Science.gov

Sample records for 2d cell cultures

  1. Quantitative Proteomic and Phosphoproteomic Comparison of 2D and 3D Colon Cancer Cell Culture Models.

    PubMed

    Yue, Xiaoshan; Lukowski, Jessica K; Weaver, Eric M; Skube, Susan B; Hummon, Amanda B

    2016-12-02

    Cell cultures are widely used model systems. Some immortalized cell lines can be grown in either two-dimensional (2D) adherent monolayers or in three-dimensional (3D) multicellular aggregates, or spheroids. Here, the quantitative proteome and phosphoproteome of colon carcinoma HT29 cells cultures in 2D monolayers and 3D spheroids were compared with a stable isotope labeling of amino acids (SILAC) labeling strategy. Two biological replicates from each sample were examined, and notable differences in both the proteome and the phosphoproteome were determined by nanoliquid chromatography tandem mass spectrometry (LC-MS/MS) to assess how growth configuration affects molecular expression. A total of 5867 protein groups, including 2523 phosphoprotein groups and 8733 phosphopeptides were identified in the samples. The Gene Ontology analysis revealed enriched GO terms in the 3D samples for RNA binding, nucleic acid binding, enzyme binding, cytoskeletal protein binding, and histone binding for their molecular functions (MF) and in the process of cell cycle, cytoskeleton organization, and DNA metabolic process for the biological process (BP). The KEGG pathway analysis indicated that 3D cultures are enriched for oxidative phosphorylation pathways, metabolic pathways, peroxisome pathways, and biosynthesis of amino acids. In contrast, analysis of the phosphoproteomes indicated that 3D cultures have decreased phosphorylation correlating with slower growth rates and lower cell-to-extracellular matrix interactions. In sum, these results provide quantitative assessments of the effects on the proteome and phosphoproteome of culturing cells in 2D versus 3D cell culture configurations.

  2. Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices

    PubMed Central

    Li, Yanfen

    2016-01-01

    Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we will explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, we will review the maturation of micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366

  3. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  4. Video lensfree microscopy of 2D and 3D culture of cells

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  5. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance

    PubMed Central

    Breslin, Susan; O'Driscoll, Lorraine

    2016-01-01

    Solid tumours naturally grow in 3D wherein the spatial arrangement of cells affects how they interact with each other. This suggests that 3D cell culture may mimic the natural in vivo setting better than traditional monolayer (2D) cell culture, where cells are grown attached to plastic. Here, using HER2-positive breast cancer cell lines as models (BT474, HCC1954, EFM192A), the effects of culturing cells in 3D using the poly-HEMA method compared to 2D cultures were assessed in terms of cellular viability, response/resistance to anti-cancer drugs, protein expression and enzyme activity. Scanning electron microscopy showed the morphology of cells in 3D to be substantially different to those cultured in 2D. Cell viability in 3D cells was substantially lower than that of cells in 2D cultures, while 3D cultures were more resistant to the effects of HER-targeted (neratinib) and classical chemotherapy (docetaxel) drugs. Expression of proteins involved in cell survival, transporters associated with drug resistance and drug targets were increased in 3D cultures. Finally, activity of drug metabolising enzyme CYP3A4 was substantially increased in 3D compared to 2D cultures. Together this data indicates that the biological information represented by 3D and 2D cell cultures is substantially different i.e. 3D cell cultures demonstrate higher innate resistance to anti-cancer drugs compared to 2D cultures, which may be facilitated by the altered receptor proteins, drug transporters and metabolising enzyme activity. This highlights the importance of considering 3D in addition to 2D culture methods in pre-clinical studies of both newer targeted and more traditional anti-cancer drugs. PMID:27304190

  6. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance.

    PubMed

    Breslin, Susan; O'Driscoll, Lorraine

    2016-07-19

    Solid tumours naturally grow in 3D wherein the spatial arrangement of cells affects how they interact with each other. This suggests that 3D cell culture may mimic the natural in vivo setting better than traditional monolayer (2D) cell culture, where cells are grown attached to plastic. Here, using HER2-positive breast cancer cell lines as models (BT474, HCC1954, EFM192A), the effects of culturing cells in 3D using the poly-HEMA method compared to 2D cultures were assessed in terms of cellular viability, response/resistance to anti-cancer drugs, protein expression and enzyme activity. Scanning electron microscopy showed the morphology of cells in 3D to be substantially different to those cultured in 2D. Cell viability in 3D cells was substantially lower than that of cells in 2D cultures, while 3D cultures were more resistant to the effects of HER-targeted (neratinib) and classical chemotherapy (docetaxel) drugs. Expression of proteins involved in cell survival, transporters associated with drug resistance and drug targets were increased in 3D cultures. Finally, activity of drug metabolising enzyme CYP3A4 was substantially increased in 3D compared to 2D cultures. Together this data indicates that the biological information represented by 3D and 2D cell cultures is substantially different i.e. 3D cell cultures demonstrate higher innate resistance to anti-cancer drugs compared to 2D cultures, which may be facilitated by the altered receptor proteins, drug transporters and metabolising enzyme activity. This highlights the importance of considering 3D in addition to 2D culture methods in pre-clinical studies of both newer targeted and more traditional anti-cancer drugs.

  7. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.

    PubMed

    Hara, Jared; Tottori, Jordan; Anders, Megan; Dadhwal, Smritee; Asuri, Prashanth; Mobed-Miremadi, Maryam

    2017-05-01

    Post cryopreservation viability of human embryonic kidney (HEK) cells under two-dimensional (2D) and three-dimensional (3D) culture conditions was studied using trehalose as the sole cryoprotective agent. An L9 (3(4)) Taguchi design was used to optimize the cryoprotection cocktail seeding process prior to slow-freezing with the specific aim of maximizing cell viability measured 7 days post thaw, using the combinatorial cell viability and in-vitro cytotoxicity WST assay. At low (200 mM) and medium (800 mM) levels of trehalose concentration, encapsulation in alginate offered a greater protection to cryopreservation. However, at the highest trehalose concentration (1200 mM) and in the absence of the pre-incubation step, there was no statistical difference at the 95% CI (p = 0.0212) between the viability of the HEK cells under 2D and 3D culture conditions estimated to be 17.9 ± 4.6% and 14.0 ± 3.6%, respectively. A parallel comparison between cryoprotective agents conducted at the optimal levels of the L9 study, using trehalose, dimethylsulfoxide and glycerol in alginate microcapsules yielded a viability of 36.0 ± 7.4% for trehalose, in average 75% higher than the results associated with the other two cell membrane-permeating compounds. In summary, the effectiveness of trehalose has been demonstrated by the fact that 3D cell cultures can readily be equilibrated with trehalose before cryopreservation, thus mitigating the cytotoxic effects of glycerol and dimethylsulfoxide.

  8. Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures

    PubMed Central

    Mrozowska, Paulina S.

    2016-01-01

    MDCK II cells, a widely used model of polarized epithelia, develop into different structures depending on culture conditions: two-dimensional (2D) monolayers when grown on synthetic supports or three-dimensional (3D) cysts when surrounded by an extracellular matrix. The establishment of epithelial polarity is accompanied by transcytosis of the apical marker podocalyxin from the outer plasma membrane to the newly formed apical domain, but its exact route and regulation remain poorly understood. Here, through comprehensive colocalization and knockdown screenings, we identified the Rab GTPases mediating podocalyxin transcytosis and showed that different sets of Rabs coordinate its transport during cell polarization in 2D and 3D structures. Moreover, we demonstrated that different Rab35 effectors regulate podocalyxin trafficking in 2D and 3D environments; trafficking is mediated by OCRL in 2D monolayers and ACAP2 in 3D cysts. Our results give substantial insight into regulation of the transcytosis of this apical marker and highlight differences between trafficking mechanisms in 2D and 3D cell cultures. PMID:27138252

  9. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    SciTech Connect

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  10. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    SciTech Connect

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-07

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.

  11. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures

    PubMed Central

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-01-01

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  12. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    PubMed

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-12-19

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  13. Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions.

    PubMed

    Kamei, Ken-Ichiro; Koyama, Yoshie; Tokunaga, Yumie; Mashimo, Yasumasa; Yoshioka, Momoko; Fockenberg, Christopher; Mosbergen, Rowland; Korn, Othmar; Wells, Christine; Chen, Yong

    2016-11-01

    Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine.

  14. Development of drug loaded nanoparticles for tumor targeting. Part 1: synthesis, characterization, and biological evaluation in 2D cell cultures

    NASA Astrophysics Data System (ADS)

    El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei

    2013-04-01

    Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be significantly enhanced through receptor mediated endocytosis. In addition, if the receptor is recycled to the cell surface, the NP cargo can be transported out of the cells, which is then taken up by neighboring cells thus enhancing solid tumor penetration. To validate our hypothesis, in the first of two articles, we report the synthesis of doxorubicin (DOX)-loaded, hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44, a receptor expressed on the cancer cell surface. HA was conjugated onto amine-functionalized SNPs prepared through an oil-water microemulsion method. The immobilization of the cytotoxic drug DOX was achieved through an acid sensitive hydrazone linkage. The NPs were fully characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements, thermogravimetric analysis (TGA), UV-vis absorbance, and nuclear magnetic resonance (NMR). Initial biological evaluation experiments demonstrated that compared to ligand-free SNPs, the uptake of HA-SNPs by the CD44-expressing SKOV-3 ovarian cancer cells was significantly enhanced when evaluated in the 2D monolayer cell culture. Mechanistic studies suggested that cellular uptake of HA-SNPs was mainly through CD44 mediated endocytosis. HA-SNPs with immobilized DOX were endocytosed efficiently by the SKOV-3 cells as well. The enhanced tumor penetration and drug delivery properties of HA-SNPs will be evaluated in 3D tumor models in the subsequent paper.Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be

  15. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves.

    PubMed

    Malenovská, Hana

    2016-02-01

    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses.

  16. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype.

    PubMed

    Mabry, Kelly M; Payne, Samuel Z; Anseth, Kristi S

    2016-01-01

    Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibroblast phenotype can lead to aortic stenosis. To better understand and quantify how microenvironmental cues influence VIC phenotype and myofibroblast activation, we compared expression profiles of VICs cultured on poly(ethylene glycol) (PEG) gels to those cultured on tissue culture polystyrene (TCPS), as well as fresh isolates. In general, VICs cultured in hydrogel matrices had lower levels of activation (<10%), similar to levels seen in healthy valve tissue, while VICs cultured on TCPS were ∼75% activated myofibroblasts. VICs cultured on TCPS also exhibited a higher magnitude of perturbations in gene expression than soft hydrogel cultures when compared to the native phenotype. Using peptide-modified PEG gels, VICs were seeded on (2D), as well as encapsulated in (3D), matrices of the same composition and modulus. Despite similar levels of activation, VICs cultured in 2D had distinct variations in transcriptional profiles compared to those in 3D hydrogels. Genes related to cell structure and motility were particularly affected by the dimensionality of the culture platform, with higher expression levels in 2D than in 3D. These results indicate that dimensionality may play a significant role in dictating cell phenotype (e.g., through differences in polarity, diffusion of soluble signals), and emphasize the importance of using multiple metrics when characterizing cell phenotype.

  17. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field.

    PubMed

    Yang, Gang; Long, Haiyan; Ren, Xiaomei; Ma, Kunlong; Xiao, Zhenghua; Wang, Ying; Guo, Yingqiang

    2017-02-01

    Cell alignment and motility play a critical role in a variety of cell behaviors, including cytoskeleton reorganization, membrane-protein relocation, nuclear gene expression, and extracellular matrix remodeling. Direct current electric field (EF) in vitro can direct many types of cells to align vertically to EF vector. In this work, we investigated the effects of EF stimulation on rat adipose-tissue-derived stromal cells (ADSCs) in 2D-culture on plastic culture dishes and in 3D-culture on various scaffold materials, including collagen hydrogels, chitosan hydrogels and poly(L-lactic acid)/gelatin electrospinning fibers. Rat ADSCs were exposed to various physiological-strength EFs in a homemade EF-bioreactor. Changes of morphology and movements of cells affected by applied EFs were evaluated by time-lapse microphotography, and cell survival rates and intracellular calcium oscillations were also detected. Results showed that EF facilitated ADSC morphological changes, under 6 V/cm EF strength, and that ADSCs in 2D-culture aligned vertically to EF vector and kept a good cell survival rate. In 3D-culture, cell galvanotaxis responses were subject to the synergistic effect of applied EF and scaffold materials. Fast cell movement and intracellular calcium activities were observed in the cells of 3D-culture. We believe our research will provide some experimental references for the future study in cell galvanotaxis behaviors.

  18. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  19. Cytotoxic responses of carnosic acid and doxorubicin on breast cancer cells in butterfly-shaped microchips in comparison to 2D and 3D culture.

    PubMed

    Yildiz-Ozturk, Ece; Gulce-Iz, Sultan; Anil, Muge; Yesil-Celiktas, Ozlem

    2017-04-01

    Two dimensional (2D) cell culture systems lack the ability to mimic in vivo conditions resulting in limitations for preclinical cell-based drug and toxicity screening assays and modelling tumor biology. Alternatively, 3D cell culture systems mimic the specificity of native tissue with better physiological integrity. In this regard, microfluidic chips have gained wide applicability for in vitro 3D cancer cell studies. The aim of this research was to develop a 3D biomimetic model comprising culture of breast cancer cells in butterfly-shaped microchip to determine the cytotoxicity of carnosic acid and doxorubicin on both estrogen dependent (MCF-7) and independent (MDA-MB231) breast cancer cells along with healthy mammary epithelial cells (MCF-10A) in 2D, 3D Matrigel™ and butterfly-shaped microchip environment. According to the developed mimetic model, carnosic acid exhibited a higher cytotoxicity towards MDA-MB 231, while doxorubicin was more effective against MCF-7. Although the cell viabilities were higher in comparison to 2D and 3D cell culture systems, the responses of the investigated molecules were different in the microchips based on the molecular weight and structural complexity indicating the importance of biomimicry in a physiologically relevant matrix.

  20. Antitumor activity of amidino-substituted benzimidazole and benzimidazo[1,2-a]quinoline derivatives tested in 2D and 3D cell culture systems.

    PubMed

    Brajša, Karmen; Vujasinović, Ines; Jelić, Dubravko; Trzun, Marija; Zlatar, Ivo; Karminski-Zamola, Grace; Hranjec, Marijana

    2016-12-01

    Due to a poor clinical predictive power of 2D cell cultures, standard tool for in vitro assays in drug discovery process, there is increasing interest in developing 3D in vitro cell cultures, biologically relevant assay feasible for the development of robust preclinical anti-cancer drug screening platforms. Herein, we tested amidino-substituted benzimidazoles and benzimidazo[1,2-a]quinolines as a small platform for comparison of antitumor activity in 2D and 3D cell culture systems and correlation with structure-activity relationship. 3D cell culture method was applied on a human cancer breast (SK-BR-3, MDA-MB-231, T-47D) and pancreatic cancer cells (MIA PaCa-2, PANC-1). Results obtained in 2D and 3D models were highly comparable, but in some cases we have observed significant disagreement indicating that some prominent compounds can be discarded in early phase of researching because of compounds with false positive result. To confirm which of cell culture systems is more accurate, in vivo profiling is needed.

  1. Comparison of several radiation effects in human MCF10A mammary epithelial cells cultured as 2D monolayers or 3D acinar stuctures in matrigel.

    PubMed

    Lin, Yu-Fen; Nagasawa, Hatsumi; Peng, Yuanlin; Chuang, Eric Y; Bedford, Joel S

    2009-06-01

    It has been argued that the cell-cell and cell-matrix interaction networks in normal tissues are disrupted by radiation and that this largely controls many of the most important cellular radiation responses. This has led to the broader assertion that individual cells in normal tissue or a 3D normal-tissue-like culture will respond to radiation very differently than the same cells in a 2D monolayer culture. While many studies have shown that, in some cases, cell-cell contact in spheroids of transformed or tumor cell lines can alter radiation responses relative to those for the same cells in monolayer cultures, a question remains regarding the possible effect of the above-mentioned disruption of signaling networks that operate more specifically for cells in normal tissues or in a 3D tissue-like context. To test the generality of this notion, we used human MCF-10A cells, an immortalized mammary epithelial cell line that produces acinar structures in culture with many properties of human mammary ducts. We compared the dose responses for these cells in the 2D monolayer and in 3D ductal or acinar structures. The responses examined were reproductive cell death, induction of chromosomal aberrations, and the levels of gamma-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 h of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose responses of these cells in 2D or 3D growth conditions. While this does not mean that such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur.

  2. Differential effects of MAPK pathway inhibitors on migration and invasiveness of BRAF(V600E) mutant thyroid cancer cells in 2D and 3D culture.

    PubMed

    Ingeson-Carlsson, Camilla; Martinez-Monleon, Angela; Nilsson, Mikael

    2015-11-01

    Tumor microenvironment influences targeted drug therapy. In this study we compared drug responses to RAF and MEK inhibitors on tumor cell migration in 2D and 3D culture of BRAF(V600E) mutant cell lines derived from human papillary (BCPAP) and anaplastic (SW1736) thyroid carcinomas. Scratch wounding was compared to a double-layered collagen gel model developed for analysis of directed tumor cell invasion during prolonged culture. In BCPAP both PLX4720 and U0126 inhibited growth and migration in 2D and decreased tumor cell survival in 3D. In SW1736 drugs had no effect on migration in 2D but decreased invasion in 3D, however this related to reduced growth. Dual inhibition of BRAF(V600E) and MEK reduced but did not prevent SW1736 invasion although rebound phosphorylation of ERK in response to PLX4720 was blocked by U0126. These findings indicate that anti-tumor drug effects in vitro differ depending on culture conditions (2D vs. 3D) and that the invasive features of anaplastic thyroid cancer depend on non-MEK mechanism(s).

  3. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation)

    NASA Astrophysics Data System (ADS)

    Babbick, M.; Dijkstra, C.; Larkin, O. J.; Anthony, P.; Davey, M. R.; Power, J. B.; Lowe, K. C.; Cogoli-Greuter, M.; Hampp, R.

    Gravity is an important environmental factor that controls plant growth and development. Studies have shown that the perception of gravity is not only a property of specialized cells, but can also be performed by undifferentiated cultured cells. In this investigation, callus of Arabidopsis thaliana cv. Columbia was used to investigate the initial steps of gravity-related signalling cascades, through altered expression of transcription factors (TFs). TFs are families of small proteins that regulate gene expression by binding to specific promoter sequences. Based on microarray studies, members of the gene families WRKY, MADS-box, MYB, and AP2/EREBP were selected for investigation, as well as members of signalling chains, namely IAA 19 and phosphoinositol-4-kinase. Using qRT-PCR, transcripts were quantified within a period of 30 min in response to hypergravity (8 g), clinorotation [2-D clinostat and 3-D random positioning machine (RPM)] and magnetic levitation (ML). The data indicated that (1) changes in gravity induced stress-related signalling, and (2) exposure in the RPM induced changes in gene expression which resemble those of magnetic levitation. Two dimensional clinorotation resulted in responses similar to those caused by hypergravity. It is suggested that RPM and ML are preferable to simulate microgravity than clinorotation.

  4. Traditional Chinese medicine herbal mixture LQ arrests FUCCI-expressing HeLa cells in G₀/G₁ phase in 2D plastic, 2.5D Matrigel, and 3D Gelfoam culture visualized with FUCCI imaging.

    PubMed

    Zhang, Lei; Wu, Chengyu; Bouvet, Michael; Yano, Shuya; Hoffman, Robert M

    2015-03-10

    We used the fluorescence ubiquitination-based cell cycle indicator (FUCCI) to monitor cell cycle arrest after treatment of FUCCI-expressing HeLa cells (FUCCI-HeLa) with a traditional Chinese medicine (TCM) herbal mixture LQ, previously shown to have anti-tumor and anti-metastatic activity in mouse models. Paclitaxel was used as the positive control. In 2D monolayer culture, the untreated control had approximately 45% of the cells in S/G₂/M phase. In contrast, the LQ-treated cells (9 mg/ml) were mostly in the G₀/G₁ (>90%) after 72 hours. After treatment with paclitaxel (0.01 μm), for 72 hours, 95% of the cells were in S/G₂/M. In 2.5D Matrigel culture, the colonies in the untreated control group had 40% of the cells in S/G₂/M. LQ arrested the cells in G₀/G₁ after 72 hours. Paclitaxel arrested almost all the cells in S/G₂/M after 72 hours. In 3D Gelfoam culture, the untreated control culture had approximately 45% of cells in G₂/M. In contrast, the LQ-treated cells were mostly in G₀/G₁ phase (>80%) after 72 hours treatment. Paclitaxel resulted in 90% of the cells arrested in S/G₂/M after 72 hours. The present report suggests the non-toxic LQ has potential to maintain cancers in a quiescent state for long periods of time.

  5. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture.

    PubMed

    Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss

    2012-01-01

    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles.

  6. Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications

    PubMed Central

    2012-01-01

    Background Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK) cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity. Results We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT). Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells. Conclusions Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells. PMID:22316211

  7. NKG2D ligands mediate immunosurveillance of senescent cells

    PubMed Central

    Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-01-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  8. Polychromatic light-induced osteogenic activity in 2D and 3D cultures.

    PubMed

    Ülker, Nazife; Çakmak, Anıl S; Kiremitçi, Arlin S; Gümüşderelioğlu, Menemşe

    2016-11-01

    Photobiomodulation (PBM) has been applied to manipulate cellular responses by using monochromatic light in different wavelengths from ultraviolet (UV) to infrared (IR) region. Until now, an effective wavelength has not been revealed to induce proliferation and/or differentiation of cells. Therefore, in the presented study, we decided to use a specially designed plasma arc light source providing wavelengths between 590 and 1500 nm in order to investigate its biomodulatory effects on chitosan scaffold-supported three-dimensional (3D) cell cultures. For comparison, two-dimensional (2D) cell cultures were also carried out in tissue-culture polystyrene dishes (TCPS). The results showed that light-induced temperature rise did not affect cells when the distance between the light source and the cells was 10 cm and the frequency of administration was daily. Moreover, light was applied for 5 and 10 min to the cells in TCPS and in chitosan scaffold groups, respectively. Cell culture studies under static conditions indicated that polychromatic light significantly stimulated bone nodule formation via the prolonged cell survival and stimulated differentiation of MC3T3-E1 preosteoblastic cells in both TCPS and chitosan scaffold groups. In conclusion, specially designed plasma arc light source used in this study induces formation of bone tissue and so, this light source is proposed as an appropriate system for in vitro bone tissue engineering applications. Statistical analyses were performed with one-way ANOVA by using GraphPad Instat software and standard deviations were calculated by using data of three parallel samples for each group.

  9. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing

    PubMed Central

    Zocchi, Maria Raffaella; Camodeca, Caterina; Nuti, Elisa; Rossello, Armando; Venè, Roberta; Tosetti, Francesca; Dapino, Irene; Costa, Delfina; Musso, Alessandra; Poggi, Alessandro

    2016-01-01

    ABSTRACT Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the “A Disintegrin And Metalloproteases” (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X. PMID:27467923

  10. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing.

    PubMed

    Zocchi, Maria Raffaella; Camodeca, Caterina; Nuti, Elisa; Rossello, Armando; Venè, Roberta; Tosetti, Francesca; Dapino, Irene; Costa, Delfina; Musso, Alessandra; Poggi, Alessandro

    2016-05-01

    Hodgkin lymphoma (HL) resistant to conventional therapies is increasing, making of interest the search for new schemes of treatment. Members of the "A Disintegrin And Metalloproteases" (ADAMs) family, mainly ADAM10 or ADAM17, have been proposed as therapeutic targets in solid tumors and some ADAMs inhibitors have been shown to exert antitumor effects. We have previously described an overexpression of ADAM10 in HL, together with increased release of NKG2D ligands (NKG2D-L) and reduced activation of effector T lymphocytes with anti-lymphoma capacity. Aim of the present work was to verify whether inhibition of ADAM10 in HL cells could restore the triggering of NKG2D-dependent anti-lymphoma T cell response. As no selective ADAM10 blockers have been reported so far, we synthesized the two hydroxamate compounds LT4 and MN8 with selectivity for ADAM10 over metalloproteases (MMPs), LT4 showing higher specificity for ADAM10 over ADAM17. We show that (i) HL lymph nodes (LN) and cultured HL cells express high levels of the mature active membrane form of ADAM10; (ii) ADAM10 is the major sheddase for the NKG2D-L in HL cells; (iii) the new LT4 and MN8 compounds strongly reduce the shedding of NKG2D-L by HL cell lines and enhance the binding of NKG2D receptor; (iv) of note, these new ADAM10 inhibitors increase the sensitivity of HL cell lines to NKG2D-dependent cell killing exerted by natural killer and γδ T cells. Overall, the biologic activity of LT4 and MN8 appears to be more potent than that of the commercial inhibitor GI254023X.

  11. The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments

    PubMed Central

    Kanlaya, Rattiyaporn; Borkowski, Kamil; Schwämmle, Veit; Dai, Jie; Joensen, Kira Eyd; Wojdyla, Katarzyna; Carvalho, Vasco Botelho; Fey, Stephen J.

    2014-01-01

    Introduction Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. Results Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell – along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. Summary We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance. PMID:25222612

  12. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  13. Antiproliferative action of menadione and 1,25(OH)2D3 on breast cancer cells.

    PubMed

    Marchionatti, Ana M; Picotto, Gabriela; Narvaez, Carmen J; Welsh, Joellen; Tolosa de Talamoni, Nori G

    2009-02-01

    Calcitriol or 1,25(OH)(2)D(3) is a negative growth regulator of MCF-7 breast cancer cells. The growth arrest is due to apoptosis activation, which involves mitochondrial disruption. This effect is blunted in vitamin D resistant cells (MCF-7(DRes) cells). Menadione (MEN), a glutathione (GSH)-depleting compound, may potentiate antitumoral effects of anticancer drugs. The aim of this study was to investigate whether MEN enhances cellular responsiveness of MCF-7 cells to 1,25(OH)(2)D(3). Cells were cultured and treated with different concentrations of 1,25(OH)(2)D(3)+/-MEN or vehicle for 96 h. GSH levels and the activity of antioxidant enzymes were determined by spectrophotometry and ROS production by flow cytometry. Both drugs decreased growth and enhanced ROS in MCF-7 cells, obtaining the maximal effects when 1,25(OH)(2)D(3) was combined with MEN (P<0.01 vs. Control and vs. each compound alone). MCF-7(DRes) cells were not responsive to 1,25(OH)(2)D(3), but the cell proliferation was slightly inhibited by the combined treatment. Calcitriol and MEN separately enhanced antioxidant enzyme activities, but when they were used in combination, the effect was more pronounced (P<0.05 vs. Control and vs. each compound alone). MEN, calcitriol and the combined treatment decreased GSH levels (P<0.05 vs. Control). The data indicate that MEN potentiates the effect of 1,25(OH)(2)D(3) on growth arrest in MCF-7 cells by oxidative stress and increases the activities of antioxidant enzymes, probably as a compensatory mechanism.

  14. Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices.

    PubMed

    Casey, A; Gargotti, M; Bonnier, F; Byrne, H J

    2016-06-01

    The interest in the use of 3D matrices for in vitro analysis, with a view to increasing the relevance of in vitro studies and reducing the dependence on in vivo studies, has been growing in recent years. Cells grown in a 3D in vitro matrix environment have been reported to exhibit significantly different properties to those in a conventional 2D culture environment. However, comparison of 2D and 3D cell culture models have recently been noted to result in differing responses of cytotoxic assays, without any associated change in viability. The effect was attributed to differing conversion rates and effective concentrations of the resazurin assay in 2D and 3D environments, rather than differences in cellular metabolism. In this study, the efficacy of a chemotherapeutic agent, doxorubicin, is monitored and compared in conventional 2D and 3D collagen gel exposures of immortalized human cervical cells. Viability was monitored with the aid of the Alamar Blue assay and drug internalisation was verified using confocal microscopy. Drug uptake and retention within the collagen matrix was monitored by absorption spectroscopy. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to a 3D environment causing alterations to dye resazurin uptake and conversion rates. The use of 3D culture matrices has widely been interpreted to result in "reduced" toxicity or cellular "resistance" to the chemotherapeutic agent. The results of this study show that the reduced efficiency of the drug to cells grown in the 3D environment can be accounted for by a sequential reduction of the effective concentration of the test compound and assay. This is due to absorption within the collagen gel inducing a higher uptake of both drug and assay thereby influencing the toxic impact of the drug and conversion rate of resazurin, and. The increased effective surface area of the cell exposed to the drug

  15. 2-D Model for Normal and Sickle Cell Blood Microcirculation

    NASA Astrophysics Data System (ADS)

    Tekleab, Yonatan; Harris, Wesley

    2011-11-01

    Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].

  16. Tumour-experienced T cells promote NK cell activity through trogocytosis of NKG2D and NKp46 ligands

    PubMed Central

    Domaica, Carolina I; Fuertes, Mercedes B; Rossi, Lucas E; Girart, María V; Ávila, Damián E; Rabinovich, Gabriel A; Zwirner, Norberto W

    2009-01-01

    Natural killer (NK) cells trigger cytotoxicity and interferon (IFN)-γ secretion on engagement of the natural-killer group (NKG)2D receptor or members of the natural cytotoxicity receptor (NCR) family, such as NKp46, by ligands expressed on tumour cells. However, it remains unknown whether T cells can regulate NK cell-mediated anti-tumour responses. Here, we investigated the early events occurring during T cell–tumour cell interactions, and their impact on NK cell functions. We observed that on co-culture with some melanomas, activated CD4+ T cells promoted degranulation, and NKG2D- and NKp46-dependent IFN-γ secretion by NK cells, probably owing to the capture of NKG2D and NKp46 ligands from the tumour-cell surface (trogocytosis). This effect was observed in CD4+, CD8+ and resting T cells, which showed substantial amounts of cell surface major histocompatibility complex class I chain-related protein A on co-culture with tumour cells. Our findings identify a new, so far, unrecognized mechanism by which effector T cells support NK cell function through the capture of specific tumour ligands with profound implications at the crossroad of innate and adaptive immunity. PMID:19498463

  17. Behaviour of gravisensitive cells on 2D and 3D clinostats

    NASA Astrophysics Data System (ADS)

    Strauch, Sebastian M.; Hemmersbach, Ruth; Seibt, Dieter; Schuber, Marianne; Hader, Donat-P.

    2005-08-01

    2D and 3D clinostats are widely applied to study the influence of simulated microgravity on different kinds of organisms and cell cultures [1]. To critically evaluate the results achieved (functional weightlessness, omnilateral gravistimulation or other side effects such as strong mechanical disturbances) a comparison between the applied simulation methods and real microgravity is necessary. In a first approach, the swimming behavior of Euglena gracilis, a "professional gravi-sensing" unicellular freshwater flagellate, was observed under 2D and 3D clinostat conditions as well as under real microgravity during a TEXUS sounding rocket flight.According to current theory Euglena perceives the gravity vector by stimulation of mechanosensitive channels: the cell mass, which is denser than the surrounding medium, exerts pressure onto the lower membrane and the resulting gated calcium influx modulates the beating pattern of the flagella [4].A changed influence of gravity of the cells can be directly visualized by changes in their orientation with respect to gravity (gravitaxis).

  18. CD4+ NKG2D+ T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice

    PubMed Central

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-01-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4+ NKG2D+ T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset. PMID:24708417

  19. CD4(+) NKG2D(+) T cells induce NKG2D down-regulation in natural killer cells in CD86-RAE-1ε transgenic mice.

    PubMed

    Lin, Zhijie; Wang, Changrong; Xia, Haizui; Liu, Weiguang; Xiao, Weiming; Qian, Li; Jia, Xiaoqin; Ding, Yanbing; Ji, Mingchun; Gong, Weijuan

    2014-03-01

    The binding of NKG2D to its ligands strengthens the cross-talk between natural killer (NK) cells and dendritic cells, particularly at early stages, before the initiation of the adaptive immune response. We found that retinoic acid early transcript-1ε (RAE-1ε), one of the ligands of NKG2D, was persistently expressed on antigen-presenting cells in a transgenic mouse model (pCD86-RAE-1ε). By contrast, NKG2D expression on NK cells, NKG2D-dependent cytotoxicity and tumour rejection, and dextran sodium sulphate-induced colitis were all down-regulated in this mouse model. The down-regulation of NKG2D on NK cells was reversed by stimulation with poly (I:C). The ectopic expression of RAE-1ε on dendritic cells maintained NKG2D expression levels and stimulated the activity of NK cells ex vivo, but the higher frequency of CD4(+) NKG2D(+) T cells in transgenic mice led to the down-regulation of NKG2D on NK cells in vivo. Hence, high levels of RAE-1ε expression on antigen-presenting cells would be expected to induce the down-regulation of NK cell activation by a regulatory T-cell subset.

  20. Activating receptor NKG2D targets RAE-1-expressing allogeneic neural precursor cells in a viral model of multiple sclerosis.

    PubMed

    Weinger, Jason G; Plaisted, Warren C; Maciejewski, Sonia M; Lanier, Lewis L; Walsh, Craig M; Lane, Thomas E

    2014-10-01

    Transplantation of major histocompatibility complex-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing-activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2(b) ) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1(+) NPCs were susceptible to NK cell-mediated killing whereas RAE-1(-) cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2(d) ) mice resulted in infiltration of NKG2D(+) CD49b(+) NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Furthermore, transplantation of differentiated RAE-1(-) allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D/RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway.

  1. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    NASA Astrophysics Data System (ADS)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  2. Signal Factors Secreted by 2D and Spheroid Mesenchymal Stem Cells and by Cocultures of Mesenchymal Stem Cells Derived Microvesicles and Retinal Photoreceptor Neurons

    PubMed Central

    Mao, Mao; Zhou, Liang

    2017-01-01

    We aim to identify levels of signal factors secreted by MSCs cultured in 2D monolayers (2D-MSCs), spheroids (spheroids MSCs), and cocultures of microvesicles (MVs) derived from 2D-MSCs or spheroid MSCs and retinal photoreceptor neurons. We seeded 2D-MSCs, spheroid MSCs, and cells derived from spheroids MSCs at equal numbers. MVs isolated from all 3 culture conditions were incubated with 661W cells. Levels of 51 signal factors in conditioned medium from those cultured conditions were quantified with bead-based assay. We found that IL-8, IL-6, and GROα were the top three most abundant signal factors. Moreover, compared to 2D-MSCs, levels of 11 cytokines and IL-2Rα were significantly increased in conditioned medium from spheroid MSCs. Finally, to test if enhanced expression of these factors reflects altered immunomodulating activities, we assessed the effect of 2D-MSC-MVs and 3D-MSC-MVs on CD14+ cell chemoattraction. Compared to 2D-MSC-MVs, 3D-MSC-MVs significantly decreased the chemotactic index of CD14+ cells. Our results suggest that spheroid culture conditions improve the ability of MSCs to selectively secrete signal factors. Moreover, 3D-MSC-MVs also possessed an enhanced capability to promote signal factors secretion compared to 2D-MSC-MVs and may possess enhanced immunomodulating activities and might be a better regenerative therapy for retinal degenerative diseases. PMID:28194184

  3. 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] controls growth plate development by inhibiting apoptosis in the reserve zone and stimulating response to 1alpha,25(OH)2D3 in hypertrophic cells.

    PubMed

    Boyan, B D; Hurst-Kennedy, J; Denison, T A; Schwartz, Z

    2010-07-01

    Previously we showed that costochondral growth plate resting zone (RC) chondrocytes response primarily to 24R,25(OH)2D3 whereas prehypertrophic and hypertrophic (GC) cells respond to 1alpha,25(OH)2D3. 24R,25(OH)2D3 increases RC cell proliferation and inhibits activity of matrix processing enzymes, suggesting it stabilizes cells in the reserve zone, possibly by inhibiting the matrix degradation characteristic of apoptotic hypertrophic GC cells. To test this, apoptosis was induced in rat RC cells by treatment with exogenous inorganic phosphate (Pi). 24R,25(OH)2D3 blocked apoptotic effects in a dose-dependent manner. Similarly, apoptosis was induced in ATDC5 cell cultures and 24R,25(OH)2D3 blocked this effect. Further studies indicated that 24R,25(OH)2D3 acts via at least two independent pathways. 24R,25(OH)2D3 increases LPA receptor-1 (LPA R1) expression and production of lysophosphatidic acid (LPA), and subsequent LPA R1/3-dependent signaling, thereby decreasing p53 abundance. LPA also increases the Bcl-2/Bax ratio. In addition, 24R,25(OH)2D3 acts by increasing PKC activity. 24R,25(OH)2D3 stimulates 1-hydroxylase activity, resulting in increased levels of 1,25(OH)2D3, and it increases levels of phospholipase A2 activating protein, which is required for rapid 1alpha,25(OH)2D3-dependent activation of PKC in GC cells. These results suggest that 24R,25(OH)2D3 modulates growth plate development by controlling the rate and extent of RC chondrocyte transition to a GC chondrocyte phenotype.

  4. NKG2D functions as an activating receptor on natural killer cells in the common marmoset (Callithrix jacchus).

    PubMed

    Watanabe, Masamichi; Kudo, Yohei; Kawano, Mitsuko; Nakayama, Masafumi; Nakamura, Kyohei; Kameda, Mai; Ebara, Masamune; Sato, Takeki; Nakamura, Marina; Omine, Kaito; Kametani, Yoshie; Suzuki, Ryuji; Ogasawara, Kouetsu

    2014-11-01

    The natural killer group 2 membrane D (NKG2D) receptor is an NK-activating receptor that plays an important role in host defense against tumors and viral infections. Although the marmoset is an important and reliable animal model, especially for the study of human-specific viral infections, functional characterization of NKG2D on marmoset NK cells has not previously been conducted. In the present study, we investigated a subpopulation of marmoset NK cells that express NKG2D and exhibit cytolytic potential. On the basis of their CD16 and CD56 expression patterns, marmoset NK cells can be classified into three subpopulations: CD16(+) CD56(-), CD16(-) CD56(+) and CD16(-) CD56(-) cells. NKG2D expression on marmoset CD16(+) CD56(-) and CD16(-) CD56(+) splenocytes was confirmed using an NKG2D ligand composed of an MHC class I chain-related molecule A (MICA)-Fc fusion protein. When marmoset splenocytes were cultured with IL-2 for 4 days, NKG2D expression was retained on CD16(+) CD56(-) and CD16(-) CD56(+). In addition, CD16(+) CD56(+) cells within the marmoset NK population appeared which expressed NKG2D after IL-2 stimulation. IL-2-activated marmoset NK cells showed strong cytolytic activity against K562 target cells and target cells stably expressing MICA. Further, the cytolytic activity of marmoset splenocytes was significantly reduced after addition of MICA-Fc fusion protein. Thus, NKG2D functions as an activating receptor on marmoset NK cells that possesses cytotoxic potential, and phenotypic profiles of marmoset NK cell subpopulations are similar to those seen in humans.

  5. Understanding the Impact of 2D and 3D Fibroblast Cultures on In Vitro Breast Cancer Models

    PubMed Central

    Sung, Kyung Eun; Su, Xiaojing; Berthier, Erwin; Pehlke, Carolyn; Friedl, Andreas; Beebe, David J.

    2013-01-01

    The utilization of 3D, physiologically relevant in vitro cancer models to investigate complex interactions between tumor and stroma has been increasing. Prior work has generally focused on the cancer cells and, the role of fibroblast culture conditions on tumor-stromal cell interactions is still largely unknown. Here, we focus on the stroma by comparing functional behaviors of human mammary fibroblasts (HMFs) cultured in 2D and 3D and their effects on the invasive progression of breast cancer cells (MCF10DCIS.com). We identified increased levels of several paracrine factors from HMFs cultured in 3D conditions that drive the invasive transition. Using a microscale co-culture model with improved compartmentalization and sensitivity, we demonstrated that HMFs cultured in 3D intensify the promotion of the invasive progression through the HGF/c-Met interaction. This study highlights the importance of the 3D stromal microenvironment in the development of multiple cell type in vitro cancer models. PMID:24124550

  6. Advances in cell culture

    SciTech Connect

    Maramorosch, K. )

    1987-01-01

    This book presents papers on advances in cell culture. Topics covered include: Genetic changes in the influenza viruses during growth in cultured cells; The biochemistry and genetics of mosquito cells in culture; and Tree tissue culture applications.

  7. NK cells enhance dendritic cell response against parasite antigens via NKG2D pathway.

    PubMed

    Guan, Hongbing; Moretto, Magali; Bzik, David J; Gigley, Jason; Khan, Imtiaz A

    2007-07-01

    Recent studies have shown that NK-dendritic cell (DC) interaction plays an important role in the induction of immune response against tumors and certain viruses. Although the effect of this interaction is bidirectional, the mechanism or molecules involved in this cross-talk have not been identified. In this study, we report that coculture with NK cells causes several fold increase in IL-12 production by Toxoplasma gondii lysate Ag-pulsed DC. This interaction also leads to stronger priming of Ag-specific CD8+ T cell response by these cells. In vitro blockade of NKG2D, a molecule present on human and murine NK cells, neutralizes the NK cell-induced up-regulation of DC response. Moreover, treatment of infected animals with Ab to NKG2D receptor compromises the development of Ag-specific CD8+ T cell immunity and reduces their ability to clear parasites. These studies emphasize the critical role played by NKG2D in the NK-DC interaction, which apparently is important for the generation of robust CD8+ T cell immunity against intracellular pathogens. To the best of our knowledge, this is the first work that describes in vivo importance of NKG2D during natural infection.

  8. T Cells Infiltrating Diseased Liver Express Ligands for the NKG2D Stress Surveillance System

    PubMed Central

    Huang, Wei-Chen; Easom, Nicholas J.; Tang, Xin-Zi; Gill, Upkar S.; Singh, Harsimran; Robertson, Francis; Chang, Chiwen; Trowsdale, John; Davidson, Brian R.; Rosenberg, William M.; Fusai, Giuseppe; Toubert, Antoine; Kennedy, Patrick T.; Peppa, Dimitra

    2017-01-01

    NK cells, which are highly enriched in the liver, are potent regulators of antiviral T cells and immunopathology in persistent viral infection. We investigated the role of the NKG2D axis in T cell/NK cell interactions in hepatitis B. Activated and hepatitis B virus (HBV)–specific T cells, particularly the CD4 fraction, expressed NKG2D ligands (NKG2DL), which were not found on T cells from healthy controls (p < 0.001). NKG2DL-expressing T cells were strikingly enriched within HBV-infected livers compared with the periphery or to healthy livers (p < 0.001). NKG2D+NK cells were also increased and preferentially activated in the HBV-infected liver (p < 0.001), in direct proportion to the percentage of MICA/B-expressing CD4 T cells colocated within freshly isolated liver tissue (p < 0.001). This suggests that NKG2DL induced on T cells within a diseased organ can calibrate NKG2D-dependent activation of local NK cells; furthermore, NKG2D blockade could rescue HBV-specific and MICA/B-expressing T cells from HBV-infected livers. To our knowledge, this is the first ex vivo demonstration that non-virally infected human T cells can express NKG2DL, with implications for stress surveillance by the large number of NKG2D-expressing NK cells sequestered in the liver. PMID:28031333

  9. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    PubMed Central

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  10. Dephosphorylation of MAP2D enhances its binding to vimentin in preovulatory ovarian granulosa cells.

    PubMed

    Flynn, Maxfield P; Fiedler, Sarah E; Karlsson, Amelia B; Carr, Daniel W; Maizels, Evelyn T; Hunzicker-Dunn, Mary

    2016-08-01

    Preovulatory granulosa cells express the low-molecular-mass MAP2D variant of microtubule-associated protein 2 (MAP2). Activation of the luteinizing hormone choriogonadotropin receptor by human choriogonadotropin (hCG) promotes dephosphorylation of MAP2D on Thr256 and Thr259. We sought to evaluate the association of MAP2D with the cytoskeleton, and the effect of hCG on this association. MAP2D partially colocalized, as assessed by confocal immunofluorescence microscopy, with the vimentin intermediate filament and microtubule cytoskeletons in naive cells. In vitro binding studies showed that MAP2D bound directly to vimentin and β-tubulin. Phosphorylation of recombinant MAP2D on Thr256 and Thr259, which mimics the phosphorylation status of MAP2D in naive cells, reduces binding of MAP2D to vimentin and tubulin by two- and three-fold, respectively. PKA-dependent phosphorylation of vimentin (Ser32 and Ser38) promoted binding of vimentin to MAP2D and increased contraction of granulosa cells with reorganization of vimentin filaments and MAP2D from the periphery into a thickened layer surrounding the nucleus and into prominent cellular extensions. Chemical disruption of vimentin filament organization increased progesterone production. Taken together, these results suggest that hCG-stimulated dephosphorylation of MAP2D at Thr256 and Thr259, phosphorylation of vimentin at Ser38 and Ser72, and the resulting enhanced binding of MAP2D to vimentin might contribute to the progesterone synthetic response required for ovulation.

