) or region growing. Major benefits are limiting the range of parameters, reducing the search-space for post-convolution to only masked regions

  9. Fast Confocal Raman Imaging Using a 2-D Multifocal Array for Parallel Hyperspectral Detection.

    PubMed

    Kong, Lingbo; Navas-Moreno, Maria; Chan, James W

    2016-01-19

    We present the development of a novel confocal hyperspectral Raman microscope capable of imaging at speeds up to 100 times faster than conventional point-scan Raman microscopy under high noise conditions. The microscope utilizes scanning galvomirrors to generate a two-dimensional (2-D) multifocal array at the sample plane, generating Raman signals simultaneously at each focus of the array pattern. The signals are combined into a single beam and delivered through a confocal pinhole before being focused through the slit of a spectrometer. To separate the signals from each row of the array, a synchronized scan mirror placed in front of the spectrometer slit positions the Raman signals onto different pixel rows of the detector. We devised an approach to deconvolve the superimposed signals and retrieve the individual spectra at each focal position within a given row. The galvomirrors were programmed to scan different focal arrays following Hadamard encoding patterns. A key feature of the Hadamard detection is the reconstruction of individual spectra with improved signal-to-noise ratio. Using polystyrene beads as test samples, we demonstrated not only that our system images faster than a conventional point-scan method but that it is especially advantageous under noisy conditions, such as when the CCD detector operates at fast read-out rates and high temperatures. This is the first demonstration of multifocal confocal Raman imaging in which parallel spectral detection is implemented along both axes of the CCD detector chip. We envision this novel 2-D multifocal spectral detection technique can be used to develop faster imaging spontaneous Raman microscopes with lower cost detectors. PMID:26654100

  10. Detection of 2D phase transitions at the electrode/electrolyte interface using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tymoczko, Jakub; Colic, Viktor; Bandarenka, Aliaksandr S.; Schuhmann, Wolfgang

    2015-01-01

    The capacitance of the electric double layer, CDL, formed at the electrode/electrolyte interface is generally determined by electrochemical impedance spectroscopy (EIS). However, CDL values obtained using EIS data often depend on the ac frequency of the potential perturbation used in EIS. The reasons for the observed frequency dispersions can be various, and hence extracting valuable information about the status of the electrified interface is not possible with the required certainty. In this work, using well-understood electrochemical systems, namely Pt(111) electrodes in contact with a series of acidic sulfate ions containing electrolytes, we provide strong evidence that 2D phase transitions in the adsorbate layers and, in general, structural effects at the electrode/electrolyte interface are in many cases responsible for the frequency dispersion of the double layer capacitance. These empirical findings open new opportunities for the detection and evaluation of 2D phase transition processes and other structural effects using EIS, even in presence of simultaneously occurring electrochemical processes. However, further theoretical elaboration of this effect is necessary.

  11. Enhanced detection of the vertebrae in 2D CT-images

    NASA Astrophysics Data System (ADS)

    Graf, Franz; Greil, Robert; Kriegel, Hans-Peter; Schubert, Matthias; Cavallaro, Alexander

    2012-02-01

    In recent years, a considerable amount of methods have been proposed for detecting and reconstructing the spine and the vertebrae from CT and MR scans. The results are either used for examining the vertebrae or serve as a preprocessing step for further detection and annotation tasks. In this paper, we propose a method for reliably detecting the position of the vertebrae on a single slice of a transversal body CT scan. Thus, our method is not restricted by the available portion of the 3D scan, but even suffices with a single 2D image. A further advantage of our method is that detection does not require adjusting parameters or direct user interaction. Technically, our method is based on an imaging pipeline comprising five steps: The input image is preprocessed. The relevant region of the image is extracted. Then, a set of candidate locations is selected based on bone density. In the next step, image features are extracted from the surrounding of the candidate locations and an instance-based learning approach is used for selecting the best candidate. Finally, a refinement step optimizes the best candidate region. Our proposed method is validated on a large diverse data set of more than 8 000 images and improves the accuracy in terms of area overlap and distance from the true position significantly compared to the only other method being proposed for this task so far.

  12. A New Method for Detecting Goaf Area of Coal Mine :2D Microtremor Profiling Technique

    NASA Astrophysics Data System (ADS)

    Xu, P.; Ling, S.; Guo, H.; Shi, W.; Li, S.; Tian, B.

    2012-12-01

    A goaf area is referred to as a cavity where coal has been removed or mined out. These cavities will change the original geostress equilibrium of stratigraphic system and cause local geostress focusing or concentration. Consequently, the surrounding rock of a goaf may be deformed, fractured, displaced and caved resulting from the combined effect of gravity and geostress. In the cases of little or no effective mining control, widespread cracks, fractures and even subsidence of the rock mass above the goaf will not only lead to groundwater depletion, farmland destruction and deterioration of ecological environment, but also present a serious threat to the mining safety, engineering construction, and even people's lives and property. So, it is important to locate the boundary of the goaf and to evaluate its stability in order to provide the basis for comprehensive control in the latter period of mining. This article attempts to explore a new geophysical method - 2D microtremor profiling technique for goaf detection and mapping. 2D microtremor profiling technique is based on the microtremor array theory (Aki, 1957; Ling, 1994; Okada, 2003) utilizing spatial autocorrelation analysis to obtain Rayleigh-wave dispersion curves for apparent S-wave velocity (Vx) calculation (Ling & Miwa, 2006;Xu et al.,2012). A laterally continuous S-wave velocity section can then be obtained through data interpolation. The final result will be used for interpreting lateral changes in lithology and geological structures. Let's take a case study in Henan Province of China as an example. The coal seams in the survey area were about 150 ~ 250m deep. A triple-circular array was adopted for acquiring microtremor data, with the observation radius in 20, 40 and 80m, respectively, and a sampling the interval of 50m. We observed the following characteristics of the goaf area from the microtremor Vx section: (1) obvious low pseudo velocity anomaly corresponding to limestone layer below the goaf; (2

  13. Barcoded microchips for biomolecular assays.

    PubMed

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  14. Multiplexed detection of protein cancer markers on Au/Ag-barcoded nanorods using fluorescent-conjugated polymers.

    PubMed

    Zheng, Weiming; He, Lin

    2010-07-01

    Integration of fluorescent-conjugated polymers as detection moiety with metallic striped nanorods for multiplexed detection of clinically important cancer marker proteins in an immunoassay format was demonstrated in this report. Specifically, cationic conjugated polymers were introduced to protein complexes through electrostatic binding to negatively charged double-stranded DNA, which was tagged on detection antibodies prior to antigen recognition. The intense fluorescence emission of conjugated polymers resulted in highly sensitive detection of cancer marker proteins wherein an undiluted bovine serum sample as low as approximately 25 target molecules captured on each particle was detectable. Meanwhile, the use of polymer molecules as the detection probe did not obscure the optical pattern of underlying nanorods, i.e., the encoding capability of barcoded nanorods was preserved, which allowed simultaneous detection of three cancer marker proteins with good specificity.

  15. Tamper-indicating barcode and method

    DOEpatents

    Cummings, Eric B.; Even, Jr., William R.; Simmons, Blake A.; Dentinger, Paul Michael

    2005-03-22

    A novel tamper-indicating barcode methodology is disclosed that allows for detection of alteration to the barcode. The tamper-indicating methodology makes use of a tamper-indicating means that may be comprised of a particulate indicator, an optical indicator, a deformable substrate, and/or may be an integrated aspect of the barcode itself. This tamper-indicating information provides greater security for the contents of containers sealed with the tamper-indicating barcodes.

  16. QRS complex detection based on simple robust 2-D pictorial-geometrical feature.

    PubMed

    Hoseini Sabzevari, S A; Moavenian, Majid

    2014-01-01

    In this paper a heuristic method aimed for detecting of QRS complexes without any pre-process was developed. All the methods developed in previous studies were used pre-process, the most novelty of this study was suggesting a simple method which did not need any pre-process. Toward this objective, a new simple 2-D geometrical feature space was extracted from the original electrocardiogram (ECG) signal. In this method, a sliding window was moved sample-by-sample on the pre-processed ECG signal. During each forward slide of the analysis window an artificial image was generated from the excerpted segment allocated in the window. Then, a geometrical feature extraction technique based on curve-length and angle of highest point was applied to each image for establishment of an appropriate feature space. Afterwards the K-Nearest Neighbors (KNN), Artificial Neural Network (ANN) and Adaptive Network Fuzzy Inference Systems (ANFIS) were designed and implemented to the ECG signal. The proposed methods were applied to DAY general hospital high resolution holter data. For detection of QRS complex the average values of sensitivity Se = 99.93% and positive predictivity P+ = 99.92% were obtained. PMID:24144188

  17. DNA barcoding detects contamination and substitution in North American herbal products

    PubMed Central

    2013-01-01

    Background Herbal products available to consumers in the marketplace may be contaminated or substituted with alternative plant species and fillers that are not listed on the labels. According to the World Health Organization, the adulteration of herbal products is a threat to consumer safety. Our research aimed to investigate herbal product integrity and authenticity with the goal of protecting consumers from health risks associated with product substitution and contamination. Methods We used DNA barcoding to conduct a blind test of the authenticity for (i) 44 herbal products representing 12 companies and 30 different species of herbs, and (ii) 50 leaf samples collected from 42 herbal species. Our laboratory also assembled the first standard reference material (SRM) herbal barcode library from 100 herbal species of known provenance that were used to identify the unknown herbal products and leaf samples. Results We recovered DNA barcodes from most herbal products (91%) and all leaf samples (100%), with 95% species resolution using a tiered approach (rbcL + ITS2). Most (59%) of the products tested contained DNA barcodes from plant species not listed on the labels. Although we were able to authenticate almost half (48%) of the products, one-third of these also contained contaminants and or fillers not listed on the label. Product substitution occurred in 30/44 of the products tested and only 2/12 companies had products without any substitution, contamination or fillers. Some of the contaminants we found pose serious health risks to consumers. Conclusions Most of the herbal products tested were of poor quality, including considerable product substitution, contamination and use of fillers. These activities dilute the effectiveness of otherwise useful remedies, lowering the perceived value of all related products because of a lack of consumer confidence in them. We suggest that the herbal industry should embrace DNA barcoding for authenticating herbal products through

  18. Detection of Cracks Using 2d Electrical Resistivity Imaging In A Cultivated Soil

    NASA Astrophysics Data System (ADS)

    Samouëlian, A.; Cousin, I.; Richard, G.; Bruand, A.

    Variations of soil structure is significant for the understanding of water and gas trans- fer in soil profiles. In the context of arable land, soil structure can be compacted due to either agriculture operation (wheel tracks), or hardsetting and crusting processes. As a consequence, soil porosity is reduced which may lead to decrease water infiltra- tion and to anoxic conditions. Porosity can be increased by cracks formation due to swelling and shrinking phenomenon. We present here a laboratory experiment based on soil electrical characteristics. Electrical resistivity allows a non destructive three di- mensional and dynamical analysis of the soil structure. Our main objective is to detect cracks in the soil. Cracks form an electrical resistant object and the contrast of resis- tivity between air and soil is large enough to be detected. Our sample is an undisturbed soil block 240mm*170mm*160mm with an initial structure compacted by wheel traf- fic. Successive artificial cracks are generated. Electrodes built with 2 mm ceramic cups permit a good electrical contact at the soil surface whatever its water content. They are installed 15 mm apart and the electrical resistivity is monitored using a dipole-dipole and wenner multi-electrodes 2D imaging method which gives a picture of the subsur- face resistivity. The interpreted resistivity sections show the major soil structure. The electrical response changes with the cracks formation. The structure information ex- tracted from the electrical map are in good agreement with the artificially man-made cracks. These first results demonstrate the relevance of high resolution electrical imag- ing of the soil profile. Further experiments need to be carried out in order to monitor natural soil structure evolution during wetting-drying cycles.

  19. Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO "Fava Santorinis" (Lathyrus clymenum) adulterants.

    PubMed

    Ganopoulos, Ioannis; Madesis, Panagiotis; Darzentas, Nikos; Argiriou, Anagnostis; Tsaftaris, Athanasios

    2012-07-15

    Legumes considered as one of the most important crops worldwide. Due to high price as a PDO product, commercial products of "Fava Santorinis" are often subjected to adulterations from other legume products coming from other Lathyrus or Vicia and Pisum species. Using plant DNA barcoding regions (trnL and rpoC) coupled with High Resolution Melting (Bar-HRM) we have developed a method allowing us to detect and authenticate PDO "Fava Santorinis". Bar-HRM proved to be a very sensitive tool able to genotype Lathyrus and its closed relative species and to detect admixtures, being sensitive enough to as low as 1:100 of non-"Fava Santorinis" in "Fava Santorinis" commercial products. In conclusion, Bar-HRM analysis can be a faster, with higher resolution and cost effectiveness alternative method to authenticate PDO "Fava Santorinis" and to quantitatively detect adulterations in "Fava Santorinis" with other relative commercial "Fava" food products. PMID:25683426

  20. Illegal trade of regulated and protected aquatic species in the Philippines detected by DNA barcoding.

    PubMed

    Asis, Angelli Marie Jacynth M; Lacsamana, Joanne Krisha M; Santos, Mudjekeewis D

    2016-01-01

    Illegal trade has greatly affected marine fish stocks, decreasing fish populations worldwide. Despite having a number of aquatic species being regulated, illegal trade still persists through the transport of dried or processed products and juvenile species trafficking. In this regard, accurate species identification of illegally traded marine fish stocks by DNA barcoding is deemed to be a more efficient method in regulating and monitoring trade than by morphological means which is very difficult due to the absence of key morphological characters in juveniles and processed products. Here, live juvenile eels (elvers) and dried products of sharks and rays confiscated for illegal trade were identified. Twenty out of 23 (87%) randomly selected "elvers" were identified as Anguilla bicolor pacifica and 3 (13%) samples as Anguilla marmorata. On the other hand, 4 out of 11 (36%) of the randomly selected dried samples of sharks and rays were Manta birostris. The rest of the samples were identified as Alopias pelagicus, Taeniura meyeni, Carcharhinus falciformis, Himantura fai and Mobula japonica. These results confirm that wild juvenile eels and species of manta rays are still being caught in the country regardless of its protected status under Philippine and international laws. It is evident that the illegal trade of protected aquatic species is happening in the guise of dried or processed products thus the need to put emphasis on strengthening conservation measures. This study aims to underscore the importance of accurate species identification in such cases of illegal trade and the effectivity of DNA barcoding as a tool to do this.

  1. DNA Barcoding of Marine Metazoa

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Steinke, Dirk; Blanco-Bercial, Leocadio

    2011-01-01

    More than 230,000 known species representing 31 metazoan phyla populate the world's oceans. Perhaps another 1,000,000 or more species remain to be discovered. There is reason for concern that species extinctions may outpace discovery, especially in diverse and endangered marine habitats such as coral reefs. DNA barcodes (i.e., short DNA sequences for species recognition and discrimination) are useful tools to accelerate species-level analysis of marine biodiversity and to facilitate conservation efforts. This review focuses on the usual barcode region for metazoans: a ˜648 base-pair region of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Barcodes have also been used for population genetic and phylogeographic analysis, identification of prey in gut contents, detection of invasive species, forensics, and seafood safety. More controversially, barcodes have been used to delimit species boundaries, reveal cryptic species, and discover new species. Emerging frontiers are the use of barcodes for rapid and increasingly automated biodiversity assessment by high-throughput sequencing, including environmental barcoding and the use of barcodes to detect species for which formal identification or scientific naming may never be possible.

  2. Illegal trade of regulated and protected aquatic species in the Philippines detected by DNA barcoding.

    PubMed

    Asis, Angelli Marie Jacynth M; Lacsamana, Joanne Krisha M; Santos, Mudjekeewis D

    2016-01-01

    Illegal trade has greatly affected marine fish stocks, decreasing fish populations worldwide. Despite having a number of aquatic species being regulated, illegal trade still persists through the transport of dried or processed products and juvenile species trafficking. In this regard, accurate species identification of illegally traded marine fish stocks by DNA barcoding is deemed to be a more efficient method in regulating and monitoring trade than by morphological means which is very difficult due to the absence of key morphological characters in juveniles and processed products. Here, live juvenile eels (elvers) and dried products of sharks and rays confiscated for illegal trade were identified. Twenty out of 23 (87%) randomly selected "elvers" were identified as Anguilla bicolor pacifica and 3 (13%) samples as Anguilla marmorata. On the other hand, 4 out of 11 (36%) of the randomly selected dried samples of sharks and rays were Manta birostris. The rest of the samples were identified as Alopias pelagicus, Taeniura meyeni, Carcharhinus falciformis, Himantura fai and Mobula japonica. These results confirm that wild juvenile eels and species of manta rays are still being caught in the country regardless of its protected status under Philippine and international laws. It is evident that the illegal trade of protected aquatic species is happening in the guise of dried or processed products thus the need to put emphasis on strengthening conservation measures. This study aims to underscore the importance of accurate species identification in such cases of illegal trade and the effectivity of DNA barcoding as a tool to do this. PMID:24841434

  3. Sequencing CYP2D6 for the detection of poor-metabolizers in post-mortem blood samples with tramadol.

    PubMed

    Fonseca, Suzana; Amorim, António; Costa, Heloísa Afonso; Franco, João; Porto, Maria João; Santos, Jorge Costa; Dias, Mário

    2016-08-01

    Tramadol concentrations and analgesic effect are dependent on the CYP2D6 enzymatic activity. It is well known that some genetic polymorphisms are responsible for the variability in the expression of this enzyme and in the individual drug response. The detection of allelic variants described as non-functional can be useful to explain some circumstances of death in the study of post-mortem cases with tramadol. A Sanger sequencing methodology was developed for the detection of genetic variants that cause absent or reduced CYP2D6 activity, such as *3, *4, *6, *8, *10 and *12 alleles. This methodology, as well as the GC/MS method for the detection and quantification of tramadol and its main metabolites in blood samples was fully validated in accordance with international guidelines. Both methodologies were successfully applied to 100 post-mortem blood samples and the relation between toxicological and genetic results evaluated. Tramadol metabolism, expressed as its metabolites concentration ratio (N-desmethyltramadol/O-desmethyltramadol), has been shown to be correlated with the poor-metabolizer phenotype based on genetic characterization. It was also demonstrated the importance of enzyme inhibitors identification in toxicological analysis. According to our knowledge, this is the first study where a CYP2D6 sequencing methodology is validated and applied to post-mortem samples, in Portugal. The developed methodology allows the data collection of post-mortem cases, which is of primordial importance to enhance the application of these genetic tools to forensic toxicology and pathology.

  4. 2-D Western blotting for evaluation of antibodies developed for detection of host cell protein.

    PubMed

    Berkelman, Tom; Harbers, Adriana; Bandhakavi, Sricharan

    2015-01-01

    Recombinant proteins generated for therapeutic use must be substantially free of residual host cell protein (HCP). The presence of host cell protein (HCP) is usually assayed by ELISA using a polyclonal antibody mixture raised against a population of proteins derived from the host cell background. This antibody should recognize as high a proportion as possible of the potential HCPs in a given sample. A recommended method for evaluating the assay involves two-dimensional electrophoretic separation followed by Western blotting.We present here a method using commercial anti-HCP antibody and samples derived from Chinese Hamster Ovary (CHO) cells. The 2-D electrophoresis procedure gives highly reproducible spot patterns and entire procedure can be completed in less than 2 days. Software analysis enables the straightforward generation of percent coverage values for the antibody when used to probe HCP-containing samples. PMID:25820736

  5. 2-D Western blotting for evaluation of antibodies developed for detection of host cell protein.

    PubMed

    Berkelman, Tom; Harbers, Adriana; Bandhakavi, Sricharan

    2015-01-01

    Recombinant proteins generated for therapeutic use must be substantially free of residual host cell protein (HCP). The presence of host cell protein (HCP) is usually assayed by ELISA using a polyclonal antibody mixture raised against a population of proteins derived from the host cell background. This antibody should recognize as high a proportion as possible of the potential HCPs in a given sample. A recommended method for evaluating the assay involves two-dimensional electrophoretic separation followed by Western blotting.We present here a method using commercial anti-HCP antibody and samples derived from Chinese Hamster Ovary (CHO) cells. The 2-D electrophoresis procedure gives highly reproducible spot patterns and entire procedure can be completed in less than 2 days. Software analysis enables the straightforward generation of percent coverage values for the antibody when used to probe HCP-containing samples.

  6. Detection of microcalcification clusters by 2D-mammography and narrow and wide angle digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hadjipanteli, Andria; Elangovan, Premkumar; Looney, Padraig T.; Mackenzie, Alistair; Wells, Kevin; Dance, David R.; Young, Kenneth C.

    2016-03-01

    The aim of this study was to compare the detection of microcalcification clusters by human observers in breast images using 2D-mammography and narrow (15°/15 projections) and wide (50°/25 projections) angle digital breast tomosynthesis (DBT). Simulated microcalcification clusters with a range of microcalcification diameters (125 μm-275 μm) were inserted into 6 cm thick simulated compressed breasts. Breast images were produced with and without inserted microcalcification clusters using a set of image modelling tools, which were developed to represent clinical imaging by mammography and tomosynthesis. Commercially available software was used for image processing and image reconstruction. The images were then used in a series of 4-alternative forced choice (4AFC) human observer experiments conducted for signal detection with the microcalcification clusters as targets. The minimum detectable calcification diameter was found for each imaging modality: (i) 2D-mammography: 164+/-5 μm (ii) narrow angle DBT: 210+/-5 μm, (iii) wide angle DBT: 255+/-4 μm. A statistically significant difference was found between the minimum detectable calcification diameters that can be detected by the three imaging modalities. Furthermore, it was found that there was not a statistically significant difference between the results of the five observers that participated in this study. In conclusion, this study presents a method that quantifies the threshold diameter required for microcalcification detection, using high resolution, realistic images with observers, for the comparison of DBT geometries with 2D-mammography. 2Dmammography can visualise smaller detail diameter than both DBT imaging modalities and narrow-angle DBT can visualise a smaller detail diameter than wide-angle DBT.

  7. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  8. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  9. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  10. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    PubMed Central

    Wei, Jun; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-01-01

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  11. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    SciTech Connect

    Wei, Jun Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-04-15

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  12. Integrating early detection with DNA barcoding: species identification of a non-native monitor lizard (Squamata: Varanidae) carcass in Mississippi, U.S.A.

    USGS Publications Warehouse

    Reed, Robert N.; Hopken, Matthew W.; Steen, David A.; Falk, Bryan G.; Piaggio, Antoinette J.

    2016-01-01

    Early detection of invasive species is critical to increasing the probability of successful management. At the primary stage of an invasion, invasive species are easier to control as the population is likely represented by just a few individuals. Detection of these first few individuals can be challenging, particularly if they are cryptic or otherwise characterized by low detectability. The engagement of members of the public may be critical to early detection as there are far more citizen s on the landscape than trained biologists. However, it can be difficult to assess the credibility of public reporting, especially when a diagnostic digital image or a physical specimen in good condition are lacking. DNA barcoding can be used for verification when morphological identification of a specimen is not possible or uncertain (i.e., degraded or partial specimen). DNA barcoding relies on obtaining a DNA sequence from a relatively small fragment of mitochondrial DNA and comparing it to a database of sequences containing a variety of expertly identified species. He rein we report the successful identification of a degraded specimen of a non-native, potentially invasive reptile species (Varanus niloticus) via DNA barcoding, after discovery and reporting by a member of the public.

  13. The first astrophysical detection, terahertz spectrum, and database for the monodeuterated species of methyl formate HCOOCH{sub 2}D

    SciTech Connect

    Coudert, L. H.; Drouin, B. J.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.; Motiyenko, R. A.; Margulès, L.

    2013-12-20

    Based on new measurements carried out in the laboratory from 0.77 to 1.2 THz and on a line-frequency analysis of these new data, along with previously published data, we build a line list for HCOOCH{sub 2}D that leads to its first detection in the Orion KL nebula. The observed lines, both in space and in the laboratory, involve the cis D-in-plane and trans D-out-of-plane conformations of HCOOCH{sub 2}D and the two tunneling states arising from the large-amplitude motion connecting the two trans configurations. The model used in the line position calculation accounts for both cis and trans conformations, as well as the large-amplitude motion.

  14. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement

    PubMed Central

    Hwang, Michael T.; Landon, Preston B.; Lee, Joon; Choi, Duyoung; Mo, Alexander H.; Glinsky, Gennadi; Lal, Ratnesh

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  15. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    PubMed

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine.

  16. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement.

    PubMed

    Hwang, Michael T; Landon, Preston B; Lee, Joon; Choi, Duyoung; Mo, Alexander H; Glinsky, Gennadi; Lal, Ratnesh

    2016-06-28

    Single-nucleotide polymorphisms (SNPs) in a gene sequence are markers for a variety of human diseases. Detection of SNPs with high specificity and sensitivity is essential for effective practical implementation of personalized medicine. Current DNA sequencing, including SNP detection, primarily uses enzyme-based methods or fluorophore-labeled assays that are time-consuming, need laboratory-scale settings, and are expensive. Previously reported electrical charge-based SNP detectors have insufficient specificity and accuracy, limiting their effectiveness. Here, we demonstrate the use of a DNA strand displacement-based probe on a graphene field effect transistor (FET) for high-specificity, single-nucleotide mismatch detection. The single mismatch was detected by measuring strand displacement-induced resistance (and hence current) change and Dirac point shift in a graphene FET. SNP detection in large double-helix DNA strands (e.g., 47 nt) minimize false-positive results. Our electrical sensor-based SNP detection technology, without labeling and without apparent cross-hybridization artifacts, would allow fast, sensitive, and portable SNP detection with single-nucleotide resolution. The technology will have a wide range of applications in digital and implantable biosensors and high-throughput DNA genotyping, with transformative implications for personalized medicine. PMID:27298347

  17. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; Xu, Chun; Gronwall, Caryl; Koekemoer, Anton M.; Walsh, Jeremy; diSeregoAlighieri, Sperello

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  18. Immunologic assessment and KMT2D mutation detection in Kabuki syndrome.

    PubMed

    Lin, J-L; Lee, W-I; Huang, J-L; Chen, P K-T; Chan, K-C; Lo, L-J; You, Y-J; Shih, Y-F; Tseng, T-Y; Wu, M-C

    2015-09-01

    Kabuki or Niikawa-Kuroki syndrome (KS) is a rare disorder with multiple malformations and recurrent infections, especially otitis media. This study aimed to investigate the genetic defects in Kabuki syndrome and determine if immune status is related to recurrent otitis media. Fourteen patients from 12 unrelated families were enrolled in the 9-year study period (2005-2013). All had Kabuki faces, cleft palate, developmental delay, mental retardation, and the short fifth finger. Recurrent otitis media (12/14) and hearing impairment (8/14) were also more common features. Immunologic analysis revealed lower memory CD19+ cells (11/13), lower memory CD4+ cells (8/13), undetectable anti-HBs antibodies (7/13), and antibody deficiency (7/13), including lower IgA (4), IgG (2), and IgG2 (1). Naïve emigrant lymphocytes, lymphocyte proliferation function, complement activity, and superoxide production in polymorphonuclear cells were all normal. All the patients had KMT2D mutations and 10 novel mutations of R1252X, R1757X,Y1998C, P2550R fs2604X, Q4013X, G5379X, E5425K, R5432X, R5432W, and R5500W. Resembling the phenotype of common variable immunodeficiency, KS patients with antibody deficiency, decreased memory cells, and poor vaccine response increased susceptibility to recurrent otitis media. Large-scale prospective studies are warranted to determine if regular immunoglobulin supplementation decreases the frequency of otitis media and severity of hearing impairment. PMID:25142838

  19. Detection of metallic and plastic landmines using the GPR and 2-D resistivity techniques

    NASA Astrophysics Data System (ADS)

    Metwaly, M.

    2007-12-01

    Low and non-metallic landmines are one of the most difficult subsurface targets to be detected using several geophysical techniques. Ground penetrating radar (GPR) performance at different field sites shows great success in detecting metallic landmines. However significant limitations are taking place in the case of low and non-metallic landmines. Electrical resistivity imaging (ERI) technique is tested to be an alternative or confirmation technique for detecting the metallic and non-metallic landmines in suspicious cleared areas. The electrical resistivity responses using forward modeling for metallic and non-metallic landmines buried in dry and wet environments utilizing the common electrode configurations have been achieved. Roughly all the utilized electrode arrays can establish the buried metallic and plastic mines correctly in dry and wet soil. The accuracy differs from one array to the other based on the relative resistivity contrast to the host soil and the subsurface distribution of current and potential lines as well as the amplitude of the noises in the data. The ERI technique proved to be fast and effective tool for detecting the non-metallic mines especially in the conductive environment whereas the performances of the other metal detector (MD) and GPR techniques show great limitation.

  20. An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening.

    PubMed

    Loo, Jacky F C; Lau, P M; Ho, H P; Kong, S K

    2013-10-15

    Based on a recently reported ultra-sensitive bio-barcode (BBC) assay, we have developed an aptamer-based bio-barcode (ABC) alternative to detect a cell death marker cytochrome-c (Cyto-c) and its subsequent application to screen anti-cancer drugs. Aptamer is a short single-stranded DNA selected from a synthetic DNA library by virtue of its high binding affinity and specificity to its target based on its unique 3D structure from the nucleotide sequence after folding. In the BBC assay, an antigen (Ag) in analytes is captured by a micro-magnetic particle (MMP) coated with capturing antibodies (Abs). Gold nanoparticles (NPs) with another recognition Ab against the same target and hundreds of identical DNA molecules of known sequence are subsequently added to allow the formation of sandwich structures ([MMP-Ab1]-Ag-[Ab2-NP-DNA]). After isolating the sandwiches by a magnetic field, the DNAs hybridized to their complementary DNAs covalently bound on the NPs are released from the sandwiches after heating. Acting as an Ag identification tag, these bio-barcode DNAs with known DNA sequence are then amplified by polymerase chain reaction (PCR) and detected by fluorescence. In our ABC assay, we employed a Cyto-c-specific aptamer to substitute both the recognition Ab and barcode DNAs on the NPs in the BBC assay; and a novel isothermal recombinase polymerase amplification for the time-consuming PCR. The detection limit of our ABC assay for the Cyto-c was found to be 10 ng/mL and this new assay can be completed within 3h. Several potential anti-cancer drugs have been tested in vitro for their efficacy to kill liver cancer with or without multi-drug resistance.

  1. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    PubMed Central

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  2. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-01-01

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773

  3. CNNEDGEPOT: CNN based edge detection of 2D near surface potential field data

    NASA Astrophysics Data System (ADS)

    Aydogan, D.

    2012-09-01

    All anomalies are important in the interpretation of gravity and magnetic data because they indicate some important structural features. One of the advantages of using gravity or magnetic data for searching contacts is to be detected buried structures whose signs could not be seen on the surface. In this paper, a general view of the cellular neural network (CNN) method with a large scale nonlinear circuit is presented focusing on its image processing applications. The proposed CNN model is used consecutively in order to extract body and body edges. The algorithm is a stochastic image processing method based on close neighborhood relationship of the cells and optimization of A, B and I matrices entitled as cloning template operators. Setting up a CNN (continues time cellular neural network (CTCNN) or discrete time cellular neural network (DTCNN)) for a particular task needs a proper selection of cloning templates which determine the dynamics of the method. The proposed algorithm is used for image enhancement and edge detection. The proposed method is applied on synthetic and field data generated for edge detection of near-surface geological bodies that mask each other in various depths and dimensions. The program named as CNNEDGEPOT is a set of functions written in MATLAB software. The GUI helps the user to easily change all the required CNN model parameters. A visual evaluation of the outputs due to DTCNN and CTCNN are carried out and the results are compared with each other. These examples demonstrate that in detecting the geological features the CNN model can be used for visual interpretation of near surface gravity or magnetic anomaly maps.

  4. Barcoding Poplars (Populus L.) from Western China

    PubMed Central

    Shang, Huiying; Dong, Miao; Wang, Gaini; He, Xinyu; Zhao, Changming; Mao, Kangshan

    2013-01-01

    Background Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem. Methodology/Principal Findings Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS) among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M), trnG-psbK (G) and psbK-psbI (P), and trnH-psbA (H) and rbcL (R); the discrimination efficiency of the nuclear ITS (I) is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I), and usually discrimination failures occurred among species from sympatric or parapatric areas. Conclusions/Significance In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in plants

  5. Islands in the ice: detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA meta-barcoding.

    PubMed

    Jørgensen, Tina; Kjaer, Kurt H; Haile, James; Rasmussen, Morten; Boessenkool, Sanne; Andersen, Kenneth; Coissac, Eric; Taberlet, Pierre; Brochmann, Christian; Orlando, Ludovic; Gilbert, M Thomas P; Willerslev, Eske

    2012-04-01

    Nunataks are isolated bedrocks protruding through ice sheets. They vary in age, but represent island environments in 'oceans' of ice through which organism dispersals and replacements can be studied over time. The J.A.D. Jensen's Nunataks at the southern Greenland ice sheet are the most isolated nunataks on the northern hemisphere - some 30 km from the nearest biological source. They constitute around 2 km(2) of ice-free land that was established in the early Holocene. We have investigated the changes in plant composition at these nunataks using both the results of surveys of the flora over the last 130 years and through reconstruction of the vegetation from the end of the Holocene Thermal Maximum (5528 ± 75 cal year BP) using meta-barcoding of plant DNA recovered from the nunatak sediments (sedaDNA). Our results show that several of the plant species detected with sedaDNA are described from earlier vegetation surveys on the nunataks (in 1878, 1967 and 2009). In 1967, a much higher biodiversity was detected than from any other of the studied periods. While this may be related to differences in sampling efforts for the oldest period, it is not the case when comparing the 1967 and 2009 levels where the botanical survey was exhaustive. As no animals and humans are found on the nunataks, this change in diversity over a period of just 42 years must relate to environmental changes probably being climate-driven. This suggests that even the flora of fairly small and isolated ice-free areas reacts quickly to a changing climate. PMID:21951625

  6. Islands in the ice: detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA meta-barcoding.

    PubMed

    Jørgensen, Tina; Kjaer, Kurt H; Haile, James; Rasmussen, Morten; Boessenkool, Sanne; Andersen, Kenneth; Coissac, Eric; Taberlet, Pierre; Brochmann, Christian; Orlando, Ludovic; Gilbert, M Thomas P; Willerslev, Eske

    2012-04-01

    Nunataks are isolated bedrocks protruding through ice sheets. They vary in age, but represent island environments in 'oceans' of ice through which organism dispersals and replacements can be studied over time. The J.A.D. Jensen's Nunataks at the southern Greenland ice sheet are the most isolated nunataks on the northern hemisphere - some 30 km from the nearest biological source. They constitute around 2 km(2) of ice-free land that was established in the early Holocene. We have investigated the changes in plant composition at these nunataks using both the results of surveys of the flora over the last 130 years and through reconstruction of the vegetation from the end of the Holocene Thermal Maximum (5528 ± 75 cal year BP) using meta-barcoding of plant DNA recovered from the nunatak sediments (sedaDNA). Our results show that several of the plant species detected with sedaDNA are described from earlier vegetation surveys on the nunataks (in 1878, 1967 and 2009). In 1967, a much higher biodiversity was detected than from any other of the studied periods. While this may be related to differences in sampling efforts for the oldest period, it is not the case when comparing the 1967 and 2009 levels where the botanical survey was exhaustive. As no animals and humans are found on the nunataks, this change in diversity over a period of just 42 years must relate to environmental changes probably being climate-driven. This suggests that even the flora of fairly small and isolated ice-free areas reacts quickly to a changing climate.

  7. Feasibility and Limitations of Vaccine Two-Dimensional Barcoding Using Mobile Devices

    PubMed Central

    Bell, Cameron; Guerinet, Julien

    2016-01-01

    Background Two-dimensional (2D) barcoding has the potential to enhance documentation of vaccine encounters at the point of care. However, this is currently limited to environments equipped with dedicated barcode scanners and compatible record systems. Mobile devices may present a cost-effective alternative to leverage 2D vaccine vial barcodes and improve vaccine product-specific information residing in digital health records. Objective Mobile devices have the potential to capture product-specific information from 2D vaccine vial barcodes. We sought to examine the feasibility, performance, and potential limitations of scanning 2D barcodes on vaccine vials using 4 different mobile phones. Methods A unique barcode scanning app was developed for Android and iOS operating systems. The impact of 4 variables on the scan success rate, data accuracy, and time to scan were examined: barcode size, curvature, fading, and ambient lighting conditions. Two experimenters performed 4 trials 10 times each, amounting to a total of 2160 barcode scan attempts. Results Of the 1832 successful scans performed in this evaluation, zero produced incorrect data. Five-millimeter barcodes were the slowest to scan, although only by 0.5 seconds on average. Barcodes with up to 50% fading had a 100% success rate, but success rate deteriorated beyond 60% fading. Curved barcodes took longer to scan compared with flat, but success rate deterioration was only observed at a vial diameter of 10 mm. Light conditions did not affect success rate or scan time between 500 lux and 20 lux. Conditions below 20 lux impeded the device’s ability to scan successfully. Variability in scan time was observed across devices in all trials performed. Conclusions 2D vaccine barcoding is possible using mobile devices and is successful under the majority of conditions examined. Manufacturers utilizing 2D barcodes should take into consideration the impact of factors that limit scan success rates. Future studies should

  8. Parallel acquisition of Raman spectra from a 2D multifocal array using a modulated multifocal detection scheme

    NASA Astrophysics Data System (ADS)

    Kong, Lingbo; Chan, James W.

