Science.gov

Sample records for 2d barcode technology

  1. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  2. Developing Mobile BIM/2D Barcode-Based Automated Facility Management System

    PubMed Central

    Chen, Yen-Pei

    2014-01-01

    Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373

  3. PiCode: A New Picture-Embedding 2D Barcode.

    PubMed

    Chen, Changsheng; Huang, Wenjian; Zhou, Baojian; Liu, Chenchen; Mow, Wai Ho

    2016-08-01

    Nowadays, 2D barcodes have been widely used as an interface to connect potential customers and advertisement contents. However, the appearance of a conventional 2D barcode pattern is often too obtrusive for integrating into an aesthetically designed advertisement. Besides, no human readable information is provided before the barcode is successfully decoded. This paper proposes a new picture-embedding 2D barcode, called PiCode, which mitigates these two limitations by equipping a scannable 2D barcode with a picturesque appearance. PiCode is designed with careful considerations on both the perceptual quality of the embedded image and the decoding robustness of the encoded message. Comparisons with the existing beautified 2D barcodes show that PiCode achieves one of the best perceptual qualities for the embedded image, and maintains a better tradeoff between image quality and decoding robustness in various application conditions. PiCode has been implemented in the MATLAB on a PC and some key building blocks have also been ported to Android and iOS platforms. Its practicality for real-world applications has been successfully demonstrated. PMID:27249833

  4. Clinical Validation of Quantum Dot Barcode Diagnostic Technology.

    PubMed

    Kim, Jisung; Biondi, Mia J; Feld, Jordan J; Chan, Warren C W

    2016-04-26

    There has been a major focus on the clinical translation of emerging technologies for diagnosing patients with infectious diseases, cancer, heart disease, and diabetes. However, most developments still remain at the academic stage where researchers use spiked target molecules to demonstrate the utility of a technology and assess the analytical performance. This approach does not account for the biological complexities and variabilities of human patient samples. As a technology matures and potentially becomes clinically viable, one important intermediate step in the translation process is to conduct a full clinical validation of the technology using a large number of patient samples. Here, we present a full detailed clinical validation of Quantum Dot (QD) barcode technology for diagnosing patients infected with Hepatitis B Virus (HBV). We further demonstrate that the detection of multiple regions of the viral genome using multiplexed QD barcodes improved clinical sensitivity from 54.9-66.7% to 80.4-90.5%, and describe how to use QD barcodes for optimal clinical diagnosis of patients. The use of QDs in biology and medicine was first introduced in 1998 but has not reached clinical care. This study describes our long-term systematic development strategy to advance QD technology to a clinically feasible product for diagnosing patients. Our "blueprint" for translating the QD barcode research concept could be adapted for other nanotechnologies, to efficiently advance diagnostic techniques discovered in the academic laboratory to patient care.

  5. Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequence-Coded Polymer Barcodes.

    PubMed

    Laure, Chloé; Karamessini, Denise; Milenkovic, Olgica; Charles, Laurence; Lutz, Jean-François

    2016-08-26

    A 2D approach was studied for the design of polymer-based molecular barcodes. Uniform oligo(alkoxyamine amide)s, containing a monomer-coded binary message, were synthesized by orthogonal solid-phase chemistry. Sets of oligomers with different chain-lengths were prepared. The physical mixture of these uniform oligomers leads to an intentional dispersity (1st dimension fingerprint), which is measured by electrospray mass spectrometry. Furthermore, the monomer sequence of each component of the mass distribution can be analyzed by tandem mass spectrometry (2nd dimension sequencing). By summing the sequence information of all components, a binary message can be read. A 4-bytes extended ASCII-coded message was written on a set of six uniform oligomers. Alternatively, a 3-bytes sequence was written on a set of five oligomers. In both cases, the coded binary information was recovered. PMID:27484303

  6. Quality Traceability System of Traditional Chinese Medicine Based on Two Dimensional Barcode Using Mobile Intelligent Technology

    PubMed Central

    Cai, Yong; Li, Xiwen; Wang, Runmiao; Yang, Qing; Li, Peng; Hu, Hao

    2016-01-01

    Currently, the chemical fingerprint comparison and analysis is mainly based on professional equipment and software, it’s expensive and inconvenient. This study aims to integrate QR (Quick Response) code with quality data and mobile intelligent technology to develop a convenient query terminal for tracing quality in the whole industrial chain of TCM (traditional Chinese medicine). Three herbal medicines were randomly selected and their chemical two-dimensional barcode (2D) barcodes fingerprints were constructed. Smartphone application (APP) based on Android system was developed to read initial data of 2D chemical barcodes, and compared multiple fingerprints from different batches of same species or different species. It was demonstrated that there were no significant differences between original and scanned TCM chemical fingerprints. Meanwhile, different TCM chemical fingerprint QR codes could be rendered in the same coordinate and showed the differences very intuitively. To be able to distinguish the variations of chemical fingerprint more directly, linear interpolation angle cosine similarity algorithm (LIACSA) was proposed to get similarity ratio. This study showed that QR codes can be used as an effective information carrier to transfer quality data. Smartphone application can rapidly read quality information in QR codes and convert data into TCM chemical fingerprints. PMID:27780256

  7. From Codabar to ISBT 128: Implementing Barcode Technology in Blood BankAutomation System.

    PubMed

    Li, Bing-Nan; Dong, Ming-Chui; Vai Mang, I

    2005-01-01

    Barcode technology has been widely employed in medicine and healthcare industry. In this paper, it firstly introduces the application of barcode technology in information automation system oriented to blood banks and other transfusion facilities. In the following, the label paradigm of Codabar in Macao Blood Transfusion Center (CTS-Macau) is examined through the comparison with ISBT 128, an international barcode and labeling standard for blood and blood products. And then, it tries to exemplify the supersedure of Codabar by ISBT 128 via the implementation of barcode labeling system at CTS-Macau. This paper is intended to serve as a reference of implementing barcode technology in blood bank automation system.

  8. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  9. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  10. [The application of barcode technology in management of high value medical consumables].

    PubMed

    Zhu, Shengjun

    2012-03-01

    This article explores the problems of High Value Medical Consumables Management in hospitals, and introduces not only the procedures of high value medical consumables barcode management system based on the application of barcode technology and advanced management philosophy but also the key concrete implementation points in our hospital. The application of barcode technology in the management of high value medical consumables provides hospitals with a new path to modernization and informationization of high value medical consumables management.

  11. Identification of ungulates used in a traditional Chinese medicine with DNA barcoding technology

    PubMed Central

    Chen, Jing; Jiang, Zhigang; Li, Chunlin; Ping, Xiaoge; Cui, Shaopeng; Tang, Songhua; Chu, Hongjun; Liu, Binwan

    2015-01-01

    Horns of Saiga antelope (Saiga tatarica) have always been an ingredient of “Lingyangjiao”, a traditional Chinese medicine (TCM). Persistent hunting for Saiga antelope has already threatened the survival of critical endangered populations in wild. To control the growing pressure, CITES and Chinese government have legislated for monitoring the trade of Saiga horns. However, similar ungulate horns are difficult to identify by their morphological characteristics, which has impeded the law enforcement. Besides Saiga antelope, other seven ungulate species which have similar horns are also sold and marked as “Lingyangjiao” in TCM markets to offset shortage of Saiga antelope horns. Such species are Gazella subgutturosa, Pantholops hodgsonii, Procapra picticaudata, Procapra gutturosa, Procapra przewalskii, Capra hircus, and Ovis aries. Our study aimed at implementing DNA barcoding technology to diagnose Saiga horns and the substitutes. We successfully extracted genomic DNA from horn samples. We recovered COI sequences of 644 bp with specific primers and 349 bp with nested PCR primers designed for degraded horn samples. The mean interspecific genetic distance of data set of the 644-bp full barcodes and the 349-bp mini-barcodes was 14.96% and 15.38%, respectively, and the mean intraspecific distance was 0.24% and 0.20%, respectively. Each species formed independent clades in neighbor-joining (NJ) phylogenetic tree of the two data sets with >99% supporting values, except P. gutturosa and P. przewalskii. The deep genetic distances gap and clear species clades in NJ tree of either full barcodes or mini-barcodes suggest that barcoding technology is an effective tool to diagnose Saiga horns and their substitutes. Barcoding diagnosis protocol developed here will simplify diagnosis of “Lingyangjiao” species and will facilitate conservation of endangered ungulates involved in TCM “Lingyangjiao” markets, especially the Saiga antelope. PMID:26140198

  12. Identification of ungulates used in a traditional Chinese medicine with DNA barcoding technology.

    PubMed

    Chen, Jing; Jiang, Zhigang; Li, Chunlin; Ping, Xiaoge; Cui, Shaopeng; Tang, Songhua; Chu, Hongjun; Liu, Binwan

    2015-05-01

    Horns of Saiga antelope (Saiga tatarica) have always been an ingredient of "Lingyangjiao", a traditional Chinese medicine (TCM). Persistent hunting for Saiga antelope has already threatened the survival of critical endangered populations in wild. To control the growing pressure, CITES and Chinese government have legislated for monitoring the trade of Saiga horns. However, similar ungulate horns are difficult to identify by their morphological characteristics, which has impeded the law enforcement. Besides Saiga antelope, other seven ungulate species which have similar horns are also sold and marked as "Lingyangjiao" in TCM markets to offset shortage of Saiga antelope horns. Such species are Gazella subgutturosa, Pantholops hodgsonii, Procapra picticaudata, Procapra gutturosa, Procapra przewalskii, Capra hircus, and Ovis aries. Our study aimed at implementing DNA barcoding technology to diagnose Saiga horns and the substitutes. We successfully extracted genomic DNA from horn samples. We recovered COI sequences of 644 bp with specific primers and 349 bp with nested PCR primers designed for degraded horn samples. The mean interspecific genetic distance of data set of the 644-bp full barcodes and the 349-bp mini-barcodes was 14.96% and 15.38%, respectively, and the mean intraspecific distance was 0.24% and 0.20%, respectively. Each species formed independent clades in neighbor-joining (NJ) phylogenetic tree of the two data sets with >99% supporting values, except P. gutturosa and P. przewalskii. The deep genetic distances gap and clear species clades in NJ tree of either full barcodes or mini-barcodes suggest that barcoding technology is an effective tool to diagnose Saiga horns and their substitutes. Barcoding diagnosis protocol developed here will simplify diagnosis of "Lingyangjiao" species and will facilitate conservation of endangered ungulates involved in TCM "Lingyangjiao" markets, especially the Saiga antelope.

  13. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    PubMed

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  14. Patient Safety with Blood Products Administration Using Wireless and Bar-Code Technology

    PubMed Central

    Porcella, Aleta; Walker, Kristy

    2005-01-01

    Supported by a grant from the Agency for Healthcare Research and Quality, a University of Iowa Hospitals and Clinics interdisciplinary research team created an online data-capture-response tool utilizing wireless mobile devices and bar code technology to track and improve blood products administration process. The tool captures 1) sample collection, 2) sample arrival in the blood bank, 3) blood product dispense from blood bank, and 4) administration. At each step, the scanned patient wristband ID bar code is automatically compared to scanned identification barcode on requisition, sample, and/or product, and the system presents either a confirmation or an error message to the user. Following an eight-month, 5 unit, staged pilot, a ‘big bang,’ hospital-wide implementation occurred on February 7, 2005. Pilot period and preliminary house-wide data indicate improved error capture with the new barcode process over the old manual process. PMID:16779113

  15. Patient safety with blood products administration using wireless and bar-code technology.

    PubMed

    Porcella, Aleta; Walker, Kristy

    2005-01-01

    Supported by a grant from the Agency for Healthcare Research and Quality, a University of Iowa Hospitals and Clinics interdisciplinary research team created an online data-capture-response tool utilizing wireless mobile devices and bar code technology to track and improve blood products administration process. The tool captures 1) sample collection, 2) sample arrival in the blood bank, 3) blood product dispense from blood bank, and 4) administration. At each step, the scanned patient wristband ID bar code is automatically compared to scanned identification barcode on requisition, sample, and/or product, and the system presents either a confirmation or an error message to the user. Following an eight-month, 5 unit, staged pilot, a 'big bang,' hospital-wide implementation occurred on February 7, 2005. Preliminary results from pilot data indicate that the new barcode process captures errors 3 to 10 times better than the old manual process.

  16. SERS-active nanoparticles as a barcoding technology for tags and seals

    SciTech Connect

    Brown, Leif O; Doorn, Stephen K; Merkle, Peter B

    2009-01-01

    In this paper, we present our work to modernize tagging and sealing technologies for international safeguards applications. Our work combines technologies developed at both Los Alamos National Laboratory (LANL), and Sandia National Laboratories (SNL), to offer a passive tag and seal system that can be applied and verified in field, with minimal training for on-site personnel, along with a low per-seal cost. Here, we focus primarily on LANL technology: the use of Surface Enhanced Raman Scattering (SERS) as an inexpensive verification tool. Our nanoparticles offer unique SERS responses, which we can then use to incorporate robust barcoding into tag materials. We describe this technology in more detail, offer preliminary results, and outline integration with SNL developments.

  17. New technologies of 2-D and 3-D modeling for analysis and management of natural resources

    NASA Astrophysics Data System (ADS)

    Cheremisina, E. N.; Lyubimova, A. V.; Kirpicheva, E. Yu.

    2016-09-01

    For ensuring technological support of research and administrative activity in the sphere of environmental management a specialized modular program complex was developed. The special attention in developing a program complex is focused to creation of convenient and effective tools for creation and visualization 2d and 3D models providing the solution of tasks of the analysis and management of natural resources.

  18. News and Views: Perspectives on Graphene and Other 2D Materials Research and Technology Investments

    NASA Astrophysics Data System (ADS)

    Ribeiro-Soares, J.; Dresselhaus, M. S.

    2014-06-01

    With the actual experimental realization of graphene samples, it became possible not only to exploit the special physical properties of graphene but also to exploit its technological applications. As the field developed, the discovery of other 2D materials occurred and this opened up access to a plethora of combinations of a large variety of electrical, optical, mechanical, and chemical properties. Now there are large investments being made around the world to develop the graphene research area and to boost graphene use in technology. Here, we discuss current research and some future prospects for this area of layered nanomaterials.

  19. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes.

  20. A new sensor technology for 2D ultrasound-guided needle tracking.

    PubMed

    Lu, Huanxiang; Li, Junbo; Lu, Qiang; Bharat, Shyam; Erkamp, Ramon; Chen, Bin; Drysdale, Jeremy; Vignon, Francois; Jain, Ameet

    2014-01-01

    2D Ultrasound (US) is becoming the preferred modality for image-guided interventions due to its low cost and portability. However, the main limitation is the limited visibility of surgical tools. We present a new sensor technology that can easily be embedded on needles that are used for US-guided interventions. Two different types of materials are proposed to be used as sensor--co-polymer and PZT. The co-polymer technology is particularly attractive due to its plasticity, allowing very thin depositions (10-20 μm) on a variety of needle shapes. Both sensors receive acoustic energy and convert it to an electrical signal. The precise location of the needle can then be estimated from this signal, to provide real-time feedback to the clinician. We evaluated the feasibility of this new technology using (i) a 4DOF robot in a water tank; (ii) extensive ex vivo experiments; and (iii) in vivo studies. Quantitative robotic studies indicated that the co-polymer is more robust and stable when compared to PZT. In quantitative experiments, the technology achieved a tracking accuracy of 0.14 ± 0.03mm, significantly superior to competing technologies. The technology also proved success in near-real clinical studies on tissue data. This sensor technology is non-disruptive of existing clinical workflows, highly accurate, and is cost-effective. Initial clinician feedback shows great potential for large scale clinical impact.

  1. An economic analysis of private incentives to adopt DNA barcoding technology for fish species authentication in Canada.

    PubMed

    Ugochukwu, Albert I; Hobbs, Jill E; Phillips, Peter W B; Gray, Richard

    2015-12-01

    The increasing spate of species substitution and mislabelling in fish markets has become a concern to the public and a challenge to both the food industry and regulators. Species substitution and mislabelling within fish supply chains occurs because of price incentives to misrepresent products for economic gain. Emerging authenticity technologies, such as the DNA barcoding technology that has been used to identify plants and animal (particularly fish) species through DNA sequencing, offer a potential technological solution to this information problem. However, the adoption of these authenticity technologies depends also on economic factors. The present study uses economic welfare analysis to examine the effects of species substitution and mislabelling in fish markets, and examines the feasibility of the technology for a typical retail store in Canada. It is assumed that increased accuracy of the technology in detecting fraud and enforcement of legal penalties and other associated costs would be likely to discourage cheating. Empirical results suggest that DNA barcoding technology would be feasible presently for a typical retail store only if authentication is done in a third party laboratory, as it may not be feasible on an individual retail store level once fixed and other associated costs of the technology are considered.

  2. An economic analysis of private incentives to adopt DNA barcoding technology for fish species authentication in Canada.

    PubMed

    Ugochukwu, Albert I; Hobbs, Jill E; Phillips, Peter W B; Gray, Richard

    2015-12-01

    The increasing spate of species substitution and mislabelling in fish markets has become a concern to the public and a challenge to both the food industry and regulators. Species substitution and mislabelling within fish supply chains occurs because of price incentives to misrepresent products for economic gain. Emerging authenticity technologies, such as the DNA barcoding technology that has been used to identify plants and animal (particularly fish) species through DNA sequencing, offer a potential technological solution to this information problem. However, the adoption of these authenticity technologies depends also on economic factors. The present study uses economic welfare analysis to examine the effects of species substitution and mislabelling in fish markets, and examines the feasibility of the technology for a typical retail store in Canada. It is assumed that increased accuracy of the technology in detecting fraud and enforcement of legal penalties and other associated costs would be likely to discourage cheating. Empirical results suggest that DNA barcoding technology would be feasible presently for a typical retail store only if authentication is done in a third party laboratory, as it may not be feasible on an individual retail store level once fixed and other associated costs of the technology are considered. PMID:26577715

  3. Genetic barcodes

    DOEpatents

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  4. Barcode uses and abuses

    SciTech Connect

    KEENEN,MARTHA JANE; NUSBAUM,ANNA W.

    2000-05-18

    Barcodes are something that everybody sees every day; so common as to be taken for granted and normally unnoticed. Readable, no one reads them. They are used to allow machines to identify a wide variety of non-electronic, real life objects. Barcode is one of the earliest types of what is now called ``Automatic Identification and Data Capture'' (AIDC), meaning ``data was transmitted into whatever system by something other than typing or hand-writing.'' There are 18 technologies, broken down into six categories--biometrics, electromagnetic, magnetic, optical, Smart Cards, Touch--included in the AIDC concept. Many are used jointly with or as adjuncts to a basic barcode system of some type. All are based on assignment of a unique identifier to the object, usually a number. The uniqueness presumption makes barcode systems very applicable and appropriate to the nuclear information management venue as they inherently comply with the Nuclear Quality Assurance (NQA-1) requirements. Barcode systems belong to the optical category of AIDC. It is very old in usage as these technologies go, having first been patented in 1949. It astonished me, in researching this paper, to find that there are over 250 types of barcode (symbologies), each with its own specialized attributes, though only a few dozen are in active use. The initial uses were in the early 1950s and diversity of use is ever increasing as people find new ways to make this versatile old technology work. To what else could it be applied, in the future? This paper attempts to answer this.

  5. QR Codes in the Library: "It's Not Your Mother's Barcode!"

    ERIC Educational Resources Information Center

    Dobbs, Cheri

    2011-01-01

    Barcode scanning has become more than just fun. Now libraries and businesses are leveraging barcode technology as an innovative tool to market their products and ideas. Developed and popularized in Japan, these Quick Response (QR) or two-dimensional barcodes allow marketers to provide interactive content in an otherwise static environment. In this…

  6. Feasibility and Limitations of Vaccine Two-Dimensional Barcoding Using Mobile Devices

    PubMed Central

    Bell, Cameron; Guerinet, Julien

    2016-01-01

    Background Two-dimensional (2D) barcoding has the potential to enhance documentation of vaccine encounters at the point of care. However, this is currently limited to environments equipped with dedicated barcode scanners and compatible record systems. Mobile devices may present a cost-effective alternative to leverage 2D vaccine vial barcodes and improve vaccine product-specific information residing in digital health records. Objective Mobile devices have the potential to capture product-specific information from 2D vaccine vial barcodes. We sought to examine the feasibility, performance, and potential limitations of scanning 2D barcodes on vaccine vials using 4 different mobile phones. Methods A unique barcode scanning app was developed for Android and iOS operating systems. The impact of 4 variables on the scan success rate, data accuracy, and time to scan were examined: barcode size, curvature, fading, and ambient lighting conditions. Two experimenters performed 4 trials 10 times each, amounting to a total of 2160 barcode scan attempts. Results Of the 1832 successful scans performed in this evaluation, zero produced incorrect data. Five-millimeter barcodes were the slowest to scan, although only by 0.5 seconds on average. Barcodes with up to 50% fading had a 100% success rate, but success rate deteriorated beyond 60% fading. Curved barcodes took longer to scan compared with flat, but success rate deterioration was only observed at a vial diameter of 10 mm. Light conditions did not affect success rate or scan time between 500 lux and 20 lux. Conditions below 20 lux impeded the device’s ability to scan successfully. Variability in scan time was observed across devices in all trials performed. Conclusions 2D vaccine barcoding is possible using mobile devices and is successful under the majority of conditions examined. Manufacturers utilizing 2D barcodes should take into consideration the impact of factors that limit scan success rates. Future studies should

  7. The State and Trends of Barcode, RFID, Biometric and Pharmacy Automation Technologies in US Hospitals

    PubMed Central

    Uy, Raymonde Charles Y.; Kury, Fabricio P.; Fontelo, Paul A.

    2015-01-01

    The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions. PMID:26958264

  8. The State and Trends of Barcode, RFID, Biometric and Pharmacy Automation Technologies in US Hospitals.

    PubMed

    Uy, Raymonde Charles Y; Kury, Fabricio P; Fontelo, Paul A

    2015-01-01

    The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions.

  9. Species Identification in Malaise Trap Samples by DNA Barcoding Based on NGS Technologies and a Scoring Matrix

    PubMed Central

    Morinière, Jérôme; Cancian de Araujo, Bruno; Hausmann, Axel; Balke, Michael; Hendrich, Lars; Doczkal, Dieter; Arvidsson, Samuel; Haszprunar, Gerhard

    2016-01-01

    The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1-5’ fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage ≥10; CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples; whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming presorting process will yield approximately 30% more high score BINs compared to the non-sorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline. PMID:27191722

  10. Recent Advances In 2D-Band Structure Imaging By k-PEEM and Prospects For Technological Materials

    NASA Astrophysics Data System (ADS)

    Mathieu, C.; Renault, O.; Rotella, H.; Barrett, N.; Chabli, A.

    2011-11-01

    The imaging of surfaces using the PhotoElectron Emission Microscopy (PEEM) technique has recently received considerable interest, mainly thanks to the use of high brilliance synchrotron radiation which facilitates the study of surface properties and chemical selectivity. By inserting a transfer lens in the optical column of a high transmission and full energy-filtering PEEM, it is possible to image the back focal plane, named k-PEEM imaging mode. Hence, the corresponding image shows the angular distribution of the emitted photoelectrons for a given kinetic energy. By varying the kinetic energy, the complete energy filtering provides full 2D cuts of the band structure in reciprocal space. In this paper, we present the principles and the capabilities of this new imaging mode, and compare it to the standard ARPES technique. Then, we present results obtained on a model sample: Ag(100), and on a technological sample, epitaxial graphene on SiC(0001), highlighting the potential of this new imaging mode for the spatially resolved characterization of the electronic structure of monocrystalline materials in devices.

  11. Reducing the Spatial Distance between Printed and Online Information Sources by Means of Mobile Technology Enhances Learning: Using 2D Barcodes

    ERIC Educational Resources Information Center

    Ozcelik, Erol; Acarturk, Cengiz

    2011-01-01

    Online information sources, such as pictures and animations on web pages are frequently used for complementing printed course material in educational contexts. The concurrent use of online and printed information sources by students, however, requires going back and forth between physically separated course material, such as a course book and a…

  12. Barcode localization with region based gradient statistical analysis

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Zhao, Yuming

    2015-03-01

    Barcode, as a kind of data representation method, has been adopted in a wide range of areas. Especially with the rise of the smart phone and the hand-held device equipped with high resolution camera and great computation power, barcode technique has found itself more extensive applications. In industrial field, barcode reading system is highly demanded to be robust to blur, illumination change, pitch, rotation, and scale change. This paper gives a new idea in localizing barcode under a region-based gradient statistical analysis. Making this idea as the basis, four algorithms have been developed for dealing with Linear, PDF417, Stacked 1D1D and Stacked 1D2D barcodes respectively. After being evaluated on our challenging dataset with more than 17000 images, the result shows that our methods can achieve an average localization accuracy of 82.17% with respect to 8 kinds of distortions and within an average time of 12 ms.

  13. Recommendations for Using Barcode in Hospital Process

    PubMed Central

    Hachesu, Peyman Rezaei; Zyaei, Leila; Hassankhani, Hadi

    2016-01-01

    Background: Lack of attention to the proper barcode using leads to lack of use or misuse in the hospitals. The present research aimed to investigate the requirements and barrier for using barcode technology and presenting suggestions to use it. Methods: The research is observational-descriptive. The data was collected using the designed checklist which its validity was assessed. This check list consists of two parts: “Requirements” and “barrier” of using the barcodes. Research community included 10 teaching hospitals and a class of 65 participants included people in the hospitals. The collected data was analyzed using descriptive statistics. Results: Required changes of workflow processes in the hospital and compliance them with the hospital policy are such requirements that had been infringed in the 90 % of hospitals. Prioritization of some hospital processes for barcoding, system integration with Hospital Information system (HIS), training of staff and budgeting are requirements for the successful implementation which had been infringed in the 80% of hospitals. Dissatisfaction with the quality of barcode labels and lacks of adequate scanners both whit the rate of 100 %, and the lack of understanding of the necessary requirements for implementation of barcodes as 80% were the most important barrier. Conclusion: Integrate bar code system with clinical workflow should be considered. Lack of knowledge and understanding toward the infrastructure, inadequate staff training and technologic problems are considered as the greatest barriers. PMID:27482137

  14. Scanning-time evaluation of Digimarc Barcode

    NASA Astrophysics Data System (ADS)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  15. Real-time multi-barcode reader for industrial applications

    NASA Astrophysics Data System (ADS)

    Zafar, Iffat; Zakir, Usman; Edirisinghe, Eran A.

    2010-05-01

    The advances in automated production processes have resulted in the need for detecting, reading and decoding 2D datamatrix barcodes at very high speeds. This requires the correct combination of high speed optical devices that are capable of capturing high quality images and computer vision algorithms that can read and decode the barcodes accurately. Such barcode readers should also be capable of resolving fundamental imaging challenges arising from blurred barcode edges, reflections from possible polyethylene wrapping, poor and/or non-uniform illumination, fluctuations of focus, rotation and scale changes. Addressing the above challenges in this paper we propose the design and implementation of a high speed multi-barcode reader and provide test results from an industrial trial. To authors knowledge such a comprehensive system has not been proposed and fully investigated in existing literature. To reduce the reflections on the images caused due to polyethylene wrapping used in typical packaging, polarising filters have been used. The images captured using the optical system above will still include imperfections and variations due to scale, rotation, illumination etc. We use a number of novel image enhancement algorithms optimised for use with 2D datamatrix barcodes for image de-blurring, contrast point and self-shadow removal using an affine transform based approach and non-uniform illumination correction. The enhanced images are subsequently used for barcode detection and recognition. We provide experimental results from a factory trial of using the multi-barcode reader and evaluate the performance of each optical unit and computer vision algorithm used. The results indicate an overall accuracy of 99.6 % in barcode recognition at typical speeds of industrial conveyor systems.

  16. DNA mini-barcodes.

    PubMed

    Hajibabaei, Mehrdad; McKenna, Charly

    2012-01-01

    Conventional DNA barcoding uses an approximately 650 bp DNA barcode of the mitochondrial gene COI for species identification in animal groups. Similar size fragments from chloroplast genes have been proposed as barcode markers for plants. While PCR amplification and sequencing of a 650 bp fragment is consistent in freshly collected and well-preserved specimens, it is difficult to obtain a full-length barcode in older museum specimens and samples which have been preserved in formalin or similar DNA-unfriendly preservatives. A comparable issue may prevent effective DNA-based authentication and testing in processed biological materials, such as food products, pharmaceuticals, and nutraceuticals. In these cases, shorter DNA sequences-mini-barcodes-have been robustly recovered and shown to be effective in identifying majority of specimens to a species level. Furthermore, short DNA regions can be utilized via high-throughput sequencing platforms providing an inexpensive and comprehensive means of large-scale species identification. These properties of mini-barcodes, coupled with the availability of standardized and universal primers make mini-barcodes a feasible option for DNA barcode analysis in museum samples and applied diagnostic and environmental biodiversity analysis.

  17. DNA barcoding for plants.

    PubMed

    de Vere, Natasha; Rich, Tim C G; Trinder, Sarah A; Long, Charlotte

    2015-01-01

    DNA barcoding uses specific regions of DNA in order to identify species. Initiatives are taking place around the world to generate DNA barcodes for all groups of living organisms and to make these data publically available in order to help understand, conserve, and utilize the world's biodiversity. For land plants the core DNA barcode markers are two sections of coding regions within the chloroplast, part of the genes, rbcL and matK. In order to create high quality databases, each plant that is DNA barcoded needs to have a herbarium voucher that accompanies the rbcL and matK DNA sequences. The quality of the DNA sequences, the primers used, and trace files should also be accessible to users of the data. Multiple individuals should be DNA barcoded for each species in order to check for errors and allow for intraspecific variation. The world's herbaria provide a rich resource of already preserved and identified material and these can be used for DNA barcoding as well as by collecting fresh samples from the wild. These protocols describe the whole DNA barcoding process, from the collection of plant material from the wild or from the herbarium, how to extract and amplify the DNA, and how to check the quality of the data after sequencing.

  18. Barcode V1.0

    2003-03-03

    This software produces barcode images for printing and reads barcodes from digital images according to the mathematical and algorithmic description from a Sandia patent application titled "A Self-Registering Sread-Spectrum Barcode". A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along withmore » the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature and perspective.« less

  19. Parallel barcoding of antibodies for DNA-assisted proteomics.

    PubMed

    Dezfouli, Mahya; Vickovic, Sanja; Iglesias, Maria Jesus; Schwenk, Jochen M; Ahmadian, Afshin

    2014-11-01

    DNA-assisted proteomics technologies enable ultra-sensitive measurements in multiplex format using DNA-barcoded affinity reagents. Although numerous antibodies are available, nowadays targeting nearly the complete human proteome, the majority is not accessible at the quantity, concentration, or purity recommended for most bio-conjugation protocols. Here, we introduce a magnetic bead-assisted DNA-barcoding approach, applicable for several antibodies in parallel, as well as reducing required reagents quantities up to a thousand-fold. The success of DNA-barcoding and retained functionality of antibodies were demonstrated in sandwich immunoassays and standard quantitative Immuno-PCR assays. Specific DNA-barcoding of antibodies for multiplex applications was presented on suspension bead arrays with read-out on a massively parallel sequencing platform in a procedure denoted Immuno-Sequencing. Conclusively, human plasma samples were analyzed to indicate the functionality of barcoded antibodies in intended proteomics applications. PMID:25263329

  20. Phosphoproteomic analysis of wild-type and antimony-resistant Leishmania braziliensis lines by 2D-DIGE technology.

    PubMed

    Moreira, Douglas de Souza; Pescher, Pascale; Laurent, Christine; Lenormand, Pascal; Späth, Gerald F; Murta, Silvane M F

    2015-09-01

    Protein phosphorylation is one of the most studied post-translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)-resistant and -susceptible lines of Leishmania braziliensis using a 2D-DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug-induced stress response and SbIII-resistance mechanisms, we compared nontreated and SbIII-treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category "protein folding/chaperones and stress response" is mainly implicated in response to SbIII treatment, while the categories "antioxidant/detoxification," "metabolic process," "RNA/DNA processing," and "protein biosynthesis" are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.

  1. DNA barcodes for ecology, evolution, and conservation.

    PubMed

    Kress, W John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L

    2015-01-01

    The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed.

  2. Touch-screen technology for the dynamic display of -2D spatial information without vision: promise and progress.

    PubMed

    Klatzky, Roberta L; Giudice, Nicholas A; Bennett, Christopher R; Loomis, Jack M

    2014-01-01

    Many developers wish to capitalize on touch-screen technology for developing aids for the blind, particularly by incorporating vibrotactile stimulation to convey patterns on their surfaces, which otherwise are featureless. Our belief is that they will need to take into account basic research on haptic perception in designing these graphics interfaces. We point out constraints and limitations in haptic processing that affect the use of these devices. We also suggest ways to use sound to augment basic information from touch, and we include evaluation data from users of a touch-screen device with vibrotactile and auditory feedback that we have been developing, called a vibro-audio interface.

  3. Implementing a Serials Barcoding Project.

    ERIC Educational Resources Information Center

    Lennertz, Lora L.; Conway, Cheryl L.

    1997-01-01

    Discusses the process of planning and implementing a barcode project for library serials based on experiences at the University of Arkansas Fayetteville library. Topics include dumb versus smart barcodes, cataloging, classification, application rate of barcode labels, and library staff participation. (Author/LRW)

  4. Impact of next-generation sequencing error on analysis of barcoded plasmid libraries of known complexity and sequence

    PubMed Central

    Deakin, Claire T.; Deakin, Jeffrey J.; Ginn, Samantha L.; Young, Paul; Humphreys, David; Suter, Catherine M.; Alexander, Ian E.; Hallwirth, Claus V.

    2014-01-01

    Barcoded vectors are promising tools for investigating clonal diversity and dynamics in hematopoietic gene therapy. Analysis of clones marked with barcoded vectors requires accurate identification of potentially large numbers of individually rare barcodes, when the exact number, sequence identity and abundance are unknown. This is an inherently challenging application, and the feasibility of using contemporary next-generation sequencing technologies is unresolved. To explore this potential application empirically, without prior assumptions, we sequenced barcode libraries of known complexity. Libraries containing 1, 10 and 100 Sanger-sequenced barcodes were sequenced using an Illumina platform, with a 100-barcode library also sequenced using a SOLiD platform. Libraries containing 1 and 10 barcodes were distinguished from false barcodes generated by sequencing error by a several log-fold difference in abundance. In 100-barcode libraries, however, expected and false barcodes overlapped and could not be resolved by bioinformatic filtering and clustering strategies. In independent sequencing runs multiple false-positive barcodes appeared to be represented at higher abundance than known barcodes, despite their confirmed absence from the original library. Such errors, which potentially impact barcoding studies in an application-dependent manner, are consistent with the existence of both stochastic and systematic error, the mechanism of which is yet to be fully resolved. PMID:25013183

  5. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    PubMed

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.

  6. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    PubMed

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content. PMID:24641208

  7. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens

    PubMed Central

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-01-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content. PMID:24641208

  8. DNA barcoding in mammals.

    PubMed

    Ivanova, Natalia V; Clare, Elizabeth L; Borisenko, Alex V

    2012-01-01

    DNA barcoding provides an operational framework for mammalian taxonomic identification and cryptic species discovery. Focused effort to build a reference library of genetic data has resulted in the assembly of over 35 K mammalian cytochrome c oxidase subunit I sequences and outlined the scope of mammal-related barcoding projects. Based on the above experience, this chapter recounts three typical methodological pathways involved in mammalian barcoding: routine methods aimed at assembling the reference sequence library from high quality samples, express approaches used to attain cheap and fast taxonomic identifications for applied purposes, and forensic techniques employed when dealing with degraded material. Most of the methods described are applicable to a range of vertebrate taxa outside Mammalia.

  9. DNA barcodes: methods and protocols.

    PubMed

    Kress, W John; Erickson, David L

    2012-01-01

    DNA barcoding, a new method for the quick identification of any species based on extracting a DNA sequence from a tiny tissue sample of any organism, is now being applied to taxa across the tree of life. As a research tool for taxonomists, DNA barcoding assists in identification by expanding the ability to diagnose species by including all life history stages of an organism. As a biodiversity discovery tool, DNA barcoding helps to flag species that are potentially new to science. As a biological tool, DNA barcoding is being used to address fundamental ecological and evolutionary questions, such as how species in plant communities are assembled. The process of DNA barcoding entails two basic steps: (1) building the DNA barcode library of known species and (2) matching the barcode sequence of the unknown sample against the barcode library for identification. Although DNA barcoding as a methodology has been in use for less than a decade, it has grown exponentially in terms of the number of sequences generated as barcodes as well as its applications. This volume provides the latest information on generating, applying, and analyzing DNA barcodes across the Tree of Life from animals and fungi to protists, algae, and plants.

  10. DNA barcoding in animal species: progress, potential and pitfalls.

    PubMed

    Waugh, John

    2007-02-01

    Despite 250 years of work in systematics, the majority of species remains to be identified. Rising extinction rates and the need for increased biological monitoring lend urgency to this task. DNA sequencing, with key sequences serving as a "barcode", has therefore been proposed as a technology that might expedite species identification. In particular, the mitochondrial cytochrome c oxidase subunit 1 gene has been employed as a possible DNA marker for species and a number of studies in a variety of taxa have accordingly been carried out to examine its efficacy. In general, these studies demonstrate that DNA barcoding resolves most species, although some taxa have proved intractable. In some studies, barcoding provided a means of highlighting potential cryptic, synonymous or extinct species as well as matching adults with immature specimens. Higher taxa, however, have not been resolved as accurately as species. Nonetheless, DNA barcoding appears to offer a means of identifying species and may become a standard tool.