  11. NKG2D receptor regulates human effector T-cell cytokine production

    PubMed Central

    Barber, Amorette

    2011-01-01

    Although innate immune signals shape the activation of naive T cells, it is unclear how innate signals influence effector T-cell function. This study determined the effects of stimulating the NKG2D receptor in conjunction with the TCR on human effector CD8+ T cells. Stimulation of CD8+ T cells through CD3 and NKG2D simultaneously or through a chimeric NKG2D receptor, which consists of NKG2D fused to the intracellular region of CD3ζ, activated β-catenin and increased expression of β-catenin–induced genes, whereas T cells stimulated through the TCR or a combination of the TCR and CD28 did not. Activation by TCR and NKG2D prevented expression and production of anti-inflammatory cytokines IL-10, IL-9, IL-13, and VEGF-α in a β-catenin– and PPARγ- dependent manner. NKG2D stimulation also modulated the cytokine secretion of T cells activated simultaneously through CD3 and CD28. These data indicate that activating CD8+ T cells through the NKG2D receptor along with the TCR modulates signal transduction and the production of anti-inflammatory cytokines. Thus, human effector T cells alter their function depending on which innate receptors are engaged in conjunction with the TCR complex. PMID:21518928

  12. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection

    PubMed Central

    Deng, Weiwen; Gowen, Benjamin G.; Zhang, Li; Wang, Lin; Lau, Stephanie; Iannello, Alexandre; Xu, Jianfeng; Rovis, Tihana L.; Xiong, Na; Raulet, David H.

    2016-01-01

    Immune cells, including natural killer (NK) cells, recognize transformed cells and eliminate them in a process termed immunosurveillance. It is thought that tumor cells evade immunosurveillance by shedding membrane ligands that bind to the NKG2D activating receptor on NK cells and/or T cells, and desensitize these cells. In contrast, we show that in mice, shedding of MULT1, a high affinity NKG2D ligand, causes NK cell activation and tumor rejection. Recombinant soluble MULT1 stimulated tumor rejection in mice. Soluble MULT1 functions, at least in part, by competitively reversing a global desensitization of NK cells imposed by engagement of membrane NKG2D ligands on tumor-associated cells, such as myeloid cells. The results overturn conventional wisdom that soluble ligands are inhibitory, and suggest a new approach for cancer immunotherapy. PMID:25745066

  13. CBP/p300 acetyltransferases regulate the expression of NKG2D ligands on tumor cells

    PubMed Central

    Sauer, M; Schuldner, M; Hoffmann, N; Cetintas, A; Reiners, K S; Shatnyeva, O; Hallek, M; Hansen, H P; Gasser, S; von Strandmann, E P

    2017-01-01

    Tumor surveillance of natural killer (NK) cells is mediated by the cytotoxicity receptor natural-killer group 2 member D (NKG2D). Ligands for NKG2D are generally not expressed on healthy cells, but induced on the surface of malignant cells. To date, NKG2D ligand (NKG2D-L) induction was mainly described to depend on the activation of the DNA damage response, although the molecular mechanisms that regulate NKG2D-L expression remain largely unknown. Here, we show that the acetyltransferases CBP (CREB-binding protein) and p300 play a crucial role in the regulation of NKG2D-L on tumor cells. Loss of CBP/p300 decreased the basal cell surface expression of human ligands and reduced the upregulation of MICA/B and ULBP2 in response to histone deacetylase inhibitors or DNA damage. Furthermore, CBP/P300 deficiency abrogated the sensitivity of stressed cells to NK cell-mediated killing. CBP/p300 were also identified as major regulators of mouse NKG2D ligand RAE-1 in vitro and in vivo using the Eμ-Myc lymphoma model. Mechanistically, we observed an enhanced activation of the CBP/p300 binding transcription factor CREB (cAMP response element-binding protein) correlating to the NKG2D-L upregulation. Moreover, increased binding of CREB and CBP/p300 to NKG2D-L promoters and elevated histone acetylation were detectable. This study provides strong evidence for a major role of CBP and p300 in orchestrating NKG2D-L induction and consequently immunosurveillance of tumors in mice and humans. These findings might help to develop novel immunotherapeutic approaches against cancer. PMID:27477692

  14. Crossing barriers: the new dimension of 2D cell migration assays.

    PubMed

    Van Horssen, Remco; ten Hagen, Timo L M

    2011-01-01

    In our body cells move in three dimensions, embedded in an extracellular matrix that varies in composition, density and stiffness, and this movement is fundamental to life. Next to 3D cell migration assays, representing these physiological circumstances, still we need 2D migrations assays to perform detailed studies on the contribution of matrix-components and (extra)cellular proteins to cell movements. Next to the debate on differences between 3D and 2D migration, there also are many new perspectives on the use and development of novel or modified 2D cell migration assays. Of special significance is the introduction of so-called barrier migration assays, methods that avoid cell and matrix damage, as complementation or replacement of scratch/wound healing assays. Here, we discuss the possibilities and limitations of different 2D barrier migration assays.

  15. Electric field-controlled directed migration of neural progenitor cells in 2D and 3D environments.

    PubMed

    Meng, Xiaoting; Li, Wenfei; Young, Fraser; Gao, Runchi; Chalmers, Laura; Zhao, Min; Song, Bing

    2012-02-16

    Endogenous electric fields (EFs) occur naturally in vivo and play a critical role during tissue/organ development and regeneration, including that of the central nervous system(1,2). These endogenous EFs are generated by cellular regulation of ionic transport combined with the electrical resistance of cells and tissues. It has been reported that applied EF treatment can promote functional repair of spinal cord injuries in animals and humans(3,4). In particular, EF-directed cell migration has been demonstrated in a wide variety of cell types(5,6), including neural progenitor cells (NPCs)(7,8). Application of direct current (DC) EFs is not a commonly available technique in most laboratories. We have described detailed protocols for the application of DC EFs to cell and tissue cultures previously(5,11). Here we present a video demonstration of standard methods based on a calculated field strength to set up 2D and 3D environments for NPCs, and to investigate cellular responses to EF stimulation in both single cell growth conditions in 2D, and the organotypic spinal cord slice in 3D. The spinal cordslice is an ideal recipient tissue for studying NPC ex vivo behaviours, post-transplantation, because the cytoarchitectonic tissue organization is well preserved within these cultures(9,10). Additionally, this ex vivo model also allows procedures that are not technically feasible to track cells in vivo using time-lapse recording at the single cell level. It is critically essential to evaluate cell behaviours in not only a 2D environment, but also in a 3D organotypic condition which mimicks the in vivo environment. This system will allow high-resolution imaging using cover glass-based dishes in tissue or organ culture with 3D tracking of single cell migration in vitro and ex vivo and can be an intermediate step before moving onto in vivo paradigms.

  16. Human NKG2D-ligands: cell biology strategies to ensure immune recognition

    PubMed Central

    Fernández-Messina, Lola; Reyburn, Hugh T.; Valés-Gómez, Mar

    2012-01-01

    Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumors and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, major histocompatibility complex class I-related chain (MIC) A/B and UL16 binding proteins (ULBPs), are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarize the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease. PMID:23056001

  17. Divergences in KIR2D+ natural killer and KIR2D+CD8+ T-cell reconstitution following liver transplantation.

    PubMed

    López-Álvarez, M R; Campillo, J A; Legaz, I; Blanco-García, R M; Salgado-Cecilia, G; Bolarín, J M; Gimeno, L; Gil, J; García-Alonso, A M; Muro, M; Alvarez-López, M R; Miras, M; Minguela, A

    2011-03-01

    Natural killer (NK) and CD8(+) T cells may be active elements in the allograft response, but little is known about their role in liver transplantation. Some of these cells express killer immunoglobulin-like receptors (KIRs), which after binding specific ligands may transmit inhibitory/activating signals. In this study, circulating NK and CD8(+) T cells expressing CD158a/h (KIR2DL1/S1) or CD158b/j (KIR2DL2/3/S(2)) receptors were analyzed in 142 liver recipients by flow cytometry. They were underrepresented in patients before transplantation, but following transplantation, whereas the KIR2D(+) NK subsets experienced a late recuperation (day 365) mainly in C2-homozygous patients developing early acute rejection, recovery of the 2 CD8(+)KIR2D(+) T cells started earlier, showing significant differences on day 365 between patients without acute rejection and those suffering from it (p = 0.004 and p < 0.0001, respectively). These differences were also evident when the human leukocute antigen-C genotypes of the recipient were considered. In conclusion, whereas the late recovery of KIR2D(+) NK cells in C2/C2 patients appears to be linked to acute rejection, the increase in early CD8(+)KIR2D(+) T cells in overall liver recipients correlates with a most successful early graft outcome. Therefore, monitoring of KIR2D(+) cells appears to be a useful tool for liver transplant follow-up.

  18. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  19. NKG2D+ IFN-γ+ CD8+ T Cells Are Responsible for Palladium Allergy

    PubMed Central

    Kawano, Mitsuko; Nakayama, Masafumi; Aoshima, Yusuke; Nakamura, Kyohei; Ono, Mizuho; Nishiya, Tadashi; Nakamura, Syou; Takeda, Yuri; Dobashi, Akira; Takahashi, Akiko; Endo, Misato; Ito, Akiyo; Ueda, Kyosuke; Sato, Naoki; Higuchi, Shigehito; Kondo, Takeru; Hashimoto, Suguru; Watanabe, Masamichi; Watanabe, Makoto; Takahashi, Tetsu; Sasaki, Keiichi; Nakamura, Masanori; Sasazuki, Takehiko; Narushima, Takayuki; Suzuki, Ryuji; Ogasawara, Kouetsu

    2014-01-01

    Nickel, cobalt, and chromium are well known to be causal agents of allergic contact dermatitis. Palladium (Pd) can also cause allergic disease and exposure results from wide use of this metal in dental restorations and jewelry. Metal allergy is categorized as a delayed-type hypersensitivity, and metal-responsive T cell clones have been isolated from allergic patients. However, compared to nickel, little is known about the pathology of allergic disease mediated by Pd, and pathogenic T cells are poorly understood. To identify the pathogenic T cells that are responsible for onset of Pd allergy, we enriched metal-responsive lymphocytes by sequential adoptive transfer of involved lymph node cells. Here we show that sequential adoptive transfer gradually increased the incidence and the intensity of Pd allergy, and CD8+ T cells are responsible for the disease as CD8+ T cell-depleted mice and β2-microglobulin-deficient mice did not develop Pd allergy. In addition, we found that draining lymph node cells skewed toward CD8+ T cells in response to Pd challenge in 8th adoptive transferred recipient mice. The CD8+ T cells expressed NKG2D, a costimulatory molecule involved in the production of IFN-γ. NKG2D ligand was also induced in Pd-injected tissues. Furthermore, both NKG2D ligand-transgenic mice, where NKG2D is downmodulated, and IFN-γ-deficient mice showed impaired Pd allergy. Taken together, these results indicate that IFN-γ-producing NKG2D+ CD8+ T cells are responsible for Pd allergy and suggest that NKG2D is a potential therapeutic target for treatment of metal allergy. PMID:24533050

  20. Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells.

    PubMed

    Kim, Jeong Hwa; Lee, Jae Kwon

    2015-11-01

    Natural killer (NK) cells are capable of identifying and killing tumor cells as well as virus infected cells without pre-sensitization. NK cells express activating and inhibitory receptors, and can distinguish between normal and tumor cells. The present study was designed to demonstrate the importance of the expression level of NKG2D ligands on the Burkitt's lymphoma cell line, Raji, in enhancing NK cell cytolytic activity. Various flavonoids were used as stimulants to enhance the expression of NKG2D ligands. NK cell lysis activity against Raji was not changed by pre-treatment of Raji with luteolin, kaempferol, taxifolin and hesperetin. However, treatment of Raji with naringenin showed increased sensitivity to NK cell lysis than untreated control cells. The activity of naringenin was due to enhanced NKG2D ligand expression. These results provide evidence that narigenin's antitumor activity may be due to targeting of NKG2D ligand expression and suggests a possible immunotherapeutic role for cancer treatment.

  1. Natural Killer Group 2, Member D/NKG2D Ligands in Hematopoietic Cell Transplantation

    PubMed Central

    Carapito, Raphael; Aouadi, Ismail; Ilias, Wassila; Bahram, Seiamak

    2017-01-01

    Natural killer group 2, member D (NKG2D) is an invariant activatory receptor present on subsets of natural killer and T lymphocytes. It stimulates the cytolytic effector response upon engagement of its various stress-induced ligands NKG2D ligands (NKG2DL). Malignant transformation and conditioning treatment prior to hematopoietic cell transplantation (HCT) are stress factors leading to the activation of the NKG2D/NKG2DL signaling in clinical settings. In the context of HCT, NKG2D-bearing cells can kill both tumor and healthy cells expressing NKG2DL. The NKG2D/NKG2DL engagement has therefore a key role in the regulation of one of the most salient issues in allogeneic HCT, i.e., maintaining a balance between graft-vs.-leukemia effect and graft-vs.-host disease. The present review summarizes the current state of our knowledge pertaining to the role of the NKG2D and NKG2DL in HCT.

  2. The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D.

    PubMed

    Kong, Yan; Cao, Wei; Xi, Xueyan; Ma, Chi; Cui, Lianxian; He, Wei

    2009-07-09

    UL16-binding proteins (ULBPs) belong to a family of ligands for NKG2D activating receptor of human natural killer (NK) cells. We previously reported that RAET1E2, a soluble isoform of the RAET1E (ULBP4), inhibits NKG2D-mediated NK cytotoxicity. In this study, we examined whether ULBP4 could be recognized by gammadeltaT cells via TCRgammadelta. Here we show that immobilized soluble ULBP4 (rULBP4) induces the proliferation of human ovarian epithelial carcinoma- or colonic carcinoma-derived Vdelta2(+) T cells in vitro. These Vdelta2(+) T cells secrete Th1 cytokines and display a strong cytolytic activity toward ULBP4-transfected targets. We also show that ULBP4 binds to a soluble chimeric protein containing TCRgamma9/delta2 and activates TCR(-) Jurkat T cells transfected with TCRgamma9/delta2. Moreover, both TCRgammadelta and NKG2D are involved in ULBP4-induced activation and cytotoxicity of gammadeltaT cells. We found that ULBP4 is expressed not only on human tumor cells, but also on Epstein-Barr virus (EBV)-infected peripheral blood cells. Taken together, our data suggest that ULBP4 functions as a ligand for both TCRgammadelta and NKG2D and may play a key role in immune surveillance of tumor development and clearance of viral infection.

  3. Enhanced photon absorption in spiral nanostructured solar cells using layered 2D materials.

    PubMed

    Tahersima, Mohammad H; Sorger, Volker J

    2015-08-28

    Recent investigations of semiconducting two-dimensional (2D) transition metal dichalcogenides have provided evidence for strong light absorption relative to its thickness attributed to high density of states. Stacking a combination of metallic, insulating, and semiconducting 2D materials enables functional devices with atomic thicknesses. While photovoltaic cells based on 2D materials have been demonstrated, the reported absorption is still just a few percent of the incident light due to their sub-wavelength thickness leading to low cell efficiencies. Here we show that taking advantage of the mechanical flexibility of 2D materials by rolling a molybdenum disulfide (MoS(2))/graphene (Gr)/hexagonal boron nitride stack to a spiral solar cell allows for optical absorption up to 90%. The optical absorption of a 1 μm long hetero-material spiral cell consisting of the aforementioned hetero stack is about 50% stronger compared to a planar MoS(2) cell of the same thickness; although the volumetric absorbing material ratio is only 6%. A core-shell structure exhibits enhanced absorption and pronounced absorption peaks with respect to a spiral structure without metallic contacts. We anticipate these results to provide guidance for photonic structures that take advantage of the unique properties of 2D materials in solar energy conversion applications.

  4. Cell Counting in Human Endobronchial Biopsies - Disagreement of 2D versus 3D Morphometry

    PubMed Central

    Bratu, Vlad A.; Erpenbeck, Veit J.; Fehrenbach, Antonia; Rausch, Tanja; Rittinghausen, Susanne; Krug, Norbert; Hohlfeld, Jens M.; Fehrenbach, Heinz

    2014-01-01

    Question Inflammatory cell numbers are important endpoints in clinical studies relying on endobronchial biopsies. Assumption-based bidimensional (2D) counting methods are widely used, although theoretically design-based stereologic three-dimensional (3D) methods alone offer an unbiased quantitative tool. We assessed the method agreement between 2D and 3D counting designs in practice when applied to identical samples in parallel. Materials and Methods Biopsies from segmental bronchi were collected from healthy non-smokers (n = 7) and smokers (n = 7), embedded and sectioned exhaustively. Systematic uniform random samples were immunohistochemically stained for macrophages (CD68) and T-lymphocytes (CD3), respectively. In identical fields of view, cell numbers per volume unit (NV) were assessed using the physical disector (3D), and profiles per area unit (NA) were counted (2D). For CD68+ cells, profiles with and without nucleus were separately recorded. In order to enable a direct comparison of the two methods, the zero-dimensional CD68+/CD3+-ratio was calculated for each approach. Method agreement was tested by Bland-Altmann analysis. Results In both groups, mean CD68+/CD3+ ratios for NV and NA were significantly different (non-smokers: 0.39 and 0.68, p<0.05; smokers: 0.49 and 1.68, p<0.05). When counting only nucleated CD68+ profiles, mean ratios obtained by 2D and 3D counting were similar, but the regression-based Bland-Altmann analysis indicated a bias of the 2D ratios proportional to their magnitude. This magnitude dependent deviation differed between the two groups. Conclusions 2D counts of cell and nuclear profiles introduce a variable size-dependent bias throughout the measurement range. Because the deviation between the 3D and 2D data was different in the two groups, it precludes establishing a ‘universal conversion formula’. PMID:24663339

  5. Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones.

    PubMed

    Drakulic, D; Krstic, A; Stevanovic, M

    2012-05-15

    SOX2, a universal marker of pluripotent stem cells, is a transcription factor that helps control embryonic development in vertebrates; its expression persists in neural stem/progenitor cells into adulthood. Considering the critical role of the SOX2 transcription factor in the regulation of genes required for self-renewal and pluripotency of stem cells, we developed and characterized SOX2-overexpressing NT2/D1 cell clones. Using Southern blot and semi-quantitative RT-PCR, we confirmed integration and expression of exogenous SOX2 in three NT2/D1 cell clones. Overexpression of the SOX2 gene was detected in two of these clones. SOX2 overexpression in NT2/D1 cell clones resulted in altered expression of key pluripotency genes OCT4 and NANOG. Furthermore, SOX2-overexpressing NT2/D1 cell clones entered into retinoic acid-dependent neural differentiation, even when there was elevated SOX2 expression. After 21 days of induction by retinoic acid, expression of neural markers (neuroD1 and synaptophysin) was higher in induced cell clones than in induced parental cells. The cell clone with SOX2 overexpression had an approximately 1.3-fold higher growth rate compared to parental cells. SOX2 overexpression did not increase the population of cells undergoing apoptosis. Taken together, we developed two SOX2-overexpressing cell clones, with constitutive SOX2 expression after three weeks of retinoic acid treatment. SOX2 overexpression resulted in altered expression of pluripotency-related genes, increased proliferation, and altered expression of neural markers after three weeks of retinoic acid treatment.

  6. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition.

    PubMed

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew; Powell, Daniel J

    2013-03-01

    NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4(+) and CD8(+) NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer.

  7. Chimeric NKG2D CAR-Expressing T Cell-Mediated Attack of Human Ovarian Cancer Is Enhanced by Histone Deacetylase Inhibition

    PubMed Central

    Song, De-Gang; Ye, Qunrui; Santoro, Stephen; Fang, Chongyun; Best, Andrew

    2013-01-01

    Abstract NKG2D ligands (NKG2DLs) are widely expressed on ovarian cancers to various degrees, making them attractive targets for immunotherapy. Here, we applied a chimeric antigen receptor (CAR) approach for the targeting of NKG2DLs expressed on human ovarian cancer cells and evaluated the impact of pharmacological upregulation of NKG2DLs on immune recognition. Various NKG2DLs, including MICA/B and ULBP-1, -2, -3, and -4, were expressed at various levels on the surface of all established ovarian cancer cell lines and primary ovarian cancer samples tested. To redirect human T cells against NKG2DLs, an NKG2DL-specific CAR was generated by fusing the extracellular domain of the NKG2D receptor to the 4-1BB costimulatory and CD3-ζ chain signaling domains. In vitro expansion of chimeric NKG2D CAR T cells was delayed compared with untransduced T cells and control CAR T cells; the likely result of fratricide among activated T cells expressing NKG2DLs. However, NKG2D CAR T cells did expand and were selectively enriched during prolonged culture. In coculture, CD4+ and CD8+ NKG2D CAR T cells specifically recognized and killed NKG2DL-expressing ovarian cancer cell lines but not NKG2DL-negative cells. Notably, pretreatment of ovarian cancer cells expressing moderate to low levels of NKG2DLs with the histone deacetylase inhibitor sodium valproate (VPA) upregulated NKG2DL cell surface expression and consequently enhanced their immune recognition by chimeric NKG2D CAR T cells. Our results demonstrate that VPA-induced upregulation of NKG2DL expression enhances the immune recognition of ovarian cancer cells by engineered NKG2D CAR T cells, and rationalizes the use of VPA in combination with NKG2DL-targeted immunotherapy in ovarian cancer. PMID:23297870

  8. The Effect of 1α,25(OH)2D3 on Osteogenic Differentiation of Stem Cells from Dental Pulp of Exfoliated Deciduous Teeth

    PubMed Central

    Mojarad, Farzad; Amiri, Iraj; Rafatjou, Rezvan; Janeshin, Atousa; Farhadian, Maryam

    2016-01-01

    Statement of the Problem: Stem cells from human exfoliated deciduous teeth (SHEDs) are a population of highly proliferative cells, being capable of differentiating into osteogenic, odontogenic, adipocytes, and neural cells. Vitamin D3 metabolites such as 1α, 25-dihydroxyvitamin D3 are key factors in the regulation of bone metabolism. Purpose: The aim of this study was to investigate the effect of 1α, 25-dihydroxyvitamin D3 on osteogenic differentiation (alkaline phosphatase activity and alizarin red staining) of stem cells of exfoliated deciduous teeth. Materials and Method: Dental pulp was removed from freshly extracted primary teeth and immersed in a digestive solution. Then, the dental pulp cells were immersed in α-MEM (minimum essential medium) to which 10% fetal bovine serum was added. After the third passage, the cells were isolated from the culture plate and were used for osteogenic differentiation. As a control group, the cells were cultured in osteogenic cell culture medium. As the case group, the cells were cultured in osteogenic culture medium supplemented with 100 nM 1α,25 (OH)2D3. The alkaline phosphatase (ALP) activity and alizarin red staining were analyzed to evaluate the osteogenic differentiation at day 21. The results were analyzed by using t-test. Results: Compared with the control group, significant increase was observed in ALP activity of SHEDs after being treated with 1α,25(OH)2D3 (p= 0.002). Alizarin red staining demonstrated that the cells exposed to 1α,25(OH)2D3 induced higher mineralized nodules (p< 0.001). Conclusion: Osteoblast differentiation in SHEDs was stimulated by 1α,25(OH) 2D3. It can be concluded that 1α,25(OH)2D3 can improve osteoblastic differentiation. PMID:27942551

  9. Spheroid Culture of Mesenchymal Stem Cells

    PubMed Central

    Cesarz, Zoe; Tamama, Kenichi

    2016-01-01

    Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown. PMID:26649054

  10. Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells.

    PubMed

    Zhu, Yaqi; Yang, Yan; Guo, Juanjuan; Dai, Ying; Ye, Lina; Qiu, Jianbin; Zeng, Zhihong; Wu, Xiaoting; Xing, Yanmei; Long, Xiang; Wu, Xufeng; Ye, Lin; Wang, Shubin; Li, Hui

    2017-01-27

    Herpes simplex virus type 2 (HSV-2) infects human genital mucosa and establishes life-long latent infection. It is unmet need to establish a human cell-based microphysiological system for virus biology and anti-viral drug discovery. One of barriers is lacking of culture system of normal epithelial cells in vitro over decades. In this study, we established human normal vaginal epithelial cell (HNVEC) culture using co-culture system. HNVEC cells were then propagated rapidly and stably in a defined culture condition. HNVEC cells exhibited a normal diploid karyotype and formed the well-defined and polarized spheres in matrigel three-dimension (3D) culture, while malignant cells (HeLa) formed disorganized and nonpolar solid spheres. HNVEC cells had a normal cellular response to DNA damage and had no transforming property using soft agar assays. HNVEC expressed epithelial marker cytokeratin 14 (CK14) and p63, but not cytokeratin 18 (CK18). Next, we reconstructed HNVEC-derived 3D vaginal epithelium using air-liquid interface (ALI) culture. This 3D vaginal epithelium has the basal and apical layers with expression of epithelial markers as its originated human vaginal tissue. Finally, we established an HSV-2 infection model based on the reconstructed 3D vaginal epithelium. After inoculation of HSV-2 (G strain) at apical layer of the reconstructed 3D vaginal epithelium, we observed obvious pathological effects gradually spreading from the apical layer to basal layer with expression of a viral protein. Thus, we established an ex vivo 2D and 3D HSV-2 infection model that can be used for HSV-2 virology and anti-viral drug discovery.

  11. Cell Culture Made Easy.

    ERIC Educational Resources Information Center

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  12. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation

    PubMed Central

    Isernhagen, Antje; Malzahn, Dörthe; Viktorova, Elena; Elsner, Leslie; Monecke, Sebastian; von Bonin, Frederike; Kilisch, Markus; Wermuth, Janne Marieke; Walther, Neele; Balavarca, Yesilda; Stahl-Hennig, Christiane; Engelke, Michael; Walter, Lutz; Bickeböller, Heike; Kube, Dieter; Wulf, Gerald; Dressel, Ralf

    2015-01-01

    The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8+ T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8+ T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD. PMID:26483398

  13. Taxanes enhance trastuzumab-mediated ADCC on tumor cells through NKG2D-mediated NK cell recognition.

    PubMed

    Di Modica, Martina; Sfondrini, Lucia; Regondi, Viola; Varchetta, Stefania; Oliviero, Barbara; Mariani, Gabriella; Bianchi, Giulia Valeria; Generali, Daniele; Balsari, Andrea; Triulzi, Tiziana; Tagliabue, Elda

    2016-01-05

    Recent clinical data indicate a synergistic therapeutic effect between trastuzumab and taxanes in neoadjuvantly treated HER2-positive breast cancer (BC) patients. In HER2+ BC experimental models and patients, we investigated whether this synergy depends on the ability of drug-induced stress to improve NK cell effectiveness and thus trastuzumab-mediated ADCC. HER2+ BC cell lines BT474 and MDAMB361 treated with docetaxel showed up-modulation of NK activator ligands both in vitro and in vivo, accompanied by a 15-40% increase in in vitro trastuzumab-mediated ADCC; antibodies blocking the NKG2D receptor significantly reduced this enhancement. NKG2D receptor expression was increased by docetaxel treatment in circulating and splenic NK cells from mice xenografted with tumor cells, an increase related to expansion of the CD11b+Ly6G+ cell population. Accordingly, NK cells derived from HER2+ BC patients after treatment with taxane-containing therapy expressed higher levels of NKG2D receptor than before treatment. Moreover, plasma obtained from these patients recapitulated the modulation of NKG2D on healthy donors' NK cells, improving their trastuzumab-mediated activity in vitro. This enhancement occurred mainly using plasma from patients with low NKG2D basal expression. Our results indicate that taxanes increase tumor susceptibility to ADCC by acting on tumor and NK cells, and suggest that taxanes concomitantly administered with trastuzumab could maximize the antibody effect, especially in patients with low basal immune effector cytotoxic activity.

  14. RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry

    PubMed Central

    Jung, Heiyoun; Hsiung, Benjamin; Pestal, Kathleen; Procyk, Emily

    2012-01-01

    The NKG2D stimulatory receptor expressed by natural killer cells and T cell subsets recognizes cell surface ligands that are induced on transformed and infected cells and facilitate immune rejection of tumor cells. We demonstrate that expression of retinoic acid early inducible gene 1 (RAE-1) family NKG2D ligands in cancer cell lines and proliferating normal cells is coupled directly to cell cycle regulation. Raet1 genes are directly transcriptionally activated by E2F family transcription factors, which play a central role in regulating cell cycle entry. Induction of RAE-1 occurred in primary cell cultures, embryonic brain cells in vivo, and cells in healing skin wounds and, accordingly, wound healing was delayed in mice lacking NKG2D. Transcriptional activation by E2Fs is likely coordinated with posttranscriptional regulation by other stress responses. These findings suggest that cellular proliferation, as occurs in cancer cells but also other pathological conditions, is a key signal tied to immune reactions mediated by NKG2D-bearing lymphocytes. PMID:23166357

  15. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    PubMed Central

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  16. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.

    1994-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.

  17. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.

    1997-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.

  18. Effects of NKG2D haplotypes on the cell-surface expression of NKG2D protein on natural killer and CD8 T cells of peripheral blood among atomic-bomb survivors.

    PubMed

    Imai, Kazue; Hayashi, Tomonori; Yamaoka, Mika; Kajimura, Junko; Yoshida, Kengo; Kusunoki, Yoichiro; Nakachi, Kei

    2012-06-01

    NKG2D is a primary activating receptor that triggers cell-mediated cytotoxicity in NK cells against tumor and virus-infected cells. We previously identified the NKG2D haplotypes in the natural killer gene complex region on chromosome 12p. Two major haplotype alleles, LNK1 and HNK1, were closely related to low and high natural cytotoxic activity phenotypes, respectively. Furthermore, the haplotype of HNK1/HNK1 has revealed a decreased risk of cancer compared with LNK1/LNK1. In the present study, using flow cytometry, we evaluated the functional effects of NKG2D haplotypes and five htSNPs in terms of the cell-surface expression of NKG2D protein on NK and CD8 T cells of peripheral blood among 732 atomic-bomb survivors. NKG2D expression on NK cells showed significant increases, in the order of LNK1/LNK1, LNK1/HNK1 and HNK1/HNK1 haplotypes (p for trend=0.003), or with major homozygous, heterozygous, and minor homozygous genotypes for individual htSNPs (p for trend=0.02-0.003). The same trend was observed for NKG2D expression on CD8 T cells. Our findings indicate that the NKG2D haplotypes are associated with the expression levels of NKG2D protein on NK and CD8 T cells, resulting in inter-individual variations in human cytotoxic response.

  19. Fas-ligand-mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity.

    PubMed

    Groh, Veronika; Smythe, Kimberly; Dai, Zhenpeng; Spies, Thomas

    2006-07-01

    Tumor-associated ligands of the activating NKG2D receptor can effectively stimulate T cell responses at early but not late stages of tumor growth. In late-stage human tumor settings, we observed MIC-driven proliferation of NKG2D(+)CD4(+) T cells that produced the cytokine Fas ligand (FasL) as a result of NKG2D costimulation but were themselves protected from Fas-mediated growth arrest. In contrast, FasL suppressed proliferation of T cells in vitro that did not receive NKG2D costimulation. Similar observations with normal peripheral blood NKG2D(+)CD8(+) T cells demonstrated unrecognized NKG2D-mediated immune functions, whereby FasL release promotes tumor cell death and NKG2D costimulation prolongs T cell survival. These effects, beneficial in conditions of limited NKG2D ligand expression, may be counterweighed when massive expression and shedding of MIC occurs, such as in some late-stage tumors, that causes sustained NKG2D costimulation and population expansion of immunosuppressive T cells.

  20. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.

    PubMed

    Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao

    2015-11-01

    Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.

  1. Role of 2-D periodic symmetrical nanostructures in improving efficiency of thin film solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jiang, Liyong; Li, Xiangyin

    2016-01-01

    We systematically investigated several different nanostructures in crystalline silicon (c-Si) thin film solar cells and then proposed a brand-new structure with two dimensional (2-D) periodic dielectric cylinders on the top and annular metal columns on bottom surface to enhance the optical harvesting. The periodic symmetrical nanostructures affect the solar cell efficiency due to the grating diffraction effect of dielectric columns and surface plasmon polaritons (SPPs) effect induced by metal nanostructures at the dielectric-metal interface. About 52.1% more optical absorption and 33.3% more power conversion efficiency are obtained, and the maximum short current reaches to 33.24 mA/cm2.

  2. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  3. Mammalian Cell Culture Simplified.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  4. Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy

    PubMed Central

    Ghasemi, Reza; Lazear, Eric; Wang, Xiaoli; Arefanian, Saeed; Zheleznyak, Alexander; Carreno, Beatriz M.; Higashikubo, Ryuji; Gelman, Andrew E.; Kreisel, Daniel; Fremont, Daved H.; Krupnick, Alexander Sasha

    2016-01-01

    Despite over 20 years of clinical use, IL-2 has not fulfilled expectations as a safe and effective form of tumour immunotherapy. Expression of the high affinity IL-2Rα chain on regulatory T cells mitigates the anti-tumour immune response and its expression on vascular endothelium is responsible for life threatening complications such as diffuse capillary leak and pulmonary oedema. Here we describe the development of a recombinant fusion protein comprised of a cowpox virus encoded NKG2D binding protein (OMCP) and a mutated form of IL-2 with poor affinity for IL-2Rα. This fusion protein (OMCP-mutIL-2) potently and selectively activates IL-2 signalling only on NKG2D-bearing cells, such as natural killer (NK) cells, without broadly activating IL-2Rα-bearing cells. OMCP-mutIL-2 provides superior tumour control in several mouse models of malignancy and is not limited by mouse strain-specific variability of NK function. In addition, OMCP-mutIL-2 lacks the toxicity and vascular complications associated with parental wild-type IL-2. PMID:27650575

  5. Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy.

    PubMed

    Ghasemi, Reza; Lazear, Eric; Wang, Xiaoli; Arefanian, Saeed; Zheleznyak, Alexander; Carreno, Beatriz M; Higashikubo, Ryuji; Gelman, Andrew E; Kreisel, Daniel; Fremont, Daved H; Krupnick, Alexander Sasha

    2016-09-21

    Despite over 20 years of clinical use, IL-2 has not fulfilled expectations as a safe and effective form of tumour immunotherapy. Expression of the high affinity IL-2Rα chain on regulatory T cells mitigates the anti-tumour immune response and its expression on vascular endothelium is responsible for life threatening complications such as diffuse capillary leak and pulmonary oedema. Here we describe the development of a recombinant fusion protein comprised of a cowpox virus encoded NKG2D binding protein (OMCP) and a mutated form of IL-2 with poor affinity for IL-2Rα. This fusion protein (OMCP-mutIL-2) potently and selectively activates IL-2 signalling only on NKG2D-bearing cells, such as natural killer (NK) cells, without broadly activating IL-2Rα-bearing cells. OMCP-mutIL-2 provides superior tumour control in several mouse models of malignancy and is not limited by mouse strain-specific variability of NK function. In addition, OMCP-mutIL-2 lacks the toxicity and vascular complications associated with parental wild-type IL-2.

  6. RAET1E2, a soluble isoform of the UL16-binding protein RAET1E produced by tumor cells, inhibits NKG2D-mediated NK cytotoxicity.

    PubMed

    Cao, Wei; Xi, Xueyan; Hao, Zhiyong; Li, Wenjing; Kong, Yan; Cui, Lianxian; Ma, Chi; Ba, Denian; He, Wei

    2007-06-29

    UL16-binding proteins (ULBPs, also termed as retinoic acid early transcripts, encoded by RAET1 genes), a family of ligands for NKG2D in humans, are frequently expressed by tumor cells and mediate cytotoxicities of natural killer (NK) cells and CD8(+) alphabeta T cells to tumor cells. ULBP1, ULBP2, ULBP3, and RAET1L link to membrane through glycosylphosphatidylinositol, whereas RAET1E and RAET1G contain transmembrane and cytoplasmic domains. Proteolytic cleavage of ULBP2 produces truncated and soluble forms that may counteract NKG2D-mediated tumor immune surveillance. In this study, we report that RAET1E can produce a soluble, 35-kDa protein (termed as RAET1E2) lacking the transmembrane region by selective splicing in tumor cells. The expressions of both RAET1E2 transcripts and protein can be found in different tumor cells and tissues. Preincubation of NK-92 cells, a human NK cell line, with culture supernatants from tumor cell lines expressing RAET1E2 or RAET1E2 gene-transfected COS-7 cells resulted in decreased expression of NKG2D on NK-92 cells. Furthermore, incubation of NK-92 cells with recombinant RAET1E2 protein also decreased the surface expression of NKG2D and resulted in marked reduction in cytotoxicities to MGC-803, HepG2, or K562 tumor cells. Taken together, our data provide strong evidence for an immune escape mechanism of tumors via alternative splicing of ULBP RNA to generate a free soluble ULBP protein, RAET1E2, that may impair NKG2D-mediated NK cell cytotoxicity to tumors.

  7. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications.

    PubMed

    Cao, Duyen H; Stoumpos, Constantinos C; Farha, Omar K; Hupp, Joseph T; Kanatzidis, Mercouri G

    2015-06-24

    We report on the fabrication and properties of the semiconducting 2D (CH3(CH2)3NH3)2(CH3NH3)(n-1)Pb(n)I(3n+1) (n = 1, 2, 3, and 4) perovskite thin films. The band gaps of the series decrease with increasing n values, from 2.24 eV (CH3(CH2)3NH3)2PbI4 (n = 1) to 1.52 eV CH3NH3PbI3 (n = ∞). The compounds exhibit strong light absorption in the visible region, accompanied by strong photoluminescence at room temperature, rendering them promising light absorbers for photovoltaic applications. Moreover, we find that thin films of the semi-2D perovskites display an ultrahigh surface coverage as a result of the unusual film self-assembly that orients the [Pb(n)I(3n+1)](-) layers perpendicular to the substrates. We have successfully implemented this 2D perovskite family in solid-state solar cells, and obtained an initial power conversion efficiency of 4.02%, featuring an open-circuit voltage (V(oc)) of 929 mV and a short-circuit current density (J(sc)) of 9.42 mA/cm(2) from the n = 3 compound. This result is even more encouraging considering that the device retains its performance after long exposure to a high-humidity environment. Overall, the homologous 2D halide perovskites define a promising class of stable and efficient light-absorbing materials for solid-state photovoltaics and other applications.

  8. Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses.

    PubMed

    Watanabe, Naohide; Lam, Eric

    2011-06-01

    Cysteine proteases such as caspases play important roles in programmed cell death (PCD) of metazoans. Plant metacaspases (MCPs), a family of cysteine proteases structurally related to caspases, have been hypothesized to be ancestors of metazoan caspases, despite their different substrate specificity. Arabidopsis thaliana contains six type II MCP genes (AtMCP2a-f). Whether and how these individual members are involved in controlling PCD in plants remains largely unknown. Here we investigated the function and regulation of AtMCP2d, the predominant and constitutively expressed member of type II MCPs, in stress-inducible PCD. Two AtMCP2d mutants (mcp2d-1 and mcp2d-3) exhibited reduced sensitivity to PCD-inducing mycotoxin fumonisin B1 as well as oxidative stress inducers, whereas AtMCP2d over-expressors were more sensitive to these agents, and exhibited accelerated cell-death progression. We found that AtMCP2d exclusively localizes to the cytosol, and its accumulation and self-processing patterns were age-dependent in leaves. Importantly, active proteolytic processing of AtMCP2d proteins dependent on its catalytic activity was observed in mature leaves during mycotoxin-induced cell death. We also found that mcp2d-1 leaves exhibited reduced cell death in response to Pseudomonas syringae carrying avirulent gene avrRpt2, and that self-processing of AtMCP2d was also detected in wild-type leaves in response to this pathogen. Furthermore, increases in processed AtMCP2d proteins were found to correlate with conditional cell-death induction in two lesion-mimic mutants (cpr22 and ssi4) that exhibit spontaneous cell-death phenotypes. Taken together, our data strongly suggest that AtMCP2d plays a positive regulatory role in biotic and abiotic stress-induced PCD.

  9. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  10. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments.

    PubMed

    Dziasko, Marc A; Tuft, Stephen J; Daniels, Julie T

    2015-09-01

    Human limbal epithelial stem cells (LESCs) are essential for the maintenance of the corneal epithelium of the ocular surface. LESCs are located within limbal crypts between the palisades of Vogt in the limbus; the interface between the peripheral cornea and conjunctiva. The limbal crypts have been proposed as a LESC niche owing to their support of epithelial cells, which can form holoclone colonies in vitro. Closely associated with the limbal crypts is a concentrated population of melanocytes. The anatomical location and close proximity to putative LESC suggests that melanocytes might play a role in maintenance of these stem cells in the niche. The aim of this study was to assess the ability of human limbal melanocytes (hLM) to support the expansion of human limbal epithelial cells (LECs) in vitro as an indicator of functional cell-cell interaction. After observing that hLM co-localize with clusters of compact epithelial cells in the native limbal crypts, hLM were isolated from crypt-rich cadaveric limbal biopsies and used as feeders for the culture of LECs. Interestingly, LECs grown on mitotically active hLM were able to generate large epithelial colonies that contained small and compact cells with morphological stem cell characteristics. Immunocytochemistry revealed that LECs expanded on hLM were positive for the expression of the putative stem cell markers CK15, Bmi-1 and p63α and negative for the marker of terminal cell differentiation CK3. LECs and hLM were finally co-cultured on RAFT (real architecture for 3D tissue) collagen tissue equivalents. In 3D co-cultures, hLM promoted multi-layering of the epithelial sheet in which basal cells were maintained in an undifferentiated state. Taken together, these observations suggest melanocytes could play an important role in the maintenance of LESCs in the native human limbal stem cell niche.

  11. SOX2 overexpression affects neural differentiation of human pluripotent NT2/D1 cells.

    PubMed

    Klajn, A; Drakulic, D; Tosic, M; Pavkovic, Z; Schwirtlich, M; Stevanovic, M

    2014-11-01

    SOX2 is one of the key transcription factors involved in maintenance of neural progenitor identity. However, its function during the process of neural differentiation, including phases of lineage-specification and terminal differentiation, is still poorly understood. Considering growing evidence indicating that SOX2 expression level must be tightly controlled for proper neural development, the aim of this research was to analyze the effects of constitutive SOX2 overexpression on outcome of retinoic acid-induced neural differentiation of pluripotent NT2/D1 cells. We demonstrated that in spite of constitutive SOX2 overexpression, NT2/D1 cells were able to reach final phases of neural differentiation yielding both neuronal and glial cells. However, SOX2 overexpression reduced the number of mature MAP2-positive neurons while no difference in the number of GFAP-positive astrocytes was detected. In-depth analysis at single-cell level showed that SOX2 downregulation was in correlation with both neuronal and glial phenotype acquisitions. Interestingly, while in mature neurons SOX2 was completely downregulated, astrocytes with low level of SOX2 expression were detected. Nevertheless, cells with high level of SOX2 expression were incapable of entering in either of two differentiation pathways, neurogenesis or gliogenesis. Accordingly, our results indicate that fine balance between undifferentiated state and neural differentiation depends on SOX2 expression level. Unlike neurons, astrocytes could maintain low level of SOX2 expression after they acquired glial fate. Further studies are needed to determine whether differences in the level of SOX2 expression in GFAP-positive astrocytes are in correlation with their self-renewal capacity, differentiation status, and/or their phenotypic characteristics.

  12. Enhanced durability of polymer electrolyte membrane fuel cells by functionalized 2D boron nitride nanoflakes.

    PubMed

    Oh, Keun-Hwan; Lee, Dongju; Choo, Min-Ju; Park, Kwang Hyun; Jeon, Seokwoo; Hong, Soon Hyung; Park, Jung-Ki; Choi, Jang Wook

    2014-05-28

    We report boron nitride nanoflakes (BNNFs), for the first time, as a nanofiller for polymer electrolyte membranes in fuel cells. Utilizing the intrinsic mechanical strength of two-dimensional (2D) BN, addition of BNNFs even at a marginal content (0.3 wt %) significantly improves mechanical stability of the most representative hydrocarbon-type (HC-type) polymer electrolyte membrane, namely sulfonated poly(ether ether ketone) (sPEEK), during substantial water uptake through repeated wet/dry cycles. For facile processing with BNNFs that frequently suffer from poor dispersion in most organic solvents, we non-covalently functionalized BNNFs with 1-pyrenesulfonic acid (PSA). Besides good dispersion, PSA supports efficient proton transport through its sulfonic functional groups. Compared to bare sPEEK, the composite membrane containing BNNF nanofiller exhibited far improved long-term durability originating from enhanced dimensional stability and diminished chronic edge failure. This study suggests that introduction of properly functionalized 2D BNNFs is an effective strategy in making various HC-type membranes sustainable without sacrificing their original adventurous properties in polymer electrolyte membrane fuel cells.