    2015-03-01

    A major limitation of spontaneous Raman scattering is its intrinsically weak signals, which makes Raman analysis or imaging of biological specimens slow and impractical for many applications. To address this, we report the development of a novel modulated multifocal detection scheme for simultaneous acquisition of full Raman spectra from a 2-D m × n multifocal array. A spatial light modulator (SLM), or a pair of galvo-mirrors, is used to generate m × n laser foci. Raman signals generated within each focus are projected simultaneously into a spectrometer and detected by a CCD camera. The system can resolve the Raman spectra with no crosstalk along the vertical pixels of the CCD camera, e.g., along the entrance slit of the spectrometer. However, there is significant overlap of the spectra in the horizontal pixel direction, e.g., along the dispersion direction. By modulating the excitation multifocal array (illumination modulation) or the emitted Raman signal array (detection modulation), the superimposed Raman spectra of different multifocal patterns are collected. The individual Raman spectrum from each focus is then retrieved from the superimposed spectra using a postacquisition data processing algorithm. This development leads to a significant improvement in the speed of acquiring Raman spectra. We discuss the application of this detection scheme for parallel analysis of individual cells with multifocus laser tweezers Raman spectroscopy (M-LTRS) and for rapid confocal hyperspectral Raman imaging.

  9. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    PubMed Central

    Afik, Eldad

    2015-01-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection. PMID:26329642

  10. Luminance level of a monitor: influence on detectability and detection rate of breast cancer in 2D mammography

    NASA Astrophysics Data System (ADS)

    Bemelmans, Frédéric; Rashidnasab, Alaleh; Chesterman, Frédérique; Kimpe, Tom; Bosmans, Hilde

    2016-03-01

    Purpose: To evaluate lesion detectability and reading time as a function of luminance level of the monitor. Material and Methods: 3D mass models and microcalcification clusters were simulated into ROIs of for processing mammograms. Randomly selected ROIs were subdivided in three groups according to their background glandularity: high (>30%), medium (15-30%) and low (<15%). 6 non-spiculated masses (9 - 11mm), 6 spiculated masses (5 - 7mm) and 6 microcalcification clusters (2 - 4mm) were scaled in 3D to create a range of sizes. The linear attenuation coefficient (AC) of the masses was adjusted from 100% glandular tissue to 90%, 80%, 70%, to create different contrasts. Six physicists read the full database on Barco's Coronis Uniti monitor for four different luminance levels (300, 800, 1000 and 1200 Cd/m2), using a 4-AFC tool. Percentage correct (PC) and time were computed for all different conditions. A paired t-test was performed to evaluate the effect of luminance on PC and time. A multi-factorial analysis was performed using MANOVA.. Results: Paired t-test indicated a statistically significant difference for the average time per session between 300 and 1200; 800 and 1200; 1000 and 1200 Cd/m2, for all participants combined. There was no effect on PC. MANOVA denoted significantly lower reading times for high glandularity images at 1200 Cd/m2. Both types of masses were significantly faster detected at 1200 Cd/m2, for the contrast study. In the size study, microcalcification clusters and spiculated masses had a significantly higher detection rate at 1200 Cd/m2. Conclusion: These results demonstrate a significant decrease in reading time, while detectability remained constant.

  11. Detection of toxin proteins from Bacillus thuringiensis strain 4.0718 by strategy of 2D-LC-MS/MS.

    PubMed

    Yang, Qi; Tang, Sijia; Rang, Jie; Zuo, Mingxing; Ding, Xuezhi; Sun, Yunjun; Feng, Pinghui; Xia, Liqiu

    2015-04-01

    Bacillus thuringiensis is a kind of insecticidal microorganism which can produce a variety of toxin proteins, it is particularly important to find an effective strategy to identify novel toxin proteins rapidly and comprehensively with the discovery of the wild-type strains. Multi-dimensional high-performance liquid chromatography combined with mass spectrometry has become one of the main methods to detect and identify toxin proteins and proteome of B. thuringiensis. In this study, protein samples from B. thuringiensis strain 4.0718 were analyzed on the basis of two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS), and tryptic peptides of whole cell from the late sporulation phase were eluted at different concentration gradients of ammonium chloride and followed by secondary mass spectrum identification. 831 and 894 proteins were identified from two biological replicates, respectively, while 1,770 and 1,859 peptides were detected correspondingly. Among the identified proteins and peptides, 606 proteins and 1,259 peptides were detected in both replicates, which mean that 1,119 proteins and 2,370 peptides were unique to the proteome of this strain. A total of 15 toxins have been identified successfully, and seven of them were firstly discovered in B. thuringiensis strain 4.0718 that were Crystal protein (A1E259), pesticidal protein (U5KS09), Cry2Af1 (A4GVF0), Cry2Ad (Q9RM89), Cry1 (K4HMB5), Cry1Bc (Q45774), and Cry1Ga (Q45746). The proteomic strategy employed in the present study has provided quick and exhaustive identification of toxins produced by B. thuringiensis.

  12. Αutomated 2D shoreline detection from coastal video imagery: an example from the island of Crete

    NASA Astrophysics Data System (ADS)

    Velegrakis, A. F.; Trygonis, V.; Vousdoukas, M. I.; Ghionis, G.; Chatzipavlis, A.; Andreadis, O.; Psarros, F.; Hasiotis, Th.

    2015-06-01

    Beaches are both sensitive and critical coastal system components as they: (i) are vulnerable to coastal erosion (due to e.g. wave regime changes and the short- and long-term sea level rise) and (ii) form valuable ecosystems and economic resources. In order to identify/understand the current and future beach morphodynamics, effective monitoring of the beach spatial characteristics (e.g. the shoreline position) at adequate spatio-temporal resolutions is required. In this contribution we present the results of a new, fully-automated detection method of the (2-D) shoreline positions using high resolution video imaging from a Greek island beach (Ammoudara, Crete). A fully-automated feature detection method was developed/used to monitor the shoreline position in geo-rectified coastal imagery obtained through a video system set to collect 10 min videos every daylight hour with a sampling rate of 5 Hz, from which snapshot, time-averaged (TIMEX) and variance images (SIGMA) were generated. The developed coastal feature detector is based on a very fast algorithm using a localised kernel that progressively grows along the SIGMA or TIMEX digital image, following the maximum backscatter intensity along the feature of interest; the detector results were found to compare very well with those obtained from a semi-automated `manual' shoreline detection procedure. The automated procedure was tested on video imagery obtained from the eastern part of Ammoudara beach in two 5-day periods, a low wave energy period (6-10 April 2014) and a high wave energy period (1 -5 November 2014). The results showed that, during the high wave energy event, there have been much higher levels of shoreline variance which, however, appeared to be similarly unevenly distributed along the shoreline as that related to the low wave energy event, Shoreline variance `hot spots' were found to be related to the presence/architecture of an offshore submerged shallow beachrock reef, found at a distance of 50-80 m

  13. Moving object tracking by using a novel real-time 2D local-polar-edge-detection method

    NASA Astrophysics Data System (ADS)

    Hu, Chialun John

    2011-04-01

    The LPED (local polar edge detection) method is a newly developed 2D image processing method that automatically utilizes the center-of-mass polar coordinate to represent, in a unique way by a 36-dimension analog vector, the boundary of each object embedded in a picture frame. This 36D vector is the object ID for the particular object it represents. This ID vector is independent of the position of the object and independent of the orientation of the object, but it is a characteristic property from object to object. The background noises are automatically filtered out if the background objects are much smaller and much more randomly distributed than the objects of interest. This concise ID vector will not only identify the object precisely in a large picture frame where multiple-shaped objects lie, it will also track the object automatically when the object moves and it will record the data of movement periodically. I.e., it can measure automatically the distance of movement, the angular change of object-orientation, and the new locations of the central of mass of the moving object between successive sampling time intervals. In other words, it can automatically predict the near future movement of the tracked object. The applications of this novel image processing technique, to name a few, may be (1) automatic satellite-tracking and targeting of ground moving vehicles, (2) robotic identification of surrounding environment by some shape selected scenic part in the environment (e.g., the cross-section of an underground tunnel) with self guidance for the robot to go along a desired path through the whole tunnel without hitting the tunnel wall. This paper describes the principle of LPED and some extensive experimental results, regarding the application (1) described above, by utilizing a real-time soft-ware program designed by the author.

  14. Barcode localization with region based gradient statistical analysis

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Zhao, Yuming

    2015-03-01

    Barcode, as a kind of data representation method, has been adopted in a wide range of areas. Especially with the rise of the smart phone and the hand-held device equipped with high resolution camera and great computation power, barcode technique has found itself more extensive applications. In industrial field, barcode reading system is highly demanded to be robust to blur, illumination change, pitch, rotation, and scale change. This paper gives a new idea in localizing barcode under a region-based gradient statistical analysis. Making this idea as the basis, four algorithms have been developed for dealing with Linear, PDF417, Stacked 1D1D and Stacked 1D2D barcodes respectively. After being evaluated on our challenging dataset with more than 17000 images, the result shows that our methods can achieve an average localization accuracy of 82.17% with respect to 8 kinds of distortions and within an average time of 12 ms.

  15. Barcode server: a visualization-based genome analysis system.

    PubMed

    Mao, Fenglou; Olman, Victor; Wang, Yan; Xu, Ying

    2013-01-01

    We have previously developed a computational method for representing a genome as a barcode image, which makes various genomic features visually apparent. We have demonstrated that this visual capability has made some challenging genome analysis problems relatively easy to solve. We have applied this capability to a number of challenging problems, including (a) identification of horizontally transferred genes, (b) identification of genomic islands with special properties and (c) binning of metagenomic sequences, and achieved highly encouraging results. These application results inspired us to develop this barcode-based genome analysis server for public service, which supports the following capabilities: (a) calculation of the k-mer based barcode image for a provided DNA sequence; (b) detection of sequence fragments in a given genome with distinct barcodes from those of the majority of the genome, (c) clustering of provided DNA sequences into groups having similar barcodes; and (d) homology-based search using Blast against a genome database for any selected genomic regions deemed to have interesting barcodes. The barcode server provides a job management capability, allowing processing of a large number of analysis jobs for barcode-based comparative genome analyses. The barcode server is accessible at http://csbl1.bmb.uga.edu/Barcode. PMID:23457606

  16. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    SciTech Connect

    Inoue, Ken-ichi; Singh, Prashant C.; Nihonyanagi, Satoshi; Tahara, Tahei; Yamaguchi, Shoichi

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  17. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity

    NASA Astrophysics Data System (ADS)

    Chowdhury, Rup K.; Maiti, Rishi; Ghorai, Arup; Midya, Anupam; Ray, Samit K.

    2016-07-01

    We report for the first time, the fabrication of novel two-dimensional (2D) p-WS2/n-Si vertical heterostructures with superior junction and photoresponse characteristics. Few layer WS2 has been synthesized by a lithium-ion intercalation technique in hexane and coated on Si substrates for realization of CMOS compatible devices. Atomic force microscopy and Raman spectroscopy have been used to confirm the 2D nature of WS2 layers. Sharp band-edge absorption and emission peaks have indicated the formation of mono-to-few-layers thick direct band gap WS2 films. The electrical and optical responses of the heterostructures have exhibited superior properties revealing the formation of an abrupt heterojunction. The fabricated photodetector device depicts a peak responsivity of 1.11 A W-1 at -2 V with a broadband spectral response of 400-1100 nm and a moderate photo-to-dark current ratio of ~103. The optical switching characteristics have been studied as a function of applied bias and illuminated power density. A comparative study of the reported results on 2D transition metal chalcogenides indicates the superior characteristics of WS2/n-Si heterostructures for future photonic devices.

  18. Label-free optical detection of C-reactive protein by nanoimprint lithography-based 2D-photonic crystal film.

    PubMed

    Endo, Tatsuro; Kajita, Hiroshi; Kawaguchi, Yukio; Kosaka, Terumasa; Himi, Toshiyuki

    2016-06-01

    The development of high-sensitive, and cost-effective novel biosensors have been strongly desired for future medical diagnostics. To develop novel biosensor, the authors focused on the specific optical characteristics of photonic crystal. In this study, a label-free optical biosensor, polymer-based two-dimensional photonic crystal (2D-PhC) film fabricated using nanoimprint lithography (NIL), was developed for detection of C-reactive protein (CRP) in human serum. The nano-hole array constructed NIL-based 2D-PhC (hole diameter: 230 nm, distance: 230, depth: 200 nm) was fabricated on a cyclo-olefin polymer (COP) film (100 µm) using thermal NIL and required surface modifications to reduce nonspecific adsorption of target proteins. Antigen-antibody reactions on the NIL-based 2D-PhC caused changes to the surrounding refractive index, which was monitored as reflection spectrum changes in the visible region. By using surface modified 2D-PhC, the calculated detection limit for CRP was 12.24 pg/mL at an extremely short reaction time (5 min) without the need for additional labeling procedures and secondary antibody. Furthermore, using the dual-functional random copolymer, CRP could be detected in a pooled blood serum diluted 100× with dramatic reduction of nonspecific adsorption. From these results, the NIL-based 2D-PhC film has great potential for development of an on-site, high-sensitivity, cost-effective, label-free biosensor for medical diagnostics applications. PMID:27150702

  19. DNA mini-barcodes.

    PubMed

    Hajibabaei, Mehrdad; McKenna, Charly

    2012-01-01

    Conventional DNA barcoding uses an approximately 650 bp DNA barcode of the mitochondrial gene COI for species identification in animal groups. Similar size fragments from chloroplast genes have been proposed as barcode markers for plants. While PCR amplification and sequencing of a 650 bp fragment is consistent in freshly collected and well-preserved specimens, it is difficult to obtain a full-length barcode in older museum specimens and samples which have been preserved in formalin or similar DNA-unfriendly preservatives. A comparable issue may prevent effective DNA-based authentication and testing in processed biological materials, such as food products, pharmaceuticals, and nutraceuticals. In these cases, shorter DNA sequences-mini-barcodes-have been robustly recovered and shown to be effective in identifying majority of specimens to a species level. Furthermore, short DNA regions can be utilized via high-throughput sequencing platforms providing an inexpensive and comprehensive means of large-scale species identification. These properties of mini-barcodes, coupled with the availability of standardized and universal primers make mini-barcodes a feasible option for DNA barcode analysis in museum samples and applied diagnostic and environmental biodiversity analysis.

  20. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy.

    PubMed

    de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M

    2016-06-17

    We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale. PMID:27367394

  1. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy.

    PubMed

    de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M

    2016-06-17

    We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.

  2. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    de la Torre, B.; Ellner, M.; Pou, P.; Nicoara, N.; Pérez, Rubén; Gómez-Rodríguez, J. M.

    2016-06-01

    We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.

  3. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    SciTech Connect

    Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa; Alizad, Azra; Davis, Brian J.

    2014-09-15

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that

  4. DNA barcoding for plants.

    PubMed

    de Vere, Natasha; Rich, Tim C G; Trinder, Sarah A; Long, Charlotte

    2015-01-01

    DNA barcoding uses specific regions of DNA in order to identify species. Initiatives are taking place around the world to generate DNA barcodes for all groups of living organisms and to make these data publically available in order to help understand, conserve, and utilize the world's biodiversity. For land plants the core DNA barcode markers are two sections of coding regions within the chloroplast, part of the genes, rbcL and matK. In order to create high quality databases, each plant that is DNA barcoded needs to have a herbarium voucher that accompanies the rbcL and matK DNA sequences. The quality of the DNA sequences, the primers used, and trace files should also be accessible to users of the data. Multiple individuals should be DNA barcoded for each species in order to check for errors and allow for intraspecific variation. The world's herbaria provide a rich resource of already preserved and identified material and these can be used for DNA barcoding as well as by collecting fresh samples from the wild. These protocols describe the whole DNA barcoding process, from the collection of plant material from the wild or from the herbarium, how to extract and amplify the DNA, and how to check the quality of the data after sequencing.

  5. An Algorithm Enabling Blind Users to Find and Read Barcodes.

    PubMed

    Tekin, Ender; Coughlan, James M

    2009-12-01

    Most camera-based systems for finding and reading barcodes are designed to be used by sighted users (e.g. the Red Laser iPhone app), and assume the user carefully centers the barcode in the image before the barcode is read. Blind individuals could benefit greatly from such systems to identify packaged goods (such as canned goods in a supermarket), but unfortunately in their current form these systems are completely inaccessible because of their reliance on visual feedback from the user.To remedy this problem, we propose a computer vision algorithm that processes several frames of video per second to detect barcodes from a distance of several inches; the algorithm issues directional information with audio feedback (e.g. "left," "right") and thereby guides a blind user holding a webcam or other portable camera to locate and home in on a barcode. Once the barcode is detected at sufficiently close range, a barcode reading algorithm previously developed by the authors scans and reads aloud the barcode and the corresponding product information. We demonstrate encouraging experimental results of our proposed system implemented on a desktop computer with a webcam held by a blindfolded user; ultimately the system will be ported to a camera phone for use by visually impaired users.

  6. A high-resolution 2D J-resolved NMR detection technique for metabolite analyses of biological samples

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Zhang, Zhiyong; Chen, Hao; Feng, Jianghua; Cai, Shuhui; Chen, Zhong

    2015-02-01

    NMR spectroscopy is a commonly used technique for metabolite analyses. Due to the observed macroscopic magnetic susceptibility in biological tissues, current NMR acquisitions in measurements of biological tissues are generally performed on tissue extracts using liquid NMR or on tissues using magic-angle spinning techniques. In this study, we propose an NMR method to achieve high-resolution J-resolved information for metabolite analyses directly from intact biological samples. A dramatic improvement in spectral resolution is evident in our contrastive demonstrations on a sample of pig brain tissue. Metabolite analyses for a postmortem fish from fresh to decayed statuses are presented to further reveal the capability of the proposed method. This method is a previously-unreported high-resolution 2D J-resolved spectroscopy for biological applications without specialised hardware requirements or complicated sample pretreatments. It provides a significant contribution to metabolite analyses of biological samples, and may be potentially applicable to in vivo samples. Furthermore, this method also can be applied to measurements of semisolid and viscous samples.

  7. Does a global DNA barcoding gap exist in Annelida?

    PubMed

    Kvist, Sebastian

    2016-05-01

    Accurate identification of unknown specimens by means of DNA barcoding is contingent on the presence of a DNA barcoding gap, among other factors, as its absence may result in dubious specimen identifications - false negatives or positives. Whereas the utility of DNA barcoding would be greatly reduced in the absence of a distinct and sufficiently sized barcoding gap, the limits of intraspecific and interspecific distances are seldom thoroughly inspected across comprehensive sampling. The present study aims to illuminate this aspect of barcoding in a comprehensive manner for the animal phylum Annelida. All cytochrome c oxidase subunit I sequences (cox1 gene; the chosen region for zoological DNA barcoding) present in GenBank for Annelida, as well as for "Polychaeta", "Oligochaeta", and Hirudinea separately, were downloaded and curated for length, coverage and potential contaminations. The final datasets consisted of 9782 (Annelida), 5545 ("Polychaeta"), 3639 ("Oligochaeta"), and 598 (Hirudinea) cox1 sequences and these were either (i) used as is in an automated global barcoding gap detection analysis or (ii) further analyzed for genetic distances, separated into bins containing intraspecific and interspecific comparisons and plotted in a graph to visualize any potential global barcoding gap. Over 70 million pairwise genetic comparisons were made and results suggest that although there is a tendency towards separation, no distinct or sufficiently sized global barcoding gap exists in either of the datasets rendering future barcoding efforts at risk of erroneous specimen identifications (but local barcoding gaps may still exist allowing for the identification of specimens at lower taxonomic ranks). This seems to be especially true for earthworm taxa, which account for fully 35% of the total number of interspecific comparisons that show 0% divergence.

  8. Barcode V1.0

    2003-03-03

    This software produces barcode images for printing and reads barcodes from digital images according to the mathematical and algorithmic description from a Sandia patent application titled "A Self-Registering Sread-Spectrum Barcode". A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along withmore » the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature and perspective.« less

  9. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells.

    PubMed

    Zan, Xiaoli; Bai, Hongwei; Wang, Chenxu; Zhao, Faqiong; Duan, Hongwei

    2016-04-01

    To circumvent the bottlenecks of non-flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil-water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm(-2) μM(-1), up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nM, and a wide linear range of 87 nM to 100 μM. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well-tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil-water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society. PMID:26918612

  10. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells.

    PubMed

    Zan, Xiaoli; Bai, Hongwei; Wang, Chenxu; Zhao, Faqiong; Duan, Hongwei

    2016-04-01

    To circumvent the bottlenecks of non-flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil-water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm(-2) μM(-1), up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nM, and a wide linear range of 87 nM to 100 μM. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well-tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil-water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society.

  11. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells

    PubMed Central

    Zan, Xiaoli; Wang, Chenxu

    2016-01-01

    Abstract To circumvent the bottlenecks of non‐flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil–water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm−2 μm −1, up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nm, and a wide linear range of 87 nm to 100 μm. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well‐tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil–water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society. PMID:26918612

  12. Pay Attention to the Overlooked Cryptic Diversity in Existing Barcoding Data: the Case of Mollusca with Character-Based DNA Barcoding.

    PubMed

    Zou, Shanmei; Li, Qi

    2016-06-01

    With the global biodiversity crisis, DNA barcoding aims for fast species identification and cryptic species diversity revelation. For more than 10 years, large amounts of DNA barcode data have been accumulating in publicly available databases, most of which were conducted by distance or tree-building methods that have often been argued, especially for cryptic species revelation. In this context, overlooked cryptic diversity may exist in the available barcoding data. The character-based DNA barcoding, however, has a good chance for detecting the overlooked cryptic diversity. In this study, marine mollusk was as the ideal case for detecting the overlooked potential cryptic species from existing cytochrome c oxidase I (COI) sequences with character-based DNA barcode. A total of 1081 COI sequences of mollusks, belonging to 176 species of 25 families of Gastropoda, Cephalopoda, and Lamellibranchia, were conducted by character analysis. As a whole, the character-based barcoding results were consistent with previous distance and tree-building analysis for species discrimination. More importantly, quite a number of species analyzed were divided into distinct clades with unique diagnostical characters. Based on the concept of cryptic species revelation of character-based barcoding, these species divided into separate taxonomic groups might be potential cryptic species. The detection of the overlooked potential cryptic diversity proves that the character-based barcoding mode possesses more advantages of revealing cryptic biodiversity. With the development of DNA barcoding, making the best use of barcoding data is worthy of our attention for species conservation.

  13. Effect of image processing version on detection of non-calcification cancers in 2D digital mammography imaging

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Cooke, J.; Given-Wilson, R. M.; Wallis, M. G.; Halling-Brown, M.; Mackenzie, A.; Chakraborty, D. P.; Bosmans, H.; Dance, D. R.; Young, K. C.

    2013-03-01

    Image processing (IP) is the last step in the digital mammography imaging chain before interpretation by a radiologist. Each manufacturer has their own IP algorithm(s) and the appearance of an image after IP can vary greatly depending upon the algorithm and version used. It is unclear whether these differences can affect cancer detection. This work investigates the effect of IP on the detection of non-calcification cancers by expert observers. Digital mammography images for 190 patients were collected from two screening sites using Hologic amorphous selenium detectors. Eighty of these cases contained non-calcification cancers. The images were processed using three versions of IP from Hologic - default (full enhancement), low contrast (intermediate enhancement) and pseudo screen-film (no enhancement). Seven experienced observers inspected the images and marked the location of regions suspected to be non-calcification cancers assigning a score for likelihood of malignancy. This data was analysed using JAFROC analysis. The observers also scored the clinical interpretation of the entire case using the BSBR classification scale. This was analysed using ROC analysis. The breast density in the region surrounding each cancer and the number of times each cancer was detected were calculated. IP did not have a significant effect on the radiologists' judgment of the likelihood of malignancy of individual lesions or their clinical interpretation of the entire case. No correlation was found between number of times each cancer was detected and the density of breast tissue surrounding that cancer.

  14. Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy

    PubMed Central

    Middleton, Chris T.; Strasfeld, David B.; Zanni, Martin T.

    2010-01-01

    We demonstrate amplitude, phase and polarization shaping of femtosecond mid-IR pulses using a germanium acousto-optical modulator by independently shaping the frequency-dependent amplitudes and phases of two orthogonally polarized pulses which are then collinearly overlapped using a wire-grid polarizer. We use a feedback loop to set and stabilize the relative phase of the orthogonal pulses. We have also used a wire-grid polarizer to implement polarization-based balanced heterodyne detection for improved signal-to-noise of 2D IR spectra collected in a pump-probe geometry. Applications include coherent control of molecular vibrations and improvements in multidimensional IR spectroscopy. PMID:19687931

  15. Preliminary clinical results: an analyzing tool for 2D optical imaging in detection of active inflammation in rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.

    2011-03-01

    Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-

  16. Digital breast tomosynthesis: application of 2D digital mammography CAD to detection of microcalcification clusters on planar projection image

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir; Wei, Jun; Helvie, Mark

    2015-03-01

    Computer-aided detection (CAD) has the potential to aid radiologists in detection of microcalcification clusters (MCs). CAD for digital breast tomosynthesis (DBT) can be developed by using the reconstructed volume, the projection views or other derivatives as input. We have developed a novel method of generating a single planar projection (PPJ) image from a regularized DBT volume to emphasize the high contrast objects such as microcalcifications while removing the anatomical background and noise. In this work, we adapted a CAD system developed for digital mammography (CADDM) to the PPJ image and compared its performance with our CAD system developed for DBT volumes (CADDBT) in the same set of cases. For microcalcification detection in the PPJ image using the CADDM system, the background removal preprocessing step designed for DM was not needed. The other methods and processing steps in the CADDM system were kept without modification while the parameters were optimized with a training set. The linear discriminant analysis classifier using cluster based features was retrained to generate a discriminant score to be used as decision variable. For view-based FROC analysis, at 80% sensitivity, an FP rate of 1.95/volume and 1.54/image were achieved, respectively, for CADDBT and CADDM in an independent test set. At a threshold of 1.2 FPs per image or per DBT volume, the nonparametric analysis of the area under the FROC curve shows that the optimized CADDM for PPJ is significantly better than CADDBT. However, the performance of CADDM drops at higher sensitivity or FP rate, resulting in similar overall performance between the two CAD systems. The higher sensitivity of the CADDM in the low FP rate region and vice versa for the CADDBT indicate that a joint CAD system combining detection in the DBT volume and the PPJ image has the potential to increase the sensitivity and reduce the FP rate.

  17. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    PubMed

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.

  18. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    PubMed

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content. PMID:24641208

  19. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens

    PubMed Central

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-01-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content. PMID:24641208

  20. Photoelectrochemical Immunosensor for Detection of Carcinoembryonic Antigen Based on 2D TiO2 Nanosheets and Carboxylated Graphitic Carbon Nitride.

    PubMed

    Wang, Huan; Wang, Yaoguang; Zhang, Yong; Wang, Qi; Ren, Xiang; Wu, Dan; Wei, Qin

    2016-06-06

    Carcinoembryonic antigen (CEA) was used as the model, an ultrasensitive label-free photoelectrochemical immunosensor was developed using 2D TiO2 nanosheets and carboxylated graphitic carbon nitride (g-C3N4) as photoactive materials and ascorbic acid as an efficient electron donor. 2D TiO2 nanosheets was sythsized by surfactant self-assembly method and proved to have higher photoelectrochemical signals than TiO2 nanoparticles. Firstly, carboxylated g-C3N4 could be attached to 2D TiO2 nanosheets through the bond formed between carboxyl group of carboxylated g-C3N4 and TiO2. And the photocurrent of g-C3N4/TiO2 drastically enhances compared to carboxylated g-C3N4 and TiO2. Then, antibody of CEA was bonded to TiO2 through the dentate bond formed between carboxyl group of anti-CEA and TiO2, leading to the decrease of the photocurrents. As proven by PEC experiments and electrochemical impedance spectroscopy (EIS) analysis, the fabrication process of the immunosensor is successful. Under the optimal conditions, the intensity decreased linearly with CEA concentration in the range of 0.01~10 ng/mL. The detection limit is 2.1 pg/mL. The work provides an effective method for the detection of tumor markers and can be extended for the application in food safety and environmental monitoring analysis.

  1. Photoelectrochemical Immunosensor for Detection of Carcinoembryonic Antigen Based on 2D TiO2 Nanosheets and Carboxylated Graphitic Carbon Nitride

    PubMed Central

    Wang, Huan; Wang, Yaoguang; Zhang, Yong; Wang, Qi; Ren, Xiang; Wu, Dan; Wei, Qin

    2016-01-01

    Carcinoembryonic antigen (CEA) was used as the model, an ultrasensitive label-free photoelectrochemical immunosensor was developed using 2D TiO2 nanosheets and carboxylated graphitic carbon nitride (g-C3N4) as photoactive materials and ascorbic acid as an efficient electron donor. 2D TiO2 nanosheets was sythsized by surfactant self-assembly method and proved to have higher photoelectrochemical signals than TiO2 nanoparticles. Firstly, carboxylated g-C3N4 could be attached to 2D TiO2 nanosheets through the bond formed between carboxyl group of carboxylated g-C3N4 and TiO2. And the photocurrent of g-C3N4/TiO2 drastically enhances compared to carboxylated g-C3N4 and TiO2. Then, antibody of CEA was bonded to TiO2 through the dentate bond formed between carboxyl group of anti-CEA and TiO2, leading to the decrease of the photocurrents. As proven by PEC experiments and electrochemical impedance spectroscopy (EIS) analysis, the fabrication process of the immunosensor is successful. Under the optimal conditions, the intensity decreased linearly with CEA concentration in the range of 0.01~10 ng/mL. The detection limit is 2.1 pg/mL. The work provides an effective method for the detection of tumor markers and can be extended for the application in food safety and environmental monitoring analysis. PMID:27263659

  2. Application of 2-D geoelectrical resistivity tomography for mountain permafrost detection in sporadic permafrost environments: Experiences from Eastern Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas

    2015-04-01

    Mountain permafrost covers some 2000 km² of the Austrian Alps which is less than 2.5% of the national territory. Delineating the altitudinal lower limit of permafrost in the mountains of Austria is difficult due the complex topography, the rather sparseness of field verification data and the lack of long-term permafrost monitoring data. Such monitoring data should cover different slope aspects, different elevations, different substrates and different mountain regions of Austria. In this study it was attempted to delineate the lower limit of permafrost at two study sites in the Tauern Range, Austria, applying two-dimensional geoelectrical resistivity tomography (ERT). In addition, multi-annual ground temperature data collected by miniature temperature datalogger (MDT) were used to validate the results. At the study site Hochreichart (maximum elevation 2416 m asl), located in the Seckauer Tauern Range, 14 ERT profiles (lengths 48-196 m; electrode spacing 2, 2.5 or 4 m) were measured at elevations between 1805 and 2416 m asl. Measurements were carried out at two cirques (Reichart, Schöneben) and at the summit plateau of Hochreichart. Results at this site indicate that permafrost lenses are detectable at elevations down to c.1900 m asl at radiation-sheltered sites. Furthermore, at the summit plateau permafrost only occurs as rather small lenses. The ERT-based permafrost pattern is generally confirmed by the MTD data with negative mean annual ground temperature values at only a few monitoring sites. However, the possibility of air-filled cavities causing higher resistive zones faking permafrost existence cannot be excluded because coarse-grained sediments (i.e. relict rock glaciers and autochthonous block fields) are widespread at this study site. At the second study site Kögele Cirque (maximum elevation 3030 m asl) located in the Schober Mountains 12 ERT profiles (lengths 48 m; electrode spacing 2 m) were measured at elevations between 2631 and 2740 m asl. Spatially

  3. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography.

    PubMed

    Timp, Sheila; Karssemeijer, Nico

    2004-05-01

    Mass segmentation plays a crucial role in computer-aided diagnosis (CAD) systems for classification of suspicious regions as normal, benign, or malignant. In this article we present a robust and automated segmentation technique--based on dynamic programming--to segment mass lesions from surrounding tissue. In addition, we propose an efficient algorithm to guarantee resulting contours to be closed. The segmentation method based on dynamic programming was quantitatively compared with two other automated segmentation methods (region growing and the discrete contour model) on a dataset of 1210 masses. For each mass an overlap criterion was calculated to determine the similarity with manual segmentation. The mean overlap percentage for dynamic programming was 0.69, for the other two methods 0.60 and 0.59, respectively. The difference in overlap percentage was statistically significant. To study the influence of the segmentation method on the performance of a CAD system two additional experiments were carried out. The first experiment studied the detection performance of the CAD system for the different segmentation methods. Free-response receiver operating characteristics analysis showed that the detection performance was nearly identical for the three segmentation methods. In the second experiment the ability of the classifier to discriminate between malignant and benign lesions was studied. For region based evaluation the area Az under the receiver operating characteristics curve was 0.74 for dynamic programming, 0.72 for the discrete contour model, and 0.67 for region growing. The difference in Az values obtained by the dynamic programming method and region growing was statistically significant. The differences between other methods were not significant.

  4. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    SciTech Connect

    Zhou, Shiyuan Sun, Haoyu Xu, Chunguang Cao, Xiandong Cui, Liming Xiao, Dingguo

    2015-03-31

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  5. Implementing a Serials Barcoding Project.

    ERIC Educational Resources Information Center

    Lennertz, Lora L.; Conway, Cheryl L.

    1997-01-01

    Discusses the process of planning and implementing a barcode project for library serials based on experiences at the University of Arkansas Fayetteville library. Topics include dumb versus smart barcodes, cataloging, classification, application rate of barcode labels, and library staff participation. (Author/LRW)

  6. Reliable DNA Barcoding Performance Proved for Species and Island Populations of Comoran Squamate Reptiles

    PubMed Central

    Hawlitschek, Oliver; Nagy, Zoltán T.; Berger, Johannes; Glaw, Frank

    2013-01-01

    In the past decade, DNA barcoding became increasingly common as a method for species identification in biodiversity inventories and related studies. However, mainly due to technical obstacles, squamate reptiles have been the target of few barcoding studies. In this article, we present the results of a DNA barcoding study of squamates of the Comoros archipelago, a poorly studied group of oceanic islands close to and mostly colonized from Madagascar. The barcoding dataset presented here includes 27 of the 29 currently recognized squamate species of the Comoros, including 17 of the 18 endemic species. Some species considered endemic to the Comoros according to current taxonomy were found to cluster with non-Comoran lineages, probably due to poorly resolved taxonomy. All other species for which more than one barcode was obtained corresponded to distinct clusters useful for species identification by barcoding. In most species, even island populations could be distinguished using barcoding. Two cryptic species were identified using the DNA barcoding approach. The obtained barcoding topology, a Bayesian tree based on COI sequences of 5 genera, was compared with available multigene topologies, and in 3 cases, major incongruences between the two topologies became evident. Three of the multigene studies were initiated after initial screening of a preliminary version of the barcoding dataset presented here. We conclude that in the case of the squamates of the Comoros Islands, DNA barcoding has proven a very useful and efficient way of detecting isolated populations and promising starting points for subsequent research. PMID:24069192

  7. DNA barcoding in mammals.

    PubMed

    Ivanova, Natalia V; Clare, Elizabeth L; Borisenko, Alex V

    2012-01-01

    DNA barcoding provides an operational framework for mammalian taxonomic identification and cryptic species discovery. Focused effort to build a reference library of genetic data has resulted in the assembly of over 35 K mammalian cytochrome c oxidase subunit I sequences and outlined the scope of mammal-related barcoding projects. Based on the above experience, this chapter recounts three typical methodological pathways involved in mammalian barcoding: routine methods aimed at assembling the reference sequence library from high quality samples, express approaches used to attain cheap and fast taxonomic identifications for applied purposes, and forensic techniques employed when dealing with degraded material. Most of the methods described are applicable to a range of vertebrate taxa outside Mammalia.

  8. Barcode uses and abuses

    SciTech Connect

    KEENEN,MARTHA JANE; NUSBAUM,ANNA W.