  11. Barcoded microchips for biomolecular assays.

    PubMed

    Zhang, Yi; Sun, Jiashu; Zou, Yu; Chen, Wenwen; Zhang, Wei; Xi, Jianzhong Jeff; Jiang, Xingyu

    2015-01-20

    Multiplexed assay of analytes is of great importance for clinical diagnostics and other analytical applications. Barcode-based bioassays with the ability to encode and decode may realize this goal in a straightforward and consistent manner. We present here a microfluidic barcoded chip containing several sets of microchannels with different widths, imitating the commonly used barcode. A single barcoded microchip can carry out tens of individual protein/nucleic acid assays (encode) and immediately yield all assay results by a portable barcode reader or a smartphone (decode). The applicability of a barcoded microchip is demonstrated by human immunodeficiency virus (HIV) immunoassays for simultaneous detection of three targets (anti-gp41 antibody, anti-gp120 antibody, and anti-gp36 antibody) from six human serum samples. We can also determine seven pathogen-specific oligonucleotides by a single chip containing both positive and negative controls.

  12. Pyrosequencing for mini-barcoding of fresh and old museum specimens.

    PubMed

    Shokralla, Shadi; Zhou, Xin; Janzen, Daniel H; Hallwachs, Winnie; Landry, Jean-François; Jacobus, Luke M; Hajibabaei, Mehrdad

    2011-01-01

    DNA barcoding is an effective approach for species identification and for discovery of new and/or cryptic species. Sanger sequencing technology is the method of choice for obtaining standard 650 bp cytochrome c oxidase subunit I (COI) barcodes. However, DNA degradation/fragmentation makes it difficult to obtain a full-length barcode from old specimens. Mini-barcodes of 130 bp from the standard barcode region have been shown to be effective for accurate identification in many animal groups and may be readily obtained from museum samples. Here we demonstrate the application of an alternative sequencing technology, the four-enzymes single-specimen pyrosequencing, in rapid, cost-effective mini-barcode analysis. We were able to generate sequences of up to 100 bp from mini-barcode fragments of COI in 135 fresh and 50 old Lepidoptera specimens (ranging from 53-97 year-old). The sequences obtained using pyrosequencing were of high quality and we were able to robustly match all the tested pyro-sequenced samples to their respective Sanger-sequenced standard barcode sequences, where available. Simplicity of the protocol and instrumentation coupled with higher speed and lower cost per sequence than Sanger sequencing makes this approach potentially useful in efforts to link standard barcode sequences from unidentified specimens to known museum specimens with only short DNA fragments.

  13. 2D and 3D documentation of St. Nicolas baroque church for the general reconstruction using laser scanning and photogrammetry technologies combination

    NASA Astrophysics Data System (ADS)

    Křemen, Tomáš; Koska, Bronislav

    2013-04-01

    Total reconstruction of a historical object is a complicated process consisting of several partial steps. One of these steps is acquiring high-quality data for preparation of the project documentation. If these data are not available from the previous periods, it is necessary to proceed to a detailed measurement of the object and to create a required drawing documentation. New measurement of the object brings besides its costs also several advantages as complex content and form of drawings exactly according to the requirements together with their high accuracy. The paper describes measurement of the Baroque church by the laser scanning method extended by the terrestrial and air photogrammetry. It deals with processing the measured data and creating the final outputs, which is a 2D drawing documentation, orthophotos and a 3D model. Attention is focused on their problematic parts like interconnection of the measurement data acquired by various technologies, creation of orthophotos and creation of the detailed combined 3D model of the church exterior. Results of this work were used for preparation of the planned reconstruction of the object.

  14. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extensive use of DNA barcoding technology in a large inventory of Macrolepidoptera and their parasitoids is documented. The methodology used and its practical applications are summarized, and numerous examples of how DNA barcoding has untangled complexes of cryptic species of butterflies, moths...

  15. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  16. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  17. Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms.

    PubMed

    Saunders, Gary W; McDevit, Daniel C

    2012-01-01

    This chapter outlines the current practices used in our laboratory for routine DNA barcode analyses of the three major marine macroalgal groups, viz., brown (Phaeophyceae), red (Rhodophyta), and green (Chlorophyta) algae, as well as for the microscopic diatoms (Bacillariophyta). We start with an outline of current streamlined field protocols, which facilitate the collection of substantial (hundreds to thousands) specimens during short (days to weeks) field excursions. We present the current high-throughput DNA extraction protocols, which can, nonetheless, be easily modified for manual molecular laboratory use. We are advocating a two-marker approach for the DNA barcoding of protists with each major lineage having a designated primary and secondary barcode marker of which one is always the LSU D2/D3 (divergent domains D2/D3 of the nuclear ribosomal large subunit DNA). We provide a listing of the primers that we currently use in our laboratory for amplification of DNA barcode markers from the groups that we study: LSU D2/D3, which we advocate as a eukaryote-wide barcode marker to facilitate broad ecological and environmental surveys (secondary barcode marker in this capacity); COI-5P (the standard DNA barcode region of the mitochondrial cytochrome c oxidase 1 gene) as the primary barcode marker for brown and red algae; rbcL-3P (the 3' region of the plastid large subunit of ribulose-l-5-bisphosphate carboxylase/oxygenase) as the primary barcode marker for diatoms; and tufA (plastid elongation factor Tu gene) as the primary barcode marker for chlorophytan green algae. We outline our polymerase chain reaction and DNA sequencing methodologies, which have been streamlined for efficiency and to reduce unnecessary cleaning steps. The combined information should provide a helpful guide to those seeking to complete barcode research on these and related "protistan" groups (the term protist is not used in a phylogenetic context; it is simply a catch-all term for the bulk of

  18. DNA Barcoding of Marine Metazoa

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Steinke, Dirk; Blanco-Bercial, Leocadio

    2011-01-01

    More than 230,000 known species representing 31 metazoan phyla populate the world's oceans. Perhaps another 1,000,000 or more species remain to be discovered. There is reason for concern that species extinctions may outpace discovery, especially in diverse and endangered marine habitats such as coral reefs. DNA barcodes (i.e., short DNA sequences for species recognition and discrimination) are useful tools to accelerate species-level analysis of marine biodiversity and to facilitate conservation efforts. This review focuses on the usual barcode region for metazoans: a ˜648 base-pair region of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Barcodes have also been used for population genetic and phylogeographic analysis, identification of prey in gut contents, detection of invasive species, forensics, and seafood safety. More controversially, barcodes have been used to delimit species boundaries, reveal cryptic species, and discover new species. Emerging frontiers are the use of barcodes for rapid and increasingly automated biodiversity assessment by high-throughput sequencing, including environmental barcoding and the use of barcodes to detect species for which formal identification or scientific naming may never be possible.

  19. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  20. Imagining Technology-Enhanced Learning with Heritage Artefacts: Teacher-Perceived Potential of 2D and 3D Heritage Site Visualisations

    ERIC Educational Resources Information Center

    Lackovic, Natasa; Crook, Charles; Cobb, Sue; Shalloe, Sally; D'Cruz, Mirabelle

    2015-01-01

    Background: There is much to be realised in the educational potential of national and world heritage sites. Such sites need to be supported in sharing their resources with a wide and international public, especially within formal education. Two-dimensional (2D) and three-dimensional (3D) heritage site visualisations could serve this need. Our…

  1. Automation and workflow considerations for embedding Digimarc Barcodes at scale

    NASA Astrophysics Data System (ADS)

    Rodriguez, Tony; Haaga, Don; Calhoon, Sean

    2015-03-01

    The Digimarc® Barcode is a digital watermark applied to packages and variable data labels that carries GS1 standard GTIN-14 data traditionally carried by a 1-D barcode. The Digimarc Barcode can be read with smartphones and imaging-based barcode readers commonly used in grocery and retail environments. Using smartphones, consumers can engage with products and retailers can materially increase the speed of check-out, increasing store margins and providing a better experience for shoppers. Internal testing has shown an average of 53% increase in scanning throughput, enabling 100's of millions of dollars in cost savings [1] for retailers when deployed at scale. To get to scale, the process of embedding a digital watermark must be automated and integrated within existing workflows. Creating the tools and processes to do so represents a new challenge for the watermarking community. This paper presents a description and an analysis of the workflow implemented by Digimarc to deploy the Digimarc Barcode at scale. An overview of the tools created and lessons learned during the introduction of technology to the market are provided.

  2. Super-resolving barcode images with an edge-preserving variational Bayesian framework

    NASA Astrophysics Data System (ADS)

    Jin, Renchao; Zhao, Shengrong; Xu, Xiangyang; Song, Enmin; Hung, Chih-Cheng

    2016-05-01

    Limited resolution, blurring, warping, and additive noise associated with image acquisition and storage often make the barcode image degraded, generating low-resolution (LR) barcode images. Barcodes in degraded LR images are difficult to recognize. The goal of this paper is to introduce the potential of super-resolution (SR) technique in conquering the aforementioned challenges, and a variational Bayesian SR method is proposed in this work. Different from the previous work, here, the high-resolution barcode image is estimated through its corresponding posterior probability distribution. The barcode image is made of some homogeneous regions separated by sharp edges, and sometimes it is anisotropic. A universal prior probability distribution was proposed for the barcode image by considering these characteristics. Mathematically, the efficiency of this prior distribution is demonstrated, which can preserve sharp edges and suppress artifacts in the reconstructed barcode images. Moreover, by using the variational Bayesian framework, the motion parameters and hyperparameters can be estimated accurately and efficiently, ensuring the success of the SR technique. In order to overcome the difficulty caused by nonlinearity, the Taylor expansion method is introduced to solve the proposed SR problem. Eventually, the simulated and real data experiments show the encouraging performance of the proposed SR method. It increases certainly the reconstruction quality, and could be considerably robust against blur and noise. It is believed that the variational SR technique in the barcode auto-identification technique should open a further perspective of coping with technology challenge.

  3. Pollen DNA barcoding: current applications and future prospects.

    PubMed

    Bell, Karen L; de Vere, Natasha; Keller, Alexander; Richardson, Rodney T; Gous, Annemarie; Burgess, Kevin S; Brosi, Berry J

    2016-09-01

    Identification of the species origin of pollen has many applications, including assessment of plant-pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and has few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs. In this paper, we review the nascent field of pollen DNA barcoding and discuss potential new applications of this technology, highlighting existing limitations and future research developments that will improve its utility in a wide range of applications.

  4. Pollen DNA barcoding: current applications and future prospects.

    PubMed

    Bell, Karen L; de Vere, Natasha; Keller, Alexander; Richardson, Rodney T; Gous, Annemarie; Burgess, Kevin S; Brosi, Berry J

    2016-09-01

    Identification of the species origin of pollen has many applications, including assessment of plant-pollinator networks, reconstruction of ancient plant communities, product authentication, allergen monitoring, and forensics. Such applications, however, have previously been limited by microscopy-based identification of pollen, which is slow, has low taxonomic resolution, and has few expert practitioners. One alternative is pollen DNA barcoding, which could overcome these issues. Recent studies demonstrate that both chloroplast and nuclear barcoding markers can be amplified from pollen. These recent validations of pollen metabarcoding indicate that now is the time for researchers in various fields to consider applying these methods to their research programs. In this paper, we review the nascent field of pollen DNA barcoding and discuss potential new applications of this technology, highlighting existing limitations and future research developments that will improve its utility in a wide range of applications. PMID:27322652

  5. |SE|S|AM|E| Barcode: NGS-oriented software for amplicon characterization--application to species and environmental barcoding.

    PubMed

    Piry, S; Guivier, E; Realini, A; Martin, J-F

    2012-11-01

    Progress in NGS technologies has opened up new opportunities for characterizing biodiversity, both for individual specimen identification and for environmental barcoding. Although the amount of data available to biologist is increasing, user-friendly tools to facilitate data analysis have yet to be developed. Our aim, with |SE|S|AM|E| Barcode, is to provide such support through a unified platform. The sequences are analysed through a pipeline that (i) processes NGS amplicon runs, filtering markers and samples, (ii) builds reference libraries and finally (iii) identifies (barcodes) the sequences in each amplicon from the reference library. We use a simulated data set for specimen identification and a recently published data set for environmental barcoding to validate the method. The results obtained are consistent with the expected characterizations (in silico and previously published, respectively). |SE|S|AM|E| Barcode and its documentation are freely available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported Licence for Windows and Linux from http://www1.montpellier.inra.fr/CBGP/NGS/.

  6. Barcoding Fauna Bavarica: 78% of the Neuropterida fauna barcoded!

    PubMed

    Morinière, Jérome; Hendrich, Lars; Hausmann, Axel; Hebert, Paul; Haszprunar, Gerhard; Gruppe, Axel

    2014-01-01

    This publication provides the first comprehensive DNA barcode data set for the Neuropterida of Central Europe, including 80 of the 102 species (78%) recorded from Bavaria (Germany) and three other species from nearby regions (Austria, France and the UK). Although the 286 specimens analyzed had a heterogeneous conservation history (60% dried; 30% in 80% EtOH; 10% fresh specimens in 95% EtOH), 237 (83%) generated a DNA barcode. Eleven species (13%) shared a BIN, but three of these taxa could be discriminated through barcodes. Four pairs of closely allied species shared barcodes including Chrysoperla pallida Henry et al., 2002 and C. lucasina Lacroix, 1912; Wesmaelius concinnus (Stephens, 1836) and W. quadrifasciatus (Reuter, 1894); Hemerobius handschini Tjeder, 1957 and H. nitidulus Fabricius, 1777; and H. atrifrons McLachlan, 1868 and H. contumax Tjeder, 1932. Further studies are needed to test the possible synonymy of these species pairs or to determine if other genetic markers permit their discrimination. Our data highlight five cases of potential cryptic diversity within Bavarian Neuropterida: Nineta flava (Scopoli, 1763), Sympherobius pygmaeus (Rambur, 1842), Sisyra nigra (Retzius, 1783), Semidalis aleyrodiformis (Stephens, 1836) and Coniopteryx pygmaea Enderlein, 1906 are each split into two or three BINs. The present DNA barcode library not only allows the identification of adult and larval stages, but also provides valuable information for alpha-taxonomy, and for ecological and evolutionary research.

  7. Barcoding Fauna Bavarica: 78% of the Neuropterida Fauna Barcoded!

    PubMed Central

    Morinière, Jérome; Hendrich, Lars; Hausmann, Axel; Hebert, Paul; Haszprunar, Gerhard; Gruppe, Axel

    2014-01-01

    This publication provides the first comprehensive DNA barcode data set for the Neuropterida of Central Europe, including 80 of the 102 species (78%) recorded from Bavaria (Germany) and three other species from nearby regions (Austria, France and the UK). Although the 286 specimens analyzed had a heterogeneous conservation history (60% dried; 30% in 80% EtOH; 10% fresh specimens in 95% EtOH), 237 (83%) generated a DNA barcode. Eleven species (13%) shared a BIN, but three of these taxa could be discriminated through barcodes. Four pairs of closely allied species shared barcodes including Chrysoperla pallida Henry et al., 2002 and C. lucasina Lacroix, 1912; Wesmaelius concinnus (Stephens, 1836) and W. quadrifasciatus (Reuter, 1894); Hemerobius handschini Tjeder, 1957 and H. nitidulus Fabricius, 1777; and H. atrifrons McLachlan, 1868 and H. contumax Tjeder, 1932. Further studies are needed to test the possible synonymy of these species pairs or to determine if other genetic markers permit their discrimination. Our data highlight five cases of potential cryptic diversity within Bavarian Neuropterida: Nineta flava (Scopoli, 1763), Sympherobius pygmaeus (Rambur, 1842), Sisyra nigra (Retzius, 1783), Semidalis aleyrodiformis (Stephens, 1836) and Coniopteryx pygmaea Enderlein, 1906 are each split into two or three BINs. The present DNA barcode library not only allows the identification of adult and larval stages, but also provides valuable information for alpha-taxonomy, and for ecological and evolutionary research. PMID:25286434

  8. Tamper-indicating barcode and method

    DOEpatents

    Cummings, Eric B.; Even, Jr., William R.; Simmons, Blake A.; Dentinger, Paul Michael

    2005-03-22

    A novel tamper-indicating barcode methodology is disclosed that allows for detection of alteration to the barcode. The tamper-indicating methodology makes use of a tamper-indicating means that may be comprised of a particulate indicator, an optical indicator, a deformable substrate, and/or may be an integrated aspect of the barcode itself. This tamper-indicating information provides greater security for the contents of containers sealed with the tamper-indicating barcodes.

  9. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  10. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  11. The changing epitome of species identification - DNA barcoding.

    PubMed

    Ajmal Ali, M; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M A; Pandey, Arun K; Lee, Joongku

    2014-07-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The 'DNA barcodes' show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  12. Plant DNA Barcodes Can Accurately Estimate Species Richness in Poorly Known Floras

    PubMed Central

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Background Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Methodology/Principal Findings Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. Conclusions/Significance We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways. PMID:22096501

  13. Choosing and Using a Plant DNA Barcode

    PubMed Central

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance. PMID:21637336

  14. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  15. Barcoding a Small Academic Library: Avoiding the Pitfalls.

    ERIC Educational Resources Information Center

    Linsley, Laurie S.; Jones, Leona

    1994-01-01

    Relates the Seminole Community College (Florida) library's experience barcoding a collection of materials and provides practical suggestions on how to implement barcoding in other libraries. Highlights include a barcode plan (smart barcodes and dumb barcodes), worker guidelines, problems encountered, and costs. An annotated bibliography and seven…

  16. Denture barcoding in forensic dentistry: A future option.

    PubMed

    Basavanna, Jayaprakash Mugur; Jain, Abhishek; Misra, Sumit Kumar

    2016-01-01

    Neurodegenerative disorders are commonly seen in elderly individuals. Parkinson's disease (PD) is the most common example with memory loss, lack of logic, reasoning and analytical thinking. In this case report simple method of 2D Bar code technique of denture marking has been explained which will not only useful in patients with memory loss but it is very helpful in identifying the individuals in case of natural calamities like floods, earthquake, tornedo, state of unconsciousness and accidents. Such patients can be traced easily by denture barcoding. This technique is a major breakthrough in the field of forensic dentistry. PMID:27051224

  17. Denture barcoding in forensic dentistry: A future option

    PubMed Central

    Basavanna, Jayaprakash Mugur; Jain, Abhishek; Misra, Sumit Kumar

    2016-01-01

    Neurodegenerative disorders are commonly seen in elderly individuals. Parkinson's disease (PD) is the most common example with memory loss, lack of logic, reasoning and analytical thinking. In this case report simple method of 2D Bar code technique of denture marking has been explained which will not only useful in patients with memory loss but it is very helpful in identifying the individuals in case of natural calamities like floods, earthquake, tornedo, state of unconsciousness and accidents. Such patients can be traced easily by denture barcoding. This technique is a major breakthrough in the field of forensic dentistry. PMID:27051224

  18. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect

    James R. Wood; A. Wylie; W. Quinlan

    2004-10-01

    One of the principal objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, microbial samples were collected from the Trusty Steed prospect area in Grand Traverse County, Michigan. The samples were analyzed using the Microbial Oil Surveying Technique (MOST) technique and revealed only a local (1-point) anomaly. A decision to resample over that point is pending, but drilling has been postponed for the time being. The main news this reporting period is that in the Bear Lake area, northwest Michigan, Federated Oil & Gas Properties' Charlich-Fauble 2-9HD horizontal lateral, has cumulative production of more than 72,000 barrels of oil and is still producing 50 to 75 bopd from a Silurian Niagaran reef reservoir eighteen months after the well was completed. Surface geochemical surveys conducted in the demonstration area were consistent with production results although the ultimate decision to drill was based on interpretation of conventional subsurface and 2D seismic data. The surface geochemical techniques employed were Solid Phase MicroExtraction (SPME) and MOST. The geochemical results have been submitted to World Oil for publication. New geochemical surveys are planned for November in the Springdale quadrangle in Manistee County, Michigan. These surveys will concentrate on sampling over the trace of the proposed horizontal wells rather than a broad grid survey.

  19. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect

    James R. Wood; T.J. Bornhorst; William B. Harrison; W. Quinlan

    2002-04-01

    The fault study continues to find more faults and develop new techniques to visualize them. Data from the Dundee Formation has been used to document 11 major faults in the Michigan Basin which have now been verified using data from other horizons. These faults control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new GC laboratory is now functional and has been fully staffed as of December. The annual project review was held March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer. A request was made to extend the scope of the project to include the Willison Basin. A demonstration well has been suggested in Burke County, N. Dakota, following a review of 2D seismic and surface geochem. A 3D seismic survey is scheduled for the prospect.

  20. OAST Space Theme Workshop. Volume 3: Working group summary. 9: Aerothermodynamics (M-3). A: Statement. B: Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessments

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.

  1. An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding.

    PubMed

    Taylor, H R; Harris, W E

    2012-05-01

    DNA barcoding has become a well-funded, global enterprise since its proposition as a technique for species identification, delimitation and discovery in 2003. However, the rapid development of next generation sequencing (NGS) has the potential to render DNA barcoding irrelevant because of the speed with which it generates large volumes of genomic data. To avoid obsolescence, the DNA barcoding movement must adapt to use this new technology. This review examines the DNA barcoding enterprise, its continued resistance to improvement and the implications of this on the future of the discipline. We present the consistent failure of DNA barcoding to recognize its limitations and evolve its methodologies, reducing the usefulness of the data produced by the movement and throwing into doubt its ability to embrace NGS. PMID:22356472

  2. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  3. Self-registering spread-spectrum barcode method

    DOEpatents

    Cummings, Eric B.; Even Jr., William R.

    2004-11-09

    A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along with the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature, and perspective.

  4. The changing epitome of species identification – DNA barcoding

    PubMed Central

    Ajmal Ali, M.; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M.A.; Pandey, Arun K.; Lee, Joongku

    2014-01-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  5. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System

    SciTech Connect

    Ellis, Richard K.

    2013-01-01

    The Humboldt House-Rye Patch geothermal resource area (HH-RP) comprises approximately 12,000 acres along and west of the Humboldt Range, adjacent to the Rye Patch Reservoir (Figure 1). A Federal Geothermal Unit covers essentially all of the known shallow thermal anomaly at the site, and the Operator, Presco Energy, is in the process of completing wellfield development adjacent to the Rye Patch binary plant, a nominal 17-megawatt system in the southern Unit area (Figure 1). DOE award EE0002840, made under the auspices of the Geothermal Technologies Program, was originally approved in January of 2010, and used a VSP profiling technology to improve seismic imaging in the Basin and Range. Phase I field activities were conducted in the 3rd quarter of 2010, and both the Phase I report and a supplemental report were completed in March and April of 2011. Two targets were identified for tests of upflow structures, both using existing wellbores, originally the 51-21 and 52-28, in the Rye Patch wellfield. The Phase II validation was approved by DOE in May of 2011.

  6. Barcoding Poplars (Populus L.) from Western China

    PubMed Central

    Shang, Huiying; Dong, Miao; Wang, Gaini; He, Xinyu; Zhao, Changming; Mao, Kangshan

    2013-01-01

    Background Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem. Methodology/Principal Findings Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS) among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M), trnG-psbK (G) and psbK-psbI (P), and trnH-psbA (H) and rbcL (R); the discrimination efficiency of the nuclear ITS (I) is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I), and usually discrimination failures occurred among species from sympatric or parapatric areas. Conclusions/Significance In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in plants

  7. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  8. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  9. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  10. Using Recent Advances in 2D Seismic Technology and Surface Geochemistry to Economically Redevelop a Shallow Shelf Carbonate Reservoir: Vernon Field, Isabella County, M, Class III

    SciTech Connect

    Wood, James R.; Bornhorst, T.J.; Chittick, S.D.; Harrison, William B.; Tayjor, W. Quinlan

    2001-08-07

    In this project a consortium consisting of Cronus Exploration (Traverse City, MI), Michigan Technological University (Houghton, MI) and Western Michigan University (Kalamazoo, MI) proposed to develop and execute an economical and environmentally sensitive plan for recovery of hydrocarbons from an abandoned shallow-shelf carbonate field that is typical of many fields in the U.S. Midwest. This is a 5-year project that will use surface geochemistry as a tool to reduce risk in locating and producing hydrocarbons in Class II fields. The project will develop new techniques for measuring hydrocarbon gases in the soil horizon to locate new and bypassed oil in the shallow-shelf carbonate environments typified by the Dundee and Trenton Formations of the Michigan Basin (Fisher et. al., 1988). In Phase I of the project, the consortium proposes to re-develop the Vernon Oil field located in Vernon Twp, Isabella County, Michigan and produce both bypassed hydrocarbons from the original field and to locate and produce extensions of the original field.

  11. DNA barcoding of Dutch birds

    PubMed Central

    Aliabadian, Mansour; Beentjes, Kevin K.; Roselaar, C.S. (Kees); van Brandwijk, Hans; Nijman, Vincent; Vonk, Ronald

    2013-01-01

    Abstract The mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification of animal species, and has been applied in a number of studies on birds. We here sequenced the COI gene for 387 individuals of 147 species of birds from the Netherlands, with 83 species being represented by > 2 sequences. The Netherlands occupies a small geographic area and 95% of all samples were collected within a 50 km radius from one another. The intraspecific divergences averaged 0.29% among this assemblage, but most values were lower; the interspecific divergences averaged 9.54%. In all, 95% of species were represented by a unique barcode, with 6 species of gulls and skua (Larus and Stercorarius) having at least one shared barcode. This is best explained by these species representing recent radiations with ongoing hybridization. In contrast, one species, the Lesser Whitethroat Sylvia curruca showed deep divergences, averaging 5.76% and up to 8.68% between individuals. These possibly represent two distinct taxa, S. curruca and S. blythi, both clearly separated in a haplotype network analysis. Our study adds to a growing body of DNA barcodes that have become available for birds, and shows that a DNA barcoding approach enables to identify known Dutch bird species with a very high resolution. In addition some species were flagged up for further detailed taxonomic investigation, illustrating that even in ornithologically well-known areas such as the Netherlands, more is to be learned about the birds that are present. PMID:24453549

  12. Linking eggs and adults of Argulus spp. using mitochondrial DNA barcodes.

    PubMed

    Feroz Khan, K; Sanker, G; Prasanna Kumar, C

    2014-12-10

    Abstract We have created barcode library for common Argulus spp. infecting Carassius auratus, which could also be used to identify premature forms of Argulus spp. even by non-professionals. Infected C. auratus was examined and purchased from ornamental fish-trading centers and the adult life stage of Argulus spp. was identified and DNA barcoded. The eggs of Argulus spp. were collected using bottle implants. The collected eggs are barcoded and precisely identified by matching with the adult sequences. Four species of adult Argulus spp. were identified, namely Argulus japonicus, Argulus indicus, Argulus siamensis, and Argulus foliaceus. Precise identification of egg samples was done by two different analyses, namely (i) BLAST analysis and (ii) phylogenetic clustering of adults and eggs. All egg samples including the control were precisely identified by BLAST analysis and the results are consistent with phylogenetic clustering of adult and egg's DNA barcodes. In order to establish the DNA barcode technology for the identification of all Argulus spp and its premature forms, the development of full-fledged barcode library that includes all species of this genus is very important for the benefit of ornamental fish industries. PMID:25492543

  13. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    PubMed

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis.

  14. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  15. Identifying Fishes through DNA Barcodes and Microarrays

    PubMed Central

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N.; Weber, Hannes; Blohm, Dietmar

    2010-01-01

    Background International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of “DNA barcoding” and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the “position of label” effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products. PMID

  16. DNA Barcoding Investigations Bring Biology to Life

    ERIC Educational Resources Information Center

    Musante, Susan

    2010-01-01

    This article describes how DNA barcoding investigations bring biology to life. Biologists recognize the power of DNA barcoding not just to teach biology through connections to the real world but also to immerse students in the exciting process of science. As an investigator in the Program for the Human Environment at Rockefeller University in New…

  17. Long-range barcode labeling-sequencing

    DOEpatents

    Chen, Feng; Zhang, Tao; Singh, Kanwar K.; Pennacchio, Len A.; Froula, Jeff L.; Eng, Kevin S.

    2016-10-18

    Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.

  18. 76 FR 34871 - Mobile Barcode Promotion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... letters and flats bearing two-dimensional mobile barcodes. DATES: Effective Date: July 5, 2011. FOR... Mail and Standard Mail that contain, in or on the mailpiece, a two-dimensional mobile barcode readable... mailpiece in the mailing (and listed on the postage statement) must have a qualifying two-dimensional...

  19. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  20. A DNA barcode for land plants.

    PubMed

    2009-08-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.

  1. A DNA barcode for land plants

    PubMed Central

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald; van AlphenStahl, Jonathan; Barrett, Spencer C.H.; van den Berg, Cassio; Bogarin, Diego; Burgess, Kevin S.; Cameron, Kenneth M.; Carine, Mark; Chacón, Juliana; Clark, Alexandra; Clarkson, James J.; Conrad, Ferozah; Devey, Dion S.; Ford, Caroline S.; Hedderson, Terry A.J.; Hollingsworth, Michelle L.; Husband, Brian C.; Kelly, Laura J.; Kesanakurti, Prasad R.; Kim, Jung Sung; Kim, Young-Dong; Lahaye, Renaud; Lee, Hae-Lim; Long, David G.; Madriñán, Santiago; Maurin, Olivier; Meusnier, Isabelle; Newmaster, Steven G.; Park, Chong-Wook; Percy, Diana M.; Petersen, Gitte; Richardson, James E.; Salazar, Gerardo A.; Savolainen, Vincent; Seberg, Ole; Wilkinson, Michael J.; Yi, Dong-Keun; Little, Damon P.

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  2. Barcode Your Classroom.

    ERIC Educational Resources Information Center

    Speitel, Thomas W.

    1992-01-01

    Describes applications of bar coding technology that will help teachers to organize and energize their classrooms. Explains how bar codes--the black-and-white lines used for identification--are read and produced. Educational applications include their use in testing, equipment inventory, specimen identification, time keeping in experiments,…

  3. The Relationship between Barcode Medication Administration Satisfaction and the Use of Workarounds among Registered Nurses

    ERIC Educational Resources Information Center

    Bennett, Sally F.

    2012-01-01

    Adverse drug events, resulting in preventable patient harm or death, are of great concern. To keep patients safe, hospitals have implemented barcode medication administration (BCMA) technology for RNs who have accepted this technology with varying levels of satisfaction. When nurses are dissatisfied with a BCMA system, they may find alternative…

  4. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients.

    PubMed

    Ming, Kevin; Kim, Jisung; Biondi, Mia J; Syed, Abdullah; Chen, Kun; Lam, Albert; Ostrowski, Mario; Rebbapragada, Anu; Feld, Jordan J; Chan, Warren C W

    2015-03-24

    Inorganic nanoparticles are ideal precursors for engineering barcodes for rapidly detecting diseases. Despite advances in the chemical design of these barcodes, they have not advanced to clinical use because they lack sensitivity and are not cost-effective due to requirement of a large read-out system. Here we combined recent advances in quantum dot barcode technology with smartphones and isothermal amplification to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We characterized the analytical performance of this device and demonstrated that the device is capable of detecting down to 1000 viral genetic copies per milliliter, and this enabled the diagnosis of patients infected with HIV or hepatitis B. More importantly, the barcoding enabled us to detect multiple infectious pathogens simultaneously, in a single test, in less than 1 h. This multiplexing capability of the device enables the diagnosis of infections that are difficult to differentiate clinically due to common symptoms such as a fever or rash. The integration of quantum dot barcoding technology with a smartphone reader provides a capacity for global surveillance of infectious diseases and the potential to accelerate knowledge exchange transfer of emerging or exigent disease threats with healthcare and military organizations in real time. PMID:25661584

  5. DNA barcoding amphibians and reptiles.

    PubMed

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

  6. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  7. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  8. Generalized DNA Barcode Design Based on Hamming Codes

    PubMed Central

    Bystrykh, Leonid V.

    2012-01-01

    The diversity and scope of multiplex parallel sequencing applications is steadily increasing. Critically, multiplex parallel sequencing applications methods rely on the use of barcoded primers for sample identification, and the quality of the barcodes directly impacts the quality of the resulting sequence data. Inspection of the recent publications reveals a surprisingly variable quality of the barcodes employed. Some barcodes are made in a semi empirical fashion, without quantitative consideration of error correction or minimal distance properties. After systematic comparison of published barcode sets, including commercially distributed barcoded primers from Illumina and Epicentre, methods for improved, Hamming code-based sequences are suggested and illustrated. Hamming barcodes can be employed for DNA tag designs in many different ways while preserving minimal distance and error-correcting properties. In addition, Hamming barcodes remain flexible with regard to essential biological parameters such as sequence redundancy and GC content. Wider adoption of improved Hamming barcodes is encouraged in multiplex parallel sequencing applications. PMID:22615825

  9. DNA barcoding in Mexico: an introduction.

    PubMed

    Elías-Gutiérrez, M; León-Regagnon, V

    2013-11-01

    DNA barcoding has become an important current scientific trend to the understanding of the world biodiversity. In the case of mega-diverse hot spots like Mexico, this technique represents an important tool for taxonomists, allowing them to concentrate in highlighted species by the barcodes instead of analyzing entire sets of specimens. This tendency resulted in the creation of a national network named Mexican Barcode of Life (MEXBOL) which main goals are to train students, and to promote the interaction and collective work among researchers interested in this topic. As a result, the number of records in the Barcode of Life Database (BOLD) for some groups, such as the Mammalia, Actinopterygii, Polychaeta, Branchiopoda, Ostracoda, Maxillopoda, Nematoda, Pinophyta, Ascomycota and Basidiomycota place Mexico among the top ten countries in the generation of these data. This special number presents only few of the many interesting findings in this region of the world, after the use of this technique and its integration with other methodologies.

  10. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  11. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    PubMed

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-01

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits.

  12. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    PubMed

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-01

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. PMID:27545715

  13. DNA Barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera)

    PubMed Central

    Foottit, Robert G.; Maw, Eric; Hebert, P. D. N.

    2014-01-01

    Background Many studies have shown the suitability of sequence variation in the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. Methodology/Principal Findings Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. Conclusions/Significance This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage. PMID:25004106

  14. New taxonomy and old collections: integrating DNA barcoding into the collection curation process.

    PubMed

    Puillandre, N; Bouchet, P; Boisselier-Dubayle, M-C; Brisset, J; Buge, B; Castelin, M; Chagnoux, S; Christophe, T; Corbari, L; Lambourdière, J; Lozouet, P; Marani, G; Rivasseau, A; Silva, N; Terryn, Y; Tillier, S; Utge, J; Samadi, S

    2012-05-01

    Because they house large biodiversity collections and are also research centres with sequencing facilities, natural history museums are well placed to develop DNA barcoding best practices. The main difficulty is generally the vouchering system: it must ensure that all data produced remain attached to the corresponding specimen, from the field to publication in articles and online databases. The Museum National d'Histoire Naturelle in Paris is one of the leading laboratories in the Marine Barcode of Life (MarBOL) project, which was used as a pilot programme to include barcode collections for marine molluscs and crustaceans. The system is based on two relational databases. The first one classically records the data (locality and identification) attached to the specimens. In the second one, tissue-clippings, DNA extractions (both preserved in 2D barcode tubes) and PCR data (including primers) are linked to the corresponding specimen. All the steps of the process [sampling event, specimen identification, molecular processing, data submission to Barcode Of Life Database (BOLD) and GenBank] are thus linked together. Furthermore, we have developed several web-based tools to automatically upload data into the system, control the quality of the sequences produced and facilitate the submission to online databases. This work is the result of a joint effort from several teams in the Museum National d'Histoire Naturelle (MNHN), but also from a collaborative network of taxonomists and molecular systematists outside the museum, resulting in the vouchering so far of ∼41,000 sequences and the production of ∼11,000 COI sequences.

  15. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  16. Laser Discs, Barcodes, and Books--a Great Combination.

    ERIC Educational Resources Information Center

    Peto, Erica

    1996-01-01

    Describes the use of barcodes to link laser discs with books in school libraries. Highlights include use of a barcode reader as a remote control device as well as a scanner, guidelines for making laser disc books, and a sidebar that explains how to make barcodes and describes software. (LRW)

  17. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  18. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    PubMed

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.

  19. Accelerated Chromatin Biochemistry Using DNA-Barcoded Nucleosome Libraries

    PubMed Central

    Nguyen, Uyen T. T.; Bittova, Lenka; Müller, Manuel M.; Fierz, Beat; David, Yael; Houck-Loomis, Brian; Feng, Vanessa; Dann, Geoffrey P.; Muir, Tom W.

    2014-01-01

    Elucidating the molecular details of how chromatin-associated factors deposit, remove and recognize histone posttranslational modification (‘PTM’) signatures remains a daunting task in the epigenetics field. Here, we introduce a versatile platform that greatly accelerates biochemical investigations into chromatin recognition and signaling. This technology is based on the streamlined semi-synthesis of DNA-barcoded nucleosome libraries with distinct combinations of PTMs. Chromatin immunoprecipitation of these libraries treated with purified chromatin effectors or the combined chromatin recognizing and modifying activities of the nuclear proteome is followed by multiplexed DNA-barcode sequencing. This ultrasensitive workflow allowed us to collect thousands of biochemical data points revealing the binding preferences of various nuclear factors for PTM patterns and how pre-existing PTMs, alone or synergistically, affect further PTM deposition via crosstalk mechanisms. We anticipate that the high-throughput and -sensitivity of the technology will help accelerate the decryption of the diverse molecular controls that operate at the level of chromatin. PMID:24997861

  20. Review and future prospects for DNA barcoding methods in forensic palynology.

    PubMed

    Bell, Karen L; Burgess, Kevin S; Okamoto, Kazufusa C; Aranda, Roman; Brosi, Berry J

    2016-03-01

    Pollen can be a critical forensic marker in cases where determining geographic origin is important, including investigative leads, missing persons cases, and intelligence applications. However, its use has previously been limited by the need for a high level of specialization by expert palynologists, slow speeds of identification, and relatively poor taxonomic resolution (typically to the plant family or genus level). By contrast, identification of pollen through DNA barcoding has the potential to overcome all three of these limitations, and it may seem surprising that the method has not been widely implemented. Despite what might seem a straightforward application of DNA barcoding to pollen, there are technical issues that have delayed progress. However, recent developments of standard methods for DNA barcoding of pollen, along with improvements in high-throughput sequencing technology, have overcome most of these technical issues. Based on these recent methodological developments in pollen DNA barcoding, we believe that now is the time to start applying these techniques in forensic palynology. In this article, we discuss the potential for these methods, and outline directions for future research to further improve on the technology and increase its applicability to a broader range of situations.