  13. Effects on Tumor Development and Metastatic Dissemination by the NKG2D Lymphocyte Receptor Expressed on Cancer Cells

    PubMed Central

    El-Gazzar, Ahmed; Cai, Xin; Reeves, Rebecca S.; Dai, Zhenpeng; Caballero-Benitez, Andrea; McDonald, David L.; Vazquez, Julio; Gooley, Ted A.; Sale, George E.; Spies, Thomas; Groh, Veronika

    2014-01-01

    The stimulatory NKG2D lymphocyte receptor together with its tumor-associated ligands enable the immune system to recognize and destroy cancer cells. However, with dynamic changes unfolding, cancers exploit NKG2D and its ligands for immune evasion and suppression. Recent findings have added yet another functional dimension wherein cancer cells themselves coopt NKG2D for their own benefit to complement the presence of its ligands for self stimulation of parameters of tumorigenesis. Those findings are here extended to in vivo tumorigenicity testing by employing orthotopic xenotransplant breast cancer models in mice. Using human cancer lines with ectopic NKG2D expression and RNAi-mediated protein depletion among other controls, we show that NKG2D self-stimulation has tumor promoting capacity. NKG2D signals had no notable effects on cancer cell proliferation and survival but acted at the level of angiogenesis, thus promoting tumor growth, tumor cell intravasation and dissemination. NKG2D-mediated effects on tumor initiation may represent another factor in the observed overall enhancement of tumor development. Altogether, these results may impact immunotherapy approaches, which currently do not account for such NKG2D effects in cancer patients and thus could be misdirected as underlying assumptions are incomplete. PMID:24141776

  14. Effects on tumor development and metastatic dissemination by the NKG2D lymphocyte receptor expressed on cancer cells.

    PubMed

    El-Gazzar, A; Cai, X; Reeves, R S; Dai, Z; Caballero-Benitez, A; McDonald, D L; Vazquez, J; Gooley, T A; Sale, G E; Spies, T; Groh, V

    2014-10-09

    The stimulatory NKG2D lymphocyte receptor together with its tumor-associated ligands enable the immune system to recognize and destroy cancer cells. However, with dynamic changes unfolding, cancers exploit NKG2D and its ligands for immune evasion and suppression. Recent findings have added yet another functional dimension, wherein cancer cells themselves co-opt NKG2D for their own benefit to complement the presence of its ligands for self-stimulation of parameters of tumorigenesis. Those findings are here extended to in vivo tumorigenicity testing by employing orthotopic xenotransplant breast cancer models in mice. Using human cancer lines with ectopic NKG2D expression and RNA interference (RNAi)-mediated protein depletion among other controls, we show that NKG2D self-stimulation has tumor-promoting capacity. NKG2D signals had no notable effects on cancer cell proliferation and survival but acted at the level of angiogenesis, thus promoting tumor growth, tumor cell intravasation and dissemination. NKG2D-mediated effects on tumor initiation may represent another factor in the observed overall enhancement of tumor development. Altogether, these results may have an impact on immunotherapy approaches, which currently do not account for such NKG2D effects in cancer patients and thus could be misdirected as underlying assumptions are incomplete.

  15. A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method

    SciTech Connect

    McPherson, Allen L.; Knoll, Dana A.; Cieren, Emmanuel B.; Feltman, Nicolas; Leibs, Christopher A.; McCarthy, Colleen; Murthy, Karthik S.; Wang, Yijie

    2012-09-10

    Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

  16. Basic cell culture.

    PubMed

    Pollard, J W

    1990-01-01

    This article will describe the basic techniques required for successful cell culture. It will also act to introduce some of the other chapters in this volume. It is not intended, as this volume is not, to describe the establishment of a tissue culture laboratory, nor to provide a historical or theoretical survey of cell culture. There are several books that adequately cover these areas, including the now somewhat dated but still valuable volume by Paul (1), the multi-authored Methods in Enzymology volume edited by Jakoby and Pastan (2), and the new edition of Freshney (3). Instead, this chapter's focus will be on the techniques for establishing primary rodent cell cultures from embryos and adult skin, maintaining and subculturing these fibro-blasts and their transformed derivatives, and the isolation of genetically pure strains. The cells described are all derived from Chinese hamsters since, to date, these cells, have proved to be the most useful for somatic cell genetics (4,5). The techniques, however, are generally applicable to most fibroblastic cell types.

  17. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells

    PubMed Central

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N.; Glenn, Sean T.; Liu, Song; Trump, Donald L.; Johnson, Candace S.

    2014-01-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. MiRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253 J and 253J-BV cells express endogenous vitamin D receptor (VDR) which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253 J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. PMID:25263658

  18. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.

    PubMed

    Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.

  19. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  20. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo.

    PubMed

    Katz Imberman, Sandra; Kolpakova, Alina; Keren, Aviad; Bengal, Eyal

    2015-08-01

    In Xenopus, animal cap (AC) cells give rise to ectoderm and its derivatives: epidermis and the central nervous system. Ectoderm has long been considered a default pathway of embryonic development, with cells that are not under the influence of vegetal Nodal signaling adopting an ectodermal program of gene expression. In the present study, we describe the involvement of the animally-localized maternal transcription factor myocyte enhancer factor (Mef) 2D in regulating the identity of AC cells. We find that Mef2D is required for the formation of both ectodermal lineages: neural and epidermis. Gain and loss of function experiments indicate that Mef2D regulates early gastrula expression of key ectodermal/epidermal genes in the animal region. Mef2D controls the activity of zygotic bone morphogenetic protein (BMP) signaling known to dictate the epidermal differentiation program. Exogenous expression of Mef2D in vegetal blastomeres was sufficient to induce ectopic expression of ectoderm/epidermal genes in the vegetal half of the embryo, when Nodal signaling was inhibited. Depletion of Mef2D caused a loss of AC cell adhesion that was rescued by the expression of E-cadherin or bone morphogenetic protein 4. In addition, expression of Mef2D in the prospective endoderm caused unusual aggregation of vegetal cells with animal cells in vitro and inappropriate segregation to other germ layers in vivo. Mef2D cooperates with another animally-expressed transcription factor, FoxI1e. Together, they regulate the expression of genes encoding signaling proteins and the transcription factors that control the regional identity of animal cells. Therefore, we describe a new role for the animally-localized Mef2D protein in early ectoderm specification, which is similar to that of the vegetally-localized VegT in endoderm and mesoderm formation.

  1. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development

    PubMed Central

    Ortega-Molina, Ana; Boss, Isaac W.; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W.; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A.; Gascoyne, Randy D.; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M.; Wendel, Hans-Guido

    2015-01-01

    The lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). However, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center (GC) involution, impedes B cell differentiation and class switch recombination (CSR). Integrative genomic analyses indicate that KMT2D affects H3K4 methylation and expression of a specific set of genes including those in the CD40, JAK-STAT, Toll-like receptor, and B cell receptor pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3, and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell activating pathways. PMID:26366710

  2. Functional Dichotomy between NKG2D and CD28-Mediated Co-Stimulation in Human CD8+ T Cells

    PubMed Central

    Rajasekaran, Kamalakannan; Xiong, Va; Fong, Lee; Gorski, Jack; Malarkannan, Subramaniam

    2010-01-01

    Both CD28 and NKG2D can function as co-stimulatory receptors in human CD8+ T cells. However, their independent functional contributions in distinct CD8+ T cell subsets are not well understood. In this study, CD8+ T cells in human peripheral blood- and lung-derived lymphocytes were analyzed for CD28 and NKG2D expression and function. We found a higher level of CD28 expression in PBMC-derived naïve (CD45RA+CD27+) and memory (CD45RA−CD27+) CD8+ T cells (CD28Hi), while its expression was significantly lower in effector (CD45RA+CD27−) CD8+ T cells (CD28Lo). Irrespective of the differences in the CD28 levels, NKG2D expression was comparable in all three CD8+ T cell subsets. CD28 and NKG2D expressions followed similar patterns in human lung-resident GILGFVFTL/HLA-A2-pentamer positive CD8+ T cells. Co-stimulation of CD28Lo effector T cells via NKG2D significantly increased IFN-γ and TNF-α levels. On the contrary, irrespective of its comparable levels, NKG2D-mediated co-stimulation failed to augment IFN-γ and TNF-α production in CD28Hi naïve/memory T cells. Additionally, CD28-mediated co-stimulation was obligatory for IL-2 generation and thereby its production was limited only to the CD28Hi naïve/memory subsets. MICA, a ligand for NKG2D was abundantly expressed in the tracheal epithelial cells, validating the use of NKG2D as the major co-stimulatory receptor by tissue-resident CD8+ effector T cells. Based on these findings, we conclude that NKG2D may provide an expanded level of co-stimulation to tissue-residing effector CD8+ T cells. Thus, incorporation of co-stimulation via NKG2D in addition to CD28 is essential to activate tumor or tissue-infiltrating effector CD8+ T cells. However, boosting a recall immune response via memory CD8+ T cells or vaccination to stimulate naïve CD8+ T cells would require CD28-mediated co-stimulation. PMID:20844584

  3. Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation⋆

    PubMed Central

    Farhadi, Nazanin; Lambert, Laura; Triulzi, Chiara; Openshaw, Peter J.M.; Guerra, Nadia; Culley, Fiona J.

    2014-01-01

    Background The diverse roles of innate immune cells in the pathogenesis of asthma remain to be fully defined. Natural killer (NK) cells are innate lymphocytes that can regulate adaptive immune responses. NK cells are activated in asthma; however, their role in allergic airway inflammation is not fully understood. Objective We investigated the importance of NK cells in house dust mite (HDM)-triggered allergic pulmonary inflammation. Specifically, we aimed to determine the role of the major NK-cell activating receptor NKG2D and NK-cell effector functions mediated by granzyme B. Methods Allergic airway inflammation was induced in the airways of mice by repeated intranasal HDM extract administration and responses in wild-type and NKG2D-deficient mice were compared. Adoptive transfer studies were used to identify the cells and mechanisms involved. Results Mice that lacked NKG2D were resistant to the induction of allergic inflammation and showed little pulmonary eosinophilia, few airway TH2 cells, and no rise in serum IgE after multiple HDM-allergen exposures. However, NKG2D was not required for pulmonary inflammation after a single inoculation of allergen. NKG2D-deficient mice showed no alteration in responses to respiratory virus infection. Transfer of wild-type NK cells (but not CD3+ cells) into NKG2D-deficient mice restored allergic inflammatory responses only if the NK cells expressed granzyme B. Conclusions These studies established a pivotal role for NK-cell NKG2D and granzyme B in the pathogenesis of HDM-induced allergic lung disease, and identified novel therapeutic targets for the prevention and treatment of asthma. PMID:24290277

  4. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  5. Cell Culturing of Cytoskeleton

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  6. Skeletal muscle satellite cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Molnar, Greg; Hartzell, Charles R.; Schroedl, Nancy A.; Gonda, Steve R.

    1993-01-01

    Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and therefore provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (approximately 200 gm) were used for all studies and were composed of greater than 75 % satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D flat culture and 3-D HARV culture. Plating efficiency (cells attached - cells plated x 100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and non-satellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability since glucose levels in media from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARVS were joined together by cells into three-dimensional aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of

  7. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  8. Optical and electrical study of organic solar cells with a 2D grating anode.

    PubMed

    Sha, Wei E I; Choy, Wallace C H; Wu, Yumao; Chew, Weng Cho

    2012-01-30

    We investigate both optical and electrical properties of organic solar cells (OSCs) incorporating 2D periodic metallic back grating as an anode. Using a unified finite-difference approach, the multiphysics modeling framework for plasmonic OSCs is established to seamlessly connect the photon absorption with carrier transport and collection by solving the Maxwell's equations and semiconductor equations (Poisson, continuity, and drift-diffusion equations). Due to the excited surface plasmon resonance, the significantly nonuniform and extremely high exciton generation rate near the metallic grating are strongly confirmed by our theoretical model. Remarkably, the nonuniform exciton generation indeed does not induce more recombination loss or smaller open-circuit voltage compared to 1D multilayer standard OSC device. The increased open-circuit voltage and reduced recombination loss by the plasmonic OSC are attributed to direct hole collections at the metallic grating anode with a short transport path. The work provides an important multiphysics understanding for plasmonic organic photovoltaics.

  9. Effect of 1,25-(OH)2D3 and lipopolysaccharide on mononuclear cell inflammation in type 2 diabetes mellitus and diabetic nephropathy uremia.

    PubMed

    Wu, E L; Cui, H X

    2016-08-29

    The prevention and treatment of type-2 diabetes mellitus (T2DM) and diabetic nephropathy (DN), which are disorders with high incidence rates, is of primary importance. In this study, we analyzed the effect of 1,25-(OH)2D3 and lipopolysaccharide (LPS) in combination with interleukin (IL)-15 on the inflammatory immune response and expression of vitamin D receptor (VDR) in mononuclear cells of T2DM and DN uremia (DNU) patients. The human acute monocytic leukemia cell line THP-1 was treated with peripheral blood serum isolated from 30 healthy controls and T2DM and DNU patients each, cultured in the presence or absence of 1,25-(OH)2D3, and subsequently treated with LPS and IL-15. The VDR mRNA and protein expression in THP-1 cells was detected by real-time polymerase chain reaction and western blot (and immunofluorescence assay), respectively, and IL-6 and IL-10 concentrations in the culture supernatant were detected by enzyme-linked immunosorbent assay. LPS treatment induced a significant decrease in VDR mRNA expression in T2DM and DNU serum-treated THP-1 cells compared to the control cells (P < 0.05). The VDR protein expression in DNU serum-treated THP-1 cells was also significantly down-regulated (P < 0.05). LPS treatment induced IL-6 secretion in serum-treated THP-1 cells (P < 0.05), while 1,25-(OH)2D3 treatment inhibited IL-6 secretion to some extent. These findings suggested that LPS down-regulates the expression of VDR in mononuclear cells of T2DM and DNU patients and induces an imbalance in the pro-inflammatory and anti-inflammatory cytokine response, while 1,25-(OH)2D3 partially reversed the effect of LPS and protected patients with T2DM and DNU.

  10. PCaAnalyser: A 2D-Image Analysis Based Module for Effective Determination of Prostate Cancer Progression in 3D Culture

    PubMed Central

    Lovitt, Carrie J.; Avery, Vicky M.

    2013-01-01

    Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated. PMID:24278197

  11. Three dimensional spheroid cell culture for nanoparticle safety testing.

    PubMed

    Sambale, Franziska; Lavrentieva, Antonina; Stahl, Frank; Blume, Cornelia; Stiesch, Meike; Kasper, Cornelia; Bahnemann, Detlef; Scheper, Thomas

    2015-07-10

    Nanoparticles are widely employed for many applications and the number of consumer products, incorporating nanotechnology, is constantly increasing. A novel area of nanotechnology is the application in medical implants. The widespread use of nanoparticles leads to their higher prevalence in our environment. This, in turn, raises concerns regarding potential risks to humans. Previous studies have shown possible hazardous effects of some nanoparticles on mammalian cells grown in two-dimensional (2D) cultures. However, 2D in vitro cell cultures display several disadvantages such as changes in cell shape, cell function, cell responses and lack of cell-cell contacts. For this reason, the development of better models for mimicking in vivo conditions is essential. In the present work, we cultivated A549 cells and NIH-3T3 cells in three-dimensional (3D) spheroids and investigated the effects of zinc oxide (ZnO-NP) and titanium dioxide nanoparticles (TiO2-NP). The results were compared to cultivation in 2D monolayer culture. A549 cells in 3D cell culture formed loose aggregates which were more sensitive to the toxicity of ZnO-NP in comparison to cells grown in 2D monolayers. In contrast, NIH-3T3 cells showed a compact 3D spheroid structure and no differences in the sensitivity of the NIH-3T3 cells to ZnO-NP were observed between 2D and 3D cultures. TiO2-NP were non-toxic in 2D cultures but affected cell-cell interaction during 3D spheroid formation of A549 and NIH-3T3 cells. When TiO2-NP were directly added during spheroid formation in the cultures of the two cell lines tested, several smaller spheroids were formed instead of a single spheroid. This effect was not observed if the nanoparticles were added after spheroid formation. In this case, a slight decrease in cell viability was determined only for A549 3D spheroids. The obtained results demonstrate the importance of 3D cell culture studies for nanoparticle safety testing, since some effects cannot be revealed in 2D

  12. Autonomous Stimulation of Cancer Cell Plasticity by the Human NKG2D Lymphocyte Receptor Coexpressed with Its Ligands on Cancer Cells

    PubMed Central

    Cai, Xin; Dai, Zhenpeng; Reeves, Rebecca S.; Caballero-Benitez, Andrea; Duran, Kate L.; Delrow, Jeffrey J.; Porter, Peggy L.

    2014-01-01

    The stimulatory NKG2D receptor on lymphocytes promotes tumor immune surveillance by targeting ligands selectively induced on cancer cells. Progressing tumors counteract by employing tactics to disable lymphocyte NKG2D. This negative dynamic is escalated as some human cancer cells co-opt expression of NKG2D, thereby complementing the presence of its ligands for autonomous stimulation of oncogenic signaling. Clinical association data imply relationships between cancer cell NKG2D and metastatic disease. Here we show that NKG2D promotes cancer cell plasticity by induction of phenotypic, molecular, and functional signatures diagnostic of the epithelial–mesenchymal transition, and of stem-like traits via induction of Sox9, a key transcriptional regulator of breast stem cell maintenance. These findings obtained with model breast tumor lines and xenotransplants were recapitulated by ex vivo cancer cells from primary invasive breast carcinomas. Thus, NKG2D may have the capacity to drive high malignancy traits underlying metastatic disease. PMID:25291178

  13. Ataxia-telangiectasia mutated kinase-mediated upregulation of NKG2D ligands on leukemia cells by resveratrol results in enhanced natural killer cell susceptibility.

    PubMed

    Luis Espinoza, J; Takami, Akiyoshi; Trung, Ly Q; Nakao, Shinji

    2013-06-01

    The powerful activating receptor NKG2D is expressed by natural killer (NK) cells and promotes cytotoxic lysis of cancer cells expressing NKG2D ligands (NKG2D-Ls). We report the effective induction of NKG2D-Ls, achieved with the naturally occurring polyphenol resveratrol, in a broad range of leukemia cells. In this study, resveratrol upregulated the NKG2D-Ls MHC class I chain-related proteins MICA and MICB, and UL16-binding proteins ULBP1, ULBP2, and ULBP3 in most of the leukemia cells analyzed. Ligand upregulation induced by resveratrol was impaired by pharmacological and genetic disruption of ataxia-telangiectasia mutated kinase, the main regulator of NKG2D-L expression. Leukemia cells treated with resveratrol were more susceptible to killing by NK cells than untreated cells, and the enhanced cytotoxicity of NK cells was blocked by treatment of NK cells with anti-NKG2D mAbs. Interestingly, resveratrol consistently upregulated the NKG2D receptor expression and enhanced NKG2D-mediated functions in resting NK cells obtained from healthy individuals. Therefore, resveratrol has attractive immunotherapeutic potential.

  14. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size.

    PubMed

    Otani, Tomoki; Marchetto, Maria C; Gage, Fred H; Simons, Benjamin D; Livesey, Frederick J

    2016-04-07

    Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output.

  15. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size

    PubMed Central

    Otani, Tomoki; Marchetto, Maria C.; Gage, Fred H.; Simons, Benjamin D.; Livesey, Frederick J.

    2016-01-01

    Summary Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. PMID:27049876

  16. Selective upregulation of the expression of plasma membrane calcium ATPase isoforms upon differentiation and 1,25(OH)2D3-vitamin treatment of colon cancer cells.

    PubMed

    Ribiczey, Polett; Papp, Béla; Homolya, László; Enyedi, Ágnes; Kovács, Tünde

    2015-08-14

    We have previously presented co-expression of the plasma membrane calcium ATPase isoforms 4b (PMCA4b) and 1b (PMCA1b) in colon carcinoma cells, and selective upregulation of PMCA4b during differentiation initiated by short chain fatty acids or post-confluent growth. Here we show that the induction of PMCA4b expression is a characteristic feature of the post-confluency-induced differentiation of both enterocyte-type and goblet cell-type colon cancer cells. Vitamin D3 (1,25(OH)2D3) is a well-known regulator of intestinal Ca(2+) absorption and of basic cell functions such as growth and differentiation in various cell types. As PMCA proteins are involved both in intestinal Ca(2+) absorption and adenocarcinoma cell differentiation, we investigated the effect of 1,25(OH)2D3 on PMCA expression in enterocyte-like colon carcinoma cells, and monitored its effect on the expression of various differentiation markers. 1,25(OH)2D3 stimulated PMCA1b, but not PMCA4b expression without modulating the expression of the majority of the differentiation markers examined. Caco-2 cells differentiated in post-confluent cultures present normal enterocyte-like intestinal epithelial phenotype. To better understand the role of PMCA proteins in vectorial Ca(2+) transport by enterocytes, we also studied their subcellular localization in mature polarized Caco-2 cells. Both PMCA isoforms were located to the basolateral membrane, and the PMCA-specific immunofluorescent signal was significantly higher in vitamin D3-treated cells, underlining the 1,25(OH)2D3-induced upregulation of PMCA (presumably 1b isoform) expression in differentiated Caco-2 cells. We suggest that while PMCA1b has a housekeeping function in colon cancer cells, PMCA4b participates in the reorganization of the Ca(2+) signalling machinery during cell differentiation. The subcellular localization of PMCA1b and its selective 1,25(OH)2D3-dependent upregulation indicate that this isoform may have a specific role in 1,25(OH)2D3

  17. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells.

    PubMed

    Carbone, Ennio; Neri, Paola; Mesuraca, Maria; Fulciniti, Mariateresa T; Otsuki, Takemi; Pende, Daniela; Groh, Veronika; Spies, Thomas; Pollio, Giuditta; Cosman, David; Catalano, Lucio; Tassone, Pierfrancesco; Rotoli, Bruno; Venuta, Salvatore

    2005-01-01

    The role of natural killer (NK) cells in multiple myeloma is not fully understood. Here, NK susceptibility of myeloma cells derived from distinct disease stages was evaluated in relation to major histocompatibility complex (MHC) class I, MHC class I chain-related protein A (MICA), MHC class I chain-related protein B (MICB), and UL16 binding protein (ULBP) expression. MHC class I molecules were hardly detectable on bone marrow cells of early-stage myeloma, while late-stage pleural effusion-derived cell lines showed a strong MHC class I expression. Conversely, a high MICA level was found on bone marrow myeloma cells, while it was low or not measurable on pleural effusion myeloma cells. The reciprocal surface expression of these molecules on bone marrow- and pleural effusion-derived cell was confirmed at mRNA levels. While bone marrow-derived myeloma cells were readily recognized by NK cells, pleural effusion-derived lines were resistant. NK protection of pleural effusion cells was MHC class I dependent. Receptor blocking experiments demonstrated that natural cytotoxicity receptor (NCR) and NK receptor member D of the lectin-like receptor family (NKG2D) were the key NK activating receptors for bone marrow-derived myeloma cell recognition. In ex vivo experiments patient's autologous fresh NK cells recognized bone marrow-derived myeloma cells. Our data support the hypothesis that NK cell cytotoxicity could sculpture myeloma and represents an important immune effector mechanism in controlling its intramedullary stages.

  18. Comparative proteomics profile of osteoblasts cultured on dissimilar hydroxyapatite biomaterials: an iTRAQ-coupled 2-D LC-MS/MS analysis.

    PubMed

    Xu, Jinling; Khor, Khiam Aik; Sui, Jianjun; Zhang, Jianhua; Tan, Tuan Lin; Chen, Wei Ning

    2008-10-01

    Hydroxyapatite (HA) and its derived bioceramic materials have been widely used for skeletal implants and/or bone repair scaffolds. It has been reported that carbon nanotube (CNT) is able to enhance the brittle ceramic matrix without detrimental to the bioactivity. However, interaction between osteoblasts and these bioceramics, as well as the underlying mechanism of osteoblast proliferation on these bioceramic surfaces remain to be determined. Using iTRAQ-coupled 2-D LC-MS/MS analysis, we report the first comparative proteomics profiling of human osteoblast cells cultured on plane HA and CNT reinforced HA, respectively. Cytoskeletal proteins, metabolic enzymes, signaling, and cell growth proteins previous associated with cell adhesion and proliferation were found to be differentially expressed on these two surfaces. The level of these proteins was generally higher in cells adhered to HA surface, indicating a higher level of cellular proliferation in these cells. The significance of these findings was further assessed by Western blot analysis. The differential protein profile in HA and CNT strengthened HA established in our study should be valuable for future design of biocompatible ceramics.

  19. Expression of green fluorescent protein in human foreskin fibroblasts for use in 2D and 3D culture models.

    PubMed

    Chao, Jie; Peña, Tiffany; Heimann, Dean G; Hansen, Chris; Doyle, David A; Yanala, Ujwal R; Guenther, Timothy M; Carlson, Mark A

    2014-01-01

    The availability of fibroblasts that express green fluorescent protein (GFP) would be of interest for the monitoring of cell growth, migration, contraction, and other processes within the fibroblast-populated collagen matrix and other culture systems. A plasmid lentiviral vector-GFP (pLV-GFP) was utilized for gene delivery to produce primary human foreskin fibroblasts (HFFs) that stably express GFP. Cell morphology, cell migration, and collagen contraction were compared between nontransduced HFFs and transduced GFP-HFFs; no differences were observed. Immunocytochemical staining showed no differences in cell morphology between nontransduced and GFP-HFFs in both two-dimensional and three-dimensional culture systems. Furthermore, there was no significant difference in cellular population growth within the collagen matrix populated with nontransduced vs. GFP-HFFs. Within the limits of our assays, we conclude that transduction of GFP into HFFs did not alter the observed properties of HFFs compared with nontransduced fibroblasts. The GFP-HFFs may represent a new tool for the convenient monitoring of living primary fibroblast processes in two-dimensional or three-dimensional culture.

  20. Engineered bone culture in a perfusion bioreactor: a 2D computational study of stationary mass and momentum transport.

    PubMed

    Pierre, J; Oddou, C

    2007-12-01

    Successful bone cell culture in large implants still is a challenge to biologists and requires a strict control of the physicochemical and mechanical environments. This study analyses from the transport phenomena viewpoint the limiting factors of a perfusion bioreactor for bone cell culture within fibrous and porous large implants (2.5 cm in length, a few cubic centimetres in volume, 250 microm in fibre diameter with approximately 60% porosity). A two-dimensional mathematical model, based upon stationary mass and momentum transport in these implants is proposed and numerically solved. Cell oxygen consumption, in accordance theoretically with the Michaelis-Menten law, generates non linearity in the boundary conditions of the convection diffusion equation. Numerical solutions are obtained with a commercial code (Femlab 3.1; Comsol AB, Stockholm, Sweden). Moreover, based on the simplification of transport equations, a simple formula is given for estimating the length of the oxygen penetration within the implant. Results show that within a few hours of culture process and for a perfusion velocity of the order of 10(-4) m s(-1), the local oxygen concentration is everywhere sufficiently high to ensure a suitable cell metabolism. But shear stresses induced by the fluid flow with such a perfusion velocity are found to be locally too large (higher than 10(-3) Pa). Suitable shear stresses are obtained by decreasing the velocity at the inlet to around 2 x 10(-5) m s(-1). But consequently hypoxic regions (low oxygen concentrations) appear at the downstream part of the implant. Thus, it is suggested here that in the determination of the perfusion flow rate within a large implant, a compromise between oxygen supply and shear stress effects must be found in order to obtain a successful cell culture.

  1. Characterization of DNAPL Source Zone Architecture and Associated Plume Response in 2-D Aquifer Cell Experiments

    NASA Astrophysics Data System (ADS)

    Granbery, E. K.; Cápiro, N.; Christ, J.; Pennell, K.

    2008-12-01

    A series of two-dimensional (2-D) aquifer cell experiments was conducted to evaluate the effects of DNAPL source zone architecture on down-gradient plume and flux-averaged effluent concentrations. The aquifer cells (1.0 m length x 48 cm height x 1.4 cm internal thickness) were packed with different size fractions of quartz sands and low permeability lens configurations to achieve a range of source zone saturation distributions. A mixed DNAPL, consisting of 1:1 trichloroethene (TCE) and tetrachloroethene (PCE), was released into the source zone region of the aquifer cell at a flow rate of 2.0 ml/min and allowed to redistribute for a period of 48 hours. The DNAPL saturation distribution was quantified using a light transmission system and characterized by the ganglia-to-pool ratio (GTP, 0 to infinity) and ganglia fraction (GF, 0-100%), where saturations less than 0.13 represent discrete ganglia and saturations equal to or greater than 0.13 are considered to represent "pools". Effluent dissolved-phase TCE and PCE concentrations were monitored continuously, while down-gradient plume concentrations were collected periodically from 25 side-port samples. To accelerate mass removal, the aquifer cells were flushed with 1.5 pore volumes of 4% Tween 80, a nonionic, food-grade surfactant that has been shown to facilitate microbial reductive dechlorination. Experimental data are used to evaluate interrelationships between the initial source zone architecture, mass removal, reductions in mass flux, and plume evolution.

  2. Mitotic arrest of breast cancer MDA-MB-231 cells by a halogenated thieno[3,2-d]pyrimidine.

    PubMed

    Ross, Christina R; Temburnikar, Kartik W; Wilson, Gerald M; Seley-Radtke, Katherine L

    2015-04-15

    Halogenated thieno[3,2-d]pyrimidines exhibit antiproliferative activity against a variety of cancer cell models, such as the mouse lymphocytic leukemia cell line L1210 in which they induce apoptosis independent of cell cycle arrest. Here we assessed these activities on MDA-MB-231 cells, a well-established model of aggressive, metastatic breast cancer. While 2,4-dichloro[3,2-d]pyrimidine was less toxic to MDA-MB-231 cells than previously observed in the L1210 model, flow cytometry analysis showed that MDA-MB-231 cell death involved arrest at the G2/M stage of the cell cycle. Conversely, the introduction of bromine at C7 of the 2,4-dichloro[3,2-d]pyrimidine eliminated cell type-dependent differences in cytotoxicity or cell cycle status. Together, these data indicate that a substituent at C7 can profoundly modify the cytotoxic mechanism of halogenated thieno[3,2-d]pyrimidines in a cell type-specific manner.

  3. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  4. Primary cell cultures of bovine colon epithelium: isolation and cell culture of colonocytes.

    PubMed

    Föllmann, W; Weber, S; Birkner, S

    2000-10-01

    Epithelial cells from bovine colon were isolated by mechanical preparation combined with an enzymatic digestion from colon specimens derived from freshly slaughtered animals. After digestion with collagenase I, the isolated tissue was centrifuged on a 2% D-sorbitol gradient to separate epithelial crypts which were seeded in collagen I-coated culture flasks. By using colon crypts and omitting the seeding of single cells a contamination by fibroblasts was prevented. The cells proliferated under the chosen culture conditions and formed monolayer cultures which were maintained for several weeks, including subcultivation steps. A population doubling time of about 21 hr was estimated in the log phase of the corresponding growth curve. During the culture period the cells were characterized morphologically and enzymatically. By using antibodies against cytokeratine 7 and 13 the isolated cells were identified as cells of epithelial origin. Antibodies against vimentin served as negative control. Morphological features such as microvilli, desmosomes and tight junctions, which demonstrated the ability of the cultured cells to restore an epithelial like monolayer, were shown by ultrastructural investigations. The preservation of the secretory function of the cultured cells was demonstrated by mucine cytochemistry with alcian blue staining. A stable expression of enzyme activities over a period of 6 days in culture occurred for gamma-glutamyltranspeptidase, acid phosphatase and NADH-dehydrogenase activity under the chosen culture conditions. Activity of alkaline phosphatase decreased to about 50% of basal value after 6 days in culture. Preliminary estimations of the metabolic competence of these cells revealed cytochrome P450 1A1-associated EROD activity in freshly isolated cells which was stable over 5 days in cultured cells. Then activity decreased completely. This culture system with primary epithelial cells from the colon will be used further as a model for the colon

  5. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.

    PubMed

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S

    2015-04-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  6. 2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team

    2016-10-01

    The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. FDTD analysis of 2D triangular-lattice photonic crystals with arbitrary-shape inclusions based on unit cell transformation

    NASA Astrophysics Data System (ADS)

    Ma, Zetao; Ogusu, Kazuhiko

    2009-04-01

    A finite-difference time-domain method based on Yee's orthogonal cell is utilized to calculate the band structures of 2D triangular-lattice-based photonic crystals through a simple modification to properly shifting the boundaries of the original unit cell. A strategy is proposed for transforming the triangular unit cell into an orthogonal one, which can be used to calculate the band structures of 2D PhCs with various shapes of inclusions, such as triangular, quadrangular, and hexagonal shapes, to overcome the shortage of plane-wave expansion method for circular one. The band structures of 2D triangular-lattice-based PhCs with hexagonal air-holes are calculated and discussed for different values of its radius and rotation angle. The obtained results provide an insight to manipulate the band structures of PhCs.

  8. 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments

    NASA Astrophysics Data System (ADS)

    Corall, Silke; Haraszti, Tamas; Bartoschik, Tanja; Spatz, Joachim Pius; Ludwig, Thomas; Cavalcanti-Adam, Elisabetta Ada

    2014-03-01

    Cell migration is a crucial event for physiological processes, such as embryonic development and wound healing, as well as for pathological processes, such as cancer dissemination and metastasis formation. Cancer cell migration is a result of the concerted action of matrix metalloproteinases (MMPs), expressed by cancer cells to degrade the surrounding matrix, and integrins, the transmembrane receptors responsible for cell binding to matrix proteins. While it is known that cell-microenvironment interactions are essential for migration, the role of the physical state of such interactions remains still unclear. In this study we investigated human fibrosarcoma cell migration in two-dimensional (2D) and three-dimensional (3D) fibronectin (FN) microenvironments. By using antibody blocking approach and cell-binding site mutation, we determined that -integrin is the main mediator of fibrosarcoma cell migration in 2D FN, whereas in 3D fibrillar FN, the binding of - and -integrins is not necessary for cell movement in the fibrillar network. Furthermore, while the general inhibition of MMPs with GM6001 has no effect on cell migration in both 2D and 3D FN matrices, we observed opposing effect after targeted silencing of a membrane-bound MMP, namely MT1-MMP. In 2D fibronectin, silencing of MT1-MMP results in decreased migration speed and loss of directionality, whereas in 3D FN matrices, cell migration speed is increased and integrin-mediated signaling for actin dynamics is promoted. Our results suggest that the fibrillar nature of the matrix governs the migratory behavior of fibrosarcoma cells. Therefore, to hinder migration and dissemination of diseased cells, matrix molecules should be directly targeted, rather than specific subtypes of receptors at the cell membrane.

  9. Crosstalk between SOXB1 proteins and WNT/β-catenin signaling in NT2/D1 cells.

    PubMed

    Mojsin, Marija; Topalovic, Vladanka; Vicentic, Jelena Marjanovic; Schwirtlich, Marija; Stanisavljevic, Danijela; Drakulic, Danijela; Stevanovic, Milena

    2015-11-01

    During early vertebrate embryogenesis, the expression of SOXB1 proteins is precisely regulated by a number of different mechanisms, including Wnt/β-catenin signaling. This is essential for controlling the balance between stemness and differentiation in embryonic stem cells. In the present study, we analyzed the molecular mechanism of LiCl action in NT2/D1 cells and examined the crosstalk between SOXB1 proteins and Wnt signaling in this model system. We have shown that LiCl increases β-catenin level, induces its translocation to the nucleus and consequently up-regulates β-catenin/Tcf-dependent transcription in NT2/D1 cells. Our results also suggest that LiCl treatment leads to increased expression of SOX2 and SOX3 proteins in NT2/D1 cells through activation of canonical Wnt signaling. Finally, we have detected a negative feedback loop between β-catenin and SOX2 expression in NT2/D1 cells. Since β-catenin and SOX2 have been linked to processes of self-renewal and pluripotency, our results have implications for future research on the maintenance of stemness and lineage commitment of embryonic stem cells.

  10. NEDD9 stabilizes focal adhesions, increases binding to the extra-cellular matrix and differentially effects 2D versus 3D cell migration.

    PubMed

    Zhong, Jessie; Baquiran, Jaime B; Bonakdar, Navid; Lees, Justin; Ching, Yu Wooi; Pugacheva, Elena; Fabry, Ben; O'Neill, Geraldine M

    2012-01-01

    The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs) from mice in which the NEDD9 gene has been depleted (NEDD9 -/- MEFs). This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9-/- MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9-/- MEFs have decreased adhesion to fibronectin, despite upregulated α5β1 fibronectin receptor expression. We find that β1 integrin activation is significantly suppressed in the NEDD9-/-, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.

  11. The overexpression of SOX2 affects the migration of human teratocarcinoma cell line NT2/D1.

    PubMed

    Drakulic, Danijela; Vicentic, Jelena Marjanovic; Schwirtlich, Marija; Tosic, Jelena; Krstic, Aleksandar; Klajn, Andrijana; Stevanovic, Milena

    2015-03-01

    The altered expression of the SOX2 transcription factor is associated with oncogenic or tumor suppressor functions in human cancers. This factor regulates the migration and invasion of different cancer cells. In this study we investigated the effect of constitutive SOX2 overexpression on the migration and adhesion capacity of embryonal teratocarcinoma NT2/D1 cells derived from a metastasis of a human testicular germ cell tumor. We detected that increased SOX2 expression changed the speed, mode and path of cell migration, but not the adhesion ability of NT2/D1 cells. Additionally, we demonstrated that SOX2 overexpression increased the expression of the tumor suppressor protein p53 and the HDM2 oncogene. Our results contribute to the better understanding of the effect of SOX2 on the behavior of tumor cells originating from a human testicular germ cell tumor. Considering that NT2/D1 cells resemble cancer stem cells in many features, our results could contribute to the elucidation of the role of SOX2 in cancer stem cells behavior and the process of metastasis.

  12. Theoretical studies of effects of 2D plasmonic grating on electrical properties of organic solar cells

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Choy, Wallace C. H.; Chew, Weng Cho

    2012-09-01

    Although various optical designs and physical mechanisms have been studied both experimentally and theoretically to improve the optical absorption of organic solar cells (OSCs) by incorporating metallic nanostructures, the effects of plasmonic nanostructures on the electrical properties of OSCs is still not fully understood. Hence, it is highly desirable to study the changes of electrical properties induced by plasmonic structures and the corresponding physics for OSCs. In this work, we develop a multiphysics model for plasmonic OSCs by solving the Maxwell's equations and semiconductor equations (Poisson, continuity, and drift-diffusion equations) with unified finite-difference method. Both the optical and electrical properties of OSCs incorporating a 2D metallic grating anode are investigated. For typical active polymer materials, low hole mobility, which is about one magnitude smaller than electron mobility, dominates the electrical property of OSCs. Since surface plasmon resonances excited by the metallic grating will produce concentrated near-field penetrated into the active polymer layer and decayed exponentially away from the metal-polymer interface, a significantly nonuniform and extremely high exciton generation rate is obtained near the grating. Interestingly, the reduced recombination loss and the increased open-circuit voltage can be achieved in plasmonic OSCs. The physical origin of the phenomena lies at direct hole collections to the metallic grating anode with a short transport path. In comparison with the plasmonic OSC, the hole transport in a multilayer planar OSC experiences a long transport path and time because the standard planar OSC has a high exciton generation rate at the transparent front cathode. The unveiled multiphysics is particularly helpful for designing high-performance plasmonic OSCs.

  13. Three-dimensional cell culturing by magnetic levitation.

    PubMed

    Haisler, William L; Timm, David M; Gage, Jacob A; Tseng, Hubert; Killian, T C; Souza, Glauco R

    2013-10-01

    Recently, biomedical research has moved toward cell culture in three dimensions to better recapitulate native cellular environments. This protocol describes one method for 3D culture, the magnetic levitation method (MLM), in which cells bind with a magnetic nanoparticle assembly overnight to render them magnetic. When resuspended in medium, an external magnetic field levitates and concentrates cells at the air-liquid interface, where they aggregate to form larger 3D cultures. The resulting cultures are dense, can synthesize extracellular matrix (ECM) and can be analyzed similarly to the other culture systems using techniques such as immunohistochemical analysis (IHC), western blotting and other biochemical assays. This protocol details the MLM and other associated techniques (cell culture, imaging and IHC) adapted for the MLM. The MLM requires 45 min of working time over 2 d to create 3D cultures that can be cultured in the long term (>7 d).

  14. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin.

    PubMed

    Chang, Chih-Jung; Chen, Yi-Yuan M; Lu, Chia-Chen; Lin, Chuan-Sheng; Martel, Jan; Tsai, Sheng-Hui; Ko, Yun-Fei; Huang, Tsung-Teng; Ojcius, David M; Young, John D; Lai, Hsin-Chih

    2014-04-01

    Ganoderma lucidum (G. lucidum) is a medicinal mushroom long used in Asia as a folk remedy to promote health and longevity. Recent studies indicate that G. lucidum activates NK cells, but the molecular mechanism underlying this effect has not been studied so far. To address this question, we prepared a water extract of G. lucidum and examined its effect on NK cells. We observed that G. lucidum treatment increases NK cell cytotoxicity by stimulating secretion of perforin and granulysin. The mechanism of activation involves an increased expression of NKG2D and natural cytotoxicity receptors (NCRs), as well as increased phosphorylation of intracellular MAPKs. Our results indicate that G. lucidum induces NK cell cytotoxicity against various cancer cell lines by activating NKG2D/NCR receptors and MAPK signaling pathways, which together culminate in exocytosis of perforin and granulysin. These observations provide a cellular and molecular mechanism to account for the reported anticancer effects of G. lucidum extracts in humans.

  15. Differential gene expression by 1,25(OH)2D3 in an endometriosis stromal cell line.

    PubMed

    Ingles, Sue Ann; Wu, Liang; Liu, Benjamin T; Chen, Yibu; Wang, Chun-Yeh; Templeman, Claire; Brueggmann, Doerthe

    2017-01-28

    Endometriosis is a common female reproductive disease characterized by invasion of endometrial cells into other organs, frequently causing pelvic pain and infertility. Alterations of the vitamin D system have been linked to endometriosis incidence and severity. To shed light on the potential mechanism for these associations, we examined the effects of 1,25(OH)2D3 on gene expression in endometriosis cells. Stromal cell lines derived from endometriosis tissue were treated with 1,25(OH)2D3, and RNA-seq was used to identify genes differentially expressed between treated and untreated cells. Gene ontology and pathway analyses were carried out using Partek Flow and Ingenuity software suites, respectively. We identified 1627 genes that were differentially expressed (886 down-regulated and 741 up-regulated) by 1,25(OH)2D3. Only one gene, CYP24A1, was strongly up-regulated (369-fold). Many genes were strongly down-regulated. 1,25(OH)2D3 treatment down-regulated several genetic pathways related to neuroangiogenesis, cellular motility, and invasion, including pathways for axonal guidance, Rho GDP signaling, and matrix metalloprotease inhibition. These findings support a role for vitamin D in the pathophysiology of endometriosis, and provide new targets for investigation into possible causes and treatments.

  16. Cell culture's spider silk road.

    PubMed

    Perkel, Jeffrey

    2014-06-01

    A number of synthetic and natural materials have been tried in cell culture and tissue engineering applications in recent years. Now Jeffrey Perkel takes a look at one new culture component that might surprise you-spider silk.

  17. NKG2D stimulation of CD8+ T cells during priming promotes their capacity to produce cytokines in response to viral infection in mice.

    PubMed

    Kavazović, Inga; Lenartić, Maja; Jelenčić, Vedrana; Jurković, Slaven; Lemmermann, Niels A W; Jonjić, Stipan; Polić, Bojan; Wensveen, Felix M

    2017-04-04

    NKG2D is an activating receptor that is expressed on most cytotoxic cells of the immune system, including NK cells, γδ and CD8(+) T cells. It is still a matter of debate whether and how NKG2D mediates priming of CD8(+) T cells in vivo, due to a lack of studies where NKG2D is eliminated exclusively in these cells. Here we studied the impact of NKG2D on effector CD8(+) T-cell formation. NKG2D-deficiency that is restricted to murine CD8(+) T cells did not impair antigen-specific T-cell expansion following mCMV and LCMV infection, but reduced their capacity to produce cytokines. Upon infection, conventional dendritic cells induce NKG2D ligands, which drive cytokine production on CD8(+) T cells via the Dap10 signaling pathway. T-cell development, homing and proliferation were not affected by NKG2D deficiency and cytotoxicity was only impaired when strong T-cell receptor stimuli were used. Transfer of antigen-specific CD8(+) T cells demonstrated that NKG2D-deficiency attenuated their capacity to reduce viral loads. The inability of NKG2D-deficient cells to produce cytokines could be overcome with injection of IL-15 super-agonist during priming. In summary, our data shows that NKG2D has a non-redundant role in priming of CD8(+) T cells to produce antiviral cytokines. Upon viral infection, classical Dendritic cells induce expression of the NKG2D ligand H60. NKG2D stimulation during priming enhances the ability of CD8 T cells to produce cytokines but not increases cytotoxic potential upon T cell receptor engagement in the periphery. This article is protected by copyright. All rights reserved.