    2000-05-18

    Barcodes are something that everybody sees every day; so common as to be taken for granted and normally unnoticed. Readable, no one reads them. They are used to allow machines to identify a wide variety of non-electronic, real life objects. Barcode is one of the earliest types of what is now called ``Automatic Identification and Data Capture'' (AIDC), meaning ``data was transmitted into whatever system by something other than typing or hand-writing.'' There are 18 technologies, broken down into six categories--biometrics, electromagnetic, magnetic, optical, Smart Cards, Touch--included in the AIDC concept. Many are used jointly with or as adjuncts to a basic barcode system of some type. All are based on assignment of a unique identifier to the object, usually a number. The uniqueness presumption makes barcode systems very applicable and appropriate to the nuclear information management venue as they inherently comply with the Nuclear Quality Assurance (NQA-1) requirements. Barcode systems belong to the optical category of AIDC. It is very old in usage as these technologies go, having first been patented in 1949. It astonished me, in researching this paper, to find that there are over 250 types of barcode (symbologies), each with its own specialized attributes, though only a few dozen are in active use. The initial uses were in the early 1950s and diversity of use is ever increasing as people find new ways to make this versatile old technology work. To what else could it be applied, in the future? This paper attempts to answer this.

  9. DNA barcodes: methods and protocols.

    PubMed

    Kress, W John; Erickson, David L

    2012-01-01

    DNA barcoding, a new method for the quick identification of any species based on extracting a DNA sequence from a tiny tissue sample of any organism, is now being applied to taxa across the tree of life. As a research tool for taxonomists, DNA barcoding assists in identification by expanding the ability to diagnose species by including all life history stages of an organism. As a biodiversity discovery tool, DNA barcoding helps to flag species that are potentially new to science. As a biological tool, DNA barcoding is being used to address fundamental ecological and evolutionary questions, such as how species in plant communities are assembled. The process of DNA barcoding entails two basic steps: (1) building the DNA barcode library of known species and (2) matching the barcode sequence of the unknown sample against the barcode library for identification. Although DNA barcoding as a methodology has been in use for less than a decade, it has grown exponentially in terms of the number of sequences generated as barcodes as well as its applications. This volume provides the latest information on generating, applying, and analyzing DNA barcodes across the Tree of Life from animals and fungi to protists, algae, and plants.

  10. Chain packing in glassy polymers by natural-abundance 13C-13C spin diffusion using 2D centerband-only detection of exchange.

    PubMed

    Singh, Manmilan; Schaefer, Jacob

    2011-03-01

    The proximities of specific subgroups of nearest-neighbor chains in glassy polymers are revealed by distance-dependent (13)C-(13)C dipolar couplings and spin diffusion. The measurement of such proximities is practical even with natural-abundance levels of (13)C using a 2D version of centerband-only detection of exchange (CODEX). Two-dimensional CODEX is a relaxation-compensated experiment that avoids the problems associated with variations in T(1)(C)'s due to dynamic site heterogeneity in the glass. Isotropic chemical shifts are encoded in the t(1) preparation times before and after mixing, and variations in T(2)'s are compensated by an S(0) reference (no mixing). Data acquisition involves acquisition of an S(0) reference signal on alternate scans, and the active control of power amplifiers, to achieve stability and accuracy over long accumulation times. The model system to calibrate spin diffusion is the polymer itself. For a mixing time of 200 ms, only (13)C-(13)C pairs separated by one or two bonds (2.5 Å) show cross peaks, which therefore identify reference intrachain proximities. For a mixing time of 1200 ms, 5 Å interchain proximities appear. The resulting cross peaks are used in a simple and direct way to compare nonrandom chain packing for two commercial polycarbonates with decidedly different mechanical properties.

  11. Detection of multi-scale secondary flow structures using anisotropic 2D Ricker wavelets in a bent tube model for curved arteries

    NASA Astrophysics Data System (ADS)

    Plesniak, Daniel H.; Bulusu, Kartik V.; Plesniak, Michael W.

    2012-11-01

    Interpretation of complex flow patterns observed in this study of a model curved artery required characterization of multiple, low-circulation secondary flow structures that were observed during the late systolic deceleration and diastolic phases under physiological inflow conditions. Phase-locked, planar vorticity PIV data were acquired at various cross-sectional locations of the 180-degree bent tube model. High circulation, deformed Dean- and Lyne-type vortices were observed during early stages of deceleration, while several smaller scale, highly deformed, low-circulation vortical patterns appeared in the core and near-wall regions during late systolic deceleration and diastolic phases. Due to the multiplicity of vortical scales and shapes, anisotropic 2D Ricker wavelets were used for coherent structure detection in a continuous wavelet transform algorithm (PIVlet 1.2). Our bio-inspired study is geared towards understanding whether optimizing the shape of the wavelet kernel will enable better resolution of several low-circulation, multi-scale secondary flow morphologies and whether new insights into the dynamics of arterial secondary flow structures can accordingly be gained. Supported by the National Science Foundation, Grant No. CBET-0828903 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  12. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements. PMID:27100169

  13. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  14. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van’t Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  ‑10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  15. Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses.

    PubMed

    Chapman, K E; Thomas, A D; Wills, J W; Pfuhler, S; Doak, S H; Jenkins, G J S

    2014-05-01

    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay's fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in vivo

  16. Diagnostic performance of 3D TSE MRI versus 2D TSE MRI of the knee at 1.5 T, with prompt arthroscopic correlation, in the detection of meniscal and cruciate ligament tears*

    PubMed Central

    Chagas-Neto, Francisco Abaeté; Nogueira-Barbosa, Marcello Henrique; Lorenzato, Mário Müller; Salim, Rodrigo; Kfuri-Junior, Maurício; Crema, Michel Daoud

    2016-01-01

    Objective To compare the diagnostic performance of the three-dimensional turbo spin-echo (3D TSE) magnetic resonance imaging (MRI) technique with the performance of the standard two-dimensional turbo spin-echo (2D TSE) protocol at 1.5 T, in the detection of meniscal and ligament tears. Materials and Methods Thirty-eight patients were imaged twice, first with a standard multiplanar 2D TSE MR technique, and then with a 3D TSE technique, both in the same 1.5 T MRI scanner. The patients underwent knee arthroscopy within the first three days after the MRI. Using arthroscopy as the reference standard, we determined the diagnostic performance and agreement. Results For detecting anterior cruciate ligament tears, the 3D TSE and routine 2D TSE techniques showed similar values for sensitivity (93% and 93%, respectively) and specificity (80% and 85%, respectively). For detecting medial meniscal tears, the two techniques also had similar sensitivity (85% and 83%, respectively) and specificity (68% and 71%, respectively). In addition, for detecting lateral meniscal tears, the two techniques had similar sensitivity (58% and 54%, respectively) and specificity (82% and 92%, respectively). There was a substantial to almost perfect intraobserver and interobserver agreement when comparing the readings for both techniques. Conclusion The 3D TSE technique has a diagnostic performance similar to that of the routine 2D TSE protocol for detecting meniscal and anterior cruciate ligament tears at 1.5 T, with the advantage of faster acquisition. PMID:27141127

  17. Patterns of DNA Barcode Variation in Canadian Marine Molluscs

    PubMed Central

    Layton, Kara K.S.; Martel, André L.; Hebert, Paul DN.

    2014-01-01

    Background Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. Methodology/Principal Findings This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0–26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%–46.5%), and showed a significant positive correlation with nearest neighbour distances. Conclusions/Significance DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad

  18. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  19. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  20. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  1. Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms.

    PubMed

    Saunders, Gary W; McDevit, Daniel C

    2012-01-01

    This chapter outlines the current practices used in our laboratory for routine DNA barcode analyses of the three major marine macroalgal groups, viz., brown (Phaeophyceae), red (Rhodophyta), and green (Chlorophyta) algae, as well as for the microscopic diatoms (Bacillariophyta). We start with an outline of current streamlined field protocols, which facilitate the collection of substantial (hundreds to thousands) specimens during short (days to weeks) field excursions. We present the current high-throughput DNA extraction protocols, which can, nonetheless, be easily modified for manual molecular laboratory use. We are advocating a two-marker approach for the DNA barcoding of protists with each major lineage having a designated primary and secondary barcode marker of which one is always the LSU D2/D3 (divergent domains D2/D3 of the nuclear ribosomal large subunit DNA). We provide a listing of the primers that we currently use in our laboratory for amplification of DNA barcode markers from the groups that we study: LSU D2/D3, which we advocate as a eukaryote-wide barcode marker to facilitate broad ecological and environmental surveys (secondary barcode marker in this capacity); COI-5P (the standard DNA barcode region of the mitochondrial cytochrome c oxidase 1 gene) as the primary barcode marker for brown and red algae; rbcL-3P (the 3' region of the plastid large subunit of ribulose-l-5-bisphosphate carboxylase/oxygenase) as the primary barcode marker for diatoms; and tufA (plastid elongation factor Tu gene) as the primary barcode marker for chlorophytan green algae. We outline our polymerase chain reaction and DNA sequencing methodologies, which have been streamlined for efficiency and to reduce unnecessary cleaning steps. The combined information should provide a helpful guide to those seeking to complete barcode research on these and related "protistan" groups (the term protist is not used in a phylogenetic context; it is simply a catch-all term for the bulk of

  2. Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems

    PubMed Central

    Smith, M. Alex; Bertrand, Claudia; Crosby, Kate; Eveleigh, Eldon S.; Fernandez-Triana, Jose; Fisher, Brian L.; Gibbs, Jason; Hajibabaei, Mehrdad; Hallwachs, Winnie; Hind, Katharine; Hrcek, Jan; Huang, Da-Wei; Janda, Milan; Janzen, Daniel H.; Li, Yanwei; Miller, Scott E.; Packer, Laurence; Quicke, Donald; Ratnasingham, Sujeevan; Rodriguez, Josephine; Rougerie, Rodolphe; Shaw, Mark R.; Sheffield, Cory; Stahlhut, Julie K.; Steinke, Dirk; Whitfield, James; Wood, Monty; Zhou, Xin

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region. PMID:22567162

  3. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  4. A comparative analysis of DNA barcode microarray feature size

    PubMed Central

    Ammar, Ron; Smith, Andrew M; Heisler, Lawrence E; Giaever, Guri; Nislow, Corey

    2009-01-01

    Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density), but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO) collection used for screens of pooled yeast (Saccharomyces cerevisiae) deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density. PMID:19825181

  5. Identifying Canadian Freshwater Fishes through DNA Barcodes

    PubMed Central

    Hubert, Nicolas; Hanner, Robert; Holm, Erling; Mandrak, Nicholas E.; Taylor, Eric; Burridge, Mary; Watkinson, Douglas; Dumont, Pierre; Curry, Allen; Bentzen, Paul; Zhang, Junbin; April, Julien; Bernatchez, Louis

    2008-01-01

    Background DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. Methodology/Principal Findings We bi-directionally sequenced the standard 652 bp “barcode” region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. Conclusions/Significance The present study evidenced that freshwater fish species can be

  6. New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes).

    PubMed

    Van Steenkiste, Niels; Locke, Sean A; Castelin, Magalie; Marcogliese, David J; Abbott, Cathryn L

    2015-07-01

    Digeneans and cestodes are species-rich taxa and can seriously impact human health, fisheries, aqua- and agriculture, and wildlife conservation and management. DNA barcoding using the COI Folmer region could be applied for species detection and identification, but both 'universal' and taxon-specific COI primers fail to amplify in many flatworm taxa. We found that high levels of nucleotide variation at priming sites made it unrealistic to design primers targeting all flatworms. We developed new degenerate primers that enabled acquisition of the COI barcode region from 100% of specimens tested (n = 46), representing 23 families of digeneans and 6 orders of cestodes. This high success rate represents an improvement over existing methods. Primers and methods provided here are critical pieces towards redressing the current paucity of COI barcodes for these taxa in public databases.

  7. Barcoding Fauna Bavarica: 78% of the Neuropterida fauna barcoded!

    PubMed

    Morinière, Jérome; Hendrich, Lars; Hausmann, Axel; Hebert, Paul; Haszprunar, Gerhard; Gruppe, Axel

    2014-01-01

    This publication provides the first comprehensive DNA barcode data set for the Neuropterida of Central Europe, including 80 of the 102 species (78%) recorded from Bavaria (Germany) and three other species from nearby regions (Austria, France and the UK). Although the 286 specimens analyzed had a heterogeneous conservation history (60% dried; 30% in 80% EtOH; 10% fresh specimens in 95% EtOH), 237 (83%) generated a DNA barcode. Eleven species (13%) shared a BIN, but three of these taxa could be discriminated through barcodes. Four pairs of closely allied species shared barcodes including Chrysoperla pallida Henry et al., 2002 and C. lucasina Lacroix, 1912; Wesmaelius concinnus (Stephens, 1836) and W. quadrifasciatus (Reuter, 1894); Hemerobius handschini Tjeder, 1957 and H. nitidulus Fabricius, 1777; and H. atrifrons McLachlan, 1868 and H. contumax Tjeder, 1932. Further studies are needed to test the possible synonymy of these species pairs or to determine if other genetic markers permit their discrimination. Our data highlight five cases of potential cryptic diversity within Bavarian Neuropterida: Nineta flava (Scopoli, 1763), Sympherobius pygmaeus (Rambur, 1842), Sisyra nigra (Retzius, 1783), Semidalis aleyrodiformis (Stephens, 1836) and Coniopteryx pygmaea Enderlein, 1906 are each split into two or three BINs. The present DNA barcode library not only allows the identification of adult and larval stages, but also provides valuable information for alpha-taxonomy, and for ecological and evolutionary research.

  8. Barcoding Fauna Bavarica: 78% of the Neuropterida Fauna Barcoded!

    PubMed Central

    Morinière, Jérome; Hendrich, Lars; Hausmann, Axel; Hebert, Paul; Haszprunar, Gerhard; Gruppe, Axel

    2014-01-01

    This publication provides the first comprehensive DNA barcode data set for the Neuropterida of Central Europe, including 80 of the 102 species (78%) recorded from Bavaria (Germany) and three other species from nearby regions (Austria, France and the UK). Although the 286 specimens analyzed had a heterogeneous conservation history (60% dried; 30% in 80% EtOH; 10% fresh specimens in 95% EtOH), 237 (83%) generated a DNA barcode. Eleven species (13%) shared a BIN, but three of these taxa could be discriminated through barcodes. Four pairs of closely allied species shared barcodes including Chrysoperla pallida Henry et al., 2002 and C. lucasina Lacroix, 1912; Wesmaelius concinnus (Stephens, 1836) and W. quadrifasciatus (Reuter, 1894); Hemerobius handschini Tjeder, 1957 and H. nitidulus Fabricius, 1777; and H. atrifrons McLachlan, 1868 and H. contumax Tjeder, 1932. Further studies are needed to test the possible synonymy of these species pairs or to determine if other genetic markers permit their discrimination. Our data highlight five cases of potential cryptic diversity within Bavarian Neuropterida: Nineta flava (Scopoli, 1763), Sympherobius pygmaeus (Rambur, 1842), Sisyra nigra (Retzius, 1783), Semidalis aleyrodiformis (Stephens, 1836) and Coniopteryx pygmaea Enderlein, 1906 are each split into two or three BINs. The present DNA barcode library not only allows the identification of adult and larval stages, but also provides valuable information for alpha-taxonomy, and for ecological and evolutionary research. PMID:25286434

  9. Heterogeneity and Disorder in Ti{1-x}Fe{y}O{2-d) Nanocrystal Rutile-based Flower Like Aggregates: Detection of Anatase

    SciTech Connect

    Bozin, E.S.; Kremenovic, A.; Antic, B.; Blanusa, J.; Comor, M.; Columban, P.; Mazerolles, L.

    2011-03-24

    Here we report results of systematic investigation of heterogeneity and disorder in Ti{sub 1-x}Fe{sub y}O{sub 2-d} nanorod rutile-based flowerlike aggregates. It was found that Ti{sub 1-x}Fe{sub y}O{sub 2-d} aggregates are composed of two crystalline phases: rutile as a dominant and anatase as a minor phase. Flowerlike aggregates were found to grow from an isometric core ca. 5-10 nm in diameter that was built from anatase and rutile nanorods ca. 5 x 100 nm that were grown on the anatase surface having base plane (001) intergrowth with an anatase plane. The direction of rutile nanorods growth, i.e., direction of the nanorod elongation, was [001]. Highly nonisometric rutile crystals produce anisotropic X-ray powder diffraction line broadening and doubling of vibrational bands in Raman spectra. Both these techniques confirmed nonisometric character of rutile crystals and gave a quantitative measure of crystal shape anisotropy in excellent agreement with high-resolution transmission electron microscopy measurements. In addition, from the atomic pair distribution function and Raman spectral analyses the level of vacancy concentration was determined in rutile and anatase phases of investigated samples.

  10. A Ranking System for Reference Libraries of DNA Barcodes: Application to Marine Fish Species from Portugal

    PubMed Central

    Costa, Filipe O.; Landi, Monica; Martins, Rogelia; Costa, Maria H.; Costa, Maria E.; Carneiro, Miguel; Alves, Maria J.; Steinke, Dirk; Carvalho, Gary R.

    2012-01-01

    Background The increasing availability of reference libraries of DNA barcodes (RLDB) offers the opportunity to the screen the level of consistency in DNA barcode data among libraries, in order to detect possible disagreements generated from taxonomic uncertainty or operational shortcomings. We propose a ranking system to attribute a confidence level to species identifications associated with DNA barcode records from a RLDB. Here we apply the proposed ranking system to a newly generated RLDB for marine fish of Portugal. Methodology/Principal Findings Specimens (n = 659) representing 102 marine fish species were collected along the continental shelf of Portugal, morphologically identified and archived in a museum collection. Samples were sequenced at the barcode region of the cytochrome oxidase subunit I gene (COI-5P). Resultant DNA barcodes had average intra-specific and inter-specific Kimura-2-parameter distances (0.32% and 8.84%, respectively) within the range usually observed for marine fishes. All specimens were ranked in five different levels (A–E), according to the reliability of the match between their species identification and the respective diagnostic DNA barcodes. Grades A to E were attributed upon submission of individual specimen sequences to BOLD-IDS and inspection of the clustering pattern in the NJ tree generated. Overall, our study resulted in 73.5% of unambiguous species IDs (grade A), 7.8% taxonomically congruent barcode clusters within our dataset, but awaiting external confirmation (grade B), and 18.7% of species identifications with lower levels of reliability (grades C/E). Conclusion/Significance We highlight the importance of implementing a system to rank barcode records in RLDB, in order to flag taxa in need of taxonomic revision, or reduce ambiguities of discordant data. With increasing DNA barcode records publicly available, this cross-validation system would provide a metric of relative accuracy of barcodes, while enabling the

  11. Testing DNA barcoding in closely related groups of Lysimachia L. (Myrsinaceae).

    PubMed

    Zhang, Cai-Yun; Wang, Feng-Ying; Yan, Hai-Fei; Hao, Gang; Hu, Chi-Ming; Ge, Xue-Jun

    2012-01-01

    It has been suggested that rbcL and matK are the core barcodes in plants, but they are not powerful enough to distinguish between closely related plant groups. Additional barcodes need to be evaluated to improve the level of discrimination between plant species. Because of their well-studied taxonomy and extreme diversity, we used Chinese Lysimachia (Myrsinaceae) species to test the performance of core barcodes (rbcL and matK) and two additional candidate barcodes (trnH-psbA and the nuclear ribosomal ITS); 97 accessions from four subgenus representing 34 putative Lysimachia species were included in this study. And many closely related species pairs in subgen. Lysimachia were covered to detect their discriminatory power. The inefficiency of rbcL and matK alone or combined in closely related plant groups was validated in this study. TrnH-psbA combined with rbcL + matK did not yet perform well in Lysimachia groups. In contrast, ITS, alone or combined with rbcL and/or matK, revealed high resolving ability in Lysimachia. We support ITS as a supplementary barcode on the basis of core barcode rbcL and matK. Besides, this study also illustrates several mistakes or underlying evolutionary events in Lysimachia detected by DNA barcoding. PMID:21967641

  12. Counting animal species with DNA barcodes: Canadian insects

    PubMed Central

    Ratnasingham, Sujeevan; Zakharov, Evgeny V.; Telfer, Angela C.; Levesque-Beaudin, Valerie; Milton, Megan A.; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R.

    2016-01-01

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy. This article is part of the

  13. Counting animal species with DNA barcodes: Canadian insects.

    PubMed

    Hebert, Paul D N; Ratnasingham, Sujeevan; Zakharov, Evgeny V; Telfer, Angela C; Levesque-Beaudin, Valerie; Milton, Megan A; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R

    2016-09-01

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy.This article is part of the

  14. Choosing and Using a Plant DNA Barcode

    PubMed Central

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance. PMID:21637336

  15. Barcoding a Small Academic Library: Avoiding the Pitfalls.

    ERIC Educational Resources Information Center

    Linsley, Laurie S.; Jones, Leona

    1994-01-01

    Relates the Seminole Community College (Florida) library's experience barcoding a collection of materials and provides practical suggestions on how to implement barcoding in other libraries. Highlights include a barcode plan (smart barcodes and dumb barcodes), worker guidelines, problems encountered, and costs. An annotated bibliography and seven…

  16. Denture barcoding in forensic dentistry: A future option.

    PubMed

    Basavanna, Jayaprakash Mugur; Jain, Abhishek; Misra, Sumit Kumar

    2016-01-01

    Neurodegenerative disorders are commonly seen in elderly individuals. Parkinson's disease (PD) is the most common example with memory loss, lack of logic, reasoning and analytical thinking. In this case report simple method of 2D Bar code technique of denture marking has been explained which will not only useful in patients with memory loss but it is very helpful in identifying the individuals in case of natural calamities like floods, earthquake, tornedo, state of unconsciousness and accidents. Such patients can be traced easily by denture barcoding. This technique is a major breakthrough in the field of forensic dentistry. PMID:27051224

  17. Denture barcoding in forensic dentistry: A future option

    PubMed Central

    Basavanna, Jayaprakash Mugur; Jain, Abhishek; Misra, Sumit Kumar

    2016-01-01

    Neurodegenerative disorders are commonly seen in elderly individuals. Parkinson's disease (PD) is the most common example with memory loss, lack of logic, reasoning and analytical thinking. In this case report simple method of 2D Bar code technique of denture marking has been explained which will not only useful in patients with memory loss but it is very helpful in identifying the individuals in case of natural calamities like floods, earthquake, tornedo, state of unconsciousness and accidents. Such patients can be traced easily by denture barcoding. This technique is a major breakthrough in the field of forensic dentistry. PMID:27051224

  18. Proton-detected 2D radio frequency driven recoupling solid-state NMR studies on micelle-associated cytochrome-b5

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Yamamoto, Kazutoshi; Im, Sangchoul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2014-05-01

    Solid-state NMR spectroscopy is increasingly used in the high-resolution structural studies of membrane-associated proteins and peptides. Most such studies necessitate isotopically labeled (13C, 15N and 2H) proteins/peptides, which is a limiting factor for some of the exciting membrane-bound proteins and aggregating peptides. In this study, we report the use of a proton-based slow magic angle spinning (MAS) solid-state NMR experiment that exploits the unaveraged 1H-1H dipolar couplings from a membrane-bound protein. We have shown that the difference in the buildup rates of cross-peak intensities against the mixing time - obtained from 2D 1H-1H radio frequency-driven recoupling (RFDR) and nuclear Overhauser effect spectroscopy (NOESY) experiments on a 16.7-kDa micelle-associated full-length rabbit cytochrome-b5 (cytb5) - can provide insights into protein dynamics and could be useful to measure 1H-1H dipolar couplings. The experimental buildup curves compare well with theoretical simulations and are used to extract relaxation parameters. Our results show that due to fast exchange of amide protons with water in the soluble heme-containing domain of cyb5, coherent 1H-1H dipolar interactions are averaged out for these protons while alpha and side chain protons show residual dipolar couplings that can be obtained from 1H-1H RFDR experiments. The appearance of resonances with distinct chemical shift values in 1H-1H RFDR spectra enabled the identification of residues (mostly from the transmembrane region) of cytb5 that interact with micelles.

  19. Clinical Validation of Quantum Dot Barcode Diagnostic Technology.

    PubMed

    Kim, Jisung; Biondi, Mia J; Feld, Jordan J; Chan, Warren C W

    2016-04-26

    There has been a major focus on the clinical translation of emerging technologies for diagnosing patients with infectious diseases, cancer, heart disease, and diabetes. However, most developments still remain at the academic stage where researchers use spiked target molecules to demonstrate the utility of a technology and assess the analytical performance. This approach does not account for the biological complexities and variabilities of human patient samples. As a technology matures and potentially becomes clinically viable, one important intermediate step in the translation process is to conduct a full clinical validation of the technology using a large number of patient samples. Here, we present a full detailed clinical validation of Quantum Dot (QD) barcode technology for diagnosing patients infected with Hepatitis B Virus (HBV). We further demonstrate that the detection of multiple regions of the viral genome using multiplexed QD barcodes improved clinical sensitivity from 54.9-66.7% to 80.4-90.5%, and describe how to use QD barcodes for optimal clinical diagnosis of patients. The use of QDs in biology and medicine was first introduced in 1998 but has not reached clinical care. This study describes our long-term systematic development strategy to advance QD technology to a clinically feasible product for diagnosing patients. Our "blueprint" for translating the QD barcode research concept could be adapted for other nanotechnologies, to efficiently advance diagnostic techniques discovered in the academic laboratory to patient care.

  20. A novel material detection algorithm based on 2D GMM-based power density function and image detail addition scheme in dual energy X-ray images.

    PubMed

    Pourghassem, Hossein

    2012-01-01

    Material detection is a vital need in dual energy X-ray luggage inspection systems at security of airport and strategic places. In this paper, a novel material detection algorithm based on statistical trainable models using 2-Dimensional power density function (PDF) of three material categories in dual energy X-ray images is proposed. In this algorithm, the PDF of each material category as a statistical model is estimated from transmission measurement values of low and high energy X-ray images by Gaussian Mixture Models (GMM). Material label of each pixel of object is determined based on dependency probability of its transmission measurement values in the low and high energy to PDF of three material categories (metallic, organic and mixed materials). The performance of material detection algorithm is improved by a maximum voting scheme in a neighborhood of image as a post-processing stage. Using two background removing and denoising stages, high and low energy X-ray images are enhanced as a pre-processing procedure. For improving the discrimination capability of the proposed material detection algorithm, the details of the low and high energy X-ray images are added to constructed color image which includes three colors (orange, blue and green) for representing the organic, metallic and mixed materials. The proposed algorithm is evaluated on real images that had been captured from a commercial dual energy X-ray luggage inspection system. The obtained results show that the proposed algorithm is effective and operative in detection of the metallic, organic and mixed materials with acceptable accuracy.

  1. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  2. Self-registering spread-spectrum barcode method

    DOEpatents

    Cummings, Eric B.; Even Jr., William R.

    2004-11-09

    A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along with the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature, and perspective.

  3. Evaluation of the ability of a 2D ionisation chamber array and an EPID to detect systematic delivery errors in IMRT plans

    NASA Astrophysics Data System (ADS)

    Bawazeer, Omemh; Gray, Alison; Arumugam, Sankar; Vial, Philip; Thwaites, David; Descallar, Joseph; Holloway, Lois

    2014-03-01

    Two clinical intensity modulated radiotherapy plans were selected. Eleven plan variations were created with systematic errors introduced: Multi-Leaf Collimator (MLC) positional errors with all leaf pairs shifted in the same or the opposite direction, and collimator rotation offsets. Plans were measured using an Electronic Portal Imaging Device (EPID) and an ionisation chamber array. The plans were evaluated using gamma analysis with different criteria. The gamma pass rates remained around 95% or higher for most cases with MLC positional errors of 1 mm and 2 mm with 3%/3mm criteria. The ability of both devices to detect delivery errors was similar.

  4. DNA Barcoding Marine Biodiversity: Steps from Mere Cataloguing to Giving Reasons for Biological Differences.

    PubMed

    Nikinmaa, Mikko; Götting, Miriam

    2016-01-01

    DNA barcoding has become a useful tool in many contexts and has opened up a completely new avenue for taxonomy. DNA barcoding has its widest application in biodiversity and ecological research to detect and describe diversity whenever morphological discrimination is difficult or impossible (e.g., in the case of species lacking diagnostic characters, early life stages, or cryptic species). In this chapter, we outline the utility of including physiological parameters as part of species description in publicly available databases that catalog taxonomic information resulting from barcoding projects. Cryptic species or different life stages of a species often differ in their physiological traits. Thus, if physiological aspects were included in species definitions, the presently cryptic species could be distinguished. We furthermore give suggestions for physiological information that should be included in a species description and describe potential applications of DNA barcoding for research with physiological components. PMID:27460377

  5. A DNA barcoding approach to identify plant species in multiflower honey.

    PubMed

    Bruni, I; Galimberti, A; Caridi, L; Scaccabarozzi, D; De Mattia, F; Casiraghi, M; Labra, M

    2015-03-01

    The purpose of this study was to test the ability of DNA barcoding to identify the plant origins of processed honey. Four multifloral honeys produced at different sites in a floristically rich area in the northern Italian Alps were examined by using the rbcL and trnH-psbA plastid regions as barcode markers. An extensive reference database of barcode sequences was generated for the local flora to determine the taxonomic composition of honey. Thirty-nine plant species were identified in the four honey samples, each of which originated from a mix of common plants belonging to Castanea, Quercus, Fagus and several herbaceous taxa. Interestingly, at least one endemic plant was found in all four honey samples, providing a clear signature for the geographic identity of these products. DNA of the toxic plant Atropa belladonna was detected in one sample, illustrating the usefulness of DNA barcoding for evaluating the safety of honey.

  6. Modal analysis of delaminated composite plates using the finite element method and damage detection via combined Ritz/2D-wavelet analysis

    NASA Astrophysics Data System (ADS)

    Gallego, A.; Moreno-García, P.; Casanova, Cesar F.

    2013-06-01

    Structural studies to find defects (in particular delaminations) in composite plates have been very prevalent in the Structural Health Monitoring field. The present work develops a new method to detect delaminations in CFRP (Carbon Fiber Reinforced Polymer) plates. In this paper the method is validated with numerical simulations, which come to support its adequacy for use with real acquisition data. This is done firstly through the implementation of a delaminated plate finite element. Using the classical lamination plate theory, delamination is considered in the kinematic equations through jump functions and additional degrees of freedom. The element allows the introduction of nd delaminations through its thickness. Classical QMITC (Quadrilateral Mixed Interpolation Tensorial Components) and DKQ (Discrete Kirchhoff Quadrilateral) elements are used for the membrane and bending FEM (Finite Element Method) formulation. Second, using the vibration modes obtained with the FEM, a damage location technique based on the variational Ritz method and Wavelet Analysis is proposed. The approach has the advantage of requiring only damaged modes and not the healthy ones. Both FEM simulations and Ritz/Wavelet damage detection schemes are applied in an orthotropic CFRP plate with the stacking sequence [0/90]3S. In addition, the influence of delamination thickness position, boundary conditions and added noise (in order to simulate experimental measures) was studied.

  7. Pilot Study on the Detection of Simulated Lesions Using a 2D and 3D Digital Full-Field Mammography System with a Newly Developed High Resolution Detector Based on Two Shifts of a-Se.

    PubMed

    Schulz-Wendtland, R; Bani, M; Lux, M P; Schwab, S; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Fasching, P A; Adamietz, B; Meier-Meitinger, M

    2012-05-01

    Purpose: Experimental study of a new system for digital 2D and 3D full-field mammography (FFDM) using a high resolution detector based on two shifts of a-Se. Material and Methods: Images were acquired using the new FFDM system Amulet® (FujiFilm, Tokio, Japan), an a-Se detector (receptor 24 × 30 cm(2), pixel size 50 µm, memory depth 12 bit, spatial resolution 10 lp/mm, DQE > 0.50). Integrated in the detector is a new method for data transfer, based on optical switch technology. The object of investigation was the Wisconsin Mammographic Random Phantom, Model 152A (Radiation Measurement Inc., Middleton, WI, USA) and the same parameters and exposure data (Tungsten, 100 mAs, 30 kV) were consistently used. We acquired 3 different pairs of images in the c-c and ml planes (2D) and in the c-c and c-c planes with an angle of 4 degrees (3D). Five radiologists experienced in mammography (experience ranging from 3 months to more than 5 years) analyzed the images (monitoring) which had been randomly encoded (random generator) with regard to the recognition of details such as specks of aluminum oxide (200-740 µm), nylon fibers (0.4-1.6 mm) and round lesions/masses (diameters 5-14 mm), using special linear glasses for 3D visualization, and compared the results. Results: A total of 225 correct positive decisions could be detected: we found 222 (98.7 %) correct positive results for 2D and 3D visualization in each case. Conclusion: The results of this phantom study showed the same detection rates for both 2D and 3D imaging using full field digital mammography. Our results must be confirmed in further clinical trials.

  8. Exploring the utility of DNA barcoding in species delimitation of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae).

    PubMed

    Song, Chao; Wang, Qian; Zhang, Ruilei; Sun, Bingjiao; Wang, Xinhua

    2016-01-01

    In this study, we tested the utility of the mitochondrial gene cytochrome c oxidase subunit 1 (CO1) as the barcode region to deal with taxonomical problems of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae). The 114 DNA barcodes representing 27 morphospecies are divided into 33 well separated clusters based on both Neighbor Joining and Maximum Likelihood methods. DNA barcodes revealed an 82% success rate in matching with morphospecies. The selected DNA barcode data support 37-64 operational taxonomic units (OTUs) based on the methods of Automatic Barcode Gap Discovery (ABGD) and Poisson Tree Process (PTP). Furthermore, a priori species based on consistent phenotypic variations were attested by molecular analysis, and a taxonomical misidentification of barcode sequences from GenBank was found. We could not observe a distinct barcode gap but an overlap ranged from 9-12%. Our results supported DNA barcoding as an ideal method to detect cryptic species, delimit sibling species, and associate different life stages in non-biting midges. PMID:27394207

  9. Label free cell-tracking and division detection based on 2D time-lapse images for lineage analysis of early embryo development.

    PubMed

    Cicconet, Marcelo; Gutwein, Michelle; Gunsalus, Kristin C; Geiger, Davi

    2014-08-01

    In this paper we report a database and a series of techniques related to the problem of tracking cells, and detecting their divisions, in time-lapse movies of mammalian embryos. Our contributions are (1) a method for counting embryos in a well, and cropping each individual embryo across frames, to create individual movies for cell tracking; (2) a semi-automated method for cell tracking that works up to the 8-cell stage, along with a software implementation available to the public (this software was used to build the reported database); (3) an algorithm for automatic tracking up to the 4-cell stage, based on histograms of mirror symmetry coefficients captured using wavelets; (4) a cell-tracking database containing 100 annotated examples of mammalian embryos up to the 8-cell stage; and (5) statistical analysis of various timing distributions obtained from those examples. PMID:24873887

  10. Label Free Cell-Tracking and Division Detection Based on 2D Time-Lapse Images For Lineage Analysis of Early Embryo Development

    PubMed Central

    Cicconet, Marcelo; Gutwein, Michelle; Gunsalus, Kristin C; Geiger, Davi

    2014-01-01

    In this paper we report a database and a series of techniques related to the problem of tracking cells, and detecting their divisions, in time-lapse movies of mammalian embryos. Our contributions are: (1) a method for counting embryos in a well, and cropping each individual embryo across frames, to create individual movies for cell tracking; (2) a semi-automated method for cell tracking that works up to the 8-cell stage, along with a software implementation available to the public (this software was used to build the reported database); (3) an algorithm for automatic tracking up to the 4-cell stage, based on histograms of mirror symmetry coefficients captured using wavelets; (4) a cell-tracking database containing 100 annotated examples of mammalian embryos up to the 8-cell stage; (5) statistical analysis of various timing distributions obtained from those examples. PMID:24873887

  11. DNA barcoding of Dutch birds

    PubMed Central

    Aliabadian, Mansour; Beentjes, Kevin K.; Roselaar, C.S. (Kees); van Brandwijk, Hans; Nijman, Vincent; Vonk, Ronald

    2013-01-01

    Abstract The mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification of animal species, and has been applied in a number of studies on birds. We here sequenced the COI gene for 387 individuals of 147 species of birds from the Netherlands, with 83 species being represented by > 2 sequences. The Netherlands occupies a small geographic area and 95% of all samples were collected within a 50 km radius from one another. The intraspecific divergences averaged 0.29% among this assemblage, but most values were lower; the interspecific divergences averaged 9.54%. In all, 95% of species were represented by a unique barcode, with 6 species of gulls and skua (Larus and Stercorarius) having at least one shared barcode. This is best explained by these species representing recent radiations with ongoing hybridization. In contrast, one species, the Lesser Whitethroat Sylvia curruca showed deep divergences, averaging 5.76% and up to 8.68% between individuals. These possibly represent two distinct taxa, S. curruca and S. blythi, both clearly separated in a haplotype network analysis. Our study adds to a growing body of DNA barcodes that have become available for birds, and shows that a DNA barcoding approach enables to identify known Dutch bird species with a very high resolution. In addition some species were flagged up for further detailed taxonomic investigation, illustrating that even in ornithologically well-known areas such as the Netherlands, more is to be learned about the birds that are present. PMID:24453549

  12. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  13. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  14. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    PubMed

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis.