  1. Improving soil bacterial taxa–area relationships assessment using DNA meta-barcoding

    PubMed Central

    Terrat, S; Dequiedt, S; Horrigue, W; Lelievre, M; Cruaud, C; Saby, N P A; Jolivet, C; Arrouays, D; Maron, P-A; Ranjard, L; Chemidlin Prévost-Bouré, N

    2015-01-01

    The evaluation of the taxa–area relationship (TAR) with molecular fingerprinting data demonstrated the spatial structuration of soil microorganisms and provided insights into the processes shaping their diversity. The increasing use of massive sequencing technologies in biodiversity investigations has now raised the question of the advantages of such technologies over the fingerprinting approach for elucidation of the determinism of soil microbial community assembly in broad-scale biogeographic studies. Our objectives in this study were to compare DNA fingerprinting and meta-barcoding approaches for evaluating soil bacterial TAR and the determinism of soil bacterial community assembly on a broad scale. This comparison was performed on 392 soil samples from four French geographic regions with different levels of environmental heterogeneity. Both molecular approaches demonstrated a TAR with a significant slope but, because of its more sensitive description of soil bacterial community richness, meta-barcoding provided significantly higher and more accurate estimates of turnover rates. Both approaches were useful in evidencing the processes shaping bacterial diversity variations on a broad scale. When different taxonomic resolutions were considered for meta-barcoding data, they significantly influenced the estimation of turnover rates but not the relative importance of each component process. Altogether, DNA meta-barcoding provides a more accurate evaluation of the TAR and may lead to re-examination of the processes shaping soil bacterial community assembly. This should provide new insights into soil microbial ecology in the context of sustainable use of soil resources. PMID:25293875

  2. Review and future prospects for DNA barcoding methods in forensic palynology.

    PubMed

    Bell, Karen L; Burgess, Kevin S; Okamoto, Kazufusa C; Aranda, Roman; Brosi, Berry J

    2016-03-01

    Pollen can be a critical forensic marker in cases where determining geographic origin is important, including investigative leads, missing persons cases, and intelligence applications. However, its use has previously been limited by the need for a high level of specialization by expert palynologists, slow speeds of identification, and relatively poor taxonomic resolution (typically to the plant family or genus level). By contrast, identification of pollen through DNA barcoding has the potential to overcome all three of these limitations, and it may seem surprising that the method has not been widely implemented. Despite what might seem a straightforward application of DNA barcoding to pollen, there are technical issues that have delayed progress. However, recent developments of standard methods for DNA barcoding of pollen, along with improvements in high-throughput sequencing technology, have overcome most of these technical issues. Based on these recent methodological developments in pollen DNA barcoding, we believe that now is the time to start applying these techniques in forensic palynology. In this article, we discuss the potential for these methods, and outline directions for future research to further improve on the technology and increase its applicability to a broader range of situations. PMID:26751251

  3. Short barcodes for next generation sequencing.

    PubMed

    Mir, Katharina; Neuhaus, Klaus; Bossert, Martin; Schober, Steffen

    2013-01-01

    We consider the design and evaluation of short barcodes, with a length between six and eight nucleotides, used for parallel sequencing on platforms where substitution errors dominate. Such codes should have not only good error correction properties but also the code words should fulfil certain biological constraints (experimental parameters). We compare published barcodes with codes obtained by two new constructions methods, one based on the currently best known linear codes and a simple randomized construction method. The evaluation done is with respect to the error correction capabilities, barcode size and their experimental parameters and fundamental bounds on the code size and their distance properties. We provide a list of codes for lengths between six and eight nucleotides, where for length eight, two substitution errors can be corrected. In fact, no code with larger minimum distance can exist.

  4. Use of the 'Precessions' process for prepolishing and correcting 2D & 2(1/2)D form.

    PubMed

    Walker, David D; Freeman, Richard; Morton, Roger; McCavana, Gerry; Beaucamp, Anthony

    2006-11-27

    The Precessions process polishes complex surfaces from the ground state preserving the ground-in form, and subsequently rectifies measured form errors. Our first paper introduced the technology and focused on the novel tooling. In this paper we describe the unique CNC machine tools and how they operate in polishing and correcting form. Experimental results demonstrate both the '2D' and '2(1/2)D' form-correction modes, as applied to aspheres with rotationally-symmetric target-form.

  5. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  6. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  7. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode.

    PubMed

    Françoso, E; Arias, M C

    2013-09-01

    Bees (Apidae), of which there are more than 19 900 species, are extremely important for ecosystem services and economic purposes, so taxon identity is a major concern. The goal of this study was to optimize the DNA barcode technique based on the Cytochrome c oxidase (COI) mitochondrial gene region. This approach has previously been shown to be useful in resolving taxonomic inconsistencies and for species identification when morphological data are poor. Specifically, we designed and tested new primers and standardized PCR conditions to amplify the barcode region for bees, focusing on the corbiculate Apids. In addition, primers were designed to amplify small COI amplicons and tested with pinned specimens. Short barcode sequences were easily obtained for some Bombus century-old museum specimens and shown to be useful as mini-barcodes. The new primers and PCR conditions established in this study proved to be successful for the amplification of the barcode region for all species tested, regardless of the conditions of tissue preservation. We saw no evidence of Wolbachia or numts amplification by these primers, and so we suggest that these new primers are of broad value for corbiculate bee identification through DNA barcode.

  8. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    PubMed

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  9. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches.

    PubMed

    Yahr, Rebecca; Schoch, Conrad L; Dentinger, Bryn T M

    2016-09-01

    The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with profound impacts on human society and ecosystem function. The challenge of documenting and describing fungal diversity is exacerbated by their typically cryptic nature, their ability to produce seemingly unrelated morphologies from a single individual and their similarity in appearance to distantly related taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based comparisons to study fungal diversity, including linking curated DNA sequence data to expertly identified voucher specimens. DNA-barcoding approaches in fungi were first applied in specimen-based studies for identification and discovery of taxonomic diversity, but are now widely deployed for community characterization based on sequencing of environmental samples. Collectively, fungal barcoding approaches have yielded important advances across biological scales and research applications, from taxonomic, ecological, industrial and health perspectives. A major outstanding issue is the growing problem of 'sequences without names' that are somewhat uncoupled from the traditional framework of fungal classification based on morphology and preserved specimens. This review summarizes some of the most significant impacts of fungal barcoding, its limitations, and progress towards the challenge of effective utilization of the exponentially growing volume of data gathered from high-throughput sequencing technologies.This article is part of the themed issue 'From DNA barcodes to biomes'.

  10. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches

    PubMed Central

    2016-01-01

    The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with profound impacts on human society and ecosystem function. The challenge of documenting and describing fungal diversity is exacerbated by their typically cryptic nature, their ability to produce seemingly unrelated morphologies from a single individual and their similarity in appearance to distantly related taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based comparisons to study fungal diversity, including linking curated DNA sequence data to expertly identified voucher specimens. DNA-barcoding approaches in fungi were first applied in specimen-based studies for identification and discovery of taxonomic diversity, but are now widely deployed for community characterization based on sequencing of environmental samples. Collectively, fungal barcoding approaches have yielded important advances across biological scales and research applications, from taxonomic, ecological, industrial and health perspectives. A major outstanding issue is the growing problem of ‘sequences without names’ that are somewhat uncoupled from the traditional framework of fungal classification based on morphology and preserved specimens. This review summarizes some of the most significant impacts of fungal barcoding, its limitations, and progress towards the challenge of effective utilization of the exponentially growing volume of data gathered from high-throughput sequencing technologies. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481788

  11. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches.

    PubMed

    Yahr, Rebecca; Schoch, Conrad L; Dentinger, Bryn T M

    2016-09-01

    The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with profound impacts on human society and ecosystem function. The challenge of documenting and describing fungal diversity is exacerbated by their typically cryptic nature, their ability to produce seemingly unrelated morphologies from a single individual and their similarity in appearance to distantly related taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based comparisons to study fungal diversity, including linking curated DNA sequence data to expertly identified voucher specimens. DNA-barcoding approaches in fungi were first applied in specimen-based studies for identification and discovery of taxonomic diversity, but are now widely deployed for community characterization based on sequencing of environmental samples. Collectively, fungal barcoding approaches have yielded important advances across biological scales and research applications, from taxonomic, ecological, industrial and health perspectives. A major outstanding issue is the growing problem of 'sequences without names' that are somewhat uncoupled from the traditional framework of fungal classification based on morphology and preserved specimens. This review summarizes some of the most significant impacts of fungal barcoding, its limitations, and progress towards the challenge of effective utilization of the exponentially growing volume of data gathered from high-throughput sequencing technologies.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481788

  12. Universal COI primers for DNA barcoding amphibians.

    PubMed

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians.

  13. DNA barcoding in Mexico: an introduction.

    PubMed

    Elías-Gutiérrez, M; León-Regagnon, V

    2013-11-01

    DNA barcoding has become an important current scientific trend to the understanding of the world biodiversity. In the case of mega-diverse hot spots like Mexico, this technique represents an important tool for taxonomists, allowing them to concentrate in highlighted species by the barcodes instead of analyzing entire sets of specimens. This tendency resulted in the creation of a national network named Mexican Barcode of Life (MEXBOL) which main goals are to train students, and to promote the interaction and collective work among researchers interested in this topic. As a result, the number of records in the Barcode of Life Database (BOLD) for some groups, such as the Mammalia, Actinopterygii, Polychaeta, Branchiopoda, Ostracoda, Maxillopoda, Nematoda, Pinophyta, Ascomycota and Basidiomycota place Mexico among the top ten countries in the generation of these data. This special number presents only few of the many interesting findings in this region of the world, after the use of this technique and its integration with other methodologies. PMID:23919390

  14. 77 FR 12764 - POSTNET Barcode Discontinuation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Intelligent Mail barcodes (IMb TM ) for automation price eligibility purposes. The Postal Service understands... are proposing that the use of the IMb would be required for all automation letters, including Business..., and automation flats by January 2013. Proposed Change for Letters Only We propose to revise DMM...

  15. 77 FR 33314 - POSTNET Barcode Discontinuation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Postal Service published a final rule in the Federal Register (77 FR 26185-26191) to discontinue price... Periodicals automation letters and flats) that were inadvertently omitted in the original final rule, but does... and allow only Intelligent Mail barcodes (IMbs) for automation price eligibility purposes,...

  16. Raman Barcode for Counterfeit Drug Product Detection.

    PubMed

    Lawson, Latevi S; Rodriguez, Jason D

    2016-05-01

    Potential infiltration of counterfeit drug products-containing the wrong or no active pharmaceutical ingredient (API)-into the bona fide drug supply poses a significant threat to consumers worldwide. Raman spectroscopy offers a rapid, nondestructive avenue to screen a high throughput of samples. Traditional qualitative Raman identification is typically done with spectral correlation methods that compare the spectrum of a reference sample to an unknown. This is often effective for pure materials but is quite challenging when dealing with drug products that contain different formulations of active and inactive ingredients. Typically, reliable identification of drug products using common spectral correlation algorithms can only be made if the specific product under study is present in the library of reference spectra, thereby limiting the scope of products that can be screened. In this paper, we introduce the concept of the Raman barcode for identification of drug products by comparing the known peaks in the API reference spectrum to the peaks present in the finished drug product under study. This method requires the transformation of the Raman spectra of both API and finished drug products into a barcode representation by assigning zero intensity to every spectral frequency except the frequencies that correspond to Raman peaks. By comparing the percentage of nonzero overlap between the expected API barcode and finished drug product barcode, the identity of API present can be confirmed. In this study, 18 approved finished drug products and nine simulated counterfeits were successfully identified with 100% accuracy utilizing this method. PMID:27043140

  17. Universal COI primers for DNA barcoding amphibians.

    PubMed

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians. PMID:22145866

  18. Barcode server: a visualization-based genome analysis system.

    PubMed

    Mao, Fenglou; Olman, Victor; Wang, Yan; Xu, Ying

    2013-01-01

    We have previously developed a computational method for representing a genome as a barcode image, which makes various genomic features visually apparent. We have demonstrated that this visual capability has made some challenging genome analysis problems relatively easy to solve. We have applied this capability to a number of challenging problems, including (a) identification of horizontally transferred genes, (b) identification of genomic islands with special properties and (c) binning of metagenomic sequences, and achieved highly encouraging results. These application results inspired us to develop this barcode-based genome analysis server for public service, which supports the following capabilities: (a) calculation of the k-mer based barcode image for a provided DNA sequence; (b) detection of sequence fragments in a given genome with distinct barcodes from those of the majority of the genome, (c) clustering of provided DNA sequences into groups having similar barcodes; and (d) homology-based search using Blast against a genome database for any selected genomic regions deemed to have interesting barcodes. The barcode server provides a job management capability, allowing processing of a large number of analysis jobs for barcode-based comparative genome analyses. The barcode server is accessible at http://csbl1.bmb.uga.edu/Barcode. PMID:23457606

  19. The campaign to DNA barcode all fishes, FISH-BOL.

    PubMed

    Ward, R D; Hanner, R; Hebert, P D N

    2009-02-01

    FISH-BOL, the Fish Barcode of Life campaign, is an international research collaboration that is assembling a standardized reference DNA sequence library for all fishes. Analysis is targeting a 648 base pair region of the mitochondrial cytochrome c oxidase I (COI) gene. More than 5000 species have already been DNA barcoded, with an average of five specimens per species, typically vouchers with authoritative identifications. The barcode sequence from any fish, fillet, fin, egg or larva can be matched against these reference sequences using BOLD; the Barcode of Life Data System (http://www.barcodinglife.org). The benefits of barcoding fishes include facilitating species identification, highlighting cases of range expansion for known species, flagging previously overlooked species and enabling identifications where traditional methods cannot be applied. Results thus far indicate that barcodes separate c. 98 and 93% of already described marine and freshwater fish species, respectively. Several specimens with divergent barcode sequences have been confirmed by integrative taxonomic analysis as new species. Past concerns in relation to the use of fish barcoding for species discrimination are discussed. These include hybridization, recent radiations, regional differentiation in barcode sequences and nuclear copies of the barcode region. However, current results indicate these issues are of little concern for the great majority of specimens.

  20. The unholy trinity: taxonomy, species delimitation and DNA barcoding.

    PubMed

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-10-29

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this 'DNA barcoding' initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the 'DNA barcoding' initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the 'DNA barcoding' initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings--Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of 'DNA barcoding'.

  1. Barcoding Atlantic Canada's commonly encountered marine fishes.

    PubMed

    McCusker, M R; Denti, D; Van Guelpen, L; Kenchington, E; Bentzen, P

    2013-03-01

    Marine fishes from the northwest Atlantic Ocean were analysed to determine whether barcoding was effective at identifying species. Our data included 177 species, 136 genera, 81 families and 28 orders. Overall, 88% of nominal species formed monophyletic clusters based on >500 bp of the CO1 region, and the average bootstrap value for these species was 98%. Although clearly effective, the percentage of species that were distinguishable with barcoding based on the criterion of reciprocal monophyletic clusters was slightly lower than has been documented in other studies of marine fishes. Eelpouts, sculpins and rocklings proved to be among the most challenging groups for barcoding, although we suspect that difficult identifications based on traditional (morphology based) taxonomy played a role. Within several taxa, speciation may have occurred too recently for barcoding to be effective (e.g. within Sebastes, Thunnus and Ammodytes) or the designation of distinct species may have been erroneous (e.g. within Antimora and Macrourus). Results were consistent with previous work recognizing particularly high levels of divergence within certain taxa, some of which have been recognized as distinct species (e.g. Osmerus mordax and Osmerus dentex; and Liparis gibbus and Liparis bathyarcticus), and some of which have not (e.g. within Halargyreus johnsonii and within Mallotus villosus). The results from this study suggest that morphology-based identification and taxonomy can be challenging in marine fishes, even within a region as well characterized as Atlantic Canada. Barcoding proved to be a very useful tool for species identification that will likely find a wide range of applications, including the fisheries trade, studies of range expansion, ecological analyses and population assessments.

  2. 76 FR 23749 - Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... 111 Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels AGENCY: Postal... currently enhancing its operational capability to allow for the scanning of Intelligent Mail package barcodes (IMpb) and other extra services barcodes via automated processing equipment and Intelligent...

  3. Assessment, validation and deployment strategy of a two-barcode protocol for facile genotyping of duckweed species.

    PubMed

    Borisjuk, N; Chu, P; Gutierrez, R; Zhang, H; Acosta, K; Friesen, N; Sree, K S; Garcia, C; Appenroth, K J; Lam, E

    2015-01-01

    Lemnaceae, commonly called duckweeds, comprise a diverse group of floating aquatic plants that have previously been classified into 37 species based on morphological and physiological criteria. In addition to their unique evolutionary position among angiosperms and their applications in biomonitoring, the potential of duckweeds as a novel sustainable crop for fuel and feed has recently increased interest in the study of their biodiversity and systematics. However, due to their small size and abbreviated structure, accurate typing of duckweeds based on morphology can be challenging. In the past decade, attempts to employ molecular barcoding techniques for species assignment have produced promising results; however, they have yet to be codified into a simple and quantitative protocol. A study that compiles and compares the barcode sequences within all known species of this family would help to establish the fidelity and limits of this DNA-based approach. In this work, we compared the level of conservation between over 100 strains of duckweed for two intergenic barcode sequences derived from the plastid genome. By using over 300 sequences publicly available in the NCBI database, we determined the utility of each of these two barcodes for duckweed species identification. Through sequencing of these barcodes from additional accessions, 30 of the 37 known species of duckweed could be identified with varying levels of confidence using this approach. From our analyses using this reference dataset, we also confirmed two instances where mis-assignment of species has likely occurred. Potential strategies for further improving the scope of this technology are discussed.

  4. DNA Barcoding for the Identification of Botanicals in Herbal Medicine and Dietary Supplements: Strengths and Limitations.

    PubMed

    Parveen, Iffat; Gafner, Stefan; Techen, Natascha; Murch, Susan J; Khan, Ikhlas A

    2016-09-01

    In the past decades, the use of traditional medicine has increased globally, leading to a booming herbal medicine and dietary supplement industry. The increased popularity of herbal products has led to a rise in demand for botanical raw materials. Accurate identification of medicinal herbs is a legal requirement in most countries and prerequisite for delivering a quality product that meets consumer expectations. Traditional identification methods include botanical taxonomy, macroscopic and microscopic examination, and chemical methods. Advances in the identification of biological species using DNA-based techniques have led to the development of a DNA marker-based platform for authentication of plant materials. DNA barcoding, in particular, has been proposed as a means to identify herbal ingredients and to detect adulteration. However, general barcoding techniques using universal primers have been shown to provide mixed results with regard to data accuracy. Further technological advances such as mini-barcodes, digital polymerase chain reaction, and next generation sequencing provide additional tools for the authentication of herbs, and may be successful in identifying processed ingredients used in finished herbal products. This review gives an overview on the strengths and limitations of DNA barcoding techniques for botanical ingredient identification. Based on the available information, we do not recommend the use of universal primers for DNA barcoding of processed plant material as a sole means of species identification, but suggest an approach combining DNA-based methods using genus- or species-specific primers, chemical analysis, and microscopic and macroscopic methods for the successful authentication of botanical ingredients used in the herbal dietary supplement industry. PMID:27392246

  5. DNA Barcoding for the Identification of Botanicals in Herbal Medicine and Dietary Supplements: Strengths and Limitations.

    PubMed

    Parveen, Iffat; Gafner, Stefan; Techen, Natascha; Murch, Susan J; Khan, Ikhlas A

    2016-09-01

    In the past decades, the use of traditional medicine has increased globally, leading to a booming herbal medicine and dietary supplement industry. The increased popularity of herbal products has led to a rise in demand for botanical raw materials. Accurate identification of medicinal herbs is a legal requirement in most countries and prerequisite for delivering a quality product that meets consumer expectations. Traditional identification methods include botanical taxonomy, macroscopic and microscopic examination, and chemical methods. Advances in the identification of biological species using DNA-based techniques have led to the development of a DNA marker-based platform for authentication of plant materials. DNA barcoding, in particular, has been proposed as a means to identify herbal ingredients and to detect adulteration. However, general barcoding techniques using universal primers have been shown to provide mixed results with regard to data accuracy. Further technological advances such as mini-barcodes, digital polymerase chain reaction, and next generation sequencing provide additional tools for the authentication of herbs, and may be successful in identifying processed ingredients used in finished herbal products. This review gives an overview on the strengths and limitations of DNA barcoding techniques for botanical ingredient identification. Based on the available information, we do not recommend the use of universal primers for DNA barcoding of processed plant material as a sole means of species identification, but suggest an approach combining DNA-based methods using genus- or species-specific primers, chemical analysis, and microscopic and macroscopic methods for the successful authentication of botanical ingredients used in the herbal dietary supplement industry.

  6. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  7. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  8. A DNA Barcode Library for Korean Chironomidae (Insecta: Diptera) and Indexes for Defining Barcode Gap

    PubMed Central

    Kim, Sungmin; Song, Kyo-Hong; Ree, Han-Il; Kim, Won

    2012-01-01

    Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified larvae. The interspecies and intraspecies COI sequence variations were analyzed. Sophisticated indexes were developed in order to properly evaluate indistinct barcode gaps that are created by insufficient sampling on both the interspecies and intraspecies levels and by variable mutation rates across taxa. In a variety of insect datasets, these indexes were useful for re-evaluating large barcode datasets and for defining COI barcode gaps. The COI-based DNA barcode library will provide a rapid and reliable tool for the molecular identification of Korean chironomid species. Furthermore, this reverse-taxonomic approach will be improved by the continuous addition of other speceis’ sequences to the library. PMID:22138764

  9. The Barcode of Life Data Portal: bridging the biodiversity informatics divide for DNA barcoding.

    PubMed

    Sarkar, Indra Neil; Trizna, Michael

    2011-01-01

    With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence-based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form--often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP) is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG) of the Consortium for the Barcode of Life (CBOL), the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum.

  10. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  11. Critical factors for assembling a high volume of DNA barcodes

    PubMed Central

    Hajibabaei, Mehrdad; deWaard, Jeremy R; Ivanova, Natalia V; Ratnasingham, Sujeevan; Dooh, Robert T; Kirk, Stephanie L; Mackie, Paula M; Hebert, Paul D.N

    2005-01-01

    Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified. PMID:16214753

  12. Bar-code automated waste tracking system

    SciTech Connect

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ``stop-and-go`` operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste.

  13. DNA barcoding South China Sea fishes.

    PubMed

    Wang, Zhong-Duo; Guo, Yu-Song; Liu, Xue-Mei; Fan, Yan-Bo; Liu, Chu-Wu

    2012-10-01

    We have determined 222 DNA barcode sequences of 95 fish species in 86 genera of 69 families from 15 orders. Fish were captured by trawl from two important fisheries regions in South China Sea: Spratly Islands (Nansha Islands) and Beibu Gulf. The average genetic distances between intraspecies were about 60-fold less than those of interspecies within different taxonomic levels, as Kimura two-parameter genetic distances averaged 17.260% among congeners, 20.097% among genus, and only 0.317% for intraspecific individuals. There were a few examples of deep divergence within species, suggesting the need for further taxonomic work, and a few examples of closely allied species, perhaps reflecting introgressive hybridization. The results provide further evidence for the reliability and accessibility of DNA barcodes for marine fish identification, and also highlight their effectiveness for flagging cases needing taxonomical reexamination.

  14. DNA barcoding of endangered Indian Paphiopedilum species.

    PubMed

    Parveen, Iffat; Singh, Hemant K; Raghuvanshi, Saurabh; Pradhan, Udai C; Babbar, Shashi B

    2012-01-01

    The indiscriminate collections of Paphiopedilum species from the wild for their exotic ornamental flowers have rendered these plants endangered. Although the trade of these endangered species from the wild is strictly forbidden, it continues unabated in one or other forms that elude the current identification methods. DNA barcoding that offers identification of a species even if only a small fragment of the organism at any stage of development is available could be of great utility in scrutinizing the illegal trade of both endangered plant and animal species. Therefore, this study was undertaken to develop DNA barcodes of Indian species of Paphiopedilum along with their three natural hybrids using loci from both the chloroplast and nuclear genomes. The five loci tested for their potential as effective barcodes were RNA polymerase-β subunit (rpoB), RNA polymerase-β' subunit (rpoC1), Rubisco large subunit (rbcL) and maturase K (matK) from the chloroplast genome and nuclear ribosomal internal transcribed spacer (nrITS) from the nuclear genome. The intra- and inter-specific divergence values and species discrimination rates were calculated by Kimura 2 parameter (K2P) method using mega 4.0. The matK with 0.9% average inter-specific divergence value yielded 100% species resolution, thus could distinguish all the eight species of Paphiopedilum unequivocally. The species identification capability of these sequences was further confirmed as each of the matK sequences was found to be unique for the species when a blast analysis of these sequences was carried out on NCBI. nrITS, although had 4.4% average inter-specific divergence value, afforded only 50% species resolution. DNA barcodes of the three hybrids also reflected their parentage.

  15. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  16. Bayesian Cosmic Web Reconstruction: BARCODE for Clusters

    NASA Astrophysics Data System (ADS)

    Patrick Bos, E. G.; van de Weygaert, Rien; Kitaura, Francisco; Cautun, Marius

    2016-10-01

    We describe the Bayesian \\barcode\\ formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the basis of observational data, without the need for a correction of redshift space artifacts. In this contribution we provide a general overview of the the Cosmic Web connection with clusters and a description of the Bayesian BARCODE formalism. We conclude with a presentation of its successful workings with respect to test runs based on a simulated large scale matter distribution, in physical space as well as in redshift space.

  17. Advancing taxonomy and bioinventories with DNA barcodes

    PubMed Central

    2016-01-01

    We use three examples—field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae—to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the ‘taxonomic impediment’, especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481791

  18. Advancing taxonomy and bioinventories with DNA barcodes.

    PubMed

    Miller, Scott E; Hausmann, Axel; Hallwachs, Winnie; Janzen, Daniel H

    2016-09-01

    We use three examples-field and ecology-based inventories in Costa Rica and Papua New Guinea and a museum and taxonomic-based inventory of the moth family Geometridae-to demonstrate the use of DNA barcoding (a short sequence of the mitochondrial COI gene) in biodiversity inventories, from facilitating workflows of identification of freshly collected specimens from the field, to describing the overall diversity of megadiverse taxa from museum collections, and most importantly linking the fresh specimens, the general museum collections and historic type specimens. The process also flushes out unexpected sibling species hiding under long-applied scientific names, thereby clarifying and parsing previously mixed collateral data. The Barcode of Life Database has matured to an essential interactive platform for the multi-authored and multi-process collaboration. The BIN system of creating and tracking DNA sequence-based clusters as proxies for species has become a powerful way around some parts of the 'taxonomic impediment', especially in entomology, by providing fast but testable and tractable species hypotheses, tools for visualizing the distribution of those in time and space and an interim naming system for communication.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481791

  19. DNA barcode data accurately assign higher spider taxa.

    PubMed

    Coddington, Jonathan A; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina; Kuntner, Matjaž

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios "barcodes" (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families-taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75-100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of the

  20. Evaluation of candidate barcoding markers in Orinus (Poaceae).

    PubMed

    Su, X; Liu, Y P; Chen, Z; Chen, K L

    2016-01-01

    Orinus is an alpine endemic genus of Poaceae. Because of the imperfect specimens, high level of intraspecific morphological variability, and homoplasies of morphological characters, it is relatively difficult to delimitate species of Orinus by using morphology alone. To this end, the DNA barcoding has shown great potential in identifying species. The present study is the first attempt to test the feasibility of four proposed DNA barcoding markers (matK, rbcL, trnH-psbA, and ITS) in identifying four currently revised species of Orinus from the Qinghai-Tibetan Plateau (QTP). Among all the single-barcode candidates, the differentiation power was the highest for the nuclear internal transcribed spacer (ITS), while the chloroplast barcodes matK (M), rbcL (R), and trnH-psbA (H) could not identify the species. Meanwhile, the differentiation efficiency of the nuclear ITS (I) was also higher than any two- or three-locus combination of chloroplast barcodes, or even a combination of ITS and any chloroplast barcode except H + I and R + I. All the combinations of chloroplast barcodes plus the nuclear ITS, H + I, and R + I differentiated the highest portion of species. The highest differentiation rate for the barcodes or barcode combinations examined here was 100% (H + I and R + I). In summary, this case study showed that the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions in differentiating Orinus species from the QTP. Moreover, combining the ITS region with chloroplast regions may improve the barcoding success rate. PMID:27173245

  1. Does a global DNA barcoding gap exist in Annelida?

    PubMed

    Kvist, Sebastian

    2016-05-01

    Accurate identification of unknown specimens by means of DNA barcoding is contingent on the presence of a DNA barcoding gap, among other factors, as its absence may result in dubious specimen identifications - false negatives or positives. Whereas the utility of DNA barcoding would be greatly reduced in the absence of a distinct and sufficiently sized barcoding gap, the limits of intraspecific and interspecific distances are seldom thoroughly inspected across comprehensive sampling. The present study aims to illuminate this aspect of barcoding in a comprehensive manner for the animal phylum Annelida. All cytochrome c oxidase subunit I sequences (cox1 gene; the chosen region for zoological DNA barcoding) present in GenBank for Annelida, as well as for "Polychaeta", "Oligochaeta", and Hirudinea separately, were downloaded and curated for length, coverage and potential contaminations. The final datasets consisted of 9782 (Annelida), 5545 ("Polychaeta"), 3639 ("Oligochaeta"), and 598 (Hirudinea) cox1 sequences and these were either (i) used as is in an automated global barcoding gap detection analysis or (ii) further analyzed for genetic distances, separated into bins containing intraspecific and interspecific comparisons and plotted in a graph to visualize any potential global barcoding gap. Over 70 million pairwise genetic comparisons were made and results suggest that although there is a tendency towards separation, no distinct or sufficiently sized global barcoding gap exists in either of the datasets rendering future barcoding efforts at risk of erroneous specimen identifications (but local barcoding gaps may still exist allowing for the identification of specimens at lower taxonomic ranks). This seems to be especially true for earthworm taxa, which account for fully 35% of the total number of interspecific comparisons that show 0% divergence.

  2. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum)

    PubMed Central

    Guo, Yan-Yan; Huang, Lai-Qiang; Liu, Zhong-Jian; Wang, Xiao-Quan

    2016-01-01

    Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper), a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%). Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%), whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%). Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation. PMID:26752741

  3. Promise and Challenge of DNA Barcoding in Venus Slipper (Paphiopedilum).

    PubMed

    Guo, Yan-Yan; Huang, Lai-Qiang; Liu, Zhong-Jian; Wang, Xiao-Quan

    2016-01-01

    Orchidaceae are one of the largest families of flowering plants, with over 27,000 species described and all orchids are listed in CITES. Moreover, the seedlings of orchid species from the same genus are similar. The objective of DNA barcoding is rapid, accurate, and automated species identification, which may be used to identify illegally traded endangered species from vegetative specimens of Paphiopedilum (Venus slipper), a flagship group for plant conservation with high ornamental and commercial values. Here, we selected eight chloroplast barcodes and nrITS to evaluate their suitability in Venus slippers. The results indicate that all tested barcodes had no barcoding gap and the core plant barcodes showed low resolution for the identification of Venus slippers (18.86%). Of the single-locus barcodes, nrITS is the most efficient for the species identification of the genus (52.27%), whereas matK + atpF-atpH is the most efficient multi-locus combination (28.97%). Therefore, we recommend the combination of matK + atpF-atpH + ITS as a barcode for Venus slippers. Furthermore, there is an upper limit of resolution of the candidate barcodes, and only half of the taxa with multiple samples were identified successfully. The low efficiency of these candidate barcodes in Venus slippers may be caused by relatively recent speciation, the upper limit of the barcodes, and/or the sampling density. Although the discriminatory power is relatively low, DNA barcoding may be a promising tool to identify species involved in illegal trade, which has broad applications and is valuable for orchid conservation.

  4. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  5. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  6. Identifying Canadian Freshwater Fishes through DNA Barcodes

    PubMed Central

    Hubert, Nicolas; Hanner, Robert; Holm, Erling; Mandrak, Nicholas E.; Taylor, Eric; Burridge, Mary; Watkinson, Douglas; Dumont, Pierre; Curry, Allen; Bentzen, Paul; Zhang, Junbin; April, Julien; Bernatchez, Louis

    2008-01-01

    Background DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. Methodology/Principal Findings We bi-directionally sequenced the standard 652 bp “barcode” region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. Conclusions/Significance The present study evidenced that freshwater fish species can be

  7. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  8. DNA barcodes of Asian Houbara Bustard (Chlamydotis undulata macqueenii).

    PubMed

    Arif, Ibrahim A; Khan, Haseeb A; Williams, Joseph B; Shobrak, Mohammad; Arif, Waad I

    2012-01-01

    Populations of Houbara Bustards have dramatically declined in recent years. Captive breeding and reintroduction programs have had limited success in reviving population numbers and thus new technological solutions involving molecular methods are essential for the long term survival of this species. In this study, we sequenced the 694 bp segment of COI gene of the four specimens of Asian Houbara Bustard (Chlamydotis undulata macqueenii). We also compared these sequences with earlier published barcodes of 11 individuals comprising different families of the orders Gruiformes, Ciconiiformes, Podicipediformes and Crocodylia (out group). The pair-wise sequence comparison showed a total of 254 variable sites across all the 15 sequences from different taxa. Three of the four specimens of Houbara Bustard had an identical sequence of COI gene and one individual showed a single nucleotide difference (G > A transition at position 83). Within the bustard family (Otididae), comparison among the three species (Asian Houbara Bustard, Great Bustard (Otis tarda) and the Little Bustard (Tetrax tetrax)), representing three different genera, showed 116 variable sites. For another family (Rallidae), the intra-family variable sites among the individuals of four different genera were found to be 146. The COI genetic distances among the 15 individuals varied from 0.000 to 0.431. Phylogenetic analysis using 619 bp nucleotide segment of COI clearly discriminated all the species representing different genera, families and orders. All the four specimens of Houbara Bustard formed a single clade and are clearly separated from other two individuals of the same family (Otis tarda and Tetrax tetrax). The nucleotide sequence of partial segment of COI gene effectively discriminated the closely related species. This is the first study reporting the barcodes of Houbara Bustard and would be helpful in future molecular studies, particularly for the conservation of this threatened bird in Saudi Arabia

  9. DNA barcodes of Asian Houbara Bustard (Chlamydotis undulata macqueenii).

    PubMed

    Arif, Ibrahim A; Khan, Haseeb A; Williams, Joseph B; Shobrak, Mohammad; Arif, Waad I

    2012-01-01

    Populations of Houbara Bustards have dramatically declined in recent years. Captive breeding and reintroduction programs have had limited success in reviving population numbers and thus new technological solutions involving molecular methods are essential for the long term survival of this species. In this study, we sequenced the 694 bp segment of COI gene of the four specimens of Asian Houbara Bustard (Chlamydotis undulata macqueenii). We also compared these sequences with earlier published barcodes of 11 individuals comprising different families of the orders Gruiformes, Ciconiiformes, Podicipediformes and Crocodylia (out group). The pair-wise sequence comparison showed a total of 254 variable sites across all the 15 sequences from different taxa. Three of the four specimens of Houbara Bustard had an identical sequence of COI gene and one individual showed a single nucleotide difference (G > A transition at position 83). Within the bustard family (Otididae), comparison among the three species (Asian Houbara Bustard, Great Bustard (Otis tarda) and the Little Bustard (Tetrax tetrax)), representing three different genera, showed 116 variable sites. For another family (Rallidae), the intra-family variable sites among the individuals of four different genera were found to be 146. The COI genetic distances among the 15 individuals varied from 0.000 to 0.431. Phylogenetic analysis using 619 bp nucleotide segment of COI clearly discriminated all the species representing different genera, families and orders. All the four specimens of Houbara Bustard formed a single clade and are clearly separated from other two individuals of the same family (Otis tarda and Tetrax tetrax). The nucleotide sequence of partial segment of COI gene effectively discriminated the closely related species. This is the first study reporting the barcodes of Houbara Bustard and would be helpful in future molecular studies, particularly for the conservation of this threatened bird in Saudi Arabia.

  10. DNA barcoding of catfish: species authentication and phylogenetic assessment.

    PubMed

    Wong, Li Lian; Peatman, Eric; Lu, Jianguo; Kucuktas, Huseyin; He, Shunping; Zhou, Chuanjiang; Na-nakorn, Uthairat; Liu, Zhanjiang

    2011-03-15

    As the global market for fisheries and aquaculture products expands, mislabeling of these products has become a growing concern in the food safety arena. Molecular species identification techniques hold the potential for rapid, accurate assessment of proper labeling. Here we developed and evaluated DNA barcodes for use in differentiating United States domestic and imported catfish species. First, we sequenced 651 base-pair barcodes from the cytochrome oxidase I (COI) gene from individuals of 9 species (and an Ictalurid hybrid) of domestic and imported catfish in accordance with standard DNA barcoding protocols. These included domestic Ictalurid catfish, and representative imported species from the families of Clariidae and Pangasiidae. Alignment of individual sequences from within a given species revealed highly consistent barcodes (98% similarity on average). These alignments allowed the development and analyses of consensus barcode sequences for each species and comparison with limited sequences in public databases (GenBank and Barcode of Life Data Systems). Validation tests carried out in blinded studies and with commercially purchased catfish samples (both frozen and fresh) revealed the reliability of DNA barcoding for differentiating between these catfish species. The developed protocols and consensus barcodes are valuable resources as increasing market and governmental scrutiny is placed on catfish and other fisheries and aquaculture products labeling in the United States.