  18. A Two-Dimensional Difference Gel Electrophoresis (2D-DIGE) Protocol for Studies of Neural Precursor Cells.

    PubMed

    Guest, Paul C

    2017-01-01

    This chapter describes the basics of two-dimensional difference gel electrophoresis (2D-DIGE) for multiplex analysis of up to distinct proteomes. The example given describes the analysis of undifferentiated and differentiated neural precursor cells labelled with fluorescent Cy3 and Cy5 dyes in comparison to a pooled standard labelled with Cy2. After labelling, the proteomes are mixed together and electrophoresed on the same 2D gels. Scanning the gels at wavelengths specific for each dye allows direct overlay of the two different proteomes and the differences in abundance of specific protein spots can be determined through comparison to the pooled standard.

  19. Search for limiting factors in the RNAi pathway in silkmoth tissues and the Bm5 cell line: the RNA-binding proteins R2D2 and Translin.

    PubMed

    Swevers, Luc; Liu, Jisheng; Huvenne, Hanneke; Smagghe, Guy

    2011-01-01

    RNA interference (RNAi), an RNA-dependent gene silencing process that is initiated by double-stranded RNA (dsRNA) molecules, has been applied with variable success in lepidopteran insects, in contrast to the high efficiency achieved in the coleopteran Tribolium castaneum. To gain insight into the factors that determine the efficiency of RNAi, a survey was carried out to check the expression of factors that constitute the machinery of the small interfering RNA (siRNA) and microRNA (miRNA) pathways in different tissues and stages of the silkmoth, Bombyx mori. It was found that the dsRNA-binding protein R2D2, an essential component in the siRNA pathway in Drosophila, was expressed at minimal levels in silkmoth tissues. The silkmoth-derived Bm5 cell line was also deficient in expression of mRNA encoding full-length BmTranslin, an RNA-binding factor that has been shown to stimulate the efficiency of RNAi. However, despite the lack of expression of the RNA-binding proteins, silencing of a luciferase reporter gene was observed by co-transfection of luc dsRNA using a lipophilic reagent. In contrast, gene silencing was not detected when the cells were soaked in culture medium supplemented with dsRNA. The introduction of an expression construct for Tribolium R2D2 (TcR2D2) did not influence the potency of luc dsRNA to silence the luciferase reporter. Immunostaining experiments further showed that both TcR2D2 and BmTranslin accumulated at defined locations within the cytoplasm of transfected cells. Our results offer a first evaluation of the expression of the RNAi machinery in silkmoth tissues and Bm5 cells and provide evidence for a functional RNAi response to intracellular dsRNA in the absence of R2D2 and Translin. The failure of TcR2D2 to stimulate the intracellular RNAi pathway in Bombyx cells is discussed.

  20. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells.

    PubMed

    Ma, Chaoyan; Leng, Chongqian; Ji, Yixiong; Wei, Xingzhan; Sun, Kuan; Tang, Linlong; Yang, Jun; Luo, Wei; Li, Chaolong; Deng, Yunsheng; Feng, Shuanglong; Shen, Jun; Lu, Shirong; Du, Chunlei; Shi, Haofei

    2016-11-03

    The lifetime and power conversion efficiency are the key issues for the commercialization of perovskite solar cells (PSCs). In this paper, the development of 2D/3D perovskite hybrids (CA2PbI4/MAPbIxCl3-x) was firstly demonstrated to be a reliable method to combine their advantages, and provided a new concept for achieving both stable and efficient PSCs through the hybridization of perovskites. 2D/3D perovskite hybrids afforded significantly-improved moisture stability of films and devices without encapsulation in a high humidity of 63 ± 5%, as compared with the 3D perovskite (MAPbIxCl3-x). The 2D/3D perovskite-hybrid film did not undergo any degradation after 40 days, while the 3D perovskite decomposed completely under the same conditions after 8 days. The 2D/3D perovskite-hybrid device maintained 54% of the original efficiency after 220 hours, whereas the 3D perovskite device lost all the efficiency within only 50 hours. Moreover, the 2D/3D perovskite hybrid achieved comparable device performances (PCE: 13.86%) to the 3D perovskite (PCE: 13.12%) after the optimization of device fabrication conditions.

  1. An MEK-cofilin signalling module controls migration of human T cells in 3D but not 2D environments.

    PubMed

    Klemke, Martin; Kramer, Elisabeth; Konstandin, Mathias H; Wabnitz, Guido H; Samstag, Yvonne

    2010-09-01

    T cells infiltrate peripheral tissues to execute immunosurveillance and effector functions. For this purpose, T cells first migrate on the two-dimensional (2D) surface of endothelial cells to undergo transendothelial migration. Then they change their mode of movement to undergo migration within the three-dimensional (3D)-extracellular matrix of the infiltrated tissue. As yet, no molecular mechanisms are known, which control migration exclusively in either 2D or 3D environments. Here, we describe a signalling module that controls T-cell chemotaxis specifically in 3D environments. In chemotaxing T cells, Ras activity is spatially restricted to the lamellipodium. There, Ras initiates activation of MEK, which in turn inhibits LIM-kinase 1 activity, thereby allowing dephosphorylation of the F-actin-remodelling protein cofilin. Interference with this MEK-cofilin module by either inhibition of MEK or by knockdown of cofilin reduces speed and directionality of chemotactic migration in 3D-extracellular matrices, but not on 2D substrates. This MEK-cofilin module may have an important function in the tissue positioning of T cells during an immune response.

  2. Influence of basement membrane proteins and endothelial cell-derived factors on the morphology of human fetal-derived astrocytes in 2D.

    PubMed

    Levy, Amanda F; Zayats, Maya; Guerrero-Cazares, Hugo; Quiñones-Hinojosa, Alfredo; Searson, Peter C

    2014-01-01

    Astrocytes are the most prevalent type of glial cell in the brain, participating in a variety of diverse functions from regulating cerebral blood flow to controlling synapse formation. Astrocytes and astrocyte-conditioned media are widely used in models of the blood-brain barrier (BBB), however, very little is known about astrocyte culture in 2D. To test the hypothesis that surface coating and soluble factors influence astrocyte morphology in 2D, we quantitatively analyzed the morphology of human fetal derived astrocytes on glass, matrigel, fibronectin, collagen IV, and collagen I, and after the addition soluble factors including platelet-derived growth factor (PDGF), laminin, basic fibroblast growth factor (bFGF), and leukemia inhibitory factor (LIF). Matrigel surface coatings, as well as addition of leukemia inhibitory factor (LIF) to the media, were found to have the strongest effects on 2D astrocyte morphology, and may be important in improving existing BBB models. In addition, the novel set of quantitative parameters proposed in this paper provide a test for determining the influence of compounds on astrocyte morphology, both to screen for new endothelial cell-secreted factors that influence astrocytes, and to determine in a high-throughput way which factors are important for translation to more complex, 3D BBB models.

  3. P02.04MICRORNA-MEDIATED DOWN-REGULATION OF NKG2D LIGAND EXPRESSION REDUCES GLIOMA CELL IMMUNOGENICITY

    PubMed Central

    Codo, P.; Weller, M.; Meister, G.; Szabo, E.; Steinle, A.; Wolter, M.; Reifenberger, G.; Roth, P.

    2014-01-01

    Glioblastoma is a primary brain tumor with a dismal prognosis despite comprehensive therapeutic regimens. It is characterized by diffuse infiltration of the surrounding healthy brain tissue, well-adapted to hypoxic conditions and regarded as paradigmatic for tumor-associated immunosuppression. One of the major activating receptors of natural killer (NK) cells is NKG2D. It binds to at least 8 ligands (NKG2DL) which are induced after malignant transformation and cellular stress. Regulation of NKG2DL expression may be affected by endogenous RNA molecules known as microRNA (miRNA). Here, we aimed at characterizing the role of miRNA in the control of NKG2DL expression in glioma cells. We selected 6 miRNA that were described or predicted to target NKG2DL. Three of the miRNA candidates, miR-20a, miR-93 and miR-106b, were expressed in glioma cell lines and were also detected in glioblastoma tissue specimens. Silencing of these miRNA with locked nucleic acid (LNA) molecules resulted in an up-regulation of NKG2DL cell surface levels which translated into increased sensitivity to immune cell killing. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced immune cell lysis upon miRNA silencing was mediated through the NKG2D system. We conclude that the expression of several miRNA may contribute to the immune escape of glioma cells at the level of the NKG2D system. Therapeutic targeting of miRNA that regulate NKG2DL levels may therefore represent a promising approach to allow for more potent immune responses against glioblastoma.

  4. Preservation of the 3D Phenotype Upon Dispersal of Cultured Cell Spheroids Into Monolayer Cultures.

    PubMed

    Koshkin, Vasilij; Ailles, Laurie E; Liu, Geoffrey; Krylov, Sergey N

    2017-01-01

    In functional cytometric studies, cultured cells are exposed to effectors (e.g., drugs), and the heterogeneity of cell responses are studied using cytometry techniques (e.g., image cytometry). Such studies are difficult to perform on 3D cell cultures. A solution is to disperse 3D clusters and transfer the cells to the 2D state before applying effectors and using cytometry. This approach requires that the lifetime of the 3D phenotype be longer than the duration of the experiment. Here we studied the dynamics of phenotype transformation from 3D to 2D and searched for means of slowing this transformation down in dispersed spheroids of MCF7 cells. We found three functional biomarkers of the 3D phenotype in MCF7 cell spheroids that are absent in the 2D cell culture: (i) the presence of a subpopulation with an elevated drug-expelling capacity; (ii) the presence of a subpopulation with an elevated cytoprotective capacity; and (iii) the accumulation of cells in the G1 phase of the cell cycle. Monitoring these biomarkers in cells transferred from the 3D state to the 2D state revealed their gradual extinction. We found that the combined application of an elevated cell density and thiol-containing medium supplements increased the lifetime of the 3D phenotype by several fold to as long as 96 h. Our results suggest that extending the lifetime of the 3D phenotype in the cells transferred from the 3D state to the 2D state can facilitate detailed functional cytometric studies, such as measurements of population heterogeneity of cytotoxicity, chemosensitivity, and radiosensitivity. J. Cell. Biochem. 118: 154-162, 2017. © 2016 Wiley Periodicals, Inc.

  5. STAT3 contributes to NK cell recognition by modulating expression of NKG2D ligands in adriamycin-resistant K562/AO2 cells.

    PubMed

    Cai, Xiaohui; Lu, Xuzhang; Jia, Zhuxia; Zhang, Xiuwen; Han, Wenmin; Rong, Xiao; Ma, Lingdi; Zhou, Min; Chen, Baoan

    2015-11-01

    Leukemic cells can survive after chemotherapy by acquisition of multidrug resistance genes, but other phenotypes related to escape from immune recognition remain elusive. Adriamycin-resistant K562/AO2 cells are less susceptible to elimination by NK cells compared with wild type K562 cells due to lower expression of NKG2D ligands. Treatment of K562/AO2 cells with STAT3 inhibitor VII resulted in reduced expression of multidrug resistance gene P-glycoprotein, and up-regulation of NKG2D ligands on K562/AO2 cells. Meanwhile, K562/AO2 cells treated with STAT3 inhibitor proliferated less and were more susceptible to killing by NK cells than untreated K562/AO2 cells. The enhanced cytotoxicity of NK cells against K562/AO2 cells was partly blocked by treatment of NK cells with anti-NKG2D antibodies. These data suggest that STAT3 contributes to NK cell recognition by modulating NKG2D ligands in K562/AO2 cells, which may a mechanism by which cells survive and cause relapse of leukemia.

  6. 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer.

    PubMed

    Chambers, Karen F; Mosaad, Eman M O; Russell, Pamela J; Clements, Judith A; Doran, Michael R

    2014-01-01

    Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing.

  7. Vinculin Regulates Directionality and Cell Polarity in 2D, 3D Matrix and 3D Microtrack Migration.

    PubMed

    Rahman, Aniqua; Carey, Shawn P; Kraning-Rush, Casey M; Goldblatt, Zachary E; Bordeleau, Francois; Lampi, Marsha C; Lin, Deanna Y; García, Andrés J; Reinhart-King, Cynthia A

    2016-03-09

    During metastasis, cells can use proteolytic activity to form tube-like "microtracks" within the extracellular matrix (ECM). Using these microtracks, cells can migrate unimpeded through the stroma. To investigate the molecular mechanisms of microtrack migration, we developed an in vitro 3D micromolded collagen platform. When in microtracks, cells tend to migrate unidirectionally. Since focal adhesions are the primary mechanism by which cells interact with the ECM, we examined the roles of several focal adhesion molecules in driving unidirectional motion. Vinculin knockdown results in the repeated reversal of migration direction compared with control cells. Tracking the position of the Golgi centroid relative to the position of the nucleus centroid reveals that vinculin knockdown disrupts cell polarity in microtracks. Vinculin also directs migration on 2D substrates and in 3D uniform collagen matrices, indicated by reduced speed, shorter net displacement and decreased directionality in vinculin-deficient cells. In addition, vinculin is necessary for Focal Adhesion Kinase (FAK) activation in 3D as vinculin knockdown results in reduced FAK activation in both 3D uniform collagen matrices and microtracks, but not on 2D substrates, and accordingly, FAK inhibition halts cell migration in 3D microtracks. Together, these data indicate that vinculin plays a key role in polarization during migration.

  8. Enhanced photovoltaic properties of dye-sensitized solar cell based on ultrathin 2D TiO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Putao; Hu, Zhiqiang; Wang, Yan; Qin, Yiying; Sun, Xiao Wei; Li, Wenqin; Wang, Jinmin

    2016-04-01

    Ultrathin two-dimensional (2D) TiO2 nanostructures with a thickness of ∼5 nm and a specific surface area of 257.3 m2 g-1 were synthesized by a hydrothermal process. The 2D TiO2 nanostructures and P25 nanoparticles were introduced as scattering layer and underlayer to construct a bi-layer photoanode in a dye-sensitized solar cell (DSSC). The as-prepared DSSC exhibits an enhanced power conversion efficiency (5.14%), which is 23.9% higher than that of pure P25 DSSC (4.15%). Electrochemical impedance spectroscopy (EIS) indicates that DSSC based on P25-2D TiO2 nanostructures shows a longer life time and a larger recombination resistance. The enhanced photovoltaic properties are attributed to the excellent light scattering capability and high capacity for dye adsorption of 2D TiO2 nanostructures, which makes them a promising candidate as an efficient scattering layer in high-performance DSSCs.

  9. 2D protrusion but not motility predicts growth factor-induced cancer cell migration in 3D collagen.

    PubMed

    Meyer, Aaron S; Hughes-Alford, Shannon K; Kay, Jennifer E; Castillo, Amalchi; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A

    2012-06-11

    Growth factor-induced migration is a critical step in the dissemination and metastasis of solid tumors. Although differences in properties characterizing cell migration on two-dimensional (2D) substrata versus within three-dimensional (3D) matrices have been noted for particular growth factor stimuli, the 2D approach remains in more common use as an efficient surrogate, especially for high-throughput experiments. We therefore were motivated to investigate which migration properties measured in various 2D assays might be reflective of 3D migratory behavioral responses. We used human triple-negative breast cancer lines stimulated by a panel of receptor tyrosine kinase ligands relevant to mammary carcinoma progression. Whereas 2D migration properties did not correlate well with 3D behavior across multiple growth factors, we found that increased membrane protrusion elicited by growth factor stimulation did relate robustly to enhanced 3D migration properties of the MDA-MB-231 and MDA-MB-157 lines. Interestingly, we observed this to be a more reliable relationship than cognate receptor expression or activation levels across these and two additional mammary tumor lines.

  10. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3

    PubMed Central

    Ni, Lulu; Wang, Lixin; Yao, Chao; Ni, Zhongya; Liu, Fei; Gong, Chenyuan; Zhu, Xiaowen; Yan, Xuewei; Watowich, Stephanie S.; Lee, Dean A.; Zhu, Shiguo

    2017-01-01

    NKG2D is a major activating receptor of NK cells and plays a critical role in tumor immunosurveillance. NKG2D expression in NK cells is inhibited by the histone deacetylase (HDAC) inhibitor valproic acid (VPA) and enhanced by the narrow-spectrum HDAC inhibitor entinostat. We previously demonstrated that entinostat enhanced NKG2D transcription by increasing acetylation of Histones H3 and H4. However, the mechanism by which VPA reduces NKG2D expression in NK cells is not known. We have also shown that NKG2D transcription is regulated by STAT3 phosphorylation. In this study, we investigated regulation of NKG2D expression in NK cells by VPA and entinostat by assessing protein expression, phosphorylation, and interaction of HDACs and STAT3. We find that VPA selectively inhibits STAT3 tyrosine705 phosphorylation, but entinostat does not. STAT3 complexes with HDAC3, and HDAC3 inhibition represses STAT3 phosphorylation and therefore NKG2D expression. NK cells from STAT3 wild-type mice downregulate NKG2D in response to VPA, but not NK cells from STAT3 knockout mice. These results show that VPA is a potent inhibitor of STAT3 phosphorylation and demonstrate that histone acetylation and STAT3 tyrosine705 phosphorylation cooperate in regulating NKG2D expression in NK cells. PMID:28338101

  11. High density cell culture system

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1994-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  12. Engagement of TLR3, TLR7, and NKG2D regulate IFN-gamma secretion but not NKG2D-mediated cytotoxicity by human NK cells stimulated with suboptimal doses of IL-12.

    PubMed

    Girart, María V; Fuertes, Mercedes B; Domaica, Carolina I; Rossi, Lucas E; Zwirner, Norberto W

    2007-09-15

    NK cells express different TLRs, such as TLR3, TLR7, and TLR9, but little is known about their role in NK cell stimulation. In this study, we used specific agonists (poly(I:C), loxoribine, and synthetic oligonucleotides containing unmethylated CpG sequences to stimulate human NK cells without or with suboptimal doses of IL-12, IL-15, or IFN-alpha, and investigated the secretion of IFN-gamma, cytotoxicity, and expression of the activating receptor NKG2D. Poly(I:C) and loxoribine, in conjunction with IL-12, but not IL-15, triggered secretion of IFN-gamma. Inhibition of IFN-gamma secretion by chloroquine suggested that internalization of the TLR agonists was necessary. Also, secretion of IFN-gamma was dependent on MEK1/ERK, p38 MAPK, p70(S6) kinase, and NF-kappaB, but not on calcineurin. IFN-alpha induced a similar effect, but promoted lesser IFN-gamma secretion. However, cytotoxicity (51Cr release assays) against MHC class I-chain related A (MICA)- and MICA+ tumor targets remained unchanged, as well as the expression of the NKG2D receptor. Excitingly, IFN-gamma secretion was significantly increased when NK cells were stimulated with poly(I:C) or loxoribine and IL-12, and NKG2D engagement was induced by coculture with MICA+ tumor cells in a PI3K-dependent manner. We conclude that resting NK cells secrete high levels of IFN-gamma in response to agonists of TLR3 or TLR7 and IL-12, and this effect can be further enhanced by costimulation through NKG2D. Hence, integration of the signaling cascades that involve TLR3, TLR7, IL-12, and NKG2D emerges as a critical step to promote IFN-gamma-dependent NK cell-mediated effector functions, which could be a strategy to promote Th1-biased immune responses in pathological situations such as cancer.

  13. TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells.

    PubMed

    Eisele, Günter; Wischhusen, Jörg; Mittelbronn, Michel; Meyermann, Richard; Waldhauer, Inja; Steinle, Alexander; Weller, Michael; Friese, Manuel A

    2006-09-01

    NKG2D ligands (NKG2DL) are expressed by infected and transformed cells. They transmit danger signals to NKG2D-expressing immune cells, leading to lysis of NKG2DL-expressing cells. We here report that the NKG2DL MHC class I-chain-related molecules A and B (MICA/B) and UL16-binding proteins (ULBP) 1-3 are expressed in human brain tumours in vivo, while expression levels are low or undetectable in normal brain. MICA and ULBP2 expression decrease with increasing WHO grade of malignancy, while MICB and ULBP1 are expressed independently of tumour grade. We further delineate two independent mechanisms that can explain these expression patterns: (i) transforming growth factor-beta (TGF-beta) is upregulated during malignant progression and selectively downregulates MICA, ULBP2 and ULBP4 expression, while MICB, ULBP1 and ULBP3 are unaffected. (ii) Cleavage of MICA and ULBP2 is reduced by inhibition of metalloproteinases (MP), whereas no changes in the expression levels of other NKG2DL were detected. Consequently, NKG2DL-dependent NK cell-mediated lysis is enhanced by depletion of TGF-beta or inhibition of MP. Thus, escape from NKG2D-mediated immune surveillance of malignant gliomas in vivo may be promoted by the inhibition of MICA and ULBP2 expression via an autocrine TGF-beta loop and by MP-dependent shedding from the cell surface. Loss of MICA and ULBP2, in contrast to other NKG2DL, may be particularly important in glioma immune escape, and differential regulation of human NKG2DL expression is part of the immunosuppressive properties of human malignant glioma cells.

  14. Suspension culture of pluripotent stem cells: effect of shear on stem cell fate.

    PubMed

    Keller, Kevin C; Rodrigues, Beatriz; zur Nieden, Nicole I

    2014-01-01

    Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time. This feature makes suspension cell culture ideal for use in stem cell research and eventually ideal in the large-scale production of differentiated cells for regenerative medicine. Because of their tremendous differentiation capacities and unlimited growth properties, pluripotent stem cells (PSCs) in particular are considered potential sources for future cell-replacement therapies. Currently, expansion of PSCs is accomplished in 2D, which only permits a limited amount of cell growth per culture flask before cells need to be passaged. However, before stem cells can be applied clinically, several aspects of their expansion, such as directed growth, but also differentiation, need to be better controlled. This review will summarize recent advantages in suspension culture of PSCs, while at the same time highlighting current challenges.

  15. Principles of cancer cell culture.

    PubMed

    Cree, Ian A

    2011-01-01

    The basics of cell culture are now relatively common, though it was not always so. The pioneers of cell culture would envy our simple access to manufactured plastics, media and equipment for such studies. The prerequisites for cell culture are a well lit and suitably ventilated laboratory with a laminar flow hood (Class II), CO(2) incubator, benchtop centrifuge, microscope, plasticware (flasks and plates) and a supply of media with or without serum supplements. Not only can all of this be ordered easily over the internet, but large numbers of well-characterised cell lines are available from libraries maintained to a very high standard allowing the researcher to commence experiments rapidly and economically. Attention to safety and disposal is important, and maintenance of equipment remains essential. This chapter should enable researchers with little prior knowledge to set up a suitable laboratory to do basic cell culture, but there is still no substitute for experience within an existing well-run laboratory.

  16. Nonrigid Registration of 2-D and 3-D Dynamic Cell Nuclei Images for Improved Classification of Subcellular Particle Motion

    PubMed Central

    Kim, Il-Han; Chen, Yi-Chun M.; Spector, David L.; Eils, Roland; Rohr, Karl

    2012-01-01

    The observed motion of subcellular particles in fluorescence microscopy image sequences of live cells is generally a superposition of the motion and deformation of the cell and the motion of the particles. Decoupling the two types of movements to enable accurate classification of the particle motion requires the application of registration algorithms. We have developed an intensity-based approach for nonrigid registration of multi-channel microscopy image sequences of cell nuclei. First, based on 3-D synthetic images we demonstrate that cell nucleus deformations change the observed motion types of particles and that our approach allows to recover the original motion. Second, we have successfully applied our approach to register 2-D and 3-D real microscopy image sequences. A quantitative experimental comparison with previous approaches for nonrigid registration of cell microscopy has also been performed. PMID:20840894

  17. Rapid authentication of different ages of tissue-cultured and wild Dendrobium huoshanense as well as wild Dendrobium henanense using FTIR and 2D-COS IR

    NASA Astrophysics Data System (ADS)

    Chen, Nai-Dong; Chen, Nai-Fu; Li, Jun; Cao, Cai-Yun; Wang, Jin-Mei

    2015-12-01

    The accumulating of pharmaceutical chemicals in medicinal plants would greatly be affected by their ages and establishing a fast quality-identification method to evaluate the similarity of medicinal herbs at different cultivated ages is a critical step for assurance of quality and safety in the TCM industry. In this work, tri-step IR macro-fingerprinting and 2D-COS IR spectrum techniques combined with statistical pattern recognition were applied for discrimination and similarity evaluation of different ages of tissue-cultured and wild Dendrobium huoshanense C. Z. Tang et S. J. Cheng as well as Dendrobium henanense J.L.Lu et L.X Gao. Both tissue-cultured and wild D. huoshanense were easily differentiated from D. henanense by FTIR and SD-IR spectra, while it's quite difficult to discriminate different cultivated years of the three investigated Dendrobiums. In 2D-COS IR spectra, 1-5 auto-peaks with different indensity and positions were located in the region 1160-1030 cm-1 of the twelve Dendrobium samples and thus could be used to identify Dendrobium samples at different ages. Principle component analysis (PCA) of synchronous 2D-COS data showed that the twelve samples were effectively identified and evaluated. The results indicated that the tri-step infrared macro-fingerprinting combined with PCA method was suitable to differentiate the cultivated ages of Dendrobiums with species and orgins rapidly and nondestructively.

  18. Three-dimensional cell culture models for investigating human viruses.

    PubMed

    He, Bing; Chen, Guomin; Zeng, Yi

    2016-10-01

    Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.

  19. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells

    PubMed Central

    Fernández-Sánchez, Alba; Baragaño Raneros, Aroa; Carvajal Palao, Reyes; Sanz, Ana B.; Ortiz, Alberto; Ortega, Francisco; Suárez-Álvarez, Beatriz; López-Larrea, Carlos

    2013-01-01

    The human activating receptor NKG2D is mainly expressed by NK, NKT, γδ T and CD8+ T cells and, under certain conditions, by CD4+ T cells. This receptor recognizes a diverse family of ligands (MICA, MICB and ULBPs 1–6) leading to the activation of effector cells and triggering the lysis of target cells. The NKG2D receptor-ligand system plays an important role in the immune response to infections, tumors, transplanted graft and autoantigens. Elucidation of the regulatory mechanisms of NKG2D is therefore essential for therapeutic purposes. In this study, we speculate whether epigenetic mechanisms, such as DNA methylation and histone acetylation, participate in NKG2D gene regulation in T lymphocytes and NK cells. DNA methylation in the NKG2D gene was observed in CD4+ T lymphocytes and T cell lines (Jurkat and HUT78), while this gene was unmethylated in NKG2D-positive cells (CD8+ T lymphocytes, NK cells and NKL cell line) and associated with high levels of histone H3 lysine 9 acetylation (H3K9Ac). Treatment with the histone acetyltransferase (HAT) inhibitor curcumin reduces H3K9Ac levels in the NKG2D gene, downregulates NKG2D transcription and leads to a marked reduction in the lytic capacity of NKG2D-mediated NKL cells. These findings suggest that differential NKG2D expression in the different cell subsets is regulated by epigenetic mechanisms and that its modulation by epigenetic treatments might provide a new strategy for treating several pathologies. PMID:23235109

  20. The human NKG2D ligand ULBP2 can be expressed at the cell surface with or without a GPI anchor and both forms can activate NK cells

    PubMed Central

    Fernández-Messina, Lola; Ashiru, Omodele; Agüera-González, Sonia; Reyburn, Hugh T.; Valés-Gómez, Mar

    2011-01-01

    The activating immune receptor NKG2D binds to several stress-induced ligands that are structurally different. MHC-class-I-related chain (MIC) A/B molecules have a transmembrane domain, whereas most UL16 binding proteins (ULBPs) are glycosylphosphatidylinositol (GPI)-linked molecules. The significance of this variability in membrane anchors is unclear. Here, we demonstrate that ULBP2, but not ULBP1 or ULBP3, can reach the cell surface without the GPI modification. Several proteins are expressed at the cell surface as both transmembrane and GPI-linked molecules, either via alternative splicing or by the expression of linked genes. However, to our knowledge, ULBP2 is the first single mammalian cDNA that can be expressed as either a transmembrane or a GPI-anchored protein. The rate of maturation and the levels of cell surface expression of the non-GPI-linked form were lower than those of the GPI-linked ULBP2. Nonetheless, non-GPI ULBP2 was recognised by NKG2D and triggered NK cell cytotoxicity. These data show that differences in membrane attachment by NKG2D ligands are more important for regulation of their surface expression than for cytotoxic recognition by NKG2D and emphasise that detailed characterisation of the cell biology of individual NKG2D ligands will be necessary to allow targeted modulation of this system. PMID:21224393

  1. Organotypic culture in three dimensions prevents radiation-induced transformation in human lung epithelial cells

    PubMed Central

    El-Ashmawy, Mariam; Coquelin, Melissa; Luitel, Krishna; Batten, Kimberly; Shay, Jerry W.

    2016-01-01

    The effects of radiation in two-dimensional (2D) cell culture conditions may not recapitulate tissue responses as modeled in three-dimensional (3D) organotypic culture. In this study, we determined if the frequency of radiation-induced transformation and cancer progression differed in 3D compared to 2D culture. Telomerase immortalized human bronchial epithelial cells (HBECs) with shTP53 and mutant KRas expression were exposed to various types of radiation (gamma, +H, 56Fe) in either 2D or 3D culture. After irradiation, 3D structures were dissociated and passaged as a monolayer followed by measurement of transformation, cell growth and expression analysis. Cells irradiated in 3D produced significantly fewer and smaller colonies in soft agar than their 2D-irradiated counterparts (gamma P = 0.0004; +H P = 0.049; 56Fe P < 0.0001). The cell culture conditions did not affect cell killing, the ability of cells to survive in a colony formation assay, and proliferation rates after radiation—implying there was no selection against cells in or dissociated from 3D conditions. However, DNA damage repair and apoptosis markers were increased in 2D cells compared to 3D cells after radiation. Ideally, expanding the utility of 3D culture will allow for a better understanding of the biological consequences of radiation exposure. PMID:27539227

  2. Organotypic culture in three dimensions prevents radiation-induced transformation in human lung epithelial cells

    NASA Astrophysics Data System (ADS)

    El-Ashmawy, Mariam; Coquelin, Melissa; Luitel, Krishna; Batten, Kimberly; Shay, Jerry W.

    2016-08-01

    The effects of radiation in two-dimensional (2D) cell culture conditions may not recapitulate tissue responses as modeled in three-dimensional (3D) organotypic culture. In this study, we determined if the frequency of radiation-induced transformation and cancer progression differed in 3D compared to 2D culture. Telomerase immortalized human bronchial epithelial cells (HBECs) with shTP53 and mutant KRas expression were exposed to various types of radiation (gamma, +H, 56Fe) in either 2D or 3D culture. After irradiation, 3D structures were dissociated and passaged as a monolayer followed by measurement of transformation, cell growth and expression analysis. Cells irradiated in 3D produced significantly fewer and smaller colonies in soft agar than their 2D-irradiated counterparts (gamma P = 0.0004 +H P = 0.049 56Fe P < 0.0001). The cell culture conditions did not affect cell killing, the ability of cells to survive in a colony formation assay, and proliferation rates after radiation—implying there was no selection against cells in or dissociated from 3D conditions. However, DNA damage repair and apoptosis markers were increased in 2D cells compared to 3D cells after radiation. Ideally, expanding the utility of 3D culture will allow for a better understanding of the biological consequences of radiation exposure.

  3. Cell culture purity issues and DFAT cells

    SciTech Connect

    Wei, Shengjuan; Bergen, Werner G.; Zan, Linsen; Dodson, Michael V.

    2013-04-12

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  4. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor.

    PubMed

    Lee, Sun-Mi; Han, Nalae; Lee, Rimi; Choi, In-Hong; Park, Yong-Beom; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2016-03-15

    Three-dimensional (3D) cell cultures have recently received attention because they represent a more physiologically relevant environment compared to conventional two-dimensional (2D) cell cultures. However, 2D-based imaging techniques or cell sensors are insufficient for real-time monitoring of cellular behavior in 3D cell culture. Here, we report investigations conducted with a 3D capacitance cell sensor consisting of vertically aligned pairs of electrodes. When GFP-expressing human breast cancer cells (GFP-MCF-7) encapsulated in alginate hydrogel were cultured in a 3D cell culture system, cellular activities, such as cell proliferation and apoptosis at different heights, could be monitored non-invasively and in real-time by measuring the change in capacitance with the 3D capacitance sensor. Moreover, we were able to monitor cell migration of human mesenchymal stem cells (hMSCs) with our 3D capacitance sensor.

  5. Vector-averaged gravity-induced changes in cell signaling and vitamin D receptor activity in MG-63 cells are reversed by a 1,25-(OH)2D3 analog, EB1089

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Smith, C. L.; Weigel, N. L.

    2002-01-01

    Skeletal unloading in an animal hindlimb suspension model and microgravity experienced by astronauts or as a result of prolonged bed rest causes site-specific losses in bone mineral density of 1%-2% per month. This is accompanied by reductions in circulating levels of 1,25-(OH)(2)D(3), the active metabolite of vitamin D. 1,25-(OH)(2)D(3), the ligand for the vitamin D receptor (VDR), is important for calcium absorption and plays a role in differentiation of osteoblasts and osteoclasts. To examine the responses of cells to activators of the VDR in a simulated microgravity environment, we used slow-turning lateral vessels (STLVs) in a rotating cell culture system. We found that, similar to cells grown in microgravity, MG-63 cells grown in the STLVs produce less osteocalcin, alkaline phosphatase, and collagen Ialpha1 mRNA and are less responsive to 1,25-(OH)(2)D(3). In addition, expression of VDR was reduced. Moreover, growth in the STLV caused activation of the stress-activated protein kinase pathway (SAPK), a kinase that inhibits VDR activity. In contrast, the 1,25-(OH)(2)D(3) analog, EB1089, was able to compensate for some of the STLV-associated responses by reducing SAPK activity, elevating VDR levels, and increasing expression of osteocalcin and alkaline phosphatase. These studies suggest that, not only does simulated microgravity reduce differentiation of MG-63 cells, but the activity of the VDR, an important regulator of bone metabolism, is reduced. Use of potent, less calcemic analogs of 1,25-(OH)(2)D(3) may aid in overcoming this defect. Copyright 2002 Elsevier Science Inc.

  6. Vector-averaged gravity-induced changes in cell signaling and vitamin D receptor activity in MG-63 cells are reversed by a 1,25-(OH)2D3 analog, EB1089.

    PubMed

    Narayanan, R; Smith, C L; Weigel, N L

    2002-09-01

    Skeletal unloading in an animal hindlimb suspension model and microgravity experienced by astronauts or as a result of prolonged bed rest causes site-specific losses in bone mineral density of 1%-2% per month. This is accompanied by reductions in circulating levels of 1,25-(OH)(2)D(3), the active metabolite of vitamin D. 1,25-(OH)(2)D(3), the ligand for the vitamin D receptor (VDR), is important for calcium absorption and plays a role in differentiation of osteoblasts and osteoclasts. To examine the responses of cells to activators of the VDR in a simulated microgravity environment, we used slow-turning lateral vessels (STLVs) in a rotating cell culture system. We found that, similar to cells grown in microgravity, MG-63 cells grown in the STLVs produce less osteocalcin, alkaline phosphatase, and collagen Ialpha1 mRNA and are less responsive to 1,25-(OH)(2)D(3). In addition, expression of VDR was reduced. Moreover, growth in the STLV caused activation of the stress-activated protein kinase pathway (SAPK), a kinase that inhibits VDR activity. In contrast, the 1,25-(OH)(2)D(3) analog, EB1089, was able to compensate for some of the STLV-associated responses by reducing SAPK activity, elevating VDR levels, and increasing expression of osteocalcin and alkaline phosphatase. These studies suggest that, not only does simulated microgravity reduce differentiation of MG-63 cells, but the activity of the VDR, an important regulator of bone metabolism, is reduced. Use of potent, less calcemic analogs of 1,25-(OH)(2)D(3) may aid in overcoming this defect.

  7. [Detection of hybrid DQ molecules by the use of T cell clone and 2D-gel analyses].

    PubMed

    Hawkin, S

    1986-11-01

    The HLA-D region incorporates three subregions, DR, DQ and DP, encoding for three sets of Ia molecules. Whereas DR antigens consist of a constant alpha chain and an extremely polymorphic beta chain, both of alpha and beta chain of DQ antigens show moderate polymorphism. This indicated us the existence of hybrid HLA-DQ molecules in HLA-D heterozygous cells, resulting from the association of an alpha chain and a beta chain encoded by genes located on the two separate haplotypes. In this report, hybrid DQ antigens were demonstrated by using cytotoxic T cell-clone. A cytotoxic T cell clone, which was generated by mixed lymphocyte reaction against a lymphoblastoid B cell line, EBV-Fuk (HLA-DR1/4, DQw1/Wa), recognized only heterogenous lymphoblastoid B cell lines (HLA-DR1/4, DQw1/Wa). Cytotoxic T cell clone, however, didn't react with B cell lines which are homozygous for HLA-DR1, DQw1 or DR4/DQWa. This suggests the T cell clone recognized the hybrid DQ molecules expressed only on heterozygous cell lines. Further confirmation was obtained by inhibition test using monoclonal antibody and biochemically by 2-D gel analyses. Biological significance of hybrid DQ antigens were discussed.

  8. Fc-optimized NKG2D-Fc constructs induce NK cell antibody-dependent cellular cytotoxicity against breast cancer cells independently of HER2/neu expression status.

    PubMed

    Raab, Stefanie; Steinbacher, Julia; Schmiedel, Benjamin J; Kousis, Philaretos C; Steinle, Alexander; Jung, Gundram; Grosse-Hovest, Ludger; Salih, Helmut R

    2014-10-15

    The ability of NK cells to mediate Ab-dependent cellular cytotoxicity (ADCC) largely contributes to the clinical success of antitumor Abs, including trastuzumab, which is approved for the treatment of breast cancer with HER2/neu overexpression. Notably, only ∼25% of breast cancer patients overexpress HER2/neu. Moreover, HER2/neu is expressed on healthy cells, and trastuzumab application is associated with side effects. In contrast, the ligands of the activating immunoreceptor NKG2D (NKG2DL) are selectively expressed on malignant cells. In this study, we took advantage of the tumor-associated expression of NKG2DL by using them as target Ags for NKG2D-IgG1 fusion proteins optimized by amino acid exchange S239D/I332E in their Fc part. Compared to constructs with wild-type Fc parts, fusion proteins carrying the S239D/I332E modification (NKG2D-Fc-ADCC) mediated highly enhanced degranulation, ADCC, and IFN-γ production of NK cells in response to breast cancer cells. NKG2D-Fc-ADCC substantially enhanced NK reactivity also against HER2/neu-low targets that were unaffected by trastuzumab, as both compounds mediated their immunostimulatory effects in strict dependence of target Ag expression levels. Thus, in line with the hierarchically organized potential of the various activating receptors governing NK reactivity and due to its highly increased affinity to CD16, NKG2D-Fc-ADCC potently enhances NK cell reactivity despite the inevitable reduction of activating signals upon binding to NKG2DL. Due to the tumor-restricted expression of NKG2DL, NKG2D-Fc-ADCC may constitute an attractive means for immunotherapy especially of HER2/neu-low or -negative breast cancer.

  9. 2D modeling of silicon based thin film dual and triple junction solar cells

    NASA Astrophysics Data System (ADS)

    Xiao, Y. G.; Uehara, K.; Lestrade, M.; Li, Z. Q.; Li, Z. M. S.

    2009-08-01

    Based on Crosslight APSYS, thin film amorphous Si (a-Si:H)/microcrystalline (μc-Si) dual-junction (DJ) and a- Si:H/amorphous SiGe:H (a-SiGe:H)/μc-Si triple-junction (TJ) solar cells are modeled. Basic physical quantities like band diagrams, optical absorption and generation are obtained. Quantum efficiency and I-V curves for individual junctions are presented for current matching analyses. The whole DJ and TJ cell I-V curves are also presented and the results are discussed with respect to the top surface ZnO:Al TCO layer affinity. The interface texture effect is modeled with FDTD (finite difference time domain) module and results for top junction are presented. The modeling results give possible clues to achieve high efficiency for DJ and TJ thin film solar cells.

  10. CD3(+) CD8(+) NKG2D(+) T Lymphocytes Induce Apoptosis and Necroptosis in HLA-negative Cells via FasL-Fas Interaction.

    PubMed

    Ivanova, O K; Sharapova, T N; Romanova, E A; Sashchenko, L P; Yashin, D V

    2017-03-15

    An important problem in cellular immunology is to identify new populations of cytotoxic lymphocytes capable of killing tumor cells that have lost classical components of MHC-machinery and to understand mechanisms of the death of these cells. We have previously found that CD4(+) CD25(+) lymphocytes appear in the lymphokine-activated killer (LAK) cell culture, which carry Tag7 (PGRP-S) and FasL proteins on their surface and can kill Hsp70- and Fas-expressing HLA-negative cells. In this work, we have continued to study the mechanisms of killing of the HLA-negative tumor cells, focusing this time on the CD8+ lymphocytes. We show that after a tumor antigen contact the IL-2 activated CD8+ lymphocytes acquire ability to lyse tumor cells bearing this antigen. However, activation of the CD8+ lymphocytes in the absence of antigen causes appearance of a cytotoxic population of CD8 + NKG2D+ lymphocytes, which are able to lyse HLA-negative cancer cells that have lost the classic mechanism of antigen presentation. These cells recognize the noncanonical MicA antigen on the surface of HLA-negative K562 cells but kill them via the FasL-Fas interaction, as do cytotoxic T lymphocytes. FasL presented on the lymphocyte surface can trigger both apoptosis and necroptosis. Unlike in the case of TNFR1, another cell death receptor, no switching to alternative processes has been observed upon induction of Fas-dependent cell death. It may well be that the apoptotic and necroptotic signals are transduced separately in the latter case, with the ability of FasL(+) lymphocytes to induce necroptosis allowing them to kill tumor cells that escape apoptosis. This article is protected by copyright. All rights reserved.

  11. Decreased percentage of NKG2D+NK cells in patients with incident onset of Type 1 Diabetes.

    PubMed

    Zhang, Yupan; Wang, Haifeng; Lou, Xiaoqian; Qu, Xiaozhang; Gao, Lichao; Liu, Xiaolei; Li, Man; Guo, Hui; Jiang, Yanfang

    2017-02-01

    Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency owing to autoimmune destruction of the pancreatic β cells. A significant decrease in natural killer (NK) cells in peripheral blood has been observed in patients with untreated T1DM. In the present study, we aimed to explore the role of NK cells and their subsets in young T1DM patients. A total of 30 children and adolescents with untreated T1DM and 27 healthy controls (HC) were recruited in this study. Flow cytometry analysis indicated that the percentage of peripheral blood CD3-CD56+ NK cells and NK cells subsets (CD56bright, CD56dim and CD56neg), were significantly decreased in the T1DM patients compared to healthy controls. In addition, the percentage of inducible CD107a+ and IFN-γ-secreting NK cells was significantly decreased compared to HC. Interestingly, the percentage of NKG2D+ NK cells negatively correlated with the level of serum TCHOL and TG in T1DM patients. Our data indicate that decreased number and impaired function of NK cells may have a role in the pathogenesis of T1DM.

  12. Cell culture purity issues and DFAT cells.

    PubMed

    Wei, Shengjuan; Bergen, Werner G; Hausman, Gary J; Zan, Linsen; Dodson, Michael V

    2013-04-12

    Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture.

  13. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chua, Daniel H. C.

    2016-06-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt‑1 as compared to standard carbon black of 7.4 W.mgPt‑1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  14. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    PubMed Central

    Hu, Yan; Chua, Daniel H. C.