  15. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  16. DNA barcoding of freshwater fishes and the development of a quantitative qPCR assay for the species-specific detection and quantification of fish larvae from plankton samples.

    PubMed

    Loh, W K W; Bond, P; Ashton, K J; Roberts, D T; Tibbetts, I R

    2014-08-01

    The barcoding of mitochondrial cytochrome c oxidase subunit 1 (coI) gene was amplified and sequenced from 16 species of freshwater fishes found in Lake Wivenhoe (south-eastern Queensland, Australia) to support monitoring of reservoir fish populations, ecosystem function and water health. In this study, 630-650 bp sequences of the coI barcoding gene from 100 specimens representing 15 genera, 13 families and two subclasses of fishes allowed 14 of the 16 species to be identified and differentiated. The mean ± s.e. Kimura 2 parameter divergence within and between species was 0.52 ± 0.10 and 23.8 ± 2.20% respectively, indicating that barcodes can be used to discriminate most of the fish species accurately. The two terapontids, Amniataba percoides and Leiopotherapon unicolor, however, shared coI DNA sequences and could not be differentiated using this gene. A barcoding database was established and a qPCR assay was developed using coI sequences to identify and quantify proportional abundances of fish species in ichthyoplankton samples from Lake Wivenhoe. These methods provide a viable alternative to the time-consuming process of manually enumerating and identifying ichthyoplankton samples.

  17. DNA Barcoding Investigations Bring Biology to Life

    ERIC Educational Resources Information Center

    Musante, Susan

    2010-01-01

    This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…

  18. Long-range barcode labeling-sequencing

    DOEpatents

    Chen, Feng; Zhang, Tao; Singh, Kanwar K.; Pennacchio, Len A.; Froula, Jeff L.; Eng, Kevin S.

    2016-10-18

    Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.

  19. 76 FR 34871 - Mobile Barcode Promotion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... letters and flats bearing two-dimensional mobile barcodes. DATES: Effective Date: July 5, 2011. FOR... Mail and Standard Mail that contain, in or on the mailpiece, a two-dimensional mobile barcode readable... mailpiece in the mailing (and listed on the postage statement) must have a qualifying two-dimensional...

  20. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  1. Species Identification of Marine Fishes in China with DNA Barcoding

    PubMed Central

    Zhang, Junbin

    2011-01-01

    DNA barcoding is a molecular method that uses a short standardized DNA sequence as a species identification tool. In this study, the standard 652 base-pair region of the mitochondrial cytochrome oxidase subunit I gene (COI) was sequenced in marine fish specimens captured in China. The average genetic distance was 50-fold higher between species than within species, as Kimura two parameter (K2P) genetic distances averaged 15.742% among congeners and only 0.319% for intraspecific individuals. There are no overlaps of pairwise genetic variations between conspecific and interspecific comparisons apart from the genera Pampus in which the introgressive hybridization was detected. High efficiency of species identification was demonstrated in the present study by DNA barcoding. Due to the incidence of cryptic species, an assumed threshold is suggested to expedite discovering of new species and biodiversity, especially involving biotas of few studies. PMID:21687792

  2. Droplet barcoding for massively parallel single-molecule deep sequencing

    PubMed Central

    Lan, Freeman; Haliburton, John R.; Yuan, Aaron; Abate, Adam R.

    2016-01-01

    The ability to accurately sequence long DNA molecules is important across biology, but existing sequencers are limited in read length and accuracy. Here, we demonstrate a method to leverage short-read sequencing to obtain long and accurate reads. Using droplet microfluidics, we isolate, amplify, fragment and barcode single DNA molecules in aqueous picolitre droplets, allowing the full-length molecules to be sequenced with multi-fold coverage using short-read sequencing. We show that this approach can provide accurate sequences of up to 10 kb, allowing us to identify rare mutations below the detection limit of conventional sequencing and directly link them into haplotypes. This barcoding methodology can be a powerful tool in sequencing heterogeneous populations such as viruses. PMID:27353563

  3. A DNA barcode for land plants.

    PubMed

    2009-08-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.

  4. A DNA barcode for land plants

    PubMed Central

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald; van AlphenStahl, Jonathan; Barrett, Spencer C.H.; van den Berg, Cassio; Bogarin, Diego; Burgess, Kevin S.; Cameron, Kenneth M.; Carine, Mark; Chacón, Juliana; Clark, Alexandra; Clarkson, James J.; Conrad, Ferozah; Devey, Dion S.; Ford, Caroline S.; Hedderson, Terry A.J.; Hollingsworth, Michelle L.; Husband, Brian C.; Kelly, Laura J.; Kesanakurti, Prasad R.; Kim, Jung Sung; Kim, Young-Dong; Lahaye, Renaud; Lee, Hae-Lim; Long, David G.; Madriñán, Santiago; Maurin, Olivier; Meusnier, Isabelle; Newmaster, Steven G.; Park, Chong-Wook; Percy, Diana M.; Petersen, Gitte; Richardson, James E.; Salazar, Gerardo A.; Savolainen, Vincent; Seberg, Ole; Wilkinson, Michael J.; Yi, Dong-Keun; Little, Damon P.

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  5. DNA barcoding and morphological identification of neotropical ichthyoplankton from the Upper Paraná and São Francisco.

    PubMed

    Becker, R A; Sales, N G; Santos, G M; Santos, G B; Carvalho, D C

    2015-07-01

    The identification of fish larvae from two neotropical hydrographic basins using traditional morphological taxonomy and DNA barcoding revealed no conflicting results between the morphological and barcode identification of larvae. A lower rate (25%) of correct morphological identification of eggs as belonging to migratory or non-migratory species was achieved. Accurate identification of ichthyoplankton by DNA barcoding is an important tool for fish reproductive behaviour studies, correct estimation of biodiversity by detecting eggs from rare species, as well as defining environmental and management strategies for fish conservation in the neotropics. PMID:25988313

  6. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients.

    PubMed

    Ming, Kevin; Kim, Jisung; Biondi, Mia J; Syed, Abdullah; Chen, Kun; Lam, Albert; Ostrowski, Mario; Rebbapragada, Anu; Feld, Jordan J; Chan, Warren C W

    2015-03-24

    Inorganic nanoparticles are ideal precursors for engineering barcodes for rapidly detecting diseases. Despite advances in the chemical design of these barcodes, they have not advanced to clinical use because they lack sensitivity and are not cost-effective due to requirement of a large read-out system. Here we combined recent advances in quantum dot barcode technology with smartphones and isothermal amplification to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We characterized the analytical performance of this device and demonstrated that the device is capable of detecting down to 1000 viral genetic copies per milliliter, and this enabled the diagnosis of patients infected with HIV or hepatitis B. More importantly, the barcoding enabled us to detect multiple infectious pathogens simultaneously, in a single test, in less than 1 h. This multiplexing capability of the device enables the diagnosis of infections that are difficult to differentiate clinically due to common symptoms such as a fever or rash. The integration of quantum dot barcoding technology with a smartphone reader provides a capacity for global surveillance of infectious diseases and the potential to accelerate knowledge exchange transfer of emerging or exigent disease threats with healthcare and military organizations in real time. PMID:25661584

  7. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  8. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  9. Cellular barcoding tool for clonal analysis in the hematopoietic system.

    PubMed

    Gerrits, Alice; Dykstra, Brad; Kalmykowa, Olga J; Klauke, Karin; Verovskaya, Evgenia; Broekhuis, Mathilde J C; de Haan, Gerald; Bystrykh, Leonid V

    2010-04-01

    Clonal analysis is important for many areas of hematopoietic stem cell research, including in vitro cell expansion, gene therapy, and cancer progression and treatment. A common approach to measure clonality of retrovirally transduced cells is to perform integration site analysis using Southern blotting or polymerase chain reaction-based methods. Although these methods are useful in principle, they generally provide a low-resolution, biased, and incomplete assessment of clonality. To overcome those limitations, we labeled retroviral vectors with random sequence tags or "barcodes." On integration, each vector introduces a unique, identifiable, and heritable mark into the host cell genome, allowing the clonal progeny of each cell to be tracked over time. By coupling the barcoding method to a sequencing-based detection system, we could identify major and minor clones in 2 distinct cell culture systems in vitro and in a long-term transplantation setting. In addition, we demonstrate how clonal analysis can be complemented with transgene expression and integration site analysis. This cellular barcoding tool permits a simple, sensitive assessment of clonality and holds great promise for future gene therapy protocols in humans, and any other applications when clonal tracking is important.

  10. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    PubMed

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology. PMID:24935524

  11. DNA Barcoding and Pharmacovigilance of Herbal Medicines.

    PubMed

    de Boer, Hugo J; Ichim, Mihael C; Newmaster, Steven G

    2015-07-01

    Pharmacovigilance of herbal medicines relies on the product label information regarding the ingredients and the adherence to good manufacturing practices along the commercialisation chain. Several studies have shown that substitution of plant species occurs in herbal medicines, and this in turn poses a challenge to herbal pharmacovigilance as adverse reactions might be due to adulterated or added ingredients. Authentication of constituents in herbal medicines using analytical chemistry methods can help detect contaminants and toxins, but are often limited or incapable of detecting the source of the contamination. Recent developments in molecular plant identification using DNA sequence data enable accurate identification of plant species from herbal medicines using defined DNA markers. Identification of multiple constituent species from compound herbal medicines using amplicon metabarcoding enables verification of labelled ingredients and detection of substituted, adulterated and added species. DNA barcoding is proving to be a powerful method to assess species composition in herbal medicines and has the potential to be used as a standard method in herbal pharmacovigilance research of adverse reactions to specific products. PMID:26076652

  12. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market

    PubMed Central

    Lee, Shiou Yih; Ng, Wei Lun; Mahat, Mohd Noor; Nazre, Mohd; Mohamed, Rozi

    2016-01-01

    The identification of Aquilaria species from their resinous non-wood product, the agarwood, is challenging as conventional techniques alone are unable to ascertain the species origin. Aquilaria is a highly protected species due to the excessive exploitation of its precious agarwood. Here, we applied the DNA barcoding technique to generate barcode sequences for Aquilaria species and later applied the barcodes to identify the source species of agarwood found in the market. We developed a reference DNA barcode library using eight candidate barcode loci (matK, rbcL, rpoB, rpoC1, psbA-trnH, trnL-trnF, ITS, and ITS2) amplified from 24 leaf accessions of seven Aquilaria species obtained from living trees. Our results indicated that all single barcodes can be easily amplified and sequenced with the selected primers. The combination of trnL-trnF+ITS and trnL-trnF+ITS2 yielded the greatest species resolution using the least number of loci combination, while matK+trnL-trnF+ITS showed potential in detecting the geographical origins of Aquilaria species. We propose trnL-trnF+ITS2 as the best candidate barcode for Aquilaria as ITS2 has a shorter sequence length compared to ITS, which eases PCR amplification especially when using degraded DNA samples such as those extracted from processed agarwood products. A blind test conducted on eight agarwood samples in different forms using the proposed barcode combination proved successful in their identification up to the species level. Such potential of DNA barcoding in identifying the source species of agarwood will contribute to the international timber trade control, by providing an effective method for species identification and product authentication. PMID:27128309

  13. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market.

    PubMed

    Lee, Shiou Yih; Ng, Wei Lun; Mahat, Mohd Noor; Nazre, Mohd; Mohamed, Rozi

    2016-01-01

    The identification of Aquilaria species from their resinous non-wood product, the agarwood, is challenging as conventional techniques alone are unable to ascertain the species origin. Aquilaria is a highly protected species due to the excessive exploitation of its precious agarwood. Here, we applied the DNA barcoding technique to generate barcode sequences for Aquilaria species and later applied the barcodes to identify the source species of agarwood found in the market. We developed a reference DNA barcode library using eight candidate barcode loci (matK, rbcL, rpoB, rpoC1, psbA-trnH, trnL-trnF, ITS, and ITS2) amplified from 24 leaf accessions of seven Aquilaria species obtained from living trees. Our results indicated that all single barcodes can be easily amplified and sequenced with the selected primers. The combination of trnL-trnF+ITS and trnL-trnF+ITS2 yielded the greatest species resolution using the least number of loci combination, while matK+trnL-trnF+ITS showed potential in detecting the geographical origins of Aquilaria species. We propose trnL-trnF+ITS2 as the best candidate barcode for Aquilaria as ITS2 has a shorter sequence length compared to ITS, which eases PCR amplification especially when using degraded DNA samples such as those extracted from processed agarwood products. A blind test conducted on eight agarwood samples in different forms using the proposed barcode combination proved successful in their identification up to the species level. Such potential of DNA barcoding in identifying the source species of agarwood will contribute to the international timber trade control, by providing an effective method for species identification and product authentication. PMID:27128309

  14. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market.

    PubMed

    Lee, Shiou Yih; Ng, Wei Lun; Mahat, Mohd Noor; Nazre, Mohd; Mohamed, Rozi

    2016-01-01

    The identification of Aquilaria species from their resinous non-wood product, the agarwood, is challenging as conventional techniques alone are unable to ascertain the species origin. Aquilaria is a highly protected species due to the excessive exploitation of its precious agarwood. Here, we applied the DNA barcoding technique to generate barcode sequences for Aquilaria species and later applied the barcodes to identify the source species of agarwood found in the market. We developed a reference DNA barcode library using eight candidate barcode loci (matK, rbcL, rpoB, rpoC1, psbA-trnH, trnL-trnF, ITS, and ITS2) amplified from 24 leaf accessions of seven Aquilaria species obtained from living trees. Our results indicated that all single barcodes can be easily amplified and sequenced with the selected primers. The combination of trnL-trnF+ITS and trnL-trnF+ITS2 yielded the greatest species resolution using the least number of loci combination, while matK+trnL-trnF+ITS showed potential in detecting the geographical origins of Aquilaria species. We propose trnL-trnF+ITS2 as the best candidate barcode for Aquilaria as ITS2 has a shorter sequence length compared to ITS, which eases PCR amplification especially when using degraded DNA samples such as those extracted from processed agarwood products. A blind test conducted on eight agarwood samples in different forms using the proposed barcode combination proved successful in their identification up to the species level. Such potential of DNA barcoding in identifying the source species of agarwood will contribute to the international timber trade control, by providing an effective method for species identification and product authentication.

  15. DNA barcoding amphibians and reptiles.

    PubMed

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

  16. Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes.

    PubMed

    Geiger, M F; Herder, F; Monaghan, M T; Almada, V; Barbieri, R; Bariche, M; Berrebi, P; Bohlen, J; Casal-Lopez, M; Delmastro, G B; Denys, G P J; Dettai, A; Doadrio, I; Kalogianni, E; Kärst, H; Kottelat, M; Kovačić, M; Laporte, M; Lorenzoni, M; Marčić, Z; Özuluğ, M; Perdices, A; Perea, S; Persat, H; Porcelotti, S; Puzzi, C; Robalo, J; Šanda, R; Schneider, M; Šlechtová, V; Stoumboudi, M; Walter, S; Freyhof, J

    2014-11-01

    Incomplete knowledge of biodiversity remains a stumbling block for conservation planning and even occurs within globally important Biodiversity Hotspots (BH). Although technical advances have boosted the power of molecular biodiversity assessments, the link between DNA sequences and species and the analytics to discriminate entities remain crucial. Here, we present an analysis of the first DNA barcode library for the freshwater fish fauna of the Mediterranean BH (526 spp.), with virtually complete species coverage (498 spp., 98% extant species). In order to build an identification system supporting conservation, we compared species determination by taxonomists to multiple clustering analyses of DNA barcodes for 3165 specimens. The congruence of barcode clusters with morphological determination was strongly dependent on the method of cluster delineation, but was highest with the general mixed Yule-coalescent (GMYC) model-based approach (83% of all species recovered as GMYC entity). Overall, genetic morphological discontinuities suggest the existence of up to 64 previously unrecognized candidate species. We found reduced identification accuracy when using the entire DNA-barcode database, compared with analyses on databases for individual river catchments. This scale effect has important implications for barcoding assessments and suggests that fairly simple identification pipelines provide sufficient resolution in local applications. We calculated Evolutionarily Distinct and Globally Endangered scores in order to identify candidate species for conservation priority and argue that the evolutionary content of barcode data can be used to detect priority species for future IUCN assessments. We show that large-scale barcoding inventories of complex biotas are feasible and contribute directly to the evaluation of conservation priorities.

  17. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  18. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds

    NASA Astrophysics Data System (ADS)

    Aspers, Ruud L. E. G.; Ampt, Kirsten A. M.; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S.

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, nJCF- and nJFF-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all nJCF- and nJFF-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to facilitate the

  19. Generalized DNA Barcode Design Based on Hamming Codes

    PubMed Central

    Bystrykh, Leonid V.

    2012-01-01

    The diversity and scope of multiplex parallel sequencing applications is steadily increasing. Critically, multiplex parallel sequencing applications methods rely on the use of barcoded primers for sample identification, and the quality of the barcodes directly impacts the quality of the resulting sequence data. Inspection of the recent publications reveals a surprisingly variable quality of the barcodes employed. Some barcodes are made in a semi empirical fashion, without quantitative consideration of error correction or minimal distance properties. After systematic comparison of published barcode sets, including commercially distributed barcoded primers from Illumina and Epicentre, methods for improved, Hamming code-based sequences are suggested and illustrated. Hamming barcodes can be employed for DNA tag designs in many different ways while preserving minimal distance and error-correcting properties. In addition, Hamming barcodes remain flexible with regard to essential biological parameters such as sequence redundancy and GC content. Wider adoption of improved Hamming barcodes is encouraged in multiplex parallel sequencing applications. PMID:22615825

  20. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  1. DNA barcoding in Mexico: an introduction.

    PubMed

    Elías-Gutiérrez, M; León-Regagnon, V

    2013-11-01

    DNA barcoding has become an important current scientific trend to the understanding of the world biodiversity. In the case of mega-diverse hot spots like Mexico, this technique represents an important tool for taxonomists, allowing them to concentrate in highlighted species by the barcodes instead of analyzing entire sets of specimens. This tendency resulted in the creation of a national network named Mexican Barcode of Life (MEXBOL) which main goals are to train students, and to promote the interaction and collective work among researchers interested in this topic. As a result, the number of records in the Barcode of Life Database (BOLD) for some groups, such as the Mammalia, Actinopterygii, Polychaeta, Branchiopoda, Ostracoda, Maxillopoda, Nematoda, Pinophyta, Ascomycota and Basidiomycota place Mexico among the top ten countries in the generation of these data. This special number presents only few of the many interesting findings in this region of the world, after the use of this technique and its integration with other methodologies.

  2. Wide-ranging barcoding aids discovery of one-third increase of species richness in presumably well-investigated moths.

    PubMed

    Mutanen, Marko; Kaila, Lauri; Tabell, Jukka

    2013-01-01

    Rapid development of broad regional and international DNA barcode libraries have brought new insights into the species diversity of many areas and groups. Many new species, even within well-investigated species groups, have been discovered based initially on differences in DNA barcodes. We barcoded 437 collection specimens belonging to 40 pre-identified Palearctic species of the Elachista bifasciella group of moths (Lepidoptera, Elachistidae). Although the study group has been a subject of several careful morphological taxonomic examinations, an unexpectedly high number of previously undetected putative species is revealed, resulting in a 34% rise in species number in the study area. The validity of putative new species was subsequently supported with diagnostic morphological traits. We show that DNA barcodes provide a powerful method of detecting potential new species even in taxonomic groups and geographic areas that have previously been under considerable morphological taxonomic scrutiny. PMID:24104541

  3. Wide-ranging barcoding aids discovery of one-third increase of species richness in presumably well-investigated moths

    PubMed Central

    Mutanen, Marko; Kaila, Lauri; Tabell, Jukka

    2013-01-01

    Rapid development of broad regional and international DNA barcode libraries have brought new insights into the species diversity of many areas and groups. Many new species, even within well-investigated species groups, have been discovered based initially on differences in DNA barcodes. We barcoded 437 collection specimens belonging to 40 pre-identified Palearctic species of the Elachista bifasciella group of moths (Lepidoptera, Elachistidae). Although the study group has been a subject of several careful morphological taxonomic examinations, an unexpectedly high number of previously undetected putative species is revealed, resulting in a 34% rise in species number in the study area. The validity of putative new species was subsequently supported with diagnostic morphological traits. We show that DNA barcodes provide a powerful method of detecting potential new species even in taxonomic groups and geographic areas that have previously been under considerable morphological taxonomic scrutiny. PMID:24104541

  4. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  5. Bio-barcode gel assay for microRNA

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  6. DNA barcodes reveal microevolutionary signals in fire response trait in two legume genera

    PubMed Central

    Bello, Abubakar; Daru, Barnabas H.; Stirton, Charles H.; Chimphango, Samson B. M.; van der Bank, Michelle; Maurin, Olivier; Muasya, A. Muthama

    2015-01-01

    Large-scale DNA barcoding provides a new technique for species identification and evaluation of relationships across various levels (populations and species) and may reveal fundamental processes in recently diverged species. Here, we analysed DNA sequence variation in the recently diverged legumes from the Psoraleeae (Fabaceae) occurring in the Cape Floristic Region (CFR) of southern Africa to test the utility of DNA barcodes in species identification and discrimination. We further explored the phylogenetic signal on fire response trait (reseeding and resprouting) at species and generic levels. We showed that Psoraleoid legumes of the CFR exhibit a barcoding gap yielding the combination of matK and rbcLa (matK + rbcLa) data set as a better barcode than single regions. We found a high score (100 %) of correct identification of individuals to their respective genera but a very low score (<50 %) in identifying them to species. We found a considerable match (54 %) between genetic species and morphologically delimited species. We also found that different lineages showed a weak but significant phylogenetic conservatism in their response to fire as reseeders or resprouters, with more clustering of resprouters than would be expected by chance. These novel microevolutionary patterns might be acting continuously over time to produce multi-scale regularities of biodiversity. This study provides the first insight into the DNA barcoding campaign of land plants in species identification and detection of the phylogenetic signal in recently diverged lineages of the CFR. PMID:26507570

  7. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes

    PubMed Central

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D. N.

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5ʹ (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips. PMID:26741134

  8. Role of DNA barcoding in marine biodiversity assessment and conservation: An update.

    PubMed

    Trivedi, Subrata; Aloufi, Abdulhadi A; Ansari, Abid A; Ghosh, Sankar K

    2016-03-01

    More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation.

  9. Role of DNA barcoding in marine biodiversity assessment and conservation: An update.

    PubMed

    Trivedi, Subrata; Aloufi, Abdulhadi A; Ansari, Abid A; Ghosh, Sankar K

    2016-03-01

    More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation. PMID:26980996

  10. Role of DNA barcoding in marine biodiversity assessment and conservation: An update

    PubMed Central

    Trivedi, Subrata; Aloufi, Abdulhadi A.; Ansari, Abid A.; Ghosh, Sankar K.

    2015-01-01

    More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation. PMID:26980996

  11. Barcoding Bugs: DNA-Based Identification of the True Bugs (Insecta: Hemiptera: Heteroptera)

    PubMed Central

    Park, Doo-Sang; Foottit, Robert; Maw, Eric; Hebert, Paul D. N.

    2011-01-01

    Background DNA barcoding, the analysis of sequence variation in the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene, has been shown to provide an efficient method for the identification of species in a wide range of animal taxa. In order to assess the effectiveness of barcodes in the discrimination of Heteroptera, we examined 344 species belonging to 178 genera, drawn from specimens in the Canadian National Collection of Insects. Methodology/Principal Findings Analysis of the COI gene revealed less than 2% intra-specific divergence in 90% of the taxa examined, while minimum interspecific distances exceeded 3% in 77% of congeneric species pairs. Instances where barcodes fail to distinguish species represented clusters of morphologically similar species, except one case of barcode identity between species in different genera. Several instances of deep intraspecific divergence were detected suggesting possible cryptic species. Conclusions/Significance Although this analysis encompasses 0.8% of the described global fauna, our results indicate that DNA barcodes will aid the identification of Heteroptera. This advance will be useful in pest management, regulatory and environmental applications and will also reveal species that require further taxonomic research. PMID:21526211

  12. Scanning-time evaluation of Digimarc Barcode

    NASA Astrophysics Data System (ADS)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  13. Recommendations for Using Barcode in Hospital Process

    PubMed Central

    Hachesu, Peyman Rezaei; Zyaei, Leila; Hassankhani, Hadi

    2016-01-01

    Background: Lack of attention to the proper barcode using leads to lack of use or misuse in the hospitals. The present research aimed to investigate the requirements and barrier for using barcode technology and presenting suggestions to use it. Methods: The research is observational-descriptive. The data was collected using the designed checklist which its validity was assessed. This check list consists of two parts: “Requirements” and “barrier” of using the barcodes. Research community included 10 teaching hospitals and a class of 65 participants included people in the hospitals. The collected data was analyzed using descriptive statistics. Results: Required changes of workflow processes in the hospital and compliance them with the hospital policy are such requirements that had been infringed in the 90 % of hospitals. Prioritization of some hospital processes for barcoding, system integration with Hospital Information system (HIS), training of staff and budgeting are requirements for the successful implementation which had been infringed in the 80% of hospitals. Dissatisfaction with the quality of barcode labels and lacks of adequate scanners both whit the rate of 100 %, and the lack of understanding of the necessary requirements for implementation of barcodes as 80% were the most important barrier. Conclusion: Integrate bar code system with clinical workflow should be considered. Lack of knowledge and understanding toward the infrastructure, inadequate staff training and technologic problems are considered as the greatest barriers. PMID:27482137

  14. DNA Barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera)

    PubMed Central

    Foottit, Robert G.; Maw, Eric; Hebert, P. D. N.

    2014-01-01

    Background Many studies have shown the suitability of sequence variation in the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. Methodology/Principal Findings Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. Conclusions/Significance This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage. PMID:25004106

  15. Quality Traceability System of Traditional Chinese Medicine Based on Two Dimensional Barcode Using Mobile Intelligent Technology

    PubMed Central

    Cai, Yong; Li, Xiwen; Wang, Runmiao; Yang, Qing; Li, Peng; Hu, Hao

    2016-01-01

    Currently, the chemical fingerprint comparison and analysis is mainly based on professional equipment and software, it’s expensive and inconvenient. This study aims to integrate QR (Quick Response) code with quality data and mobile intelligent technology to develop a convenient query terminal for tracing quality in the whole industrial chain of TCM (traditional Chinese medicine). Three herbal medicines were randomly selected and their chemical two-dimensional barcode (2D) barcodes fingerprints were constructed. Smartphone application (APP) based on Android system was developed to read initial data of 2D chemical barcodes, and compared multiple fingerprints from different batches of same species or different species. It was demonstrated that there were no significant differences between original and scanned TCM chemical fingerprints. Meanwhile, different TCM chemical fingerprint QR codes could be rendered in the same coordinate and showed the differences very intuitively. To be able to distinguish the variations of chemical fingerprint more directly, linear interpolation angle cosine similarity algorithm (LIACSA) was proposed to get similarity ratio. This study showed that QR codes can be used as an effective information carrier to transfer quality data. Smartphone application can rapidly read quality information in QR codes and convert data into TCM chemical fingerprints. PMID:27780256

  16. New taxonomy and old collections: integrating DNA barcoding into the collection curation process.

    PubMed

    Puillandre, N; Bouchet, P; Boisselier-Dubayle, M-C; Brisset, J; Buge, B; Castelin, M; Chagnoux, S; Christophe, T; Corbari, L; Lambourdière, J; Lozouet, P; Marani, G; Rivasseau, A; Silva, N; Terryn, Y; Tillier, S; Utge, J; Samadi, S

    2012-05-01

    Because they house large biodiversity collections and are also research centres with sequencing facilities, natural history museums are well placed to develop DNA barcoding best practices. The main difficulty is generally the vouchering system: it must ensure that all data produced remain attached to the corresponding specimen, from the field to publication in articles and online databases. The Museum National d'Histoire Naturelle in Paris is one of the leading laboratories in the Marine Barcode of Life (MarBOL) project, which was used as a pilot programme to include barcode collections for marine molluscs and crustaceans. The system is based on two relational databases. The first one classically records the data (locality and identification) attached to the specimens. In the second one, tissue-clippings, DNA extractions (both preserved in 2D barcode tubes) and PCR data (including primers) are linked to the corresponding specimen. All the steps of the process [sampling event, specimen identification, molecular processing, data submission to Barcode Of Life Database (BOLD) and GenBank] are thus linked together. Furthermore, we have developed several web-based tools to automatically upload data into the system, control the quality of the sequences produced and facilitate the submission to online databases. This work is the result of a joint effort from several teams in the Museum National d'Histoire Naturelle (MNHN), but also from a collaborative network of taxonomists and molecular systematists outside the museum, resulting in the vouchering so far of ∼41,000 sequences and the production of ∼11,000 COI sequences.

  17. Laser Discs, Barcodes, and Books--a Great Combination.

    ERIC Educational Resources Information Center

    Peto, Erica

    1996-01-01

    Describes the use of barcodes to link laser discs with books in school libraries. Highlights include use of a barcode reader as a remote control device as well as a scanner, guidelines for making laser disc books, and a sidebar that explains how to make barcodes and describes software. (LRW)

  18. QR Codes in the Library: "It's Not Your Mother's Barcode!"

    ERIC Educational Resources Information Center

    Dobbs, Cheri

    2011-01-01

    Barcode scanning has become more than just fun. Now libraries and businesses are leveraging barcode technology as an innovative tool to market their products and ideas. Developed and popularized in Japan, these Quick Response (QR) or two-dimensional barcodes allow marketers to provide interactive content in an otherwise static environment. In this…

  19. Establishing a community-wide DNA barcode library as a new tool for arctic research.

    PubMed

    Wirta, H; Várkonyi, G; Rasmussen, C; Kaartinen, R; Schmidt, N M; Hebert, P D N; Barták, M; Blagoev, G; Disney, H; Ertl, S; Gjelstrup, P; Gwiazdowicz, D J; Huldén, L; Ilmonen, J; Jakovlev, J; Jaschhof, M; Kahanpää, J; Kankaanpää, T; Krogh, P H; Labbee, R; Lettner, C; Michelsen, V; Nielsen, S A; Nielsen, T R; Paasivirta, L; Pedersen, S; Pohjoismäki, J; Salmela, J; Vilkamaa, P; Väre, H; von Tschirnhaus, M; Roslin, T

    2016-05-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community.

  20. Establishing a community-wide DNA barcode library as a new tool for arctic research.

    PubMed

    Wirta, H; Várkonyi, G; Rasmussen, C; Kaartinen, R; Schmidt, N M; Hebert, P D N; Barták, M; Blagoev, G; Disney, H; Ertl, S; Gjelstrup, P; Gwiazdowicz, D J; Huldén, L; Ilmonen, J; Jakovlev, J; Jaschhof, M; Kahanpää, J; Kankaanpää, T; Krogh, P H; Labbee, R; Lettner, C; Michelsen, V; Nielsen, S A; Nielsen, T R; Paasivirta, L; Pedersen, S; Pohjoismäki, J; Salmela, J; Vilkamaa, P; Väre, H; von Tschirnhaus, M; Roslin, T

    2016-05-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community. PMID:26602739

  1. DNA Barcoding of Recently Diverged Species: Relative Performance of Matching Methods

    PubMed Central

    van Velzen, Robin; Weitschek, Emanuel; Felici, Giovanni; Bakker, Freek T.

    2012-01-01

    Recently diverged species are challenging for identification, yet they are frequently of special interest scientifically as well as from a regulatory perspective. DNA barcoding has proven instrumental in species identification, especially in insects and vertebrates, but for the identification of recently diverged species it has been reported to be problematic in some cases. Problems are mostly due to incomplete lineage sorting or simply lack of a ‘barcode gap’ and probably related to large effective population size and/or low mutation rate. Our objective was to compare six methods in their ability to correctly identify recently diverged species with DNA barcodes: neighbor joining and parsimony (both tree-based), nearest neighbor and BLAST (similarity-based), and the diagnostic methods DNA-BAR, and BLOG. We analyzed simulated data assuming three different effective population sizes as well as three selected empirical data sets from published studies. Results show, as expected, that success rates are significantly lower for recently diverged species (∼75%) than for older species (∼97%) (P<0.00001). Similarity-based and diagnostic methods significantly outperform tree-based methods, when applied to simulated DNA barcode data (P<0.00001). The diagnostic method BLOG had highest correct query identification rate based on simulated (86.2%) as well as empirical data (93.1%), indicating that it is a consistently better method overall. Another advantage of BLOG is that it offers species-level information that can be used outside the realm of DNA barcoding, for instance in species description or molecular detection assays. Even though we can confirm that identification success based on DNA barcoding is generally high in our data, recently diverged species remain difficult to identify. Nevertheless, our results contribute to improved solutions for their accurate identification. PMID:22272356

  2. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  3. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  4. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    PubMed

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.

  5. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  6. DNA Barcode for Identifying Folium Artemisiae Argyi from Counterfeits.

    PubMed

    Mei, Quanxi; Chen, Xiaolu; Xiang, Li; Liu, Yue; Su, Yanyan; Gao, Yuqiao; Dai, Weibo; Dong, Pengpeng; Chen, Shilin

    2016-01-01

    Folium Artemisiae Argyi is an important herb in traditional Chinese medicine. It is commonly used in moxibustion, medicine, etc. However, identifying Artemisia argyi is difficult because this herb exhibits similar morphological characteristics to closely related species and counterfeits. To verify the applicability of DNA barcoding, ITS2 and psbA-trnH were used to identify A. argyi from 15 closely related species and counterfeits. Results indicated that total DNA was easily extracted from all the samples and that both ITS2 and psbA-trnH fragments can be easily amplified. ITS2 was a more ideal barcode than psbA-trnH and ITS2+psbA-trnH to identify A. argyi from closely related species and counterfeits on the basis of sequence character, genetic distance, and tree methods. The sequence length was 225 bp for the 56 ITS2 sequences of A. argyi, and no variable site was detected. For the ITS2 sequences, A. capillaris, A. anomala, A. annua, A. igniaria, A. maximowicziana, A. princeps, Dendranthema vestitum, and D. indicum had single nucleotide polymorphisms (SNPs). The intraspecific Kimura 2-Parameter distance was zero, which is lower than the minimum interspecific distance (0.005). A. argyi, the closely related species, and counterfeits, except for Artemisia maximowicziana and Artemisia sieversiana, were separated into pairs of divergent clusters by using the neighbor joining, maximum parsimony, and maximum likelihood tree methods. Thus, the ITS2 sequence was an ideal barcode to identify A. argyi from closely related species and counterfeits to ensure the safe use of this plant. PMID:27582332

  7. Short barcodes for next generation sequencing.

    PubMed

    Mir, Katharina; Neuhaus, Klaus; Bossert, Martin; Schober, Steffen

    2013-01-01

    We consider the design and evaluation of short barcodes, with a length between six and eight nucleotides, used for parallel sequencing on platforms where substitution errors dominate. Such codes should have not only good error correction properties but also the code words should fulfil certain biological constraints (experimental parameters). We compare published barcodes with codes obtained by two new constructions methods, one based on the currently best known linear codes and a simple randomized construction method. The evaluation done is with respect to the error correction capabilities, barcode size and their experimental parameters and fundamental bounds on the code size and their distance properties. We provide a list of codes for lengths between six and eight nucleotides, where for length eight, two substitution errors can be corrected. In fact, no code with larger minimum distance can exist.

  8. DNA barcodes for ecology, evolution, and conservation.

    PubMed

    Kress, W John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L

    2015-01-01

    The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed.

  9. Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps.

    PubMed

    Wong, Jessica X H; Li, Xiaochun; Liu, Frank S F; Yu, Hua-Zhong

    2015-01-01

    The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today's smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps. PMID:26122608

  10. Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps

    PubMed Central

    Wong, Jessica X. H.; Li, Xiaochun; Liu, Frank S. F.; Yu, Hua-Zhong

    2015-01-01

    The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps. PMID:26122608

  11. Assessing DNA Barcoding as a Tool for Species Identification and Data Quality Control

    PubMed Central

    Murphy, Robert W.