  11. What do plant pathologists want from the Fungal Barcoding Initiative?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant pathologists want from the Fungal Barcoding Initiative what everyone wants, specifically a fast, accurate identification of their causal plant pathogen resulting in a scientific name that synthesizes current knowledge of that organism. It sounds so easy! Yet, accurate DNA barcodes can only b...

  12. An Algorithm Enabling Blind Users to Find and Read Barcodes.

    PubMed

    Tekin, Ender; Coughlan, James M

    2009-12-01

    Most camera-based systems for finding and reading barcodes are designed to be used by sighted users (e.g. the Red Laser iPhone app), and assume the user carefully centers the barcode in the image before the barcode is read. Blind individuals could benefit greatly from such systems to identify packaged goods (such as canned goods in a supermarket), but unfortunately in their current form these systems are completely inaccessible because of their reliance on visual feedback from the user.To remedy this problem, we propose a computer vision algorithm that processes several frames of video per second to detect barcodes from a distance of several inches; the algorithm issues directional information with audio feedback (e.g. "left," "right") and thereby guides a blind user holding a webcam or other portable camera to locate and home in on a barcode. Once the barcode is detected at sufficiently close range, a barcode reading algorithm previously developed by the authors scans and reads aloud the barcode and the corresponding product information. We demonstrate encouraging experimental results of our proposed system implemented on a desktop computer with a webcam held by a blindfolded user; ultimately the system will be ported to a camera phone for use by visually impaired users.

  13. Multilocus inference of species trees and DNA barcoding

    PubMed Central

    2016-01-01

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree—gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481787

  14. Dissecting host-associated communities with DNA barcodes

    PubMed Central

    Pierce, Naomi E.

    2016-01-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes. Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481780

  15. DNA Barcoding of Catfish: Species Authentication and Phylogenetic Assessment

    PubMed Central

    Wong, Li Lian; Peatman, Eric; Lu, Jianguo; Kucuktas, Huseyin; He, Shunping; Zhou, Chuanjiang; Na-nakorn, Uthairat; Liu, Zhanjiang

    2011-01-01

    As the global market for fisheries and aquaculture products expands, mislabeling of these products has become a growing concern in the food safety arena. Molecular species identification techniques hold the potential for rapid, accurate assessment of proper labeling. Here we developed and evaluated DNA barcodes for use in differentiating United States domestic and imported catfish species. First, we sequenced 651 base-pair barcodes from the cytochrome oxidase I (COI) gene from individuals of 9 species (and an Ictalurid hybrid) of domestic and imported catfish in accordance with standard DNA barcoding protocols. These included domestic Ictalurid catfish, and representative imported species from the families of Clariidae and Pangasiidae. Alignment of individual sequences from within a given species revealed highly consistent barcodes (98% similarity on average). These alignments allowed the development and analyses of consensus barcode sequences for each species and comparison with limited sequences in public databases (GenBank and Barcode of Life Data Systems). Validation tests carried out in blinded studies and with commercially purchased catfish samples (both frozen and fresh) revealed the reliability of DNA barcoding for differentiating between these catfish species. The developed protocols and consensus barcodes are valuable resources as increasing market and governmental scrutiny is placed on catfish and other fisheries and aquaculture products labeling in the United States. PMID:21423623

  16. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  17. Dissecting host-associated communities with DNA barcodes.

    PubMed

    Baker, Christopher C M; Bittleston, Leonora S; Sanders, Jon G; Pierce, Naomi E

    2016-09-01

    DNA barcoding and metabarcoding methods have been invaluable in the study of interactions between host organisms and their symbiotic communities. Barcodes can help identify individual symbionts that are difficult to distinguish using morphological characters, and provide a way to classify undescribed species. Entire symbiont communities can be characterized rapidly using barcoding and especially metabarcoding methods, which is often crucial for isolating ecological signal from the substantial variation among individual hosts. Furthermore, barcodes allow the evolutionary histories of symbionts and their hosts to be assessed simultaneously and in reference to one another. Here, we describe three projects illustrating the utility of barcodes for studying symbiotic interactions: first, we consider communities of arthropods found in the ant-occupied domatia of the East African ant-plant Vachellia (Acacia) drepanolobium; second, we examine communities of arthropod and protozoan inquilines in three species of Nepenthes pitcher plant in South East Asia; third, we investigate communities of gut bacteria of South American ants in the genus Cephalotes Advances in sequencing and computation, and greater database connectivity, will continue to expand the utility of barcoding methods for the study of species interactions, especially if barcoding can be approached flexibly by making use of alternative genetic loci, metagenomes and whole-genome data.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481780

  18. 2D materials: to graphene and beyond.

    PubMed

    Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio; Zamora, Félix

    2011-01-01

    This review is an attempt to illustrate the different alternatives in the field of 2D materials. Graphene seems to be just the tip of the iceberg and we show how the discovery of alternative 2D materials is starting to show the rest of this iceberg. The review comprises the current state-of-the-art of the vast literature in concepts and methods already known for isolation and characterization of graphene, and rationalizes the quite disperse literature in other 2D materials such as metal oxides, hydroxides and chalcogenides, and metal-organic frameworks.

  19. T2D@ZJU: a knowledgebase integrating heterogeneous connections associated with type 2 diabetes mellitus.

    PubMed

    Yang, Zhenzhong; Yang, Jihong; Liu, Wei; Wu, Leihong; Xing, Li; Wang, Yi; Fan, Xiaohui; Cheng, Yiyu

    2013-01-01

    Type 2 diabetes mellitus (T2D), affecting >90% of the diabetic patients, is one of the major threats to human health. A comprehensive understanding of the mechanisms of T2D at molecular level is essential to facilitate the related translational research. Here, we introduce a comprehensive and up-to-date knowledgebase for T2D, i.e. T2D@ZJU. T2D@ZJU contains three levels of heterogeneous connections associated with T2D, which is retrieved from pathway databases, protein-protein interaction databases and literature, respectively. In current release, T2D@ZJU contains 1078 T2D related entities such as proteins, protein complexes, drugs and others together with their corresponding relationships, which include 3069 manually curated connections, 14,893 protein-protein interactions and 26,716 relationships identified by text-mining technology. Moreover, T2D@ZJU provides a user-friendly web interface for users to browse and search data. A Cytoscape Web-based interactive network browser is available to visualize the corresponding network relationships between T2D-related entities. The functionality of T2D@ZJU is shown by means of several case studies. Database URL: http://tcm.zju.edu.cn/t2d.

  20. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification. PMID:26790288

  1. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification.

  2. Gold Nanoparticles-Based Barcode Analysis for Detection of Norepinephrine.

    PubMed

    An, Jeung Hee; Lee, Kwon-Jai; Choi, Jeong-Woo

    2016-02-01

    Nanotechnology-based bio-barcode amplification analysis offers an innovative approach for detecting neurotransmitters. We evaluated the efficacy of this method for detecting norepinephrine in normal and oxidative-stress damaged dopaminergic cells. Our approach use a combination of DNA barcodes and bead-based immunoassays for detecting neurotransmitters with surface-enhanced Raman spectroscopy (SERS), and provides polymerase chain reaction (PCR)-like sensitivity. This method relies on magnetic Dynabeads containing antibodies and nanoparticles that are loaded both with DNA barcords and with antibodies that can sandwich the target protein captured by the Dynabead-bound antibodies. The aggregate sandwich structures are magnetically separated from the solution and treated to remove the conjugated barcode DNA. The DNA barcodes are then identified by SERS and PCR analysis. The concentration of norepinephrine in dopaminergic cells can be readily detected using the bio-barcode assay, which is a rapid, high-throughput screening tool for detecting neurotransmitters. PMID:27305769

  3. Identification of Indian crocodile species through DNA barcodes.

    PubMed

    Meganathan, P R; Dubey, Bhawna; Jogayya, Kothakota Naga; Haque, Ikramul

    2013-07-01

    The biodiversity of India includes three crocodile species, Crocodylus palustris, Crocodylus porosus, and Gavialis gangeticus, whose status is threatened due to bushmeat crisis and illegal hunting. The crocodilian conservation management requires novel techniques to help forensic analysts to reveal species identity. DNA barcoding is a species identification technique, where a partial cytochrome c oxidase subunit 1 gene is used as a marker for species identification. Herein, the DNA barcoding technique is evaluated for three Indian crocodiles by analyzing an approximately 750-bp barcode region. The alignment result shows interspecific variations between sequences for discrimination of the three Indian crocodiles leading to species identification. The phylogenetic analyses also substantiate the established crocodilian relationships, which add further advantage to use this DNA barcoding approach for Indian crocodiles. This study provides preliminary evidences for the use of DNA barcoding technique in the identification of Indian crocodile species.

  4. Commercial Teas Highlight Plant DNA Barcode Identification Successes and Obstacles

    PubMed Central

    Stoeckle, Mark Y.; Gamble, Catherine C.; Kirpekar, Rohan; Young, Grace; Ahmed, Selena; Little, Damon P.

    2011-01-01

    Appearance does not easily identify the dried plant fragments used to prepare teas to species. Here we test recovery of standard DNA barcodes for land plants from a large array of commercial tea products and analyze their performance in identifying tea constituents using existing databases. Most (90%) of 146 tea products yielded rbcL or matK barcodes using a standard protocol. Matching DNA identifications to listed ingredients was limited by incomplete databases for the two markers, shared or nearly identical barcodes among some species, and lack of standard common names for plant species. About 1/3 of herbal teas generated DNA identifications not found on labels. Broad scale adoption of plant DNA barcoding may require algorithms that place search results in context of standard plant names and character-based keys for distinguishing closely-related species. Demonstrating the importance of accessible plant barcoding, our findings indicate unlisted ingredients are common in herbal teas. PMID:22355561

  5. [Screening potential DNA barcode regions of genus Papaver].

    PubMed

    Zhang, Shuang; Liu, Yu-jing; Wu, Yan-sheng; Cao, Ying; Yuan, Yuan

    2015-08-01

    DNA barcoding is an effective technique in species identification. To determine the candidate sequences which can be used as DNA barcode to identify in Papaver genus, five potential sequences (ITS, matK, psbA-trnH, rbcL, trnL-trnF) were screened. 69 sequences were downloaded from Genbank, including 21 ITS sequences, 10 matK sequences, 8 psbA-trnH sequences, 14 rbcL sequences and 16 trnL-trnF sequences. Mega 6.0 was used to analysis the comparison of sequences. By the methods of calculating the distances in intraspecific and interspecific divergences, evaluating DNA barcoding gap and constructing NJ and UPMGA phylogenetic trees. The sequence trnL-trnF performed best. In conclusion, trnL-trnF can be considered as a novel DNA barcode in Papaver genus, other four sequences can be as combination barcode for identification.

  6. [Screening potential DNA barcode regions of genus Papaver].

    PubMed

    Zhang, Shuang; Liu, Yu-jing; Wu, Yan-sheng; Cao, Ying; Yuan, Yuan

    2015-08-01

    DNA barcoding is an effective technique in species identification. To determine the candidate sequences which can be used as DNA barcode to identify in Papaver genus, five potential sequences (ITS, matK, psbA-trnH, rbcL, trnL-trnF) were screened. 69 sequences were downloaded from Genbank, including 21 ITS sequences, 10 matK sequences, 8 psbA-trnH sequences, 14 rbcL sequences and 16 trnL-trnF sequences. Mega 6.0 was used to analysis the comparison of sequences. By the methods of calculating the distances in intraspecific and interspecific divergences, evaluating DNA barcoding gap and constructing NJ and UPMGA phylogenetic trees. The sequence trnL-trnF performed best. In conclusion, trnL-trnF can be considered as a novel DNA barcode in Papaver genus, other four sequences can be as combination barcode for identification. PMID:26677693

  7. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  8. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  9. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  10. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  11. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  12. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  13. The Carl D. Perkins Vocational and Applied Technology Education Act Amendments of 1990. Conference Report To Accompany H.R. 7. House of Representatives, 101st Congress, 2d Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House.

    This document reports the committee of the conference's recommendation that the U.S. House of Representatives recede from its disagreement to the U.S. Senate amendment on the Carl D. Perkins Vocational and Applied Technology Education Act amendments of 1990. The first section provides materials the Senate would have inserted in the amendments. The…

  14. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  15. Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments

    PubMed Central

    Stern, Rowena F.; Horak, Ales; Andrew, Rose L.; Coffroth, Mary-Alice; Andersen, Robert A.; Küpper, Frithjof C.; Jameson, Ian; Hoppenrath, Mona; Véron, Benoît; Kasai, Fumai; Brand, Jerry; James, Erick R.; Keeling, Patrick J.

    2010-01-01

    Background Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments. Methodology/Principal Findings In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. Conclusions/Significance COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of

  16. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  17. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  18. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  19. Molecular phylogenetics in 2D: ITS2 rRNA evolution and sequence-structure barcode from Veneridae to Bivalvia.

    PubMed

    Salvi, Daniele; Mariottini, Paolo

    2012-11-01

    In this study, we analyzed the nuclear ITS2 rRNA primary sequence and secondary structure in Veneridae and comparatively with 20 Bivalvia taxa to test the phylogenetic resolution of this marker and its suitability for molecular diagnosis at different taxonomic levels. Maximum likelihood and Bayesian trees based on primary sequences were congruent with (profile-) neighbor-joining trees based on a combined model of sequence-structure evolution. ITS2 showed higher resolution below the subfamily level, providing a phylogenetic signal comparable to (mitochondrial/nuclear) gene fragments 2-5 times longer. Structural elements of the ITS2 folding, such as specific mismatch pairing and compensatory base changes, provided further support for the monophyly of some groups and for their phylogenetic relationships. Veneridae ITS2 folding is structured in six domains (DI-VI) and shows five striking sequence-structure features. Two of them, the Basal and Apical STEMs, are common to Bivalvia, while the presence of both the Branched STEM and the Y/R stretches occurs in five superfamilies of the two Heterodonta orders Myoida and Veneroida, thus questioning their reciprocal monophyly. Our results validated the ITS2 as a suitable marker for venerids phylogenetics and taxonomy, and underlined the significance of including secondary structure information for both applications at several systematic levels within bivalves.

  20. Covert thermal barcodes based on phase change nanoparticles

    PubMed Central

    Duong, Binh; Liu, Helin; Ma, Liyuan; Su, Ming

    2014-01-01

    An unmet need is to develop covert barcodes that can be used to track-trace objects, and authenticate documents. This paper describes a new nanoparticle-based covert barcode system, in which a selected panel of solid-to-liquid phase change nanoparticles with discrete and sharp melting peaks is added in a variety of objects such as explosive derivative, drug, polymer, and ink. This method has high labeling capacity owing to the small sizes of nanoparticles, sharp melting peaks, and large scan range of thermal analysis. The thermal barcode can enhance forensic investigation by its technical readiness, structural covertness, and robustness. PMID:24901064

  1. Plant DNA barcodes and the influence of gene flow.

    PubMed

    Naciri, Yamama; Caetano, Sofia; Salamin, Nicolas

    2012-07-01

    Success of species assignment using DNA barcodes has been shown to vary among plant lineages because of a wide range of different factors. In this study, we confirm the theoretical prediction that gene flow influences species assignment with simulations and a literature survey. We show that the genome experiencing the highest gene flow is, in the majority of the cases, the best suited for species delimitation. Our results clearly suggest that, for most angiosperm groups, plastid markers will not be the most appropriate for use as DNA barcodes. We therefore advocate shifting the focus from plastid to nuclear markers to achieve an overall higher success using DNA barcodes.

  2. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  3. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  4. Two dimensional barcode-inspired automatic analysis for arrayed microfluidic immunoassays

    PubMed Central

    Zhang, Yi; Qiao, Lingbo; Ren, Yunke; Wang, Xuwei; Gao, Ming; Tang, Yunfang; Jeff Xi, Jianzhong; Fu, Tzung-May; Jiang, Xingyu

    2013-01-01

    The usability of many high-throughput lab-on-a-chip devices in point-of-care applications is currently limited by the manual data acquisition and analysis process, which are labor intensive and time consuming. Based on our original design in the biochemical reactions, we proposed here a universal approach to perform automatic, fast, and robust analysis for high-throughput array-based microfluidic immunoassays. Inspired by two-dimensional (2D) barcodes, we incorporated asymmetric function patterns into a microfluidic array. These function patterns provide quantitative information on the characteristic dimensions of the microfluidic array, as well as mark its orientation and origin of coordinates. We used a computer program to perform automatic analysis for a high-throughput antigen/antibody interaction experiment in 10 s, which was more than 500 times faster than conventional manual processing. Our method is broadly applicable to many other microchannel-based immunoassays. PMID:24404030

  5. Two dimensional barcode-inspired automatic analysis for arrayed microfluidic immunoassays.

    PubMed

    Zhang, Yi; Qiao, Lingbo; Ren, Yunke; Wang, Xuwei; Gao, Ming; Tang, Yunfang; Jeff Xi, Jianzhong; Fu, Tzung-May; Jiang, Xingyu

    2013-01-01

    The usability of many high-throughput lab-on-a-chip devices in point-of-care applications is currently limited by the manual data acquisition and analysis process, which are labor intensive and time consuming. Based on our original design in the biochemical reactions, we proposed here a universal approach to perform automatic, fast, and robust analysis for high-throughput array-based microfluidic immunoassays. Inspired by two-dimensional (2D) barcodes, we incorporated asymmetric function patterns into a microfluidic array. These function patterns provide quantitative information on the characteristic dimensions of the microfluidic array, as well as mark its orientation and origin of coordinates. We used a computer program to perform automatic analysis for a high-throughput antigen/antibody interaction experiment in 10 s, which was more than 500 times faster than conventional manual processing. Our method is broadly applicable to many other microchannel-based immunoassays.

  6. Does DNA barcoding improve performance of traditional stream bioassessment metrics?

    EPA Science Inventory

    Benthic macroinvertebrate community composition is used to assess wetland and stream condition and to help differentiate the effects of stressors among sites. Deoxyribonucleic acid (DNA) barcoding has been promoted as a way to increase taxonomic resolution and, thereby, to increa...

  7. DNA barcoding Satyrine butterflies (Lepidoptera: Nymphalidae) in China.

    PubMed

    Yang, Mingsheng; Zhai, Qing; Yang, Zhaofu; Zhang, Yalin

    2016-07-01

    We investigated the effectiveness of the standard 648 bp mitochondrial COI barcode region in discriminating among Satyrine species from China. A total of 214 COI sequences were obtained from 90 species, including 34 species that have never been barcoded. Analyses of genetic divergence show that the mean interspecific genetic divergence is about 16-fold higher than within species, and little overlap occurs between them. Neighbour-joining (NJ) analyses showed that 48 of the 50 species with two or more individuals, including two cases with deep intraspecific divergence (>3%), are monophyletic. Furthermore, when our sequences are combined with the conspecific sequences sampled from distantly geographic regions, the "barcoding gap" still exists, and all related species are recovered to be monophyletic in NJ analysis. Our study demonstrates that COI barcoding is effective in discriminating among the satyrine species of China, and provides a reference library for their future molecular identification.

  8. An Analytic Hierarchy Process-based Method to Rank the Critical Success Factors of Implementing a Pharmacy Barcode System.

    PubMed

    Alharthi, Hana; Sultana, Nahid; Al-Amoudi, Amjaad; Basudan, Afrah

    2015-01-01

    Pharmacy barcode scanning is used to reduce errors during the medication dispensing process. However, this technology has rarely been used in hospital pharmacies in Saudi Arabia. This article describes the barriers to successful implementation of a barcode scanning system in Saudi Arabia. A literature review was conducted to identify the relevant critical success factors (CSFs) for a successful dispensing barcode system implementation. Twenty-eight pharmacists from a local hospital in Saudi Arabia were interviewed to obtain their perception of these CSFs. In this study, planning (process flow issues and training requirements), resistance (fear of change, communication issues, and negative perceptions about technology), and technology (software, hardware, and vendor support) were identified as the main barriers. The analytic hierarchy process (AHP), one of the most widely used tools for decision making in the presence of multiple criteria, was used to compare and rank these identified CSFs. The results of this study suggest that resistance barriers have a greater impact than planning and technology barriers. In particular, fear of change is the most critical factor, and training is the least critical factor. PMID:26807079

  9. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  10. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  11. DNA barcode data accurately assign higher spider taxa

    PubMed Central

    Coddington, Jonathan A.; Agnarsson, Ingi; Cheng, Ren-Chung; Čandek, Klemen; Driskell, Amy; Frick, Holger; Gregorič, Matjaž; Kostanjšek, Rok; Kropf, Christian; Kweskin, Matthew; Lokovšek, Tjaša; Pipan, Miha; Vidergar, Nina

    2016-01-01

    The use of unique DNA sequences as a method for taxonomic identification is no longer fundamentally controversial, even though debate continues on the best markers, methods, and technology to use. Although both existing databanks such as GenBank and BOLD, as well as reference taxonomies, are imperfect, in best case scenarios “barcodes” (whether single or multiple, organelle or nuclear, loci) clearly are an increasingly fast and inexpensive method of identification, especially as compared to manual identification of unknowns by increasingly rare expert taxonomists. Because most species on Earth are undescribed, a complete reference database at the species level is impractical in the near term. The question therefore arises whether unidentified species can, using DNA barcodes, be accurately assigned to more inclusive groups such as genera and families—taxonomic ranks of putatively monophyletic groups for which the global inventory is more complete and stable. We used a carefully chosen test library of CO1 sequences from 49 families, 313 genera, and 816 species of spiders to assess the accuracy of genus and family-level assignment. We used BLAST queries of each sequence against the entire library and got the top ten hits. The percent sequence identity was reported from these hits (PIdent, range 75–100%). Accurate assignment of higher taxa (PIdent above which errors totaled less than 5%) occurred for genera at PIdent values >95 and families at PIdent values ≥ 91, suggesting these as heuristic thresholds for accurate generic and familial identifications in spiders. Accuracy of identification increases with numbers of species/genus and genera/family in the library; above five genera per family and fifteen species per genus all higher taxon assignments were correct. We propose that using percent sequence identity between conventional barcode sequences may be a feasible and reasonably accurate method to identify animals to family/genus. However, the quality of

  12. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  13. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  14. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  15. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  16. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  17. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  18. 2D photonic-crystal optomechanical nanoresonator.

    PubMed

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  19. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  20. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  1. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  2. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  3. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  4. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  5. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  6. New Approach for 2D Readout of GEM Detectors

    SciTech Connect

    Hasell, Douglas K

    2011-10-29

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to {approx}50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  7. 2D/3D Synthetic Vision Navigation Display

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.

    2008-01-01

    Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.

  8. DNA barcoding of the vegetable leafminer Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Bangladesh

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA barcoding revealed the presence of the polyphagous leafminer pest Liriomyza sativae Blanchard in Bangladesh. DNA barcode sequences for mitochondrial COI were generated for Agromyzidae larvae, pupae and adults collected from field populations across Bangladesh. BLAST sequence similarity searches ...

  9. DNA barcoding in the media: does coverage of cool science reflect its social context?

    PubMed

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life. PMID:27463361

  10. DNA barcoding in the media: does coverage of cool science reflect its social context?

    PubMed

    Geary, Janis; Camicioli, Emma; Bubela, Tania

    2016-09-01

    Paul Hebert and colleagues first described DNA barcoding in 2003, which led to international efforts to promote and coordinate its use. Since its inception, DNA barcoding has generated considerable media coverage. We analysed whether this coverage reflected both the scientific and social mandates of international barcoding organizations. We searched newspaper databases to identify 900 English-language articles from 2003 to 2013. Coverage of the science of DNA barcoding was highly positive but lacked context for key topics. Coverage omissions pose challenges for public understanding of the science and applications of DNA barcoding; these included coverage of governance structures and issues related to the sharing of genetic resources across national borders. Our analysis provided insight into how barcoding communication efforts have translated into media coverage; more targeted communication efforts may focus media attention on previously omitted, but important topics. Our analysis is timely as the DNA barcoding community works to establish the International Society for the Barcode of Life.

  11. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  12. Patterns of DNA Barcode Variation in Canadian Marine Molluscs

    PubMed Central

    Layton, Kara K.S.; Martel, André L.; Hebert, Paul DN.

    2014-01-01

    Background Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. Methodology/Principal Findings This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0–26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%–46.5%), and showed a significant positive correlation with nearest neighbour distances. Conclusions/Significance DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad

  13. International Barcode of Life: Evolution of a global research community.

    PubMed

    Adamowicz, Sarah J

    2015-05-01

    The 6th International Barcode of Life Conference (Guelph, Canada, 18-21 August 2015), themed Barcodes to Biomes, showcases the latest developments in DNA barcoding research and its diverse applications. The meeting also provides a venue for a global research community to share ideas and to initiate collaborations. All plenary and contributed abstracts are being published as an open-access special issue of Genome. Here, I use a comparison with the 3rd Conference (Mexico City, 2009) to highlight 10 recent and emerging trends that are apparent among the contributed abstracts. One of the outstanding trends is the rising proportion of abstracts that focus upon multiple socio-economically important applications of DNA barcoding, including studies of agricultural pests, quarantine and invasive species, wildlife forensics, disease vectors, biomonitoring of ecosystem health, and marketplace surveys evaluating the authenticity of seafood products and medicinal plants. Other key movements include the use of barcoding and metabarcoding approaches for dietary analyses-and for studies of food webs spanning three or more trophic levels-as well as the spread of next-generation sequencing methods in multiple contexts. In combination with the rising taxonomic and geographic scope of many barcoding iniatives, these developments suggest that several important questions in biology are becoming tractable. "What is this specimen on an agricultural shipment?", "Who eats whom in this whole food web?", and even "How many species are there?" are questions that may be answered in time periods ranging from a few years to one or a few decades. The next phases of DNA barcoding may expand yet further into prediction of community shifts with climate change and improved management of biological resources.

  14. Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems

    PubMed Central

    Smith, M. Alex; Bertrand, Claudia; Crosby, Kate; Eveleigh, Eldon S.; Fernandez-Triana, Jose; Fisher, Brian L.; Gibbs, Jason; Hajibabaei, Mehrdad; Hallwachs, Winnie; Hind, Katharine; Hrcek, Jan; Huang, Da-Wei; Janda, Milan; Janzen, Daniel H.; Li, Yanwei; Miller, Scott E.; Packer, Laurence; Quicke, Donald; Ratnasingham, Sujeevan; Rodriguez, Josephine; Rougerie, Rodolphe; Shaw, Mark R.; Sheffield, Cory; Stahlhut, Julie K.; Steinke, Dirk; Whitfield, James; Wood, Monty; Zhou, Xin

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region. PMID:22567162

  15. International Barcode of Life: Evolution of a global research community.

    PubMed

    Adamowicz, Sarah J

    2015-05-01

    The 6th International Barcode of Life Conference (Guelph, Canada, 18-21 August 2015), themed Barcodes to Biomes, showcases the latest developments in DNA barcoding research and its diverse applications. The meeting also provides a venue for a global research community to share ideas and to initiate collaborations. All plenary and contributed abstracts are being published as an open-access special issue of Genome. Here, I use a comparison with the 3rd Conference (Mexico City, 2009) to highlight 10 recent and emerging trends that are apparent among the contributed abstracts. One of the outstanding trends is the rising proportion of abstracts that focus upon multiple socio-economically important applications of DNA barcoding, including studies of agricultural pests, quarantine and invasive species, wildlife forensics, disease vectors, biomonitoring of ecosystem health, and marketplace surveys evaluating the authenticity of seafood products and medicinal plants. Other key movements include the use of barcoding and metabarcoding approaches for dietary analyses-and for studies of food webs spanning three or more trophic levels-as well as the spread of next-generation sequencing methods in multiple contexts. In combination with the rising taxonomic and geographic scope of many barcoding iniatives, these developments suggest that several important questions in biology are becoming tractable. "What is this specimen on an agricultural shipment?", "Who eats whom in this whole food web?", and even "How many species are there?" are questions that may be answered in time periods ranging from a few years to one or a few decades. The next phases of DNA barcoding may expand yet further into prediction of community shifts with climate change and improved management of biological resources. PMID:26444714

  16. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  17. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  18. Managing Archival Collections in an Automated Environment: The Joys of Barcoding

    ERIC Educational Resources Information Center

    Hamburger, Susan; Charles, Jane Veronica

    2006-01-01

    In a desire for automated collection control, archival repositories are adopting barcoding from their library and records center colleagues. This article discusses the planning, design, and implementation phases of barcoding. The authors focus on reasons for barcoding, security benefits, in-room circulation tracking, potential for gathering…

  19. Pay Attention to the Overlooked Cryptic Diversity in Existing Barcoding Data: the Case of Mollusca with Character-Based DNA Barcoding.

    PubMed

    Zou, Shanmei; Li, Qi

    2016-06-01

    With the global biodiversity crisis, DNA barcoding aims for fast species identification and cryptic species diversity revelation. For more than 10 years, large amounts of DNA barcode data have been accumulating in publicly available databases, most of which were conducted by distance or tree-building methods that have often been argued, especially for cryptic species revelation. In this context, overlooked cryptic diversity may exist in the available barcoding data. The character-based DNA barcoding, however, has a good chance for detecting the overlooked cryptic diversity. In this study, marine mollusk was as the ideal case for detecting the overlooked potential cryptic species from existing cytochrome c oxidase I (COI) sequences with character-based DNA barcode. A total of 1081 COI sequences of mollusks, belonging to 176 species of 25 families of Gastropoda, Cephalopoda, and Lamellibranchia, were conducted by character analysis. As a whole, the character-based barcoding results were consistent with previous distance and tree-building analysis for species discrimination. More importantly, quite a number of species analyzed were divided into distinct clades with unique diagnostical characters. Based on the concept of cryptic species revelation of character-based barcoding, these species divided into separate taxonomic groups might be potential cryptic species. The detection of the overlooked potential cryptic diversity proves that the character-based barcoding mode possesses more advantages of revealing cryptic biodiversity. With the development of DNA barcoding, making the best use of barcoding data is worthy of our attention for species conservation.

  20. Analysis of Metagenomics Next Generation Sequence Data for Fungal ITS Barcoding: Do You Need Advance Bioinformatics Experience?

    PubMed Central

    Ahmed, Abdalla

    2016-01-01

    During the last few decades, most of microbiology laboratories have become familiar in analyzing Sanger sequence data for ITS barcoding. However, with the availability of next-generation sequencing platforms in many centers, it has become important for medical mycologists to know how to make sense of the massive sequence data generated by these new sequencing technologies. In many reference laboratories, the analysis of such data is not a big deal, since suitable IT infrastructure and well-trained bioinformatics scientists are always available. However, in small research laboratories and clinical microbiology laboratories the availability of such resources are always lacking. In this report, simple and user-friendly bioinformatics work-flow is suggested for fast and reproducible ITS barcoding of fungi. PMID:27507959

  1. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  2. DNA Barcoding of Japanese Click Beetles (Coleoptera, Elateridae)

    PubMed Central

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa. PMID:25636000

  3. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae).

    PubMed

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.

  4. Increasing global participation in genetics research through DNA barcoding.

    PubMed

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources. PMID:26642251

  5. Efficiency of ITS sequences for DNA barcoding in Passiflora (Passifloraceae).

    PubMed

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-01-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using "best match" and "best close match" methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species. PMID:25837628

  6. A comparative analysis of DNA barcode microarray feature size

    PubMed Central

    Ammar, Ron; Smith, Andrew M; Heisler, Lawrence E; Giaever, Guri; Nislow, Corey

    2009-01-01

    Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density), but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO) collection used for screens of pooled yeast (Saccharomyces cerevisiae) deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density. PMID:19825181

  7. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae)

    PubMed Central

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-01-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species. PMID:25837628

  8. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  9. Direct Chloroplast Sequencing: Comparison of Sequencing Platforms and Analysis Tools for Whole Chloroplast Barcoding

    PubMed Central

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert James

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis. PMID:25329378

  10. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    PubMed

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert James

    2014-01-01

    Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  11. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity.

    PubMed

    Leray, Matthieu; Knowlton, Nancy

    2015-02-17

    Documenting the diversity of marine life is challenging because many species are cryptic, small, and rare, and belong to poorly known groups. New sequencing technologies, especially when combined with standardized sampling, promise to make comprehensive biodiversity assessments and monitoring feasible on a large scale. We used this approach to characterize patterns of diversity on oyster reefs across a range of geographic scales comprising a temperate location [Virginia (VA)] and a subtropical location [Florida (FL)]. Eukaryotic organisms that colonized multilayered settlement surfaces (autonomous reef monitoring structures) over a 6-mo period were identified by cytochrome c oxidase subunit I barcoding (>2-mm mobile organisms) and metabarcoding (sessile and smaller mobile organisms). In a total area of ∼ 15.64 m(2) and volume of ∼ 0.09 m(3), 2,179 operational taxonomic units (OTUs) were recorded from 983,056 sequences. However, only 10.9% could be matched to reference barcodes in public databases, with only 8.2% matching barcodes with both genus and species names. Taxonomic coverage was broad, particularly for animals (22 phyla recorded), but 35.6% of OTUs detected via metabarcoding could not be confidently assigned to a taxonomic group. The smallest size fraction (500 to 106 μm) was the most diverse (more than two-thirds of OTUs). There was little taxonomic overlap between VA and FL, and samples separated by ∼ 2 m were significantly more similar than samples separated by ∼ 100 m. Ground-truthing with independent assessments of taxonomic composition indicated that both presence-absence information and relative abundance information are captured by metabarcoding data, suggesting considerable potential for ecological studies and environmental monitoring. PMID:25646458

  12. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM

    PubMed Central

    Wong, Alan S. L.; Choi, Gigi C. G.; Cui, Cheryl H.; Pregernig, Gabriela; Milani, Pamela; Adam, Miriam; Perli, Samuel D.; Kazer, Samuel W.; Gaillard, Aleth; Hermann, Mario; Shalek, Alex K.; Fraenkel, Ernest; Lu, Timothy K.

    2016-01-01

    The orchestrated action of genes controls complex biological phenotypes, yet the systematic discovery of gene and drug combinations that modulate these phenotypes in human cells is labor intensive and challenging to scale. Here, we created a platform for the massively parallel screening of barcoded combinatorial gene perturbations in human cells and translated these hits into effective drug combinations. This technology leverages the simplicity of the CRISPR-Cas9 system for multiplexed targeting of specific genomic loci and the versatility of combinatorial genetics en masse (CombiGEM) to rapidly assemble barcoded combinatorial genetic libraries that can be tracked with high-throughput sequencing. We applied CombiGEM-CRISPR to create a library of 23,409 barcoded dual guide-RNA (gRNA) combinations and then perform a high-throughput pooled screen to identify gene pairs that inhibited ovarian cancer cell growth when they were targeted. We validated the growth-inhibiting effects of specific gene sets, including epigenetic regulators KDM4C/BRD4 and KDM6B/BRD4, via individual assays with CRISPR-Cas–based knockouts and RNA-interference–based knockdowns. We also tested small-molecule drug pairs directed against our pairwise hits and showed that they exerted synergistic antiproliferative effects against ovarian cancer cells. We envision that the CombiGEM-CRISPR platform will be applicable to a broad range of biological settings and will accelerate the systematic identification of genetic combinations and their translation into novel drug combinations that modulate complex human disease phenotypes. PMID:26864203

  13. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM.

    PubMed

    Wong, Alan S L; Choi, Gigi C G; Cui, Cheryl H; Pregernig, Gabriela; Milani, Pamela; Adam, Miriam; Perli, Samuel D; Kazer, Samuel W; Gaillard, Aleth; Hermann, Mario; Shalek, Alex K; Fraenkel, Ernest; Lu, Timothy K

    2016-03-01

    The orchestrated action of genes controls complex biological phenotypes, yet the systematic discovery of gene and drug combinations that modulate these phenotypes in human cells is labor intensive and challenging to scale. Here, we created a platform for the massively parallel screening of barcoded combinatorial gene perturbations in human cells and translated these hits into effective drug combinations. This technology leverages the simplicity of the CRISPR-Cas9 system for multiplexed targeting of specific genomic loci and the versatility of combinatorial genetics en masse (CombiGEM) to rapidly assemble barcoded combinatorial genetic libraries that can be tracked with high-throughput sequencing. We applied CombiGEM-CRISPR to create a library of 23,409 barcoded dual guide-RNA (gRNA) combinations and then perform a high-throughput pooled screen to identify gene pairs that inhibited ovarian cancer cell growth when they were targeted. We validated the growth-inhibiting effects of specific gene sets, including epigenetic regulators KDM4C/BRD4 and KDM6B/BRD4, via individual assays with CRISPR-Cas-based knockouts and RNA-interference-based knockdowns. We also tested small-molecule drug pairs directed against our pairwise hits and showed that they exerted synergistic antiproliferative effects against ovarian cancer cells. We envision that the CombiGEM-CRISPR platform will be applicable to a broad range of biological settings and will accelerate the systematic identification of genetic combinations and their translation into novel drug combinations that modulate complex human disease phenotypes.