    2016-01-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt−1 as compared to standard carbon black of 7.4 W.mgPt−1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support. PMID:27302135

  15. A functional polymorphism in the NKG2D gene modulates NK-cell cytotoxicity and is associated with susceptibility to Human Papilloma Virus-related cancers

    PubMed Central

    Espinoza, J. Luis; Nguyen, Viet H.; Ichimura, Hiroshi; Pham, Trang T. T.; Nguyen, Cuong H.; Pham, Thuc V.; Elbadry, Mahmoud I.; Yoshioka, Katsuji; Tanaka, Junji; Trung, Ly Q.; Takami, Akiyoshi; Nakao, Shinji

    2016-01-01

    Human papillomavirus (HPV) is the most common sexually transmitted agent worldwide and is etiologically linked to several cancers, including cervical and genital cancers. NKG2D, an activating receptor expressed by NK cells, plays an important role in cancer immune-surveillance. We analyzed the impact of a NKG2D gene variant, rs1049174, on the incidence of HPV-related cancers in Vietnamese patients and utilized various molecular approaches to elucidate the mechanisms of NKG2D receptor regulation by rs1049174. In a group of 123 patients with HPV+ anogenital cancers, the low cytotoxicity allele LNK was significantly associated with increased cancer susceptibility (p = 0.016). Similar results were also observed in a group of 153 women with cervical cancer (p = 0.05). In functional studies, NK cells from individuals with LNK genotype showed a lower NKG2D expression and displayed less efficient NKG2D-mediated functions than NK cells with HNK genotype. Notably, the rs1049174 variant occurs within a targeting site for miR-1245, a negative regulator of NKG2D expression. Compared with the higher cytotoxicity allele HNK, the LNK allele was more efficiently targeted by miR-1245 and thus determined lower NKG2D expression in NK cells with the LNK genotype. The NKG2D variants may influence cancer immunosurveillance and thus determine susceptibility to various malignancies, including HPV-induced cancers. PMID:27995954

  16. A functional polymorphism in the NKG2D gene modulates NK-cell cytotoxicity and is associated with susceptibility to Human Papilloma Virus-related cancers.

    PubMed

    Espinoza, J Luis; Nguyen, Viet H; Ichimura, Hiroshi; Pham, Trang T T; Nguyen, Cuong H; Pham, Thuc V; Elbadry, Mahmoud I; Yoshioka, Katsuji; Tanaka, Junji; Trung, Ly Q; Takami, Akiyoshi; Nakao, Shinji

    2016-12-20

    Human papillomavirus (HPV) is the most common sexually transmitted agent worldwide and is etiologically linked to several cancers, including cervical and genital cancers. NKG2D, an activating receptor expressed by NK cells, plays an important role in cancer immune-surveillance. We analyzed the impact of a NKG2D gene variant, rs1049174, on the incidence of HPV-related cancers in Vietnamese patients and utilized various molecular approaches to elucidate the mechanisms of NKG2D receptor regulation by rs1049174. In a group of 123 patients with HPV+ anogenital cancers, the low cytotoxicity allele LNK was significantly associated with increased cancer susceptibility (p = 0.016). Similar results were also observed in a group of 153 women with cervical cancer (p = 0.05). In functional studies, NK cells from individuals with LNK genotype showed a lower NKG2D expression and displayed less efficient NKG2D-mediated functions than NK cells with HNK genotype. Notably, the rs1049174 variant occurs within a targeting site for miR-1245, a negative regulator of NKG2D expression. Compared with the higher cytotoxicity allele HNK, the LNK allele was more efficiently targeted by miR-1245 and thus determined lower NKG2D expression in NK cells with the LNK genotype. The NKG2D variants may influence cancer immunosurveillance and thus determine susceptibility to various malignancies, including HPV-induced cancers.

  17. Application of cell co-culture system to study fat and muscle cells.

    PubMed

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  18. Resistance to Cytarabine Induces the Up-regulation of NKG2D Ligands and Enhances Natural Killer Cell Lysis of Leukemic Cells1

    PubMed Central

    Ogbomo, Henry; Michaelis, Martin; Klassert, Denise; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2008-01-01

    Prolonged treatment of leukemic cells with chemotherapeutic agents frequently results in development of drug resistance. Moreover, selection of drug-resistant cell populations may be associated with changes in malignant properties such as proliferation rate, invasiveness, and immunogenicity. In the present study, the sensitivity of cytarabine (1-β-d-arabinofuranosylcytosine, araC)-resistant and parental human leukemic cell lines (T-lymphoid H9 and acute T-lymphoblastic leukemia Molt-4) to natural killer (NK) cell-mediated killing was investigated. The results obtained demonstrate that araC-resistant H9 and Molt-4 (H9rARAC100 and Molt-4rARAC100) cell lines are more sensitive to NK cell-mediated lysis than their respective parental cell lines. This increased sensitivity was associated with a higher surface expression of ligands for the NK cell-activating receptor NKG2D, notably UL16 binding protein-2 (ULBP-2) and ULBP-3 in H9rARAC100 and Molt-4rARAC100 cell lines. Blocking ULBP-2 and ULBP-3 or NKG2D with monoclonal antibody completely abrogated NK cell lysis. Constitutive phosphorylated extracellular signal-regulated kinase (ERK) but not pAKT was higher in araC-resistant cells than in parental cell lines. Inhibition of ERK using ERK inhibitor PD98059 decreased both ULBP-2/ULBP-3 expression and NK cell cytotoxicity. Furthermore, overexpression of constitutively active ERK in H9 parental cells resulted in increased ULBP-2/ULBP-3 expression and enhanced NK cell lysis. These results demonstrate that increased sensitivity of araC-resistant leukemic cells to NK cell lysis is caused by higher NKG2D ligand expression, resulting from more active ERK signaling pathway. PMID:19048119

  19. Histochemical examination of adipose derived stem cells combined with β-TCP for bone defects restoration under systemic administration of 1α,25(OH)2D3.

    PubMed

    Feng, Wei; Lv, Shengyu; Cui, Jian; Han, Xiuchun; Du, Juan; Sun, Jing; Wang, Kefeng; Wang, Zhenming; Lu, Xiong; Guo, Jie; Oda, Kimimitsu; Amizuka, Norio; Xu, Xin; Li, Minqi

    2015-09-01

    The purpose of this study was to evaluate the effects of osteogenic differentiated adipose-derived stem cell (ADSC) loaded beta-tricalcium phosphate (β-TCP) in the restoration of bone defects under intraperitoneal administration of 1α,25-dihydroxyvitamin D3(1α,25(OH)2D3). ADSCs were isolated from the fat tissue of 8 week old Wister rats and co-cultured with β-TCP for 21 days under osteogenic induction. Then the ADSC-β-TCP complexes were implanted into bone defects in the femora of rats. 1α,25(OH)2D3 (VD) or normal saline (NS) was administrated intraperitoneally every other day after the surgery. Femora were harvested at day 7, day 14 and day 28 post-surgery. There were 4 groups for all specimens: β-TCP-NS group; β-TCP-ADSC-NS group; β-TCP-VD group and β-TCP-ADSC-VD group. Alkaline phosphatase (ALP) was up-regulated obviously in ADSC groups compared with non-ADSC groups at day 7, day 14 and day 28, although high expression of runt-related transcription factor 2 (RUNX2) was only seen at day 7. Furthermore, the number of TRAP-positive osteoclasts and the expression of cathepsin K (CK) were significantly decreased in VD groups compared with non-VD groups at day 7 and day 14. As a most significant finding, the β-TCP-ADSC-VD group showed the highest BV/TV ratio compared with the other three groups at day 28. Taken together, ADSC-loaded β-TCP under the administration of 1α,25(OH)2D3 made a promising therapy for bone defects restoration.

  20. A 2D Particle in Cell model for ion extraction and focusing in electrostatic accelerators.

    PubMed

    Veltri, P; Cavenago, M; Serianni, G

    2014-02-01

    Negative ions are fundamental to produce intense and high energy neutral beams used to heat the plasma in fusion devices. The processes regulating the ion extraction involve the formation of a sheath on a scale comparable to the Debye length of the plasma. On the other hand, the ion acceleration as a beam is obtained on distances greater than λD. The paper presents a model for both the phases of ion extraction and acceleration of the ions and its implementation in a numerical code. The space charge of particles is deposited following usual Particle in Cell codes technique, while the field is solved with finite element methods. Some hypotheses on the beam plasma transition are described, allowing to model both regions at the same time. The code was tested with the geometry of the NIO1 negative ions source, and the results are compared with existing ray tracing codes and discussed.

  1. Enhanced differentiation of mesenchymal stromal cells by three-dimensional culture and azacitidine

    PubMed Central

    Bae, Yoo-Jin; Kwon, Yong-Rim; Kim, Hye Joung; Lee, Seok

    2017-01-01

    Background Mesenchymal stromal cells (MSCs) are useful for cell therapy because of their potential for multilineage differentiation. However, MSCs that are expanded in traditional two-dimensional (2D) culture systems eventually lose their differentiation abilities. Therefore, we investigated whether azacitidine (AZA) supplementation and three-dimensional culture (3D) could improve the differentiation properties of MSCs. Methods 2D- or 3D-cultured MSCs which were prepared according to the conventional or hanging-drop culture method respectively, were treated with or without AZA (1 µM for 72 h), and their osteogenic and adipogenic differentiation potential were determined and compared. Results AZA treatment did not affect the cell apoptosis or viability in both 2D- and 3D-cultured MSCs. However, compared to conventionally cultured 2D-MSCs, AZA-treated 2D-MSCs showed marginally increased differentiation abilities. In contrast, 3D-MSCs showed significantly increased osteogenic and adipogenic differentiation ability. When 3D culture was performed in the presence of AZA, the osteogenic differentiation ability was further increased, whereas adipogenic differentiation was not affected. Conclusion 3D culture efficiently promoted the multilineage differentiation of MSCs, and in combination with AZA, it could help MSCs to acquire greater osteogenic differentiation ability. This optimized culture method can enhance the therapeutic potential of MSCs.

  2. Effect of cell culture using chitosan membranes on stemness marker genes in mesenchymal stem cells.

    PubMed

    Li, Zhiqiang; Tian, Xiaojun; Yuan, Yan; Song, Zhixiu; Zhang, Lili; Wang, Xia; Li, Tong

    2013-06-01

    Mesenchymal stem cell (MSC) therapy is a promising treatment for diseases of the nervous system. However, MSCs often lose their stemness and homing abilities when cultured in conventional two‑dimensional (2D) systems. Consequently, it is important to explore novel culture methods for MSC-based therapies in clinical practice. To investigate the effect of a cell culture using chitosan membranes on MSCs, the morphology of MSCs cultured using chitosan membranes was observed and the expression of stemness marker genes was analyzed. We demonstrated that MSCs cultured using chitosan membranes form spheroids. Additionally, the expression of stemness marker genes, including Oct4, Sox2 and Nanog, increased significantly when MSCs were cultured using chitosan membranes compared with 2D culture systems. Finally, MSCs cultured using chitosan membranes were found to have an increased potential to differentiate into nerve cells and chrondrocytes. In conclusion, we demonstrated that MSCs cultured on chitosan membranes maintain their stemness and homing abilities. This finding may be further investigated for the development of novel cell-based therapies for diseases involving neuron-like cells and chondrogenesis.

  3. Aseptic technique for cell culture.

    PubMed

    Coté, R J

    2001-05-01

    This unit describes some of the ways that a laboratory can deal with the constant threat of microbial contamination in cell cultures. A protocol on aseptic technique is described first. This catch-all term universally appears in any set of instructions pertaining to procedures in which noncontaminating conditions must be maintained. In reality, aseptic technique encompasses all aspects of environmental control, personal hygiene, equipment and media sterilization, and associated quality control procedures needed to ensure that a procedure is, indeed, performed with aseptic, noncontaminating technique. Although cell culture can theoretically be carried out on an open bench in a low-traffic area, most cell culture work is carried out using a horizontal laminar-flow clean bench or a vertical laminar-flow biosafety cabinet. Both are described here.

  4. A Parallel 2D Numerical Simulation of Tumor Cells Necrosis by Local Hyperthermia

    NASA Astrophysics Data System (ADS)

    Reis, R. F.; Loureiro, F. S.; Lobosco, M.

    2014-03-01

    Hyperthermia has been widely used in cancer treatment to destroy tumors. The main idea of the hyperthermia is to heat a specific region like a tumor so that above a threshold temperature the tumor cells are destroyed. This can be accomplished by many heat supply techniques and the use of magnetic nanoparticles that generate heat when an alternating magnetic field is applied has emerged as a promise technique. In the present paper, the Pennes bioheat transfer equation is adopted to model the thermal tumor ablation in the context of magnetic nanoparticles. Numerical simulations are carried out considering different injection sites for the nanoparticles in an attempt to achieve better hyperthermia conditions. Explicit finite difference method is employed to solve the equations. However, a large amount of computation is required for this purpose. Therefore, this work also presents an initial attempt to improve performance using OpenMP, a parallel programming API. Experimental results were quite encouraging: speedups around 35 were obtained on a 64-core machine.

  5. Seeing through the trick of cancer cells via 2D gels.

    PubMed

    Mao, Lei

    2013-12-01

    The advancement of modern therapy concepts has dramatically extended the postsurvival rates of patients with malignant gastric cancer. However, a remaining setback is the drug resistance of recurrent cancer, which casts a dark shadow over disease prognosis. The original work of Klein et al. [Proteomics Clin. Appl. 2013, 7, 813-824] has outlined a rational experimental approach to decipher the mechanistic pathway of cancer drug resistance by proteomic approach. They used gel-based comparative proteomics to analyze the nuclear proteome of a human gastric cancer cell line (AGS) with and without inactivation of hypoxia-inducible factor 1 (HIF-1), a transcription factor and master regulator of hypoxia adaptation. Using the classical 2DE-MS approach, these researchers observed 163 HIF-1 responsive proteins, among which over half of them could be confidently identified by MS. From this large dataset, the authors proposed an enhanced nuclear translocation of some proteasomal proteins upon inactivation of HIF-1. Overall, this work appropriately used proteomics as a hypothesis-free, top-down approach to dissect imperative clinical problems.

  6. 2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism.

    PubMed

    Ma, Jun; Ding, Changqin; Zhou, Jie; Tian, Yang

    2015-08-15

    Extracellular pH plays a vital role no matter in physiological or pathological studies. In this work, a hydrogel, CD@Nile-FITC@Gel (Gel sensor), entrapping the ratiometric fluorescent probe CD@Nile-FITC was developed. The Gel sensor was successfully used for real-time extracellular pH monitoring. In the case of CD@Nile-FITC, pH-sensitive fluorescent dye fluorescein isothiocyanate (FITC) was chosen as the response signal for H(+) and Nile blue chloride (Nile) as the reference signal. The developed fluorescent probe exhibited high selectivity for pH over other metal ions and amino acids. Meanwhile, the carbon-dots-based inorganic-organic probe demonstrated excellent photostability against long-term light illumination. In order to study the extracellular pH change in processes of cell proliferation and metabolism, CD@Nile-FITC probe was entrapped in sodium alginate gel and consequently formed CD@Nile-FITC@Gel. The MTT assay showed low cytotoxicity of the Gel and the pH titration indicated that it could monitor the pH fluctuations linearly and rapidly within the pH range of 6.0-9.0, which is valuable for physiological pH determination. As expected, the real-time bioimaging of the probe was successfully achieved.

  7. Cultured Human Renal Cortical Cells

    NASA Technical Reports Server (NTRS)

    1998-01-01

    During the STS-90 shuttle flight in April 1998, cultured renal cortical cells revealed new information about genes. Timothy Hammond, an investigator in NASA's microgravity biotechnology program was interested in culturing kidney tissue to study the expression of proteins useful in the treatment of kidney diseases. Protein expression is linked to the level of differentiation of the kidney cells, and Hammond had difficulty maintaining differentiated cells in vitro. Intrigued by the improvement in cell differentiation that he observed in rat renal cells cultured in NASA's rotating wall vessel (a bioreactor that simulates some aspects of microgravity) and during an experiment performed on the Russian Space Station Mir, Hammond decided to sleuth out which genes were responsible for controlling differentiation of kidney cells. To do this, he compared the gene activity of human renal cells in a variety of gravitational environments, including the microgravity of the space shuttle and the high-gravity environment of a centrifuge. Hammond found that 1,632 genes out of 10,000 analyzed changed their activity level in microgravity, more than in any of the other environments. These results have important implications for kidney research as well as for understanding the basic mechanism for controlling cell differentiation.

  8. Physical enviroment of 2-D animal cell aggregates formed in a short pathlength ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kuznetsova, Larisa A; Coakley, W Terence

    2005-03-01

    2-D mammalian cell aggregates can be formed and levitated in a 1.5 MHz single half wavelength ultrasound standing wave trap. The physical environment of cells in such a trap has been examined. Attention was paid to parameters such as temperature, acoustic streaming, cavitation and intercellular forces. The extent to which these factors might be intrusive to a neural cell aggregate levitated in the trap was evaluated. Neural cells were exposed to ultrasound at a pressure amplitude of 0.54 MPa for 30 s; a small aggregate had been formed at the center of the trap. The pressure amplitude was then decreased to 0.27 MPa for 2 min, at which level the aggregation process continued at a slower rate. The pressure amplitude was then decreased to 0.06 MPa for 1 h. Temperature measurements that were conducted in situ with a 200 microm thermocouple over a 30 min period showed that the maximum temperature rise was less than 0.5 K. Acoustic streaming was measured by the particle image velocimetry method (PIV). It was shown that the hydrodynamic stress imposed on cells by acoustic streaming is less than that imposed by gentle preparative centrifugation procedures. Acoustic spectrum analysis showed that cavitation activity does not occur in the cell suspensions sonicated at the above pressures. White noise was detected only at a pressure amplitude of 1.96 MPa. Finally, it was shown that the attractive acoustic force between ultrasonically agglomerated cells is small compared with the normal attractive van der Waals force that operates at close cell surface separations. It is concluded that the standing wave trap operates only to concentrate cells locally, as in tissue, and does not modify the in vitro expression of surface receptor interactions.

  9. Cell culture compositions

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  10. Development of 2D dynamic model for hydrogen-fed and methane-fed solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, X. J.; Fong, K. F.

    2016-10-01

    A new two-dimensional (2D) dynamic model is developed in Fortran to study the mass and energy transport, the velocity field and the electrochemical phenomena of high-temperature solid oxide fuel cell (SOFC). The key feature of this model is that gas properties, reaction heat, open circuit voltage, ohmic voltage and exchange current density are temperature-dependent. Based on this, the change of gas temperature and related characteristics can be evaluated in this study. The transient performances of SOFC, like heat-up and start-up processes, are therefore assessed accordingly. In this 2D dynamic SOFC model, chemical and electrochemical reaction, flow field, mass and energy transfer models are coupled in order to determine the current density, the mass fraction and the temperature of gas species. Mass, momentum and energy balance equations are discretized by finite difference method. Performance evaluation in current density, electrical efficiency and overall efficiency is conducted for the effects of different operating parameters in SOFC. The present model can serve as a valuable tool for in-depth performance evaluation of other design and operating parameters of SOFC unit, as well as further dynamic simulation and optimization of SOFC as a prime mover in cogeneration or trigeneration system.

  11. Natural killer cells recognize friend retrovirus-infected erythroid progenitor cells through NKG2D-RAE-1 interactions In Vivo.

    PubMed

    Ogawa, Tatsuya; Tsuji-Kawahara, Sachiyo; Yuasa, Takae; Kinoshita, Saori; Chikaishi, Tomomi; Takamura, Shiki; Matsumura, Haruo; Seya, Tsukasa; Saga, Toshihiko; Miyazawa, Masaaki

    2011-06-01

    Natural killer (NK) cells function as early effector cells in the innate immune defense against viral infections and also participate in the regulation of normal and malignant hematopoiesis. NK cell activities have been associated with early clearance of viremia in experimental simian immunodeficiency virus and clinical human immunodeficiency virus type 1 (HIV-1) infections. We have previously shown that NK cells function as major cytotoxic effector cells in vaccine-induced immune protection against Friend virus (FV)-induced leukemia, and NK cell depletion totally abrogates the above protective immunity. However, how NK cells recognize retrovirus-infected cells remains largely unclear. The present study demonstrates a correlation between the expression of the products of retinoic acid early transcript-1 (RAE-1) genes in target cells and their susceptibility to killing by NK cells isolated from FV-infected animals. This killing was abrogated by antibodies blocking the NKG2D receptor in vitro. Further, the expression of RAE-1 proteins on erythroblast surfaces increased early after FV inoculation, and administration of an RAE-1-blocking antibody resulted in increased spleen infectious centers and exaggerated pathology, indicating that FV-infected erythroid cells are recognized by NK cells mainly through the NKG2D-RAE-1 interactions in vivo. Enhanced retroviral replication due to host gene-targeting resulted in markedly increased RAE-1 expression in the absence of massive erythroid cell proliferation, indicating a direct role of retroviral replication in RAE-1 upregulation.

  12. Role of NKG2D, DNAM-1 and natural cytotoxicity receptors in cytotoxicity toward rhabdomyosarcoma cell lines mediated by resting and IL-15-activated human natural killer cells.

    PubMed

    Boerman, Gerharda H; van Ostaijen-ten Dam, Monique M; Kraal, Kathelijne C J M; Santos, Susy J; Ball, Lynne M; Lankester, Arjan C; Schilham, Marco W; Egeler, R Maarten; van Tol, Maarten J D

    2015-05-01

    Children with advanced stages (relapsed/refractory and stage IV) of rhabdomyosarcoma (RMS) have a poor prognosis despite intensive chemotherapy and autologous stem cell rescue, with 5-year survival rates ranging from 5 to 35 %. Development of new, additional treatment modalities is necessary to improve the survival rate. In this preclinical study, we investigated the potential of resting and cytokine-activated natural killer (NK) cells to lyse RMS cell lines, as well as the pathways involved, to explore the eventual clinical application of (activated) NK cell immunotherapy. RMS cell lines (n = 3 derived from embryonal RMS and n = 2 derived from alveolar RMS) were susceptible to cytolysis mediated by resting NK cells, and this susceptibility was significantly increased using IL-15-activated NK cells. Flow cytometry and cytolytic assays were used to define the activating and inhibitory pathways of NK cells involved in recognizing and lysing RMS cells. NKG2D and DNAM-1 receptor-ligand interactions were essential in cytolysis by resting NK cells, as simultaneous blocking of both pathways resulted in almost complete abrogation of the cytotoxicity. In contrast, combined blocking of DNAM-1 and NKG2D only led to partial reduction of the lytic activity of IL-15-activated NK cells. In this respect, residual lysis was, at least partly, mediated by pathways involving the natural cytotoxicity receptors NKp30 and NKp46. These findings support further exploration of NK cell-based immunotherapy as adjuvant modality in current treatment strategies of RMS.

  13. Inhibition of UBE2D3 Expression Attenuates Radiosensitivity of MCF-7 Human Breast Cancer Cells by Increasing hTERT Expression and Activity

    PubMed Central

    Hu, Liu; Li, Fen; Ren, Li; Yu, Haijun; Liu, Yu; Xia, Ling; Lei, Han; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng

    2013-01-01

    The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H) screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R) cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3) as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1. PMID:23741361

  14. Fabricating gradient hydrogel scaffolds for 3D cell culture.

    PubMed

    Chatterjee, Kaushik; Young, Marian F; Simon, Carl G

    2011-05-01

    Optimizing cell-material interactions is critical for maximizing regeneration in tissue engineering. Combinatorial and high-throughput (CHT) methods can be used to systematically screen tissue scaffolds to identify optimal biomaterial properties. Previous CHT platforms in tissue engineering have involved a two-dimensional (2D) cell culture format where cells were cultured on material surfaces. However, these platforms are inadequate to predict cellular response in a three-dimensional (3D) tissue scaffold. We have developed a simple CHT platform to screen cell-material interactions in 3D culture format that can be applied to screen hydrogel scaffolds. Herein we provide detailed instructions on a method to prepare gradients in elastic modulus of photopolymerizable hydrogels.

  15. Substantial increase in the frequency of circulating CD4+NKG2D+ T cells in patients with cervical intraepithelial neoplasia grade 1

    PubMed Central

    2013-01-01

    Background The NKG2D receptor confers important activating signals to NK cells via ligands expressed during cellular stress and viral infection. This receptor has generated great interest because not only is it expressed on NK cells, but it is also seen in virtually all CD8+ cytotoxic T cells and is classically considered absent in CD4+ T cells. However, recent studies have identified a distinctive population of CD4+ T cells that do express NKG2D, which could represent a particular cytotoxic effector population involved in viral infections and chronic diseases. On the other hand, increased incidence of human papillomavirus-associated lesions in CD4+ T cell-immunocompromised individuals suggests that CD4+ T cells play a key role in controlling the viral infection. Therefore, this study was focused on identifying the frequency of NKG2D-expressing CD4+ T cells in patients with cervical intraepithelial neoplasia (CIN) 1. Additionally, factors influencing CD4+NKG2D+ T cell expansion were also measured. Results Close to 50% of patients with CIN 1 contained at least one of the 37 HPV types detected by our genotyping system. A tendency for increased CD4+ T cells and CD8+ T cells and decreased NK cells was found in CIN 1 patients. The percentage of circulating CD4+ T cells co-expressing the NKG2D receptor significantly increased in women with CIN 1 versus control group. Interestingly, the increase of CD4+NKG2D+ T cells was seen in patients with CIN 1, despite the overall levels of CD4+ T cells did not significantly increase. We also found a significant increase of soluble MICB in CIN 1 patients; however, no correlation with the presence of CD4+NKG2D+ T cells was seen. While TGF-beta was significantly decreased in the group of CIN 1 patients, both TNF-alpha and IL-15 showed a tendency to increase in this group. Conclusions Taken together, our results suggest that the significant increase within the CD4+NKG2D+ T cell population in CIN 1 patients might be the result of a

  16. Enrichment of cancer stem cell-like cells by culture in alginate gel beads.

    PubMed

    Xu, Xiao-xi; Liu, Chang; Liu, Yang; Yang, Li; Li, Nan; Guo, Xin; Sun, Guang-wei; Ma, Xiao-jun

    2014-05-10

    Cancer stem cells (CSCs) are most likely the reason of cancer reoccurrence and metastasis. For further elucidation of the mechanism underlying the characteristics of CSCs, it is necessary to develop efficient culture systems to culture and expand CSCs. In this study, a three-dimensional (3D) culture system based on alginate gel (ALG) beads was reported to enrich CSCs. Two cell lines derived from different histologic origins were encapsulated in ALG beads respectively and the expansion of CSCs was investigated. Compared with two-dimensional (2D) culture, the proportion of cells with CSC-like phenotypes was significantly increased in ALG beads. Expression levels of CSC-related genes were greater in ALG beads than in 2D culture. The increase of CSC proportion after being cultured within ALG beads was further confirmed by enhanced tumorigenicity in vivo. Moreover, increased metastasis ability and higher anti-cancer drug resistance were also observed in 3D-cultured cells. Furthermore, we found that it was hypoxia, through the upregulation of hypoxia-inducible factors (HIFs) that occurred in ALG beads to induce the increasing of CSC proportion. Therefore, ALG bead was an efficient culture system for CSC enrichment, which might provide a useful platform for CSC research and promote the development of new anti-cancer therapies targeting CSCs.

  17. Recruitment of activating NK-cell receptors 2B4 and NKG2D to membrane microdomains in mammalian cells is dependent on their transmembrane regions.

    PubMed

    Gütgemann, Stephan A; Sandusky, Mina M; Wingert, Sabine; Claus, Maren; Watzl, Carsten

    2015-04-01

    Membrane microdomains play an important role in the regulation of natural killer (NK) cell activities. These cholesterol-rich membrane domains are enriched at the activating immunological synapse and several activating NK-cell receptors are known to localize to membrane microdomains upon receptor engagement. In contrast, inhibitory receptors do not localize in these specialized membrane domains. In addition, the functional competence of educated NK cells correlates with a confinement of activating receptors in membrane microdomains. However, the molecular basis for this confinement is unknown. Here, we investigate the structural requirements for the recruitment of the human-activating NK-cell receptors NKG2D and 2B4 to detergent-resistant membrane fractions in the murine BA/F3 cell line and in the human NK-cell line NKL. This stimulation-dependent recruitment occurred independently of the intracellular domains of the receptors. However, either interfering with the association between NKG2D and DAP10, or mutating the transmembrane region of 2B4 impacted the recruitment of the receptors to detergent-resistant membrane fractions and modulated the function of 2B4 in NK cells. Our data suggest a potential interaction between the transmembrane region of NK-cell receptors and membrane lipids as a molecular mechanism involved in determining the membrane confinement of activating NK-cell receptors.

  18. Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer.

    PubMed

    Shen, Jiaying; Pan, Jie; Du, Chengyong; Si, Wengong; Yao, Minya; Xu, Liang; Zheng, Huilin; Xu, Mingjie; Chen, Danni; Wang, Shu; Fu, Peifen; Fan, Weimin

    2017-04-06

    NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DLs). NKG2DLs are expressed on malignant cells and sensitize them to early elimination by cytotoxic lymphocytes. We investigated the clinical importance of NKG2DLs and the mechanism of NKG2DL regulation in breast cancer (BC). Among the NKG2DLs MICA/B and ULBP1/2/3, the expression levels of MICA/B in BC tissues were inversely associated with the Tumor Node Metastasis stage. We first found that the high expression of MICB, but not MICA, was an independent prognostic factor for overall survival in patients with BC. Investigation into the mechanism revealed that a group of microRNAs (miRNAs) belonging to the miR-17-92 cluster, especially miR-20a, decreased the expression of ULBP2 and MICA/B. These miRNAs downregulated the expression of MICA/B by targeting the MICA/B 3'-untranslated region and downregulated ULBP2 by inhibiting the MAPK/ERK signaling pathway. Functional analysis showed that the silencing of NKG2DL-targeting miRNAs in BC cells increased NK cell-mediated cytotoxicity in vitro and inhibited immune escape in vivo. In addition, histone deacetylase inhibitors (HDACis) increased NKG2DL expression in BC cells by inhibiting members of the miR-17-92 cluster. Thus, targeting miRNAs with antisense inhibitors or HDACis may represent a novel approach for increasing the immunogenicity of BC.

  19. Levels of regulatory T cells CD69(+)NKG2D(+)IL-10(+) are increased in patients with autoimmune thyroid disorders.

    PubMed

    Rodríguez-Muñoz, Ana; Vitales-Noyola, Marlen; Ramos-Levi, Ana; Serrano-Somavilla, Ana; González-Amaro, Roberto; Marazuela, Mónica

    2016-03-01

    Regulatory T (Treg) cells play an important role in the pathogenesis of autoimmune thyroid disorders (AITD). New subsets of CD4(+)CD69(+) and CD4(+)NKG2D(+) T lymphocytes that behave as regulatory cells have been recently reported. The role of these immunoregulatory lymphocytes has not been previously explored in AITD. We analyzed by multi-parametric flow cytometry different Treg cell subsets in peripheral blood from 32 patients with AITD and 19 controls, and in thyroid tissue from seven patients. The suppressive activity was measured by an assay of inhibition of lymphocyte activation. We found a significant increased percentage of CD4(+)CD69(+)IL-10(+), CD4(+)CD69(+)NKG2D(+), and CD4(+)CD69(+)IL-10(+)NKG2D(+) cells, in peripheral blood from GD patients compared to controls. The increase in CD4(+)CD69(+)IL-10(+) and CD4(+)CD69(+)IL-10(+)NKG2D(+) T cells was especially remarkable in patients with active Graves' ophthalmopathy (GO), and a significant positive correlation between GO activity and CD4(+)CD69(+)IL-10(+) or CD4(+)CD69(+)IL-10(+)NKG2D(+) cells was also found. In addition, these cells were increased in patients with a more severe and/or prolonged disease. Thyroid from AITD patients showed an increased proportion of CD69(+) regulatory T cells subpopulations compared to autologous peripheral blood. The presence of CD69(+), NKG2D(+), and IL-10(+) cells was confirmed by immunofluorescence microscopy. In vitro functional assays showed that CD69(+) Treg cells exerted an important suppressive effect on the activation of T effector cells in controls, but not in AITD patients. Our findings suggest that the levels of CD69(+) regulatory lymphocytes are increased in AITD patients, but they are apparently unable to down-modulate the autoimmune response and tissue damage.

  20. Alginate as a cell culture substrate for growth and differentiation of human retinal pigment epithelial cells.

    PubMed

    Heidari, Razeih; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Davari, Maliheh; Nazemroaya, Fatemeh; Bagheri, Abouzar; Deezagi, Abdolkhalegh

    2015-03-01

    The purpose of this study was to evaluate retinal pigment epithelium (RPE) cells' behavior in alginate beads that establish 3D environment for cellular growth and mimic extracellular matrix versus the conventional 2D monolayer culture. RPE cells were encapsulated in alginate beads by dripping alginate cell suspension into CaCl2 solution. Beads were suspended in three different media including Dulbecco's modified Eagle's medium (DMEM)/F12 alone, DMEM/F12 supplemented with 10 % fetal bovine serum (FBS), and DMEM/F12 supplemented with 30 % human amniotic fluid (HAF). RPE cells were cultivated on polystyrene under the same conditions as controls. Cell phenotype, cell proliferation, cell death, and MTT assay, immunocytochemistry, and real-time RT-PCR were performed to evaluate the effect of alginate on RPE cells characteristics and integrity. RPE cells can survive and proliferate in alginate matrixes. Immunocytochemistry analysis exhibited Nestin, RPE65, and cytokeratin expressions in a reasonable number of cultured cells in alginate beads. Real-time PCR data demonstrated high levels of Nestin, CHX10, RPE65, and tyrosinase gene expressions in RPE cells immobilized in alginate when compared to 2D monolayer culture systems. The results suggest that alginate can be used as a reliable scaffold for maintenance of RPE cells' integrity and in vitro propagation of human retinal progenitor cells for cell replacement therapies in retinal diseases.

  1. 1α,25(OH)2D3-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells.

    PubMed

    Buitrago, Claudia G; Arango, Nadia S; Boland, Ricardo L

    2012-04-01

    We previously reported that 1α,25-dihydroxy-vitamin D(3) [1α,25(OH)(2)D(3)] induces non-transcriptional rapid responses through activation of Src and MAPKs in the skeletal muscle cell line C2C12. In the present study we investigated the modulation of Akt by the secosteroid hormone in C2C12 cells at proliferative stage (myoblasts) and at early differentiation stage. In proliferating cells, 1α,25(OH)(2)D(3) activates Akt by phosphorylation in Ser473 in a time-dependent manner (5-60 min). When these cells were pretreated with methyl-beta-cyclodextrin to disrupt caveolae microdomains, hormone-induced activation of Akt was suppressed. Similar results were obtained by siRNA silencing of caveolin-1 expression, further indicating that hormone effects on cell membrane caveolae are required for downstream signaling. PI3K and p38 MAPK, but not ERK1/2, participate in 1α,25(OH)(2)D(3) activation of Akt in myoblasts. The involvement of p38 MAPK in Akt phosphorylation by the hormone probably occurs through MAPK-activated protein kinase 2 (MK2), which is activated by the steroid. In addition, the participation of Src in Akt phosphorylation by 1α,25(OH)(2)D(3) was demonstrated using the inhibitor PP2 and antisense oligodeoxynucleotides that suppress Src expression. We also observed that PI3K participates in hormone-induced proliferation. During the early phase of C2C12 cell differentiation 1α,25(OH)(2)D(3) also increases Akt phosphorylation and activates Src. Of relevance, Src and PI3K are involved in Akt activation and in MHC and myogenin increased expression by 1α,25(OH)(2)D(3). Altogether, these data suggest that 1α,25(OH)(2)D(3) upregulates Akt through Src, PI(3)K, and p38 MAPK to stimulate myogenesis in C2C12 cells.

  2. 1α,25(OH)2D3 Suppresses the Migration of Ovarian Cancer SKOV-3 Cells through the Inhibition of Epithelial–Mesenchymal Transition

    PubMed Central

    Hou, Yong-Feng; Gao, Si-Hai; Wang, Ping; Zhang, He-Mei; Liu, Li-Zhi; Ye, Meng-Xuan; Zhou, Guang-Ming; Zhang, Zeng-Li; Li, Bing-Yan

    2016-01-01

    Ovarian cancer is the most lethal gynecological malignancy due to its high metastatic ability. Epithelial-mesenchymal transition (EMT) is essential during both follicular rupture and epithelium regeneration. However, it may also accelerate the progression of ovarian carcinomas. Experimental studies have found that 1α,25-dihydroxyvitamin-D3 [1α,25(OH)2D3] can inhibit the proliferation of ovarian cancer cells. In this study, we investigated whether 1α,25(OH)2D3 could inhibit the migration of ovarian cancer cells via regulating EMT. We established a model of transient transforming growth factor-β1(TGF-β1)-induced EMT in human ovarian adenocarcinoma cell line SKOV-3 cells. Results showed that, compared with control, 1α,25(OH)2D3 not only inhibited the migration and the invasion of SKOV-3 cells, but also promoted the acquisition of an epithelial phenotype of SKOV-3 cells treated with TGF-β1. We discovered that 1α,25(OH)2D3 increased the expression of epithelial marker E-cadherin and decreased the level of mesenchymal marker, Vimentin, which was associated with the elevated expression of VDR. Moreover, 1α,25(OH)2D3 reduced the expression level of transcription factors of EMT, such as slug, snail, and β-catenin. These results indicate that 1α,25(OH)2D3 suppresses the migration and invasion of ovarian cancer cells by inhibiting EMT, implying that 1α,25(OH)2D3 might be a potential therapeutic agent for the treatment of ovarian cancer. PMID:27548154

  3. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor

    PubMed Central

    Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo; Yang, Yankang; Zhang, Yindong; Zhang, Chunfeng; Chen, Shanshan; Xue, Lingwei; Yang, Changduk; Xiao, Min; Li, Yongfang

    2016-01-01

    Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si–C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm−2 benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials. PMID:27905397

  4. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor

    NASA Astrophysics Data System (ADS)

    Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo; Yang, Yankang; Zhang, Yindong; Zhang, Chunfeng; Chen, Shanshan; Xue, Lingwei; Yang, Changduk; Xiao, Min; Li, Yongfang

    2016-12-01

    Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si-C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm-2 benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials.

  5. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor.

    PubMed

    Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo; Yang, Yankang; Zhang, Yindong; Zhang, Chunfeng; Chen, Shanshan; Xue, Lingwei; Yang, Changduk; Xiao, Min; Li, Yongfang

    2016-12-01

    Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si-C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm(-2) benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials.

  6. The miR-7 Identified from Collagen Biomaterial-Based Three-Dimensional Cultured Cells Regulates Neural Stem Cell Differentiation

    PubMed Central

    Cui, Yi; Xiao, Zhifeng; Chen, Tong; Wei, Jianshu; Chen, Lei; Liu, Lijun; Chen, Bing; Wang, Xiujie; Li, Xiaoran

    2014-01-01

    Increasing evidence suggests that three-dimensional (3D) cultures provide more appropriate microenvironments to control stem cell response compared with traditional two-dimensional (2D) cultures. However, the molecular mechanism involved in 3D cultured stem cells is not well known. Several microRNAs whose target genes involved in the regulation of self-renewal and differentiation of stem cells were found to be downregulated in 3D cultured PA-1 cells. Among them, miR-7 was predicted to target Kruppel-like factor 4 (Klf4), a key gene for self-renewal of neural stem cells (NSCs). We showed that the differentiation of NSCs was inhibited in 3D collagen scaffolds compared with 2D cultured cells. The quantitative real-time PCR (qPCR) analysis indicated that the expression of miR-7 and Klf4 changed significantly in 2D cultures, whereas the expression stability of miR-7 and Klf4 was detected in 3D cultures. Using luciferase assay and western blot, Klf4 was identified as a target of miR-7 indicating that miR-7 plays a critical role in maintaining the self-renewal capacity through a Klf4-dependent mechanism in 3D cultured cells. Thus, the collagen scaffold-based 3D cell cultures may provide a platform to reveal the regulatory mechanism of cell regulators, which are difficult to find in traditional 2D cell cultures. PMID:24200387

  7. Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma

    PubMed Central

    Sakha, Sujata; Muramatsu, Tomoki; Ueda, Koji; Inazawa, Johji

    2016-01-01

    Metastasis is associated with poor prognosis in cancers. Exosomes, which are packed with RNA and proteins and are released in all biological fluids, are emerging as an important mediator of intercellular communication. However, the function of exosomes remains poorly understood in cancer metastasis. Here, we demonstrate that exosomes isolated by size-exclusion chromatography from a highly metastatic human oral cancer cell line, HOC313-LM, induced cell growth through the activation of ERK and AKT as well as promoted cell motility of the poorly metastatic cancer cell line HOC313-P. MicroRNA (miRNA) array analysis identified two oncogenic miRNAs, miR-342–3p and miR-1246, that were highly expressed in exosomes. These miRNAs were transferred to poorly metastatic cells by exosomes, which resulted in increased cell motility and invasive ability. Moreover, miR-1246 increased cell motility by directly targeting DENN/MADD Domain Containing 2D (DENND2D). Taken together, our findings support the metastatic role of exosomes and exosomal miRNAs, which highlights their potential for applications in miRNA-based therapeutics. PMID:27929118

  8. Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction.

    PubMed

    Mathew, Stephen O; Chaudhary, Pankaj; Powers, Sheila B; Vishwanatha, Jamboor K; Mathew, Porunelloor A

    2016-10-18

    Prostate cancer is the most common type of cancer diagnosed and the second leading cause of cancer-related death in American men. Natural Killer (NK) cells are the first line of defense against cancer and infections. NK cell function is regulated by a delicate balance between signals received through activating and inhibitory receptors. Previously, we identified Lectin-like transcript-1 (LLT1/OCIL/CLEC2D) as a counter-receptor for the NK cell inhibitory receptor NKRP1A (CD161). Interaction of LLT1 expressed on target cells with NKRP1A inhibits NK cell activation. In this study, we have found that LLT1 was overexpressed on prostate cancer cell lines (DU145, LNCaP, 22Rv1 and PC3) and in primary prostate cancer tissues both at the mRNA and protein level. We further showed that LLT1 is retained intracellularly in normal prostate cells with minimal cell surface expression. Blocking LLT1 interaction with NKRP1A by anti-LLT1 mAb on prostate cancer cells increased the NK-mediated cytotoxicity of prostate cancer cells. The results indicate that prostate cancer cells may evade immune attack by NK cells by expressing LLT1 to inhibit NK cell-mediated cytolytic activity through LLT1-NKRP1A interaction. Blocking LLT1-NKRP1A interaction will make prostate cancer cells susceptible to killing by NK cells and therefore may be a new therapeutic option for treatment of prostate cancer.

  9. IDO metabolite produced by EBV-transformed B cells inhibits surface expression of NKG2D in NK cells via the c-Jun N-terminal kinase (JNK) pathway.

    PubMed

    Song, Hyunkeun; Park, Hyunjin; Kim, Jiyoung; Park, Gabin; Kim, Yeong-Seok; Kim, Sung Mok; Kim, Daejin; Seo, Su Kil; Lee, Hyun-Kyung; Cho, DaeHo; Hur, Daeyoung

    2011-05-01

    Natural Killer cells are known to play a major role in the innate immune response against viral infections and tumor cells. Several viruses, such as CMV, EBV and HIV-1, have acquired strategies to escape elimination by NK cells. In this study, we observed that EBV infection increased expression of IDO on B cells. To evaluate the function of IDO associated with EBV infection, we investigated whether EBV-induced IDO could modulate expression of NK cell-activation receptor, NKG2D. When NK cells were co-incubated with EBV transformed B cells, surface expression of NKG2D was significantly reduced in NK cells. Incubation with L-kynurenine, an IDO metabolite, down-modulated NKG2D expression in NK cells in a dose- and time-dependent manner. Incubation with the JNK inhibitor SP600125 also inhibited NKG2D expression in NK cells. In addition, we observed that the effect of L-kynurenine was blocked by JNK agonist, anisomycin, suggesting the involvement of the JNK pathway in the signal transduction of L-kynurenine-reduced NKG2D expression. Furthermore, IL-18 significantly reduced L-kynurenine-induced down-regulation of NKG2D expression in NK cells. Taken together, these data indicate that down-regulation of NKG2D by EBV-induced IDO metabolite provides a potential mechanism by which EBV escapes NKG2D-mediated attack by immune cells.

  10. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  11. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  12. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  13. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  14. 9 CFR 101.6 - Cell cultures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cell cultures. 101.6 Section 101.6..., SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS § 101.6 Cell cultures. When used in conjunction with or in reference to cell cultures, which may be referred to as tissue...

  15. GEL-STATE NMR OF BALL-MILLED WHOLE CELL WALLS IN DMSO-d6 USING 2D SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls were used for obtaining 2D solution-state NMR spectra without actual solubilization or structural modification. Ball-milled whole cell walls were swelled directly in the NMR tube with DMSO-d6 where they formed a gel. There are relatively few gel-state NMR studies. Most have involved...

  16. Cell sources for in vitro human liver cell culture models.

    PubMed

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.