    2013-01-01

    In recent years, the number of sequences of diverse species submitted to GenBank has grown explosively and not infrequently the data contain errors. This problem is extensively recognized but not for invalid or incorrectly identified species, sample mixed-up, and contamination. DNA barcoding is a powerful tool for identifying and confirming species and one very important application involves forensics. In this study, we use DNA barcoding to detect erroneous sequences in GenBank by evaluating deep intraspecific and shallow interspecific divergences to discover possible taxonomic problems and other sources of error. We use the mitochondrial DNA gene encoding cytochrome b (Cytb) from turtles to test the utility of barcoding for pinpointing potential errors. This gene is widely used in phylogenetic studies of the speciose group. Intraspecific variation is usually less than 2.0% and in most cases it is less than 1.0%. In comparison, most species differ by more than 10.0% in our dataset. Overlapping intra- and interspecific percentages of variation mainly involve problematic identifications of species and outdated taxonomies. Further, we detect identical problems in Cytb from Insectivora and Chiroptera. Upon applying this strategy to 47,524 mammalian CoxI sequences, we resolve a suite of potentially problematic sequences. Our study reveals that erroneous sequences are not rare in GenBank and that the DNA barcoding can serve to confirm sequencing accuracy and discover problems such as misidentified species, inaccurate taxonomies, contamination, and potential errors in sequencing. PMID:23431400

  12. Direct Reading of Bona Fide Barcode Assays for Diagnostics with Smartphone Apps

    NASA Astrophysics Data System (ADS)

    Wong, Jessica X. H.; Li, Xiaochun; Liu, Frank S. F.; Yu, Hua-Zhong

    2015-06-01

    The desire to develop new point-of-care (POC) diagnostic tools has led to the adaptation of smartphones to tackle limitations in state-of-the-art instrumentation and centralized laboratory facilities. Today’s smartphones possess the computer-like ability to image and process data using mobile apps; barcode scanners are one such type of apps. We demonstrate herein that a diagnostic assay can be performed by patterning immunoassay strips in a bona fide barcode format such that after target binding and signal enhancement, the linear barcode can be read directly with a standard smartphone app. Quantitative analysis can then be performed based on the grayscale intensities with a customized mobile app. This novel diagnostic concept has been validated for a real-world application, i.e., the detection of human chorionic gonadotropin, a pregnancy hormone. With the possibility of multiplex detection, the barcode assay protocol promises to boost POC diagnosis research by the direct adaptation of mobile devices and apps.

  13. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode.

    PubMed

    Françoso, E; Arias, M C

    2013-09-01

    Bees (Apidae), of which there are more than 19 900 species, are extremely important for ecosystem services and economic purposes, so taxon identity is a major concern. The goal of this study was to optimize the DNA barcode technique based on the Cytochrome c oxidase (COI) mitochondrial gene region. This approach has previously been shown to be useful in resolving taxonomic inconsistencies and for species identification when morphological data are poor. Specifically, we designed and tested new primers and standardized PCR conditions to amplify the barcode region for bees, focusing on the corbiculate Apids. In addition, primers were designed to amplify small COI amplicons and tested with pinned specimens. Short barcode sequences were easily obtained for some Bombus century-old museum specimens and shown to be useful as mini-barcodes. The new primers and PCR conditions established in this study proved to be successful for the amplification of the barcode region for all species tested, regardless of the conditions of tissue preservation. We saw no evidence of Wolbachia or numts amplification by these primers, and so we suggest that these new primers are of broad value for corbiculate bee identification through DNA barcode.

  14. Universal COI primers for DNA barcoding amphibians.

    PubMed

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians.

  15. DNA barcoding in Mexico: an introduction.

    PubMed

    Elías-Gutiérrez, M; León-Regagnon, V

    2013-11-01

    DNA barcoding has become an important current scientific trend to the understanding of the world biodiversity. In the case of mega-diverse hot spots like Mexico, this technique represents an important tool for taxonomists, allowing them to concentrate in highlighted species by the barcodes instead of analyzing entire sets of specimens. This tendency resulted in the creation of a national network named Mexican Barcode of Life (MEXBOL) which main goals are to train students, and to promote the interaction and collective work among researchers interested in this topic. As a result, the number of records in the Barcode of Life Database (BOLD) for some groups, such as the Mammalia, Actinopterygii, Polychaeta, Branchiopoda, Ostracoda, Maxillopoda, Nematoda, Pinophyta, Ascomycota and Basidiomycota place Mexico among the top ten countries in the generation of these data. This special number presents only few of the many interesting findings in this region of the world, after the use of this technique and its integration with other methodologies. PMID:23919390

  16. 77 FR 12764 - POSTNET Barcode Discontinuation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Intelligent Mail barcodes (IMb TM ) for automation price eligibility purposes. The Postal Service understands... are proposing that the use of the IMb would be required for all automation letters, including Business..., and automation flats by January 2013. Proposed Change for Letters Only We propose to revise DMM...

  17. 77 FR 33314 - POSTNET Barcode Discontinuation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Postal Service published a final rule in the Federal Register (77 FR 26185-26191) to discontinue price... Periodicals automation letters and flats) that were inadvertently omitted in the original final rule, but does... and allow only Intelligent Mail barcodes (IMbs) for automation price eligibility purposes,...

  18. Universal COI primers for DNA barcoding amphibians.

    PubMed

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians. PMID:22145866

  19. Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds

    PubMed Central

    2008-01-01

    Background DNA barcoding of life using a standardized COI sequence was proposed as a species identification system, and as a method for detecting putative new species. Previous tests in birds showed that individuals can be correctly assigned to species in ~94% of the cases and suggested a threshold of 10× mean intraspecific difference to detect potential new species. However, these tests were criticized because they were based on a single maternally inherited gene rather than multiple nuclear genes, did not compare phylogenetically identified sister species, and thus likely overestimated the efficacy of DNA barcodes in identifying species. Results To test the efficacy of DNA barcodes we compared ~650 bp of COI in 60 sister-species pairs identified in multigene phylogenies from 10 orders of birds. In all pairs, individuals of each species were monophyletic in a neighbor-joining (NJ) tree, and each species possessed fixed mutational differences distinguishing them from their sister species. Consequently, individuals were correctly assigned to species using a statistical coalescent framework. A coalescent test of taxonomic distinctiveness based on chance occurrence of reciprocal monophyly in two lineages was verified in known sister species, and used to identify recently separated lineages that represent putative species. This approach avoids the use of a universal distance cutoff which is invalidated by variation in times to common ancestry of sister species and in rates of evolution. Conclusion Closely related sister species of birds can be identified reliably by barcodes of fixed diagnostic substitutions in COI sequences, verifying coalescent-based statistical tests of reciprocal monophyly for taxonomic distinctiveness. Contrary to recent criticisms, a single DNA barcode is a rapid way to discover monophyletic lineages within a metapopulation that might represent undiscovered cryptic species, as envisaged in the unified species concept. This identifies a smaller

  20. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    PubMed

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  1. The campaign to DNA barcode all fishes, FISH-BOL.

    PubMed

    Ward, R D; Hanner, R; Hebert, P D N

    2009-02-01

    FISH-BOL, the Fish Barcode of Life campaign, is an international research collaboration that is assembling a standardized reference DNA sequence library for all fishes. Analysis is targeting a 648 base pair region of the mitochondrial cytochrome c oxidase I (COI) gene. More than 5000 species have already been DNA barcoded, with an average of five specimens per species, typically vouchers with authoritative identifications. The barcode sequence from any fish, fillet, fin, egg or larva can be matched against these reference sequences using BOLD; the Barcode of Life Data System (http://www.barcodinglife.org). The benefits of barcoding fishes include facilitating species identification, highlighting cases of range expansion for known species, flagging previously overlooked species and enabling identifications where traditional methods cannot be applied. Results thus far indicate that barcodes separate c. 98 and 93% of already described marine and freshwater fish species, respectively. Several specimens with divergent barcode sequences have been confirmed by integrative taxonomic analysis as new species. Past concerns in relation to the use of fish barcoding for species discrimination are discussed. These include hybridization, recent radiations, regional differentiation in barcode sequences and nuclear copies of the barcode region. However, current results indicate these issues are of little concern for the great majority of specimens.

  2. The unholy trinity: taxonomy, species delimitation and DNA barcoding.

    PubMed

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-10-29

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this 'DNA barcoding' initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the 'DNA barcoding' initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the 'DNA barcoding' initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings--Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of 'DNA barcoding'.

  3. Role of cytochrome P450 2D6 genetic polymorphism in carvedilol hydroxylation in vitro

    PubMed Central

    Wang, Zhe; Wang, Li; Xu, Ren-ai; Zhan, Yun-yun; Huang, Cheng-ke; Dai, Da-peng; Cai, Jian-ping; Hu, Guo-xin

    2016-01-01

    Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that catalyzes the metabolism of a great number of therapeutic drugs. Up to now, >100 allelic variants of CYP2D6 have been reported. Recently, we identified 22 novel variants in the Chinese population in these variants. The purpose of this study was to examine the enzymatic activity of the variants toward the CYP2D6 substrate carvedilol in vitro. The CYP2D6 proteins, including CYP2D6.1 (wild type), CYP2D6.2, CYP2D6.10, and 22 other novel CYP2D6 variants, were expressed from insect microsomes and incubated with carvedilol ranging from 1.0 μM to 50 μM at 37°C for 30 minutes. After termination, the carvedilol metabolites were extracted and detected using ultra-performance liquid chromatography tandem mass-spectrometry. Among the 24 CYP2D6 variants, CYP2D6.92 and CYP2D6.96 were catalytically inactive and the remaining 22 variants exhibited significantly decreased intrinsic clearance values (ranging from ~25% to 95%) compared with CYP2D6.1. The present data in vitro suggest that the newly found variants significantly reduced catalytic activities compared with CYP2D6.1. Given that CYP2D6 protein activities could affect carvedilol plasma levels, these findings are greatly relevant to personalized medicine. PMID:27354764

  4. Barcoding Atlantic Canada's commonly encountered marine fishes.

    PubMed

    McCusker, M R; Denti, D; Van Guelpen, L; Kenchington, E; Bentzen, P

    2013-03-01

    Marine fishes from the northwest Atlantic Ocean were analysed to determine whether barcoding was effective at identifying species. Our data included 177 species, 136 genera, 81 families and 28 orders. Overall, 88% of nominal species formed monophyletic clusters based on >500 bp of the CO1 region, and the average bootstrap value for these species was 98%. Although clearly effective, the percentage of species that were distinguishable with barcoding based on the criterion of reciprocal monophyletic clusters was slightly lower than has been documented in other studies of marine fishes. Eelpouts, sculpins and rocklings proved to be among the most challenging groups for barcoding, although we suspect that difficult identifications based on traditional (morphology based) taxonomy played a role. Within several taxa, speciation may have occurred too recently for barcoding to be effective (e.g. within Sebastes, Thunnus and Ammodytes) or the designation of distinct species may have been erroneous (e.g. within Antimora and Macrourus). Results were consistent with previous work recognizing particularly high levels of divergence within certain taxa, some of which have been recognized as distinct species (e.g. Osmerus mordax and Osmerus dentex; and Liparis gibbus and Liparis bathyarcticus), and some of which have not (e.g. within Halargyreus johnsonii and within Mallotus villosus). The results from this study suggest that morphology-based identification and taxonomy can be challenging in marine fishes, even within a region as well characterized as Atlantic Canada. Barcoding proved to be a very useful tool for species identification that will likely find a wide range of applications, including the fisheries trade, studies of range expansion, ecological analyses and population assessments.

  5. 76 FR 23749 - Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... 111 Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels AGENCY: Postal... currently enhancing its operational capability to allow for the scanning of Intelligent Mail package barcodes (IMpb) and other extra services barcodes via automated processing equipment and Intelligent...

  6. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

    PubMed Central

    Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-01-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values. PMID:26693303

  7. Unexpectedly High Levels of Cryptic Diversity Uncovered by a Complete DNA Barcoding of Reptiles of the Socotra Archipelago.

    PubMed

    Vasconcelos, Raquel; Montero-Mendieta, Santiago; Simó-Riudalbas, Marc; Sindaco, Roberto; Santos, Xavier; Fasola, Mauro; Llorente, Gustavo; Razzetti, Edoardo; Carranza, Salvador

    2016-01-01

    Few DNA barcoding studies of squamate reptiles have been conducted. Due to the significance of the Socotra Archipelago (a UNESCO Natural World Heritage site and a biodiversity hotspot) and the conservation interest of its reptile fauna (94% endemics), we performed the most comprehensive DNA barcoding study on an island group to date to test its applicability to specimen identification and species discovery. Reptiles constitute Socotra's most important vertebrate fauna, yet their taxonomy remains under-studied. We successfully DNA-barcoded 380 individuals of all 31 presently recognized species. The specimen identification success rate is moderate to high, and almost all species presented local barcoding gaps. The unexpected high levels of intra-specific variability found within some species suggest cryptic diversity. Species richness may be under-estimated by 13.8-54.4%. This has implications in the species' ranges and conservation status that should be considered for conservation planning. Other phylogenetic studies using mitochondrial and nuclear markers are congruent with our results. We conclude that, despite its reduced length (663 base pairs), cytochrome c oxidase 1, COI, is very useful for specimen identification and for detecting intra-specific diversity, and has a good phylogenetic signal. We recommend DNA barcoding to be applied to other biodiversity hotspots for quickly and cost-efficiently flagging species discovery, preferentially incorporated into an integrative taxonomic framework.

  8. Quantifying species diversity with a DNA barcoding-based method: Tibetan moth species (Noctuidae) on the Qinghai-Tibetan Plateau.

    PubMed

    Jin, Qian; Han, Huilin; Hu, XiMin; Li, XinHai; Zhu, ChaoDong; Ho, Simon Y W; Ward, Robert D; Zhang, Ai-bing

    2013-01-01

    With the ongoing loss of biodiversity, there is a great need for fast and effective ways to assess species richness and diversity: DNA barcoding provides a powerful new tool for this. We investigated this approach by focusing on the Tibetan plateau, which is one of the world's top biodiversity hotspots. There have been few studies of its invertebrates, although they constitute the vast majority of the region's diversity. Here we investigated species diversity of the lepidopteran family Noctuidae, across different environmental gradients, using measurements based on traditional morphology as well as on DNA barcoding. The COI barcode showed an average interspecific K2P distance of 9.45±2.08%, which is about four times larger than the mean intraspecific distance (1.85±3.20%). Using six diversity indices, we did not detect any significant differences in estimated species diversity between measurements based on traditional morphology and on DNA barcoding. Furthermore, we found strong positive correlations between them, indicating that barcode-based measures of species diversity can serve as a good surrogate for morphology-based measures in most situations tested. Eastern communities were found to have significantly higher diversity than Western ones. Among 22 environmental factors tested, we found that three (precipitation of driest month, precipitation of driest quarter, and precipitation of coldest quarter) were significantly correlated with species diversity. Our results indicate that these factors could be the key ecological factors influencing the species diversity of the lepidopteran family Noctuidae on the Tibetan plateau. PMID:23741330

  9. Unexpectedly High Levels of Cryptic Diversity Uncovered by a Complete DNA Barcoding of Reptiles of the Socotra Archipelago

    PubMed Central

    Simó-Riudalbas, Marc; Sindaco, Roberto; Santos, Xavier; Fasola, Mauro; Llorente, Gustavo; Razzetti, Edoardo; Carranza, Salvador

    2016-01-01

    Few DNA barcoding studies of squamate reptiles have been conducted. Due to the significance of the Socotra Archipelago (a UNESCO Natural World Heritage site and a biodiversity hotspot) and the conservation interest of its reptile fauna (94% endemics), we performed the most comprehensive DNA barcoding study on an island group to date to test its applicability to specimen identification and species discovery. Reptiles constitute Socotra’s most important vertebrate fauna, yet their taxonomy remains under-studied. We successfully DNA-barcoded 380 individuals of all 31 presently recognized species. The specimen identification success rate is moderate to high, and almost all species presented local barcoding gaps. The unexpected high levels of intra-specific variability found within some species suggest cryptic diversity. Species richness may be under-estimated by 13.8–54.4%. This has implications in the species’ ranges and conservation status that should be considered for conservation planning. Other phylogenetic studies using mitochondrial and nuclear markers are congruent with our results. We conclude that, despite its reduced length (663 base pairs), cytochrome c oxidase 1, COI, is very useful for specimen identification and for detecting intra-specific diversity, and has a good phylogenetic signal. We recommend DNA barcoding to be applied to other biodiversity hotspots for quickly and cost-efficiently flagging species discovery, preferentially incorporated into an integrative taxonomic framework. PMID:26930572

  10. Unexpectedly High Levels of Cryptic Diversity Uncovered by a Complete DNA Barcoding of Reptiles of the Socotra Archipelago.

    PubMed

    Vasconcelos, Raquel; Montero-Mendieta, Santiago; Simó-Riudalbas, Marc; Sindaco, Roberto; Santos, Xavier; Fasola, Mauro; Llorente, Gustavo; Razzetti, Edoardo; Carranza, Salvador

    2016-01-01

    Few DNA barcoding studies of squamate reptiles have been conducted. Due to the significance of the Socotra Archipelago (a UNESCO Natural World Heritage site and a biodiversity hotspot) and the conservation interest of its reptile fauna (94% endemics), we performed the most comprehensive DNA barcoding study on an island group to date to test its applicability to specimen identification and species discovery. Reptiles constitute Socotra's most important vertebrate fauna, yet their taxonomy remains under-studied. We successfully DNA-barcoded 380 individuals of all 31 presently recognized species. The specimen identification success rate is moderate to high, and almost all species presented local barcoding gaps. The unexpected high levels of intra-specific variability found within some species suggest cryptic diversity. Species richness may be under-estimated by 13.8-54.4%. This has implications in the species' ranges and conservation status that should be considered for conservation planning. Other phylogenetic studies using mitochondrial and nuclear markers are congruent with our results. We conclude that, despite its reduced length (663 base pairs), cytochrome c oxidase 1, COI, is very useful for specimen identification and for detecting intra-specific diversity, and has a good phylogenetic signal. We recommend DNA barcoding to be applied to other biodiversity hotspots for quickly and cost-efficiently flagging species discovery, preferentially incorporated into an integrative taxonomic framework. PMID:26930572

  11. DNA barcoding of Northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limits

    PubMed Central

    2012-01-01

    cryptic species were detected. Conclusions Our findings reveal the great utility of building a well-populated, species-level reference barcode database against which to compare unknowns. When such a library is unavailable, it is still possible to obtain a fairly accurate (within ~10%) rapid assessment of species richness based upon a barcode divergence threshold alone, but this approach is most accurate when the threshold is tuned to a particular taxon. PMID:23173946

  12. DNA Barcoding for the Identification of Botanicals in Herbal Medicine and Dietary Supplements: Strengths and Limitations.

    PubMed

    Parveen, Iffat; Gafner, Stefan; Techen, Natascha; Murch, Susan J; Khan, Ikhlas A

    2016-09-01

    In the past decades, the use of traditional medicine has increased globally, leading to a booming herbal medicine and dietary supplement industry. The increased popularity of herbal products has led to a rise in demand for botanical raw materials. Accurate identification of medicinal herbs is a legal requirement in most countries and prerequisite for delivering a quality product that meets consumer expectations. Traditional identification methods include botanical taxonomy, macroscopic and microscopic examination, and chemical methods. Advances in the identification of biological species using DNA-based techniques have led to the development of a DNA marker-based platform for authentication of plant materials. DNA barcoding, in particular, has been proposed as a means to identify herbal ingredients and to detect adulteration. However, general barcoding techniques using universal primers have been shown to provide mixed results with regard to data accuracy. Further technological advances such as mini-barcodes, digital polymerase chain reaction, and next generation sequencing provide additional tools for the authentication of herbs, and may be successful in identifying processed ingredients used in finished herbal products. This review gives an overview on the strengths and limitations of DNA barcoding techniques for botanical ingredient identification. Based on the available information, we do not recommend the use of universal primers for DNA barcoding of processed plant material as a sole means of species identification, but suggest an approach combining DNA-based methods using genus- or species-specific primers, chemical analysis, and microscopic and macroscopic methods for the successful authentication of botanical ingredients used in the herbal dietary supplement industry. PMID:27392246

  13. DNA Barcoding for the Identification of Botanicals in Herbal Medicine and Dietary Supplements: Strengths and Limitations.

    PubMed

    Parveen, Iffat; Gafner, Stefan; Techen, Natascha; Murch, Susan J; Khan, Ikhlas A

    2016-09-01

    In the past decades, the use of traditional medicine has increased globally, leading to a booming herbal medicine and dietary supplement industry. The increased popularity of herbal products has led to a rise in demand for botanical raw materials. Accurate identification of medicinal herbs is a legal requirement in most countries and prerequisite for delivering a quality product that meets consumer expectations. Traditional identification methods include botanical taxonomy, macroscopic and microscopic examination, and chemical methods. Advances in the identification of biological species using DNA-based techniques have led to the development of a DNA marker-based platform for authentication of plant materials. DNA barcoding, in particular, has been proposed as a means to identify herbal ingredients and to detect adulteration. However, general barcoding techniques using universal primers have been shown to provide mixed results with regard to data accuracy. Further technological advances such as mini-barcodes, digital polymerase chain reaction, and next generation sequencing provide additional tools for the authentication of herbs, and may be successful in identifying processed ingredients used in finished herbal products. This review gives an overview on the strengths and limitations of DNA barcoding techniques for botanical ingredient identification. Based on the available information, we do not recommend the use of universal primers for DNA barcoding of processed plant material as a sole means of species identification, but suggest an approach combining DNA-based methods using genus- or species-specific primers, chemical analysis, and microscopic and macroscopic methods for the successful authentication of botanical ingredients used in the herbal dietary supplement industry.

  14. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  15. A DNA Barcode Library for Korean Chironomidae (Insecta: Diptera) and Indexes for Defining Barcode Gap

    PubMed Central

    Kim, Sungmin; Song, Kyo-Hong; Ree, Han-Il; Kim, Won

    2012-01-01

    Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified larvae. The interspecies and intraspecies COI sequence variations were analyzed. Sophisticated indexes were developed in order to properly evaluate indistinct barcode gaps that are created by insufficient sampling on both the interspecies and intraspecies levels and by variable mutation rates across taxa. In a variety of insect datasets, these indexes were useful for re-evaluating large barcode datasets and for defining COI barcode gaps. The COI-based DNA barcode library will provide a rapid and reliable tool for the molecular identification of Korean chironomid species. Furthermore, this reverse-taxonomic approach will be improved by the continuous addition of other speceis’ sequences to the library. PMID:22138764

  16. The Barcode of Life Data Portal: bridging the biodiversity informatics divide for DNA barcoding.

    PubMed

    Sarkar, Indra Neil; Trizna, Michael

    2011-01-01

    With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence-based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form--often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP) is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG) of the Consortium for the Barcode of Life (CBOL), the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum.

  17. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  18. Critical factors for assembling a high volume of DNA barcodes

    PubMed Central

    Hajibabaei, Mehrdad; deWaard, Jeremy R; Ivanova, Natalia V; Ratnasingham, Sujeevan; Dooh, Robert T; Kirk, Stephanie L; Mackie, Paula M; Hebert, Paul D.N

    2005-01-01

    Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified. PMID:16214753

  19. Bar-code automated waste tracking system

    SciTech Connect

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ``stop-and-go`` operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste.

  20. DNA barcoding South China Sea fishes.

    PubMed

    Wang, Zhong-Duo; Guo, Yu-Song; Liu, Xue-Mei; Fan, Yan-Bo; Liu, Chu-Wu

    2012-10-01

    We have determined 222 DNA barcode sequences of 95 fish species in 86 genera of 69 families from 15 orders. Fish were captured by trawl from two important fisheries regions in South China Sea: Spratly Islands (Nansha Islands) and Beibu Gulf. The average genetic distances between intraspecies were about 60-fold less than those of interspecies within different taxonomic levels, as Kimura two-parameter genetic distances averaged 17.260% among congeners, 20.097% among genus, and only 0.317% for intraspecific individuals. There were a few examples of deep divergence within species, suggesting the need for further taxonomic work, and a few examples of closely allied species, perhaps reflecting introgressive hybridization. The results provide further evidence for the reliability and accessibility of DNA barcodes for marine fish identification, and also highlight their effectiveness for flagging cases needing taxonomical reexamination.

  1. DNA barcoding of endangered Indian Paphiopedilum species.

    PubMed

    Parveen, Iffat; Singh, Hemant K; Raghuvanshi, Saurabh; Pradhan, Udai C; Babbar, Shashi B

    2012-01-01

    The indiscriminate collections of Paphiopedilum species from the wild for their exotic ornamental flowers have rendered these plants endangered. Although the trade of these endangered species from the wild is strictly forbidden, it continues unabated in one or other forms that elude the current identification methods. DNA barcoding that offers identification of a species even if only a small fragment of the organism at any stage of development is available could be of great utility in scrutinizing the illegal trade of both endangered plant and animal species. Therefore, this study was undertaken to develop DNA barcodes of Indian species of Paphiopedilum along with their three natural hybrids using loci from both the chloroplast and nuclear genomes. The five loci tested for their potential as effective barcodes were RNA polymerase-β subunit (rpoB), RNA polymerase-β' subunit (rpoC1), Rubisco large subunit (rbcL) and maturase K (matK) from the chloroplast genome and nuclear ribosomal internal transcribed spacer (nrITS) from the nuclear genome. The intra- and inter-specific divergence values and species discrimination rates were calculated by Kimura 2 parameter (K2P) method using mega 4.0. The matK with 0.9% average inter-specific divergence value yielded 100% species resolution, thus could distinguish all the eight species of Paphiopedilum unequivocally. The species identification capability of these sequences was further confirmed as each of the matK sequences was found to be unique for the species when a blast analysis of these sequences was carried out on NCBI. nrITS, although had 4.4% average inter-specific divergence value, afforded only 50% species resolution. DNA barcodes of the three hybrids also reflected their parentage.

  2. Bayesian Cosmic Web Reconstruction: BARCODE for Clusters

    NASA Astrophysics Data System (ADS)

    Patrick Bos, E. G.; van de Weygaert, Rien; Kitaura, Francisco; Cautun, Marius

    2016-10-01

    We describe the Bayesian \\barcode\\ formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the basis of observational data, without the need for a correction of redshift space artifacts. In this contribution we provide a general overview of the the Cosmic Web connection with clusters and a description of the Bayesian BARCODE formalism. We conclude with a presentation of its successful workings with respect to test runs based on a simulated large scale matter distribution, in physical space as well as in redshift space.

  3. Advancing taxonomy and bioinventories with DNA barcodes

    PubMed Central

    2016-01-01

    We use three examples—field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae—to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the ‘taxonomic impediment’, especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481791

  4. Advancing taxonomy and bioinventories with DNA barcodes.

    PubMed

    Miller, Scott E; Hausmann, Axel; Hallwachs, Winnie; Janzen, Daniel H

    2016-09-01

    We use three examples-field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae-to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the 'taxonomic impediment', especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481791

  5. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  6. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  7. Evaluation of candidate barcoding markers in Orinus (Poaceae).

    PubMed

    Su, X; Liu, Y P; Chen, Z; Chen, K L

    2016-01-01

    Orinus is an alpine endemic genus of Poaceae. Because of the imperfect specimens, high level of intraspecific morphological variability, and homoplasies of morphological characters, it is relatively difficult to delimitate species of Orinus by using morphology alone. To this end, the DNA barcoding has shown great potential in identifying species. The present study is the first attempt to test the feasibility of four proposed DNA barcoding markers (matK, rbcL, trnH-psbA, and ITS) in identifying four currently revised species of Orinus from the Qinghai-Tibetan Plateau (QTP). Among all the single-barcode candidates, the differentiation power was the highest for the nuclear internal transcribed spacer (ITS), while the chloroplast barcodes matK (M), rbcL (R), and trnH-psbA (H) could not identify the species. Meanwhile, the differentiation efficiency of the nuclear ITS (I) was also higher than any two- or three-locus combination of chloroplast barcodes, or even a combination of ITS and any chloroplast barcode except H + I and R + I. All the combinations of chloroplast barcodes plus the nuclear ITS, H + I, and R + I differentiated the highest portion of species. The highest differentiation rate for the barcodes or barcode combinations examined here was 100% (H + I and R + I). In summary, this case study showed that the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions in differentiating Orinus species from the QTP. Moreover, combining the ITS region with chloroplast regions may improve the barcoding success rate. PMID:27173245

  8. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum)

    PubMed Central

    Guo, Yan-Yan; Huang, Lai-Qiang; Liu, Zhong-Jian; Wang, Xiao-Quan

    2016-01-01

    Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper), a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%). Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%), whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%). Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation. PMID:26752741

  9. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum).

    PubMed

    Guo, Yan-Yan; Huang, Lai-Qiang; Liu, Zhong-Jian; Wang, Xiao-Quan

    2016-01-01

    Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper), a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%). Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%), whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%). Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation.

  10. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  11. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  12. DNA barcoding of catfish: species authentication and phylogenetic assessment.

    PubMed

    Wong, Li Lian; Peatman, Eric; Lu, Jianguo; Kucuktas, Huseyin; He, Shunping; Zhou, Chuanjiang; Na-nakorn, Uthairat; Liu, Zhanjiang

    2011-03-15

    As the global market for fisheries and aquaculture products expands, mislabeling of these products has become a growing concern in the food safety arena. Molecular species identification techniques hold the potential for rapid, accurate assessment of proper labeling. Here we developed and evaluated DNA barcodes for use in differentiating United States domestic and imported catfish species. First, we sequenced 651 base-pair barcodes from the cytochrome oxidase I (COI) gene from individuals of 9 species (and an Ictalurid hybrid) of domestic and imported catfish in accordance with standard DNA barcoding protocols. These included domestic Ictalurid catfish, and representative imported species from the families of Clariidae and Pangasiidae. Alignment of individual sequences from within a given species revealed highly consistent barcodes (98% similarity on average). These alignments allowed the development and analyses of consensus barcode sequences for each species and comparison with limited sequences in public databases (GenBank and Barcode of Life Data Systems). Validation tests carried out in blinded studies and with commercially purchased catfish samples (both frozen and fresh) revealed the reliability of DNA barcoding for differentiating between these catfish species. The developed protocols and consensus barcodes are valuable resources as increasing market and governmental scrutiny is placed on catfish and other fisheries and aquaculture products labeling in the United States.

  13. What do plant pathologists want from the Fungal Barcoding Initiative?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant pathologists want from the Fungal Barcoding Initiative what everyone wants, specifically a fast, accurate identification of their causal plant pathogen resulting in a scientific name that synthesizes current knowledge of that organism. It sounds so easy! Yet, accurate DNA barcodes can only b...

  14. Multilocus inference of species trees and DNA barcoding

    PubMed Central

    2016-01-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree—gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481787

  15. Dissecting host-associated communities with DNA barcodes

    PubMed Central

    Pierce, Naomi E.

    2016-01-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes. Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481780

  16. DNA Barcoding of Catfish: Species Authentication and Phylogenetic Assessment

    PubMed Central

    Wong, Li Lian; Peatman, Eric; Lu, Jianguo; Kucuktas, Huseyin; He, Shunping; Zhou, Chuanjiang; Na-nakorn, Uthairat; Liu, Zhanjiang

    2011-01-01

    As the global market for fisheries and aquaculture products expands, mislabeling of these products has become a growing concern in the food safety arena. Molecular species identification techniques hold the potential for rapid, accurate assessment of proper labeling. Here we developed and evaluated DNA barcodes for use in differentiating United States domestic and imported catfish species. First, we sequenced 651 base-pair barcodes from the cytochrome oxidase I (COI) gene from individuals of 9 species (and an Ictalurid hybrid) of domestic and imported catfish in accordance with standard DNA barcoding protocols. These included domestic Ictalurid catfish, and representative imported species from the families of Clariidae and Pangasiidae. Alignment of individual sequences from within a given species revealed highly consistent barcodes (98% similarity on average). These alignments allowed the development and analyses of consensus barcode sequences for each species and comparison with limited sequences in public databases (GenBank and Barcode of Life Data Systems). Validation tests carried out in blinded studies and with commercially purchased catfish samples (both frozen and fresh) revealed the reliability of DNA barcoding for differentiating between these catfish species. The developed protocols and consensus barcodes are valuable resources as increasing market and governmental scrutiny is placed on catfish and other fisheries and aquaculture products labeling in the United States. PMID:21423623

  17. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  18. Dissecting host-associated communities with DNA barcodes.

    PubMed

    Baker, Christopher C M; Bittleston, Leonora S; Sanders, Jon G; Pierce, Naomi E

    2016-09-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481780

  19. 2D materials: to graphene and beyond.

    PubMed

    Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio; Zamora, Félix

    2011-01-01

    This review is an attempt to illustrate the different alternatives in the field of 2D materials. Graphene seems to be just the tip of the iceberg and we show how the discovery of alternative 2D materials is starting to show the rest of this iceberg. The review comprises the current state-of-the-art of the vast literature in concepts and methods already known for isolation and characterization of graphene, and rationalizes the quite disperse literature in other 2D materials such as metal oxides, hydroxides and chalcogenides, and metal-organic frameworks.

  20. DNA Barcoding of Metazoan Zooplankton Copepods from South Korea.

    PubMed

    Baek, Su Youn; Jang, Kuem Hee; Choi, Eun Hwa; Ryu, Shi Hyun; Kim, Sang Ki; Lee, Jin Hee; Lim, Young Jin; Lee, Jimin; Jun, Jumin; Kwak, Myounghai; Lee, Young-Sup; Hwang, Jae-Sam; Venmathi Maran, Balu Alagar; Chang, Cheon Young; Kim, Il-Hoi; Hwang, Ui Wook

    2016-01-01

    Copepods, small aquatic crustaceans, are the most abundant metazoan zooplankton and outnumber every other group of multicellular animals on earth. In spite of ecological and biological importance in aquatic environment, their morphological plasticity, originated from their various lifestyles and their incomparable capacity to adapt to a variety of environments, has made the identification of species challenging, even for expert taxonomists. Molecular approaches to species identification have allowed rapid detection, discrimination, and identification of cryptic or sibling species based on DNA sequence data. We examined sequence variation of a partial mitochondrial cytochrome C oxidase I gene (COI) from 133 copepod individuals collected from the Korean Peninsula, in order to identify and discriminate 94 copepod species covering six copepod orders of Calanoida, Cyclopoida, Harpacticoida, Monstrilloida, Poecilostomatoida and Siphonostomatoida. The results showed that there exists a clear gap with ca. 20 fold difference between the averages of within-specific sequence divergence (2.42%) and that of between-specific sequence divergence (42.79%) in COI, suggesting the plausible utility of this gene in delimitating copepod species. The results showed, with the COI barcoding data among 94 copepod species, that a copepod species could be distinguished from the others very clearly, only with four exceptions as followings: Mesocyclops dissimilis-Mesocyclops pehpeiensis (0.26% K2P distance in percent) and Oithona davisae-Oithona similis (1.1%) in Cyclopoida, Ostrincola japonica-Pseudomyicola spinosus (1.5%) in Poecilostomatoida, and Hatschekia japonica-Caligus quadratus (5.2%) in Siphonostomatoida. Thus, it strongly indicated that COI may be a useful tool in identifying various copepod species and make an initial progress toward the construction of a comprehensive DNA barcode database for copepods inhabiting the Korean Peninsula. PMID:27383475

  1. DNA Barcoding of Metazoan Zooplankton Copepods from South Korea

    PubMed Central

    Ryu, Shi Hyun; Kim, Sang Ki; Lee, Jin Hee; Lim, Young Jin; Lee, Jimin; Jun, Jumin; Kwak, Myounghai; Lee, Young-Sup; Hwang, Jae-Sam; Venmathi Maran, Balu Alagar; Chang, Cheon Young; Kim, Il-Hoi; Hwang, Ui Wook

    2016-01-01

    Copepods, small aquatic crustaceans, are the most abundant metazoan zooplankton and outnumber every other group of multicellular animals on earth. In spite of ecological and biological importance in aquatic environment, their morphological plasticity, originated from their various lifestyles and their incomparable capacity to adapt to a variety of environments, has made the identification of species challenging, even for expert taxonomists. Molecular approaches to species identification have allowed rapid detection, discrimination, and identification of cryptic or sibling species based on DNA sequence data. We examined sequence variation of a partial mitochondrial cytochrome C oxidase I gene (COI) from 133 copepod individuals collected from the Korean Peninsula, in order to identify and discriminate 94 copepod species covering six copepod orders of Calanoida, Cyclopoida, Harpacticoida, Monstrilloida, Poecilostomatoida and Siphonostomatoida. The results showed that there exists a clear gap with ca. 20 fold difference between the averages of within-specific sequence divergence (2.42%) and that of between-specific sequence divergence (42.79%) in COI, suggesting the plausible utility of this gene in delimitating copepod species. The results showed, with the COI barcoding data among 94 copepod species, that a copepod species could be distinguished from the others very clearly, only with four exceptions as followings: Mesocyclops dissimilis–Mesocyclops pehpeiensis (0.26% K2P distance in percent) and Oithona davisae–Oithona similis (1.1%) in Cyclopoida, Ostrincola japonica–Pseudomyicola spinosus (1.5%) in Poecilostomatoida, and Hatschekia japonica–Caligus quadratus (5.2%) in Siphonostomatoida. Thus, it strongly indicated that COI may be a useful tool in identifying various copepod species and make an initial progress toward the construction of a comprehensive DNA barcode database for copepods inhabiting the Korean Peninsula. PMID:27383475

  2. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification. PMID:26790288

  3. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification.