  14. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity

    PubMed Central

    Leray, Matthieu; Knowlton, Nancy

    2015-01-01

    Documenting the diversity of marine life is challenging because many species are cryptic, small, and rare, and belong to poorly known groups. New sequencing technologies, especially when combined with standardized sampling, promise to make comprehensive biodiversity assessments and monitoring feasible on a large scale. We used this approach to characterize patterns of diversity on oyster reefs across a range of geographic scales comprising a temperate location [Virginia (VA)] and a subtropical location [Florida (FL)]. Eukaryotic organisms that colonized multilayered settlement surfaces (autonomous reef monitoring structures) over a 6-mo period were identified by cytochrome c oxidase subunit I barcoding (>2-mm mobile organisms) and metabarcoding (sessile and smaller mobile organisms). In a total area of ∼15.64 m2 and volume of ∼0.09 m3, 2,179 operational taxonomic units (OTUs) were recorded from 983,056 sequences. However, only 10.9% could be matched to reference barcodes in public databases, with only 8.2% matching barcodes with both genus and species names. Taxonomic coverage was broad, particularly for animals (22 phyla recorded), but 35.6% of OTUs detected via metabarcoding could not be confidently assigned to a taxonomic group. The smallest size fraction (500 to 106 μm) was the most diverse (more than two-thirds of OTUs). There was little taxonomic overlap between VA and FL, and samples separated by ∼2 m were significantly more similar than samples separated by ∼100 m. Ground-truthing with independent assessments of taxonomic composition indicated that both presence–absence information and relative abundance information are captured by metabarcoding data, suggesting considerable potential for ecological studies and environmental monitoring. PMID:25646458

  15. DNA Barcoding Identifies Illegal Parrot Trade.

    PubMed

    Gonçalves, Priscila F M; Oliveira-Marques, Adriana R; Matsumoto, Tania E; Miyaki, Cristina Y

    2015-01-01

    Illegal trade threatens the survival of many wild species, and molecular forensics can shed light on various questions raised during the investigation of cases of illegal trade. Among these questions is the identity of the species involved. Here we report a case of a man who was caught in a Brazilian airport trying to travel with 58 avian eggs. He claimed they were quail eggs, but authorities suspected they were from parrots. The embryos never hatched and it was not possible to identify them based on morphology. As 29% of parrot species are endangered, the identity of the species involved was important to establish a stronger criminal case. Thus, we identified the embryos' species based on the analyses of mitochondrial DNA sequences (cytochrome c oxidase subunit I gene [COI] and 16S ribosomal DNA). Embryonic COI sequences were compared with those deposited in BOLD (The Barcode of Life Data System) while their 16S sequences were compared with GenBank sequences. Clustering analysis based on neighbor-joining was also performed using parrot COI and 16S sequences deposited in BOLD and GenBank. The results, based on both genes, indicated that 57 embryos were parrots (Alipiopsitta xanthops, Ara ararauna, and the [Amazona aestiva/A. ochrocephala] complex), and 1 was an owl. This kind of data can help criminal investigations and to design species-specific anti-poaching strategies, and demonstrate how DNA sequence analysis in the identification of bird species is a powerful conservation tool.

  16. DNA Barcoding Identifies Illegal Parrot Trade.

    PubMed

    Gonçalves, Priscila F M; Oliveira-Marques, Adriana R; Matsumoto, Tania E; Miyaki, Cristina Y

    2015-01-01

    Illegal trade threatens the survival of many wild species, and molecular forensics can shed light on various questions raised during the investigation of cases of illegal trade. Among these questions is the identity of the species involved. Here we report a case of a man who was caught in a Brazilian airport trying to travel with 58 avian eggs. He claimed they were quail eggs, but authorities suspected they were from parrots. The embryos never hatched and it was not possible to identify them based on morphology. As 29% of parrot species are endangered, the identity of the species involved was important to establish a stronger criminal case. Thus, we identified the embryos' species based on the analyses of mitochondrial DNA sequences (cytochrome c oxidase subunit I gene [COI] and 16S ribosomal DNA). Embryonic COI sequences were compared with those deposited in BOLD (The Barcode of Life Data System) while their 16S sequences were compared with GenBank sequences. Clustering analysis based on neighbor-joining was also performed using parrot COI and 16S sequences deposited in BOLD and GenBank. The results, based on both genes, indicated that 57 embryos were parrots (Alipiopsitta xanthops, Ara ararauna, and the [Amazona aestiva/A. ochrocephala] complex), and 1 was an owl. This kind of data can help criminal investigations and to design species-specific anti-poaching strategies, and demonstrate how DNA sequence analysis in the identification of bird species is a powerful conservation tool. PMID:26245790

  17. DNA Barcoding and Pharmacovigilance of Herbal Medicines.

    PubMed

    de Boer, Hugo J; Ichim, Mihael C; Newmaster, Steven G

    2015-07-01

    Pharmacovigilance of herbal medicines relies on the product label information regarding the ingredients and the adherence to good manufacturing practices along the commercialisation chain. Several studies have shown that substitution of plant species occurs in herbal medicines, and this in turn poses a challenge to herbal pharmacovigilance as adverse reactions might be due to adulterated or added ingredients. Authentication of constituents in herbal medicines using analytical chemistry methods can help detect contaminants and toxins, but are often limited or incapable of detecting the source of the contamination. Recent developments in molecular plant identification using DNA sequence data enable accurate identification of plant species from herbal medicines using defined DNA markers. Identification of multiple constituent species from compound herbal medicines using amplicon metabarcoding enables verification of labelled ingredients and detection of substituted, adulterated and added species. DNA barcoding is proving to be a powerful method to assess species composition in herbal medicines and has the potential to be used as a standard method in herbal pharmacovigilance research of adverse reactions to specific products. PMID:26076652

  18. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives

    PubMed Central

    Gopurenko, David

    2016-01-01

    Helicoverpa and Heliothis species include some of the world’s most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests. PMID:27509042

  19. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives.

    PubMed

    Mitchell, Andrew; Gopurenko, David

    2016-01-01

    Helicoverpa and Heliothis species include some of the world's most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests. PMID:27509042

  20. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  1. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  2. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  3. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  4. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  5. A laboratory information management system for DNA barcoding workflows.

    PubMed

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out. PMID:22344310

  6. A laboratory information management system for DNA barcoding workflows.

    PubMed

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  7. DNA barcoding of fungi causing infections in humans and animals.

    PubMed

    Irinyi, Laszlo; Lackner, Michaela; de Hoog, G Sybren; Meyer, Wieland

    2016-02-01

    Correct species identification is becoming increasingly important in clinical diagnostics. Till now, many mycological laboratories rely on conventional phenotypic identification. But this is slow and strongly operator-dependent. Therefore, to improve the quality of pathogen identification, rapid, reliable, and objective identification methods are essential. One of the most encouraging approaches is molecular barcoding using the internal transcribed spacer (ITS) of the rDNA, which is rapid, easily achievable, accurate, and applicable directly from clinical specimens. It relies on the comparison of a single ITS sequence with a curated reference database. The International Society for Human and Animal Mycology (ISHAM) working group for DNA barcoding has recently established such a database, focusing on the majority of human and animal pathogenic fungi (ISHAM-ITS, freely accessible at http://www.isham.org/ or directly from http://its.mycologylab.org). For some fungi the use of secondary barcodes may be necessary.

  8. New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes).

    PubMed

    Van Steenkiste, Niels; Locke, Sean A; Castelin, Magalie; Marcogliese, David J; Abbott, Cathryn L

    2015-07-01

    Digeneans and cestodes are species-rich taxa and can seriously impact human health, fisheries, aqua- and agriculture, and wildlife conservation and management. DNA barcoding using the COI Folmer region could be applied for species detection and identification, but both 'universal' and taxon-specific COI primers fail to amplify in many flatworm taxa. We found that high levels of nucleotide variation at priming sites made it unrealistic to design primers targeting all flatworms. We developed new degenerate primers that enabled acquisition of the COI barcode region from 100% of specimens tested (n = 46), representing 23 families of digeneans and 6 orders of cestodes. This high success rate represents an improvement over existing methods. Primers and methods provided here are critical pieces towards redressing the current paucity of COI barcodes for these taxa in public databases.

  9. DNA barcoding reveals a cryptic nemertean invasion in Atlantic and Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Fernández-Álvarez, Fernando Ángel; Machordom, Annie

    2013-09-01

    For several groups, like nemerteans, morphology-based identification is a hard discipline, but DNA barcoding may help non-experts in the identification process. In this study, DNA barcoding is used to reveal the cryptic invasion of Pacific Cephalothrix cf. simula into Atlantic and Mediterranean coasts. Although DNA barcoding is a promising method for the identification of Nemertea, only 6 % of the known number of nemertean species is currently associated with a correct DNA barcode. Therefore, additional morphological and molecular studies are necessary to advance the utility of DNA barcoding in the characterisation of possible nemertean alien invasions.

  10. A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Yamamoto, Manabu; Kitazawa, Toshiyuki; Tripathi, Saroj R.; Takeya, Kei; Kawase, Kodo

    2015-03-01

    We present a concealed terahertz barcode/chipless tag to achieve remote identification through an obstructing material using terahertz radiation. We show scanned terahertz reflection spectral images of barcodes concealed by a thick obstacle. A concealed and double- side printed terahertz barcode structure is proposed, and we demonstrate that our design has better performance in definition than a single-side printed barcode using terahertz time-domain spectroscopy. This technique combines the benefits of a chipless tag to read encoded information covered by an optically opaque material with low cost and a simple fabrication process. Simulations are also described, along with an explanation of the principle of the terahertz barcode identification system.

  11. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  12. Interfacing graphene and related 2D materials with the 3D world.

    PubMed

    Tománek, David

    2015-04-10

    An important prerequisite to translating the exceptional intrinsic performance of 2D materials such as graphene and transition metal dichalcogenides into useful devices precludes their successful integration within the current 3D technology. This review provides theoretical insight into nontrivial issues arising from interfacing 2D materials with 3D systems including epitaxy and ways to accommodate lattice mismatch, the key role of contact resistance and the effect of defects in electrical and thermal transport.

  13. DNA barcoding of commercially important catfishes in the Philippines.

    PubMed

    Quilang, Jonas P; Yu, Shiny Cathlynne S

    2015-06-01

    Many species of catfish are important resources for human consumption, for sport fishing and for use in aquarium industry. In the Philippines, some species are cultivated and some are caught in the wild for food and a few introduced species have become invasive. In this study, DNA barcoding using the mitochondrial cytochrome c oxidase I (COI) gene was done on commercially and economically important Philippine catfishes. A total of 75 specimens belonging to 11 species and 5 families were DNA barcoded. The genetic distances were computed and Neighbor-Joining (NJ) trees were constructed based on the Kimura 2-Parameter (K2P) method. The average K2P distances within species, genus, family and order were 0.2, 8.2, 12.7 and 21.9%, respectively. COI sequences clustered according to their species designation for 7 of the 11 catfishes. DNA barcoding was not able to discriminate between Arius dispar and A. manillensis and between Pterygoplichthys disjunctivus and P. pardalis. The morphological characters that are used to distinguish between these species do not complement molecular identification through DNA barcoding. DNA barcoding also showed that Clarias batrachus from the Philippines is different from the species found in India and Thailand, which supports earlier suggestions based on morphology that those found in India should be designated as C. magur and those in mainland Southeast Asia as C. aff. batrachus "Indochina". This study has shown that DNA barcoding can be used for species delineation and for tagging some species for further taxonomic investigation, which has implications on proper management and conservation strategies.

  14. The unholy trinity: taxonomy, species delimitation and DNA barcoding

    PubMed Central

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-01-01

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this ‘DNA barcoding’ initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the ‘DNA barcoding’ initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the ‘DNA barcoding’ initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings—Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of ‘DNA barcoding’. PMID:16214748

  15. Counting animal species with DNA barcodes: Canadian insects

    PubMed Central

    Ratnasingham, Sujeevan; Zakharov, Evgeny V.; Telfer, Angela C.; Levesque-Beaudin, Valerie; Milton, Megan A.; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R.

    2016-01-01

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy. This article is part of the

  16. Counting animal species with DNA barcodes: Canadian insects.

    PubMed

    Hebert, Paul D N; Ratnasingham, Sujeevan; Zakharov, Evgeny V; Telfer, Angela C; Levesque-Beaudin, Valerie; Milton, Megan A; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R

    2016-09-01

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy.This article is part of the

  17. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  18. Simultaneous detection of randomly arranged multiple barcodes using time division multiplexing technique

    NASA Astrophysics Data System (ADS)

    Haider, Saad Md. Jaglul; Islam, Md. Kafiul

    2010-02-01

    A method of detecting multiple barcodes simultaneously using time division multiplexing technique has been proposed in this paper to minimize the effective time needed for handling multiple tags of barcodes and to lessen the overall workload. Available barcode detection systems can handle multiple types of barcode but a single barcode at a time. This is not so efficient and can create large queue and chaos in places like mega shopping malls or large warehouses where we need to scan huge number of barcodes daily. Our proposed system is expected to improve the real time identification of goods or products on production lines and in automated warehouses or in mega shopping malls in a much more convenient and efficient way. For identifying of multiple barcodes simultaneously, a particular arrangement and orientation of LASER scanner and reflector have been used with a special curve shaped basement where the barcodes are placed. An effective and novel algorithm is developed to extract information from multiple barcodes which introduces starting pattern and ending pattern in barcodes with bit stuffing technique for the convenience of multiple detections. CRC technique is also used for trustworthiness of detection. The overall system enhances the existing single barcode detection system by a great amount although it is easy to implement and use.

  19. Reliable DNA Barcoding Performance Proved for Species and Island Populations of Comoran Squamate Reptiles

    PubMed Central

    Hawlitschek, Oliver; Nagy, Zoltán T.; Berger, Johannes; Glaw, Frank

    2013-01-01

    In the past decade, DNA barcoding became increasingly common as a method for species identification in biodiversity inventories and related studies. However, mainly due to technical obstacles, squamate reptiles have been the target of few barcoding studies. In this article, we present the results of a DNA barcoding study of squamates of the Comoros archipelago, a poorly studied group of oceanic islands close to and mostly colonized from Madagascar. The barcoding dataset presented here includes 27 of the 29 currently recognized squamate species of the Comoros, including 17 of the 18 endemic species. Some species considered endemic to the Comoros according to current taxonomy were found to cluster with non-Comoran lineages, probably due to poorly resolved taxonomy. All other species for which more than one barcode was obtained corresponded to distinct clusters useful for species identification by barcoding. In most species, even island populations could be distinguished using barcoding. Two cryptic species were identified using the DNA barcoding approach. The obtained barcoding topology, a Bayesian tree based on COI sequences of 5 genera, was compared with available multigene topologies, and in 3 cases, major incongruences between the two topologies became evident. Three of the multigene studies were initiated after initial screening of a preliminary version of the barcoding dataset presented here. We conclude that in the case of the squamates of the Comoros Islands, DNA barcoding has proven a very useful and efficient way of detecting isolated populations and promising starting points for subsequent research. PMID:24069192

  20. Denture bar-coding: An innovative technique in forensic dentistry

    PubMed Central

    Dineshshankar, Janardhanam; Venkateshwaran, Rajendran; Vidhya, J.; Anuradha, R.; Mary, Gold Pealin; Pradeep, R.; Senthileagappan, A. R.

    2015-01-01

    Denture markers play an important role in forensic odontology and also in identifying a person. A number of methods are there for identifying dentures from a less expensive technique to a more expensive technique. Out of different denture markers, the bar-coding system is a way of collecting data from the mobile. Even a huge amount of data can be stored in that. It can be easily incorporated during acrylization of the denture and thus could be helpful in identification. This article reviews the strengths of bar-coding and how easily it can be used in the routine procedure. PMID:26538876

  1. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  2. DNA barcoding, phylogenetic relationships and speciation of snappers (genus Lutjanus).

    PubMed

    Wang, ZhongDuo; Guo, YuSong; Tan, Wei; Li, Lu; Tang, EnPu; Liu, ChuWu; Liu, Yun

    2010-08-01

    The phylogenetic relationships of 13 snapper species from the South China Sea have been established using the combined DNA sequences of three full-length mitochondrial genes (COI, COII and CYTB) and two partial nuclear genes (RAG1, RAG2). The 13 species (genus Lutjanus) were selected after DNA barcoding 72 individuals, representing 20 species. Our study suggests that although DNA barcoding aims to develop species identification systems, it may also be useful in the construction of phylogenies by aiding the selection of taxa. Combined mitochondrial and nuclear gene data has an advantage over an individual dataset because of its higher resolving power.

  3. DNA Barcoding of genus Hexacentrus in China reveals cryptic diversity within Hexacentrus japonicus (Orthoptera, Tettigoniidae)

    PubMed Central

    Guo, Hui-Fang; Guan, Bei; Shi, Fu-Ming; Zhou, Zhi-Jun

    2016-01-01

    Abstract DNA barcoding has been proved successful to provide resolution beyond the boundaries of morphological information. Hence, a study was undertaken to establish DNA barcodes for all morphologically determined Hexacentrus species in China collections. In total, 83 specimens of five Hexacentrus species were barcoded using standard mitochondrial cytochrome c oxidase subunit I (COI) gene. Except for Hexacentrus japonicus, barcode gaps were present in the remaining Hexacentrus species. Taxon ID tree generated seven BOLD’s barcode index numbers (BINs), four of which were in agreement with the morphological species. For Hexacentrus japonicus, the maximum intraspecific divergence (4.43%) produced a minimal overlap (0.64%), and 19 specimens were divided into three different BINs. There may be cryptic species within the current Hexacentrus japonicus. This study adds to a growing body of DNA barcodes that have become available for katydids, and shows that a DNA barcoding approach enables the identification of known Hexacentrus species with a very high resolution. PMID:27408576

  4. Detection and characterisation of the biopollutant Xenostrobus securis (Lamarck 1819) Asturian population from DNA Barcoding and eBarcoding.

    PubMed

    Devloo-Delva, Floriaan; Miralles, Laura; Ardura, Alba; Borrell, Yaisel J; Pejovic, Ivana; Tsartsianidou, Valentina; Garcia-Vazquez, Eva

    2016-04-15

    DNA efficiently contributes to detect and understand marine invasions. In 2014 the potential biological pollutant pygmy mussel (Xenostrobus securis) was observed for the first time in the Avilés estuary (Asturias, Bay of Biscay). The goal of this study was to assess the stage of invasion, based on demographic and genetic (DNA Barcoding) characteristics, and to develop a molecular tool for surveying the species in environmental DNA. A total of 130 individuals were analysed for the DNA Barcode cytochrome oxidase I gene in order to determine genetic diversity, population structure, expansion trends, and to inferring introduction hits. Reproduction was evidenced by bimodal size distributions of 1597 mussels. High population genetic variation and genetically distinct clades might suggest multiple introductions from several source populations. Finally, species-specific primers were developed within the DNA barcode for PCR amplification from water samples in order to enabling rapid detection of the species in initial expansion stages. PMID:26971231

  5. DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads

    PubMed Central

    Sass, Chodon; Little, Damon P.; Stevenson, Dennis Wm.; Specht, Chelsea D.

    2007-01-01

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants. PMID:17987130

  6. DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycads.

    PubMed

    Sass, Chodon; Little, Damon P; Stevenson, Dennis Wm; Specht, Chelsea D

    2007-01-01

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation-especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants. PMID:17987130

  7. DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycads.

    PubMed

    Sass, Chodon; Little, Damon P; Stevenson, Dennis Wm; Specht, Chelsea D

    2007-11-07

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation-especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants.

  8. Interactive 2D to 3D stereoscopic image synthesis

    NASA Astrophysics Data System (ADS)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  9. Suspended 2-D photonic crystal aluminum nitride membrane reflector.

    PubMed

    Ho, Chong Pei; Pitchappa, Prakash; Soon, Bo Woon; Lee, Chengkuo

    2015-04-20

    We experimentally demonstrated a free-standing two-dimensional (2-D) photonic crystal (PhC) aluminum nitride (AlN) membrane to function as a free space (or out-of-plane) reflector working in the mid infrared region. By etching circular holes of radius 620nm in a 330nm thick AlN slab, greater than 90% reflection was measured from 3.08μm to 3.78μm, with the peak reflection of 96% at 3.16μm. Due to the relatively low refractive index of AlN, we also investigated the importance of employing methods such as sacrificial layer release to enhance the performance of the PhC. In addition, characterization of the AlN based PhC was also done up to 450°C to examine the impact of thermo-optic effect on the performance. Despite the high temperature operation, the redshift in the peak reflection wavelengths of the device was estimated to be only 14.1nm. This equates to a relatively low thermo-optic coefficient 2.22 × 10(-5) K(-1) for AlN. Such insensitivity to thermo-optic effect makes AlN based 2-D PhC a promising technology to be used as photonic components for high temperature applications such as Fabry-Perot interferometer used for gas sensing in down-hole oil drilling and ruggedized electronics. PMID:25969099

  10. Suspended 2-D photonic crystal aluminum nitride membrane reflector.

    PubMed

    Ho, Chong Pei; Pitchappa, Prakash; Soon, Bo Woon; Lee, Chengkuo

    2015-04-20

    We experimentally demonstrated a free-standing two-dimensional (2-D) photonic crystal (PhC) aluminum nitride (AlN) membrane to function as a free space (or out-of-plane) reflector working in the mid infrared region. By etching circular holes of radius 620nm in a 330nm thick AlN slab, greater than 90% reflection was measured from 3.08μm to 3.78μm, with the peak reflection of 96% at 3.16μm. Due to the relatively low refractive index of AlN, we also investigated the importance of employing methods such as sacrificial layer release to enhance the performance of the PhC. In addition, characterization of the AlN based PhC was also done up to 450°C to examine the impact of thermo-optic effect on the performance. Despite the high temperature operation, the redshift in the peak reflection wavelengths of the device was estimated to be only 14.1nm. This equates to a relatively low thermo-optic coefficient 2.22 × 10(-5) K(-1) for AlN. Such insensitivity to thermo-optic effect makes AlN based 2-D PhC a promising technology to be used as photonic components for high temperature applications such as Fabry-Perot interferometer used for gas sensing in down-hole oil drilling and ruggedized electronics.

  11. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  12. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  13. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  14. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  15. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  16. Cancer cell profiling by barcoding allows multiplexed protein analysis in fine needle aspirates

    PubMed Central

    Ullal, Adeeti V.; Peterson, Vanessa; Agasti, Sarit S.; Tuang, Suan; Juric, Dejan; Castro, Cesar M.; Weissleder, Ralph

    2014-01-01

    Immunohistochemistry-based clinical diagnoses require invasive core biopsies and use a limited number of protein stains to identify and classify cancers. Here, we introduce a technology that allows analysis of hundreds of proteins from minimally invasive fine needle aspirates (FNA), which contain much smaller numbers of cells than core biopsies. The method capitalizes on DNA-barcoded antibody sensing where barcodes can be photo-cleaved and digitally detected without any amplification steps. Following extensive benchmarking in cell lines, this method showed high reproducibility and achieved single cell sensitivity. We used this approach to profile ~90 proteins in cells from FNAs and subsequently map patient heterogeneity at the protein level. Additionally, we demonstrate how the method could be used as a clinical tool to identify pathway responses to molecularly targeted drugs and to predict drug response in patient samples. This technique combines specificity with ease of use to offer a new tool for understanding human cancers and designing future clinical trials. PMID:24431113

  17. Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples

    PubMed Central

    Smith, Andrew M.; Heisler, Lawrence E.; St.Onge, Robert P.; Farias-Hesson, Eveline; Wallace, Iain M.; Bodeau, John; Harris, Adam N.; Perry, Kathleen M.; Giaever, Guri; Pourmand, Nader; Nislow, Corey

    2010-01-01

    Next-generation sequencing has proven an extremely effective technology for molecular counting applications where the number of sequence reads provides a digital readout for RNA-seq, ChIP-seq, Tn-seq and other applications. The extremely large number of sequence reads that can be obtained per run permits the analysis of increasingly complex samples. For lower complexity samples, however, a point of diminishing returns is reached when the number of counts per sequence results in oversampling with no increase in data quality. A solution to making next-generation sequencing as efficient and affordable as possible involves assaying multiple samples in a single run. Here, we report the successful 96-plexing of complex pools of DNA barcoded yeast mutants and show that such ‘Bar-seq’ assessment of these samples is comparable with data provided by barcode microarrays, the current benchmark for this application. The cost reduction and increased throughput permitted by highly multiplexed sequencing will greatly expand the scope of chemogenomics assays and, equally importantly, the approach is suitable for other sequence counting applications that could benefit from massive parallelization. PMID:20460461

  18. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  19. 2D optoacoustic array for high resolution imaging

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R. S.; Kim, K.; Huang, S.-W.; Hou, Y.; O'Donnell, M.

    2006-02-01

    An optoacoustic detector denotes the detection of acoustic signals by optical devices. Recent advances in fabrication techniques and the availability of high power tunable laser sources have greatly accelerated the development of efficient optoacoustic detectors. The unique advantages of optoacoustic technology are of special interest in applications that require high resolution imaging. For these applications optoacoustic technology enables high frequency transducer arrays with element size on the order of 10 μm. Laser generated ultrasound (photoacoustic effect) has been studied since the early observations of A.G. Bell (1880) of audible sound generated by light absorption . Modern studies have demonstrated the use of the photoacoustic effect to form a versatile imaging modality for medical and biological applications. A short laser pulse illuminates a tissue creating rapid thermal expansion and acoustic emission. Detection of the resulting acoustic field by an array enables the imaging of the tissue optical absorption using ultrasonic imaging methods. We present an integrated imaging system that employs photoacoustic sound generation and 2D optoacoustic reception. The optoacoustic receiver consists of a thin polymer Fabry-Perot etalon. The etalon is an optical resonator of a high quality factor (Q = 750). The relatively low elasticity modulus of the polymer and the high Q-factor of the resonator combine to yield high ultrasound sensitivity. The etalon thickness (10 μm) was optimized for wide bandwidth (typically above 50 MHz). An optical scanning and focusing system is used to create a large aperture and high density 2D ultrasonic receiver array. High resolution 3D images of phantom targets and biological tissue samples were obtained.

  20. Looking back on a decade of barcoding crustaceans.

    PubMed

    Raupach, Michael J; Radulovici, Adriana E

    2015-01-01

    Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication. PMID:26798245

  1. Barcoding of live human PBMC for multiplexed mass cytometry*

    PubMed Central

    Mei, Henrik E.; Leipold, Michael D.; Schulz, Axel Ronald; Chester, Cariad; Maecker, Holden T.

    2014-01-01

    Mass cytometry is developing as a means of multiparametric single cell analysis. Here, we present an approach to barcoding separate live human PBMC samples for combined preparation and acquisition on a CyTOF® instrument. Using six different anti-CD45 antibody (Ab) conjugates labeled with Pd104, Pd106, Pd108, Pd110, In113, and In115, respectively, we barcoded up to 20 samples with unique combinations of exactly three different CD45 Ab tags. Cell events carrying more than or less than three different tags were excluded from analyses during Boolean data deconvolution, allowing for precise sample assignment and the electronic removal of cell aggregates. Data from barcoded samples matched data from corresponding individually stained and acquired samples, at cell event recoveries similar to individual sample analyses. The approach greatly reduced technical noise and minimizes unwanted cell doublet events in mass cytometry data, and reduces wet work and antibody consumption. It also eliminates sample-to-sample carryover and the requirement of instrument cleaning between samples, thereby effectively reducing overall instrument runtime. Hence, CD45-barcoding facilitates accuracy of mass cytometric immunophenotyping studies, thus supporting biomarker discovery efforts, and should be applicable to fluorescence flow cytometry as well. PMID:25609839

  2. Telling plant species apart with DNA: from barcodes to genomes.

    PubMed

    Hollingsworth, Peter M; Li, De-Zhu; van der Bank, Michelle; Twyford, Alex D

    2016-09-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity-yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481790

  3. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification.

    PubMed

    Berry, David; Ben Mahfoudh, Karim; Wagner, Michael; Loy, Alexander

    2011-11-01

    "Barcode-tagged" PCR primers used for multiplex amplicon sequencing generate a thus-far-overlooked amplification bias that produces variable terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing data from the same environmental DNA template. We propose a simple two-step PCR approach that increases reproducibility and consistently recovers higher genetic diversity in pyrosequencing libraries. PMID:21890669

  4. Identification of Rays through DNA Barcoding: An Application for Ecologists

    PubMed Central

    Cerutti-Pereyra, Florencia; Meekan, Mark G.; Wei, Nu-Wei V.; O'Shea, Owen; Bradshaw, Corey J. A.; Austin, Chris M.

    2012-01-01

    DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data. PMID:22701556

  5. Identification of rays through DNA barcoding: an application for ecologists.

    PubMed

    Cerutti-Pereyra, Florencia; Meekan, Mark G; Wei, Nu-Wei V; O'Shea, Owen; Bradshaw, Corey J A; Austin, Chris M

    2012-01-01

    DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the 'uarnak' complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data.

  6. Looking back on a decade of barcoding crustaceans

    PubMed Central

    Raupach, Michael J.; Radulovici, Adriana E.

    2015-01-01

    Abstract Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication. PMID:26798245

  7. Telling plant species apart with DNA: from barcodes to genomes

    PubMed Central

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  8. [Applicability of DNA barcode for identification of fish species].

    PubMed

    Arami, Shinichiro; Sato, Megumi; Futo, Satoshi

    2011-01-01

    DNA barcoding is a species identification technique, which uses a very short DNA sequence from a region of approximately 650 base-pairs in the 5'-end of the mitochondrial cytochrome c oxidase subunit I gene as a marker to identify species of mammals and fishes. The applicability of DNA barcoding for identification of fish species consumed in Japan was studied. Among thirty-one fresh or processed fishes were obtained from the market, two samples could not be identified due to lack of data in the Barcode of Life Data (BOLD) database. However, BLAST-search of 16S rRNA genes in the National Center for Biotechnology Information (NCBI) database and the PCR-RFLP method published by the Food and Agricultural Materials Inspection Center (FAMIC) were found to be applicable to identify these 2 fishes. The results show that the DNA barcoding technique is potentially useful as a tool for confirming the proper labeling of fish species in the Japanese market. PMID:21720128

  9. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  10. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  11. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  12. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  13. Position control using 2D-to-2D feature correspondences in vision guided cell micromanipulation.

    PubMed

    Zhang, Yanliang; Han, Mingli; Shee, Cheng Yap; Ang, Wei Tech

    2007-01-01

    Conventional camera calibration that utilizes the extrinsic and intrinsic parameters of the camera and the objects has certain limitations for micro-level cell operations due to the presence of hardware deviations and external disturbances during the experimental process, thereby invalidating the extrinsic parameters. This invalidation is often neglected in macro-world visual servoing and affects the visual image processing quality, causing deviation from the desired position in micro-level cell operations. To increase the success rate of vision guided biological micromanipulations, a novel algorithm monitoring the changing image pattern of the manipulators including the injection micropipette and cell holder is designed and implemented based on 2 dimensional (2D)-to 2D feature correspondences and can adjust the manipulator and perform position control simultaneously. When any deviation is found, the manipulator is retracted to the initial focusing plane before continuing the operation.

  14. Few-layer III-VI and IV-VI 2D semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Sucharitakul, Sukrit; Liu, Mei; Kumar, Rajesh; Sankar, Raman; Chou, Fang C.; Chen, Yit-Tsong; Gao, Xuan

    Since the discovery of atomically thin graphene, a large variety of exfoliable 2D materials have been thoroughly explored for their exotic transport behavior and promises in technological breakthroughs. While most attention on 2D materials beyond graphene is focused on transition metal-dichalcogenides, relatively less attention is paid to layered III-VI and IV-VI semiconductors such as InSe, SnSe etc which bear stronger potential as 2D materials with high electron mobility or thermoelectric figure of merit. We will discuss our recent work on few-layer InSe 2D field effect transistors which exhibit carrier mobility approaching 1000 cm2/Vs and ON-OFF ratio exceeding 107 at room temperature. In addition, the fabrication and device performance of transistors made of mechanically exfoliated multilayer IV-VI semiconductor SnSe and SnSe2 will be discussed.

  15. Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding

    PubMed Central

    Janzen, Daniel H; Hajibabaei, Mehrdad; Burns, John M; Hallwachs, Winnie; Remigio, Ed; Hebert, Paul D.N

    2005-01-01

    By facilitating bioliteracy, DNA barcoding has the potential to improve the way the world relates to wild biodiversity. Here we describe the early stages of the use of cox1 barcoding to supplement and strengthen the taxonomic platform underpinning the inventory of thousands of sympatric species of caterpillars in tropical dry forest, cloud forest and rain forest in northwestern Costa Rica. The results show that barcoding a biologically complex biota unambiguously distinguishes among 97% of more than 1000 species of reared Lepidoptera. Those few species whose barcodes overlap are closely related and not confused with other species. Barcoding also has revealed a substantial number of cryptic species among morphologically defined species, associated sexes, and reinforced identification of species that are difficult to distinguish morphologically. For barcoding to achieve its full potential, (i) ability to rapidly and cheaply barcode older museum specimens is urgent, (ii) museums need to address the opportunity and responsibility for housing large numbers of barcode voucher specimens, (iii) substantial resources need be mustered to support the taxonomic side of the partnership with barcoding, and (iv) hand-held field-friendly barcorder must emerge as a mutualism with the taxasphere and the barcoding initiative, in a manner such that its use generates a resource base for the taxonomic process as well as a tool for the user. PMID:16214742

  16. Species-Specific Identification from Incomplete Sampling: Applying DNA Barcodes to Monitoring Invasive Solanum Plants

    PubMed Central

    Zhang, Wei; Fan, Xiaohong; Zhu, Shuifang; Zhao, Hong; Fu, Lianzhong

    2013-01-01

    Comprehensive sampling is crucial to DNA barcoding, but it is rarely performed because materials are usually unavailable. In practice, only a few rather than all species of a genus are required to be identified. Thus identification of a given species using a limited sample is of great importance in current application of DNA barcodes. Here, we selected 70 individuals representing 48 species from each major lineage of Solanum, one of the most species-rich genera of seed plants, to explore whether DNA barcodes can provide reliable specific-species discrimination in the context of incomplete sampling. Chloroplast genes ndhF and trnS-trnG and the nuclear gene waxy, the commonly used markers in Solanum phylogeny, were selected as the supplementary barcodes. The tree-building and modified barcode gap methods were employed to assess species resolution. The results showed that four Solanum species of quarantine concern could be successfully identified through the two-step barcoding sampling strategy. In addition, discrepancies between nuclear and cpDNA barcodes in some samples demonstrated the ability to discriminate hybrid species, and highlights the necessity of using barcode regions with different modes of inheritance. We conclude that efficient phylogenetic markers are good candidates as the supplementary barcodes in a given taxonomic group. Critically, we hypothesized that a specific-species could be identified from a phylogenetic framework using incomplete sampling–through this, DNA barcoding will greatly benefit the current fields of its application. PMID:23409092

  17. DNA barcoding in plants: evolution and applications of in silico approaches and resources.

    PubMed

    Bhargava, Mili; Sharma, Ashok

    2013-06-01

    Bioinformatics has played an important role in the analysis of DNA barcoding data. The process of DNA barcoding initially involves the available data collection from the existing databases. Many databases have been developed in recent years, e.g. MMDBD [Medicinal Materials DNA Barcode Database], BioBarcode, etc. In case of non-availability of sequences, sequencing has to be done in vitro for which a recently developed software ecoPrimers can be helpful. This is followed by multiple sequence alignment. Further, basic sequence statistics computation and phylogenetic analysis can be performed by MEGA and PHYLIP/PAUP tools respectively. Some of the recent tools for in silico and statistical analysis specifically designed for barcoding viz. CAOS (Character Based DNA Barcoding), BRONX (DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability), Spider (Analysis of species identity and evolution, particularly DNA barcoding), jMOTU and Taxonerator (Turning DNA Barcode Sequences into Annotated OTUs), OTUbase (Analysis of OTU data and taxonomic data), SAP (Statistical Assignment Package), etc. have been discussed and analysed in this review. The paper presents a comprehensive overview of the various in silico methods, tools, softwares and databases used for DNA barcoding of plants. PMID:23500333

  18. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  19. 'Brukin2D': a 2D visualization and comparison tool for LC-MS data

    PubMed Central

    Tsagkrasoulis, Dimosthenis; Zerefos, Panagiotis; Loudos, George; Vlahou, Antonia; Baumann, Marc; Kossida, Sophia

    2009-01-01

    Background Liquid Chromatography-Mass Spectrometry (LC-MS) is a commonly used technique to resolve complex protein mixtures. Visualization of large data sets produced from LC-MS, namely the chromatogram and the mass spectra that correspond to its compounds is the focus of this work. Results The in-house developed 'Brukin2D' software, built in Matlab 7.4, which is presented here, uses the compound data that are exported from the Bruker 'DataAnalysis' program, and depicts the mean mass spectra of all the chromatogram compounds from one LC-MS run, in one 2D contour/density plot. Two contour plots from different chromatograph runs can then be viewed in the same window and automatically compared, in order to find their similarities and differences. The results of the comparison can be examined through detailed mass quantification tables, while chromatogram compound statistics are also calculated during the procedure. Conclusion 'Brukin2D' provides a user-friendly platform for quick, easy and integrated view of complex LC-MS data. The software is available at . PMID:19534737

  20. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone.

    PubMed Central

    Wu, D; Otton, S V; Sproule, B A; Busto, U; Inaba, T; Kalow, W; Sellers, E M

    1993-01-01

    1. In microsomes prepared from three human livers, methadone competitively inhibited the O-demethylation of dextromethorphan, a marker substrate for CYP2D6. The apparent Ki value of methadone ranged from 2.5 to 5 microM. 2. Two hundred and fifty-two (252) white Caucasians, including 210 unrelated healthy volunteers and 42 opiate abusers undergoing treatment with methadone were phenotyped using dextromethorphan as the marker drug. Although the frequency of poor metabolizers was similar in both groups, the extensive metabolizers among the opiate abusers tended to have higher O-demethylation metabolic ratios and to excrete less of the dose as dextromethorphan metabolites than control extensive metabolizer subjects. These data suggest inhibition of CYP2D6 by methadone in vivo as well. 3. Because methadone is widely used in the treatment of opiate abuse, inhibition of CYP2D6 activity in these patients might contribute to exaggerated response or unexpected toxicity from drugs that are substrates of this enzyme. PMID:8448065

  1. DNA Barcode Detects High Genetic Structure within Neotropical Bird Species

    PubMed Central

    Tavares, Erika Sendra; Gonçalves, Priscila; Miyaki, Cristina Yumi; Baker, Allan J.