  17. Cell sources for in vitro human liver cell culture models

    PubMed Central

    Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-01-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro. However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro. Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described. PMID:27385595

  18. Electromagnetic 2D/3D Particle-in-Cell simulations of the solar wind interaction with lunar crustal anomalies.

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Lapenta, Giovanni; Lembège, Bertrand; Divin, Andrey; Markidis, Stefano; Amaya, Jorge

    2013-04-01

    We present the first 2D/3D fully kinetic Particle-in-Cell simulations of the solar wind interaction with lunar crustal magnetic anomalies. The simulations are performed using the implicit electromagnetic Particle-in-Cell code iPIC3D [Markidis, Lapenta & Rizwan-uddin, 2010]. Multiscale physics is resolved for all plasma components (heavy ions, protons and electrons) in the code, recently updated with a set of open boundary conditions designed for solar wind-body interactions. We use a dipole to model the crustal anomaly. The dipole center is located outside the computational domain and the boundary representing the lunar surface is modeled as a particle-absorbing plane. Photo-emission from the lunar surface is at this point not included, but will be in future work. We study the behaviour of the dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD simulations [Harnett & Winglee, 2000, 2002, 2003] and spacecraft observations [Kurata et al., 2005; Halekas et al., 2008; Wieser et al., 2010]. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Finally we will present preliminary results on the interaction of the solar wind with weaker magnetic anomalies in which highly non-adiabatic interactions are expected.

  19. Basic techniques in mammalian cell tissue culture.

    PubMed

    Phelan, Katy; May, Kristin M

    2015-03-02

    Cultured mammalian cells are used extensively in cell biology studies. It requires a number of special skills in order to be able to preserve the structure, function, behavior, and biology of the cells in culture. This unit describes the basic skills required to maintain and preserve cell cultures: maintaining aseptic technique, preparing media with the appropriate characteristics, passaging, freezing and storage, recovering frozen stocks, and counting viable cells.

  20. Spatiotemporal changes in Cx30 and Cx43 expression during neuronal differentiation of P19 EC and NT2/D1 cells.

    PubMed

    Wan, Carthur K; O'Carroll, Simon J; Kim, Sue-Ling; Green, Colin R; Nicholson, Louise F B

    2013-12-01

    While connexins (Cxs) are thought to be involved in differentiation, their expression and role has yet to be fully elucidated. We investigated the temporal expression of Cx30, Cx36 and Cx43 in two in vitro models of neuronal differentiation: human NT2/D1 and murine P19 cells, and the spatial localisation of Cx30 and Cx43 in these models. A temporal Cx43 downregulation was confirmed in both cell lines during RA-induced neuronal differentiation using RT-PCR (P < 0.05) preceding an increase in neuronal doublecortin protein. RT-PCR showed Cx36 was upregulated twofold in NT2/D1 cells (P < 0.05) and sixfold in P19 cells (P < 0.001) during neuronal differentiation. Cx30 exhibited a transient peak in expression midway through the timecourse of differentiation increasing threefold in NT2/D1 cells (P < 0.001) and eightfold in P19 cells (P < 0.01). Qualitative immunocytochemistry was used to examine spatiotemporal patterns of Cx protein distribution alongside neuronal differentiation markers. The temporal immunolabelling pattern was similar to that seen using RT-PCR. Cx43 was observed intracellularly and on cell surfaces, while Cx30 was seen as puncta. Spatially Cx43 was seen on doublecortin-negative cells, which may indicate Cx43 downregulation is requisite for differentiation in these models. Conversely, Cx30 puncta were observed on doublecortin-positive and -negative cells in NT2/D1 cells and examination of the Cx30 peak showed puncta also localized to nestin-positive cells, with few puncta on MAP2-positive cells. In P19 cells Cx30 was localized on clusters of cells surrounded by MAP2- and doublecortin-positive processes. The expression pattern of Cx30 indicates a role in neuronal differentiation; the nature of that role warrants future investigation.

  1. Microfluidic 3D cell culture: potential application for tissue-based bioassays

    PubMed Central

    Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong

    2014-01-01

    Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034

  2. Loqs depends on R2D2 to localize in D2 body-like granules and functions in RNAi pathways in silkworm cells.

    PubMed

    Zhu, Li; Tatsuke, Tsuneyuki; Xu, Jian; Li, Zhiqing; Mon, Hiroaki; Lee, Jae Man; Kusakabe, Takahiro

    2015-09-01

    The phenomenon of RNA interference (RNAi) has been found in various organisms. However, the proteins implicated in RNAi pathway in different species show distinct roles. Knowledge on the underlying mechanism of lepidopteron RNAi is quite lacking such as the roles of Loquacious (Loqs) and R2D2, the dsRNA-binding proteins in silkworm RNAi pathway. Here, we report that Loqs and R2D2 protein depletion affected efficiency of dsRNA-mediated RNAi pathway. Besides, Loqs was found to co-localize with Dicer2 to some specific cytoplasmic foci, which were looked like D2-bodies marked by R2D2 and Dicer2 in Fly cells, thereby calling the foci as D2 body-like granules. Using RNAi methods, Loqs was found to be the key protein in these granules, although R2D2 determined the localization of Loqs in D2 body-like granules. Interestingly, in the R2D2-depeted silkworm cells, the formation of processing bodies, another cytoplasmic foci, was affected. These data indicated R2D2 regulated these two kinds of cytoplasmic foci. Domain deletion analysis demonstrated that dsRBD 1 and 2 were required for Loqs in D2 body-like granules and dsRBD 2 and 3 were required for Loqs to interact with R2D2 and Ago1, respectively. Altogether, our observations provide important information for further study on D2 body-like granules, the newly found cytoplasmic foci in silkworm cells.

  3. The inhibitory effects of synthetic short peptides, mimicking MICA and targeting at NKG2D receptors, on function of NK cells.

    PubMed

    Zhang, Bin; Wei, Haiming; Zheng, Xiaodong; Zhang, Jian; Sun, Rui; Tian, Zhigang

    2005-03-01

    NKG2D is an activating receptor expressed on most of human NK cells, one of whose ligands is MICA. Based on the crystal structure of NKG2D-MICA complex, we synthesized three short peptides (P1, P2 and P3), mimicking functional alpha1 and alpha2 domain of MICA. The inhibitory effects of three peptides on NK-92 cells, a human NK cell line against Hela cells were observed and the inhibitory percentage was 38% at maximum for P1+P2+P3 in concentration of 1nM. The same peptides had no effect on NK-92 cell against target cells lacking MICA (K562 cells line). The unrelated peptides as controls had no effect on the system. Two peptides (P2 and P3) were prolonged at one or both ends, and the longer forms of peptides exerted stronger inhibitory effects than their shorter forms. Each combination of two peptides exerted a stronger function than single peptide (P1, P2, P3), indicating that shedding of longer amino acid sequence of alpha1 domain or more domain sites of MICA are better than shorter sequence and fewer sites. P1+P2+P3 revealed the almost same inhibitory rate as the soluble MICA (sMICA). P1+P2+P3 were also able to alleviate the concanavalin A-induced murine autoimmune hepatitis in vivo, conforming the similarity of NKG2D between human and mice. The results demonstrate that MICA-mimicking peptides will be useful to search the specific functional sites for NKG2D-MICA interaction, but also promising in explaining NKG2D-related autoimmunity.

  4. Modulation of NKG2D-mediated cytotoxic functions of natural killer cells by viral protein R from HIV-1 primary isolates.

    PubMed

    Pham, Tram N Q; Richard, Jonathan; Gerard, Francine C A; Power, Christopher; Cohen, Éric A

    2011-12-01

    HIV-1 viral protein R (Vpr) from laboratory-adapted virus strains activates the DNA damage/stress sensor ATR kinase and induces cell cycle arrest at the G(2)/M phase through a process that requires Vpr to engage the DDB1-CUL4A (VprBP/DCAF-1) E3 ligase complex. Activation of this DNA damage/stress checkpoint in G(2) by Vpr was shown to modulate NKG2D-dependent NK cell effector functions via enhancing expression of NKG2D ligands, notably ULBP2. However, it is unknown whether Vpr from HIV-1 primary isolates (groups M, N, O, and P) could modulate NKG2D-mediated cytotoxic functions of NK cells. Here, we report that Vpr from most HIV-1 primary isolates can upregulate ULBP2 expression and induce NKG2D-dependent NK cell killing. Importantly, these activities were always accompanied by an active G(2) cell cycle arrest function. Interestingly, Vpr variants from group P and a clade D isolate of group M were defective at enhancing NKG2D-mediated NK cell lysis owing to their inability to augment ULBP2 expression. However, distinct mechanisms were responsible for their failure to do so. While Vpr from group P was deficient in its ability to engage the DDB1-CUL4A (VprBP/DCAF-1) E3 ligase complex, the Vpr variant from group D was unable to properly localize to the nucleus, underlining the importance of these biological properties in Vpr function. In conclusion, the ability of Vpr from HIV-1 primary isolates to regulate NK cell effector function underscores the importance of this HIV-1 accessory protein in the modulation of the host's innate immune responses.

  5. Cell cycle arrest and apoptosis induced by 1α,25(OH)2D3 and TX 527 in Kaposi sarcoma is VDR dependent.

    PubMed

    González-Pardo, Verónica; Suares, Alejandra; Verstuyf, Annemieke; De Clercq, Pierre; Boland, Ricardo; de Boland, Ana Russo

    2014-10-01

    We have previously shown that 1α,25(OH)2-Vitamin D3 [1α,25(OH)2D3] and its less calcemic analog TX 527 inhibit the proliferation of endothelial cells transformed by the viral G protein-coupled receptor associated to Kaposi sarcoma (vGPCR) and this could be partially explained by the inhibition of the NF-κB pathway. In this work, we further explored the mechanism of action of both vitamin D compounds in Kaposi sarcoma. We investigated whether the cell cycle arrest and subsequent apoptosis of endothelial cells (SVEC) and SVEC transformed by vGPCR (SVEC-vGPCR) elicited by 1α,25(OH)2D3 and TX 527 were mediated by the vitamin D receptor (VDR). Cell cycle analysis of SVEC and SVEC-vGPCR treated with 1α,25(OH)2D3 (10nM, 48h) revealed that 1α,25(OH)2D3 increased the percentage of cells in the G0/G1 phase and diminished the percentage of cells in the S phase of the cell cycle. Moreover, the number of cells in the S phase was higher in SVEC-vGPCR than in SVEC due to vGPCR expression. TX 527 exerted similar effects on growth arrest in SVEC-vGPCR cells. The cell cycle changes were suppressed when the expression of the VDR was blocked by a stable transfection of shRNA against VDR. Annexin V-PI staining demonstrated apoptosis in both SVEC and SVEC-vGPCR after 1α,25(OH)2D3 and TX 527 treatment (10nM, 24h). Cleavage of caspase-3 detected by Western blot analysis was increased to a greater extent in SVEC than in SVEC-vGPCR cells, and this effect was also blocked in VDR knockdown cells. Altogether, these results suggest that 1α,25(OH)2D3 and TX 527 inhibit the proliferation of SVEC and SVEC-vGPCR and induce apoptosis by a mechanism that involves the VDR.

  6. NKG2D - RAE-1 receptor-ligand variation does not account for the Natural Killer cell defect in nonobese diabetic mice1

    PubMed Central

    Maier, Lisa M.; Howlett, Sarah; Rainbow, Kara; Clark, Jan; Howson, Joanna M.M.; Todd, John A.; Wicker, Linda S.

    2008-01-01

    Natural Killer (NK) cells from nonobese diabetic (NOD) mice induced with poly I:C in vivo exhibit low cytotoxicity against a range of target cells, but the genetic mechanisms controlling this defect are yet to be elucidated. Defects in the expression of NKG2D and its ligands, the RAE-1 molecules, have been hypothesized to contribute to the reduced NK function present in NOD mice. Here we show that segregation of the NK-mediated killing phenotype did not correlate with the NOD Raet1 haplotype, and that the large alterations in NKG2D expression previously reported on NK cells expanded in vitro were not observed in primary, poly I:C-elicited NK cells in vivo. Additional studies indicate a complex genetic control of defective NOD NK cells, including genes linked to the MHC and possibly those that are associated with an altered cytokine response to the TLR3-agonist, poly I:C. PMID:18981127

  7. A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data.

    PubMed

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-03-11

    Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses.

  8. Computer-aided 2D and 3D quantification of human stem cell fate from in vitro samples using Volocity high performance image analysis software.

    PubMed

    Piltti, Katja M; Haus, Daniel L; Do, Eileen; Perez, Harvey; Anderson, A J; Cummings, B J

    2011-11-01

    Accurate automated cell fate analysis of immunostained human stem cells from 2- and 3-dimensional (2D-3D) images would improve efficiency in the field of stem cell research. Development of an accurate and precise tool that reduces variability and the time needed for human stem cell fate analysis will improve productivity and interpretability of the data across research groups. In this study, we have created protocols for high performance image analysis software Volocity® to classify and quantify cytoplasmic and nuclear cell fate markers from 2D-3D images of human neural stem cells after in vitro differentiation. To enhance 3D image capture efficiency, we optimized the image acquisition settings of an Olympus FV10i® confocal laser scanning microscope to match our quantification protocols and improve cell fate classification. The methods developed in this study will allow for a more time efficient and accurate software based, operator validated, stem cell fate classification and quantification from 2D and 3D images, and yield the highest ≥94.4% correspondence with human recognized objects.

  9. 25(OH)D Is Effective to Repress Human Cholangiocarcinoma Cell Growth through the Conversion of 25(OH)D to 1α,25(OH)2D3

    PubMed Central

    Chiang, Kun-Chun; Yeh, Chun-Nan; Huang, Cheng-Cheng; Yeh, Ta-Sen; S. Pang, Jong-Hwei; Hsu, Jun-Te; Chen, Li-Wei; Kuo, Sheng-Fong; Kittaka, Atsushi; Chen, Tai C.; Juang, Horng-Heng

    2016-01-01

    Cholangiocarcinoma (CCA) is a devastating disease without effective treatments. 1α,25(OH)2D3, the active form of Vitamin D, has emerged as a new anti-cancer regimen. However, the side effect of hypercalcemia impedes its systemic administration. 25(OH)D is biologically inert and needs hydroxylation by CYP27B1 to form 1α,25(OH)2D3, which is originally believed to only take place in kidneys. Recently, the extra-renal expression of CYP27B1 has been identified and in vitro conversion of 25(OH)D to 1α,25(OH)2D3 has been found in some cancer cells with CYP27B1 expression. In this study, CYP27B1 expression was demonstrated in CCA cells and human CCA specimens. 25(OH)D effectively represses SNU308 cells growth, which was strengthened or attenuated as CYP27B1 overexpression or knockdown. Lipocalcin-2 (LCN2) was also found to be repressed by 25(OH)D. After treatment with 800 ng/mL 25(OH)D, the intracellular 1α,25(OH)2D3 concentration was higher in SNU308 cells with CYP27B1 overexpression than wild type SNU308 cells. In a xenograft animal experiment, 25(OH)D, at a dose of 6 μg/kg or 20 μg/kg, significantly inhibited SNU308 cells’ growth without inducing obvious side effects. Collectively, our results indicated that SNU308 cells were able to convert 25(OH)D to 1α,25(OH)2D3 and 25(OH)D CYP27B1 gene therapy could be deemed as a promising therapeutic direction for CCA. PMID:27529229

  10. CD155 on HIV-Infected Cells Is Not Modulated by HIV-1 Vpu and Nef but Synergizes with NKG2D Ligands to Trigger NK Cell Lysis of Autologous Primary HIV-Infected Cells.

    PubMed

    Davis, Zachary B; Sowrirajan, Bharatwaj; Cogswell, Andrew; Ward, Jeffery P; Planelles, Vicente; Barker, Edward

    2017-02-01

    Activation of primary CD4(+) T cells induces the CD155, but not the CD112 ligands for the natural killer (NK) cell activation receptor (aNKR) CD226 [DNAX accessory molecule-1 (DNAM-1)]. We hypothesize that HIV productively infects activated CD4(+) T cells and makes itself vulnerable to NK cell-mediated lysis when CD155 on infected T cells engages DNAM-1. The primary objective of this study is to determine whether CD155 alone or together with NKG2D ligands triggers autologous NK cell lysis of HIV-infected T cells and whether HIV modulates CD155. To determine whether HIV modulates this activation ligand, we infected "activated" CD4(+) T cells with HIV in the absence or presence of Nef and/or Vpu and determined by flow cytometry whether they modulated CD155. To determine if CD155 alone, or together with NKG2D ligands, triggered NK cell lysis of autologous HIV-infected T cells, we treated purified NK cells with DNAM-1 and/or NKG2D blocking antibodies before the addition of purified autologous HIV-infected cells in cytolytic assays. Finally, we determined whether DNAM-1 works together with NKG2D as an NK cell coactivation receptor (caNKR) or whether they work independently as aNKRs to induce an NK cell lytic response. We demonstrate that HIV and specifically Nef and/or Vpu do not modulate CD155 on infected primary T cells; and both CD155 and NKG2D ligands synergize as aNKRs to trigger NK cell lysis of the infected cell.

  11. Valproic Acid Upregulates NKG2D Ligand Expression through an ERK-dependent Mechanism and Potentially Enhances NK Cell-mediated Lysis of Myeloma1

    PubMed Central

    Wu, Xiaosong; Tao, Yi; Hou, Jun; Meng, Xiuqin; Shi, Jumei

    2012-01-01

    Modulation of the antitumor immune response through the engagement of NKG2D receptors with their ligands (L) on targets represents a promising therapeutic approach against cancer. In this study, we tested the effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, on the expression of NKG2D ligands in myeloma cells. We demonstrated that VPA was able to upregulate both protein and mRNA expression of major histocompatibility complex class I-related chain (MIC) A/B and UL16-binding protein (ULBP) 2 without any significant effect on the expression of ULBP1, ULBP3, and ULBP4 or induction of other natural killer (NK) cell ligands, such as NKp30-L, NKp44-L, and NKp46-L in myeloma cells. A 51Cr release assay and degranulation assay indicated that the induction of MICA/B and ULBP2 augmented NK cell-mediated lysis of myeloma cells, which was abolished by the addition of a blocking NKG2D antibody. Activation of constitutively phosphorylated extracellular signal-regulated kinase (ERK) by VPA is essential for the up-regulation of MICA/B and ULBP2 expressions. Inhibition of ERK using ERK inhibitor PD98059 decreased both MICA/B and ULBP2 expressions and NK cell cytotoxicity. Furthermore, overexpression of constitutively active ERK in ARK resulted in increased MICA/B and ULBP2 expressions and enhanced NK cell lysis. These data indicate that increased sensitivity of VPA-treated myeloma cells to NK cell lysis is caused by higher NKG2D ligand expression, resulting from more active ERK signaling pathway. Our results provide evidence that targeting ERK signaling pathway may be an additional mechanism supporting the antimyeloma activity of HDAC inhibitors and suggest its possible immunotherapeutic value for myeloma treatment. PMID:23308050

  12. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth.

    PubMed

    Hervieu, Alice; Rébé, Cédric; Végran, Frédérique; Chalmin, Fanny; Bruchard, Mélanie; Vabres, Pierre; Apetoh, Lionel; Ghiringhelli, François; Mignot, Grégoire

    2013-02-01

    Dacarbazine (DTIC) is a cytotoxic drug widely used for melanoma treatment. However, the putative contribution of anticancer immune responses in the efficacy of DTIC has not been evaluated. By testing how DTIC affects host immune responses to cancer in a mouse model of melanoma, we unexpectedly found that both natural killer (NK) and CD8(+) T cells were indispensable for DTIC therapeutic effect. Although DTIC did not directly affect immune cells, it triggered the upregulation of NKG2D ligands on tumor cells, leading to NK cell activation and IFNγ secretion in mice and humans. NK cell-derived IFNγ subsequently favored upregulation of major histocompatibility complex class I molecules on tumor cells, rendering them sensitive to cytotoxic CD8(+) T cells. Accordingly, DTIC markedly enhanced cytotoxic T lymphocyte antigen 4 inhibition efficacy in vivo in an NK-dependent manner. These results underscore the immunogenic properties of DTIC and provide a rationale to combine DTIC with immunotherapeutic agents that relieve immunosuppression in vivo.

  13. Cell Culture as an Alternative in Education.

    ERIC Educational Resources Information Center

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  14. Cell culture techniques in honey bee research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell culture techniques are indispensable in most if not all life science disciplines to date. Wherever cell culture models are lacking scientific development is hampered. Unfortunately this has been and still is the case in honey bee research because permanent honey bee cell lines have not yet been...

  15. Visualization of Mesenchymal Stromal Cells in 2Dand 3D-Cultures by Scanning Electron Microscopy with Lanthanide Contrasting.

    PubMed

    Novikov, I A; Vakhrushev, I V; Antonov, E N; Yarygin, K N; Subbot, A M

    2017-02-01

    Mesenchymal stromal cells from deciduous teeth in 2D- and 3D-cultures on culture plastic, silicate glass, porous polystyrene, and experimental polylactoglycolide matrices were visualized by scanning electron microscopy with lanthanide contrasting. Supravital staining of cell cultures with a lanthanide-based dye (neodymium chloride) preserved normal cell morphology and allowed assessment of the matrix properties of the carriers. The developed approach can be used for the development of biomaterials for tissue engineering.

  16. Contrasting Effects of the Cytotoxic Anticancer Drug Gemcitabine and the EGFR Tyrosine Kinase Inhibitor Gefitinib on NK Cell-Mediated Cytotoxicity via Regulation of NKG2D Ligand in Non-Small-Cell Lung Cancer Cells

    PubMed Central

    Okita, Riki; Wolf, Diana; Yasuda, Koichiro; Maeda, Ai; Yukawa, Takuro; Saisho, Shinsuke; Shimizu, Katsuhiko; Yamaguchi, Yoshiyuki; Oka, Mikio; Nakayama, Eiichi; Lundqvist, Andreas; Kiessling, Rolf; Seliger, Barbara; Nakata, Masao

    2015-01-01

    Introduction Several cytotoxic anticancer drugs inhibit DNA replication and/or mitosis, while EGFR tyrosine kinase inhibitors inactivate EGFR signalling in cancer cell. Both types of anticancer drugs improve the overall survival of the patients with non-small-cell lung cancer (NSCLC), although tumors often become refractory to this treatment. Despite several mechanisms by which the tumors become resistant having been described the effect of these compounds on anti-tumor immunity remains largely unknown. Methods This study examines the effect of the cytotoxic drug Gemcitabine and the EGFR tyrosine kinase inhibitor Gefitinib on the expression of NK group 2 member D (NKG2D) ligands as well as the sensitivity of NSCLC cells to the NK-mediated lysis. Results We demonstrate that Gemcitabine treatment leads to an enhanced expression, while Gefitinib downregulated the expression of molecules that act as key ligands for the activating receptor NKG2D and promote NK cell-mediated recognition and cytolysis. Gemcitabine activated ATM and ATM- and Rad-3-related protein kinase (ATR) pathways. The Gemcitabine-induced phosphorylation of ATM as well as the upregulation of the NKG2D ligand expression could be blocked by an ATM-ATR inhibitor. In contrast, Gefitinib attenuated NKG2D ligand expression. Silencing EGFR using siRNA or addition of the PI3K inhibitor resulted in downregulation of NKG2D ligands. The observations suggest that the EGFR/PI3K pathway also regulates the expression of NKG2D ligands. Additionally, we showed that both ATM-ATR and EGFR regulate MICA/B via miR20a. Conclusion In keeping with the effect on NKG2D expression, Gemcitabine enhanced NK cell-mediated cytotoxicity while Gefitinib attenuated NK cell killing in NSCLC cells. PMID:26439264

  17. Increased sMICA and TGFβ1 levels in HNSCC patients impair NKG2D-dependent functionality of activated NK cells

    PubMed Central

    Klöß, Stephan; Chambron, Nicole; Gardlowski, Tanja; Arseniev, Lubomir; Koch, Joachim; Esser, Ruth; Glienke, Wolfgang; Seitz, Oliver; Köhl, Ulrike

    2015-01-01

    Disseminated head-and-neck squamous cell carcinoma (HNSCC) escapes immune surveillance and thus frequently manifests as fatal disease. Here, we report on the distribution of distinct immune cell subpopulations, natural killer (NK) cell cytotoxicity and tumor immune escape mechanisms (TIEMs) in 55 HNSCC patients, either at initial diagnosis or present with tumor relapse. Compared to healthy controls, the regulatory NK cells and the ratio of pro/anti-inflammatory cytokines were decreased in HNSCC patients, while soluble major histocompatibility complex Class I chain-related peptide A (sMICA) and transforming growth factor β1 (TGFβ1) plasma levels were markedly elevated. Increased sMICA and TGFβ1 concentrations correlated with tumor progression and staging characteristics in 7 follow-up HNSCC patients, with significantly elevated levels of both soluble factors from the time of initial diagnosis to that of relapse. Patient plasma containing elevated sMICA and TGFβ1 markedly impaired NKG2D-dependent cytotoxicity against HNSCC cells upon incubation with patient-derived and IL-2 activated NK cells vs. those derived from healthy donors. Decreased antitumor recognition was accompanied by reduced NKG2D expression on the NK cell surface and an enhanced caspase-3 activity. In-vitro blocking and neutralization experiments demonstrated a synergistic negative impact of sMICA and TGFβ1 on NK cell functionality. Although we previously showed the feasibility and safety of transfer of allogeneic donor NK cells in a prior clinical study encompassing various leukemia and tumor patients, our present results suggest the need for caution regarding the sole use of adoptive NK cell transfer. The presence of soluble NKG2D ligands in the plasma of HNSCC patients and the decreased NK cell cytotoxicity due to several factors, especially TGFβ1, indicates timely depletion of these immunosuppressing molecules may promote NK cell-based immunotherapy. PMID:26451327

  18. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation.

    PubMed

    Watson, P Marc D; Kavanagh, Edel; Allenby, Gary; Vassey, Matthew

    2017-02-01

    Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer's and Parkinson's disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell-cell and cell-matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.

  19. Culture of Cells from Amphibian Embryos.

    ERIC Educational Resources Information Center

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  20. Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D.

    PubMed

    Wang, Zhongjuan; Guo, Linghua; Song, Yuan; Zhang, Yinsheng; Lin, Dandan; Hu, Bo; Mei, Yu; Sandikin, Dedy; Liu, Haiyan

    2017-04-01

    The capacity of natural killer (NK) cells to kill tumor cells without specific antigen recognition provides an advantage over T cells and makes them potential effectors for tumor immunotherapy. However, the efficacy of NK cell adoptive therapy can be limited by the immunosuppressive tumor microenvironment. Transforming growth factor-β (TGF-β) is a potent immunosuppressive cytokine that can suppress NK cell function. To convert the suppressive signal induced by TGF-β to an activating signal, we genetically modified NK-92 cells to express a chimeric receptor with TGF-β type II receptor extracellular and transmembrane domains and the intracellular domain of NK cell-activating receptor NKG2D (TN chimeric receptor). NK-92 cells expressing TN receptors were resistant to TGF-β-induced suppressive signaling and did not down-regulate NKG2D. These modified NK-92 cells had higher killing capacity and interferon γ (IFN-γ) production against tumor cells compared with the control cells and their cytotoxicity could be further enhanced by TGF-β. More interestingly, the NK-92 cells expressing TN receptors were better chemo-attracted to the tumor cells expressing TGF-β. The presence of these modified NK-92 cells significantly inhibited the differentiation of human naïve CD4(+) T cells to regulatory T cells. NK-92-TN cells could also inhibit tumor growth in vivo in a hepatocellular carcinoma xenograft tumor model. Therefore, TN chimeric receptors can be a novel strategy to augment anti-tumor efficacy in NK cell adoptive therapy.

  1. Cytomegalovirus-Associated CD4(+) CD28(null) Cells in NKG2D-Dependent Glomerular Endothelial Injury and Kidney Allograft Dysfunction.

    PubMed

    Shabir, S; Smith, H; Kaul, B; Pachnio, A; Jham, S; Kuravi, S; Ball, S; Chand, S; Moss, P; Harper, L; Borrows, R

    2016-04-01

    Emerging data suggest that expansion of a circulating population of atypical, cytotoxic CD4(+) T cells lacking costimulatory CD28 (CD4(+) CD28(null) cells) is associated with latent cytomegalovirus (CMV) infection. The purpose of the current study was to increase the understanding of the relevance of these cells in 100 unselected kidney transplant recipients followed prospectively for a median of 54 months. Multicolor flow cytometry of peripheral blood mononuclear cells before transplantation and serially posttransplantation was undertaken. CD4(+) CD28(null) cells were found predominantly in CMV-seropositive patients and expanded in the posttransplantation period. These cells were predominantly effector-memory phenotype and expressed markers of endothelial homing (CX3CR1) and cytotoxicity (NKG2D and perforin). Isolated CD4(+) CD27(-) CD28(null) cells proliferated in response to peripheral blood mononuclear cells previously exposed to CMV-derived (but not HLA-derived) antigens and following such priming incubation with glomerular endothelium resulted in signs of endothelial damage and apoptosis (release of fractalkine and von Willebrand factor; increased caspase 3 expression). This effect was mitigated by NKG2D-blocking antibody. Increased CD4(+) CD28(null) cell frequencies were associated with delayed graft function and lower estimated glomerular filtration rate at end follow-up. This study suggests an important role for this atypical cytotoxic CD4(+) CD28(null) cell subset in kidney transplantation and points to strategies that may minimize the impact on clinical outcomes.

  2. Progesterone metabolism in cultured amniotic fluid cells.

    PubMed

    Beling, C G; Cederqvist, L L

    1978-01-01

    Amniotic fluid cells obtained by amnicentesis at 16-20 weeks' gestation were grown in culture until a confluent monolayer of cell had been formed. Radiolabeled pregnenolone, progesterone and 20 alpha-dihydroprogesterone were added to the cell cultures; steroid metabolites which formed after 24 and 48 hours of incubation were identified. Incubation of the cell cultures with pregnenolone-3H resulted in the formation of progesterone, 17alpha-progesterone and 20 alpha-dihydroprogesterone. A significant amount of progesterone was identified after incubating the cell cultures with 20 alpha-dihydroprogesterone. The results indicate that 3 beta-ol-dehydrogenase, 17 alpha-hydroxylase and 20 alpha-hydroxysteroid dehydrogenase enzymes are present in cultured amniotic fluid cells obtained at 16-20 weeks' gestation.

  3. Closing the Phenotypic Gap between Transformed Neuronal Cell Lines in Culture and Untransformed Neurons

    NASA Technical Reports Server (NTRS)

    Myers, Tereance A.; Nickerson, Cheryl A.; Kaushal, Deepak; Ott, C. Mark; HonerzuBentrup, Kerstin; Ramamurthy, Rajee; Nelman-Gonzales, Mayra; Pierson, Duane L.; Philipp, Mario T.

    2008-01-01

    Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.

  4. Embryonic Stem Cells: Isolation, Characterization and Culture

    NASA Astrophysics Data System (ADS)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  5. Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats.

    PubMed

    Qian, A R; Li, D; Han, J; Gao, X; Di, S M; Zhang, W; Hu, L F; Shang, Peng

    2012-05-01

    Osteoblasts, the bone-forming cells, respond to various mechanical forces, such as stretch and fluid shear force in essentially similar ways. The cytoskeleton, as the load-bearing architecture of the cell, is sensitive to altered inertial forces. Disruption of the cytoskeleton will result in alteration of cellular structure and function. However, it is difficult to quantitatively illustrate cytoskeletal rearrangement because of the complexity of cytoskeletal structure. Usually, the morphological changes in actin organization caused by external stimulus are basically descriptive. In this study, fractal dimensions (D) analysis was used to quantify the morphological changes in the actin cytoskeleton of osteoblast-like cells (MC3T3-E1) under simulated microgravity using 3-D/2-D clinostats. The ImageJ software was used to count the fractal dimension of actin cytoskeleton by box-counting methods. Real-time PCR and immunofluroscent assays were used to further confirm the results obtained by fractal dimension analysis. The results showed significant decreases in D value of actin cytoskeleton, β-actin mRNA expression, and the mean fluorescence intensity of F-actin in osteoblast-like cells after 24 or 48 h of incubation under 3-D/2-D clinorotation condition compared with control. The findings indicate that 3-D/2-D clinorotation affects both actin cytoskeleton architecture and mRNA expression, and fractal may be a promising approach for quantitative analysis of the changes in cytoskeleton in different environments.

  6. Mean cell size and collagen orientation from 2D Fourier analysis on confocal laser scanning microscopy and two-photon fluorescence microscopy on human skin in vivo

    NASA Astrophysics Data System (ADS)

    Lucassen, Gerald W.; Bakker, Bernard L.; Neerken, Sieglinde; Hendriks, Rob F. M.

    2003-07-01

    We present results from 2D Fourier analysis on 3D stacks of images obtained by confocal laser scanning reflectance microscopy (CLSM) and two-photon fluorescence microscopy (2PM) on human skin in vivo. CLSM images were obtained with a modified commercial system (Vivascope1000, Lucid Inc, excitation wavelength 830 nm) equipped with a piezo-focusing element (350 μm range) for depth positioning of the objective lens. 2PM was performed with a specially designed set-up with excitation wavelength 730 nm. Mean cell size in the epidermal layer and structural orientation in the dermal layer have been determined as a function of depth by 2D Fourier analysis. Fourier analysis on microscopic images enables automatic non-invasive quantitative structural analysis (mean cell size and orientation) of living human skin.

  7. Dynamic culture improves cell reprogramming efficiency.

    PubMed

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  8. Three-dimensional Huh7 cell culture system for the study of Hepatitis C virus infection

    PubMed Central

    Sainz, Bruno; TenCate, Veronica; Uprichard, Susan L

    2009-01-01

    Background In order to elucidate how Hepatitis C Virus (HCV) interacts with polarized hepatocytes in vivo and how HCV-induced alterations in cellular function contribute to HCV-associated liver disease, a more physiologically relevant hepatocyte culture model is needed. As such, NASA-engineered three-dimensional (3-D) rotating wall vessel (RWV) bioreactors were used in effort to promote differentiation of HCV-permissive Huh7 hepatoma cells. Results When cultured in the RWV, Huh7 cells became morphologically and transcriptionally distinct from more standard Huh7 two-dimensional (2-D) monolayers. Specifically, RWV-cultured Huh7 cells formed complex, multilayered 3-D aggregates in which Phase I and Phase II xenobiotic drug metabolism genes, as well as hepatocyte-specific transcripts (HNF4α, Albumin, TTR and α1AT), were upregulated compared to 2-D cultured Huh7 cells. Immunofluorescence analysis revealed that these HCV-permissive 3-D cultured Huh7 cells were more polarized than their 2D counterparts with the expression of HCV receptors, cell adhesion and tight junction markers (CD81, scavenger receptor class B member 1, claudin-1, occludin, ZO-1, β-Catenin and E-Cadherin) significantly increased and exhibiting apical, lateral and/or basolateral localization. Conclusion These findings show that when cultured in 3-D, Huh7 cells acquire a more differentiated hepatocyte-like phenotype. Importantly, we show that these 3D cultures are highly permissive for HCV infection, thus providing an opportunity to study HCV entry and the effects of HCV infection on host cell function in a more physiologically relevant cell culture system. PMID:19604376

  9. Effect of 1,25(OH)2D3 on transdifferentiation of rat renal tubular epithelial cells induced by high glucose

    PubMed Central

    Hu, Hongtao; Xu, Shen; Hu, Shuang; Gao, Yue; Shui, Hua

    2016-01-01

    Deficiency in vitamin D and its active metabolite is a characteristic of chronic kidney diseases (CKDs). Previous studies have reported that 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], the active form of vitamin D, can attenuate renal interstitial fibrosis. The present study aimed to explore the effect of 1,25(OH)2D3 on the transdifferentiation of NRK-52E rat renal tubular epithelial cells (RTECs) induced by high glucose, as well as the expression of vitamin D receptor (VDR) and production of angiotensin (Ang) II. Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses were performed to detect the protein and mRNA expression of α-smooth muscle actin (α-SMA), E-cadherin and VDR. Furthermore, the production of Ang II was analyzed by enzyme-linked immunosorbent assay (ELISA). Treatment with high glucose decreased E-cadherin and VDR, while increasing α-SMA and Ang II, and of note, these changes were attenuated by 1,25(OH)2D3 in a dose-dependent manner. In conclusion, the present study revealed that 1,25(OH)2D3 inhibits high glucose-induced transdifferentiation of rat RTECs in a dose-dependent manner, which may be associated with the downregulation of Ang II and upregulation of VDR. PMID:28101343

  10. Direct Conversion of Equine Adipose-Derived Stem Cells into Induced Neuronal Cells Is Enhanced in Three-Dimensional Culture.

    PubMed

    Petersen, Gayle F; Hilbert, Bryan J; Trope, Gareth D; Kalle, Wouter H J; Strappe, Padraig M

    2015-12-01

    The ability to culture neurons from horses may allow further investigation into equine neurological disorders. In this study, we demonstrate the generation of induced neuronal cells from equine adipose-derived stem cells (EADSCs) using a combination of lentiviral vector expression of the neuronal transcription factors Brn2, Ascl1, Myt1l (BAM) and NeuroD1 and a defined chemical induction medium, with βIII-tubulin-positive induced neuronal cells displaying a distinct neuronal morphology of rounded and compact cell bodies, extensive neurite outgrowth, and branching of processes. Furthermore, we investigated the effects of dimensionality on neuronal transdifferentiation, comparing conventional two-dimensional (2D) monolayer culture against three-dimensional (3D) culture on a porous polystyrene scaffold. Neuronal transdifferentiation was enhanced in 3D culture, with evenly distributed cells located on the surface and throughout the scaffold. Transdifferentiation efficiency was increased in 3D culture, with an increase in mean percent conversion of more than 100% compared to 2D culture. Additionally, induced neuronal cells were shown to transit through a Nestin-positive precursor state, with MAP2 and Synapsin 2 expression significantly increased in 3D culture. These findings will help to increase our understanding of equine neuropathogenesis, with prospective roles in disease modeling, drug screening, and cellular replacement for treatment of equine neurological disorders.

  11. Fine tuning a well-oiled machine: Influence of NK1.1 and NKG2D on NKT cell development and function

    PubMed Central

    Joshi, Sunil K.; Lang, Mark L.

    2013-01-01

    Natural Killer T cells (NKT) represent a group of CD1d-restricted T-lineage cells that that provide a functional interface between innate and adaptive immune responses in infectious disease, cancer, allergy and autoimmunity. There have been remarkable advances in understanding the molecular events that underpin NKT development in the thymus and in the complex array of functions in the periphery. Most functional studies have focused on activation of T cell antigen receptors expressed by NKT cells and their responses to CD1d presentation of glycolipid and related antigens. Receiving less attention has been several molecules that are hallmarks of Natural Killer (NK) cells, but nonetheless expressed by NKT cells. These include several activating and inhibitory receptors that may fine-tune NKT development and survival, as well as activation via antigen receptors. Herein, we review the possible roles of the NK1.1 and NKG2D receptors in regulating development and function of NKT cells in health and disease. We suggest that pharmacological alteration of NKT activity should consider the potential complexities commensurate with NK1.1 and NKG2D expression. PMID:23800654

  12. HUMAN VASCULAR ENDOTHELIAL CELLS IN CULTURE

    PubMed Central

    Gimbrone, Michael A.; Cotran, Ramzi S.; Folkman, Judah

    1974-01-01

    Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days. Cells in primary and subcultures were identified as endothelium by the presence of Weibel-Palade bodies by electron microscopy. A morphologically distinct subpopulation of cells contaminating some primary endothelial cultures was selectively subcultured, and identified by ultrastructural criteria as vascular smooth muscle. Autoradiography of endothelial cells after exposure to [3H]thymidine showed progressive increases in labeling in growing cultures beginning at 24 h. In recently confluent cultures, labeling indices were 2.4% in central closely packed regions, and 53.2% in peripheral growing regions. 3 days after confluence, labeling was uniform, being 3.5 and 3.9% in central and peripheral areas, respectively. When small areas of confluent cultures were experimentally "denuded," there were localized increases in [3H]thymidine labeling and eventual reconstitution of the monolayer. Liquid scintillation measurements of [3H]thymidine incorporation in primary and secondary endothelial cultures in microwell trays showed a similar correlation of DNA synthesis with cell density. These data indicate that endothelial cell cultures may provide a useful in vitro model for studying pathophysiologic factors in endothelial regeneration. PMID:4363161

  13. Emulsions Containing Perfluorocarbon Support Cell Cultures

    NASA Technical Reports Server (NTRS)

    Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.

    1990-01-01

    Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.

  14. Tocopherol production in plant cell cultures.

    PubMed

    Caretto, Sofia; Nisi, Rossella; Paradiso, Annalisa; De Gara, Laura

    2010-05-01

    Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, essential dietary components for mammals and exclusively synthesized by photosynthetic organisms. Of the four forms (alpha, beta, gamma and delta), alpha-tocopherol is the major vitamin E form present in green plant tissues, and has the highest vitamin E activity. Synthetic alpha-tocopherol, being a racemic mixture of eight different stereoisomers, always results less effective than the natural form (R,R,R) alpha-tocopherol. This raises interest in obtaining this molecule from natural sources, such as plant cell cultures. Plant cell and tissue cultures are able to produce and accumulate valuable metabolites that can be used as food additives, nutraceuticals and pharmaceuticals. Sunflower cell cultures, growing under heterotrophic conditions, were exploited to establish a suitable in vitro production system of natural alpha-tocopherol. Optimization of culture conditions, precursor feeding and elicitor application were used to improve the tocopherol yields of these cultures. Furthermore, these cell cultures were useful to investigate the relationship between alpha-tocopherol biosynthesis and photomixotrophic culture conditions, revealing the possibility to enhance tocopherol production by favouring sunflower cell photosynthetic properties. The modulation of alpha-tocopherol levels in plant cell cultures can provide useful hints for a regulatory impact on tocopherol metabolism.

  15. Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation.

    PubMed

    Seiler, Christof; Gazdhar, Amiq; Reyes, Mauricio; Benneker, Lorin M; Geiser, Thomas; Siebenrock, Klaus A; Gantenbein-Ritter, Benjamin

    2014-09-01

    Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of

  16. Constructing a High Density Cell Culture System

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor)

    1996-01-01

    An annular culture vessel for growing mammalian cells is constructed in a one piece integral and annular configuration with an open end which is closed by an endcap. The culture vessel is rotatable about a horizontal axis by use of conventional roller systems commonly used in culture laboratories. The end wall of the endcap has tapered access ports to frictionally and sealingly receive the ends of hypodermic syringes. The syringes permit the introduction of fresh nutrient and withdrawal of spent nutrients. The walls are made of conventional polymeric cell culture material and are subjected to neutron bombardment to form minute gas permeable perforations in the walls.

  17. Ribozyme knockdown functionally links a 1,25(OH)2D3 membrane binding protein (1,25D3-MARRS) and phosphate uptake in intestinal cells

    PubMed Central

    Nemere, I.; Farach-Carson, M. C.; Rohe, B.; Sterling, T. M.; Norman, A. W.; Boyan, B. D.; Safford, S. E.

    2004-01-01

    We used a ribozyme loss-of-function approach to demonstrate that the protein product of a cDNA encoding a multifunctional membrane-associated protein binds the seco-steroid 1,25(OH)2D3 and transduces its stimulatory effects on phosphate uptake. These results are paralleled by studies in which the ability of the hormone to stimulate phosphate uptake in isolated chick intestinal epithelial cells is abolished by preincubation with Ab099 directed against the amino terminus of the protein. We now report the complete sequence of the cloned chicken cDNA for the 1,25D3-MARRS (membrane-associated, rapid-response steroid-binding) protein and reveal it to be identical to the multifunctional protein ERp57. Functional studies showed that active ribozyme, but not a scrambled control, decreased specific membrane-associated 1,25(OH)2D3 binding, but did not affect binding to the nuclear receptor for 1,25(OH)2D3. Seco-steroid-dependent stimulation of protein kinase C activity was diminished as 1,25D3-MARRS protein levels were reduced in the presence of the ribozyme, as judged by Western blot analyses. Phosphate uptake in isolated cells is an index of intestinal phosphate transport that occurs during growth and maturation. Whereas cells and perfused duodena robustly responded to 1,25(OH)2D3 in preparations from young birds, older animals no longer responded with stimulated phosphate uptake or transport. The age-related decline was accompanied by a decrease in 1,25D3-MARRS mRNA that was apparent up to 1 year of age. Together, these studies functionally link phosphate transport in the chick duodenum with the 1,25D3-MARRS protein and point to a previously uncharacterized role for this multifunctional protein class. PMID:15123837

  18. 3D cell culture to determine in vitro biocompatibility of bioactive glass in association with chitosan.