  4. Identification of Indian crocodile species through DNA barcodes.

    PubMed

    Meganathan, P R; Dubey, Bhawna; Jogayya, Kothakota Naga; Haque, Ikramul

    2013-07-01

    The biodiversity of India includes three crocodile species, Crocodylus palustris, Crocodylus porosus, and Gavialis gangeticus, whose status is threatened due to bushmeat crisis and illegal hunting. The crocodilian conservation management requires novel techniques to help forensic analysts to reveal species identity. DNA barcoding is a species identification technique, where a partial cytochrome c oxidase subunit 1 gene is used as a marker for species identification. Herein, the DNA barcoding technique is evaluated for three Indian crocodiles by analyzing an approximately 750-bp barcode region. The alignment result shows interspecific variations between sequences for discrimination of the three Indian crocodiles leading to species identification. The phylogenetic analyses also substantiate the established crocodilian relationships, which add further advantage to use this DNA barcoding approach for Indian crocodiles. This study provides preliminary evidences for the use of DNA barcoding technique in the identification of Indian crocodile species.

  5. Commercial Teas Highlight Plant DNA Barcode Identification Successes and Obstacles

    PubMed Central

    Stoeckle, Mark Y.; Gamble, Catherine C.; Kirpekar, Rohan; Young, Grace; Ahmed, Selena; Little, Damon P.

    2011-01-01

    Appearance does not easily identify the dried plant fragments used to prepare teas to species. Here we test recovery of standard DNA barcodes for land plants from a large array of commercial tea products and analyze their performance in identifying tea constituents using existing databases. Most (90%) of 146 tea products yielded rbcL or matK barcodes using a standard protocol. Matching DNA identifications to listed ingredients was limited by incomplete databases for the two markers, shared or nearly identical barcodes among some species, and lack of standard common names for plant species. About 1/3 of herbal teas generated DNA identifications not found on labels. Broad scale adoption of plant DNA barcoding may require algorithms that place search results in context of standard plant names and character-based keys for distinguishing closely-related species. Demonstrating the importance of accessible plant barcoding, our findings indicate unlisted ingredients are common in herbal teas. PMID:22355561

  6. [Screening potential DNA barcode regions of genus Papaver].

    PubMed

    Zhang, Shuang; Liu, Yu-jing; Wu, Yan-sheng; Cao, Ying; Yuan, Yuan

    2015-08-01

    DNA barcoding is an effective technique in species identification. To determine the candidate sequences which can be used as DNA barcode to identify in Papaver genus, five potential sequences (ITS, matK, psbA-trnH, rbcL, trnL-trnF) were screened. 69 sequences were downloaded from Genbank, including 21 ITS sequences, 10 matK sequences, 8 psbA-trnH sequences, 14 rbcL sequences and 16 trnL-trnF sequences. Mega 6.0 was used to analysis the comparison of sequences. By the methods of calculating the distances in intraspecific and interspecific divergences, evaluating DNA barcoding gap and constructing NJ and UPMGA phylogenetic trees. The sequence trnL-trnF performed best. In conclusion, trnL-trnF can be considered as a novel DNA barcode in Papaver genus, other four sequences can be as combination barcode for identification.

  7. Parallel barcoding of antibodies for DNA-assisted proteomics.

    PubMed

    Dezfouli, Mahya; Vickovic, Sanja; Iglesias, Maria Jesus; Schwenk, Jochen M; Ahmadian, Afshin

    2014-11-01

    DNA-assisted proteomics technologies enable ultra-sensitive measurements in multiplex format using DNA-barcoded affinity reagents. Although numerous antibodies are available, nowadays targeting nearly the complete human proteome, the majority is not accessible at the quantity, concentration, or purity recommended for most bio-conjugation protocols. Here, we introduce a magnetic bead-assisted DNA-barcoding approach, applicable for several antibodies in parallel, as well as reducing required reagents quantities up to a thousand-fold. The success of DNA-barcoding and retained functionality of antibodies were demonstrated in sandwich immunoassays and standard quantitative Immuno-PCR assays. Specific DNA-barcoding of antibodies for multiplex applications was presented on suspension bead arrays with read-out on a massively parallel sequencing platform in a procedure denoted Immuno-Sequencing. Conclusively, human plasma samples were analyzed to indicate the functionality of barcoded antibodies in intended proteomics applications. PMID:25263329

  8. [Screening potential DNA barcode regions of genus Papaver].

    PubMed

    Zhang, Shuang; Liu, Yu-jing; Wu, Yan-sheng; Cao, Ying; Yuan, Yuan

    2015-08-01

    DNA barcoding is an effective technique in species identification. To determine the candidate sequences which can be used as DNA barcode to identify in Papaver genus, five potential sequences (ITS, matK, psbA-trnH, rbcL, trnL-trnF) were screened. 69 sequences were downloaded from Genbank, including 21 ITS sequences, 10 matK sequences, 8 psbA-trnH sequences, 14 rbcL sequences and 16 trnL-trnF sequences. Mega 6.0 was used to analysis the comparison of sequences. By the methods of calculating the distances in intraspecific and interspecific divergences, evaluating DNA barcoding gap and constructing NJ and UPMGA phylogenetic trees. The sequence trnL-trnF performed best. In conclusion, trnL-trnF can be considered as a novel DNA barcode in Papaver genus, other four sequences can be as combination barcode for identification. PMID:26677693

  9. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  10. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  11. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  12. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  13. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  14. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  15. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  16. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  17. Using DNA barcoding to link cystacanths and adults of the acanthocephalan Polymorphus brevis in central Mexico.

    PubMed

    Alcántar-Escalera, F J; García-Varela, M; Vázquez-Domínguez, E; Pérez-Ponce de León, G

    2013-11-01

    In parasitic organisms, particularly helminths, the usage of the mitochondrial cytochrome c oxidase subunit I gene as the standard DNA barcoding region for species identification and discovery has been very limited. Here, we present an integrated study, based on both DNA barcoding and morphological analyses, for acanthocephalans belonging to the genus Polymorphus, whose larvae (cystacanths) are commonly found in the mesentery of freshwater fishes, while adults are found in the intestine of fish-eating birds. The alpha taxonomy of parasitic helminths is based on adult morphological traits, and because of that larval forms cannot be identified to species level based on morphology alone. DNA barcoding offers an alternative tool for linking larval stages of parasitic organisms to known adults. We sequenced cystacanths collected from freshwater fishes in localities across central Mexico and adults obtained from fish-eating birds, to determine whether they were conspecific. To corroborate the molecular results, we conducted a morphometric analysis with 'Proboscis profiler', which is a software tool developed to detect heterogeneity in morphologically similar acanthocephalans based on the multivariate statistical analysis of proboscis hook dimensions. Both sources of information indicate that cystacanths infecting freshwater fishes in central Mexico belong to a single species, Polymorphus brevis.

  18. DNA barcoding of Murinae (Rodentia: Muridae) and Arvicolinae (Rodentia: Cricetidae) distributed in China.

    PubMed

    Li, Jing; Zheng, Xin; Cai, Yansen; Zhang, Xiuyue; Yang, Min; Yue, Bisong; Li, Jing

    2015-01-01

    Identification of rodents is very difficult mainly due to high similarities in morphology and controversial taxonomy. In this study, mitochondrial cytochrome oxidase subunit I (COI) was used as DNA barcode to identify the Murinae and Arvicolinae species distributed in China and to facilitate the systematics studies of Rodentia. In total, 242 sequences (31 species, 11 genera) from Murinae and 130 sequences (23 species, 6 genera) from Arvicolinae were investigated, of which 90 individuals were novel. Genetic distance, threshold method, tree-based method, online BLAST and BLOG were employed to analyse the data sets. There was no obvious barcode gap. The average K2P distance within species and genera was 2.10% and 12.61% in Murinae, and 2.86% and 11.80% in Arvicolinae, respectively. The optimal threshold was 5.62% for Murinae and 3.34% for Arvicolinae. All phylogenetic trees exhibited similar topology and could distinguish 90.32% of surveyed species in Murinae and 82.60% in Arvicolinae with high support values. BLAST analyses yielded similar results with identification success rates of 92.15% and 93.85% for Murinae and Arvicolinae, respectively. BLOG successfully authenticated 100% of detected species except Leopoldamys edwardsi based on the latest taxonomic revision. Our results support the species status of recently recognized Micromys erythrotis, Eothenomys tarquinius and E. hintoni and confirm the important roles of comprehensive taxonomy and accurate morphological identification in DNA barcoding studies. We believe that, when proper analytic methods are applied or combined, DNA barcoding could serve as an accurate and effective species identification approach for Murinae and Arvicolinae based on a proper taxonomic framework.

  19. Wide-Field H2D+ Observations of Starless Cores

    NASA Astrophysics Data System (ADS)

    Di Francesco, James; Friesen, R.; Caselli, P.; Myers, P. C.; van der Tak, F. F. S.; Ceccarelli, C.

    2009-01-01

    In recent years, isolated starless cores have been revealed to have significant chemical differentiation with very low abundances of carbon-bearing molecules (such as CO and its isotopologues) in their cold, dense interiors. The inner regions of such cores, however, may be quite interesting, e.g., if contraction or collapse begins there. To explore these regions, we present detections of six isolated starless cores in the 110-111 line of H2D+ at 372 GHz using the new HARP instrument at the James Clerk Maxwell Telescope. Since the detection of this line requires very dry conditions on Mauna Kea (i.e., κ(225 GHz) < 0.05), only a multi-beam receiver system like the 4 X 4 HARP array can locate H2D+ emission across such cores in a practical amount of observing time. In all cases, the brightest line emission is coincident with the local peak of submillimeter continuum emission, but significant H2D+ emission is detected offset from the continuum peak in some. In addition, we describe the thermal and turbulent velocity fields in these cores revealed by these lines.

  20. Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments

    PubMed Central

    Stern, Rowena F.; Horak, Ales; Andrew, Rose L.; Coffroth, Mary-Alice; Andersen, Robert A.; Küpper, Frithjof C.; Jameson, Ian; Hoppenrath, Mona; Véron, Benoît; Kasai, Fumai; Brand, Jerry; James, Erick R.; Keeling, Patrick J.

    2010-01-01

    Background Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of

  1. Proteomic Profiling of Macrophages by 2D Electrophoresis

    PubMed Central

    Bouvet, Marion; Turkieh, Annie; Acosta-Martin, Adelina E.; Chwastyniak, Maggy; Beseme, Olivia; Amouyel, Philippe; Pinet, Florence

    2014-01-01

    The goal of the two-dimensional (2D) electrophoresis protocol described here is to show how to analyse the phenotype of human cultured macrophages. The key role of macrophages has been shown in various pathological disorders such as inflammatory, immunological, and infectious diseases. In this protocol, we use primary cultures of human monocyte-derived macrophages that can be differentiated into the M1 (pro-inflammatory) or the M2 (anti-inflammatory) phenotype. This in vitro model is reliable for studying the biological activities of M1 and M2 macrophages and also for a proteomic approach. Proteomic techniques are useful for comparing the phenotype and behaviour of M1 and M2 macrophages during host pathogenicity. 2D gel electrophoresis is a powerful proteomic technique for mapping large numbers of proteins or polypeptides simultaneously. We describe the protocol of 2D electrophoresis using fluorescent dyes, named 2D Differential Gel Electrophoresis (DIGE). The M1 and M2 macrophages proteins are labelled with cyanine dyes before separation by isoelectric focusing, according to their isoelectric point in the first dimension, and their molecular mass, in the second dimension. Separated protein or polypeptidic spots are then used to detect differences in protein or polypeptide expression levels. The proteomic approaches described here allows the investigation of the macrophage protein changes associated with various disorders like host pathogenicity or microbial toxins. PMID:25408153

  2. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  3. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  4. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  5. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  6. Molecular phylogenetics in 2D: ITS2 rRNA evolution and sequence-structure barcode from Veneridae to Bivalvia.

    PubMed

    Salvi, Daniele; Mariottini, Paolo

    2012-11-01

    In this study, we analyzed the nuclear ITS2 rRNA primary sequence and secondary structure in Veneridae and comparatively with 20 Bivalvia taxa to test the phylogenetic resolution of this marker and its suitability for molecular diagnosis at different taxonomic levels. Maximum likelihood and Bayesian trees based on primary sequences were congruent with (profile-) neighbor-joining trees based on a combined model of sequence-structure evolution. ITS2 showed higher resolution below the subfamily level, providing a phylogenetic signal comparable to (mitochondrial/nuclear) gene fragments 2-5 times longer. Structural elements of the ITS2 folding, such as specific mismatch pairing and compensatory base changes, provided further support for the monophyly of some groups and for their phylogenetic relationships. Veneridae ITS2 folding is structured in six domains (DI-VI) and shows five striking sequence-structure features. Two of them, the Basal and Apical STEMs, are common to Bivalvia, while the presence of both the Branched STEM and the Y/R stretches occurs in five superfamilies of the two Heterodonta orders Myoida and Veneroida, thus questioning their reciprocal monophyly. Our results validated the ITS2 as a suitable marker for venerids phylogenetics and taxonomy, and underlined the significance of including secondary structure information for both applications at several systematic levels within bivalves.

  7. Covert thermal barcodes based on phase change nanoparticles

    PubMed Central

    Duong, Binh; Liu, Helin; Ma, Liyuan; Su, Ming

    2014-01-01

    An unmet need is to develop covert barcodes that can be used to track-trace objects, and authenticate documents. This paper describes a new nanoparticle-based covert barcode system, in which a selected panel of solid-to-liquid phase change nanoparticles with discrete and sharp melting peaks is added in a variety of objects such as explosive derivative, drug, polymer, and ink. This method has high labeling capacity owing to the small sizes of nanoparticles, sharp melting peaks, and large scan range of thermal analysis. The thermal barcode can enhance forensic investigation by its technical readiness, structural covertness, and robustness. PMID:24901064

  8. Plant DNA barcodes and the influence of gene flow.

    PubMed

    Naciri, Yamama; Caetano, Sofia; Salamin, Nicolas

    2012-07-01

    Success of species assignment using DNA barcodes has been shown to vary among plant lineages because of a wide range of different factors. In this study, we confirm the theoretical prediction that gene flow influences species assignment with simulations and a literature survey. We show that the genome experiencing the highest gene flow is, in the majority of the cases, the best suited for species delimitation. Our results clearly suggest that, for most angiosperm groups, plastid markers will not be the most appropriate for use as DNA barcodes. We therefore advocate shifting the focus from plastid to nuclear markers to achieve an overall higher success using DNA barcodes.

  9. Testing DNA barcode performance in 1000 species of European lepidoptera: large geographic distances have small genetic impacts.

    PubMed

    Huemer, Peter; Mutanen, Marko; Sefc, Kristina M; Hebert, Paul D N

    2014-01-01

    This study examines the performance of DNA barcodes (mt cytochrome c oxidase 1 gene) in the identification of 1004 species of Lepidoptera shared by two localities (Finland, Austria) that are 1600 km apart. Maximum intraspecific distances for the pooled data were less than 2% for 880 species (87.6%), while deeper divergence was detected in 124 species. Despite such variation, the overall DNA barcode library possessed diagnostic COI sequences for 98.8% of the taxa. Because a reference library based on Finnish specimens was highly effective in identifying specimens from Austria, we conclude that barcode libraries based on regional sampling can often be effective for a much larger area. Moreover, dispersal ability (poor, good) and distribution patterns (disjunct, fragmented, continuous, migratory) had little impact on levels of intraspecific geographic divergence. Furthermore, the present study revealed that, despite the intensity of past taxonomic work on European Lepidoptera, nearly 20% of the species shared by Austria and Finland require further work to clarify their status. Particularly discordant BIN (Barcode Index Number) cases should be checked to ascertain possible explanatory factors such as incorrect taxonomy, hybridization, introgression, and Wolbachia infections.

  10. Dietary Niche Partitioning of Euphaea formosa and Matrona cyanoptera (Odonata: Zygoptera) on the Basis of DNA Barcoding of Larval Feces

    PubMed Central

    Cheng, Yun-Chieh; Lin, Chung-Ping

    2016-01-01

    Odonate larvae are commonly considered opportunistic general predators in freshwater ecosystems. However, the dietary breadth of most odonate larvae in forest streams is still poorly documented. We characterized the prey species and estimated the level of dietary niche overlap of two damselflies, Euphaea formosa Hagen 1869 and Matrona cyanoptera Hämäläinen and Yeh, 2000 in a forest stream of central Taiwan on the basis of DNA barcoding of larval feces. A collection of 23 successfully identified cytochrome c oxidase 1 (CO1) barcoding sequences suggested that the mayflies (Ephemeroptera), caddisflies (Trichoptera), and midges (Diptera) comprise the majority (43%, 6/14) of prey species consumed by E. formosa larvae, whereas the identified prey for M. cyanoptera were mainly zooplankton (56%, 5/9). Statistical analysis of dietary overlap indicated that these two species occupy different dietary niches (Pianka’s index = 0.219). DNA barcoding analysis of damselfly larval feces was effective in detecting less sclerotized prey such as vertebrates (fish and frog) and small zooplankton. However, a moderately successful rate (<70%) of PCR amplification by universal CO1 primers and a low percentage (<60%) of identifiable sequences in public databases indicate the limitations of naive DNA barcoding in fecal analysis. PMID:27432350

  11. Dietary Niche Partitioning of Euphaea formosa and Matrona cyanoptera (Odonata: Zygoptera) on the Basis of DNA Barcoding of Larval Feces.

    PubMed

    Cheng, Yun-Chieh; Lin, Chung-Ping

    2016-01-01

    Odonate larvae are commonly considered opportunistic general predators in freshwater ecosystems. However, the dietary breadth of most odonate larvae in forest streams is still poorly documented. We characterized the prey species and estimated the level of dietary niche overlap of two damselflies, Euphaea formosa Hagen 1869 and Matrona cyanoptera Hämäläinen and Yeh, 2000 in a forest stream of central Taiwan on the basis of DNA barcoding of larval feces. A collection of 23 successfully identified cytochrome c oxidase 1 (CO1) barcoding sequences suggested that the mayflies (Ephemeroptera), caddisflies (Trichoptera), and midges (Diptera) comprise the majority (43%, 6/14) of prey species consumed by E. formosa larvae, whereas the identified prey for M. cyanoptera were mainly zooplankton (56%, 5/9). Statistical analysis of dietary overlap indicated that these two species occupy different dietary niches (Pianka's index = 0.219). DNA barcoding analysis of damselfly larval feces was effective in detecting less sclerotized prey such as vertebrates (fish and frog) and small zooplankton. However, a moderately successful rate (<70%) of PCR amplification by universal CO1 primers and a low percentage (<60%) of identifiable sequences in public databases indicate the limitations of naive DNA barcoding in fecal analysis. PMID:27432350

  12. DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacion Guanacaste, Costa Rica.

    PubMed

    Burns, John M; Janzen, Daniel H; Hajibabaei, Mehrdad; Hallwachs, Winnie; Hebert, Paul D N

    2008-04-29

    DNA barcodes can be used to identify cryptic species of skipper butterflies previously detected by classic taxonomic methods and to provide first clues to the existence of yet other cryptic species. A striking case is the common geographically and ecologically widespread neotropical skipper butterfly Perichares philetes (Lepidoptera, Hesperiidae), described in 1775, which barcoding splits into a complex of four species in Area de Conservación Guanacaste (ACG) in northwestern Costa Rica. Three of the species are new, and all four are described. Caterpillars, pupae, and foodplants offer better distinguishing characters than do adults, whose differences are mostly average, subtle, and blurred by intraspecific variation. The caterpillars of two species are generalist grass-eaters; of the other two, specialist palm-eaters, each of which feeds on different genera. But all of these cryptic species are more specialized in their diet than was the morphospecies that held them. The four ACG taxa discovered to date belong to a panneotropical complex of at least eight species. This complex likely includes still more species, whose exposure may require barcoding. Barcoding ACG hesperiid morphospecies has increased their number by nearly 10%, an unexpectedly high figure for such relatively well known insects.

  13. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  14. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  15. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  16. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  17. Two dimensional barcode-inspired automatic analysis for arrayed microfluidic immunoassays

    PubMed Central

    Zhang, Yi; Qiao, Lingbo; Ren, Yunke; Wang, Xuwei; Gao, Ming; Tang, Yunfang; Jeff Xi, Jianzhong; Fu, Tzung-May; Jiang, Xingyu

    2013-01-01

    The usability of many high-throughput lab-on-a-chip devices in point-of-care applications is currently limited by the manual data acquisition and analysis process, which are labor intensive and time consuming. Based on our original design in the biochemical reactions, we proposed here a universal approach to perform automatic, fast, and robust analysis for high-throughput array-based microfluidic immunoassays. Inspired by two-dimensional (2D) barcodes, we incorporated asymmetric function patterns into a microfluidic array. These function patterns provide quantitative information on the characteristic dimensions of the microfluidic array, as well as mark its orientation and origin of coordinates. We used a computer program to perform automatic analysis for a high-throughput antigen/antibody interaction experiment in 10 s, which was more than 500 times faster than conventional manual processing. Our method is broadly applicable to many other microchannel-based immunoassays. PMID:24404030

  18. Two dimensional barcode-inspired automatic analysis for arrayed microfluidic immunoassays.

    PubMed

    Zhang, Yi; Qiao, Lingbo; Ren, Yunke; Wang, Xuwei; Gao, Ming; Tang, Yunfang; Jeff Xi, Jianzhong; Fu, Tzung-May; Jiang, Xingyu

    2013-01-01

    The usability of many high-throughput lab-on-a-chip devices in point-of-care applications is currently limited by the manual data acquisition and analysis process, which are labor intensive and time consuming. Based on our original design in the biochemical reactions, we proposed here a universal approach to perform automatic, fast, and robust analysis for high-throughput array-based microfluidic immunoassays. Inspired by two-dimensional (2D) barcodes, we incorporated asymmetric function patterns into a microfluidic array. These function patterns provide quantitative information on the characteristic dimensions of the microfluidic array, as well as mark its orientation and origin of coordinates. We used a computer program to perform automatic analysis for a high-throughput antigen/antibody interaction experiment in 10 s, which was more than 500 times faster than conventional manual processing. Our method is broadly applicable to many other microchannel-based immunoassays.

  19. Clinical Utility and Economic Impact of CYP2D6 Genotyping.

    PubMed

    Reynolds, Kristen K; McNally, Beth A; Linder, Mark W

    2016-09-01

    Pharmacogenetics examines an individual's genetic makeup to help predict the safety and efficacy of medications. Practical application optimizes treatment selection to decrease the failure rate of medications and improve clinical outcomes. Lack of efficacy is costly due to adverse drug reactions and increased hospital stays. Cytochrome P450 2D6 (CYP2D6) metabolizes roughly 25% of all drugs. Detecting variants that cause altered CYP2D6 enzymatic activity identifies patients at risk of adverse drug reactions or therapeutic failure with standard dosages of medications metabolized by CYP2D6. This article discusses the clinical application of pharmacogenetics to improve care and decrease costs. PMID:27514466

  20. DNA barcoding in animal species: progress, potential and pitfalls.

    PubMed

    Waugh, John

    2007-02-01

    Despite 250 years of work in systematics, the majority of species remains to be identified. Rising extinction rates and the need for increased biological monitoring lend urgency to this task. DNA sequencing, with key sequences serving as a "barcode", has therefore been proposed as a technology that might expedite species identification. In particular, the mitochondrial cytochrome c oxidase subunit 1 gene has been employed as a possible DNA marker for species and a number of studies in a variety of taxa have accordingly been carried out to examine its efficacy. In general, these studies demonstrate that DNA barcoding resolves most species, although some taxa have proved intractable. In some studies, barcoding provided a means of highlighting potential cryptic, synonymous or extinct species as well as matching adults with immature specimens. Higher taxa, however, have not been resolved as accurately as species. Nonetheless, DNA barcoding appears to offer a means of identifying species and may become a standard tool.

  1. Does DNA barcoding improve performance of traditional stream bioassessment metrics?

    EPA Science Inventory

    Benthic macroinvertebrate community composition is used to assess wetland and stream condition and to help differentiate the effects of stressors among sites. Deoxyribonucleic acid (DNA) barcoding has been promoted as a way to increase taxonomic resolution and, thereby, to increa...

  2. DNA barcoding Satyrine butterflies (Lepidoptera: Nymphalidae) in China.

    PubMed

    Yang, Mingsheng; Zhai, Qing; Yang, Zhaofu; Zhang, Yalin

    2016-07-01

    We investigated the effectiveness of the standard 648 bp mitochondrial COI barcode region in discriminating among Satyrine species from China. A total of 214 COI sequences were obtained from 90 species, including 34 species that have never been barcoded. Analyses of genetic divergence show that the mean interspecific genetic divergence is about 16-fold higher than within species, and little overlap occurs between them. Neighbour-joining (NJ) analyses showed that 48 of the 50 species with two or more individuals, including two cases with deep intraspecific divergence (>3%), are monophyletic. Furthermore, when our sequences are combined with the conspecific sequences sampled from distantly geographic regions, the "barcoding gap" still exists, and all related species are recovered to be monophyletic in NJ analysis. Our study demonstrates that COI barcoding is effective in discriminating among the satyrine species of China, and provides a reference library for their future molecular identification.

  3. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  4. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  5. Calibrating snakehead diversity with DNA barcodes: expanding taxonomic coverage to enable identification of potential and established invasive species.

    PubMed

    Serrao, Natasha R; Steinke, Dirk; Hanner, Robert H

    2014-01-01

    Detecting and documenting the occurrence of invasive species outside their native range requires tools to support their identification. This can be challenging for taxa with diverse life stages and/or problematic or unresolved morphological taxonomies. DNA barcoding provides a potent method for identifying invasive species, as it allows for species identification at all life stages, including fragmentary remains. It also provides an efficient interim taxonomic framework for quantifying cryptic genetic diversity by parsing barcode sequences into discontinuous haplogroup clusters (typical of reproductively isolated species) and labelling them with unique alphanumeric identifiers. Snakehead fishes are a diverse group of opportunistic predators endemic to Asia and Africa that may potentially pose significant threats as aquatic invasive species. At least three snakehead species (Channa argus, C. maculata, and C. marulius) are thought to have entered North America through the aquarium and live-food fish markets, and have established populations, yet their origins remain unclear. The objectives of this study were to assemble a library of DNA barcode sequences derived from expert identified reference specimens in order to determine the identity and aid invasion pathway analysis of the non-indigenous species found in North America using DNA barcodes. Sequences were obtained from 121 tissue samples representing 25 species and combined with public records from GenBank for a total of 36 putative species, which then partitioned into 49 discrete haplogroups. Multiple divergent clusters were observed within C. gachua, C. marulius, C. punctata and C. striata suggesting the potential presence of cryptic species diversity within these lineages. Our findings demonstrate that DNA barcoding is a valuable tool for species identification in challenging and under-studied taxonomic groups such as snakeheads, and provides a useful framework for inferring invasion pathway analysis.

  6. Calibrating Snakehead Diversity with DNA Barcodes: Expanding Taxonomic Coverage to Enable Identification of Potential and Established Invasive Species

    PubMed Central

    Serrao, Natasha R.; Steinke, Dirk; Hanner, Robert H.

    2014-01-01

    Detecting and documenting the occurrence of invasive species outside their native range requires tools to support their identification. This can be challenging for taxa with diverse life stages and/or problematic or unresolved morphological taxonomies. DNA barcoding provides a potent method for identifying invasive species, as it allows for species identification at all life stages, including fragmentary remains. It also provides an efficient interim taxonomic framework for quantifying cryptic genetic diversity by parsing barcode sequences into discontinuous haplogroup clusters (typical of reproductively isolated species) and labelling them with unique alphanumeric identifiers. Snakehead fishes are a diverse group of opportunistic predators endemic to Asia and Africa that may potentially pose significant threats as aquatic invasive species. At least three snakehead species (Channa argus, C. maculata, and C. marulius) are thought to have entered North America through the aquarium and live-food fish markets, and have established populations, yet their origins remain unclear. The objectives of this study were to assemble a library of DNA barcode sequences derived from expert identified reference specimens in order to determine the identity and aid invasion pathway analysis of the non-indigenous species found in North America using DNA barcodes. Sequences were obtained from 121 tissue samples representing 25 species and combined with public records from GenBank for a total of 36 putative species, which then partitioned into 49 discrete haplogroups. Multiple divergent clusters were observed within C. gachua, C. marulius, C. punctata and C. striata suggesting the potential presence of cryptic species diversity within these lineages. Our findings demonstrate that DNA barcoding is a valuable tool for species identification in challenging and under-studied taxonomic groups such as snakeheads, and provides a useful framework for inferring invasion pathway analysis. PMID

  7. Calibrating snakehead diversity with DNA barcodes: expanding taxonomic coverage to enable identification of potential and established invasive species.

    PubMed

    Serrao, Natasha R; Steinke, Dirk; Hanner, Robert H

    2014-01-01

    Detecting and documenting the occurrence of invasive species outside their native range requires tools to support their identification. This can be challenging for taxa with diverse life stages and/or problematic or unresolved morphological taxonomies. DNA barcoding provides a potent method for identifying invasive species, as it allows for species identification at all life stages, including fragmentary remains. It also provides an efficient interim taxonomic framework for quantifying cryptic genetic diversity by parsing barcode sequences into discontinuous haplogroup clusters (typical of reproductively isolated species) and labelling them with unique alphanumeric identifiers. Snakehead fishes are a diverse group of opportunistic predators endemic to Asia and Africa that may potentially pose significant threats as aquatic invasive species. At least three snakehead species (Channa argus, C. maculata, and C. marulius) are thought to have entered North America through the aquarium and live-food fish markets, and have established populations, yet their origins remain unclear. The objectives of this study were to assemble a library of DNA barcode sequences derived from expert identified reference specimens in order to determine the identity and aid invasion pathway analysis of the non-indigenous species found in North America using DNA barcodes. Sequences were obtained from 121 tissue samples representing 25 species and combined with public records from GenBank for a total of 36 putative species, which then partitioned into 49 discrete haplogroups. Multiple divergent clusters were observed within C. gachua, C. marulius, C. punctata and C. striata suggesting the potential presence of cryptic species diversity within these lineages. Our findings demonstrate that DNA barcoding is a valuable tool for species identification in challenging and under-studied taxonomic groups such as snakeheads, and provides a useful framework for inferring invasion pathway analysis. PMID

  8. Species Identification in Malaise Trap Samples by DNA Barcoding Based on NGS Technologies and a Scoring Matrix

    PubMed Central

    Morinière, Jérôme; Cancian de Araujo, Bruno; Hausmann, Axel; Balke, Michael; Hendrich, Lars; Doczkal, Dieter; Arvidsson, Samuel; Haszprunar, Gerhard

    2016-01-01

    The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1-5’ fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage ≥10; CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples; whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming presorting process will yield approximately 30% more high score BINs compared to the non-sorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline. PMID:27191722

  9. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  10. Identifying Fishes through DNA Barcodes and Microarrays

    PubMed Central

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N.; Weber, Hannes; Blohm, Dietmar

    2010-01-01

    Background International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of “DNA barcoding” and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the “position of label” effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products. PMID

  11. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  12. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  13. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  14. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  15. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  16. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  17. 2D photonic-crystal optomechanical nanoresonator.

    PubMed

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  18. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  19. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  20. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  1. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  2. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  3. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  4. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  5. Authenticity analyses of Phyllanthus amarus using barcoding coupled with HRM analysis to control its quality for medicinal plant product.

    PubMed

    Buddhachat, Kittisak; Osathanunkul, Maslin; Madesis, Panagiotis; Chomdej, Siriwadee; Ongchai, Siriwan

    2015-11-15

    The Phyllanthus genus, a plant used in traditional Thai medicine, has according to several pharmacopeias hepatoprotective properties. Not only is the anatomical morphology of these species relatively similar but they also share the Thai common names Look-Tai-Bai (ลูกใต้ใบ) and Yah-Tai-Bai (หญ้าใต้ใบ), which might cause confusion for laypersons. This study attempted to develop a method for accurate identification of Phyllanthus species, especially Phyllanthus amarus, and to detect contaminants in P. amarus products by using DNA barcoding coupled with high resolution melting (HRM) analysis (bar-HRM). Two plastid loci (rbcL and trnL) were chosen for DNA barcoding to generate a suitable primer for distinguishing Phyllanthus species by HRM analysis. The five species of Phyllanthus were subjected to amplification for testing the specificity and discrimination power of the designed primers derived from rbcL and trnL regions. Sensitivity of the method (DNA barcoding conjugated with HRM) to detect adulterant in P. amarus samples was evaluated. The commercial P. amarus products obtained from a local market were authenticated. The primer pair derived from trnL DNA barcoding (PhylltrnL) had more specificity and power of discrimination for Phyllanthus species than that derived from rbcL DNA barcoding (PhyllrbcL). The result showed that Tm of P. amarus, Phyllanthus urinaria, Phyllanthus debilis, Phyllanthus airy-shawii, and Phyllanthus virgatus was 74.3±0.08, 73.04±0.07, 73.36±0.05, 72.21±0.06, 72.77±0.15°C, respectively. This method proved to be a very sensitive tool that can be used for rapid detection of contamination as low as 1% of other Phyllanthus species in P. amarus admixtures. All commercial products of P. amarus obtained from a local market in Thailand were found to contain pure raw materials of P. amarus without any substitution or contamination. Our results indicated that the use of DNA barcoding coupled with HRM was an

  6. Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding.

    PubMed

    Little, Damon P

    2014-09-01

    Ginkgo biloba L. (known as ginkgo or maidenhair tree) is a phylogenetically isolated, charismatic, gymnosperm tree. Herbal dietary supplements, prepared from G. biloba leaves, are consumed to boost cognitive capacity via improved blood perfusion and mitochondrial function. A novel DNA mini-barcode assay was designed and validated for the authentication of G. biloba in herbal dietary supplements (n = 22; sensitivity = 1.00, 95% CI = 0.59-1.00; specificity = 1.00, 95% CI = 0.64-1.00). This assay was further used to estimate the frequency of mislabeled ginkgo herbal dietary supplements on the market in the United States of America: DNA amenable to PCR could not be extracted from three (7.5%) of the 40 supplements sampled, 31 of 37 (83.8%) assayable supplements contained identifiable G. biloba DNA, and six supplements (16.2%) contained fillers without any detectable G. biloba DNA. It is hoped that this assay will be used by supplement manufacturers to ensure that their supplements contain G. biloba.

  7. Broadband THz Spectroscopy of 2D Nanoscale Materials

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy

    Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).

  8. A 2-D ECE Imaging Diagnostic for TEXTOR

    NASA Astrophysics Data System (ADS)

    Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.

    2002-11-01

    A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.

  9. DNA barcoding of the vegetable leafminer Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Bangladesh

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA barcoding revealed the presence of the polyphagous leafminer pest Liriomyza sativae Blanchard in Bangladesh. DNA barcode sequences for mitochondrial COI were generated for Agromyzidae larvae, pupae and adults collected from field populations across Bangladesh. BLAST sequence similarity searches ...

  10. DNA barcoding in the media: does coverage of cool science reflect its social context?

    PubMed

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life. PMID:27463361

  11. DNA barcoding in the media: does coverage of cool science reflect its social context?

    PubMed

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life.

  12. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  13. International Barcode of Life: Evolution of a global research community.

    PubMed

    Adamowicz, Sarah J

    2015-05-01

    The 6th International Barcode of Life Conference (Guelph, Canada, 18-21 August 2015), themed Barcodes to Biomes, showcases the latest developments in DNA barcoding research and its diverse applications. The meeting also provides a venue for a global research community to share ideas and to initiate collaborations. All plenary and contributed abstracts are being published as an open-access special issue of Genome. Here, I use a comparison with the 3rd Conference (Mexico City, 2009) to highlight 10 recent and emerging trends that are apparent among the contributed abstracts. One of the outstanding trends is the rising proportion of abstracts that focus upon multiple socio-economically important applications of DNA barcoding, including studies of agricultural pests, quarantine and invasive species, wildlife forensics, disease vectors, biomonitoring of ecosystem health, and marketplace surveys evaluating the authenticity of seafood products and medicinal plants. Other key movements include the use of barcoding and metabarcoding approaches for dietary analyses-and for studies of food webs spanning three or more trophic levels-as well as the spread of next-generation sequencing methods in multiple contexts. In combination with the rising taxonomic and geographic scope of many barcoding iniatives, these developments suggest that several important questions in biology are becoming tractable. "What is this specimen on an agricultural shipment?", "Who eats whom in this whole food web?", and even "How many species are there?" are questions that may be answered in time periods ranging from a few years to one or a few decades. The next phases of DNA barcoding may expand yet further into prediction of community shifts with climate change and improved management of biological resources.