    2011-01-01

    Background Towards lower latitudes the number of recognized species is not only higher, but also phylogeographic subdivision within species is more pronounced. Moreover, new genetically isolated populations are often described in recent phylogenies of Neotropical birds suggesting that the number of species in the region is underestimated. Previous COI barcoding of Argentinean bird species showed more complex patterns of regional divergence in the Neotropical than in the North American avifauna. Methods and Findings Here we analyzed 1,431 samples from 561 different species to extend the Neotropical bird barcode survey to lower latitudes, and detected even higher geographic structure within species than reported previously. About 93% (520) of the species were identified correctly from their DNA barcodes. The remaining 41 species were not monophyletic in their COI sequences because they shared barcode sequences with closely related species (N = 21) or contained very divergent clusters suggestive of putative new species embedded within the gene tree (N = 20). Deep intraspecific divergences overlapping with among-species differences were detected in 48 species, often with samples from large geographic areas and several including multiple subspecies. This strong population genetic structure often coincided with breaks between different ecoregions or areas of endemism. Conclusions The taxonomic uncertainty associated with the high incidence of non-monophyletic species and discovery of putative species obscures studies of historical patterns of species diversification in the Neotropical region. We showed that COI barcodes are a valuable tool to indicate which taxa would benefit from more extensive taxonomic revisions with multilocus approaches. Moreover, our results support hypotheses that the megadiversity of birds in the region is associated with multiple geographic processes starting well before the Quaternary and extending to more recent geological periods

  2. DNA barcoding of Mycosphaerella species of quarantine importance to Europe.

    PubMed

    Quaedvlieg, W; Groenewald, J Z; de Jesús Yáñez-Morales, M; Crous, P W

    2012-12-01

    The EU 7th Framework Program provided funds for Quarantine Barcoding of Life (QBOL) to develop a quick, reliable and accurate DNA barcode-based diagnostic tool for selected species on the European and Mediterranean Plant Protection Organization (EPPO) A1/A2 quarantine lists. Seven nuclear genomic loci were evaluated to determine those best suited for identifying species of Mycosphaerella and/or its associated anamorphs. These genes included β-tubulin (Btub), internal transcribed spacer regions of the nrDNA operon (ITS), 28S nrDNA (LSU), Actin (Act), Calmodulin (Cal), Translation elongation factor 1-alpha (EF-1α) and RNA polymerase II second largest subunit (RPB2). Loci were tested on their Kimura-2-parameter-based inter- and intraspecific variation, PCR amplification success rate and ability to distinguish between quarantine species and closely related taxa. Results showed that none of these loci was solely suited as a reliable barcoding locus for the tested fungi. A combination of a primary and secondary barcoding locus was found to compensate for individual weaknesses and provide reliable identification. A combination of ITS with either EF-1α or Btub was reliable as barcoding loci for EPPO A1/A2-listed Mycosphaerella species. Furthermore, Lecanosticta acicola was shown to represent a species complex, revealing two novel species described here, namely L. brevispora sp. nov. on Pinus sp. from Mexico and L. guatemalensis sp. nov. on Pinus oocarpa from Guatemala. Epitypes were also designated for L. acicola and L. longispora to resolve the genetic application of these names. PMID:23606768

  3. Deciphering amphibian diversity through DNA barcoding: chances and challenges.

    PubMed

    Vences, Miguel; Thomas, Meike; Bonett, Ronald M; Vieites, David R

    2005-10-29

    Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.

  4. DNA Barcoding of Sigmodontine Rodents: Identifying Wildlife Reservoirs of Zoonoses

    PubMed Central

    Müller, Lívia; Gonçalves, Gislene L.; Cordeiro-Estrela, Pedro; Marinho, Jorge R.; Althoff, Sérgio L.; Testoni, André. F.; González, Enrique M.; Freitas, Thales R. O.

    2013-01-01

    Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments. PMID:24244670

  5. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea.

    PubMed

    Druzhinina, Irina S; Kopchinskiy, Alexei G; Komoń, Monika; Bissett, John; Szakacs, George; Kubicek, Christian P

    2005-10-01

    One of the biggest obstructions to studies on Trichoderma has been the incorrect and confused application of species names to isolates used in industry, biocontrol of plant pathogens and ecological surveys, thereby making the comparison of results questionable. Here we provide a convenient, on-line method for the quick molecular identification of Hypocrea/Trichoderma at the genus and species levels based on an oligonucleotide barcode: a diagnostic combination of several oligonucleotides (hallmarks) specifically allocated within the internal transcribed spacer 1 and 2 (ITS1 and 2) sequences of the rDNA repeat. The barcode was developed on the basis of 979 sequences of 88 vouchered species which displayed in total 135 ITS1 and 2 haplotypes. Oligonucleotide sequences which are constant in all known ITS1 and 2 of Hypocrea/Trichoderma but different in closely related fungal genera, were used to define genus-specific hallmarks. The library of species-, clade- and genus-specific hallmarks is stored in the MySQL database and integrated in the TrichOKey v. 1.0 - barcode sequence identification program with the web interface located on . TrichOKey v. 1.0 identifies 75 single species, 5 species pairs and 1 species triplet. Verification of the DNA-barcode was done by a blind test on 53 unknown isolates of Trichoderma, collected in Central and South America. The obtained results were in a total agreement with phylogenetic identification based on tef1 (large intron), NCBI BLAST of vouchered records and postum morphological analysis. We conclude that oligonucleotide barcode is a powerful tool for the routine identification of Hypocrea/Trichoderma species and should be useful as a complement to traditional methods.

  6. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  7. Location Based Service in Indoor Environment Using Quick Response Code Technology

    NASA Astrophysics Data System (ADS)

    Hakimpour, F.; Zare Zardiny, A.

    2014-10-01

    Today by extensive use of intelligent mobile phones, increased size of screens and enriching the mobile phones by Global Positioning System (GPS) technology use of location based services have been considered by public users more than ever.. Based on the position of users, they can receive the desired information from different LBS providers. Any LBS system generally includes five main parts: mobile devices, communication network, positioning system, service provider and data provider. By now many advances have been gained in relation to any of these parts; however the users positioning especially in indoor environments is propounded as an essential and critical issue in LBS. It is well known that GPS performs too poorly inside buildings to provide usable indoor positioning. On the other hand, current indoor positioning technologies such as using RFID or WiFi network need different hardware and software infrastructures. In this paper, we propose a new method to overcome these challenges. This method is using the Quick Response (QR) Code Technology. QR Code is a 2D encrypted barcode with a matrix structure which consists of black modules arranged in a square grid. Scanning and data retrieving process from QR Code is possible by use of different camera-enabled mobile phones only by installing the barcode reader software. This paper reviews the capabilities of QR Code technology and then discusses the advantages of using QR Code in Indoor LBS (ILBS) system in comparison to other technologies. Finally, some prospects of using QR Code are illustrated through implementation of a scenario. The most important advantages of using this new technology in ILBS are easy implementation, spending less expenses, quick data retrieval, possibility of printing the QR Code on different products and no need for complicated hardware and software infrastructures.

  8. Increased serum NKG2D-ligands and downregulation of NKG2D in peripheral blood NK cells of patients with major burns.

    PubMed

    Haik, Josef; Nardini, Gil; Goldman, Noga; Galore-Haskel, Gilli; Harats, Moti; Zilinsky, Isaac; Weissman, Oren; Schachter, Jacob; Winkler, Eyal; Markel, Gal

    2016-01-19

    Immune suppression following major thermal injury directly impacts the recovery potential. Limited data from past reports indicate that natural killer cells might be suppressed due to a putative soluble factor that has remained elusive up to date. Here we comparatively study cohorts of patients with Major and Non-Major Burns as well as healthy donors. MICB and ULBP1 are stress ligands of NKG2D that can be induced by heat stress. Remarkably, serum concentration levels of MICB and ULBP1 are increased by 3-fold and 20-fold, respectively, already within 24h post major thermal injury, and are maintained high for 28 days. In contrast, milder thermal injuries do not similarly enhance the serum levels of MICB and ULBP1. This kinetics coincides with a significant downregulation of NKG2D expression among peripheral blood NK cells. Downregulation of NKG2D by high concentration of soluble MICB occurs in cancer patients and during normal pregnancy due to over production by cancer cells or extravillous trophoblasts, respectively, as an active immune-evasion mechanism. In burn patients this seems an incidental outcome of extensive thermal injury, leading to reduced NKG2D expression. Enhanced susceptibility of these patients to opportunistic viral infections, particularly herpes viruses, could be explained by the reduced NKG2D expression. Further studies are warranted for translation into innovative diagnostic or therapeutic technologies. PMID:26745675

  9. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  10. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  11. A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD.

    PubMed

    Hendrich, Lars; Morinière, Jérôme; Haszprunar, Gerhard; Hebert, Paul D N; Hausmann, Axel; Köhler, Frank; Balke, Michael

    2015-07-01

    Beetles are the most diverse group of animals and are crucial for ecosystem functioning. In many countries, they are well established for environmental impact assessment, but even in the well-studied Central European fauna, species identification can be very difficult. A comprehensive and taxonomically well-curated DNA barcode library could remedy this deficit and could also link hundreds of years of traditional knowledge with next generation sequencing technology. However, such a beetle library is missing to date. This study provides the globally largest DNA barcode reference library for Coleoptera for 15 948 individuals belonging to 3514 well-identified species (53% of the German fauna) with representatives from 97 of 103 families (94%). This study is the first comprehensive regional test of the efficiency of DNA barcoding for beetles with a focus on Germany. Sequences ≥500 bp were recovered from 63% of the specimens analysed (15 948 of 25 294) with short sequences from another 997 specimens. Whereas most specimens (92.2%) could be unambiguously assigned to a single known species by sequence diversity at CO1, 1089 specimens (6.8%) were assigned to more than one Barcode Index Number (BIN), creating 395 BINs which need further study to ascertain if they represent cryptic species, mitochondrial introgression, or simply regional variation in widespread species. We found 409 specimens (2.6%) that shared a BIN assignment with another species, most involving a pair of closely allied species as 43 BINs were involved. Most of these taxa were separated by barcodes although sequence divergences were low. Only 155 specimens (0.97%) show identical or overlapping clusters.

  12. Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead.

    PubMed

    Joly, Simon; Davies, T Jonathan; Archambault, Annie; Bruneau, Anne; Derry, Alison; Kembel, Steven W; Peres-Neto, Pedro; Vamosi, Jana; Wheeler, Terry A

    2014-03-01

    Ten years after DNA barcoding was initially suggested as a tool to identify species, millions of barcode sequences from more than 1100 species are available in public databases. While several studies have reviewed the methods and potential applications of DNA barcoding, most have focused on species identification and discovery, and relatively few have addressed applications of DNA barcoding data to ecology. These data, and the associated information on the evolutionary histories of taxa that they can provide, offer great opportunities for ecologists to investigate questions that were previously difficult or impossible to address. We present an overview of potential uses of DNA barcoding relevant in the age of ecoinformatics, including applications in community ecology, species invasion, macroevolution, trait evolution, food webs and trophic interactions, metacommunities, and spatial ecology. We also outline some of the challenges and potential advances in DNA barcoding that lie ahead.

  13. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

    PubMed Central

    2013-01-01

    Background The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Results Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (<2%), application of a complementary character-based nucleotide diagnostic approach proved useful in discriminating them. Additionally, 14 species displayed high intra-specific genetic divergence (>2%), pointing to at least 23 strong candidates for new species. Conclusions Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify

  14. Barcoding a quantified food web: crypsis, concepts, ecology and hypotheses.

    PubMed

    Smith, M Alex; Eveleigh, Eldon S; McCann, Kevin S; Merilo, Mark T; McCarthy, Peter C; Van Rooyen, Kathleen I

    2011-01-01

    The efficient and effective monitoring of individuals and populations is critically dependent on correct species identification. While this point may seem obvious, identifying the majority of the more than 100 natural enemies involved in the spruce budworm (Choristoneura fumiferana--SBW) food web remains a non-trivial endeavor. Insect parasitoids play a major role in the processes governing the population dynamics of SBW throughout eastern North America. However, these species are at the leading edge of the taxonomic impediment and integrating standardized identification capacity into existing field programs would provide clear benefits. We asked to what extent DNA barcoding the SBW food web would alter our understanding of the diversity and connectence of the food web and the frequency of generalists vs. specialists in different forest habitats. We DNA barcoded over 10% of the insects collected from the SBW food web in three New Brunswick forest plots from 1983 to 1993. For 30% of these specimens, we amplified at least one additional nuclear region. When the nodes of the food web were estimated based on barcode divergences (using molecular operational taxonomic units (MOTU) or phylogenetic diversity (PD)--the food web became much more diverse and connectence was reduced. We tested one measure of food web structure (the "bird feeder effect") and found no difference compared to the morphologically based predictions. Many, but not all, of the presumably polyphagous parasitoids now appear to be morphologically-cryptic host-specialists. To our knowledge, this project is the first to barcode a food web in which interactions have already been well-documented and described in space, time and abundance. It is poised to be a system in which field-based methods permit the identification capacity required by forestry scientists. Food web barcoding provided an effective tool for the accurate identification of all species involved in the cascading effects of future budworm

  15. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  16. A DNA Mini-Barcoding System for Authentication of Processed Fish Products

    PubMed Central

    Shokralla, Shadi; Hellberg, Rosalee S.; Handy, Sara M.; King, Ian; Hajibabaei, Mehrdad

    2015-01-01

    Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences—mini-barcodes—for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127–314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products. PMID:26516098

  17. Differentiation of the Chinese minority medicinal plant genus Berchemia spp. by evaluating three candidate barcodes.

    PubMed

    Guo, Li-Cheng; Zhao, Ming-Ming; Sun, Wei; Teng, Hong-Li; Huang, Bi-Sheng; Zhao, Xiang-Pei

    2016-01-01

    The genus Berchemia comprises important Chinese plants with considerable medicinal value; however, these plants are often misidentified in the herbal medicinal market. To differentiate the various morphotypes of Berchemia species, a proficient method employing the screening of universal DNA barcodes was used in this work. Three candidate barcoding loci, namely, psbA-trnH, rbcL, and the second internal transcribed spacer (ITS2), were used to identify an effective DNA barcode that can differentiate the various Berchemia species. Additionally, PCR amplification, efficient sequencing, intra- and inter-specific divergences, and DNA barcoding gaps were employed to assess the ability of each barcode to identify these diverse Berchemia plants authentically; the species were differentiated using the Kimura two-parameter and maximum composite likelihood methods. Sequence data analysis showed that the ITS2 region was the most suitable candidate barcode and exhibited the highest interspecific divergence among the three DNA-barcoding sequences. A clear differentiation was observed at the species level, in which a maximum distance of 0.264 was exhibited between dissimilar species. Clustal analysis also demonstrated that ITS2 clearly differentiated the test species in a more effective manner than that with the two other barcodes at both the hybrid and variety levels. Results indicate that DNA barcoding is ideal for species-level identification of Berchemia and provides a foundation for further identification at the molecular level of other Rhamnaceae medicinal plants. PMID:27347459

  18. DNA barcode information for the sugar cane moth borer Diatraea saccharalis.

    PubMed

    Bravo, J P; Silva, J L C; Munhoz, R E F; Fernandez, M A

    2008-01-01

    We reviewed the use and relevance of barcodes for insect studies and investigated the barcode sequence of Diatraea saccharalis. This sequence has a high level of homology (99%) with the barcode sequence of the Crambidae (Lepidoptera). The sequence data can be used to construct relationships between species, allowing a multidisciplinary approach for taxonomy, which includes morphological, molecular and distribution data, all of which are essential for the understanding of biodiversity. The D. saccharalis barcode is a previously undescribed sequence that could be used to analyze Lepidoptera biology. PMID:18767242

  19. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism

    PubMed Central

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-01-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7–14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. PMID:23789612

  20. DNA Barcoding Simplifies Environmental Risk Assessment of Genetically Modified Crops in Biodiverse Regions

    PubMed Central

    Nzeduru, Chinyere V.; Ronca, Sandra; Wilkinson, Mike J.

    2012-01-01

    Transgenes encoding for insecticidal crystal (Cry) proteins from the soil-dwelling bacterium Bacillus Thuringiensis have been widely introduced into Genetically Modified (GM) crops to confer protection against insect pests. Concern that these transgenes may also harm beneficial or otherwise valued insects (so-called Non Target Organisms, NTOs) represents a major element of the Environmental Risk Assessments (ERAs) used by all countries prior to commercial release. Compiling a comprehensive list of potentially susceptible NTOs is therefore a necessary part of an ERA for any Cry toxin-containing GM crop. In partly-characterised and biodiverse countries, NTO identification is slowed by the need for taxonomic expertise and time to enable morphological identifications. This limitation represents a potentially serious barrier to timely adoption of GM technology in some developing countries. We consider Bt Cry1A cowpea (Vigna unguiculata) in Nigeria as an exemplar to demonstrate how COI barcoding can provide a simple and cost-effective means of addressing this problem. Over a period of eight weeks, we collected 163 insects from cowpea flowers across the agroecological and geographic range of the crop in Nigeria. These individuals included 32 Operational Taxonomic Units (OTUs) spanning four Orders and that could mostly be assigned to genus or species level. They included 12 Lepidopterans and two Coleopterans (both potentially sensitive to different groups of Cry proteins). Thus, barcode-assisted diagnoses were highly harmonised across groups (typically to genus or species level) and so were insensitive to expertise or knowledge gaps. Decisively, the entire study was completed within four months at a cost of less than 10,000 US$. The broader implications of the findings for food security and the capacity for safe adoption of GM technology are briefly explored. PMID:22567120

  1. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species

    PubMed Central

    Saarela, Jeffery M.; Sokoloff, Paul C.; Gillespie, Lynn J.; Consaul, Laurie L.; Bull, Roger D.

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA–trnH, psbK–psbI, atpF–atpH) collected for a subset of Poa and Puccinellia species, only atpF–atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species. PMID

  2. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  3. Species Identification of Marine Fishes in China with DNA Barcoding

    PubMed Central

    Zhang, Junbin

    2011-01-01

    DNA barcoding is a molecular method that uses a short standardized DNA sequence as a species identification tool. In this study, the standard 652 base-pair region of the mitochondrial cytochrome oxidase subunit I gene (COI) was sequenced in marine fish specimens captured in China. The average genetic distance was 50-fold higher between species than within species, as Kimura two parameter (K2P) genetic distances averaged 15.742% among congeners and only 0.319% for intraspecific individuals. There are no overlaps of pairwise genetic variations between conspecific and interspecific comparisons apart from the genera Pampus in which the introgressive hybridization was detected. High efficiency of species identification was demonstrated in the present study by DNA barcoding. Due to the incidence of cryptic species, an assumed threshold is suggested to expedite discovering of new species and biodiversity, especially involving biotas of few studies. PMID:21687792

  4. Droplet barcoding for massively parallel single-molecule deep sequencing

    PubMed Central

    Lan, Freeman; Haliburton, John R.; Yuan, Aaron; Abate, Adam R.

    2016-01-01

    The ability to accurately sequence long DNA molecules is important across biology, but existing sequencers are limited in read length and accuracy. Here, we demonstrate a method to leverage short-read sequencing to obtain long and accurate reads. Using droplet microfluidics, we isolate, amplify, fragment and barcode single DNA molecules in aqueous picolitre droplets, allowing the full-length molecules to be sequenced with multi-fold coverage using short-read sequencing. We show that this approach can provide accurate sequences of up to 10 kb, allowing us to identify rare mutations below the detection limit of conventional sequencing and directly link them into haplotypes. This barcoding methodology can be a powerful tool in sequencing heterogeneous populations such as viruses. PMID:27353563

  5. Molecular identification and barcodes for the genus Nymphaea.

    PubMed

    Chaveerach, Arunrat; Tanee, T; Sudmoon, Runglawan

    2011-09-01

    Nymphaea species, the most popular decorative plants, were collected for specificity of inter-simple sequence repeat (ISSR) analyses in species identification and differentiation of cultivars and natural populations. Dendrogram constructed from ISSR analyses separated out wild species, namely Nymphaea cyanea, N. nouchali, N. capensis, N. lotus and an outgroup N. mexicana, and cultivars. The dendrogram indicates that the cultivars should be differentiated from N. capensis, as they are sister individuals of N. capensis. The ISSR banding data and the dendrogram are concordantly concluded that wild N. capensis would be an effective type species for producing different cultivars. After plant identification by ISSR markers, DNA barcodes of all sample materials were done to provide species specific markers which can be used for rapid and accurate further plant identification without morphological characters. DNA barcoding sequence analysis indicates genetic distance values. All sequences were recorded in GenBank database. PMID:21840834

  6. The Effect of Geographical Scale of Sampling on DNA Barcoding

    PubMed Central

    Bergsten, Johannes; Bilton, David T.; Fujisawa, Tomochika; Elliott, Miranda; Monaghan, Michael T.; Balke, Michael; Hendrich, Lars; Geijer, Joja; Herrmann, Jan; Foster, Garth N.; Ribera, Ignacio; Nilsson, Anders N.; Barraclough, Timothy G.; Vogler, Alfried P.

    2012-01-01

    Eight years after DNA barcoding was formally proposed on a large scale, CO1 sequences are rapidly accumulating from around the world. While studies to date have mostly targeted local or regional species assemblages, the recent launch of the global iBOL project (International Barcode of Life), highlights the need to understand the effects of geographical scale on Barcoding's goals. Sampling has been central in the debate on DNA Barcoding, but the effect of the geographical scale of sampling has not yet been thoroughly and explicitly tested with empirical data. Here, we present a CO1 data set of aquatic predaceous diving beetles of the tribe Agabini, sampled throughout Europe, and use it to investigate how the geographic scale of sampling affects 1) the estimated intraspecific variation of species, 2) the genetic distance to the most closely related heterospecific, 3) the ratio of intraspecific and interspecific variation, 4) the frequency of taxonomically recognized species found to be monophyletic, and 5) query identification performance based on 6 different species assignment methods. Intraspecific variation was significantly correlated with the geographical scale of sampling (R-square = 0.7), and more than half of the species with 10 or more sampled individuals (N = 29) showed higher intraspecific variation than 1% sequence divergence. In contrast, the distance to the closest heterospecific showed a significant decrease with increasing geographical scale of sampling. The average genetic distance dropped from > 7% for samples within 1 km, to < 3.5% for samples up to > 6000 km apart. Over a third of the species were not monophyletic, and the proportion increased through locally, nationally, regionally, and continentally restricted subsets of the data. The success of identifying queries decreased with increasing spatial scale of sampling; liberal methods declined from 100% to around 90%, whereas strict methods dropped to below 50% at continental scales. The

  7. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  8. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey (2dFGRS) (2dFGRS Team, 1998-2003)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2007-11-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is a major spectroscopic survey taking full advantage of the unique capabilities of the 2dF facility built by the Anglo-Australian Observatory. The 2dFGRS is integrated with the 2dF QSO survey (2QZ, Cat. VII/241). The 2dFGRS obtained spectra for 245591 objects, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of bJ=19.45. Reliable (quality>=3) redshifts were obtained for 221414 galaxies. The galaxies cover an area of approximately 1500 square degrees selected from the extended APM Galaxy Survey in three regions: a North Galactic Pole (NGP) strip, a South Galactic Pole (SGP) strip, and random fields scattered around the SGP strip. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS/. (6 data files).

  9. Evaluating Ethanol-based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates

    EPA Science Inventory

    Molecular methods, such as DNA barcoding, have the potential in enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biom...

  10. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters.

    PubMed

    Hadi, Sámed I I A; Santana, Hugo; Brunale, Patrícia P M; Gomes, Taísa G; Oliveira, Márcia D; Matthiensen, Alexandre; Oliveira, Marcos E C; Silva, Flávia C P; Brasil, Bruno S A F

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences' using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker. PMID:26900844

  11. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters.

    PubMed

    Hadi, Sámed I I A; Santana, Hugo; Brunale, Patrícia P M; Gomes, Taísa G; Oliveira, Márcia D; Matthiensen, Alexandre; Oliveira, Marcos E C; Silva, Flávia C P; Brasil, Bruno S A F

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences' using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker.

  12. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters

    PubMed Central

    Hadi, Sámed I. I. A.; Santana, Hugo; Brunale, Patrícia P. M.; Gomes, Taísa G.; Oliveira, Márcia D.; Matthiensen, Alexandre; Oliveira, Marcos E. C.; Silva, Flávia C. P.; Brasil, Bruno S. A. F.

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences’ using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker. PMID:26900844

  13. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  14. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-01

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs. PMID:27537619

  15. CVMAC 2D Program: A method of converting 3D to 2D

    SciTech Connect

    Lown, J.

    1990-06-20

    This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.

  16. Influence of killing method on Lepidoptera DNA barcode recovery.

    PubMed

    Willows-Munro, Sandi; Schoeman, M Corrie

    2015-05-01

    The global DNA barcoding initiative has revolutionized the field of biodiversity research. Such large-scale sequencing projects require the collection of large numbers of specimens, which need to be killed and preserved in a way that is both DNA-friendly and which will keep voucher specimens in good condition for later study. Factors such as time since collection, correct storage (exposure to free water and heat) and DNA extraction protocol are known to play a role in the success of downstream molecular applications. Limited data are available on the most efficient, DNA-friendly protocol for killing. In this study, we evaluate the quality of DNA barcode (cytochrome oxidase I) sequences amplified from DNA extracted from specimens collected using three different killing methods (ethyl acetate, cyanide and freezing). Previous studies have suggested that chemicals, such as ethyl acetate and formaldehyde, degraded DNA and as such may not be appropriate for the collection of insects for DNA-based research. All Lepidoptera collected produced DNA barcodes of good quality, and our study found no clear difference in nucleotide signal strength, probability of incorrect base calling and phylogenetic utility among the three different treatment groups. Our findings suggest that ethyl acetate, cyanide and freezing can all be used to collect specimens for DNA analysis.

  17. DNA barcoding and taxonomy: dark taxa and dark texts.

    PubMed

    Page, Roderic D M

    2016-09-01

    Both classical taxonomy and DNA barcoding are engaged in the task of digitizing the living world. Much of the taxonomic literature remains undigitized. The rise of open access publishing this century and the freeing of older literature from the shackles of copyright have greatly increased the online availability of taxonomic descriptions, but much of the literature of the mid- to late-twentieth century remains offline ('dark texts'). DNA barcoding is generating a wealth of computable data that in many ways are much easier to work with than classical taxonomic descriptions, but many of the sequences are not identified to species level. These 'dark taxa' hamper the classical method of integrating biodiversity data, using shared taxonomic names. Voucher specimens are a potential common currency of both the taxonomic literature and sequence databases, and could be used to help link names, literature and sequences. An obstacle to this approach is the lack of stable, resolvable specimen identifiers. The paper concludes with an appeal for a global 'digital dashboard' to assess the extent to which biodiversity data are available online.This article is part of the themed issue 'From DNA barcodes to biomes'.

  18. Pooled-matrix protein interaction screens using Barcode Fusion Genetics.

    PubMed

    Yachie, Nozomu; Petsalaki, Evangelia; Mellor, Joseph C; Weile, Jochen; Jacob, Yves; Verby, Marta; Ozturk, Sedide B; Li, Siyang; Cote, Atina G; Mosca, Roberto; Knapp, Jennifer J; Ko, Minjeong; Yu, Analyn; Gebbia, Marinella; Sahni, Nidhi; Yi, Song; Tyagi, Tanya; Sheykhkarimli, Dayag; Roth, Jonathan F; Wong, Cassandra; Musa, Louai; Snider, Jamie; Liu, Yi-Chun; Yu, Haiyuan; Braun, Pascal; Stagljar, Igor; Hao, Tong; Calderwood, Michael A; Pelletier, Laurence; Aloy, Patrick; Hill, David E; Vidal, Marc; Roth, Frederick P

    2016-04-01

    High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods. PMID:27107012

  19. DNA barcoding in diverse educational settings: five case studies

    PubMed Central

    Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-01-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5–18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481792

  20. Cellular barcoding tool for clonal analysis in the hematopoietic system.

    PubMed

    Gerrits, Alice; Dykstra, Brad; Kalmykowa, Olga J; Klauke, Karin; Verovskaya, Evgenia; Broekhuis, Mathilde J C; de Haan, Gerald; Bystrykh, Leonid V

    2010-04-01

    Clonal analysis is important for many areas of hematopoietic stem cell research, including in vitro cell expansion, gene therapy, and cancer progression and treatment. A common approach to measure clonality of retrovirally transduced cells is to perform integration site analysis using Southern blotting or polymerase chain reaction-based methods. Although these methods are useful in principle, they generally provide a low-resolution, biased, and incomplete assessment of clonality. To overcome those limitations, we labeled retroviral vectors with random sequence tags or "barcodes." On integration, each vector introduces a unique, identifiable, and heritable mark into the host cell genome, allowing the clonal progeny of each cell to be tracked over time. By coupling the barcoding method to a sequencing-based detection system, we could identify major and minor clones in 2 distinct cell culture systems in vitro and in a long-term transplantation setting. In addition, we demonstrate how clonal analysis can be complemented with transgene expression and integration site analysis. This cellular barcoding tool permits a simple, sensitive assessment of clonality and holds great promise for future gene therapy protocols in humans, and any other applications when clonal tracking is important.

  1. DNA barcoding in diverse educational settings: five case studies.

    PubMed

    Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-09-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481792

  2. A DNA barcoding approach to characterize pollen collected by honeybees.

    PubMed

    Galimberti, Andrea; De Mattia, Fabrizio; Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno), characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella) at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands.

  3. DNA barcoding and taxonomy: dark taxa and dark texts

    PubMed Central

    2016-01-01

    Both classical taxonomy and DNA barcoding are engaged in the task of digitizing the living world. Much of the taxonomic literature remains undigitized. The rise of open access publishing this century and the freeing of older literature from the shackles of copyright have greatly increased the online availability of taxonomic descriptions, but much of the literature of the mid- to late-twentieth century remains offline (‘dark texts’). DNA barcoding is generating a wealth of computable data that in many ways are much easier to work with than classical taxonomic descriptions, but many of the sequences are not identified to species level. These ‘dark taxa’ hamper the classical method of integrating biodiversity data, using shared taxonomic names. Voucher specimens are a potential common currency of both the taxonomic literature and sequence databases, and could be used to help link names, literature and sequences. An obstacle to this approach is the lack of stable, resolvable specimen identifiers. The paper concludes with an appeal for a global ‘digital dashboard’ to assess the extent to which biodiversity data are available online. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481786

  4. A DNA Barcoding Approach to Characterize Pollen Collected by Honeybees

    PubMed Central

    Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno), characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella) at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands. PMID:25296114

  5. DNA barcoding and taxonomy: dark taxa and dark texts.

    PubMed

    Page, Roderic D M

    2016-09-01

    Both classical taxonomy and DNA barcoding are engaged in the task of digitizing the living world. Much of the taxonomic literature remains undigitized. The rise of open access publishing this century and the freeing of older literature from the shackles of copyright have greatly increased the online availability of taxonomic descriptions, but much of the literature of the mid- to late-twentieth century remains offline ('dark texts'). DNA barcoding is generating a wealth of computable data that in many ways are much easier to work with than classical taxonomic descriptions, but many of the sequences are not identified to species level. These 'dark taxa' hamper the classical method of integrating biodiversity data, using shared taxonomic names. Voucher specimens are a potential common currency of both the taxonomic literature and sequence databases, and could be used to help link names, literature and sequences. An obstacle to this approach is the lack of stable, resolvable specimen identifiers. The paper concludes with an appeal for a global 'digital dashboard' to assess the extent to which biodiversity data are available online.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481786

  6. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding.

    PubMed

    Versteirt, V; Nagy, Z T; Roelants, P; Denis, L; Breman, F C; Damiens, D; Dekoninck, W; Backeljau, T; Coosemans, M; Van Bortel, W

    2015-03-01

    Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well-supported clusters. Intraspecific Kimura 2-parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra- and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species.

  7. A DNA barcoding approach to characterize pollen collected by honeybees.

    PubMed

    Galimberti, Andrea; De Mattia, Fabrizio; Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno), characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella) at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands. PMID:25296114

  8. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    PubMed

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology. PMID:24935524

  9. DNA barcoding in diverse educational settings: five case studies.

    PubMed

    Henter, Heather J; Imondi, Ralph; James, Karen; Spencer, Diana; Steinke, Dirk

    2016-09-01

    Despite 250 years of modern taxonomy, there remains a large biodiversity knowledge gap. Most species remain unknown to science. DNA barcoding can help address this gap and has been used in a variety of educational contexts to incorporate original research into school curricula and informal education programmes. A growing body of evidence suggests that actively conducting research increases student engagement and retention in science. We describe case studies in five different educational settings in Canada and the USA: a programme for primary and secondary school students (ages 5-18), a year-long professional development programme for secondary school teachers, projects embedding this research into courses in a post-secondary 2-year institution and a degree-granting university, and a citizen science project. We argue that these projects are successful because the scientific content is authentic and compelling, DNA barcoding is conceptually and technically straightforward, the workflow is adaptable to a variety of situations, and online tools exist that allow participants to contribute high-quality data to the international research effort. Evidence of success includes the broad adoption of these programmes and assessment results demonstrating that participants are gaining both knowledge and confidence. There are exciting opportunities for coordination among educational projects in the future.This article is part of the themed issue 'From DNA barcodes to biomes'.

  10. DNA barcoding analysis of Coleoidea (Mollusca: Cephalopoda) from Chinese waters.

    PubMed

    Dai, Lina; Zheng, Xiaodong; Kong, Lingfeng; Li, Qi

    2012-05-01

    Coleoids are part of the Cephalopoda class, which occupy an important position in most oceans both at an ecological level and at a commercial level. Nevertheless, some coleoid species are difficult to distinguish with traditional morphological identification in cases when specimens are heavily damaged during collection or when closely related taxa are existent. As a useful tool for rapid species assignment, DNA barcoding may offer significant potential for coleoid identification. Here, we used two mitochondrial fragments, cytochrome c oxidase I and the large ribosomal subunit (16S rRNA), to assess whether 34 coleoids accounting for about one-third of the Chinese coleoid fauna could be identified by DNA barcoding technique. The pairwise intra- and interspecific distances were assessed, and relationships among species were estimated by NJ and bayesian analyses. High levels of genetic differentiation within Loliolus beka led to an overlap between intra- and interspecific distances. All remaining species forming well-differentiated clades in the NJ and bayesian trees were identical for both fragments. Loliolus beka possessed two mitochondrial lineages with high levels of intraspecific distances, suggesting the occurrence of cryptic species. This study confirms the efficacy of DNA barcoding for identifying species as well as discovering cryptic diversity of Chinese coleoids. It also lays a foundation for other ecological and biological studies of Coleoidea.

  11. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    NASA Astrophysics Data System (ADS)

    Sezen, S.; Ertüzün, A.

    2006-12-01

    A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  12. e-DNA meta-barcoding: from NGS raw data to taxonomic profiling.

    PubMed

    Bruno, Fosso; Marinella, Marzano; Santamaria, Monica

    2015-01-01

    In recent years, thanks to the essential support provided by the Next-Generation Sequencing (NGS) technologies, Metagenomics is enabling the direct access to the taxonomic and functional composition of mixed microbial communities living in any environmental niche, without the prerequisite to isolate or culture the single organisms. This approach has already been successfully applied for the analysis of many habitats, such as water or soil natural environments, also characterized by extreme physical and chemical conditions, food supply chains, and animal organisms, including humans. A shotgun sequencing approach can lead to investigate both organisms and genes diversity. Anyway, if the purpose is limited to explore the taxonomic complexity, an amplicon-based approach, based on PCR-targeted sequencing of selected genetic species markers, commonly named "meta-barcodes", is desirable. Among the genomic regions most widely used for the discrimination of bacterial organisms, in some cases up to the species level, some hypervariable domains of the gene coding for the 16S rRNA occupy a prominent place. The amplification of a certain meta-barcode from a microbial community through the use of PCR primers able to work in the entire considered taxonomic group is the first task after the extraction of the total DNA. Generally, this step is followed by the high-throughput sequencing of the resulting amplicons libraries by means of a selected NGS platform. Finally, the interpretation of the huge amount of produced data requires appropriate bioinformatics tools and know-how in addition to efficient computational resources. Here a computational methodology suitable for the taxonomic characterization of 454 meta-barcode sequences is described in detail. In particular, a dataset covering the V1-V3 region belonging to the bacterial 16S rRNA coding gene and produced in the Human Microbiome Project (HMP) from a palatine tonsils sample is analyzed. The proposed exercise includes the

  13. e-DNA meta-barcoding: from NGS raw data to taxonomic profiling.

    PubMed

    Bruno, Fosso; Marinella, Marzano; Santamaria, Monica

    2015-01-01

    In recent years, thanks to the essential support provided by the Next-Generation Sequencing (NGS) technologies, Metagenomics is enabling the direct access to the taxonomic and functional composition of mixed microbial communities living in any environmental niche, without the prerequisite to isolate or culture the single organisms. This approach has already been successfully applied for the analysis of many habitats, such as water or soil natural environments, also characterized by extreme physical and chemical conditions, food supply chains, and animal organisms, including humans. A shotgun sequencing approach can lead to investigate both organisms and genes diversity. Anyway, if the purpose is limited to explore the taxonomic complexity, an amplicon-based approach, based on PCR-targeted sequencing of selected genetic species markers, commonly named "meta-barcodes", is desirable. Among the genomic regions most widely used for the discrimination of bacterial organisms, in some cases up to the species level, some hypervariable domains of the gene coding for the 16S rRNA occupy a prominent place. The amplification of a certain meta-barcode from a microbial community through the use of PCR primers able to work in the entire considered taxonomic group is the first task after the extraction of the total DNA. Generally, this step is followed by the high-throughput sequencing of the resulting amplicons libraries by means of a selected NGS platform. Finally, the interpretation of the huge amount of produced data requires appropriate bioinformatics tools and know-how in addition to efficient computational resources. Here a computational methodology suitable for the taxonomic characterization of 454 meta-barcode sequences is described in detail. In particular, a dataset covering the V1-V3 region belonging to the bacterial 16S rRNA coding gene and produced in the Human Microbiome Project (HMP) from a palatine tonsils sample is analyzed. The proposed exercise includes the

  14. 2D wave-front shaping in optical superlattices using nonlinear volume holography.