    PubMed

    Bédouin, Y; Pellen Mussi, P; Tricot-Doleux, S; Chauvel-Lebret, D; Auroy, P; Ravalec, X; Oudadesse, H; Perez, F

    2015-01-01

    This study reports the in vitro biocompatibility of a composite biomaterial composed of 46S6 bioactive glass in association with chitosan (CH) by using 3D osteoblast culture of SaOS2. The 46S6 and CH composite (46S6-CH) forms small hydroxyapatite crystals on its surface after only three days immersion in the simulated body fluid. For 2D osteoblast culture, a significant increase in cell proliferation was observed after three days of contact with 46S6 or 46S6-CH-immersed media. After six days, 46S6-CH led to a significant increase in cell proliferation (128%) compared with pure 46S6 (113%) and pure CH (122%). For 3D osteoblast culture, after six days of culture, there was an increase in gene expression of markers of the early osteoblastic differentiation (RUNX2, ALP, COL1A1). Geometric structures corresponding to small apatite clusters were observed by SEM on the surface of the spheroids cultivated with 46S6 or 46S6-CH-immersed media. We showed different cellular responses depending on the 2D and 3D cell culture model. The induction of osteoblast differentiation in the 3D cell culture explained the differences of cell proliferation in contact with 46S6, CH or 46S6-CH-immersed media. This study confirmed that the 3D cell culture model is a very promising tool for in vitro biological evaluation of bone substitutes' properties.

  19. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  20. Insect cell culture in reagent bottles.

    PubMed

    Rieffel, S; Roest, S; Klopp, J; Carnal, S; Marti, S; Gerhartz, B; Shrestha, B

    2014-01-01

    Growing insect cells with high air space in culture vessel is common from the early development of suspension cell culture. We believed and followed it with the hope that it allows sufficient air for optimal cell growth. However, we missed to identify how much air exactly cells need for its growth and multiplication. Here we present the innovative method that changed the way we run insect cell culture. The method is easy to adapt, cost-effective and useful for both academic and industrial research labs. We believe this method will revolutionize the way we run insect cell culture by increasing throughput in a cost-effective way. In our study we identified:•Insect cells need to be in suspension; air space in culture vessel and type of culture vessel is of less importance. Shaking condition that introduces small air bubbles and maintains it in suspension for longer time provides better oxygen transfer in liquid. For this, high-fill volume in combination with speed and shaking diameter are important.•Commercially available insect cells are not fragile as original isolates. These cells can easily withstand higher shaking speed.•Growth condition in particular lab set-up needs to be optimized. The condition used in one lab may not be optimum for another lab due to different incubators from different vendors.

  1. Data of the recombination loss mechanisms analysis on Al2O3 PERC cell using PC1D and PC2D simulations.

    PubMed

    Huang, Haibing; Lv, Jun; Bao, Yameng; Xuan, Rongwei; Sun, Shenghua; Sneck, Sami; Li, Shuo; Modanese, Chiara; Savin, Hele; Wang, Aihua; Zhao, Jianhua

    2017-04-01

    This data article is related to our recently published article ('20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%', Huang et al., 2017 [1]) where we have presented a systematic evaluation of the overall cell processing and a cost-efficient industrial roadmap for PERC cells. Aside from the information already presented in Huang et al., 2017 [1], here we provide data related to Sectin 3 in Huang et al., 2017 [1] concerning the analysis of the recombination losses׳ mechanisms by PC1D V5.9 and PC2D simulations (Clugston and Basore, 1997, Basore and Cabanas-Holmen, 2011, Cabanas-Holmen and Basore, 2012 and Cabanas-Holmen and Basore, 2012.) [2], [3], [4], [5] on our current industrial Al2O3 PERC cell. The data include: i) PC2D simulations on J02, ii) the calculation of series resistance and back surface recombination velocity (BSRV) on the rear side metallization of PERC cell for the case of a point contact, and iii) the PC1D simulation on the cumulative photo-generation and recombination along the distance from the front surface. Finally, the roadmap of the solar cell efficiency for an industrial PERC technology up to 24% is presented, with the aim of providing a potential guideline for industrial researchers.

  2. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells.

    PubMed

    Huang, Hongzhou; Ding, Ying; Sun, Xiuzhi S; Nguyen, Thu A

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing.

  3. Neuronal differentiation of PC12 and embryonic stem cells in two- and three-dimensional in vitro culture.

    PubMed

    Sadri, Soheil; Khazaei, Mozafar; Ghanbari, Ali; Khazaei, Mohammad Rasool; Shah, Palak

    2014-04-01

    The quality of neuronal differentiation and reduction in apoptosis that occurred in two-dimensional (2D) and three-dimensional (3D) culture conditions is compared. PC12 and embryonic stem cells are two commonly utilized cell lines for the study of neuronal regeneration. These cells were induced to neuronally differentiate by adding NGF and retinoic acid respectively. Total neurite length and expression of neuronal markers (MAP-2 and beta-tubulin) was assessed by morphometry and immunocytochemistry. Also, TUNEL assay was used to detect apoptosis. Upon exposure to a differentiation media in the 3D fibrin gel, PC12 and embryonic stem cells stopped dividing, had increased adhesion to the substratum, extended neurite processes and expressed neuronal markers. The same results, however, were not observedwith the 2D culture. Also, the apoptosis index performed by TUNEL a ss ay demonstrated a reduction in th e degree of apoptosis in the 3D culture compared to 2D culture. Fibrin matrix supports growth and n euronal differentiation of PC12 andembryonic stem cells. In addition, the 3D culture enhanced cellular resistance to apoptosis when compared to the 2D culture. It appears as if a 3D culture system may offer a better technique for future neuronal tissue engineering investigations.

  4. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-07-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells.

  5. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    PubMed Central

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-01-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells. PMID:26153550

  6. Single molecule microscopy in 3D cell cultures and tissues.

    PubMed

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

  7. Cell culture from sponges: pluripotency and immortality.

    PubMed

    de Caralt, Sònia; Uriz, María J; Wijffels, René H

    2007-10-01

    Sponges are a source of compounds with potential pharmaceutical applications. In this article, methods of sponge cell culture for production of these bioactive compounds are reviewed, and new approaches for overcoming the problem of metabolite supply are examined. The use of embryos is proposed as a new source of sponge material for cell culture. Stem cells are present in high amounts in embryos and are more versatile and resistant to infections than adult cells. Additionally, genetic engineering and cellular research on apoptotic mechanisms are promising new fields that might help to improve cell survival in sponge-cell lines. We propose that one topic for future research should be how to reduce apoptosis, which appears to be very high in sponge cell cultures.

  8. A robust cell counting approach based on a normalized 2D cross-correlation scheme for in-line holographic images.

    PubMed

    Ra, Ho-Kyeong; Kim, Hyungseok; Yoon, Hee Jung; Son, Sang Hyuk; Park, Taejoon; Moon, Sangjun

    2013-09-07

    To achieve the important aims of identifying and marking disease progression, cell counting is crucial for various biological and medical procedures, especially in a Point-Of-Care (POC) setting. In contrast to the conventional manual method of counting cells, a software-based approach provides improved reliability, faster speeds, and greater ease of use. We present a novel software-based approach to count in-line holographic cell images using the calculation of a normalized 2D cross-correlation. This enables fast, computationally-efficient pattern matching between a set of cell library images and the test image. Our evaluation results show that the proposed system is capable of quickly counting cells whilst reliably and accurately following human counting capability. Our novel approach is 5760 times faster than manual counting and provides at least 68% improved accuracy compared to other image processing algorithms.

  9. Porcine mitral valve interstitial cells in culture.

    PubMed

    Lester, W; Rosenthal, A; Granton, B; Gotlieb, A I

    1988-11-01

    There are connective tissue cells present within the interstitium of the heart valves. This study was designed to isolate and characterize mitral valve interstitial cells from the anterior leaflet of the mitral valve. Explants obtained from the distal part of the leaflet, having been scraped free of surface endocardial cells, were incubated in medium 199 supplemented with 10% fetal bovine serum. Cells grew out of the explant after 3 to 5 days and by 3 weeks these cells were harvested and passaged. Passages 1 to 22 were characterized in several explant sets. The cells showed a growth pattern reminiscent of fibroblasts. Growth was dependent on serum concentration. Cytoskeletal localization of actin and myosin showed prominent stress fibers. Ultrastructural studies showed many elongated cells with prominent stress fibers and some gap junctions and few adherens junctions. There were as well cells with fewer stress fibers containing prominent Golgi complex and dilated endoplasmic reticulum. In the multilayered superconfluent cultures, the former cells tended to be on the substratum of the dish or surface of the multilayered culture, whereas the latter was generally located within the layer of cells. Extracellular matrix was prominent in superconfluent cultures, often within the layers as well. Labeling of the cells with antibody HHF 35 (Tsukada T, Tippens D, Gordon D, Ross R, Gown AM: Am J Pathol 126:51, 1987), which recognizes smooth muscle cell actin, showed prominent staining of the elongated stress fiber-containing cells and much less in the secretory type cells. These studies show that interstitial mitral valve cells can be grown in culture and that either two different cell types or one cell type with two phenotypic expressions is present in culture.

  10. Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells

    SciTech Connect

    Hohjoh, Hirohiko Fukushima, Tatsunobu

    2007-10-19

    MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation.

  11. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    PubMed Central

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated. PMID:27605489

  12. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Choe, Kibaek; Park, Inwon; Kim, Pilhan; Park, Yongkeun

    2016-09-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated.

  13. Advances in cell culture: anchorage dependence

    PubMed Central

    Merten, Otto-Wilhelm

    2015-01-01

    Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000–6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems—microcarrier/microcarrier-clump cultures using stirred-tank reactors—for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes. PMID:25533097

  14. Culture and Manipulation of Embryonic Cells

    PubMed Central

    Edgar, Lois G.; Goldstein, Bob

    2012-01-01

    The direct manipulation of embryonic cells is an important tool for addressing key questions in cell and developmental biology. C. elegans is relatively unique among genetic model systems in being amenable to manipulation of embryonic cells. Embryonic cell manipulation has allowed the identification of cell interactions by direct means, and it has been an important technique for dissecting mechanisms by which cell fates are specified, cell divisions are oriented, and morphogenesis is accomplished. Here, we present detailed methods for isolating, manipulating and culturing embryonic cells of C. elegans. PMID:22226523

  15. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  16. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  17. Microfabricated elastomeric stencils for micropatterning cell cultures.

    PubMed

    Folch, A; Jo, B H; Hurtado, O; Beebe, D J; Toner, M

    2000-11-01

    Here we present an inexpensive method to fabricate microscopic cellular cultures, which does not require any surface modification of the substrate prior to cell seeding. The method utilizes a reusable elastomeric stencil (i.e., a membrane containing thru holes) which seals spontaneously against the surface. The stencil is applied to the cell-culture substrate before seeding. During seeding, the stencil prevents the substrate from being exposed to the cell suspension except on the hole areas. After cells are allowed to attach and the stencil is peeled off, cellular islands with a shape similar to the holes remain on the cell-culture substrate. This solvent-free method can be combined with a wide range of substrates (including biocompatible polymers, homogeneous or nonplanar surfaces, microelectronic chips, and gels), biomolecules, and virtually any adherent cell type.

  18. Myosin types in cultured muscle cells

    PubMed Central

    1980-01-01

    Fluorescent antibodies against fast skeletal, slow skeletal, and ventricular myosins were applied to muscle cultures from embryonic pectoralis and ventricular myocadium of the chicken. A number of spindle-shaped mononucleated cells, presumably myoblasts, and all myotubes present in skeletal muscle cultures were labeled by all three antimyosin antisera. In contrast, in cultures from ventricular myocardium all muscle cells were labeled by anti-ventricular myosin, whereas only part of them were stained by anti-slow skeletal myosin and rare cells reacted with anti-fast skeletal myosin. The findings indicate that myosin(s) present in cultured embryonic skeletal muscle cells contains antigenic determinants similar to those present in adult fast skeletal, slow skeletal, and ventricular myosins. PMID:6156177

  19. Development of micropatterning technology for cultured cells.

    PubMed

    Matsuda, T; Inoue, K; Sugawara, T

    1990-01-01

    The manipulation of regional cell adhesiveness by surface design could provide micropatterned cell culturing. Based on the photoreactive chemistry of a phenylazide group, a novel surface micropatterning technology for cultured cells was successfully developed. The principle is as follows: 1) a photoreactive hydrophilic co-polymer with phenylazide was cast on a hydrophobic matrix surface, 2) a photoreactive hydrophobic co-polymer was cast on a hydrophilic matrix; 3) a photomask with a given pattern was tightly placed on the cast film; and 4) after UV irradiation and subsequent washing, bovine endothelial cells (ECs) were seeded and cultured. ECs adhered and grew only on nonhydrophilic regions, eventually resulting in micropatterning of ECs. The micropatterns of cultured ECs prepared by 1) and 2) were negative- and positive-type patterns to that of the photomask used, respectively.

  20. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase.

    PubMed

    Jiang, Jian-kang; Boxer, Matthew B; Vander Heiden, Matthew G; Shen, Min; Skoumbourdis, Amanda P; Southall, Noel; Veith, Henrike; Leister, William; Austin, Christopher P; Park, Hee Won; Inglese, James; Cantley, Lewis C; Auld, Douglas S; Thomas, Craig J

    2010-06-01

    Cancer cells have distinct metabolic needs that are different from normal cells and can be exploited for development of anti-cancer therapeutics. Activation of the tumor specific M2 form of pyruvate kinase (PKM2) is a potential strategy for returning cancer cells to a metabolic state characteristic of normal cells. Here, we describe activators of PKM2 based upon a substituted thieno[3,2-b]pyrrole[3,2-d]pyridazinone scaffold. The synthesis of these agents, structure-activity relationships, analysis of activity at related targets (PKM1, PKR and PKL) and examination of aqueous solubility are investigated. These agents represent the second reported chemotype for activation of PKM2.

  1. Effects of Culture Dimensions on Maintenance of Porcine Inner Cell Mass-Derived Cell Self-Renewal

    PubMed Central

    Baek, Song; Han, Na Rae; Yun, Jung Im; Hwang, Jae Yeon; Kim, Minseok; Park, Choon Keun; Lee, Eunsong; Lee, Seung Tae

    2017-01-01

    Despite the fact that porcine embryonic stem cells (ESCs) are a practical study tool, in vitro long-term maintenance of these cells is difficult in a two-dimensional (2D) microenvironment using cellular niche or extracellular matrix proteins. However, a three-dimensional (3D) microenvironment, similar to that enclosing the inner cell mass of the blastocyst, may improve in vitro maintenance of self-renewal. Accordingly, as a first step toward constructing a 3D microenvironment optimized to maintain porcine ESC self-renewal, we investigated different culture dimensions for porcine ICM-derived cells to enhance the maintenance of self-renewal. Porcine ICM-derived cells were cultured in agarose-based 3D hydrogel with self-renewal-friendly mechanics and in 2D culture plates with or without feeder cells. Subsequently, the effects of the 3D microenvironment on maintenance of self-renewal were identified by analyzing colony formation and morphology, alkaline phosphatase (AP) activity, and transcriptional and translational regulation of self-renewal-related genes. The 3D microenvironment using a 1.5% (w/v) agarose-based 3D hydrogel resulted in significantly more colonies with stereoscopic morphology, significantly improved AP activity, and increased protein expression of self-renewal-related genes compared to those in the 2D microenvironment. These results demonstrate that self-renewal of porcine ICM-derived cells can be maintained more effectively in a 3D microenvironment than in a 2D microenvironment. These results will help develop novel culture systems for ICM-derived cells derived from diverse species, which will contribute to stimulating basic and applicable studies related to ESCs. PMID:28196411

  2. Effects of 1,25(OH)2D3 on Cancer Cells and Potential Applications in Combination with Established and Putative Anti-Cancer Agents

    PubMed Central

    Abu el Maaty, Mohamed A.; Wölfl, Stefan

    2017-01-01

    The diverse effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the bio-active form of vitamin D, on cancer cell metabolism and proliferation has made it an interesting candidate as a supporting therapeutic option in cancer treatment. An important strategy in cancer therapy is the use of combination chemotherapy to overcome drug resistance associated with numerous anti-cancer agents and to provide better means of avoiding undesirable side effects. This complex strategy is widely adopted by oncologists and several established “cocktails” of chemotherapeutics are routinely administered to cancer patients. Among the principles followed in designing such treatment regimens is the use of drugs with different mechanisms of action to overcome the issue of tumor heterogeneity and to evade resistance. In light of the profound and diverse effects of 1,25(OH)2D3 reported by in vitro and in vivo studies, we discuss how these effects could support the use of this molecule in combination with “classical” cytotoxic drugs, such as platins and anti-metabolites, for the treatment of solid and hematological tumors. We also examine recent evidence supporting synergistic activities with other promising anti-cancer drug candidates, and postulate mechanisms through which 1,25(OH)2D3 may help evade chemoresistance. PMID:28124999

  3. Banks of cell cultures for biotechnology.

    PubMed

    Radaeva, I F; Bogryantseva, M P; Nechaeva, E A

    2012-08-01

    Seeding and working cell banks were created and stored in cell culture collection. The banks were certified in accordance with international and national requirements. Cultures of 293, MT-4, L-68, FECH-16-1, FECH-16-2, 4647, MDCK, CHO TK(-), and CHO pE cells were recommended by Medical Immunobiological Preparation Committee for the use in the production of medical immunobiological preparations. The stock is sufficient enough for supplying standard cell material for the production of medical immunobiological preparations over few decades.

  4. RGD-conjugated rod-like viral nanoparticles on 2D scaffold improved bone differentiation of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Pongkwan, Sitasuwan; Lee, L.; Li, Kai; Nguyen, Huong

    2014-05-01

    Viral nanoparticles have uniform and well-defined nano-structures and can be produced in large quantities. Several plant viral nanoparticles have been tested in biomedical applications due to the lack of mammalian cell infectivity. We are particularly interested in using Tobacco mosaic virus (TMV), which has been demonstrated to enhance bone tissue regeneration, as a tuneable nanoscale building block for biomaterials development. Unmodified TMV particles have been shown to accelerate osteogenic differentiation of adult stem cells by synergistically upregulating BMP2 and IBSP expression with dexamethasone. However, the lack of affinity to mammalian cell surface resulted in low initial cell adhesion. In this study, to increase cell binding capacity of TMV based material the chemical functionalization of TMV with arginine-glycine-aspartic acid (RGD) peptide was explored. An azide-derivatized RGD peptide was “clicked” to tyrosine residues on TMV outer surface via an efficient copper(I) catalysed azide-alkyne cycloaddition reaction. The ligand spacing is calculated to be 2-4 nm, which could offer a polyvalent ligand clustering effect for enhanced cell receptor signalling, further promoting the proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells.

  5. NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδ T cells: Modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors

    PubMed Central

    Chitadze, Guranda; Lettau, Marcus; Luecke, Stefanie; Wang, Ting; Janssen, Ottmar; Fürst, Daniel; Mytilineos, Joannis; Wesch, Daniela; Oberg, Hans-Heinrich; Held-Feindt, Janka; Kabelitz, Dieter

    2016-01-01

    ABSTRACT The interaction of the MHC class I-related chain molecules A and B (MICA and MICB) and UL-16 binding protein (ULBP) family members expressed on tumor cells with the corresponding NKG2D receptor triggers cytotoxic effector functions in NK cells and γδ T cells. However, as a mechanism of tumor immune escape, NKG2D ligands (NKG2DLs) can be released from the cell surface. In this study, we investigated the NKG2DL system in different human glioblastoma (GBM) cell lines, the most lethal brain tumor in adults. Flow cytometric analysis and ELISA revealed that despite the expression of various NKG2DLs only ULBP2 is released as a soluble protein via the proteolytic activity of “a disintegrin and metalloproteases” (ADAM) 10 and 17. Moreover, we report that temozolomide (TMZ), a chemotherapeutic agent in clinical use for the treatment of GBM, increases the cell surface expression of NKG2DLs and sensitizes GBM cells to γδ T cell-mediated lysis. Both NKG2D and the T-cell receptor (TCR) are involved. The cytotoxic activity of γδ T cells toward GBM cells is strongly enhanced in a TCR-dependent manner by stimulation with pyrophosphate antigens. These data clearly demonstrate the complexity of mechanisms regulating NKG2DL expression in GBM cells and further show that treatment with TMZ can increase the immunogenicity of GBM. Thus, TMZ might enhance the potential of the adoptive transfer of ex vivo expanded γδ T cells for the treatment of malignant glioblastoma. PMID:27141377

  6. Opportunities for Live Cell FT-Infrared Imaging: Macromolecule Identification with 2D and 3D Localization

    PubMed Central

    Mattson, Eric C.; Aboualizadeh, Ebrahim; Barabas, Marie E.; Stucky, Cheryl L.; Hirschmugl, Carol J.

    2013-01-01

    Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells. PMID:24256815

  7. Opportunities for live cell FT-infrared imaging: macromolecule identification with 2D and 3D localization.

    PubMed

    Mattson, Eric C; Aboualizadeh, Ebrahim; Barabas, Marie E; Stucky, Cheryl L; Hirschmugl, Carol J

    2013-11-19

    Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells.

  8. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells

    PubMed Central

    Drummond, Coyne G.

    2015-01-01

    ABSTRACT Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and

  9. 31P NMR 2D Mapping of Creatine Kinase Forward Flux Rate in Hearts with Postinfarction Left Ventricular Remodeling in Response to Cell Therapy

    PubMed Central

    Gao, Ling; Cui, Weina; Zhang, Pengyuan; Jang, Albert; Zhu, Wuqiang; Zhang, Jianyi

    2016-01-01

    Utilizing a fast 31P magnetic resonance spectroscopy (MRS) 2-dimensional chemical shift imaging (2D-CSI) method, this study examined the heterogeneity of creatine kinase (CK) forward flux rate of hearts with postinfarction left ventricular (LV) remodeling. Immunosuppressed Yorkshire pigs were assigned to 4 groups: 1) A sham-operated normal group (SHAM, n = 6); 2) A 60 minutes distal left anterior descending coronary artery ligation and reperfusion (MI, n = 6); 3) Open patch group; ligation injury plus open fibrin patch over the site of injury (Patch, n = 6); and 4) Cell group, hiPSCs-cardiomyocytes, -endothelial cells, and -smooth muscle cells (2 million, each) were injected into the injured myocardium pass through a fibrin patch (Cell+Patch, n = 5). At 4 weeks, the creatine phosphate (PCr)/ATP ratio, CK forward flux rate (Flux PCr→ATP), and k constant of CK forward flux rate (kPCr→ATP) were severely decreased at border zone myocardium (BZ) adjacent to MI. Cell treatment results in significantly increase of PCr/ATP ratio and improve the value of kPCr→ATP and Flux PCr→ATP in BZ myocardium. Moreover, the BZ myocardial CK total activity and protein expression of CK mitochondria isozyme and CK myocardial isozyme were significantly reduced, but recovered in response to cell treatment. Thus, cell therapy results in improvement of BZ bioenergetic abnormality in hearts with postinfarction LV remodeling, which is accompanied by significantly improvements in BZ CK activity and CK isozyme expression. The fast 2D 31P MR CSI mapping can reliably measure the heterogeneity of bioenergetics in hearts with post infarction LV remodeling. PMID:27606901

  10. Increased mechanosensitivity of cells cultured on nanotopographies

    PubMed Central

    Salvi, Joshua D.; Lim, Jung Yul; Donahue, Henry J.

    2012-01-01

    Enhancing cellular mechanosensitivity is recognized as a novel tool for successful musculoskeletal tissue engineering. We examined the hypothesis that mechanosensitivity of human mesenchymal stem cells (hMSCs) is enhanced on nanotopographic substrates relative to flat surfaces. hMSCs were cultured on polymer-demixed, randomly distributed nanoisland surfaces with varying island heights and changes in intracellular calcium concentration, [Ca2+]i, in response to fluid flow induced shear stress were quantifide. Stem cells cultured on specific scale nanotopographies displayed greater intracellular calcium responses to fluid flow. hMSCs cultured on 10-20 nm high nanoislands displayed a greater percentage of cells responding in calcium relative to cells cultured on flat control, and showed greater average [Ca2+]i increase relative to cells cultured on other nanoislands (45-80 nm high nanoislands). As [Ca2+]i is an important regulator of downstream signaling, as well as proliferation and differentiation of hMSCs, this observation suggests that specific scale nanotopographies provide an optimal milieu for promoting stem cell mechanotransduction activity. That mechanical signals and substrate nanotopography may synergistically regulate cell behavior is of significant interest in the development of regenerative medicine protocols. PMID:20851397

  11. Organic Solar Cells Based on a 2D Benzo[1,2-b:4,5-b']difuran-Conjugated Polymer with High-Power Conversion Efficiency.

    PubMed

    Huo, Lijun; Liu, Tao; Fan, Bingbing; Zhao, Zhiyuan; Sun, Xiaobo; Wei, Donghui; Yu, Mingming; Liu, Yunqi; Sun, Yanming

    2015-11-18

    A novel 2D benzodifuran (BDF)-based copolymer (PBDF-T1) is synthesized. Polymer solar cells fabricated with PBDF-T1 show high power conversion efficiency of 9.43% and fill factor of 77.4%, which is higher than the performance of its benzothiophene (BDT) counterpart (PBDT-T1). These results provide important progress for BDF-based copolymers and demonstrate that BDF-based copolymers can be competitive with the well-studied BDT counterparts via molecular structure design and device optimization.

  12. 3-D Microwell Array System for Culturing Virus Infected Tumor Cells

    PubMed Central

    El Assal, Rami; Gurkan, Umut A.; Chen, Pu; Juillard, Franceline; Tocchio, Alessandro; Chinnasamy, Thiruppathiraja; Beauchemin, Chantal; Unluisler, Sebnem; Canikyan, Serli; Holman, Alyssa; Srivatsa, Srikar; Kaye, Kenneth M.; Demirci, Utkan

    2016-01-01

    Cancer cells have been increasingly grown in pharmaceutical research to understand tumorigenesis and develop new therapeutic drugs. Currently, cells are typically grown using two-dimensional (2-D) cell culture approaches, where the native tumor microenvironment is difficult to recapitulate. Thus, one of the main obstacles in oncology is the lack of proper infection models that recount main features present in tumors. In recent years, microtechnology-based platforms have been employed to generate three-dimensional (3-D) models that better mimic the native microenvironment in cell culture. Here, we present an innovative approach to culture Kaposi’s sarcoma-associated herpesvirus (KSHV) infected human B cells in 3-D using a microwell array system. The results demonstrate that the KSHV-infected B cells can be grown up to 15 days in a 3-D culture. Compared with 2-D, cells grown in 3-D had increased numbers of KSHV latency-associated nuclear antigen (LANA) dots, as detected by immunofluorescence microscopy, indicating a higher viral genome copy number. Cells in 3-D also demonstrated a higher rate of lytic reactivation. The 3-D microwell array system has the potential to improve 3-D cell oncology models and allow for better-controlled studies for drug discovery. PMID:28004818

  13. 3-D Microwell Array System for Culturing Virus Infected Tumor Cells.

    PubMed

    El Assal, Rami; Gurkan, Umut A; Chen, Pu; Juillard, Franceline; Tocchio, Alessandro; Chinnasamy, Thiruppathiraja; Beauchemin, Chantal; Unluisler, Sebnem; Canikyan, Serli; Holman, Alyssa; Srivatsa, Srikar; Kaye, Kenneth M; Demirci, Utkan

    2016-12-22

    Cancer cells have been increasingly grown in pharmaceutical research to understand tumorigenesis and develop new therapeutic drugs. Currently, cells are typically grown using two-dimensional (2-D) cell culture approaches, where the native tumor microenvironment is difficult to recapitulate. Thus, one of the main obstacles in oncology is the lack of proper infection models that recount main features present in tumors. In recent years, microtechnology-based platforms have been employed to generate three-dimensional (3-D) models that better mimic the native microenvironment in cell culture. Here, we present an innovative approach to culture Kaposi's sarcoma-associated herpesvirus (KSHV) infected human B cells in 3-D using a microwell array system. The results demonstrate that the KSHV-infected B cells can be grown up to 15 days in a 3-D culture. Compared with 2-D, cells grown in 3-D had increased numbers of KSHV latency-associated nuclear antigen (LANA) dots, as detected by immunofluorescence microscopy, indicating a higher viral genome copy number. Cells in 3-D also demonstrated a higher rate of lytic reactivation. The 3-D microwell array system has the potential to improve 3-D cell oncology models and allow for better-controlled studies for drug discovery.

  14. Optimization of Metal Coverage on the Emitter in n-Type Interdigitated Back Contact Solar Cells Using a PC2D Simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Chen, Chen; Jia, Rui; Janssen, G. J. M.; Zhang, Dai-Sheng; Xing, Zhao; Bronsveld, P. C. P.; Weeber, A. W.; Jin, Zhi; Liu, Xin-Yu

    2013-07-01

    In interdigitated back contact (IBC) solar cells, the metal-electrode coverage on a p-type emitter is optimized by a PC2D simulation. The result shows that the variation of the metal coverage ratio (MCR) will affect both the surface passivation and the electrode-contact properties for the p-type emitter in IBC solar cells. We find that when Rc ranges from 0.08 to 0.16Ω·cm2, the MCR is optimized with a value of 25% and 33%, resulting in a highest energy-conversion efficiency. The dependences of both Voc and fill factor on MCR are simulated in order to explore the mechanism of the IBC solar cells.

  15. RAPID 2D NMR METHOD FOR DETERMINING P-COUMARATE AND FERULATE LEVELS IN CORN (AND OTHER GRASS) CELL WALLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass cell wall components are acylated by the hydroxycinnamates p-coumarate and ferulate. p-Coumarates largely acylate lignin sidechains, exclusively at the gamma-position, whereas ferulates primarily acylate the arabinosyl C5-position of arabinoxylans. Such components can be quantified as the corr...

  16. Human cell culture in a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  17. NK cells are primed by ANRS MVA(HIV)-infected DCs, via a mechanism involving NKG2D and membrane-bound IL-15, to control HIV-1 infection in CD4+ T cells.

    PubMed

    Moreno-Nieves, Uriel Y; Didier, Céline; Lévy, Yves; Barré-Sinoussi, Françoise; Scott-Algara, Daniel

    2014-08-01

    Natural killer (NK) cells are the major antiviral effector cell population of the innate immune system. It has been demonstrated that NK-cell activity can be modulated by the interaction with dendritic cells (DCs). The HIV-1 vaccine candidate Modified Vaccinia Ankara encoding an HIV polypeptide (MVA(HIV)), developed by the French National Agency for Research on AIDS (ANRS), has the ability to prime NK cells to control HIV-1 infection in DCs. However, whether or not MVA(HIV)-primed NK cells are able to better control HIV-1 infection in CD4(+) T cells, and the mechanism underlying the specific priming, remain undetermined. In this study, we show that MVA(HIV)-primed NK cells display a greater capacity to control HIV-1 infection in autologous CD4(+) T cells. We also highlight the importance of NKG2D engagement on NK cells and DC-produced IL-15 to achieve the anti-HIV-1 specific priming, as blockade of either NKG2D or IL-15 during MVA(HIV)-priming lead to a subsequent decreased control of HIV-1 infection in autologous CD4(+) T cells. Furthermore, we show that the decreased control of HIV-1 infection in CD4(+) T cells might be due, at least in part, to the decreased expression of membrane-bound IL-15 (mbIL-15) on DCs when NKG2D is blocked during MVA(HIV)-priming of NK cells.

  18. Cell culture models of transmissible spongiform encephalopathies.

    PubMed

    Béranger, F; Mangé, A; Solassol, J; Lehmann, S

    2001-11-30

    In this review, we describe the generation and use of cell culture models of transmissible spongiform encephalopathies, also known as prion diseases. These models include chronically prion-infected cell lines, as well as cultures expressing variable amounts of wild-type, mutated, or chimeric prion proteins. These cell lines have been widely used to investigate the biology of both the normal and the pathological isoform of the prion protein. They have also contributed to the comprehension of the pathogenic processes occurring in transmissible spongiform encephalopathies and in the development of new therapeutic approaches of these diseases.

  19. Glycosylation of Fluorophenols by Plant Cell Cultures

    PubMed Central

    Shimoda, Kei; Kubota, Naoji; Kondo, Yoko; Sato, Daisuke; Hamada, Hiroki

    2009-01-01

    Fluoroaromatic compounds are used as agrochemicals and released into environment as pollutants. Glycosylation of 2-, 3-, and 4-fluorophenols using plant cell cultures of Nicotiana tabacum was investigated to elucidate their potential to metabolize these compounds. Cultured N. tabacum cells converted 2-fluorophenol into its β-glucoside (60%) and β-gentiobioside (10%). 4-Fluorophenol was also glycosylated to its β-glucoside (32%) and β-gentiobioside (6%) by N. tabacum cells. On the other hand, N. tabacum glycosylated 3-fluorophenol to β-glucoside (17%). PMID:19564930

  20. Pitfalls in cell culture work with xanthohumol.

    PubMed

    Motyl, M; Kraus, B; Heilmann, J

    2012-01-01

    Xanthohumol, the most abundant prenylated chalcone in hop (Humulus lupulus L.) cones, is well known to exert several promising pharmacological activities in vitro and in vivo. Among these, the chemopreventive, anti-inflammatory and anti-cancer effects are probably the most interesting. As xanthohumol is hardly soluble in water and able to undergo conversion to isoxanthohumol we determined several handling characteristics for cell culture work with this compound. Recovery experiments revealed that working with xanthohumol under cell culture conditions requires a minimal amount of 10% FCS to increase its solubility to reasonable concentrations (-50-75 micromol/l) for pharmacological in vitro tests. Additionally, more than 50% of xanthohumol can be absorbed to various plastic materials routinely used in the cell culture using FCS concentrations below 10%. In contrast, experiments using fluorescence microscopy in living cells revealed that detection of cellular intake of xanthohumol is hampered by concentrations above 1% FCS.

  1. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  2. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    SciTech Connect

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  3. Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells

    SciTech Connect

    Rashkow, Jason Thomas; Talukdar, Yahfi; Lalwani, Gaurav; Sitharaman, Balaji

    2015-06-01

    Here, this study investigates the effects of tungsten disulfide nanotubes (WSNTs) and molybdenum disulfide nanoplatelets (MSNPs) on fibroblasts (NIH-3T3) and mesenchymal stem cells (MSCs) to determine safe dosages for potential biomedical applications. Cytotoxicity of MSNPs and WSNTs (5–300 μg/ml) on NIH-3T3 and MSCs was assessed at 6, 12 or 24 h. MSC differentiation to adipocytes and osteoblasts was assessed following treatment for 24 h. Only NIH-3T3 cells treated with MSNPs showed dose or time dependent increase in cytotoxicity. Differentiation markers of MSCs in treated groups were unaffected compared with untreated controls. In conclusion, MSNPs and WSNTs at concentrations less than 50 μg/ml are potentially safe for treatment of fibroblasts or MSCs for up to 24 h.

  4. Interactions of 1D- and 2D-layered inorganic nanoparticles with fibroblasts and human mesenchymal stem cells

    DOE PAGES

    Rashkow, Jason Thomas; Talukdar, Yahfi; Lalwani, Gaurav; ...

    2015-06-01

    Here, this study investigates the effects of tungsten disulfide nanotubes (WSNTs) and molybdenum disulfide nanoplatelets (MSNPs) on fibroblasts (NIH-3T3) and mesenchymal stem cells (MSCs) to determine safe dosages for potential biomedical applications. Cytotoxicity of MSNPs and WSNTs (5–300 μg/ml) on NIH-3T3 and MSCs was assessed at 6, 12 or 24 h. MSC differentiation to adipocytes and osteoblasts was assessed following treatment for 24 h. Only NIH-3T3 cells treated with MSNPs showed dose or time dependent increase in cytotoxicity. Differentiation markers of MSCs in treated groups were unaffected compared with untreated controls. In conclusion, MSNPs and WSNTs at concentrations less thanmore » 50 μg/ml are potentially safe for treatment of fibroblasts or MSCs for up to 24 h.« less

  5. Lensfree diffractive tomography for the imaging of 3D cell cultures

    PubMed Central

    Momey, F.; Berdeu, A.; Bordy, T.; Dinten, J.-M.; Marcel, F. Kermarrec; Picollet-D’hahan, N.; Gidrol, X.; Allier, C.

    2016-01-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm3 of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  6. Eradication of Mycoplasma contaminations from cell cultures.

    PubMed

    Uphoff, Cord C; Drexler, Hans G

    2014-04-14

    Mycoplasma contaminations have a multitude of effects on cultured cell lines that may influence the results of experiments or pollute bioactive substances isolated from the eukaryotic cells. The elimination of mycoplasma contaminations from cell cultures with antibiotics has been proven to be a practical alternative to discarding and re-establishing important or irreplaceable cell lines. Different fluoroquinolones, tetracyclins, pleuromutilins, and macrolides shown to have strong anti-mycoplasma properties are employed for the decontamination. These antibiotics are applied as single treatments, as combination treatment of two antibiotics in parallel or successively, or in combination with a surface-active peptide to enhance the action of the antibiotic. The protocols in this unit allow eradication of mycoplasmas, prevention of the development of resistant mycoplasma strains, and potential cure of heavily contaminated and damaged cells. Consistent and permanent alterations to eukaryotic cells attributable to the treatment have not been demonstrated.

  7. 1D-2D carbon heterostructure with low Pt loading as a superior cathode electrode for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Nechiyil, Divya; Ramaprabhu, S.

    2017-02-01

    Cost-effective counter electrode (CE) with high electrocatalytic performance is very much essential for the wide application of dye-sensitized solar cells (DSSC). The 1D-2D carbon heterostructure (Pt/GR@CNT) with low platinum (Pt) loading has been synthesized by a facile in situ microwave-assisted polyol-reduction method. The excellent electrocatalytic activity as well as photovoltaic performance was achieved due to the combination of 2D graphene nanoribbons (GR) and 1D multi-walled carbon nanotubes (CNT) with high catalytically active Pt nanoparticles. Microwave-assisted longitudinal unzipping of few outer layers of CNTs along with co-reduction of Pt nanoparticles is an effective method to create electrochemically active defective edge sites, which have a crucial role in enhancing electrochemical performance. Synergistic effect of ultra-fine Pt nanoparticles, partially unzipped graphene nanoribbons and inner core tubes of CNTs modulates the power conversion efficiency of solar cell to 5.57% ± 0.03 as compared with 4.73% ± 0.13 of CNTs. Pt/GR@CNT CE even with low Pt loading of 14 μg cm-2 showcases equivalent performance with that of pure Pt counter electrode.

  8. Graphene Paper Decorated with a 2D Array of Dendritic Platinum Nanoparticles for Ultrasensitive Electrochemical Detection of Dopamine Secreted by Live Cells

    PubMed Central

    Zan, Xiaoli; Wang, Chenxu

    2016-01-01

    Abstract To circumvent the bottlenecks of non‐flexibility, low sensitivity, and narrow workable detection range of conventional biosensors for biological molecule detection (e.g., dopamine (DA) secreted by living cells), a new hybrid flexible electrochemical biosensor has been created by decorating closely packed dendritic Pt nanoparticles (NPs) on freestanding graphene paper. This innovative structural integration of ultrathin graphene paper and uniform 2D arrays of dendritic NPs by tailored wet chemical synthesis has been achieved by a modular strategy through a facile and delicately controlled oil–water interfacial assembly method, whereby the uniform distribution of catalytic dendritic NPs on the graphene paper is maximized. In this way, the performance is improved by several orders of magnitude. The developed hybrid electrode shows a high sensitivity of 2 μA cm−2 μm −1, up to about 33 times higher than those of conventional sensors, a low detection limit of 5 nm, and a wide linear range of 87 nm to 100 μm. These combined features enable the ultrasensitive detection of DA released from pheochromocytoma (PC 12) cells. The unique features of this flexible sensor can be attributed to the well‐tailored uniform 2D array of dendritic Pt NPs and the modular electrode assembly at the oil–water interface. Its excellent performance holds much promise for the future development of optimized flexible electrochemical sensors for a diverse range of electroactive molecules to better serve society. PMID:26918612

  9. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    NASA Astrophysics Data System (ADS)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core-shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  10. The chemical composition of animal cells reconstructed from 2D and 3D ToF-SIMS analysis

    NASA Astrophysics Data System (ADS)

    Breitenstein, D.; Rommel, C. E.; Stolwijk, J.; Wegener, J.; Hagenhoff, B.

    2008-12-01

    This paper gives an overview on the progress achieved in our lab within the last two years in the analysis of single cells and tissue-like cell layers by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Basically two types of investigations were performed: on the one hand a two-dimensional imaging and on the other hand a three-dimensional microarea analysis. In both cases chemical fixation in combination with slow air-drying were used as easy sample preparation method. It was the goal of both approaches to identify the distribution of natural components as well as the localisation of xenobiotic fluorophors. In our experimental set-ups the distribution of phophatidylcholine and amino-acid signals were in line with the expectation. In contrast, the distribution of the fluorophor ethidiumhomodimer could only be detected within the two-dimensional imaging, whereas it was not detected in the three-dimensional analysis. Also four other fluorophors failed in the latter approach. Thus, in our hands the three-dimensional detection is to date limited to certain molecules with a comparably low mass and/or an intrinsical charge.

  11. 1,25(OH)2D3 attenuates TGF-β1/β2-induced increased migration and invasion via inhibiting epithelial-mesenchymal transition in colon cancer cells.

    PubMed

    Chen, Shanwen; Zhu, Jing; Zuo, Shuai; Ma, Ju; Zhang, Junling; Chen, Guowei; Wang, Xin; Pan, Yisheng; Liu, Yucun; Wang, Pengyuan

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) has been reported to inhibit proliferation and migration of multiple types of cancer cells. However, the mechanism underlying its anti-metastasis effect is not fully illustrated. In this study, the effect of 1,25(OH)2D3 on TGF-β1/β2-induced epithelial-mesenchymal transition (EMT) is tested in colon cancer cells. The results suggest that 1,25(OH)2D3 inhibited TGF-β1/β2-induced increased invasion and migration of in SW-480 and HT-29 cells. 1,25(OH)2D3 also inhibited the cadherin switch in SW-480 and HT-29 cells. TGF-β1/β2-induced increased expression of EMT-related transcription factors was also inhibited by 1,25(OH)2D3. 1,25(OH)2D3 also inhibited the secretion of MMP-2 and MMP-9 and increased expression of F-actin induced by TGF-β1/β2 in SW-480 cells. Taken together, this study suggests that the suppression of EMT might be one of the mechanisms underlying the anti-metastasis effect of 1,25(OH)2D3 in colon cancer cells.

  12. Cell culture experiments planned for the space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Cross, John H.

    1987-01-01

    Culturing of cells in a pilot-scale bioreactor remains to be done in microgravity. An approach is presented based on several studies of cell culture systems. Previous and current cell culture research in microgravity which is specifically directed towards development of a space bioprocess is described. Cell culture experiments planned for a microgravity sciences mission are described in abstract form.

  13. Protein Expression Differences of 2-Dimensional and Progressive 3-Dimensional Cell Cultures of Non-Small-Cell-Lung-Cancer Cell Line H460.

    PubMed

    Ravi, Maddaly; Mohan, Divya K; Sahu, Bellona

    2016-11-18

    Non-small-cell-lung-cancer (NSCLC) constitutes about 75-80% of lung cancers. The challenge to tackle cancers is in early diagnosis and arriving at safer therapeutic options. In vitro studies using cancer cell lines continue to contribute significantly in understanding cancers. Cell culture methods have evolved and the recent developments in 3 dimensional (3D) cell cultures are inducing greater resemblance of the in vitro cultured cells with in vivo conditions. In this study, we established 3D aggregates of H460 cell line on agarose hydrogels and studied the protein expression differences among cells grown as monolayers (2D) and the progressively developing 3D aggregates from days 2 to 10. Analysis included matching of those proteins expressed by the developing aggregates and the available literature on progressing tumors in vivo. J. Cell. Biochem. 9999: 1-5, 2016. © 2016 Wiley Periodicals, Inc.

  14. Effects of teicoplanin on cell number of cultured cell lines

    PubMed Central

    Kashkolinejad-Koohi, Tahere; Saadat, Iraj

    2015-01-01

    Teicoplanin is a glycopeptide antibiotic with a wide variation in human serum half-life. It is also a valuable alternative of vancomycin. There is however no study on its effect on cultured cells. The aim of the present study was to test the effect of teicoplanin on cultured cell lines CHO, Jurkat E6.1 and MCF-7. The cultured cells were exposed to teicoplanin at final concentrations of 0–11000 μg/ml for 24 hours. To determine cell viability, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was performed. At low concentrations of teicoplanin the numbers of cultured cells (due to cell proliferation) were increased in the three cell lines examined. The maximum cell proliferation rates were observed at concentrations of 1000, 400, and 200 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. Cell toxicity was observed at final concentrations over 2000, 6000, and 400 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. A dose-dependent manner of cell toxicity was observed. Our present findings indicated that teicoplanin at clinically used concentrations induced cell proliferation. It should therefore be used cautiously, particularly in children, pregnant women and patients with cancer. PMID:27486356

  15. Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells.