  14. International Barcode of Life: Evolution of a global research community.

    PubMed

    Adamowicz, Sarah J

    2015-05-01

    The 6th International Barcode of Life Conference (Guelph, Canada, 18-21 August 2015), themed Barcodes to Biomes, showcases the latest developments in DNA barcoding research and its diverse applications. The meeting also provides a venue for a global research community to share ideas and to initiate collaborations. All plenary and contributed abstracts are being published as an open-access special issue of Genome. Here, I use a comparison with the 3rd Conference (Mexico City, 2009) to highlight 10 recent and emerging trends that are apparent among the contributed abstracts. One of the outstanding trends is the rising proportion of abstracts that focus upon multiple socio-economically important applications of DNA barcoding, including studies of agricultural pests, quarantine and invasive species, wildlife forensics, disease vectors, biomonitoring of ecosystem health, and marketplace surveys evaluating the authenticity of seafood products and medicinal plants. Other key movements include the use of barcoding and metabarcoding approaches for dietary analyses-and for studies of food webs spanning three or more trophic levels-as well as the spread of next-generation sequencing methods in multiple contexts. In combination with the rising taxonomic and geographic scope of many barcoding iniatives, these developments suggest that several important questions in biology are becoming tractable. "What is this specimen on an agricultural shipment?", "Who eats whom in this whole food web?", and even "How many species are there?" are questions that may be answered in time periods ranging from a few years to one or a few decades. The next phases of DNA barcoding may expand yet further into prediction of community shifts with climate change and improved management of biological resources. PMID:26444714

  15. Identification of scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques.

    PubMed

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm(2)) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  16. Identification of Scleractinian Coral Recruits Using Fluorescent Censusing and DNA Barcoding Techniques

    PubMed Central

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  17. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  18. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  19. Managing Archival Collections in an Automated Environment: The Joys of Barcoding

    ERIC Educational Resources Information Center

    Hamburger, Susan; Charles, Jane Veronica

    2006-01-01

    In a desire for automated collection control, archival repositories are adopting barcoding from their library and records center colleagues. This article discusses the planning, design, and implementation phases of barcoding. The authors focus on reasons for barcoding, security benefits, in-room circulation tracking, potential for gathering…

  20. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  1. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  2. Automation and workflow considerations for embedding Digimarc Barcodes at scale

    NASA Astrophysics Data System (ADS)

    Rodriguez, Tony; Haaga, Don; Calhoon, Sean

    2015-03-01

    The Digimarc® Barcode is a digital watermark applied to packages and variable data labels that carries GS1 standard GTIN-14 data traditionally carried by a 1-D barcode. The Digimarc Barcode can be read with smartphones and imaging-based barcode readers commonly used in grocery and retail environments. Using smartphones, consumers can engage with products and retailers can materially increase the speed of check-out, increasing store margins and providing a better experience for shoppers. Internal testing has shown an average of 53% increase in scanning throughput, enabling 100's of millions of dollars in cost savings [1] for retailers when deployed at scale. To get to scale, the process of embedding a digital watermark must be automated and integrated within existing workflows. Creating the tools and processes to do so represents a new challenge for the watermarking community. This paper presents a description and an analysis of the workflow implemented by Digimarc to deploy the Digimarc Barcode at scale. An overview of the tools created and lessons learned during the introduction of technology to the market are provided.

  3. DNA Barcoding of Japanese Click Beetles (Coleoptera, Elateridae)

    PubMed Central

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa. PMID:25636000

  4. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae).

    PubMed

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.

  5. Increasing global participation in genetics research through DNA barcoding.

    PubMed

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources. PMID:26642251

  6. Efficiency of ITS sequences for DNA barcoding in Passiflora (Passifloraceae).

    PubMed

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-01-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using "best match" and "best close match" methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species. PMID:25837628

  7. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae)

    PubMed Central

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-01-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species. PMID:25837628

  8. DNA Barcode Sequencing from Old Type Specimens as a Tool in Taxonomy: A Case Study in the Diverse Genus Eois (Lepidoptera: Geometridae)

    PubMed Central

    Strutzenberger, Patrick; Brehm, Gunnar; Fiedler, Konrad

    2012-01-01

    In this study we report on the sequencing of the COI barcode region from 96 historical specimens (92 type specimens +4 non-types) of Eois. Eois is a diverse clade of tropical geometrid moths and is the target of a number of ongoing studies on life-histories, phylogeny, co-evolution with host plants or parasitoids, and diversity patterns across temporal and spatial dimensions. The unequivocal application of valid names is crucial for all aspects of biodiversity research as well as monitoring and conservation efforts. The availability of barcodes from historical type specimens has the potential to facilitate the much-needed acceleration of species description. We performed non-destructive DNA extraction on the abdomens of Eois specimens between 79 and 157 years of age. We used six primer combinations (recovering between 109 and 130 bp each) to target the full-length barcode sequence of each specimen. We were able to obtain sequences for 91 of 96 specimens (success rate 94.8%). Sequence length ranged from 121 bp to full barcode sequences (658 bp), the average sequence length was ∼500 bp. We detected a moderately strong and statistically significant negative correlation between specimen age and total sequence length, which is in agreement with expectations. The abdomen proved to be an exceedingly valuable source of DNA in old specimens of Lepidoptera. Barcode sequences obtained in this study are currently being used in an effort towards a step-wise taxonomic revision of Eois. We encourage that DNA barcodes obtained from types specimens should be included in all species descriptions and revisions whenever feasible. PMID:23185414

  9. Sliding window analyses for optimal selection of mini-barcodes, and application to 454-pyrosequencing for specimen identification from degraded DNA.

    PubMed

    Boyer, Stephane; Brown, Samuel D J; Collins, Rupert A; Cruickshank, Robert H; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Wratten, Stephen D

    2012-01-01

    DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential 'mini-barcodes' for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation. PMID:22666489

  10. Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises

    PubMed Central

    Raupach, Michael J.; Hendrich, Lars; Küchler, Stefan M.; Deister, Fabian; Morinière, Jérome; Gossner, Martin M.

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance <2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances >2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)). PMID:25203616

  11. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  12. Delimiting Species-Poor Data Sets using Single Molecular Markers: A Study of Barcode Gaps, Haplowebs and GMYC.

    PubMed

    Dellicour, Simon; Flot, Jean-François

    2015-11-01

    Most single-locus molecular approaches to species delimitation available to date have been designed and tested on data sets comprising at least tens of species, whereas the opposite case (species-poor data sets for which the hypothesis that all individuals are conspecific cannot by rejected beforehand) has rarely been the focus of such attempts. Here we compare the performance of barcode gap detection, haplowebs and generalized mixed Yule-coalescent (GMYC) models to delineate chimpanzees and bonobos using nuclear sequence markers, then apply these single-locus species delimitation methods to data sets of one, three, or six species simulated under a wide range of population sizes, speciation rates, mutation rates and sampling efforts. Our results show that barcode gap detection and GMYC models are unable to delineate species properly in data sets composed of one or two species, two situations in which haplowebs outperform them. For data sets composed of three or six species, bGMYC and haplowebs outperform the single-threshold and multiple-threshold versions of GMYC, whereas a clear barcode gap is only observed when population sizes and speciation rates are both small. The latter conditions represent a "sweet spot" for molecular taxonomy where all the single-locus approaches tested work well; however, the performance of these methods decreases strongly when population sizes and speciation rates are high, suggesting that multilocus approaches may be necessary to tackle such cases.

  13. DNA Barcoding Identifies Illegal Parrot Trade.

    PubMed

    Gonçalves, Priscila F M; Oliveira-Marques, Adriana R; Matsumoto, Tania E; Miyaki, Cristina Y

    2015-01-01

    Illegal trade threatens the survival of many wild species, and molecular forensics can shed light on various questions raised during the investigation of cases of illegal trade. Among these questions is the identity of the species involved. Here we report a case of a man who was caught in a Brazilian airport trying to travel with 58 avian eggs. He claimed they were quail eggs, but authorities suspected they were from parrots. The embryos never hatched and it was not possible to identify them based on morphology. As 29% of parrot species are endangered, the identity of the species involved was important to establish a stronger criminal case. Thus, we identified the embryos' species based on the analyses of mitochondrial DNA sequences (cytochrome c oxidase subunit I gene [COI] and 16S ribosomal DNA). Embryonic COI sequences were compared with those deposited in BOLD (The Barcode of Life Data System) while their 16S sequences were compared with GenBank sequences. Clustering analysis based on neighbor-joining was also performed using parrot COI and 16S sequences deposited in BOLD and GenBank. The results, based on both genes, indicated that 57 embryos were parrots (Alipiopsitta xanthops, Ara ararauna, and the [Amazona aestiva/A. ochrocephala] complex), and 1 was an owl. This kind of data can help criminal investigations and to design species-specific anti-poaching strategies, and demonstrate how DNA sequence analysis in the identification of bird species is a powerful conservation tool.

  14. DNA Barcoding Identifies Illegal Parrot Trade.

    PubMed

    Gonçalves, Priscila F M; Oliveira-Marques, Adriana R; Matsumoto, Tania E; Miyaki, Cristina Y

    2015-01-01

    Illegal trade threatens the survival of many wild species, and molecular forensics can shed light on various questions raised during the investigation of cases of illegal trade. Among these questions is the identity of the species involved. Here we report a case of a man who was caught in a Brazilian airport trying to travel with 58 avian eggs. He claimed they were quail eggs, but authorities suspected they were from parrots. The embryos never hatched and it was not possible to identify them based on morphology. As 29% of parrot species are endangered, the identity of the species involved was important to establish a stronger criminal case. Thus, we identified the embryos' species based on the analyses of mitochondrial DNA sequences (cytochrome c oxidase subunit I gene [COI] and 16S ribosomal DNA). Embryonic COI sequences were compared with those deposited in BOLD (The Barcode of Life Data System) while their 16S sequences were compared with GenBank sequences. Clustering analysis based on neighbor-joining was also performed using parrot COI and 16S sequences deposited in BOLD and GenBank. The results, based on both genes, indicated that 57 embryos were parrots (Alipiopsitta xanthops, Ara ararauna, and the [Amazona aestiva/A. ochrocephala] complex), and 1 was an owl. This kind of data can help criminal investigations and to design species-specific anti-poaching strategies, and demonstrate how DNA sequence analysis in the identification of bird species is a powerful conservation tool. PMID:26245790

  15. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives

    PubMed Central

    Gopurenko, David

    2016-01-01

    Helicoverpa and Heliothis species include some of the world’s most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests. PMID:27509042

  16. |SE|S|AM|E| Barcode: NGS-oriented software for amplicon characterization--application to species and environmental barcoding.

    PubMed

    Piry, S; Guivier, E; Realini, A; Martin, J-F

    2012-11-01

    Progress in NGS technologies has opened up new opportunities for characterizing biodiversity, both for individual specimen identification and for environmental barcoding. Although the amount of data available to biologist is increasing, user-friendly tools to facilitate data analysis have yet to be developed. Our aim, with |SE|S|AM|E| Barcode, is to provide such support through a unified platform. The sequences are analysed through a pipeline that (i) processes NGS amplicon runs, filtering markers and samples, (ii) builds reference libraries and finally (iii) identifies (barcodes) the sequences in each amplicon from the reference library. We use a simulated data set for specimen identification and a recently published data set for environmental barcoding to validate the method. The results obtained are consistent with the expected characterizations (in silico and previously published, respectively). |SE|S|AM|E| Barcode and its documentation are freely available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported Licence for Windows and Linux from http://www1.montpellier.inra.fr/CBGP/NGS/.

  17. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives.

    PubMed

    Mitchell, Andrew; Gopurenko, David

    2016-01-01

    Helicoverpa and Heliothis species include some of the world's most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests. PMID:27509042

  18. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  19. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  20. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  1. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  2. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  3. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity.

    PubMed

    Leray, Matthieu; Knowlton, Nancy

    2015-02-17

    Documenting the diversity of marine life is challenging because many species are cryptic, small, and rare, and belong to poorly known groups. New sequencing technologies, especially when combined with standardized sampling, promise to make comprehensive biodiversity assessments and monitoring feasible on a large scale. We used this approach to characterize patterns of diversity on oyster reefs across a range of geographic scales comprising a temperate location [Virginia (VA)] and a subtropical location [Florida (FL)]. Eukaryotic organisms that colonized multilayered settlement surfaces (autonomous reef monitoring structures) over a 6-mo period were identified by cytochrome c oxidase subunit I barcoding (>2-mm mobile organisms) and metabarcoding (sessile and smaller mobile organisms). In a total area of ∼ 15.64 m(2) and volume of ∼ 0.09 m(3), 2,179 operational taxonomic units (OTUs) were recorded from 983,056 sequences. However, only 10.9% could be matched to reference barcodes in public databases, with only 8.2% matching barcodes with both genus and species names. Taxonomic coverage was broad, particularly for animals (22 phyla recorded), but 35.6% of OTUs detected via metabarcoding could not be confidently assigned to a taxonomic group. The smallest size fraction (500 to 106 μm) was the most diverse (more than two-thirds of OTUs). There was little taxonomic overlap between VA and FL, and samples separated by ∼ 2 m were significantly more similar than samples separated by ∼ 100 m. Ground-truthing with independent assessments of taxonomic composition indicated that both presence-absence information and relative abundance information are captured by metabarcoding data, suggesting considerable potential for ecological studies and environmental monitoring. PMID:25646458

  4. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity

    PubMed Central

    Leray, Matthieu; Knowlton, Nancy

    2015-01-01

    Documenting the diversity of marine life is challenging because many species are cryptic, small, and rare, and belong to poorly known groups. New sequencing technologies, especially when combined with standardized sampling, promise to make comprehensive biodiversity assessments and monitoring feasible on a large scale. We used this approach to characterize patterns of diversity on oyster reefs across a range of geographic scales comprising a temperate location [Virginia (VA)] and a subtropical location [Florida (FL)]. Eukaryotic organisms that colonized multilayered settlement surfaces (autonomous reef monitoring structures) over a 6-mo period were identified by cytochrome c oxidase subunit I barcoding (>2-mm mobile organisms) and metabarcoding (sessile and smaller mobile organisms). In a total area of ∼15.64 m2 and volume of ∼0.09 m3, 2,179 operational taxonomic units (OTUs) were recorded from 983,056 sequences. However, only 10.9% could be matched to reference barcodes in public databases, with only 8.2% matching barcodes with both genus and species names. Taxonomic coverage was broad, particularly for animals (22 phyla recorded), but 35.6% of OTUs detected via metabarcoding could not be confidently assigned to a taxonomic group. The smallest size fraction (500 to 106 μm) was the most diverse (more than two-thirds of OTUs). There was little taxonomic overlap between VA and FL, and samples separated by ∼2 m were significantly more similar than samples separated by ∼100 m. Ground-truthing with independent assessments of taxonomic composition indicated that both presence–absence information and relative abundance information are captured by metabarcoding data, suggesting considerable potential for ecological studies and environmental monitoring. PMID:25646458

  5. A laboratory information management system for DNA barcoding workflows.

    PubMed

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out. PMID:22344310

  6. Pollen DNA barcoding: current applications and future prospects.

    PubMed

    Bell, Karen L; de Vere, Natasha; Keller, Alexander; Richardson, Rodney T; Gous, Annemarie; Burgess, Kevin S; Brosi, Berry J

    2016-09-01

    Identification of the species origin of pollen has many applications, including assessment of plant-pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and has few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs. In this paper, we review the nascent field of pollen DNA barcoding and discuss potential new applications of this technology, highlighting existing limitations and future research developments that will improve its utility in a wide range of applications.

  7. A laboratory information management system for DNA barcoding workflows.

    PubMed

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  8. DNA barcoding of fungi causing infections in humans and animals.

    PubMed

    Irinyi, Laszlo; Lackner, Michaela; de Hoog, G Sybren; Meyer, Wieland

    2016-02-01

    Correct species identification is becoming increasingly important in clinical diagnostics. Till now, many mycological laboratories rely on conventional phenotypic identification. But this is slow and strongly operator-dependent. Therefore, to improve the quality of pathogen identification, rapid, reliable, and objective identification methods are essential. One of the most encouraging approaches is molecular barcoding using the internal transcribed spacer (ITS) of the rDNA, which is rapid, easily achievable, accurate, and applicable directly from clinical specimens. It relies on the comparison of a single ITS sequence with a curated reference database. The International Society for Human and Animal Mycology (ISHAM) working group for DNA barcoding has recently established such a database, focusing on the majority of human and animal pathogenic fungi (ISHAM-ITS, freely accessible at http://www.isham.org/ or directly from http://its.mycologylab.org). For some fungi the use of secondary barcodes may be necessary.

  9. Pollen DNA barcoding: current applications and future prospects.

    PubMed

    Bell, Karen L; de Vere, Natasha; Keller, Alexander; Richardson, Rodney T; Gous, Annemarie; Burgess, Kevin S; Brosi, Berry J

    2016-09-01

    Identification of the species origin of pollen has many applications, including assessment of plant-pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and has few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs. In this paper, we review the nascent field of pollen DNA barcoding and discuss potential new applications of this technology, highlighting existing limitations and future research developments that will improve its utility in a wide range of applications. PMID:27322652

  10. DNA barcoding reveals a cryptic nemertean invasion in Atlantic and Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Fernández-Álvarez, Fernando Ángel; Machordom, Annie

    2013-09-01

    For several groups, like nemerteans, morphology-based identification is a hard discipline, but DNA barcoding may help non-experts in the identification process. In this study, DNA barcoding is used to reveal the cryptic invasion of Pacific Cephalothrix cf. simula into Atlantic and Mediterranean coasts. Although DNA barcoding is a promising method for the identification of Nemertea, only 6 % of the known number of nemertean species is currently associated with a correct DNA barcode. Therefore, additional morphological and molecular studies are necessary to advance the utility of DNA barcoding in the characterisation of possible nemertean alien invasions.

  11. A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Yamamoto, Manabu; Kitazawa, Toshiyuki; Tripathi, Saroj R.; Takeya, Kei; Kawase, Kodo

    2015-03-01

    We present a concealed terahertz barcode/chipless tag to achieve remote identification through an obstructing material using terahertz radiation. We show scanned terahertz reflection spectral images of barcodes concealed by a thick obstacle. A concealed and double- side printed terahertz barcode structure is proposed, and we demonstrate that our design has better performance in definition than a single-side printed barcode using terahertz time-domain spectroscopy. This technique combines the benefits of a chipless tag to read encoded information covered by an optically opaque material with low cost and a simple fabrication process. Simulations are also described, along with an explanation of the principle of the terahertz barcode identification system.

  12. From Codabar to ISBT 128: Implementing Barcode Technology in Blood BankAutomation System.

    PubMed

    Li, Bing-Nan; Dong, Ming-Chui; Vai Mang, I

    2005-01-01

    Barcode technology has been widely employed in medicine and healthcare industry. In this paper, it firstly introduces the application of barcode technology in information automation system oriented to blood banks and other transfusion facilities. In the following, the label paradigm of Codabar in Macao Blood Transfusion Center (CTS-Macau) is examined through the comparison with ISBT 128, an international barcode and labeling standard for blood and blood products. And then, it tries to exemplify the supersedure of Codabar by ISBT 128 via the implementation of barcode labeling system at CTS-Macau. This paper is intended to serve as a reference of implementing barcode technology in blood bank automation system.

  13. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  14. 2D to 3D transition of polymeric carbon nitride nanosheets

    SciTech Connect

    Chamorro-Posada, Pedro; Vázquez-Cabo, José; Martín-Ramos, Pablo; Martín-Gil, Jesús; Navas-Gracia, Luis M.; Dante, Roberto C.

    2014-11-15

    The transition from a prevalent turbostratic arrangement with low planar interactions (2D) to an array of polymeric carbon nitride nanosheets with stronger interplanar interactions (3D), occurring for samples treated above 650 °C, was detected by terahertz-time domain spectroscopy (THz-TDS). The simulated 3D material made of stacks of shifted quasi planar sheets composed of zigzagged polymer ribbons, delivered a XRD simulated pattern in relatively good agreement with the experimental one. The 2D to 3D transition was also supported by the simulation of THz-TDS spectra obtained from quantum chemistry calculations, in which the same broad bands around 2 THz and 1.5 THz were found for 2D and 3D arrays, respectively. This transition was also in accordance with the tightening of the interplanar distance probably due to an interplanar π bond contribution, as evidenced also by a broad absorption around 2.6 eV in the UV–vis spectrum, which appeared in the sample treated at 650 °C, and increased in the sample treated at 700 °C. The band gap was calculated for 1D and 2D cases. The value of 3.374 eV for the 2D case is, within the model accuracy and precision, in a relative good agreement with the value of 3.055 eV obtained from the experimental results. - Graphical abstract: 2D lattice mode vibrations and structural changes correlated with the so called “2D to 3D transition”. - Highlights: • A 2D to 3D transition has been detected for polymeric carbon nitride. • THz-TDS allowed us to discover and detect the 2D to 3D transition of polymeric carbon nitride. • We propose a structure for polymeric carbon nitride confirming it with THz-TDS.

  15. A comparative analysis of 2D and 3D CAD for calcifications in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Acciavatti, Raymond J.; Ray, Shonket; Keller, Brad M.; Maidment, Andrew D. A.; Conant, Emily F.

    2015-03-01

    Many medical centers offer digital breast tomosynthesis (DBT) and 2D digital mammography acquired under the same compression (i.e., "Combo" examination) for screening. This paper compares a conventional 2D CAD algorithm (Hologic® ImageChecker® CAD v9.4) for calcification detection against a prototype 3D algorithm (Hologic® ImageChecker® 3D Calc CAD v1.0). Due to the newness of DBT, the development of this 3D CAD algorithm is ongoing, and it is currently not FDA-approved in the United States. For this study, DBT screening cases with suspicious calcifications were identified retrospectively at the University of Pennsylvania. An expert radiologist (E.F.C.) reviewed images with both 2D and DBT CAD marks, and compared the marks to biopsy results. Control cases with one-year negative follow-up were also studied; these cases either possess clearly benign calcifications or lacked calcifications. To allow the user to alter the sensitivity for cancer detection, an operating point is assigned to each CAD mark. As expected from conventional 2D CAD, increasing the operating point in 3D CAD increases sensitivity and reduces specificity. Additionally, we showed that some cancers are occult to 2D CAD at all operating points. By contrast, 3D CAD allows for detection of some cancers that are missed on 2D CAD. We also demonstrated that some non-cancerous CAD marks in 3D are not present at analogous locations in the 2D image. Hence, there are additional marks when using both 2D and 3D CAD in combination, leading to lower specificity than with conventional 2D CAD alone.

  16. DNA barcoding of commercially important catfishes in the Philippines.

    PubMed

    Quilang, Jonas P; Yu, Shiny Cathlynne S

    2015-06-01

    Many species of catfish are important resources for human consumption, for sport fishing and for use in aquarium industry. In the Philippines, some species are cultivated and some are caught in the wild for food and a few introduced species have become invasive. In this study, DNA barcoding using the mitochondrial cytochrome c oxidase I (COI) gene was done on commercially and economically important Philippine catfishes. A total of 75 specimens belonging to 11 species and 5 families were DNA barcoded. The genetic distances were computed and Neighbor-Joining (NJ) trees were constructed based on the Kimura 2-Parameter (K2P) method. The average K2P distances within species, genus, family and order were 0.2, 8.2, 12.7 and 21.9%, respectively. COI sequences clustered according to their species designation for 7 of the 11 catfishes. DNA barcoding was not able to discriminate between Arius dispar and A. manillensis and between Pterygoplichthys disjunctivus and P. pardalis. The morphological characters that are used to distinguish between these species do not complement molecular identification through DNA barcoding. DNA barcoding also showed that Clarias batrachus from the Philippines is different from the species found in India and Thailand, which supports earlier suggestions based on morphology that those found in India should be designated as C. magur and those in mainland Southeast Asia as C. aff. batrachus "Indochina". This study has shown that DNA barcoding can be used for species delineation and for tagging some species for further taxonomic investigation, which has implications on proper management and conservation strategies.

  17. The changing epitome of species identification - DNA barcoding.

    PubMed

    Ajmal Ali, M; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M A; Pandey, Arun K; Lee, Joongku

    2014-07-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The 'DNA barcodes' show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  18. The unholy trinity: taxonomy, species delimitation and DNA barcoding

    PubMed Central

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-01-01

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this ‘DNA barcoding’ initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the ‘DNA barcoding’ initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the ‘DNA barcoding’ initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings—Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of ‘DNA barcoding’. PMID:16214748

  19. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  20. Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records

    PubMed Central

    2013-01-01

    Background Arctic ecosystems, especially those near transition zones, are expected to be strongly impacted by climate change. Because it is positioned on the ecotone between tundra and boreal forest, the Churchill area is a strategic locality for the analysis of shifts in faunal composition. This fact has motivated the effort to develop a comprehensive biodiversity inventory for the Churchill region by coupling DNA barcoding with morphological studies. The present study represents one element of this effort; it focuses on analysis of the spider fauna at Churchill. Results 198 species were detected among 2704 spiders analyzed, tripling the count for the Churchill region. Estimates of overall diversity suggest that another 10–20 species await detection. Most species displayed little intraspecific sequence variation (maximum <1%) in the barcode region of the cytochrome c oxidase subunit I (COI) gene, but four species showed considerably higher values (maximum = 4.1-6.2%), suggesting cryptic species. All recognized species possessed a distinct haplotype array at COI with nearest-neighbour interspecific distances averaging 8.57%. Three species new to Canada were detected: Robertus lyrifer (Theridiidae), Baryphyma trifrons (Linyphiidae), and Satilatlas monticola (Linyphiidae). The first two species may represent human-mediated introductions linked to the port in Churchill, but the other species represents a range extension from the USA. The first description of the female of S. monticola was also presented. As well, one probable new species of Alopecosa (Lycosidae) was recognized. Conclusions This study provides the first comprehensive DNA barcode reference library for the spider fauna of any region. Few cryptic species of spiders were detected, a result contrasting with the prevalence of undescribed species in several other terrestrial arthropod groups at Churchill. Because most (97.5%) sequence clusters at COI corresponded with a named taxon, DNA barcoding

  1. Denture bar-coding: An innovative technique in forensic dentistry

    PubMed Central

    Dineshshankar, Janardhanam; Venkateshwaran, Rajendran; Vidhya, J.; Anuradha, R.; Mary, Gold Pealin; Pradeep, R.; Senthileagappan, A. R.

    2015-01-01

    Denture markers play an important role in forensic odontology and also in identifying a person. A number of methods are there for identifying dentures from a less expensive technique to a more expensive technique. Out of different denture markers, the bar-coding system is a way of collecting data from the mobile. Even a huge amount of data can be stored in that. It can be easily incorporated during acrylization of the denture and thus could be helpful in identification. This article reviews the strengths of bar-coding and how easily it can be used in the routine procedure. PMID:26538876

  2. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  3. DNA barcoding, phylogenetic relationships and speciation of snappers (genus Lutjanus).

    PubMed

    Wang, ZhongDuo; Guo, YuSong; Tan, Wei; Li, Lu; Tang, EnPu; Liu, ChuWu; Liu, Yun

    2010-08-01

    The phylogenetic relationships of 13 snapper species from the South China Sea have been established using the combined DNA sequences of three full-length mitochondrial genes (COI, COII and CYTB) and two partial nuclear genes (RAG1, RAG2). The 13 species (genus Lutjanus) were selected after DNA barcoding 72 individuals, representing 20 species. Our study suggests that although DNA barcoding aims to develop species identification systems, it may also be useful in the construction of phylogenies by aiding the selection of taxa. Combined mitochondrial and nuclear gene data has an advantage over an individual dataset because of its higher resolving power.

  4. DNA Barcoding of genus Hexacentrus in China reveals cryptic diversity within Hexacentrus japonicus (Orthoptera, Tettigoniidae)

    PubMed Central

    Guo, Hui-Fang; Guan, Bei; Shi, Fu-Ming; Zhou, Zhi-Jun

    2016-01-01

    Abstract DNA barcoding has been proved successful to provide resolution beyond the boundaries of morphological information. Hence, a study was undertaken to establish DNA barcodes for all morphologically determined Hexacentrus species in China collections. In total, 83 specimens of five Hexacentrus species were barcoded using standard mitochondrial cytochrome c oxidase subunit I (COI) gene. Except for Hexacentrus japonicus, barcode gaps were present in the remaining Hexacentrus species. Taxon ID tree generated seven BOLD’s barcode index numbers (BINs), four of which were in agreement with the morphological species. For Hexacentrus japonicus, the maximum intraspecific divergence (4.43%) produced a minimal overlap (0.64%), and 19 specimens were divided into three different BINs. There may be cryptic species within the current Hexacentrus japonicus. This study adds to a growing body of DNA barcodes that have become available for katydids, and shows that a DNA barcoding approach enables the identification of known Hexacentrus species with a very high resolution. PMID:27408576

  5. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  6. Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.

    PubMed

    Gao, Feng; Cundiff, Steven T; Li, Hebin

    2016-07-01

    We have implemented double-quantum 2D spectroscopy on a rubidium vapor and shown that this technique provides sensitive and background-free detection of the dipole-dipole interaction. The 2D spectra include signals from both individual atoms and interatomic interactions, allowing quantitative studies of the interaction. A theoretical model based on the optical Bloch equations is used to reproduce the experimental spectrum and confirm the origin of double-quantum signals. PMID:27367074

  7. DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads

    PubMed Central

    Sass, Chodon; Little, Damon P.; Stevenson, Dennis Wm.; Specht, Chelsea D.

    2007-01-01

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants. PMID:17987130

  8. DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycads.

    PubMed

    Sass, Chodon; Little, Damon P; Stevenson, Dennis Wm; Specht, Chelsea D

    2007-01-01

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation-especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants. PMID:17987130

  9. DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycads.

    PubMed

    Sass, Chodon; Little, Damon P; Stevenson, Dennis Wm; Specht, Chelsea D

    2007-11-07

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation-especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants.

  10. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  11. Palladium-based Mass-Tag Cell Barcoding with a Doublet-Filtering Scheme and Single Cell Deconvolution Algorithm

    PubMed Central

    Zunder, Eli R.; Finck, Rachel; Behbehani, Gregory K.; Amir, El-ad D.; Krishnaswamy, Smita; Gonzalez, Veronica D.; Lorang, Cynthia G.; Bjornson, Zach; Spitzer, Matthew H.; Bodenmiller, Bernd; Fantl, Wendy J.; Pe’er, Dana; Nolan, Garry P.

    2015-01-01

    SUMMARY Mass-tag cell barcoding (MCB) labels individual cell samples with unique combinatorial barcodes, after which they are pooled for processing and measurement as a single multiplexed sample. The MCB method eliminates variability between samples in antibody staining and instrument sensitivity, reduces antibody consumption, and shortens instrument measurement time. Here, we present an optimized MCB protocol with several improvements over previously described methods. The use of palladium-based labeling reagents expands the number of measurement channels available for mass cytometry and reduces interference with lanthanide-based antibody measurement. An error-detecting combinatorial barcoding scheme allows cell doublets to be identified and removed from the analysis. A debarcoding algorithm that is single cell-based rather than population-based improves the accuracy and efficiency of sample deconvolution. This debarcoding algorithm has been packaged into software that allows rapid and unbiased sample deconvolution. The MCB procedure takes 3–4 h, not including sample acquisition time of ~1 h per million cells. PMID:25612231

  12. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  13. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  14. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    PubMed Central

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature’s structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  15. 2D NMR-spectroscopic screening reveals polyketides in ladybugs.

    PubMed

    Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C

    2011-06-14

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored. PMID:21646540

  16. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  17. Electrochemiluminescence immunosensor for tumor markers based on biological barcode mode with conductive nanospheres.

    PubMed

    Du, Shuping; Guo, Zhiyong; Chen, Beibei; Sha, Yuhong; Jiang, Xiaohua; Li, Xing; Gan, Ning; Wang, Sui

    2014-03-15

    A novel sandwich-type electrochemiluminescence (ECL) immunosensor was developed for highly sensitive and selective determination of tumor markers based on biological barcode mode. N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and the second antibody (Ab2) were simultaneously immobilized on conductive nanospheres to construct ABEI/Ab2-CNSs probes, which could form sandwich immunocomplex by Ab2 and emit ECL signals by ABEI. The gold layer coated on the surface of the conductive nanospheres could extend the outer Helmholtz plane (OHP) of the ECL immunosensor effectively. Benefited from it, all ABEI molecules immobilized on conductive nanospheres would act as biological barcode to give in-situ ECL signals without interfering with the activity of the second antibody. In such a case, the sensitivity of the ECL immunosensor would be greatly improved because an antigen molecule would correspond to ECL signals of thousands of ABEI molecules. Using prostate specific antigen (PSA) as a model tumor marker, the ECL intensity was found to increase with the logarithm of PSA concentration with a wide linear range from 0.04 to 10 fg/mL. In addition, specificity, stability, reproducibility, regeneration and application were satisfactory. Therefore, this developed ECL immunosensor has a potential for practical detection of disease-related proteins besides tumor markers in the clinical diagnostics.

  18. Cancer cell profiling by barcoding allows multiplexed protein analysis in fine needle aspirates

    PubMed Central

    Ullal, Adeeti V.; Peterson, Vanessa; Agasti, Sarit S.; Tuang, Suan; Juric, Dejan; Castro, Cesar M.; Weissleder, Ralph

    2014-01-01

    Immunohistochemistry-based clinical diagnoses require invasive core biopsies and use a limited number of protein stains to identify and classify cancers. Here, we introduce a technology that allows analysis of hundreds of proteins from minimally invasive fine needle aspirates (FNA), which contain much smaller numbers of cells than core biopsies. The method capitalizes on DNA-barcoded antibody sensing where barcodes can be photo-cleaved and digitally detected without any amplification steps. Following extensive benchmarking in cell lines, this method showed high reproducibility and achieved single cell sensitivity. We used this approach to profile ~90 proteins in cells from FNAs and subsequently map patient heterogeneity at the protein level. Additionally, we demonstrate how the method could be used as a clinical tool to identify pathway responses to molecularly targeted drugs and to predict drug response in patient samples. This technique combines specificity with ease of use to offer a new tool for understanding human cancers and designing future clinical trials. PMID:24431113

  19. Community Phylogenetics: Assessing Tree Reconstruction Methods and the Utility of DNA Barcodes

    PubMed Central

    Boyle, Elizabeth E.; Adamowicz, Sarah J.

    2015-01-01

    Studies examining phylogenetic community structure have become increasingly prevalent, yet little attention has been given to the influence of the input phylogeny on metrics that describe phylogenetic patterns of co-occurrence. Here, we examine the influence of branch length, tree reconstruction method, and amount of sequence data on measures of phylogenetic community structure, as well as the phylogenetic signal (Pagel’s λ) in morphological traits, using Trichoptera larval communities from Churchill, Manitoba, Canada. We find that model-based tree reconstruction methods and the use of a backbone family-level phylogeny improve estimations of phylogenetic community structure. In addition, trees built using the barcode region of cytochrome c oxidase subunit I (COI) alone accurately predict metrics of phylogenetic community structure obtained from a multi-gene phylogeny. Input tree did not alter overall conclusions drawn for phylogenetic signal, as significant phylogenetic structure was detected in two body size traits across input trees. As the discipline of community phylogenetics continues to expand, it is important to investigate the best approaches to accurately estimate patterns. Our results suggest that emerging large datasets of DNA barcode sequences provide a vast resource for studying the structure of biological communities. PMID:26110886

  20. DNA Barcode Identification of Freshwater Snails in the Family Bithyniidae from Thailand

    PubMed Central

    Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Ruangsittichai, Jiraporn; Ruangjirachuporn, Wipaporn; Boonmars, Thidarut; Viyanant, Vithoon; Pierossi, Paola; Hebert, Paul D. N.; Tesana, Smarn

    2013-01-01

    Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5’ region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy. PMID:24223896

  1. Looking back on a decade of barcoding crustaceans.

    PubMed

    Raupach, Michael J; Radulovici, Adriana E

    2015-01-01

    Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication. PMID:26798245

  2. Barcoding of live human PBMC for multiplexed mass cytometry*

    PubMed Central

    Mei, Henrik E.; Leipold, Michael D.; Schulz, Axel Ronald; Chester, Cariad; Maecker, Holden T.

    2014-01-01

    Mass cytometry is developing as a means of multiparametric single cell analysis. Here, we present an approach to barcoding separate live human PBMC samples for combined preparation and acquisition on a CyTOF® instrument. Using six different anti-CD45 antibody (Ab) conjugates labeled with Pd104, Pd106, Pd108, Pd110, In113, and In115, respectively, we barcoded up to 20 samples with unique combinations of exactly three different CD45 Ab tags. Cell events carrying more than or less than three different tags were excluded from analyses during Boolean data deconvolution, allowing for precise sample assignment and the electronic removal of cell aggregates. Data from barcoded samples matched data from corresponding individually stained and acquired samples, at cell event recoveries similar to individual sample analyses. The approach greatly reduced technical noise and minimizes unwanted cell doublet events in mass cytometry data, and reduces wet work and antibody consumption. It also eliminates sample-to-sample carryover and the requirement of instrument cleaning between samples, thereby effectively reducing overall instrument runtime. Hence, CD45-barcoding facilitates accuracy of mass cytometric immunophenotyping studies, thus supporting biomarker discovery efforts, and should be applicable to fluorescence flow cytometry as well. PMID:25609839

  3. Telling plant species apart with DNA: from barcodes to genomes.

    PubMed

    Hollingsworth, Peter M; Li, De-Zhu; van der Bank, Michelle; Twyford, Alex D

    2016-09-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity-yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481790

  4. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification.