    PubMed

    Yang, Bo; Hong, Xu-Hao; Lu, Rong-Er; Yue, Yang-Yang; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-07-01

    Nonlinear volume holography is employed to realize arbitrary wave-front shaping during nonlinear processes with properly designed 2D optical superlattices. The concept of a nonlinear polarization wave in nonlinear volume holography is investigated. The holographic imaging of irregular patterns was performed using 2D LiTaO3 crystals with fundamental wave propagating along the spontaneous polarization direction, and the results agree well with the theoretical predictions. This Letter not only extends the application area of optical superlattices, but also offers an efficient method for wave-front shaping technology.

  15. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  16. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  17. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  18. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  19. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  20. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  1. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  2. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  3. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  4. [Identification and analysis of Corydalis boweri, Meconopsis horridula and their close related species of the same genus by using ITS2 DNA barcode].

    PubMed

    Dou, Rong-kun; Bi, Zhen-fei; Bai, Rui-xue; Ren, Yao-yao; Tan, Rui; Song, Liang-ke; Li, Di-qiang; Mao, Can-quan

    2015-04-01

    The study is aimed to ensure the quality and safety of medicinal plants by using ITS2 DNA barcode technology to identify Corydalis boweri, Meconopsis horridula and their close related species. The DNA of 13 herb samples including C. boweri and M. horridula from Lhasa of Tibet was extracted, ITS PCR were amplified and sequenced. Both assembled and web downloaded 71 ITS2 sequences were removed of 5. 8S and 28S. Multiple sequence alignment was completed and the intraspecific and interspecific genetic distances were calculated by MEGA 5.0, while the neighbor-joining phylogenetic trees were constructed. We also predicted the ITS2 secondary structure of C. boweri, M. horridula and their close related species. The results showed that ITS2 as DNA barcode was able to identify C. boweri, M. horridula as well as well as their close related species effectively. The established based on ITS2 barcode method provides the regular and safe detection technology for identification of C. boweri, M. horridula and their close related species, adulterants and counterfeits, in order to ensure their quality control, safe medication, reasonable development and utilization.

  5. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  6. Pareto joint inversion of 2D magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2015-04-01

    In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where

  7. Next-Generation Sequencing for Rodent Barcoding: Species Identification from Fresh, Degraded and Environmental Samples

    PubMed Central

    Galan, Maxime; Pagès, Marie; Cosson, Jean-François

    2012-01-01

    Rodentia is the most diverse order among mammals, with more than 2,000 species currently described. Most of the time, species assignation is so difficult based on morphological data solely that identifying rodents at the specific level corresponds to a real challenge. In this study, we compared the applicability of 100 bp mini-barcodes from cytochrome b and cytochrome c oxidase 1 genes to enable rodent species identification. Based on GenBank sequence datasets of 115 rodent species, a 136 bp fragment of cytochrome b was selected as the most discriminatory mini-barcode, and rodent universal primers surrounding this fragment were designed. The efficacy of this new molecular tool was assessed on 946 samples including rodent tissues, feces, museum samples and feces/pellets from predators known to ingest rodents. Utilizing next-generation sequencing technologies able to sequence mixes of DNA, 1,140 amplicons were tagged, multiplexed and sequenced together in one single 454 GS-FLX run. Our method was initially validated on a reference sample set including 265 clearly identified rodent tissues, corresponding to 103 different species. Following validation, 85.6% of 555 rodent samples from Europe, Asia and Africa whose species identity was unknown were able to be identified using the BLASTN program and GenBank reference sequences. In addition, our method proved effective even on degraded rodent DNA samples: 91.8% and 75.9% of samples from feces and museum specimens respectively were correctly identified. Finally, we succeeded in determining the diet of 66.7% of the investigated carnivores from their feces and 81.8% of owls from their pellets. Non-rodent species were also identified, suggesting that our method is sensitive enough to investigate complete predator diets. This study demonstrates how this molecular identification method combined with high-throughput sequencing can open new realms of possibilities in achieving fast, accurate and inexpensive species identification

  8. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six DNA regions were evaluated in a multi-national, multi-laboratory consortium as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it...

  9. 78 FR 13006 - New Intelligent Mail Package Barcode Standards To Enhance Package Visibility; Opportunity for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... (IMpb) or unique tracking Intelligent Mail barcodes (IMb TM ) on all commercial parcels, and providing support to mailers to assure their ability to apply unique tracking barcodes to all commercial parcels..., Federal Register notice (75 FR 56922-56923) on September 17, 2010. In response to input from the...

  10. Molecular diversity of Germany's freshwater fishes and lampreys assessed by DNA barcoding.

    PubMed

    Knebelsberger, Thomas; Dunz, Andreas R; Neumann, Dirk; Geiger, Matthias F

    2015-05-01

    This study represents the first comprehensive molecular assessment of freshwater fishes and lampreys from Germany. We analysed COI sequences for almost 80% of the species mentioned in the current German Red List. In total, 1056 DNA barcodes belonging to 92 species from all major drainages were used to (i) build a reliable DNA barcode reference library, (ii) test for phylogeographic patterns, (iii) check for the presence of barcode gaps between species and (iv) evaluate the performance of the barcode index number (BIN) system, available on the Barcode of Life Data Systems. For over 78% of all analysed species, DNA barcodes are a reliable means for identification, indicated by the presence of barcode gaps. An overlap between intra- and interspecific genetic distances was present in 19 species, six of which belong to the genus Coregonus. The Neighbour-Joining phenogram showed 60 nonoverlapping species clusters and three singleton species, which were related to 63 separate BIN numbers. Furthermore, Barbatula barbatula, Leucaspius delineatus, Phoxinus phoxinus and Squalius cephalus exhibited remarkable levels of cryptic diversity. In contrast, 11 clusters showed haplotype sharing, or low levels of divergence between species, hindering reliable identification. The analysis of our barcode library together with public data resulted in 89 BINs, of which 56% showed taxonomic conflicts. Most of these conflicts were caused by the use of synonymies, inadequate taxonomy or misidentifications. Moreover, our study increased the number of potential alien species in Germany from 14 to 21 and is therefore a valuable groundwork for further faunistic investigations.

  11. Flow-pattern Guided Fabrication of High-density Barcode Antibody Microarray.

    PubMed

    Ramirez, Lisa S; Wang, Jun

    2016-01-06

    Antibody microarray as a well-developed technology is currently challenged by a few other established or emerging high-throughput technologies. In this report, we renovate the antibody microarray technology by using a novel approach for manufacturing and by introducing new features. The fabrication of our high-density antibody microarray is accomplished through perpendicularly oriented flow-patterning of single stranded DNAs and subsequent conversion mediated by DNA-antibody conjugates. This protocol outlines the critical steps in flow-patterning DNA, producing and purifying DNA-antibody conjugates, and assessing the quality of the fabricated microarray. The uniformity and sensitivity are comparable with conventional microarrays, while our microarray fabrication does not require the assistance of an array printer and can be performed in most research laboratories. The other major advantage is that the size of our microarray units is 10 times smaller than that of printed arrays, offering the unique capability of analyzing functional proteins from single cells when interfacing with generic microchip designs. This barcode technology can be widely employed in biomarker detection, cell signaling studies, tissue engineering, and a variety of clinical applications.

  12. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  13. When DNA barcoding and morphology mesh: Ceratopogonidae diversity in Finnmark, Norway

    PubMed Central

    Stur, Elisabeth; Borkent, Art

    2014-01-01

    Abstract DNA barcoding in Ceratopogonidae has been restricted to interpreting the medically and veterinary important members of Culicoides Latreille. Here the technique is utilised, together with morphological study, to interpret all members of the family in a select area. Limited sampling from the county of Finnmark in northernmost Norway indicated the presence of 54 species, including 14 likely new to science, 16 new to Norway, and one new to Europe. No species were previously recorded from this county. Only 93 species were known for all of Norway before this survey, indicating how poorly studied the group is. We evaluate and discuss morphological characters commonly used in identification of biting midges and relate species diagnoses to released DNA barcode data from 223 specimens forming 58 barcode clusters in our dataset. DNA barcodes and morphology were congruent for all species, except in three morphological species where highly divergent barcode clusters indicate the possible presence of cryptic species. PMID:25589864

  14. DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil.

    PubMed

    Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha; Peixoto, Alexandre Afranio

    2015-01-01

    DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23-19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil.

  15. DNA Barcoding of Neotropical Sand Flies (Diptera, Psychodidae, Phlebotominae): Species Identification and Discovery within Brazil

    PubMed Central

    Pinto, Israel de Souza; Chagas, Bruna Dias das; Rodrigues, Andressa Alencastre Fuzari; Ferreira, Adelson Luiz; Rezende, Helder Ricas; Bruno, Rafaela Vieira; Falqueto, Aloisio; Andrade-Filho, José Dilermando; Galati, Eunice Aparecida Bianchi; Shimabukuro, Paloma Helena Fernandes; Brazil, Reginaldo Peçanha

    2015-01-01

    DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23–19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil. PMID:26506007

  16. Filling Gaps in Biodiversity Knowledge for Macrofungi: Contributions and Assessment of an Herbarium Collection DNA Barcode Sequencing Project

    PubMed Central

    Osmundson, Todd W.; Robert, Vincent A.; Schoch, Conrad L.; Baker, Lydia J.; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M.

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1–2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa. PMID:23638077

  17. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  18. Practical Algorithm For Computing The 2-D Arithmetic Fourier Transform

    NASA Astrophysics Data System (ADS)

    Reed, Irving S.; Choi, Y. Y.; Yu, Xiaoli

    1989-05-01

    Recently, Tufts and Sadasiv [10] exposed a method for computing the coefficients of a Fourier series of a periodic function using the Mobius inversion of series. They called this method of analysis the Arithmetic Fourier Transform(AFT). The advantage of the AFT over the FN 1' is that this method of Fourier analysis needs only addition operations except for multiplications by scale factors at one stage of the computation. The disadvantage of the AFT as they expressed it originally is that it could be used effectively only to compute finite Fourier coefficients of a real even function. To remedy this the AFT developed in [10] is extended in [11] to compute the Fourier coefficients of both the even and odd components of a periodic function. In this paper, the improved AFT [11] is extended to a two-dimensional(2-D) Arithmetic Fourier Transform for calculating the Fourier Transform of two-dimensional discrete signals. This new algorithm is based on both the number-theoretic method of Mobius inversion of double series and the complex conjugate property of Fourier coefficients. The advantage of this algorithm over the conventional 2-D FFT is that the corner-turning problem needed in a conventional 2-D Discrete Fourier Transform(DFT) can be avoided. Therefore, this new 2-D algorithm is readily suitable for VLSI implementation as a parallel architecture. Comparing the operations of 2-D AFT of a MxM 2-D data array with the conventional 2-D FFT, the number of multiplications is significantly reduced from (2log2M)M2 to (9/4)M2. Hence, this new algorithm is faster than the FFT algorithm. Finally, two simulation results of this new 2-D AFT algorithm for 2-D artificial and real images are given in this paper.

  19. A Ranking System for Reference Libraries of DNA Barcodes: Application to Marine Fish Species from Portugal

    PubMed Central

    Costa, Filipe O.; Landi, Monica; Martins, Rogelia; Costa, Maria H.; Costa, Maria E.; Carneiro, Miguel; Alves, Maria J.; Steinke, Dirk; Carvalho, Gary R.

    2012-01-01

    Background The increasing availability of reference libraries of DNA barcodes (RLDB) offers the opportunity to the screen the level of consistency in DNA barcode data among libraries, in order to detect possible disagreements generated from taxonomic uncertainty or operational shortcomings. We propose a ranking system to attribute a confidence level to species identifications associated with DNA barcode records from a RLDB. Here we apply the proposed ranking system to a newly generated RLDB for marine fish of Portugal. Methodology/Principal Findings Specimens (n = 659) representing 102 marine fish species were collected along the continental shelf of Portugal, morphologically identified and archived in a museum collection. Samples were sequenced at the barcode region of the cytochrome oxidase subunit I gene (COI-5P). Resultant DNA barcodes had average intra-specific and inter-specific Kimura-2-parameter distances (0.32% and 8.84%, respectively) within the range usually observed for marine fishes. All specimens were ranked in five different levels (A–E), according to the reliability of the match between their species identification and the respective diagnostic DNA barcodes. Grades A to E were attributed upon submission of individual specimen sequences to BOLD-IDS and inspection of the clustering pattern in the NJ tree generated. Overall, our study resulted in 73.5% of unambiguous species IDs (grade A), 7.8% taxonomically congruent barcode clusters within our dataset, but awaiting external confirmation (grade B), and 18.7% of species identifications with lower levels of reliability (grades C/E). Conclusion/Significance We highlight the importance of implementing a system to rank barcode records in RLDB, in order to flag taxa in need of taxonomic revision, or reduce ambiguities of discordant data. With increasing DNA barcode records publicly available, this cross-validation system would provide a metric of relative accuracy of barcodes, while enabling the

  20. DNA Barcoding for Species Assignment: The Case of Mediterranean Marine Fishes

    PubMed Central

    Landi, Monica; Dimech, Mark; Arculeo, Marco; Biondo, Girolama; Martins, Rogelia; Carneiro, Miguel; Carvalho, Gary Robert; Brutto, Sabrina Lo; Costa, Filipe O.

    2014-01-01

    Background DNA barcoding enhances the prospects for species-level identifications globally using a standardized and authenticated DNA-based approach. Reference libraries comprising validated DNA barcodes (COI) constitute robust datasets for testing query sequences, providing considerable utility to identify marine fish and other organisms. Here we test the feasibility of using DNA barcoding to assign species to tissue samples from fish collected in the central Mediterranean Sea, a major contributor to the European marine ichthyofaunal diversity. Methodology/Principal Findings A dataset of 1278 DNA barcodes, representing 218 marine fish species, was used to test the utility of DNA barcodes to assign species from query sequences. We tested query sequences against 1) a reference library of ranked DNA barcodes from the neighbouring North East Atlantic, and 2) the public databases BOLD and GenBank. In the first case, a reference library comprising DNA barcodes with reliability grades for 146 fish species was used as diagnostic dataset to screen 486 query DNA sequences from fish specimens collected in the central basin of the Mediterranean Sea. Of all query sequences suitable for comparisons 98% were unambiguously confirmed through complete match with reference DNA barcodes. In the second case, it was possible to assign species to 83% (BOLD-IDS) and 72% (GenBank) of the sequences from the Mediterranean. Relatively high intraspecific genetic distances were found in 7 species (2.2%–18.74%), most of them of high commercial relevance, suggesting possible cryptic species. Conclusion/Significance We emphasize the discriminatory power of COI barcodes and their application to cases requiring species level resolution starting from query sequences. Results highlight the value of public reference libraries of reliability grade-annotated DNA barcodes, to identify species from different geographical origins. The ability to assign species with high precision from DNA samples of

  1. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  2. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  3. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  4. Building a DNA Barcode Reference Library for the True Butterflies (Lepidoptera) of Peninsula Malaysia: What about the Subspecies?

    PubMed Central

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity. PMID:24282514

  5. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  6. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  7. 2D hexagonal quaternion Fourier transform in color image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2016-05-01

    In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the two-dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly considered. To calculate the transform, the image on the hexagonal lattice is described in the tensor representation when the image is presented by a set of 1-D signals, or splitting-signals which can be separately processed in the frequency domain. The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier transforms (QDFT) of the splitting-signals.

  8. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  9. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  10. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  11. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  12. COI barcodes and phylogeny of doves (Columbidae family).

    PubMed

    Khan, Haseeb Ahmad; Arif, Ibrahim Abdulwahid

    2013-12-01

    Cytochrome oxidase subunit I (COI) gene has been recognized as an authentic tool for species identification. Besides its potential barcoding capacity, COI sequences have also been used for inferring the phylogeny. Phylogenetic relationships among genera of Columbidae (pigeons and doves family) have not been fully resolved because of scarce sampling of taxa and limited availability of sequence data. In this study, we have evaluated the efficiency of COI barcodes for species identification and phylogenetic analysis of various doves. We sequenced the 693 bp region of COI gene of three species of doves including Oena capensis, Streptopelia decaocto, and Streptopelia senegalensis. After retrieving the relevant sequences from the GenBank, the entire data-set of 85 sequences represented 25 dove species from 11 different genera of the family Columbidae. The COI sequences of four species including Chalcophaps indica (two specimens), Columbina inca (five specimens), Geopelia striata (three specimens), and Macropygia phasianella (three specimens) were identical. The mean intraspecific base differences ranged from 0 to 37 while the P-distances ranged between 0 and 0.058. For most of the species, the P-distances were ≤ 0.008. Phylogenetic analysis differentiated the taxa into three major clusters. One of the clusters grouped five genera including Claravis, Columbina, Gallicolumba, Geopelia, and Geotrygon. The remaining two clusters grouped three genera each including Chalcophaps, Oena, and Turtur in one cluster and Macropygia, Streptopelia, and Zenaida in another cluster. Further sub-clustering clearly separated all the genera into individual clusters except two discrepancies for the genera Streptopelia and Turtur. Species-level cladistics clearly separated all the species into distinctive clades. In conclusion, COI barcoding is a powerful tool for species identification with added information on phylogenetic inference. The finding of this study will help to understand the

  13. DNA Barcoding the Medusozoa using mtCOI

    NASA Astrophysics Data System (ADS)

    Ortman, Brian D.; Bucklin, Ann; Pagès, Francesc; Youngbluth, Marsh

    2010-12-01

    The Medusozoa are a clade within the Cnidaria comprising the classes Hydrozoa, Scyphozoa, and Cubozoa. Identification of medusozoan species is challenging, even for taxonomic experts, due to their fragile forms and complex, morphologically-distinct life history stages. In this study 231 sequences for a portion of the mitochondrial Cytochrome Oxidase I (mtCOI) gene were obtained from 95 species of Medusozoans including; 84 hydrozoans (61 siphonophores, eight anthomedusae, four leptomedusae, seven trachymedusae, and four narcomedusae), 10 scyphozoans (three coronatae, four semaeostomae, two rhizostomae, and one stauromedusae), and one cubozoan. This region of mtCOI has been used as a DNA barcode (i.e., a molecular character for species recognition and discrimination) for a diverse array of taxa, including some Cnidaria. Kimura 2-parameter (K2P) genetic distances between sequence variants within species ranged from 0 to 0.057 (mean 0.013). Within the 13 genera for which multiple species were available, K2P distance between congeneric species ranged from 0.056 to 0.381. A cluster diagram generated by Neighbor Joining (NJ) using K2P distances reliably clustered all barcodes of the same species with ≥99% bootstrap support, ensuring accurate identification of species. Intra- and inter-specific variation of the mtCOI gene for the Medusozoa are appropriate for this gene to be used as a DNA barcode for species-level identification, but not for phylogenetic analysis or taxonomic classification of unknown sequences at higher taxonomic levels. This study provides a set of molecular tools that can be used to address questions of speciation, biodiversity, life-history, and population boundaries in the Medusozoa.

  14. Two New Potential Barcodes to Discriminate Dalbergia Species

    PubMed Central

    Bhagwat, Rasika M.; Dholakia, Bhushan B.; Kadoo, Narendra Y.; Balasundaran, M.; Gupta, Vidya S.

    2015-01-01

    DNA barcoding enables precise identification of species from analysis of unique DNA sequence of a target gene. The present study was undertaken to develop barcodes for different species of the genus Dalbergia, an economically important timber plant and is widely distributed in the tropics. Ten Dalbergia species selected from the Western Ghats of India were evaluated using three regions in the plastid genome (matK, rbcL, trnH-psbA), a nuclear transcribed spacer (nrITS) and their combinations, in order to discriminate them at species level. Five criteria: (i) inter and intraspecific distances, (ii) Neighbor Joining (NJ) trees, (iii) Best Match (BM) and Best Close Match (BCM), (iv) character based rank test and (v) Wilcoxon signed rank test were used for species discrimination. Among the evaluated loci, rbcL had the highest success rate for amplification and sequencing (97.6%), followed by matK (97.0%), trnH-psbA (94.7%) and nrITS (80.5%). The inter and intraspecific distances, along with Wilcoxon signed rank test, indicated a higher divergence for nrITS. The BM and BCM approaches revealed the highest rate of correct species identification (100%) with matK, matK+rbcL and matK+trnH-psb loci. These three loci, along with nrITS, were further supported by character based identification method. Considering the overall performance of these loci and their ranking with different approaches, we suggest matK and matK+rbcL as the most suitable barcodes to unambiguously differentiate Dalbergia species. These findings will potentially be helpful in delineating the various species of Dalbergia genus, as well as other related genera. PMID:26569490

  15. An Asiatic Chironomid in Brazil: morphology, DNA barcode and bionomics

    PubMed Central

    Amora, Gizelle; Hamada, Neusa; Fusari, Lívia Maria; Andrade-Souza, Vanderly

    2015-01-01

    Abstract In most freshwater ecosystems, aquatic insects are dominant in terms of diversity; however, there is a disproportionately low number of records of alien species when compared to other freshwater organisms. The Chironomidae is one aquatic insect family that includes some examples of alien species around the world. During a study on aquatic insects in Amazonas state (Brazil), we collected specimens of Chironomidae that are similar, at the morphological level, to Chironomus kiiensis Tokunaga and Chironomus striatipennis Kieffer, both with distributions restricted to Asia. The objectives of this study were to provide morphological information on this Chironomus population, to investigate its identity using DNA barcoding and, to provide bionomic information about this species. Chironomus DNA barcode data were obtained from GenBank and Barcode of Life Data Systems (BOLD) and, together with our data, were analyzed using the neighbor-joining method with 1000 bootstrap replicates and the genetic distances were estimated using the Kimura-2-parameter. At the morphological level, the Brazilian population cannot be distinguished either from Chironomus striatipennis or Chironomus kiiensis, configuring a species complex but, at the molecular level our studied population is placed in a clade together with Chironomus striatipennis, from South Korea. Bionomic characteristics of the Brazilian Chironomus population differ from the ones of Chironomus kiiensis from Japan, the only species in this species complex with bionomic information available. The Brazilian Chironomus population has a smaller size, the double of the number of eggs and inhabits oligotrophic water, in artificial container. In the molecular analysis, populations of Chironomus striatipennis and Chironomus kiiensis are placed in a clade, formed by two groups: Group A (which includes populations from both named species, from different Asiatic regions and our Brazilian population) and Group B (with populations of

  16. DNA Barcode for Identifying Folium Artemisiae Argyi from Counterfeits.

    PubMed

    Mei, Quanxi; Chen, Xiaolu; Xiang, Li; Liu, Yue; Su, Yanyan; Gao, Yuqiao; Dai, Weibo; Dong, Pengpeng; Chen, Shilin

    2016-01-01

    Folium Artemisiae Argyi is an important herb in traditional Chinese medicine. It is commonly used in moxibustion, medicine, etc. However, identifying Artemisia argyi is difficult because this herb exhibits similar morphological characteristics to closely related species and counterfeits. To verify the applicability of DNA barcoding, ITS2 and psbA-trnH were used to identify A. argyi from 15 closely related species and counterfeits. Results indicated that total DNA was easily extracted from all the samples and that both ITS2 and psbA-trnH fragments can be easily amplified. ITS2 was a more ideal barcode than psbA-trnH and ITS2+psbA-trnH to identify A. argyi from closely related species and counterfeits on the basis of sequence character, genetic distance, and tree methods. The sequence length was 225 bp for the 56 ITS2 sequences of A. argyi, and no variable site was detected. For the ITS2 sequences, A. capillaris, A. anomala, A. annua, A. igniaria, A. maximowicziana, A. princeps, Dendranthema vestitum, and D. indicum had single nucleotide polymorphisms (SNPs). The intraspecific Kimura 2-Parameter distance was zero, which is lower than the minimum interspecific distance (0.005). A. argyi, the closely related species, and counterfeits, except for Artemisia maximowicziana and Artemisia sieversiana, were separated into pairs of divergent clusters by using the neighbor joining, maximum parsimony, and maximum likelihood tree methods. Thus, the ITS2 sequence was an ideal barcode to identify A. argyi from closely related species and counterfeits to ensure the safe use of this plant. PMID:27582332

  17. Probing Evolutionary Patterns in Neotropical Birds through DNA Barcodes

    PubMed Central

    Kerr, Kevin C. R.; Lijtmaer, Darío A.; Barreira, Ana S.; Hebert, Paul D. N.; Tubaro, Pablo L.

    2009-01-01

    Background The Neotropical avifauna is more diverse than that of any other biogeographic region, but our understanding of patterns of regional divergence is limited. Critical examination of this issue is currently constrained by the limited genetic information available. This study begins to address this gap by assembling a library of mitochondrial COI sequences, or DNA barcodes, for Argentinian birds and comparing their patterns of genetic diversity to those of North American birds. Methodology and Principal Findings Five hundred Argentinian species were examined, making this the first major examination of DNA barcodes for South American birds. Our results indicate that most southern Neotropical bird species show deep sequence divergence from their nearest-neighbour, corroborating that the high diversity of this fauna is not based on an elevated incidence of young species radiations. Although species ages appear similar in temperate North and South American avifaunas, patterns of regional divergence are more complex in the Neotropics, suggesting that the high diversity of the Neotropical avifauna has been fueled by greater opportunities for regional divergence. Deep genetic splits were observed in at least 21 species, though distribution patterns of these lineages were variable. The lack of shared polymorphisms in species, even in species with less than 0.5M years of reproductive isolation, further suggests that selective sweeps could regularly excise ancestral mitochondrial polymorphisms. Conclusions These findings confirm the efficacy of species delimitation in birds via DNA barcodes, even when tested on a global scale. Further, they demonstrate how large libraries of a standardized gene region provide insight into evolutionary processes. PMID:19194495

  18. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Chacón, Luis; Pernice, Michael

    2008-10-01

    An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.

  19. Self-leveling 2D DPN probe arrays

    NASA Astrophysics Data System (ADS)

    Haaheim, Jason R.; Val, Vadim; Solheim, Ed; Bussan, John; Fragala, J.; Nelson, Mike

    2010-02-01

    Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with <6% feature size standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.

  20. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  1. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  2. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  3. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  4. QUENCH2D. Two-Dimensional IHCP Code

    SciTech Connect

    Osman, A.; Beck, J.V.

    1995-01-01

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  5. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  6. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation

    NASA Astrophysics Data System (ADS)

    Buchheim, Jakob; Wyss, Roman M.; Shorubalko, Ivan; Park, Hyung Gyu

    2016-04-01

    We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He+ and Ga+ irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He+ at high energies (10-30 keV) allowing the passage of >97% He+ particles without creating destructive lattice vacancy. Large Ga+ ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ~50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He+ ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration.We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of

  7. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  8. Identification of bovine embryos cultured in groups by attachment of barcodes to the zona pellucida.

    PubMed

    Novo, Sergi; Morató, Roser; Penon, Oriol; Duran, Sara; Barrios, Leonardo; Nogués, Carme; Plaza, José Antonio; Pérez-García, Luisa; Mogas, Teresa; Ibáñez, Elena

    2014-06-01

    The low number of oocytes collected from unstimulated donors by ovum pick-up means that embryos produced from each individual female have to be cultured individually or in very small groups. However, it has been demonstrated that single-embryo culture is less efficient than embryo culture in groups. To overcome this limitation, we developed a direct embryo-tagging system, which allows the collective culture of embryos from different origins whilst preserving their pedigree. Presumptive bovine zygotes were tagged with eight wheat-germ agglutinin biofunctionalised polysilicon barcodes attached to the outer surface of the zona pellucida (ZP). Four different barcodes were used to encode groups of 20-25 embryos, which were then cultured in the same drop. Cleavage, Day-7 and Day-8 blastocysts and barcode retention rates were assessed. In addition, Day-7 blastocysts were vitrified and warmed. Barcode attachment to the ZP of bovine embryos affected neither in vitro embryo development nor post-warming survival of the tagged embryos. All the embryos maintained barcodes attached until Day 8 of culture (3.63±0.37 barcodes per embryo) and could be identified. In conclusion, identification of embryos by barcodes attached to the ZP is feasible and will allow the culture of embryos from different donors in the same drop. PMID:24942183

  9. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues.

    PubMed

    Guo, Juan; Wong, Jessica X H; Cui, Caie; Li, Xiaochun; Yu, Hua-Zhong

    2015-08-21

    In this paper, we present a smartphone-readable barcode assay for the qualitative detection of methyl parathion residues, a toxic organophosphorus pesticide that is popularly used in agriculture worldwide. The detection principle is based on the irreversible inhibition of the enzymatic activity of acetylcholinesterase (AchE) by methyl parathion; AchE catalytically hydrolyzes acetylthiocholine iodine to thiocholine that in turn dissociates dithiobis-nitrobenzoate to produce a yellow product (deprotonated thio-nitrobenzoate). The yellow intensity of the product was confirmed to be inversely dependent on the concentration of the pesticide. We have designed a barcode-formatted assay chip by using a PDMS (polydimethylsiloxane) channel plate (as the reaction reservoir), situated under a printed partial barcode, to complete the whole barcode such that it can be directly read by a barcode scanning app installed on a smartphone. The app is able to qualitatively present the result of the pesticide test; the absence or a low concentration of methyl parathion results in the barcode reading as "-", identifying the test as negative for pesticides. Upon obtaining a positive result (the app reads a "+" character), the captured image can be further analyzed to quantitate the methyl parathion concentration in the sample. Besides the portability and simplicity, this mobile-app based colorimetric barcode assay compares favorably with the standard spectrophotometric method. PMID:26087169

  10. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama

    PubMed Central

    Kress, W. John; Erickson, David L.; Jones, F. Andrew; Swenson, Nathan G.; Perez, Rolando; Sanjur, Oris; Bermingham, Eldredge

    2009-01-01

    The assembly of DNA barcode libraries is particularly relevant within species-rich natural communities for which accurate species identifications will enable detailed ecological forensic studies. In addition, well-resolved molecular phylogenies derived from these DNA barcode sequences have the potential to improve investigations of the mechanisms underlying community assembly and functional trait evolution. To date, no studies have effectively applied DNA barcodes sensu strictu in this manner. In this report, we demonstrate that a three-locus DNA barcode when applied to 296 species of woody trees, shrubs, and palms found within the 50-ha Forest Dynamics Plot on Barro Colorado Island (BCI), Panama, resulted in >98% correct identifications. These DNA barcode sequences are also used to reconstruct a robust community phylogeny employing a supermatrix method for 281 of the 296 plant species in the plot. The three-locus barcode data were sufficient to reliably reconstruct evolutionary relationships among the plant taxa in the plot that are congruent with the broadly accepted phylogeny of flowering plants (APG II). Earlier work on the phylogenetic structure of the BCI forest dynamics plot employing less resolved phylogenies reveals significant differences in evolutionary and ecological inferences compared with our data and suggests that unresolved community phylogenies may have increased type I and type II errors. These results illustrate how highly resolved phylogenies based on DNA barcode sequence data will enhance research focused on the interface between community ecology and evolution. PMID:19841276

  11. ycf1, the most promising plastid DNA barcode of land plants.

    PubMed

    Dong, Wenpan; Xu, Chao; Li, Changhao; Sun, Jiahui; Zuo, Yunjuan; Shi, Shuo; Cheng, Tao; Guo, Junjie; Zhou, Shiliang

    2015-01-01

    A DNA barcode is a DNA fragment used to identify species. For land plants, DNA fragments of plastid genome could be the primary consideration. Unfortunately, most of the plastid candidate barcodes lack species-level resolution. The identification of DNA barcodes of high resolution at species level is critical to the success of DNA barcoding in plants. We searched the available plastid genomes for the most variable regions and tested the best candidates using both a large number of tree species and seven well-sampled plant groups. Two regions of the plastid gene ycf1, ycf1a and ycf1b, were the most variable loci that were better than existing plastid candidate barcodes and can serve as a barcode of land plants. Primers were designed for the amplification of these regions, and the PCR success of these primers ranged from 82.80% to 98.17%. Of 420 tree species, 357 species could be distinguished using ycf1b, which was slightly better than the combination of matK and rbcL. For the well-sampled representative plant groups, ycf1b generally performed better than any of the matK, rbcL and trnH-psbA. We concluded that ycf1a or ycf1b is the most variable plastid genome region and can serve as a core barcode of land plants. PMID:25672218

  12. DNA barcoding and minibarcoding as a powerful tool for feather mite studies.

    PubMed

    Doña, Jorge; Diaz-Real, Javier; Mironov, Sergey; Bazaga, Pilar; Serrano, David; Jovani, Roger

    2015-09-01

    Feather mites (Astigmata: Analgoidea and Pterolichoidea) are among the most abundant and commonly occurring bird ectosymbionts. Basic questions on the ecology and evolution of feather mites remain unanswered because feather mite species identification is often only possible for adult males, and it is laborious even for specialized taxonomists, thus precluding large-scale identifications. Here, we tested DNA barcoding as a useful molecular tool to identify feather mites from passerine birds. Three hundred and sixty-one specimens of 72 species of feather mites from 68 species of European passerine birds from Russia and Spain were barcoded. The accuracy of barcoding and minibarcoding was tested. Moreover, threshold choice (a controversial issue in barcoding studies) was also explored in a new way, by calculating through simulations the effect of sampling effort (in species number and species composition) on threshold calculations. We found one 200-bp minibarcode region that showed the same accuracy as the full-length barcode (602 bp) and was surrounded by conserved regions potentially useful for group-specific degenerate primers. Species identification accuracy was perfect (100%) but decreased when singletons or species of the Proctophyllodes pinnatus group were included. In fact, barcoding confirmed previous taxonomic issues within the P. pinnatus group. Following an integrative taxonomy approach, we compared our barcode study with previous taxonomic knowledge on feather mites, discovering three new putative cryptic species and validating three previous morphologically different (but still undescribed) new species.

  13. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life

    PubMed Central

    Frandsen, Paul B.; Holzenthal, Ralph W.; Beet, Clare R.; Bennett, Kristi R.; Blahnik, Roger J.; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V.; Collins, Gemma E.; deWaard, Jeremy; Dean, John; Flint, Oliver S.; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D.; Kondratieff, Boris C.; Malicky, Hans; Milton, Megan A.; Morinière, Jérôme; Morse, John C.; Mwangi, François Ngera; Pauls, Steffen U.; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L.; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A.; Zamora-Muñoz, Carmen; Ziesmann, Tanja

    2016-01-01

    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481793

  14. Testing DNA barcoding in closely related groups of Lysimachia L. (Myrsinaceae).

    PubMed

    Zhang, Cai-Yun; Wang, Feng-Ying; Yan, Hai-Fei; Hao, Gang; Hu, Chi-Ming; Ge, Xue-Jun

    2012-01-01

    It has been suggested that rbcL and matK are the core barcodes in plants, but they are not powerful enough to distinguish between closely related plant groups. Additional barcodes need to be evaluated to improve the level of discrimination between plant species. Because of their well-studied taxonomy and extreme diversity, we used Chinese Lysimachia (Myrsinaceae) species to test the performance of core barcodes (rbcL and matK) and two additional candidate barcodes (trnH-psbA and the nuclear ribosomal ITS); 97 accessions from four subgenus representing 34 putative Lysimachia species were included in this study. And many closely related species pairs in subgen. Lysimachia were covered to detect their discriminatory power. The inefficiency of rbcL and matK alone or combined in closely related plant groups was validated in this study. TrnH-psbA combined with rbcL + matK did not yet perform well in Lysimachia groups. In contrast, ITS, alone or combined with rbcL and/or matK, revealed high resolving ability in Lysimachia. We support ITS as a supplementary barcode on the basis of core barcode rbcL and matK. Besides, this study also illustrates several mistakes or underlying evolutionary events in Lysimachia detected by DNA barcoding. PMID:21967641

  15. Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe

    PubMed Central

    Dincă, Vlad; Zakharov, Evgeny V.; Hebert, Paul D. N.; Vila, Roger

    2011-01-01

    DNA barcoding aims to accelerate species identification and discovery, but performance tests have shown marked differences in identification success. As a consequence, there remains a great need for comprehensive studies which objectively test the method in groups with a solid taxonomic framework. This study focuses on the 180 species of butterflies in Romania, accounting for about one third of the European butterfly fauna. This country includes five eco-regions, the highest of any in the European Union, and is a good representative for temperate areas. Morphology and DNA barcodes of more than 1300 specimens were carefully studied and compared. Our results indicate that 90 per cent of the species form barcode clusters allowing their reliable identification. The remaining cases involve nine closely related species pairs, some whose taxonomic status is controversial or that hybridize regularly. Interestingly, DNA barcoding was found to be the most effective identification tool, outperforming external morphology, and being slightly better than male genitalia. Romania is now the first country to have a comprehensive DNA barcode reference database for butterflies. Similar barcoding efforts based on comprehensive sampling of specific geographical regions can act as functional modules that will foster the early application of DNA barcoding while a global system is under development. PMID:20702462

  16. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life.

    PubMed

    Zhou, Xin; Frandsen, Paul B; Holzenthal, Ralph W; Beet, Clare R; Bennett, Kristi R; Blahnik, Roger J; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V; Collins, Gemma E; deWaard, Jeremy; Dean, John; Flint, Oliver S; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D; Kondratieff, Boris C; Malicky, Hans; Milton, Megan A; Morinière, Jérôme; Morse, John C; Mwangi, François Ngera; Pauls, Steffen U; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A; Zamora-Muñoz, Carmen; Ziesmann, Tanja; Kjer, Karl M

    2016-09-01

    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between 'Barcode Index Numbers' (BINs) and 'species' that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description.This article is part of the themed issue 'From DNA barcodes to biomes'.

  17. A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects

    PubMed Central

    Webb, Jeffrey M.; Jacobus, Luke M.; Funk, David H.; Zhou, Xin; Kondratieff, Boris; Geraci, Christy J.; DeWalt, R. Edward; Baird, Donald J.; Richard, Barton; Phillips, Iain; Hebert, Paul D. N.