    PubMed

    Berry, David; Ben Mahfoudh, Karim; Wagner, Michael; Loy, Alexander

    2011-11-01

    "Barcode-tagged" PCR primers used for multiplex amplicon sequencing generate a thus-far-overlooked amplification bias that produces variable terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing data from the same environmental DNA template. We propose a simple two-step PCR approach that increases reproducibility and consistently recovers higher genetic diversity in pyrosequencing libraries. PMID:21890669

  5. Identification of Rays through DNA Barcoding: An Application for Ecologists

    PubMed Central

    Cerutti-Pereyra, Florencia; Meekan, Mark G.; Wei, Nu-Wei V.; O'Shea, Owen; Bradshaw, Corey J. A.; Austin, Chris M.

    2012-01-01

    DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data. PMID:22701556

  6. Identification of rays through DNA barcoding: an application for ecologists.

    PubMed

    Cerutti-Pereyra, Florencia; Meekan, Mark G; Wei, Nu-Wei V; O'Shea, Owen; Bradshaw, Corey J A; Austin, Chris M

    2012-01-01

    DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the 'uarnak' complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data.

  7. Looking back on a decade of barcoding crustaceans

    PubMed Central

    Raupach, Michael J.; Radulovici, Adriana E.

    2015-01-01

    Abstract Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication. PMID:26798245

  8. Telling plant species apart with DNA: from barcodes to genomes

    PubMed Central

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  9. [Applicability of DNA barcode for identification of fish species].

    PubMed

    Arami, Shinichiro; Sato, Megumi; Futo, Satoshi

    2011-01-01

    DNA barcoding is a species identification technique, which uses a very short DNA sequence from a region of approximately 650 base-pairs in the 5'-end of the mitochondrial cytochrome c oxidase subunit I gene as a marker to identify species of mammals and fishes. The applicability of DNA barcoding for identification of fish species consumed in Japan was studied. Among thirty-one fresh or processed fishes were obtained from the market, two samples could not be identified due to lack of data in the Barcode of Life Data (BOLD) database. However, BLAST-search of 16S rRNA genes in the National Center for Biotechnology Information (NCBI) database and the PCR-RFLP method published by the Food and Agricultural Materials Inspection Center (FAMIC) were found to be applicable to identify these 2 fishes. The results show that the DNA barcoding technique is potentially useful as a tool for confirming the proper labeling of fish species in the Japanese market. PMID:21720128

  10. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  11. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  12. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  13. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  14. Position control using 2D-to-2D feature correspondences in vision guided cell micromanipulation.

    PubMed

    Zhang, Yanliang; Han, Mingli; Shee, Cheng Yap; Ang, Wei Tech

    2007-01-01

    Conventional camera calibration that utilizes the extrinsic and intrinsic parameters of the camera and the objects has certain limitations for micro-level cell operations due to the presence of hardware deviations and external disturbances during the experimental process, thereby invalidating the extrinsic parameters. This invalidation is often neglected in macro-world visual servoing and affects the visual image processing quality, causing deviation from the desired position in micro-level cell operations. To increase the success rate of vision guided biological micromanipulations, a novel algorithm monitoring the changing image pattern of the manipulators including the injection micropipette and cell holder is designed and implemented based on 2 dimensional (2D)-to 2D feature correspondences and can adjust the manipulator and perform position control simultaneously. When any deviation is found, the manipulator is retracted to the initial focusing plane before continuing the operation.

  15. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding

    PubMed Central

    Janzen, Daniel H; Hajibabaei, Mehrdad; Burns, John M; Hallwachs, Winnie; Remigio, Ed; Hebert, Paul D.N

    2005-01-01

    By facilitating bioliteracy, DNA barcoding has the potential to improve the way the world relates to wild biodiversity. Here we describe the early stages of the use of cox1 barcoding to supplement and strengthen the taxonomic platform underpinning the inventory of thousands of sympatric species of caterpillars in tropical dry forest, cloud forest and rain forest in northwestern Costa Rica. The results show that barcoding a biologically complex biota unambiguously distinguishes among 97% of more than 1000 species of reared Lepidoptera. Those few species whose barcodes overlap are closely related and not confused with other species. Barcoding also has revealed a substantial number of cryptic species among morphologically defined species, associated sexes, and reinforced identification of species that are difficult to distinguish morphologically. For barcoding to achieve its full potential, (i) ability to rapidly and cheaply barcode older museum specimens is urgent, (ii) museums need to address the opportunity and responsibility for housing large numbers of barcode voucher specimens, (iii) substantial resources need be mustered to support the taxonomic side of the partnership with barcoding, and (iv) hand-held field-friendly barcorder must emerge as a mutualism with the taxasphere and the barcoding initiative, in a manner such that its use generates a resource base for the taxonomic process as well as a tool for the user. PMID:16214742

  16. Species-Specific Identification from Incomplete Sampling: Applying DNA Barcodes to Monitoring Invasive Solanum Plants

    PubMed Central

    Zhang, Wei; Fan, Xiaohong; Zhu, Shuifang; Zhao, Hong; Fu, Lianzhong

    2013-01-01

    Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling–through this, DNA barcoding will greatly benefit the current fields of its application. PMID:23409092

  17. DNA barcoding in plants: evolution and applications of in silico approaches and resources.

    PubMed

    Bhargava, Mili; Sharma, Ashok

    2013-06-01

    Bioinformatics has played an important role in the analysis of DNA barcoding data. The process of DNA barcoding initially involves the available data collection from the existing databases. Many databases have been developed in recent years, e.g. MMDBD [Medicinal Materials DNA Barcode Database], BioBarcode, etc. In case of non-availability of sequences, sequencing has to be done in vitro for which a recently developed software ecoPrimers can be helpful. This is followed by multiple sequence alignment. Further, basic sequence statistics computation and phylogenetic analysis can be performed by MEGA and PHYLIP/PAUP tools respectively. Some of the recent tools for in silico and statistical analysis specifically designed for barcoding viz. CAOS (Character Based DNA Barcoding), BRONX (DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability), Spider (Analysis of species identity and evolution, particularly DNA barcoding), jMOTU and Taxonerator (Turning DNA Barcode Sequences into Annotated OTUs), OTUbase (Analysis of OTU data and taxonomic data), SAP (Statistical Assignment Package), etc. have been discussed and analysed in this review. The paper presents a comprehensive overview of the various in silico methods, tools, softwares and databases used for DNA barcoding of plants. PMID:23500333

  18. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  19. 'Brukin2D': a 2D visualization and comparison tool for LC-MS data

    PubMed Central

    Tsagkrasoulis, Dimosthenis; Zerefos, Panagiotis; Loudos, George; Vlahou, Antonia; Baumann, Marc; Kossida, Sophia

    2009-01-01

    Background Liquid Chromatography-Mass Spectrometry (LC-MS) is a commonly used technique to resolve complex protein mixtures. Visualization of large data sets produced from LC-MS, namely the chromatogram and the mass spectra that correspond to its compounds is the focus of this work. Results The in-house developed 'Brukin2D' software, built in Matlab 7.4, which is presented here, uses the compound data that are exported from the Bruker 'DataAnalysis' program, and depicts the mean mass spectra of all the chromatogram compounds from one LC-MS run, in one 2D contour/density plot. Two contour plots from different chromatograph runs can then be viewed in the same window and automatically compared, in order to find their similarities and differences. The results of the comparison can be examined through detailed mass quantification tables, while chromatogram compound statistics are also calculated during the procedure. Conclusion 'Brukin2D' provides a user-friendly platform for quick, easy and integrated view of complex LC-MS data. The software is available at . PMID:19534737

  20. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone.

    PubMed Central

    Wu, D; Otton, S V; Sproule, B A; Busto, U; Inaba, T; Kalow, W; Sellers, E M

    1993-01-01

    1. In microsomes prepared from three human livers, methadone competitively inhibited the O-demethylation of dextromethorphan, a marker substrate for CYP2D6. The apparent Ki value of methadone ranged from 2.5 to 5 microM. 2. Two hundred and fifty-two (252) white Caucasians, including 210 unrelated healthy volunteers and 42 opiate abusers undergoing treatment with methadone were phenotyped using dextromethorphan as the marker drug. Although the frequency of poor metabolizers was similar in both groups, the extensive metabolizers among the opiate abusers tended to have higher O-demethylation metabolic ratios and to excrete less of the dose as dextromethorphan metabolites than control extensive metabolizer subjects. These data suggest inhibition of CYP2D6 by methadone in vivo as well. 3. Because methadone is widely used in the treatment of opiate abuse, inhibition of CYP2D6 activity in these patients might contribute to exaggerated response or unexpected toxicity from drugs that are substrates of this enzyme. PMID:8448065

  1. 2D optoacoustic array for high resolution imaging

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R. S.; Kim, K.; Huang, S.-W.; Hou, Y.; O'Donnell, M.

    2006-02-01

    An optoacoustic detector denotes the detection of acoustic signals by optical devices. Recent advances in fabrication techniques and the availability of high power tunable laser sources have greatly accelerated the development of efficient optoacoustic detectors. The unique advantages of optoacoustic technology are of special interest in applications that require high resolution imaging. For these applications optoacoustic technology enables high frequency transducer arrays with element size on the order of 10 μm. Laser generated ultrasound (photoacoustic effect) has been studied since the early observations of A.G. Bell (1880) of audible sound generated by light absorption . Modern studies have demonstrated the use of the photoacoustic effect to form a versatile imaging modality for medical and biological applications. A short laser pulse illuminates a tissue creating rapid thermal expansion and acoustic emission. Detection of the resulting acoustic field by an array enables the imaging of the tissue optical absorption using ultrasonic imaging methods. We present an integrated imaging system that employs photoacoustic sound generation and 2D optoacoustic reception. The optoacoustic receiver consists of a thin polymer Fabry-Perot etalon. The etalon is an optical resonator of a high quality factor (Q = 750). The relatively low elasticity modulus of the polymer and the high Q-factor of the resonator combine to yield high ultrasound sensitivity. The etalon thickness (10 μm) was optimized for wide bandwidth (typically above 50 MHz). An optical scanning and focusing system is used to create a large aperture and high density 2D ultrasonic receiver array. High resolution 3D images of phantom targets and biological tissue samples were obtained.

  2. The changing epitome of species identification – DNA barcoding

    PubMed Central

    Ajmal Ali, M.; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M.A.; Pandey, Arun K.; Lee, Joongku

    2014-01-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  3. DNA barcoding of Mycosphaerella species of quarantine importance to Europe.

    PubMed

    Quaedvlieg, W; Groenewald, J Z; de Jesús Yáñez-Morales, M; Crous, P W

    2012-12-01

    The EU 7th Framework Program provided funds for Quarantine Barcoding of Life (QBOL) to develop a quick, reliable and accurate DNA barcode-based diagnostic tool for selected species on the European and Mediterranean Plant Protection Organization (EPPO) A1/A2 quarantine lists. Seven nuclear genomic loci were evaluated to determine those best suited for identifying species of Mycosphaerella and/or its associated anamorphs. These genes included β-tubulin (Btub), internal transcribed spacer regions of the nrDNA operon (ITS), 28S nrDNA (LSU), Actin (Act), Calmodulin (Cal), Translation elongation factor 1-alpha (EF-1α) and RNA polymerase II second largest subunit (RPB2). Loci were tested on their Kimura-2-parameter-based inter- and intraspecific variation, PCR amplification success rate and ability to distinguish between quarantine species and closely related taxa. Results showed that none of these loci was solely suited as a reliable barcoding locus for the tested fungi. A combination of a primary and secondary barcoding locus was found to compensate for individual weaknesses and provide reliable identification. A combination of ITS with either EF-1α or Btub was reliable as barcoding loci for EPPO A1/A2-listed Mycosphaerella species. Furthermore, Lecanosticta acicola was shown to represent a species complex, revealing two novel species described here, namely L. brevispora sp. nov. on Pinus sp. from Mexico and L. guatemalensis sp. nov. on Pinus oocarpa from Guatemala. Epitypes were also designated for L. acicola and L. longispora to resolve the genetic application of these names. PMID:23606768

  4. Deciphering amphibian diversity through DNA barcoding: chances and challenges.

    PubMed

    Vences, Miguel; Thomas, Meike; Bonett, Ronald M; Vieites, David R

    2005-10-29

    Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.

  5. DNA Barcoding of Sigmodontine Rodents: Identifying Wildlife Reservoirs of Zoonoses

    PubMed Central

    Müller, Lívia; Gonçalves, Gislene L.; Cordeiro-Estrela, Pedro; Marinho, Jorge R.; Althoff, Sérgio L.; Testoni, André. F.; González, Enrique M.; Freitas, Thales R. O.

    2013-01-01

    Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments. PMID:24244670

  6. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea.

    PubMed

    Druzhinina, Irina S; Kopchinskiy, Alexei G; Komoń, Monika; Bissett, John; Szakacs, George; Kubicek, Christian P

    2005-10-01

    One of the biggest obstructions to studies on Trichoderma has been the incorrect and confused application of species names to isolates used in industry, biocontrol of plant pathogens and ecological surveys, thereby making the comparison of results questionable. Here we provide a convenient, on-line method for the quick molecular identification of Hypocrea/Trichoderma at the genus and species levels based on an oligonucleotide barcode: a diagnostic combination of several oligonucleotides (hallmarks) specifically allocated within the internal transcribed spacer 1 and 2 (ITS1 and 2) sequences of the rDNA repeat. The barcode was developed on the basis of 979 sequences of 88 vouchered species which displayed in total 135 ITS1 and 2 haplotypes. Oligonucleotide sequences which are constant in all known ITS1 and 2 of Hypocrea/Trichoderma but different in closely related fungal genera, were used to define genus-specific hallmarks. The library of species-, clade- and genus-specific hallmarks is stored in the MySQL database and integrated in the TrichOKey v. 1.0 - barcode sequence identification program with the web interface located on . TrichOKey v. 1.0 identifies 75 single species, 5 species pairs and 1 species triplet. Verification of the DNA-barcode was done by a blind test on 53 unknown isolates of Trichoderma, collected in Central and South America. The obtained results were in a total agreement with phylogenetic identification based on tef1 (large intron), NCBI BLAST of vouchered records and postum morphological analysis. We conclude that oligonucleotide barcode is a powerful tool for the routine identification of Hypocrea/Trichoderma species and should be useful as a complement to traditional methods.

  7. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  8. Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead.

    PubMed

    Joly, Simon; Davies, T Jonathan; Archambault, Annie; Bruneau, Anne; Derry, Alison; Kembel, Steven W; Peres-Neto, Pedro; Vamosi, Jana; Wheeler, Terry A

    2014-03-01

    Ten years after DNA barcoding was initially suggested as a tool to identify species, millions of barcode sequences from more than 1100 species are available in public databases. While several studies have reviewed the methods and potential applications of DNA barcoding, most have focused on species identification and discovery, and relatively few have addressed applications of DNA barcoding data to ecology. These data, and the associated information on the evolutionary histories of taxa that they can provide, offer great opportunities for ecologists to investigate questions that were previously difficult or impossible to address. We present an overview of potential uses of DNA barcoding relevant in the age of ecoinformatics, including applications in community ecology, species invasion, macroevolution, trait evolution, food webs and trophic interactions, metacommunities, and spatial ecology. We also outline some of the challenges and potential advances in DNA barcoding that lie ahead.

  9. Sliding Window Analyses for Optimal Selection of Mini-Barcodes, and Application to 454-Pyrosequencing for Specimen Identification from Degraded DNA

    PubMed Central

    Boyer, Stephane; Brown, Samuel D. J.; Collins, Rupert A.; Cruickshank, Robert H.; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Wratten, Stephen D.

    2012-01-01

    DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential ‘mini-barcodes’ for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation. PMID:22666489

  10. DNA Barcoding of Bemisia tabaci Complex (Hemiptera: Aleyrodidae) Reveals Southerly Expansion of the Dominant Whitefly Species on Cotton in Pakistan

    PubMed Central

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, M. Sajjad; Khan, Arif M.; Mansoor, Shahid; Shah, Ghulam S.; Zafar, Yusuf

    2014-01-01

    Background Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Methods/Principal Findings Sequence diversity in the DNA barcode region (mtCOI-5′) was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3′ to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage “Pakistan”. The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and “Pakistan” were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan. Conclusions DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region. PMID

  11. Comparison of digital breast tomosynthesis and 2D digital mammography using a hybrid performance test

    NASA Astrophysics Data System (ADS)

    Cockmartin, Lesley; Marshall, Nicholas W.; Van Ongeval, Chantal; Aerts, Gwen; Stalmans, Davina; Zanca, Federica; Shaheen, Eman; De Keyzer, Frederik; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde

    2015-05-01

    This paper introduces a hybrid method for performing detection studies in projection image based modalities, based on image acquisitions of target objects and patients. The method was used to compare 2D mammography and digital breast tomosynthesis (DBT) in terms of the detection performance of spherical densities and microcalcifications. The method starts with the acquisition of spheres of different glandular equivalent densities and microcalcifications of different sizes immersed in a homogeneous breast tissue simulating medium. These target objects are then segmented and the subsequent templates are fused in projection images of patients and processed or reconstructed. This results in hybrid images with true mammographic anatomy and clinically relevant target objects, ready for use in observer studies. The detection study of spherical densities used 108 normal and 178 hybrid 2D and DBT images; 156 normal and 321 hybrid images were used for the microcalcifications. Seven observers scored the presence/absence of the spheres/microcalcifications in a square region via a 5-point confidence rating scale. Detection performance in 2D and DBT was compared via ROC analysis with sub-analyses for the density of the spheres, microcalcification size, breast thickness and z-position. The study was performed on a Siemens Inspiration tomosynthesis system using patient acquisitions with an average age of 58 years and an average breast thickness of 53 mm providing mean glandular doses of 1.06 mGy (2D) and 2.39 mGy (DBT). Study results showed that breast tomosynthesis (AUC = 0.973) outperformed 2D (AUC = 0.831) for the detection of spheres (p  <  0.0001) and this applied for all spherical densities and breast thicknesses. By way of contrast, DBT was worse than 2D for microcalcification detection (AUC2D = 0.974, AUCDBT = 0.838, p  <  0.0001), with significant differences found for all sizes (150-354 µm), for breast thicknesses above 40 mm and for heights

  12. [The application of barcode technology in management of high value medical consumables].

    PubMed

    Zhu, Shengjun

    2012-03-01

    This article explores the problems of High Value Medical Consumables Management in hospitals, and introduces not only the procedures of high value medical consumables barcode management system based on the application of barcode technology and advanced management philosophy but also the key concrete implementation points in our hospital. The application of barcode technology in the management of high value medical consumables provides hospitals with a new path to modernization and informationization of high value medical consumables management.

  13. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

    PubMed Central

    2013-01-01

    Background The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Results Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (<2%), application of a complementary character-based nucleotide diagnostic approach proved useful in discriminating them. Additionally, 14 species displayed high intra-specific genetic divergence (>2%), pointing to at least 23 strong candidates for new species. Conclusions Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify

  14. Barcoding a quantified food web: crypsis, concepts, ecology and hypotheses.

    PubMed

    Smith, M Alex; Eveleigh, Eldon S; McCann, Kevin S; Merilo, Mark T; McCarthy, Peter C; Van Rooyen, Kathleen I

    2011-01-01

    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana--SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD)--the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the "bird feeder effect") and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future budworm

  15. Impact of next-generation sequencing error on analysis of barcoded plasmid libraries of known complexity and sequence

    PubMed Central

    Deakin, Claire T.; Deakin, Jeffrey J.; Ginn, Samantha L.; Young, Paul; Humphreys, David; Suter, Catherine M.; Alexander, Ian E.; Hallwirth, Claus V.

    2014-01-01

    Barcoded vectors are promising tools for investigating clonal diversity and dynamics in hematopoietic gene therapy. Analysis of clones marked with barcoded vectors requires accurate identification of potentially large numbers of individually rare barcodes, when the exact number, sequence identity and abundance are unknown. This is an inherently challenging application, and the feasibility of using contemporary next-generation sequencing technologies is unresolved. To explore this potential application empirically, without prior assumptions, we sequenced barcode libraries of known complexity. Libraries containing 1, 10 and 100 Sanger-sequenced barcodes were sequenced using an Illumina platform, with a 100-barcode library also sequenced using a SOLiD platform. Libraries containing 1 and 10 barcodes were distinguished from false barcodes generated by sequencing error by a several log-fold difference in abundance. In 100-barcode libraries, however, expected and false barcodes overlapped and could not be resolved by bioinformatic filtering and clustering strategies. In independent sequencing runs multiple false-positive barcodes appeared to be represented at higher abundance than known barcodes, despite their confirmed absence from the original library. Such errors, which potentially impact barcoding studies in an application-dependent manner, are consistent with the existence of both stochastic and systematic error, the mechanism of which is yet to be fully resolved. PMID:25013183

  16. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  17. A DNA Mini-Barcoding System for Authentication of Processed Fish Products

    PubMed Central

    Shokralla, Shadi; Hellberg, Rosalee S.; Handy, Sara M.; King, Ian; Hajibabaei, Mehrdad

    2015-01-01

    Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences—mini-barcodes—for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127–314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products. PMID:26516098

  18. Differentiation of the Chinese minority medicinal plant genus Berchemia spp. by evaluating three candidate barcodes.

    PubMed

    Guo, Li-Cheng; Zhao, Ming-Ming; Sun, Wei; Teng, Hong-Li; Huang, Bi-Sheng; Zhao, Xiang-Pei

    2016-01-01

    The genus Berchemia comprises important Chinese plants with considerable medicinal value; however, these plants are often misidentified in the herbal medicinal market. To differentiate the various morphotypes of Berchemia species, a proficient method employing the screening of universal DNA barcodes was used in this work. Three candidate barcoding loci, namely, psbA-trnH, rbcL, and the second internal transcribed spacer (ITS2), were used to identify an effective DNA barcode that can differentiate the various Berchemia species. Additionally, PCR amplification, efficient sequencing, intra- and inter-specific divergences, and DNA barcoding gaps were employed to assess the ability of each barcode to identify these diverse Berchemia plants authentically; the species were differentiated using the Kimura two-parameter and maximum composite likelihood methods. Sequence data analysis showed that the ITS2 region was the most suitable candidate barcode and exhibited the highest interspecific divergence among the three DNA-barcoding sequences. A clear differentiation was observed at the species level, in which a maximum distance of 0.264 was exhibited between dissimilar species. Clustal analysis also demonstrated that ITS2 clearly differentiated the test species in a more effective manner than that with the two other barcodes at both the hybrid and variety levels. Results indicate that DNA barcoding is ideal for species-level identification of Berchemia and provides a foundation for further identification at the molecular level of other Rhamnaceae medicinal plants. PMID:27347459

  19. Pyrosequencing for mini-barcoding of fresh and old museum specimens.

    PubMed

    Shokralla, Shadi; Zhou, Xin; Janzen, Daniel H; Hallwachs, Winnie; Landry, Jean-François; Jacobus, Luke M; Hajibabaei, Mehrdad

    2011-01-01

    DNA barcoding is an effective approach for species identification and for discovery of new and/or cryptic species. Sanger sequencing technology is the method of choice for obtaining standard 650 bp cytochrome c oxidase subunit I (COI) barcodes. However, DNA degradation/fragmentation makes it difficult to obtain a full-length barcode from old specimens. Mini-barcodes of 130 bp from the standard barcode region have been shown to be effective for accurate identification in many animal groups and may be readily obtained from museum samples. Here we demonstrate the application of an alternative sequencing technology, the four-enzymes single-specimen pyrosequencing, in rapid, cost-effective mini-barcode analysis. We were able to generate sequences of up to 100 bp from mini-barcode fragments of COI in 135 fresh and 50 old Lepidoptera specimens (ranging from 53-97 year-old). The sequences obtained using pyrosequencing were of high quality and we were able to robustly match all the tested pyro-sequenced samples to their respective Sanger-sequenced standard barcode sequences, where available. Simplicity of the protocol and instrumentation coupled with higher speed and lower cost per sequence than Sanger sequencing makes this approach potentially useful in efforts to link standard barcode sequences from unidentified specimens to known museum specimens with only short DNA fragments.

  20. DNA barcode information for the sugar cane moth borer Diatraea saccharalis.

    PubMed

    Bravo, J P; Silva, J L C; Munhoz, R E F; Fernandez, M A

    2008-01-01

    We reviewed the use and relevance of barcodes for insect studies and investigated the barcode sequence of Diatraea saccharalis. This sequence has a high level of homology (99%) with the barcode sequence of the Crambidae (Lepidoptera). The sequence data can be used to construct relationships between species, allowing a multidisciplinary approach for taxonomy, which includes morphological, molecular and distribution data, all of which are essential for the understanding of biodiversity. The D. saccharalis barcode is a previously undescribed sequence that could be used to analyze Lepidoptera biology. PMID:18767242

  1. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism

    PubMed Central

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-01-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7–14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. PMID:23789612

  2. EFFECTS OF SMOKING ON D2/D3 STRIATAL RECEPTOR AVAILABILITY IN ALCOHOLICS AND SOCIAL DRINKERS

    PubMed Central

    Albrecht, Daniel S.; Kareken, David A.; Yoder, Karmen K.

    2013-01-01

    Objective Studies have reported lower striatal D2/D3 receptor availability in both alcoholics and cigarette smokers relative to healthy controls. These substances are commonly co-abused, yet the relationship between comorbid alcohol/tobacco abuse and striatal D2/D3 receptor availability has not been examined. We sought to determine the degree to which dual abuse of alcohol and tobacco is associated with lower D2/D3 receptor availability. Method Eighty-one subjects (34 nontreatment-seeking alcoholic smokers [NTS-S], 21 social-drinking smokers [SD-S], and 26 social-drinking non-smokers [SD-NS]) received baseline [11C]raclopride scans. D2/D3 binding potential (BPND ≡ Bavail/KD) was estimated for ten anatomically defined striatal regions of interest (ROIs). Results Significant group effects were detected in bilateral pre-commissural dorsal putamen, bilateral pre-commissural dorsal caudate; and bilateral post-commissural dorsal putamen. Post-hoc testing revealed that, regardless of drinking status, smokers had lower D2/D3 receptor availability than non-smoking controls. Conclusions Chronic tobacco smokers have lower striatal D2/D3 receptor availability than non-smokers, independent of alcohol use. Additional studies are needed to identify the mechanisms by which chronic tobacco smoking is associated with striatal dopamine receptor availability. PMID:23649848

  3. Highly resolved measurements of atmospheric turbulence with the new 2d-Atmospheric Laser Cantilever Anemometer

    NASA Astrophysics Data System (ADS)

    Jeromin, A.; Schaffarczyk, A. P.; Puczylowski, J.; Peinke, J.; Hölling, M.

    2014-12-01

    For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales.

  4. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  5. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species

    PubMed Central

    Saarela, Jeffery M.; Sokoloff, Paul C.; Gillespie, Lynn J.; Consaul, Laurie L.; Bull, Roger D.

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA–trnH, psbK–psbI, atpF–atpH) collected for a subset of Poa and Puccinellia species, only atpF–atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species. PMID

  6. Fluorinated Boronic Acid-Appended Bipyridinium Salts for Diol Recognition and Discrimination via (19)F NMR Barcodes.

    PubMed

    Axthelm, Jörg; Görls, Helmar; Schubert, Ulrich S; Schiller, Alexander

    2015-12-16

    Fluorinated boronic acid-appended benzyl bipyridinium salts, derived from 4,4'-, 3,4'-, and 3,3'-bipyridines, were synthesized and used to detect and differentiate diol-containing analytes at physiological conditions via (19)F NMR spectroscopy. An array of three water-soluble boronic acid receptors in combination with (19)F NMR spectroscopy discriminates nine diol-containing bioanalytes--catechol, dopamine, fructose, glucose, glucose-1-phosphate, glucose-6-phosphate, galactose, lactose, and sucrose--at low mM concentrations. Characteristic (19)F NMR fingerprints are interpreted as two-dimensional barcodes without the need of multivariate analysis techniques.

  7. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  8. PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES

    NASA Technical Reports Server (NTRS)

    Lawrence, C.

    1994-01-01

    PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.

  9. Molecular identification and barcodes for the genus Nymphaea.

    PubMed

    Chaveerach, Arunrat; Tanee, T; Sudmoon, Runglawan

    2011-09-01

    Nymphaea species, the most popular decorative plants, were collected for specificity of inter-simple sequence repeat (ISSR) analyses in species identification and differentiation of cultivars and natural populations. Dendrogram constructed from ISSR analyses separated out wild species, namely Nymphaea cyanea, N. nouchali, N. capensis, N. lotus and an outgroup N. mexicana, and cultivars. The dendrogram indicates that the cultivars should be differentiated from N. capensis, as they are sister individuals of N. capensis. The ISSR banding data and the dendrogram are concordantly concluded that wild N. capensis would be an effective type species for producing different cultivars. After plant identification by ISSR markers, DNA barcodes of all sample materials were done to provide species specific markers which can be used for rapid and accurate further plant identification without morphological characters. DNA barcoding sequence analysis indicates genetic distance values. All sequences were recorded in GenBank database. PMID:21840834

  10. The Effect of Geographical Scale of Sampling on DNA Barcoding

    PubMed Central

    Bergsten, Johannes; Bilton, David T.; Fujisawa, Tomochika; Elliott, Miranda; Monaghan, Michael T.; Balke, Michael; Hendrich, Lars; Geijer, Joja; Herrmann, Jan; Foster, Garth N.; Ribera, Ignacio; Nilsson, Anders N.; Barraclough, Timothy G.; Vogler, Alfried P.

    2012-01-01

    Eight years after DNA barcoding was formally proposed on a large scale, CO1 sequences are rapidly accumulating from around the world. While studies to date have mostly targeted local or regional species assemblages, the recent launch of the global iBOL project (International Barcode of Life), highlights the need to understand the effects of geographical scale on Barcoding's goals. Sampling has been central in the debate on DNA Barcoding, but the effect of the geographical scale of sampling has not yet been thoroughly and explicitly tested with empirical data. Here, we present a CO1 data set of aquatic predaceous diving beetles of the tribe Agabini, sampled throughout Europe, and use it to investigate how the geographic scale of sampling affects 1) the estimated intraspecific variation of species, 2) the genetic distance to the most closely related heterospecific, 3) the ratio of intraspecific and interspecific variation, 4) the frequency of taxonomically recognized species found to be monophyletic, and 5) query identification performance based on 6 different species assignment methods. Intraspecific variation was significantly correlated with the geographical scale of sampling (R-square = 0.7), and more than half of the species with 10 or more sampled individuals (N = 29) showed higher intraspecific variation than 1% sequence divergence. In contrast, the distance to the closest heterospecific showed a significant decrease with increasing geographical scale of sampling. The average genetic distance dropped from > 7% for samples within 1 km, to < 3.5% for samples up to > 6000 km apart. Over a third of the species were not monophyletic, and the proportion increased through locally, nationally, regionally, and continentally restricted subsets of the data. The success of identifying queries decreased with increasing spatial scale of sampling; liberal methods declined from 100% to around 90%, whereas strict methods dropped to below 50% at continental scales. The

  11. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  12. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey (2dFGRS) (2dFGRS Team, 1998-2003)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2007-11-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is a major spectroscopic survey taking full advantage of the unique capabilities of the 2dF facility built by the Anglo-Australian Observatory. The 2dFGRS is integrated with the 2dF QSO survey (2QZ, Cat. VII/241). The 2dFGRS obtained spectra for 245591 objects, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of bJ=19.45. Reliable (quality>=3) redshifts were obtained for 221414 galaxies. The galaxies cover an area of approximately 1500 square degrees selected from the extended APM Galaxy Survey in three regions: a North Galactic Pole (NGP) strip, a South Galactic Pole (SGP) strip, and random fields scattered around the SGP strip. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS/. (6 data files).

  13. Evaluating Ethanol-based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates

    EPA Science Inventory

    Molecular methods, such as DNA barcoding, have the potential in enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biom...

  14. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters.

    PubMed

    Hadi, Sámed I I A; Santana, Hugo; Brunale, Patrícia P M; Gomes, Taísa G; Oliveira, Márcia D; Matthiensen, Alexandre; Oliveira, Marcos E C; Silva, Flávia C P; Brasil, Bruno S A F

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences' using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker. PMID:26900844

  15. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters.

    PubMed

    Hadi, Sámed I I A; Santana, Hugo; Brunale, Patrícia P M; Gomes, Taísa G; Oliveira, Márcia D; Matthiensen, Alexandre; Oliveira, Marcos E C; Silva, Flávia C P; Brasil, Bruno S A F

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences' using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker.

  16. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters

    PubMed Central

    Hadi, Sámed I. I. A.; Santana, Hugo; Brunale, Patrícia P. M.; Gomes, Taísa G.; Oliveira, Márcia D.; Matthiensen, Alexandre; Oliveira, Marcos E. C.; Silva, Flávia C. P.; Brasil, Bruno S. A. F.

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences’ using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker. PMID:26900844

  17. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  18. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-01

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs. PMID:27537619

  19. CVMAC 2D Program: A method of converting 3D to 2D

    SciTech Connect

    Lown, J.

    1990-06-20

    This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.

  20. Laboratory studies on N(2D) reactions of relevance to the chemistry of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Balucani, N.; Casavecchia, P.

    collision conditions by means of the "crossed molecular beam" technique with mass spectrometric detection. Some examples of our experimental results will be illustrated, with particular attention to the reactions of N(2 D) with hydrocarbons (CH4 , C2 H2 and C2 H4 ) of relevance to the atmosphere of Titan, but also with other molecules of relevance to the atmospheres of Mars, Triton and Pluto.

  1. Influence of killing method on Lepidoptera DNA barcode recovery.

    PubMed

    Willows-Munro, Sandi; Schoeman, M Corrie

    2015-05-01

    The global DNA barcoding initiative has revolutionized the field of biodiversity research. Such large-scale sequencing projects require the collection of large numbers of specimens, which need to be killed and preserved in a way that is both DNA-friendly and which will keep voucher specimens in good condition for later study. Factors such as time since collection, correct storage (exposure to free water and heat) and DNA extraction protocol are known to play a role in the success of downstream molecular applications. Limited data are available on the most efficient, DNA-friendly protocol for killing. In this study, we evaluate the quality of DNA barcode (cytochrome oxidase I) sequences amplified from DNA extracted from specimens collected using three different killing methods (ethyl acetate, cyanide and freezing). Previous studies have suggested that chemicals, such as ethyl acetate and formaldehyde, degraded DNA and as such may not be appropriate for the collection of insects for DNA-based research. All Lepidoptera collected produced DNA barcodes of good quality, and our study found no clear difference in nucleotide signal strength, probability of incorrect base calling and phylogenetic utility among the three different treatment groups. Our findings suggest that ethyl acetate, cyanide and freezing can all be used to collect specimens for DNA analysis.

  2. DNA barcoding and taxonomy: dark taxa and dark texts.

    PubMed

    Page, Roderic D M

    2016-09-01

    Both classical taxonomy and DNA barcoding are engaged in the task of digitizing the living world. Much of the taxonomic literature remains undigitized. The rise of open access publishing this century and the freeing of older literature from the shackles of copyright have greatly increased the online availability of taxonomic descriptions, but much of the literature of the mid- to late-twentieth century remains offline ('dark texts'). DNA barcoding is generating a wealth of computable data that in many ways are much easier to work with than classical taxonomic descriptions, but many of the sequences are not identified to species level. These 'dark taxa' hamper the classical method of integrating biodiversity data, using shared taxonomic names. Voucher specimens are a potential common currency of both the taxonomic literature and sequence databases, and could be used to help link names, literature and sequences. An obstacle to this approach is the lack of stable, resolvable specimen identifiers. The paper concludes with an appeal for a global 'digital dashboard' to assess the extent to which biodiversity data are available online.This article is part of the themed issue 'From DNA barcodes to biomes'.

  3. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    PubMed

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-01

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods. PMID:27107012

  4. DNA barcoding in diverse educational settings: five case studies

    PubMed Central

    Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-01-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5–18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481792

  5. DNA barcoding in diverse educational settings: five case studies.

    PubMed

    Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-09-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481792

  6. A DNA barcoding approach to characterize pollen collected by honeybees.

    PubMed

    Galimberti, Andrea; De Mattia, Fabrizio; Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the