    2012-01-01

    DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3–24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species. PMID:22666447

  18. Identification through DNA barcoding of Tabanidae (Diptera) vectors of surra disease in India.

    PubMed

    Banerjee, Dhriti; Kumar, Vikas; Maity, Aniruddha; Ghosh, Biswatosh; Tyagi, Kaomud; Singha, Devkant; Kundu, Shantanu; Laskar, Boni Amin; Naskar, Atanu; Rath, Shibananda

    2015-10-01

    Horse flies and deer flies are common names applied to members of the family Tabanidae (Diptera). Tabanid flies are pestiferous and of veterinary and medical importance, with about 244 species in India. They are major vectors of Trypanosoma evansi that causes trypanosomiasis (surra disease). Lack of stable morphological characters, and scarcity of taxonomic expertise, is major impediments for accurate species identification of these important pest and disease vectors. Molecular data, especially DNA barcode data, has been widely used in the identification of Diptera of economic importance. We evaluated the utility of DNA barcode data to discriminate the vectors of surra disease (trypanosomiasis) from India. We used barcode gap and reciprocal monophyly (neighbor-joining and Bayesian tree) criteria to analyze barcode data. A total of 46 specimens belonging to 7 species under four genera in two subfamilies were used for this study. DNA barcode data was not available previously for these species. Analysis revealed that all morphologically identifiable species can be discriminated using DNA barcoding data. Further, our study clearly demonstrated the presence of cryptic species in Chrysops dispar. Moreover, we revealed that closely related species without stable taxonomic distinguishing characters in the "Tabanus striatus species complex" can be discriminated using DNA barcode data. PMID:26126785

  19. Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe.

    PubMed

    Dinca, Vlad; Zakharov, Evgeny V; Hebert, Paul D N; Vila, Roger

    2011-02-01

    DNA barcoding aims to accelerate species identification and discovery, but performance tests have shown marked differences in identification success. As a consequence, there remains a great need for comprehensive studies which objectively test the method in groups with a solid taxonomic framework. This study focuses on the 180 species of butterflies in Romania, accounting for about one third of the European butterfly fauna. This country includes five eco-regions, the highest of any in the European Union, and is a good representative for temperate areas. Morphology and DNA barcodes of more than 1300 specimens were carefully studied and compared. Our results indicate that 90 per cent of the species form barcode clusters allowing their reliable identification. The remaining cases involve nine closely related species pairs, some whose taxonomic status is controversial or that hybridize regularly. Interestingly, DNA barcoding was found to be the most effective identification tool, outperforming external morphology, and being slightly better than male genitalia. Romania is now the first country to have a comprehensive DNA barcode reference database for butterflies. Similar barcoding efforts based on comprehensive sampling of specific geographical regions can act as functional modules that will foster the early application of DNA barcoding while a global system is under development.

  20. Accuracy and time requirements of a bar-code inventory system for medical supplies.

    PubMed

    Hanson, L B; Weinswig, M H; De Muth, J E

    1988-02-01

    The effects of implementing a bar-code system for issuing medical supplies to nursing units at a university teaching hospital were evaluated. Data on the time required to issue medical supplies to three nursing units at a 480-bed, tertiary-care teaching hospital were collected (1) before the bar-code system was implemented (i.e., when the manual system was in use), (2) one month after implementation, and (3) four months after implementation. At the same times, the accuracy of the central supply perpetual inventory was monitored using 15 selected items. One-way analysis of variance tests were done to determine any significant differences between the bar-code and manual systems. Using the bar-code system took longer than using the manual system because of a significant difference in the time required for order entry into the computer. Multiple-use requirements of the central supply computer system made entering bar-code data a much slower process. There was, however, a significant improvement in the accuracy of the perpetual inventory. Using the bar-code system for issuing medical supplies to the nursing units takes longer than using the manual system. However, the accuracy of the perpetual inventory was significantly improved with the implementation of the bar-code system.

  1. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life.

    PubMed

    Zhou, Xin; Frandsen, Paul B; Holzenthal, Ralph W; Beet, Clare R; Bennett, Kristi R; Blahnik, Roger J; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V; Collins, Gemma E; deWaard, Jeremy; Dean, John; Flint, Oliver S; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D; Kondratieff, Boris C; Malicky, Hans; Milton, Megan A; Morinière, Jérôme; Morse, John C; Mwangi, François Ngera; Pauls, Steffen U; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A; Zamora-Muñoz, Carmen; Ziesmann, Tanja; Kjer, Karl M

    2016-09-01

    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between 'Barcode Index Numbers' (BINs) and 'species' that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481793

  2. DNA barcoding of freshwater rotifera in Mexico: evidence of cryptic speciation in common rotifers.

    PubMed

    García-Morales, A E; Elías-Gutiérrez, M

    2013-11-01

    DNA barcodes are useful tools to identify and discover new species in a wide range of taxa. Here, we report the first barcode study of monogonont rotifers from fresh and brackish waters in Mexico, and discuss the taxonomic implications of this work. We used DNA barcodes based on the sequence of cytochrome oxidase I to examine patterns of divergence among 417 specimens that represented 63 morphological taxa of rotifers. The mean sequence divergence among conspecific rotifer individuals was 0.75%, whereas the mean sequence divergence among congeneric taxa was 20.8%. The barcodes could discriminate between all the morphospecies identified. Moreover, the barcoding data revealed the presence of possible cryptic species in Ascomorpha ovalis, Lecane bulla, L. cornuta, L. curvicornis, L. crepida, L. lunaris, L. hastata, Platyias quadricornis, Keratella cochlearis, Brachionus calyciflorus and Testudinella patina, as well as in some forms and varieties such as B. quadridentatus f. brevispinus, B. quadridentatus f. cluniorbicularis and Mytilina ventralis var. macracantha. Barcode analysis also enabled some forms and varieties of common species to be identified as separate species. The results obtained support recent taxonomic revisions, such as the recognition of the genus Plationus, and the presence of cryptic speciation in L. bulla. This work shows that DNA barcoding identifies species effectively, can aid taxonomists by identifying cryptic species, and is an important tool for resolving taxonomic controversies.

  3. Potential use of DNA barcodes in regulatory science: applications of the Regulatory Fish Encyclopedia.

    PubMed

    Yancy, Haile F; Zemlak, Tyler S; Mason, Jacquline A; Washington, Jewell D; Tenge, Bradley J; Nguyen, Ngoc-Lan T; Barnett, James D; Savary, Warren E; Hill, Walter E; Moore, Michelle M; Fry, Frederick S; Randolph, Spring C; Rogers, Patricia L; Hebert, Paul D N

    2008-01-01

    The use of a DNA-based identification system (DNA barcoding) founded on the mitochondrial gene cytochrome c oxidase subunit I (COI) was investigated for updating the U.S. Food and Drug Administration Regulatory Fish Encyclopedia (RFE; http://www.cfsan.fda.gov/-frf/rfe0.html). The RFE is a compilation of data used to identify fish species. It was compiled to help regulators identify species substitution that could result in potential adverse health consequences or could be a source of economic fraud. For each of many aquatic species commonly sold in the United States, the RFE includes high-resolution photographs of whole fish and their marketed product forms and species-specific biochemical patterns for authenticated fish species. These patterns currently include data from isoelectric focusing studies. In this article, we describe the generation of DNA barcodes for 172 individual authenticated fish representing 72 species from 27 families contained in the RFE. These barcode sequences can be used as an additional identification resource. In a blind study, 60 unknown fish muscle samples were barcoded, and the results were compared with the RFE barcode reference library. All 60 samples were correctly identified to species based on the barcoding data. Our study indicates that DNA barcoding can be a powerful tool for species identification and has broad potential applications.

  4. The Hemiptera (Insecta) of Canada: Constructing a Reference Library of DNA Barcodes

    PubMed Central

    Gwiazdowski, Rodger A.; Foottit, Robert G.; Maw, H. Eric L.; Hebert, Paul D. N.

    2015-01-01

    DNA barcode reference libraries linked to voucher specimens create new opportunities for high-throughput identification and taxonomic re-evaluations. This study provides a DNA barcode library for about 45% of the recognized species of Canadian Hemiptera, and the publically available R workflow used for its generation. The current library is based on the analysis of 20,851 specimens including 1849 species belonging to 628 genera and 64 families. These individuals were assigned to 1867 Barcode Index Numbers (BINs), sequence clusters that often coincide with species recognized through prior taxonomy. Museum collections were a key source for identified specimens, but we also employed high-throughput collection methods that generated large numbers of unidentified specimens. Many of these specimens represented novel BINs that were subsequently identified by taxonomists, adding barcode coverage for additional species. Our analyses based on both approaches includes 94 species not listed in the most recent Canadian checklist, representing a potential 3% increase in the fauna. We discuss the development of our workflow in the context of prior DNA barcode library construction projects, emphasizing the importance of delineating a set of reference specimens to aid investigations in cases of nomenclatural and DNA barcode discordance. The identification for each specimen in the reference set can be annotated on the Barcode of Life Data System (BOLD), allowing experts to highlight questionable identifications; annotations can be added by any registered user of BOLD, and instructions for this are provided. PMID:25923328

  5. Identification of bovine embryos cultured in groups by attachment of barcodes to the zona pellucida.

    PubMed

    Novo, Sergi; Morató, Roser; Penon, Oriol; Duran, Sara; Barrios, Leonardo; Nogués, Carme; Plaza, José Antonio; Pérez-García, Luisa; Mogas, Teresa; Ibáñez, Elena

    2014-06-01

    The low number of oocytes collected from unstimulated donors by ovum pick-up means that embryos produced from each individual female have to be cultured individually or in very small groups. However, it has been demonstrated that single-embryo culture is less efficient than embryo culture in groups. To overcome this limitation, we developed a direct embryo-tagging system, which allows the collective culture of embryos from different origins whilst preserving their pedigree. Presumptive bovine zygotes were tagged with eight wheat-germ agglutinin biofunctionalised polysilicon barcodes attached to the outer surface of the zona pellucida (ZP). Four different barcodes were used to encode groups of 20-25 embryos, which were then cultured in the same drop. Cleavage, Day-7 and Day-8 blastocysts and barcode retention rates were assessed. In addition, Day-7 blastocysts were vitrified and warmed. Barcode attachment to the ZP of bovine embryos affected neither in vitro embryo development nor post-warming survival of the tagged embryos. All the embryos maintained barcodes attached until Day 8 of culture (3.63±0.37 barcodes per embryo) and could be identified. In conclusion, identification of embryos by barcodes attached to the ZP is feasible and will allow the culture of embryos from different donors in the same drop.

  6. ycf1, the most promising plastid DNA barcode of land plants

    PubMed Central

    Dong, Wenpan; Xu, Chao; Li, Changhao; Sun, Jiahui; Zuo, Yunjuan; Shi, Shuo; Cheng, Tao; Guo, Junjie; Zhou, Shiliang

    2015-01-01

    A DNA barcode is a DNA fragment used to identify species. For land plants, DNA fragments of plastid genome could be the primary consideration. Unfortunately, most of the plastid candidate barcodes lack species-level resolution. The identification of DNA barcodes of high resolution at species level is critical to the success of DNA barcoding in plants. We searched the available plastid genomes for the most variable regions and tested the best candidates using both a large number of tree species and seven well-sampled plant groups. Two regions of the plastid gene ycf1, ycf1a and ycf1b, were the most variable loci that were better than existing plastid candidate barcodes and can serve as a barcode of land plants. Primers were designed for the amplification of these regions, and the PCR success of these primers ranged from 82.80% to 98.17%. Of 420 tree species, 357 species could be distinguished using ycf1b, which was slightly better than the combination of matK and rbcL. For the well-sampled representative plant groups, ycf1b generally performed better than any of the matK, rbcL and trnH-psbA. We concluded that ycf1a or ycf1b is the most variable plastid genome region and can serve as a core barcode of land plants. PMID:25672218

  7. National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China.

    PubMed

    Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming

    2016-01-01

    Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7-99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9-99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines. PMID:27603206

  8. National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China.

    PubMed

    Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming

    2016-01-01

    Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7-99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9-99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines.

  9. National Prociency Testing Result of CYP2D6*10 Genotyping for Adjuvant Tamoxifen Therapy in China

    PubMed Central

    Lin, Guigao; Zhang, Kuo; Yi, Lang; Han, Yanxi; Xie, Jiehong; Li, Jinming

    2016-01-01

    Tamoxifen has been successfully used for treating breast cancer and preventing cancer recurrence. Cytochrome P450 2D6 (CYP2D6) plays a key role in the process of metabolizing tamoxifen to its active moiety, endoxifen. Patients with variants of the CYP2D6 gene may not receive the full benefit of tamoxifen treatment. The CYP2D6*10 variant (the most common variant in Asians) was analyzed to optimize the prescription of tamoxifen in China. To ensure referring clinicians have accurate information for genotype-guided tamoxifen treatment, the Chinese National Center for Clinical Laboratories (NCCL) organized a national proficiency testing (PT) to evaluate the performance of laboratories providing CYP2D6*10 genotyping. Ten genomic DNA samples with CYP2D6 wild-type or CYP2D6*10 variants were validated by PCR-sequencing and sent to 28 participant laboratories. The genotyping results and pharmacogenomic test reports were submitted and evaluated by NCCL experts. Additional information regarding the number of samples tested, the accreditation/certification status, and detecting technology was also requested. Thirty-one data sets were received, with a corresponding analytical sensitivity of 98.2% (548/558 challenges; 95% confidence interval: 96.7–99.1%) and an analytic specificity of 96.5% (675/682; 95% confidence interval: 97.9–99.5%). Overall, 25/28 participants correctly identified CYP2D6*10 status in 10 samples; however, two laboratories made serious genotyping errors. Most of the essential information was included in the 20 submitted CYP2D6*10 test reports. The majority of Chinese laboratories are reliable for detecting the CYP2D6*10 variant; however, several issues revealed in this study underline the importance of PT schemes in continued external assessment and provision of guidelines. PMID:27603206

  10. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation.

    PubMed

    Buchheim, Jakob; Wyss, Roman M; Shorubalko, Ivan; Park, Hyung Gyu

    2016-04-21

    We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He(+) and Ga(+) irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He(+) at high energies (10-30 keV) allowing the passage of >97% He(+) particles without creating destructive lattice vacancy. Large Ga(+) ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ∼50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He(+) ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration.

  11. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity.

    PubMed

    Janzen, Daniel H; Hallwachs, Winnie; Blandin, Patrick; Burns, John M; Cadiou, Jean-Marie; Chacon, Isidro; Dapkey, Tanya; Deans, Andrew R; Epstein, Marc E; Espinoza, Bernardo; Franclemont, John G; Haber, William A; Hajibabaei, Mehrdad; Hall, Jason P W; Hebert, Paul D N; Gauld, Ian D; Harvey, Donald J; Hausmann, Axel; Kitching, Ian J; Lafontaine, Don; Landry, Jean-François; Lemaire, Claude; Miller, Jacqueline Y; Miller, James S; Miller, Lee; Miller, Scott E; Montero, Jose; Munroe, Eugene; Green, Suzanne Rab; Ratnasingham, Sujeevan; Rawlins, John E; Robbins, Robert K; Rodriguez, Josephine J; Rougerie, Rodolphe; Sharkey, Michael J; Smith, M Alex; Solis, M Alma; Sullivan, J Bolling; Thiaucourt, Paul; Wahl, David B; Weller, Susan J; Whitfield, James B; Willmott, Keith R; Wood, D Monty; Woodley, Norman E; Wilson, John J

    2009-05-01

    Inventory of the caterpillars, their food plants and parasitoids began in 1978 for today's Area de Conservacion Guanacaste (ACG), in northwestern Costa Rica. This complex mosaic of 120 000 ha of conserved and regenerating dry, cloud and rain forest over 0-2000 m elevation contains at least 10 000 species of non-leaf-mining caterpillars used by more than 5000 species of parasitoids. Several hundred thousand specimens of ACG-reared adult Lepidoptera and parasitoids have been intensively and extensively studied morphologically by many taxonomists, including most of the co-authors. DNA barcoding - the use of a standardized short mitochondrial DNA sequence to identify specimens and flush out undisclosed species - was added to the taxonomic identification process in 2003. Barcoding has been found to be extremely accurate during the identification of about 100 000 specimens of about 3500 morphologically defined species of adult moths, butterflies, tachinid flies, and parasitoid wasps. Less than 1% of the species have such similar barcodes that a molecularly based taxonomic identification is impossible. No specimen with a full barcode was misidentified when its barcode was compared with the barcode library. Also as expected from early trials, barcoding a series from all morphologically defined species, and correlating the morphological, ecological and barcode traits, has revealed many hundreds of overlooked presumptive species. Many but not all of these cryptic species can now be distinguished by subtle morphological and/or ecological traits previously ascribed to 'variation' or thought to be insignificant for species-level recognition. Adding DNA barcoding to the inventory has substantially improved the quality and depth of the inventory, and greatly multiplied the number of situations requiring further taxonomic work for resolution.

  12. Mosquitoes of eastern Amazonian Ecuador: biodiversity, bionomics and barcodes.

    PubMed

    Linton, Yvonne-Marie; Pecor, James E; Porter, Charles H; Mitchell, Luke Brett; Garzón-Moreno, Andrés; Foley, Desmond H; Pecor, David Brooks; Wilkerson, Richard C

    2013-01-01

    Two snapshot surveys to establish the diversity and ecological preferences of mosquitoes (Diptera: Culicidae) in the terra firme primary rain forest surrounding the Tiputini Biodiversity Station in the UNESCO Yasuní Biosphere Reserve of eastern Amazonian Ecuador were carried out in November 1998 and May 1999. The mosquito fauna of this region is poorly known; the focus of this study was to obtain high quality link-reared specimens that could be used to unequivocally confirm species level diversity through integrated systematic study of all life stages and DNA sequences. A total of 2,284 specimens were preserved; 1,671 specimens were link-reared with associated immature exuviae, all but 108 of which are slide mounted. This study identified 68 unique taxa belonging to 17 genera and 27 subgenera. Of these, 12 are new to science and 37 comprise new country records. DNA barcodes [658-bp of the mtDNA cytochrome c oxidase (COI) I gene] are presented for 58 individuals representing 20 species and nine genera. DNA barcoding proved useful in uncovering and confirming new species and we advocate an integrated systematics approach to biodiversity studies in future. Associated bionomics of all species collected are discussed. An updated systematic checklist of the mosquitoes of Ecuador (n=179) is presented for the first time in 60 years.

  13. DNA barcodes identify Central Asian Colias butterflies (Lepidoptera, Pieridae)

    PubMed Central

    Laiho, Juha; Ståhls, Gunilla

    2013-01-01

    Abstract A majority of the known Colias species (Lepidoptera: Pieridae, Coliadinae) occur in the mountainous regions of Central-Asia, vast areas that are hard to access, rendering the knowledge of many species limited due to the lack of extensive sampling. Two gene regions, the mitochondrial COI ‘barcode’ region and the nuclear ribosomal protein RpS2 gene region were used for exploring the utility of these DNA markers for species identification. A comprehensive sampling of COI barcodes for Central Asian Colias butterflies showed that the barcodes facilitated identification of most of the included species. Phylogenetic reconstruction based on parsimony and Neighbour-Joining recovered most species as monophyletic entities. For the RpS2 gene region species-specific sequences were registered for some of the included Colias spp. Nevertheless, this gene region was not deemed useful as additional molecular ‘barcode’. A parsimony analysis of the combined COI and RpS2 data did not support the current subgeneric classification based on morphological characteristics. PMID:24453557

  14. DNA barcoding in amoebozoa and challenges: the example of Cochliopodium.

    PubMed

    Tekle, Yonas I

    2014-08-01

    The diversity of microbial eukaryotes in general and amoeboid lineages in particular is poorly documented. Even though amoeboid lineages are among the most abundant microbes, taxonomic progress in the group has been hindered by the limitations of traditional taxonomy and technical difficultly in studying them. Studies using molecular approaches such as DNA barcoding with cytochrome oxidase I (COI) gene are slowly trickling in for Amoebozoa, and they hopefully will aid in unveiling the true diversity of the group. In this study a retrospective approach is used to test the utility of COI gene in a scale-bearing amoeba, Cochliopodium, which is morphologically well defined. A total of 126 COI sequences and 62 unique haplotypes were generated from 9 Cochliopodium species. Extensive analyses exploring effects of sequence evolution models and length of sequence on genetic diversity computations were conducted. The findings show that COI is a promising marker for Cochliopodium, except in one case where it failed to delineate two morphologically well-defined cochliopodiums. Two species delimitation approaches also recognize 8 genetic lineages out of 9 species examined. The taxonomic implications of these findings and factors that may confound COI as a barcode marker in Cochliopodium and other amoebae are discussed.

  15. Bio-barcode gel assay for microRNA

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min

    2014-02-01

    MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.

  16. Imagining Sisyphus happy: DNA barcoding and the unnamed majority

    PubMed Central

    2016-01-01

    The vast majority of life on the Earth is physically small, and is classifiable as micro- or meiobiota. These organisms are numerically dominant and it is likely that they are also abundantly speciose. By contrast, the vast majority of taxonomic effort has been expended on ‘charismatic megabionts’: larger organisms where a wealth of morphology has facilitated Linnaean species definition. The hugely successful Linnaean project is unlikely to be extensible to the totality of approximately 10 million species in a reasonable time frame and thus alternative toolkits and methodologies need to be developed. One such toolkit is DNA barcoding, particularly in its metabarcoding or metagenetics mode, where organisms are identified purely by the presence of a diagnostic DNA sequence in samples that are not processed for morphological identification. Building on secure Linnaean foundations, classification of unknown (and unseen) organisms to molecular operational taxonomic units (MOTUs) and deployment of these MOTUs in biodiversity science promises a rewarding resolution to the Sisyphean task of naming all the world's species. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481781

  17. DNA barcoding as a tool for coral reef conservation

    NASA Astrophysics Data System (ADS)

    Neigel, J.; Domingo, A.; Stake, J.

    2007-09-01

    DNA Barcoding (DBC) is a method for taxonomic identification of animals that is based entirely on the 5' portion of the mitochondrial gene, cytochrome oxidase subunit I ( COI-5). It can be especially useful for identification of larval forms or incomplete specimens lacking diagnostic morphological characters. DBC can also facilitate the discovery of species and in defining “molecular taxonomic units” in problematic groups. However, DBC is not a panacea for coral reef taxonomy. In two of the most ecologically important groups on coral reefs, the Anthozoa and Porifera, COI-5 sequences have diverged too little to be diagnostic for all species. Other problems for DBC include paraphyly in mitochondrial gene trees and lack of differentiation between hybrids and their maternal ancestors. DBC also depends on the availability of databases of COI-5 sequences, which are still in early stages of development. A global effort to barcode all fish species has demonstrated the importance of large-scale coordination and is yielding promising results. Whether or not COI-5 by itself is sufficient for species assignments has become a contentious question; it is generally advantageous to use sequences from multiple loci.

  18. Imagining Sisyphus happy: DNA barcoding and the unnamed majority.

    PubMed

    Blaxter, Mark

    2016-09-01

    The vast majority of life on the Earth is physically small, and is classifiable as micro- or meiobiota. These organisms are numerically dominant and it is likely that they are also abundantly speciose. By contrast, the vast majority of taxonomic effort has been expended on 'charismatic megabionts': larger organisms where a wealth of morphology has facilitated Linnaean species definition. The hugely successful Linnaean project is unlikely to be extensible to the totality of approximately 10 million species in a reasonable time frame and thus alternative toolkits and methodologies need to be developed. One such toolkit is DNA barcoding, particularly in its metabarcoding or metagenetics mode, where organisms are identified purely by the presence of a diagnostic DNA sequence in samples that are not processed for morphological identification. Building on secure Linnaean foundations, classification of unknown (and unseen) organisms to molecular operational taxonomic units (MOTUs) and deployment of these MOTUs in biodiversity science promises a rewarding resolution to the Sisyphean task of naming all the world's species.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481781

  19. DNA barcoding of marine ornamental fishes from India.

    PubMed

    Bamaniya, Dhaval C; Pavan-Kumar, A; Gireesh-Babu, P; Sharma, Niti; Reang, Dhalongsaih; Krishna, Gopal; Lakra, W S

    2016-09-01

    India has rich marine ornamental fish diversity with 400 fish species distributed in Gulf of Munnar/Palk Bay, Gulf of Kutch, and in reefs around Andaman & Nicobar and Lakshadweep Islands. Marine ornamental fish identification at the field level is very difficult because of their high diversity and profound changes in appearance during their developmental stages and camouflage. To facilitate ornamental fish trading with ease and in compliance with the biodiversity act, DNA barcoding technique could be used to accurately identify species. In this study, DNA barcodes were generated for 31 species of commercially important marine ornamental fishes from India. The average genetic distance (K2P model) within species, genus, and family was 0.446, 13.08, and 20.09%, respectively. Intraspecific variation has increased several folds (15-20 times) after including conspecific sequences from different geographical locations. The presence of allopatric lineages/cryptic species was observed in the Indo-pacific region. The NJ tree constructed based on K2P values showed distinct clusters shared by congeneric species specific to populations.

  20. DNA barcoding of marine ornamental fishes from India.

    PubMed

    Bamaniya, Dhaval C; Pavan-Kumar, A; Gireesh-Babu, P; Sharma, Niti; Reang, Dhalongsaih; Krishna, Gopal; Lakra, W S

    2016-09-01

    India has rich marine ornamental fish diversity with 400 fish species distributed in Gulf of Munnar/Palk Bay, Gulf of Kutch, and in reefs around Andaman & Nicobar and Lakshadweep Islands. Marine ornamental fish identification at the field level is very difficult because of their high diversity and profound changes in appearance during their developmental stages and camouflage. To facilitate ornamental fish trading with ease and in compliance with the biodiversity act, DNA barcoding technique could be used to accurately identify species. In this study, DNA barcodes were generated for 31 species of commercially important marine ornamental fishes from India. The average genetic distance (K2P model) within species, genus, and family was 0.446, 13.08, and 20.09%, respectively. Intraspecific variation has increased several folds (15-20 times) after including conspecific sequences from different geographical locations. The presence of allopatric lineages/cryptic species was observed in the Indo-pacific region. The NJ tree constructed based on K2P values showed distinct clusters shared by congeneric species specific to populations. PMID:25703851

  1. Mosquitoes of eastern Amazonian Ecuador: biodiversity, bionomics and barcodes

    PubMed Central

    Linton, Yvonne-Marie; Pecor, James E; Porter, Charles H; Mitchell, Luke Brett; Garzón-Moreno, Andrés; Foley, Desmond H; Pecor, David Brooks; Wilkerson, Richard C

    2013-01-01

    Two snapshot surveys to establish the diversity and ecological preferences of mosquitoes (Diptera: Culicidae) in the terra firme primary rain forest surrounding the Tiputini Biodiversity Station in the UNESCO Yasuní Biosphere Reserve of eastern Amazonian Ecuador were carried out in November 1998 and May 1999. The mosquito fauna of this region is poorly known; the focus of this study was to obtain high quality link-reared specimens that could be used to unequivocally confirm species level diversity through integrated systematic study of all life stages and DNA sequences. A total of 2,284 specimens were preserved; 1,671 specimens were link-reared with associated immature exuviae, all but 108 of which are slide mounted. This study identified 68 unique taxa belonging to 17 genera and 27 subgenera. Of these, 12 are new to science and 37 comprise new country records. DNA barcodes [658-bp of the mtDNA cytochrome c oxidase ( COI ) I gene] are presented for 58 individuals representing 20 species and nine genera. DNA barcoding proved useful in uncovering and confirming new species and we advocate an integrated systematics approach to biodiversity studies in future. Associated bionomics of all species collected are discussed. An updated systematic checklist of the mosquitoes of Ecuador (n = 179) is presented for the first time in 60 years. PMID:24473809

  2. Identification of Fabaceae plants using the DNA barcode matK.

    PubMed

    Gao, Ting; Sun, Zhiying; Yao, Hui; Song, Jingyuan; Zhu, Yingjie; Ma, Xinye; Chen, Shilin

    2011-01-01

    In this study, we tested the applicability of the core DNA barcode MATK for identifying species within the Fabaceae family. Based on an evaluation of genetic variation, DNA barcoding gaps, and species discrimination power, MATK is a useful barcode for Fabaceae species. Of 1355 plant samples collected from 1079 species belonging to 409 diverse genera, MATK precisely identified approximately 80 % and 96 % of them at the species and genus levels, respectively. Therefore, our research indicates that the MATK region is a valuable marker for plant species within Fabaceae.

  3. Using DNA Barcoding to Assess Caribbean Reef Fish Biodiversity: Expanding Taxonomic and Geographic Coverage

    PubMed Central

    Weigt, Lee A.; Baldwin, Carole C.; Driskell, Amy; Smith, David G.; Ormos, Andrea; Reyier, Eric A.

    2012-01-01

    This paper represents a DNA barcode data release for 3,400 specimens representing 521 species of fishes from 6 areas across the Caribbean and western central Atlantic regions (FAO Region 31). Merged with our prior published data, the combined efforts result in 3,964 specimens representing 572 species of marine fishes and constitute one of the most comprehensive DNA barcoding “coverages” for a region reported to date. The barcode data are providing new insights into Caribbean shorefish diversity, allowing for more and more accurate DNA-based identifications of larvae, juveniles, and unknown specimens. Examples are given correcting previous work that was erroneous due to database incompleteness. PMID:22815912

  4. Alignment-free analysis of barcode sequences by means of compression-based methods

    PubMed Central

    2013-01-01

    Background The key idea of DNA barcode initiative is to identify, for each group of species belonging to different kingdoms of life, a short DNA sequence that can act as a true taxon barcode. DNA barcode represents a valuable type of information that can be integrated with ecological, genetic, and morphological data in order to obtain a more consistent taxonomy. Recent studies have shown that, for the animal kingdom, the mitochondrial gene cytochrome c oxidase I (COI), about 650 bp long, can be used as a barcode sequence for identification and taxonomic purposes of animals. In the present work we aims at introducing the use of an alignment-free approach in order to make taxonomic analysis of barcode sequences. Our approach is based on the use of two compression-based versions of non-computable Universal Similarity Metric (USM) class of distances. Our purpose is to justify the employ of USM also for the analysis of short DNA barcode sequences, showing how USM is able to correctly extract taxonomic information among those kind of sequences. Results We downloaded from Barcode of Life Data System (BOLD) database 30 datasets of barcode sequences belonging to different animal species. We built phylogenetic trees of every dataset, according to compression-based and classic evolutionary methods, and compared them in terms of topology preservation. In the experimental tests, we obtained scores with a percentage of similarity between evolutionary and compression-based trees between 80% and 100% for the most of datasets (94%). Moreover we carried out experimental tests using simulated barcode datasets composed of 100, 150, 200 and 500 sequences, each simulation replicated 25-fold. In this case, mean similarity scores between evolutionary and compression-based trees span between 83% and 99% for all simulated datasets. Conclusions In the present work we aims at introducing the use of an alignment-free approach in order to make taxonomic analysis of barcode sequences. Our

  5. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    NASA Astrophysics Data System (ADS)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  6. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide

    NASA Astrophysics Data System (ADS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Bredenbeck, Jens

    2015-06-01

    We demonstrate the coupling of ultrafast two-dimensional infrared (2D-IR) spectroscopy to electrochemistry in solution and apply it to flavin mononucleotide, an important cofactor of redox proteins. For this purpose, we designed a spectroelectrochemical cell optimized for 2D-IR measurements in reflection and measured the time-dependent 2D-IR spectra of the oxidized and reduced forms of flavin mononucleotide. The data show anharmonic coupling and vibrational energy transfer between different vibrational modes in the two redox species. Such information is inaccessible with redox-controlled steady-state FTIR spectroscopy. The wide range of applications offered by 2D-IR spectroscopy, such as sub-picosecond structure determination, IR band assignment via energy transfer, disentangling reaction mixtures through band connectivity in the 2D spectra, and the measurement of solvation dynamics and chemical exchange can now be explored under controlled redox potential. The development of this technique furthermore opens new horizons for studying the dynamics of redox proteins.

  7. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide.

    PubMed

    El Khoury, Youssef; Van Wilderen, Luuk J G W; Bredenbeck, Jens

    2015-06-01

    We demonstrate the coupling of ultrafast two-dimensional infrared (2D-IR) spectroscopy to electrochemistry in solution and apply it to flavin mononucleotide, an important cofactor of redox proteins. For this purpose, we designed a spectroelectrochemical cell optimized for 2D-IR measurements in reflection and measured the time-dependent 2D-IR spectra of the oxidized and reduced forms of flavin mononucleotide. The data show anharmonic coupling and vibrational energy transfer between different vibrational modes in the two redox species. Such information is inaccessible with redox-controlled steady-state FTIR spectroscopy. The wide range of applications offered by 2D-IR spectroscopy, such as sub-picosecond structure determination, IR band assignment via energy transfer, disentangling reaction mixtures through band connectivity in the 2D spectra, and the measurement of solvation dynamics and chemical exchange can now be explored under controlled redox potential. The development of this technique furthermore opens new horizons for studying the dynamics of redox proteins.

  8. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  9. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  10. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  11. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling.

    PubMed

    Shang, Yuqin; Zeng, Yun; Zeng, Yong

    2016-01-01

    Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated "sample-to-answer" microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development. PMID:26831207

  12. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling

    PubMed Central

    Shang, Yuqin; Zeng, Yun; Zeng, Yong

    2016-01-01

    Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development. PMID:26831207

  13. An Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients

    NASA Astrophysics Data System (ADS)

    Ming, Kevin

    Integrating mobile-cellular devices with multiplex molecular diagnostics can potentially provide the most powerful platform for tracking, managing and preventing the transmission of infectious diseases. With over 6.9 billion subscriptions globally, handheld mobile-cellular devices can be programmed to spatially map, temporally track, and transmit information on infections over wide geographical space and boundaries. Current cell phone diagnostic technologies have poor limit of detection, dynamic range, and cannot detect multiple pathogen targets simultaneously, limiting their utility to single infections with high load. Here we combined recent advances in quantum dot barcode technology for molecular detection with smartphones to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We validated our device using a variety of synthetic genomic targets for the respiratory virus and blood-borne pathogens, and demonstrated that it could detect clinical samples after simple amplification. More importantly, we confirmed that the device is capable of detecting patients infected with a single or multiple infectious pathogens (e.g., HIV and hepatitis B) in a single test. This device advances the capacity for global surveillance of infectious diseases and has the potential to accelerate knowledge exchange-transfer of emerging or exigent disease threats with healthcare and military organizations in real-time.

  14. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  15. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  16. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  17. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  18. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  19. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. PMID:25965703

  20. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  1. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  2. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  3. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  4. EM 2dV1.0.F

    2012-01-05

    Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less

  5. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  6. Self-dual strings and 2D SYM

    NASA Astrophysics Data System (ADS)

    Hosomichi, Kazuo; Lee, Sungjay

    2015-01-01

    We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.

  7. Finite temperature corrections in 2d integrable models

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Hasenbusch, M.

    2002-09-01

    We study the finite size corrections for the magnetization and the internal energy of the 2d Ising model in a magnetic field by using transfer matrix techniques. We compare these corrections with the functional form recently proposed by Delfino and LeClair-Mussardo for the finite temperature behaviour of one-point functions in integrable 2d quantum field theories. We find a perfect agreement between theoretical expectations and numerical results. Assuming the proposed functional form as an input in our analysis we obtain a relevant improvement in the precision of the continuum limit estimates of both quantities.

  8. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  9. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  10. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  11. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    PubMed

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory. PMID:15278693

  12. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  13. Quantum process tomography by 2D fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  14. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  15. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.

    PubMed

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T; Engelsen, Søren B

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T(2)-D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T(2)-D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T(2)-D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D=3 x 10(-12) m(2) s(-1) and T(2)=180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D=10(-9) m(2) s(-1), T(2)=10 ms and D=3 x 10(-13) m(2) s(-1), T(2)=13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  16. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  17. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  18. Technology.

    ERIC Educational Resources Information Center

    Callison, Daniel

    2002-01-01

    Discussion of technology focuses on instructional technology. Topics include inquiry and technology; curriculum development; reflection and curriculum evaluation; criteria for technological innovations that will increase student motivation; standards; impact of new technologies on library media centers; software; and future trends. (LRW)

  19. Status and prospects of DNA barcoding in medically important parasites and vectors.

    PubMed

    Ondrejicka, Danielle A; Locke, Sean A; Morey, Kevin; Borisenko, Alex V; Hanner, Robert H

    2014-12-01

    For over 10 years, DNA barcoding has been used to identify specimens and discern species. Its potential benefits in parasitology were recognized early, but its utility and uptake remain unclear. Here we review studies using DNA barcoding in parasites and vectors affecting humans and find that the technique is accurate (accords with author identifications based on morphology or other markers) in 94-95% of cases, although aspects of DNA barcoding (vouchering, marker implicated) have often been misunderstood. In a newly compiled checklist of parasites, vectors, and hazards, barcodes are available for 43% of all 1403 species and for more than half of 429 species of greater medical importance. This is encouraging coverage that would improve with an active campaign targeting parasites and vectors.

  20. Efficient Bar-Code Watermark System to Protectagricultural Products Information Andcopyright

    NASA Astrophysics Data System (ADS)

    Deng, Lin; Wen, Xiaoming

    In order to protect agricultural product information and copyright, this paper proposes an efficient bar-code watermark system with digital signature. The proposed system adopts digital signature to prevent a buyer from unauthorized copies and to prevent a seller from forged unauthorized copies. The proposed system also encodes the signature with bar-code and embeds the bar-code image into the original image. As long as the similarity of watermark extracts from the damaged image over a threshold, the signature can be fully recovered. It is a novel idea to bring the bar-code concept into watermark system to protect agricultural product information and copyright. Detailed simulation results show that the proposed system gets much better results than that with error correcting code scheme, and prove that the proposed system can protect agricultural product information and copyright effectively.