    PubMed

    Gu, Xing; Cui, Wei; Song, Tao; Liu, Changhai; Shi, Xiaoze; Wang, Suidong; Sun, Baoquan

    2014-02-01

    Thin-layer, two-dimensional NbSe2 nanosheets with lower trap density have been obtained and act as an alternative hole-transporting layer to replace MoO3 in organic solar cells. If poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71-butyric acid methyl ester acts as an active layer, a power conversion efficiency of 8.10 % has been achieved without any further thermal treatment. The properties of this hole-transporting layer were investigated and the improvements in the devices are discussed.

  16. Lipid Accumulation in Hypoxic Tissue Culture Cells

    PubMed Central

    Gordon, Gerald B.; Barcza, Maureen A.; Bush, Marilyn E.

    1977-01-01

    Lipid droplets have long been recognized by light microscopy to accumulate in hypoxic cells both in vivo and in vitro. In the present tissue culture experiments, correlative electron microscopic observations and lipid analyses were performed to determine the nature and significance of lipid accumulation in hypoxia. Strain L mouse fibroblasts were grown in suspension culture, both aerobically and under severe oxygen restriction obtained by gassing cultures daily with an 8% CO2-92% nitrogen mixture. After 48 hours, hypoxic cells showed an increase in total lipid/protein ratio of 42% over control cells. Most of this increase was accounted for by an elevation in the level of cellular triglyceride from 12.3 ± 0.9 μg/mg cell protein in aerobic cultures to 41.9 ± 0.7 in the hypoxic cultures, an increase of 240%. Levels of cellular free fatty acids (FFA) were 96% higher in the hypoxic cultures. No significant changes in the levels of cellular phospholipid or cholesterol were noted. Electron microscopic examination revealed the accumulation of homogeneous cytoplasmic droplets. The hypoxic changes were reversible upon transferring the cultures to aerobic atmospheres with disappearance of the lipid. These experiments indicate that hypoxic injury initially results in triglyceride and FFA accumulation from an inability to oxidize fatty acids taken up from the media and not from autophagic processes, as described in other types of cell injury associated with the sequestration of membranous residues and intracellular cholesterol and phospholipid accumulation. ImagesFigure 3Figure 4Figure 5Figure 6Figure 7Figure 1Figure 2 PMID:196505

  17. Neurofilament expression in cultured rat adenohypophysial cells.

    PubMed

    Quintanar, J L; Salinas, E

    2001-01-01

    The aim of the present work was to investigate in cultured rat adenohypophysial cells: a) the presence of neurofilaments of 200 kDa (NF-H), b) the effect of thyroid hormone (T(3)) and thyrotropin releasing hormone (TRH) on the expression of NF-H and c) the possible role of NF-H on thyrotropin (TSH) secretion. The presence of NF-H was observed by immunocytochemistry in cultured rat adenohypophysial cells. The exposure to T(3) for 12 h produced a significant increase in NF-H expression; whereas incubation with TRH or T(3)+TRH resulted in no change. The cells treated with T(3) or TRH or T(3)+TRH for 24 h showed no alteration. However, incubation for 48 h with TRH or T(3)+TRH caused significant decrease in NF-H expression. Incubation with NF-H antibodies produced a significant inhibition of calcium-induced TSH release in digitonin-permeabilized adenohypophysial cells. These results provide evidence that NF-H is present in cultured rat adenohypophysial cells, and that T(3) and TRH can modify NF-H expression. It can be suggested that in cultured adenohypophysial cells, NF-H may play a role in the secretory process.

  18. Biochemical Assays of Cultured Cells

    NASA Technical Reports Server (NTRS)

    Barlow, G. H.

    1985-01-01

    Subpopulations of human embryonic kidney cells isolated from continuous flow electrophoresis experiments performed at McDonnell Douglas and on STS-8 have been analyzed. These analyses have included plasminogen activator assays involving indirect methodology on fibrin plated and direct methodology using chromogenic substrates. Immunological studies were performed and the conditioned media for erythropoietin activity and human granulocyte colony stimulating (HGCSF) activity was analyzed.

  19. Risk of renal cell carcinoma and polymorphism in phase I xenobiotic metabolizing CYP1A1 and CYP2D6 enzymes.

    PubMed

    Ahmad, Shiekh Tanveer; Arjumand, Wani; Seth, Amlesh; Nafees, Sana; Rashid, Summya; Ali, Nemat; Hamiza, Oday O; Sultana, Sarwat

    2013-10-01

    The progressive increase in sporadic renal cell carcinoma (RCC) observed in industrialized countries supports the opinion that certain carcinogens present in the environment (tobacco smoke, drugs, pollutants, and dietary constituents) may affect the occurrence and progression of this disease in developing countries like India. The polymorphism of the enzymes involved in metabolism of such environmental factors may, therefore, confer variable propensity to RCC. The possible association between RCC and a polymorphism of the CYP1A1 and CYP2D6 genes specific to the Indian population was examined using peripheral blood DNA from 196 RCC cases and 250 population controls with detailed data of clinicopathologic characteristics for the disease. The CYP1A1 (val) "variant" genotype, which contains at least 1 copy of the CYP1A1 variant alleles, was found to be associated with a 2.03-fold [GG ver. AA/AG, unadjusted OR = 2.03; 95%CI = 1.233-3.342; P = 0.005] increase in the risk of RCC. There was also a significant association (p(trend) = 0.034) between higher frequency of RCC subjects containing at least of copy of the CYP1A1 (val) "variant" genotype with III or IV Fuhrman's grade. Whereas, the CYP2D6 polymorphism did not show any association with RCC risk [TT ver. CT/CC, unadjusted OR = 95%CI = 1.233-3.342; P = 0.005]. There was a significant association (p(trend) = 0.001) between the poor metabolizer CYP2D6 (TT) and progression towards higher pathological stage of RCC. Our data demonstrate for the first time a significant association between pharmacogenetic polymorphisms of CYP1A1 and risk of RCC development in the Indian population. The findings suggest that inter-individual variation in the phase I metabolic enzymes involved in the fictionalization and detoxification of specific xenobiotics is an important susceptibility factor for development and progression of RCC in Indians.

  20. Cell Culture on MEMS Platforms: A Review

    PubMed Central

    Ni, Ming; Tong, Wen Hao; Choudhury, Deepak; Rahim, Nur Aida Abdul; Iliescu, Ciprian; Yu, Hanry

    2009-01-01

    Microfabricated systems provide an excellent platform for the culture of cells, and are an extremely useful tool for the investigation of cellular responses to various stimuli. Advantages offered over traditional methods include cost-effectiveness, controllability, low volume, high resolution, and sensitivity. Both biocompatible and bio-incompatible materials have been developed for use in these applications. Biocompatible materials such as PMMA or PLGA can be used directly for cell culture. However, for bio-incompatible materials such as silicon or PDMS, additional steps need to be taken to render these materials more suitable for cell adhesion and maintenance. This review describes multiple surface modification strategies to improve the biocompatibility of MEMS materials. Basic concepts of cell-biomaterial interactions, such as protein adsorption and cell adhesion are covered. Finally, the applications of these MEMS materials in Tissue Engineering are presented. PMID:20054478

  1. Integrated bioprocessing for plant cell cultures.

    PubMed

    Choi, J W; Cho, G H; Byun, S Y; Kim, D I

    2001-01-01

    Plant cell suspension culture has become the focus of much attention as a tool for the production of secondary metabolites including paclitaxel, a well-known anticancer agent. Recently, it has also been regarded as one of the host systems for the production of recombinant proteins. In order to produce phytochemicals using plant cell cultures, efficient processes must be developed with adequate bioreactor design. Most of the plant secondary metabolites are toxic to cells at the high concentrations required during culture. Therefore, if the product could be removed in situ during culture, productivity might be enhanced due to the alleviation of this toxicity. In situ removal or extractive bioconversion of such products can be performed by in situ extraction with various kinds of organic solvents. In situ adsorption using polymeric resins is another possibility. Using the fact that secondary metabolites are generally hydrophobic, various integrated bioprocessing techniques can be designed not only to lower toxicity, but also to enhance productivity. In this article, in situ extraction, in situ adsorption, utilization of cyclodextrins, and the application of aqueous two-phase systems in plant cell cultures are reviewed.

  2. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  3. Rapid 2D incoherent mirror fabrication by laser interference lithography and wet etching for III-V MQW solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Freundlich, Alex

    2016-03-01

    Optimization of non-planar antireflective coating and back- (or front-) surface texturing are widely studied as advanced light management approach to further reduce the reflection losses and increase the sunlight absorption path in solar cells. Rear reflectors have been developed from coherent mirrors to incoherent mirrors in order to further increase light path, which can significantly improve the efficiency and allow for much thinner devices. A Lambertian surface, which has the most random texture, can theoretically raise the light path to 4n2 times that of a smooth surface. It's a challenge however to fabricate ideal Lambertian texture, especially in a fast and low cost way. In this work, a method is developed to overcome this challenge that combines the use of laser interference lithography (LIL) and selective wet etching. This approach allows for a rapid (10 min) wafer scale (3 inch wafer) texture processing with sub-wavelength (nano)-scale control of the pattern and the pitch. The technique appears as being particularly attractive for the development of ultrathin III-V devices, or in overcoming the weak sub-bandgap absorption in devices incorporating quantum dots or quantum wells. The structure of the device is demonstrated, without affecting active layers.

  4. Differential response to 1α, 25-dihydroxyvitamin D3 (1α,25(OH)2D3) in non-small cell lung cancer cells with distinct oncogene mutations1

    PubMed Central

    Zhang, Qiuhong; Kanterewicz, Beatriz; Shoemaker, Suzanne; Hu, Qiang; Liu, Song; Atwood, Kristopher; Hershberger, Pamela

    2012-01-01

    We previously demonstrated that non-small cell lung cancer (NSCLC) cells and primary human lung tumors aberrantly express the vitamin D3-catabolizing enzyme, CYP24, and that CYP24 restricts transcriptional regulation and growth control by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in NSCLC cells. To ascertain the basis for CYP24 dysregulation, we assembled a panel of cell lines that represent distinct molecular classes of lung cancer: Cell lines were selected which harbored mutually exclusive mutations in either the K-ras or the Epidermal Growth Factor Receptor (EGFR) genes. We observed that K-ras mutant lines displayed a basal vitamin D receptor (VDR)lowCYP24high phenotype, whereas EGFR mutant lines had a VDRhighCYP24low phenotype. A mutation-associated difference in CYP24 expression was also observed in clinical specimens. Specifically, K-ras mutation was associated with a median 4.2-fold increase in CYP24 mRNA expression (p = 4.8 × 10−7) compared to EGFR mutation in a series of 147 primary lung adenocarcinoma cases. Because of their differential basal expression of VDR and CYP24, we hypothesized that NSCLC cells with an EGFR mutation would be more responsive to 1,25(OH)2D3 treatment than those with a K-ras mutation. To test this, we measured the ability of 1,25(OH)2D3 to increase reporter gene activity, induce transcription of endogenous target genes, and suppress colony formation. In each assay, the extent of 1,25(OH)2D3 response was greater in EGFR mutation-positive HCC827 and H1975 cells than in K-ras mutation-positive A549 and 128.88T cells. We subsequently examined the effect of combining 1,25(OH)2D3 with erlotinib, which is used clinically in the treatment of EGFR mutation-positive NSCLC. 1,25(OH)2D3/erlotinib combination resulted in significantly greater growth inhibition than either single agent in both the erlotinib-sensitive HCC827 cell line and the erlotinib-resistant H1975 cell line. These data are the first to suggest that EGFR mutations may

  5. Maturation of Induced Pluripotent Stem Cell Derived Hepatocytes by 3D-Culture

    PubMed Central

    Gieseck III, Richard L.; Hannan, Nicholas R. F.; Bort, Roque; Hanley, Neil A.; Drake, Rosemary A. L.; Cameron, Grant W. W.; Wynn, Thomas A.; Vallier, Ludovic

    2014-01-01

    Induced pluripotent stem cell derived hepatocytes (IPSC-Heps) have the potential to reduce the demand for a dwindling number of primary cells used in applications ranging from therapeutic cell infusions to in vitro toxicology studies. However, current differentiation protocols and culture methods produce cells with reduced functionality and fetal-like properties compared to adult hepatocytes. We report a culture method for the maturation of IPSC-Heps using 3-Dimensional (3D) collagen matrices compatible with high throughput screening. This culture method significantly increases functional maturation of IPSC-Heps towards an adult phenotype when compared to conventional 2D systems. Additionally, this approach spontaneously results in the presence of polarized structures necessary for drug metabolism and improves functional longevity to over 75 days. Overall, this research reveals a method to shift the phenotype of existing IPSC-Heps towards primary adult hepatocytes allowing such cells to be a more relevant replacement for the current primary standard. PMID:24466060

  6. 2D Particle-In-Cell simulations of the electron-cyclotron instability and associated anomalous transport in Hall-Effect Thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdenek; Péchereau, François; Bourdon, Anne; Chabert, Pascal

    2016-09-01

    This work studies the electron-cyclotron instability in Hall-Effect Thrusters (HETs) using a 2D Particle-In-Cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system where a magnetic field, B0, is aligned along the X-axis (radial direction, including absorbing walls), a constant electric field, E0, along the Z-axis (axial direction, perpendicular to simulation plane), and the E0xB0 direction along the Y-axis (O direction, with periodic boundaries). Although for low plasma densities classical electron-neutral collisions theory describes well electron transport, at sufficiently high densities (as measured in HETs) a strong instability can be observed that enhances the electron mobility, even in the absence of collisions. The instability generates high frequency ( MHz) and short wavelength ( mm) fluctuations in both the electric field and charged particle densities. We investigate the correlation between these fluctuations and their role with anomalous electron transport; complementing previous 1D simulations. Plasma is self-consistently heated by the instability, but since the latter does not reach saturation in an infinitely long 2D system, saturation is achieved through implementation of a finite axial length that models convection in E0 direction. With support of Safran Aircraft Engines.

  7. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.

    PubMed

    Tam, Roger Y; Smith, Laura J; Shoichet, Molly S

    2017-03-27

    Conventional cell culture techniques using 2D polystyrene or glass have provided great insight into key biochemical mechanisms responsible for cellular events such as cell proliferation, differentiation, and cell-cell interactions. However, the physical and chemical properties of 2D culture in vitro are dramatically different than those found in the native cellular microenvironment in vivo. Cells grown on 2D substrates differ significantly from those grown in vivo, and this explains, in part, why many promising drug candidates discovered through in vitro drug screening assays fail when they are translated to in vivo animal or human models. To overcome this obstacle, 3D cell culture using biomimetic hydrogels has emerged as an alternative strategy to recapitulate native cell growth in vitro. Hydrogels, which are water-swollen polymers, can be synthetic or naturally derived. Many methods have been developed to control the physical and chemical properties of the hydrogels to match those found in specific tissues. Compared to 2D culture, cells cultured in 3D gels with the appropriate physicochemical cues can behave more like they naturally do in vivo. While conventional hydrogels involve modifications to the bulk material to mimic the static aspects of the cellular microenvironment, recent progress has focused on using more dynamic hydrogels, the chemical and physical properties of which can be altered with external stimuli to better mimic the dynamics of the native cellular microenvironment found in vivo. In this Account, we describe our progress in designing stimuli-responsive, optically transparent hydrogels that can be used as biomimetic extracellular matrices (ECMs) to study cell differentiation and migration in the context of modeling the nervous system and cancer. Specifically, we developed photosensitive agarose and hyaluronic acid hydrogels that are activated by single or two-photon irradiation for biomolecule immobilization at specific volumes within the 3D

  8. Cell culture and senescence in uterine fibroids.

    PubMed

    Markowski, Dominique Nadine; Bartnitzke, Sabine; Belge, Gazanfer; Drieschner, Norbert; Helmke, Burkhard Maria; Bullerdiek, Jörn

    2010-10-01

    The in vitro growth of cells from uterine fibroids is characterized by an early onset of senescence. Often, an even lower growth potential than that of matching myometrial cells is noted. Also, the tremendous differences in the expression of the high mobility group protein HMGA2 seen when comparing fibroids of different genetic subtypes are surprisingly not reflected by significant differences in their growth potential in vitro. We aimed to evaluate possible changes of the HMGA2 expression level between the native tissue and cell cultures, so we performed quantitative real-time polymerase chain reaction studies that revealed a marked decrease of the HMGA2 mRNA in culture in those cases with overexpression of HMGA2. In the two cases initially showing the highest expression, it decreased by approximately 97%. Associated with the decrease of HMGA2 was a clearly increased expression of the senescence-associated p19(Arf). Together, these findings explain the similar behavior of cell cultures from fibroids of different genetic subgroups and may also offer an explanation for the early onset of in vitro senescence in these cell cultures.

  9. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  10. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    PubMed

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  11. 2D DIGE analysis of the bursa of Fabricius reveals characteristic proteome profiles for different stages of chicken B-cell development.

    PubMed

    Korte, Julia; Fröhlich, Thomas; Kohn, Marina; Kaspers, Bernd; Arnold, Georg J; Härtle, Sonja

    2013-01-01

    Antibody producing B-cells are an essential component of the immune system. In contrast to human and mice where B-cells develop in the bone marrow, chicken B-cells develop in defined stages in the bursa of Fabricius, a gut associated lymphoid tissue. In order to gain a better understanding of critical biological processes like immigration of B-cell precursors into the bursa anlage, their differentiation and final emigration from the bursa we analyzed the proteome dynamics of this organ during embryonic and posthatch development. Samples were taken from four representative developmental stages (embryonic day (ED) 10, ED18, day 2, and day 28) and compared in an extensive 2D DIGE approach comprising six biological replicates per time point. Cluster analysis and PCA demonstrated high reliability and reproducibility of the obtained data set and revealed distinctive proteome profiles for the selected time points, which precisely reflect the differentiation processes. One hundred fifty three protein spots with significantly different intensities were identified by MS. We detected alterations in the abundance of several proteins assigned to retinoic acid metabolism (e.g. retinal-binding protein 5) and the actin-cytoskeleton (e.g. vinculin and gelsolin). By immunohistochemistry, desmin was identified as stromal cell protein associated with the maturation of B-cell follicles. Strongest protein expression difference (10.8-fold) was observed for chloride intracellular channel 2. This protein was thus far not associated with B-cell biology but our data suggest an important function in bursa B-cell development.

  12. Measurement of polyphosphoinositides in cultured mammalian cells.

    PubMed

    Cooke, Frank T

    2009-01-01

    The seven phosphorylated derivatives of phosphatidylinositol (PtdIns), often collectively referred to as polyphosphoinositides (PPIn), are a minor component of eukaryotic cell membranes. Nevertheless, their synthesis is needed for an ever-increasing spectrum of cellular processes, including regulation of the actin cytoskeleton, chemotaxis, membrane trafficking, glucose uptake, and organelle acidification. PPIn metabolism is regulated dynamically by a network of kinases and phosphatases. Furthermore, synthesis of PPIn can be provoked by external stimuli; for example, the second messenger phosphatidylinositol 3,4,5-trisphosphate rapidly and transiently accumulates in cells challenged with agonists such as PDGF that activate receptor tyrosine kinases. The measurement of PPIn levels in in vivo cultured cells has been vital to our understanding of the metabolism and function of these important signaling molecules; methods are described herein that allow measurement of PPIn levels in culture cells in vivo.

  13. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  14. Progress Towards Drosophila Epithelial Cell Culture

    PubMed Central

    Simcox, Amanda

    2015-01-01

    Drosophila epithelial research is at the forefront of the field; however, there are no well-characterized epithelial cell lines that could provide a complementary in vitro model for studies conducted in vivo. Here, a protocol is described that produces epithelial cell lines. The method uses genetic manipulation of oncogenes or tumor suppressors to induce embryonic primary culture cells to rapidly progress to permanent cell lines. It is, however, a general method and the type of cells that comprise a given line is not controlled experimentally. Indeed, only a small fraction of the lines produced are epithelial in character. For this reason, additional work needs to be done to develop a more robust epithelial cell-specific protocol. It is expected that Drosophila epithelial cell lines will have great utility for in vitro analysis of epithelial biology, particularly high-throughput analyses such as RNAi screens. PMID:23097097

  15. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.

    PubMed

    Bozzola, Angelo; Liscidini, Marco; Andreani, Lucio Claudio

    2012-03-12

    We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.

  16. 3D culture for cardiac cells.

    PubMed

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  17. Prevention and Detection of Mycoplasma Contamination in Cell Culture

    PubMed Central

    Nikfarjam, Laleh; Farzaneh, Parvaneh

    2012-01-01

    One of the main problems in cell culture is mycoplasma infection. It can extensively affect cell physiology and metabolism. As the applications of cell culture increase in research, industrial production and cell therapy, more concerns about mycoplasma contamination and detection will arise. This review will provide valuable information about: 1. the ways in which cells are contaminated and the frequency and source of mycoplasma species in cell culture; 2. the ways to prevent mycoplasma contamination in cell culture; 3. the importance of mycoplasma tests in cell culture; 4. different methods to identify mycoplasma contamination; 5. the consequences of mycoplasma contamination in cell culture and 6. available methods to eliminate mycoplasma contamination. Awareness about the sources of mycoplasma and pursuing aseptic techniques in cell culture along with reliable detection methods of mycoplasma contamination can provide an appropriate situation to prevent mycoplasma contamination in cell culture. PMID:23508237

  18. Cell Culture Assay for Human Noroviruses [response

    SciTech Connect

    Straub, Tim M.; Honer Zu Bentrup, Kerstin; Orosz Coghlan, Patricia; Dohnalkova, Alice; Mayer, Brooke K.; Bartholomew, Rachel A.; Valdez, Catherine O.; Bruckner-Lea, Cindy J.; Gerba, Charles P.; Abbaszadegan, Morteza A.; Nickerson, Cheryl A.

    2007-07-01

    We appreciate the comments provided by Leung et al., in response to our recently published article “In Vitro Cell Culture Infectivity Assay for Human Noroviruses” by Straub et al. (1). The specific aim of our project was to develop an in vitro cell culture infectivity assay for human noroviruses (hNoV) to enhance risk assessments when they are detected in water supplies. Reverse transcription (RT) qualitative or quantitative PCR are the primary assays for waterborne NoV monitoring. However, these assays cannot distinguish between infectious vs. non-infectious virions. When hNoV is detected in water supplies, information provided by our infectivity assay will significantly improve risk assessment models and protect human health, regardless of whether we are propagating NoV. Indeed, in vitro cell culture infectivity assays for the waterborne pathogen Cryptosporidium parvum that supplement approved fluorescent microscopy assays, do not result in amplification of the environmentally resistant hard-walled oocysts (2). However, identification of life cycle stages in cell culture provides evidence of infectious oocysts in a water supply. Nonetheless, Leung et al.’s assertion regarding the suitability of our method for the in vitro propagation of high titers of NoV is valid for the medical research community. In this case, well-characterized challenge pools of virus would be useful for developing and testing diagnostics, therapeutics, and vaccines. As further validation of our published findings, we have now optimized RT quantitative PCR to assess the level of viral production in cell culture, where we are indeed finding significant increases in viral titer. The magnitude and time course of these increases is dependent on both virus strain and multiplicity of infection. We are currently preparing a manuscript that will discuss these findings in greater detail, and the implications this may have for creating viral challenge pools

  19. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  20. Probing nanoparticle interactions in cell culture media.

    PubMed

    Sabuncu, Ahmet C; Grubbs, Janna; Qian, Shizhi; Abdel-Fattah, Tarek M; Stacey, Michael W; Beskok, Ali

    2012-06-15

    Nanoparticle research is often performed in vitro with little emphasis on the potential role of cell culture medium. In this study, gold nanoparticle interactions with cell culture medium and two cancer cell lines (human T-cell leukemia Jurkat and human pancreatic carcinoma PANC1) were investigated. Gold nanoparticles of 10, 25, 50, and 100 nm in diameter at fixed mass concentration were tested. Size distributions and zeta potentials of gold nanoparticles suspended in deionized (DI) water and Dulbecco's Modified Eagle's Media (DMEM) supplemented with fetal calf serum (FCS) were measured using dynamic light scattering (DLS) technique. In DI water, particle size distributions exhibited peaks around their nominal diameters. However, the gold nanoparticles suspended in DMEM supplemented with FCS formed complexes around 100 nm, regardless of their nominal sizes. The DLS and UV-vis spectroscopy results indicate gold nanoparticle agglomeration in DMEM that is not supplemented by FCS. The zeta potential results indicate that protein rich FCS increases the dispersion quality of gold nanoparticle suspensions through steric effects. Cellular uptake of 25 and 50 nm gold nanoparticles by Jurkat and PANC1 cell lines were investigated using inductively coupled plasma-mass spectroscopy. The intracellular gold level of PANC1 cells was higher than that of Jurkat cells, where 50 nm particles enter cells at faster rates than the 25 nm particles.

  1. Cell division modulates prion accumulation in cultured cells.

    PubMed

    Ghaemmaghami, Sina; Phuan, Puay-Wah; Perkins, Beth; Ullman, Julie; May, Barnaby C H; Cohen, Fred E; Prusiner, Stanley B

    2007-11-13

    The phenotypic effect of prions on host cells is influenced by the physical properties of the prion strain and its level of accumulation. In mammalian cell cultures, prion accumulation is determined by the interplay between de novo prion formation, catabolism, cell division, and horizontal cell-to-cell transmission. Understanding this dynamic enables the analytical modeling of protein-based heritability and infectivity. Here, we quantitatively measured these competing effects in a subline of neuroblastoma (N2a) cells and propose a concordant reaction mechanism to explain the kinetics of prion propagation. Our results show that cell division leads to a predictable reduction in steady-state prion levels but not to complete clearance. Scrapie-infected N2a cells were capable of accumulating different steady-state levels of prions, dictated partly by the rate of cell division. We also show that prions in this subline of N2a cells are transmitted primarily from mother to daughter cells, rather than horizontal cell-to-cell transmission. We quantitatively modeled our kinetic results based on a mechanism that assumes a subpopulation of prions is capable of self-catalysis, and the levels of this subpopulation reach saturation in fully infected cells. Our results suggest that the apparent effectiveness of antiprion compounds in culture may be strongly influenced by the growth phase of the target cells.

  2. LINE-1 Cultured Cell Retrotransposition Assay.

    PubMed

    Kopera, Huira C; Larson, Peter A; Moldovan, John B; Richardson, Sandra R; Liu, Ying; Moran, John V

    2016-01-01

    The Long INterspersed Element-1 (LINE-1 or L1) retrotransposition assay has facilitated the discovery and characterization of active (i.e., retrotransposition-competent) LINE-1 sequences from mammalian genomes. In this assay, an engineered LINE-1 containing a retrotransposition reporter cassette is transiently transfected into a cultured cell line. Expression of the reporter cassette, which occurs only after a successful round of retrotransposition, allows the detection and quantification of the LINE-1 retrotransposition efficiency. This assay has yielded insight into the mechanism of LINE-1 retrotransposition. It also has provided a greater understanding of how the cell regulates LINE-1 retrotransposition and how LINE-1 retrotransposition impacts the structure of mammalian genomes. Below, we provide a brief introduction to LINE-1 biology and then detail how the LINE-1 retrotransposition assay is performed in cultured mammalian cells.

  3. [Good cell culture practice--implementation of a relational cell culture database].

    PubMed

    Philipp, Marcel O; Falkner, Erwin; Kapeller, Barbara; Eberl, Heidrun; Frick, Wolfram; Macfelda, Karin; Losert, Udo M

    2002-01-01

    The claim for cell culture to provide validable in vitro models for biomedical research postulates evasion of possible fatal record keeping errors. A prototype of a relational computer database for IBM-compatible personal computers using Microsoft(r) Windows 95/98/2000 and NT for administration of cell culture data has been developed using Microsoft(r) Access 98 (Microsoft Corporation, Redmond, USA), -Access Basic, -Visual Basic and Structured Query Language (SQL) (IBM Corporation, Armonk, USA), and was tested successfully. The modular software application manages the many aspects of cell culture laboratory record keeping like detailed information on tissue donor, primary cell isolation/cell line origin, immunohistochemical/molecular biological characterisation, cell countings at passaging/subcultivation/cell aliquotation and cryopreservation. One main feature is a collection of all methods performed at our cell culture laboratory, where linked tables and files store specific informations. Entries into the database are checked via validation rules for correctness to avoid mistakes. The developed prototype has been demonstrated to be an adaptable, reliable tool for improving quality of information storage according to Good Scientific Practice (GSP), Good Cell Culture Practice (GCCP) and general ISO certification trends.

  4. Comparative 2D-DIGE proteomic analysis of ovarian carcinoma cells: toward a reorientation of biosynthesis pathways associated with acquired platinum resistance.

    PubMed

    Lincet, Hubert; Guével, Blandine; Pineau, Charles; Allouche, Stéphane; Lemoisson, Edwige; Poulain, Laurent; Gauduchon, Pascal

    2012-02-02

    Ovarian cancer is the fifth most frequent cause of cancer death in women. Emergence of chemoresistance in the course of treatments with platinum drugs is in part responsible for therapeutic failures. In order to improve the understanding of the complex mechanisms involved in acquired platinum chemoresistance, we decided to compare the basal protein expression profile of the platinum-sensitive cell line OAW42 and that of its resistant counterpart OAW42-R by a proteomic approach. Reversed-phase HPLC pre-fractionated extracts from both cell lines were subjected to 2D-DIGE coupled to mass spectrometry (MS). Forty eight differentially expressed proteins were identified, 39 being up-regulated and 19 down-regulated in OAW42-R versus OAW42 cells. From the current knowledge on biological activities of most differentially expressed proteins, it can be inferred that the acquisition of resistance was associated with a global reorganization of biochemical pathways favoring the production of precursors for biosynthesis, and with the mobilization of macromolecule quality control mechanisms, preserving RNA and protein integrity under damage-inducing conditions.

  5. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    NASA Technical Reports Server (NTRS)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  6. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity.

    PubMed

    Hatton, J P; Lewis, M L; Roquefeuil, S B; Chaput, D; Cazenave, J P; Schmitt, D A

    1998-08-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  7. Plant cell cultures: bioreactors for industrial production.

    PubMed

    Ruffoni, Barbara; Pistelli, Laura; Bertoli, Alessandra; Pistelli, Luisa

    2010-01-01

    The recent biotechnology boom has triggered increased interest in plant cell cultures, since a number of firms and academic institutions investigated intensively to rise the production of very promising bioactive compounds. In alternative to wild collection or plant cultivation, the production of useful and valuable secondary metabolites in large bioreactors is an attractive proposal; it should contribute significantly to future attempts to preserve global biodiversity and alleviate associated ecological problems. The advantages of such processes include the controlled production according to demand and a reduced man work requirement. Plant cells have been grown in different shape bioreactors, however, there are a variety of problems to be solved before this technology can be adopted on a wide scale for the production of useful plant secondary metabolites. There are different factors affecting the culture growth and secondary metabolite production in bioreactors: the gaseous atmosphere, oxygen supply and CO2 exchange, pH, minerals, carbohydrates, growth regulators, the liquid medium rheology and cell density. Moreover agitation systems and sterilization conditions may negatively influence the whole process. Many types ofbioreactors have been successfully used for cultivating transformed root cultures, depending on both different aeration system and nutrient supply. Several examples of medicinal and aromatic plant cultures were here summarized for the scale up cultivation in bioreactors.

  8. Dynamic cell culture system (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  9. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures

    PubMed Central

    Joshi, Pranav; Lee, Moo-Yeal

    2015-01-01

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology. PMID:26694477

  10. Stability of cultured dental follicle cells.

    PubMed

    Yao, Shaomian; Norton, Jolanna; Wise, Gary E

    2004-06-01

    Because the dental follicle is required for tooth eruption, establishment of dental follicle cell (DFC) lines is needed for experimentation to determine how the cells regulate eruption. Thus, it is critical that the follicle cells in culture remain stable and neither become transformed nor differentiate. To determine the stability of rat DFC cultures in terms of exhibiting contact inhibition of growth when confluent (no transformation), DFC at different passages were analysed using flow cytometry. Gene expression of cyclin E was determined by reverse transcription polymerase chain reaction as a further method to determine if growth was occurring when the cells were confluent. Alkaline phosphatase and von Kossa staining were also performed as a means of determining stability in terms of differentiation; that is, are the DFC maintaining their phenotype or are they differentiating into osteoblasts and osteocytes? After plating cells of a given passage, they initially underwent a rapid phase of growth with 30-40% of the cells in S, G(2) and M (dividing track) as determined by flow cytometry. The number of such cells declined to only 7-15% at preconfluency. At late confluency, only 2 and 5% of the cells were in the dividing track in passages 6 and 9, respectively, but in passage 12 this had risen to 15%. For a given passage of cells, cyclin E gene expression significantly declined in late confluency as compared to the early growth phase. However, in passage 12, the gene expression of cyclin E at late confluency was higher than the expression at late confluency in passage 6. Thus, the DFC were remarkably stable through passage 9, but by passage 12 it appeared that a small percentage of the cells had become transformed and had lost their contact inhibition growth properties. Alkaline phosphatase and von Kossa staining were negative for all passages, suggesting that the cells remained stable in terms of differentiation and did not differentiate into either osteoblasts or

  11. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    PubMed

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5× increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24 h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism.

  12. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency.

    PubMed

    Bin, Haijun; Zhang, Zhi-Guo; Gao, Liang; Chen, Shanshan; Zhong, Lian; Xue, Lingwei; Yang, Changduk; Li, Yongfang

    2016-04-06

    Non-fullerene polymer solar cells (PSCs) with solution-processable n-type organic semiconductor (n-OS) as acceptor have seen rapid progress recently owing to the synthesis of new low bandgap n-OS, such as ITIC. To further increase power conversion efficiency (PCE) of the devices, it is of a great challenge to develop suitable polymer donor material that matches well with the low bandgap n-OS acceptors thus providing complementary absorption and nanoscaled blend morphology, as well as suppressed recombination and minimized energy loss. To address this challenge, we synthesized three medium bandgap 2D-conjugated bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymers J52, J60, and J61 for the application as donor in the PSCs with low bandgap n-OS ITIC as acceptor. The three polymers were designed with branched alkyl (J52), branched alkylthio (J60), and linear alkylthio (J61) substituent on the thiophene conjugated side chain of the benzodithiophene (BDT) units for studying effect of the substituents on the photovoltaic performance of the polymers. The alkylthio side chain, red-shifted absorption down-shifted the highest occupied molecular orbital (HOMO) level and improved crystallinity of the 2D conjugated polymers. With linear alkylthio side chain, the tailored polymer J61 exhibits an enhanced JSC of 17.43 mA/cm(2), a high VOC of 0.89 V, and a PCE of 9.53% in the best non-fullerene PSCs with the polymer as donor and ITIC as acceptor. To the best of our knowledge, the PCE of 9.53% is one of the highest values reported in literature to date for the non-fullerene PSCs. The results indicate that J61 is a promising medium bandgap polymer donor in non-fullerene PSCs.

  13. Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels.

    PubMed

    Malinen, Melina M; Kanninen, Liisa K; Corlu, Anne; Isoniemi, Helena M; Lou, Yan-Ru; Yliperttula, Marjo L; Urtti, Arto O

    2014-06-01

    Physiologically relevant hepatic cell culture models must be based on three-dimensional (3D) culture of human cells. However, liver cells are generally cultured in two-dimensional (2D) format that deviates from the normal in vivo morphology. We generated 3D culture environment for HepaRG liver progenitor cells using wood-derived nanofibrillar cellulose (NFC) and hyaluronan-gelatin (HG) hydrogels. Culture of undifferentiated HepaRG cells in NFC and HG hydrogels induced formation of 3D multicellular spheroids with apicobasal polarity and functional bile canaliculi-like structures, structural hallmarks of the liver tissue. Furthermore, hepatobiliary drug transporters, MRP2 and MDR1, were localized on the canalicular membranes of the spheroids and vectorial transport of fluorescent probes towards the biliary compartment was demonstrated. Cell culture in 3D hydrogel supported the mRNA expression of hepatocyte markers (albumin and CYP3A4), and metabolic activity of CYP3A4 in the HepaRG cell cultures. On the contrary, the 3D hydrogel cultures with pre-differentiated HepaRG cells showed decreasing expression of albumin and CYP3A4 transcripts as well as CYP3A4 activity. It is concluded that NFC and HG hydrogels expedite the hepatic differentiation of HepaRG liver progenitor cells better than the standard 2D culture environment. This was shown as improved cell morphology, expression and localization of hepatic markers, metabolic activity and vectorial transport. The NFC and HG hydrogels are promising materials for hepatic cell culture and tissue engineering.

  14. Evaluation of Simulated Microgravity Environments Induced by Diamagnetic Levitation of Plant Cell Suspension Cultures

    NASA Astrophysics Data System (ADS)

    Kamal, Khaled Y.; Herranz, Raúl; van Loon, Jack J. W. A.; Christianen, Peter C. M.; Medina, F. Javier

    2016-06-01

    Ground-Based Facilities (GBF) are essetial tools to understand the physical and biological effects of the absence of gravity and they are necessary to prepare and complement space experiments. It has been shown previously that a real microgravity environment induces the dissociation of cell proliferation from cell growth in seedling root meristems, which are limited populations of proliferating cells. Plant cell cultures are large and homogeneous populations of proliferating cells, so that they are a convenient model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of the Arabidopsis thaliana cell line MM2d were exposed to four altered gravity and magnetic field environments in a magnetic levitation facility for 3 hours, including two simulated microgravity and Mars-like gravity levels obtained with different magnetic field intensities. Samples were processed either by quick freezing, to be used in flow cytometry for cell cycle studies, or by chemical fixation for microscopy techniques to measure parameters of the nucleolus. Although the trend of the results was the same as those obtained in real microgravity on meristems (increased cell proliferation and decreased cell growth), we provide a technical discussion in the context of validation of proper conditions to achieve true cell levitation inside a levitating droplet. We conclude that the use of magnetic levitation as a simulated microgravity GBF for cell suspension cultures is not recommended.

  15. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  16. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations

    PubMed Central

    Wang, Tuo; Yang, Hui; Kubicki, James D.; Hong, Mei

    2017-01-01

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D 13C-13C correlation spectra of uniformly 13C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose 13C chemical shifts differ significantly from the 13C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing and hydrogen bonding from celluloses of other organisms. 2D 13C-13C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Cellulose f and g are well mixed chains on the microfibril surface, cellulose a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal

  17. Tubulin dynamics in cultured mammalian cells

    PubMed Central

    1984-01-01

    Bovine neurotubulin has been labeled with dichlorotriazinyl- aminofluorescein (DTAF-tubulin) and microinjected into cultured mammalian cells strains PTK1 and BSC. The fibrous, fluorescence patterns that developed in the microinjected cells were almost indistinguishable from the pattern of microtubules seen in the same cells by indirect immunofluorescence. DTAF-tubulin participated in the formation of all visible, microtubule-related structures at all cell cycle stages for at least 48 h after injection. Treatments of injected cells with Nocodazole or Taxol showed that DTAF-tubulin closely mimicked the behavior of endogenous tubulin. The rate at which microtubules incorporated DTAF-tubulin depended on the cell-cycle stage of the injected cell. Mitotic microtubules became fluorescent within seconds while interphase microtubules required minutes. Studies using fluorescence redistribution after photobleaching confirmed this apparent difference in tubulin dynamics between mitotic and interphase cells. The temporal patterns of redistribution included a rapid phase (approximately 3 s) that we attribute to diffusion of free DTAF-tubulin and a second, slower phase that seems to represent the exchange of bleached DTAF-tubulin in microtubules with free, unbleached DTAF- tubulin. Mean half times of redistribution were 18-fold shorter in mitotic cells than they were in interphase cells. PMID:6501419

  18. Side Effects of Culture Media Antibiotics on Cell Differentiation.

    PubMed

    Llobet, Laura; Montoya, Julio; López-Gallardo, Ester; Ruiz-Pesini, Eduardo

    2015-11-01

    Besides the advance in scientific knowledge and the production of different compounds, cell culture can now be used to obtain cells for regenerative medicine. To avoid microbial contamination, antibiotics were usually incorporated into culture media. However, these compounds affect cell biochemistry and may modify the differentiation potential of cultured cells. To check this possibility, we grew human adipose tissue-derived stem cells and differentiated them to adipocyte with or without antibiotics commonly used in these culture protocols, such as a penicillin-streptomycin-amphotericin mix or gentamicin. We show that these antibiotics affect cell differentiation. Therefore, antibiotics should not be used in cell culture because aseptic techniques make these compounds unnecessary.

  19. Involvement of leukocyte function-associated antigen-1 (LFA-1) in the invasion of hepatocyte cultures by lymphoma and T-cell hybridoma cells

    PubMed Central

    1987-01-01

    We studied the interaction of MB6A lymphoma and TAM2D2 T cell hybridoma cells with hepatocyte cultures as an in vitro model for in vivo liver invasion by these tumor cells. A monoclonal antibody against leukocyte function-associated antigen-1 (LFA-1) inhibited adhesion of the tumor cells to the surface of hepatocytes and consequently strongly reduced invasion. This effect was specific since control antibodies, directed against Thy.1 and against T200, of the same isotype, similar affinity, and comparable binding to these cells, did not inhibit adhesion. This suggests that LFA-1 is involved in the formation of liver metastases by lymphoma cells. TAM2D2 T cell hybridoma cells were agglutinated by anti- LFA-1, but not by control antibodies. Reduction of adhesion was not due to this agglutination since monovalent Fab fragments inhibited adhesion as well, inhibition was also seen under conditions where agglutination was minimal, and anti-LFA-1 similarly affected adhesion of MB6A lymphoma cells that were not agglutinated. The two cell types differed in LFA-1 surface density. TAM2D2 cells exhibited 400,000 surface LFA-1 molecules, 10 times more than MB6A cells. Nevertheless, the level of adhesion and the extent of inhibition by the anti-LFA-1 antibody were only slightly larger for the TAM2D2 cells. PMID:3301869

  20. The induction of suppressor cells in mixed leucocyte cultures and in mixed leucocyte-non-lymphoid cell cultures.

    PubMed Central

    Pawelec, G

    1980-01-01

    X-ray resistant porcine suppressor T cells expressing Ia-like antigens were obtained from mixed cultures of leucocytes and tissue cells (cultured kidney cells, liver cells, endothelial cells, fibroblasts or X-irradiated leucocytes), and were assayed by their ability to suppress lymphocyte proliferation in a second mixed culture. All tissues tested induced suppressor cells although quantitative differences existed between them. Suppressor cell induction was under genetic control by at least two loci, one of which was within the major histocompatibility (MHC) complex. Suppressor cell function was restricted by the MHC type of the responding cell but not the stimulating cell in the second culture. PMID:6445866

  1. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    PubMed

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture.

  2. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  3. In vitro systems to study nephropharmacology: 2D versus 3D models.

    PubMed

    Sánchez-Romero, Natalia; Schophuizen, Carolien M S; Giménez, Ignacio; Masereeuw, Rosalinde

    2016-11-05

    The conventional 2-dimensional (2D) cell culture is an invaluable tool in, amongst others, cell biology and experimental pharmacology. However, cells cultured in 2D, on the top of stiff plastic plates lose their phenotypical characteristics and fail in recreating the physiological environment found in vivo. This is a fundamental requirement when the goal of the study is to get a rigorous predictive response of human drug action and safety. Recent approaches in the field of renal cell biology are focused on the generation of 3D cell culture models due to the more bona fide features that they exhibit and the fact that they are more closely related to the observed physiological conditions, and better predict in vivo drug handling. In this review, we describe the currently available 3D in vitro models of the kidney, and some future directions for studying renal drug handling, disease modeling and kidney regeneration.

  4. Gonococcal and meningococcal pathogenesis as defined by human cell, cell culture, and organ culture assays.

    PubMed Central

    Stephens, D S

    1989-01-01

    Human cells, cell cultures, and organ cultures have been extremely useful for studying the events that occur when gonococci and meningococci encounter human mucosal surfaces. The specificity and selectivity of these events for human cells are striking and correlate with the adaptation of these pathogens for survival on human mucous membranes. To colonize these sites, meningococci and gonococci have developed mechanisms to damage local host defenses such as the mucociliary blanket, to attach to epithelial cells, and to invade these cells. Attachment to epithelial cells mediated by pili, and to some types of cells mediated by PIIs, serves to anchor the organism close to sources of nutrition and allows multiplication. Intracellular invasion, possibly initiated by the major porin protein, may provide additional nutritional support and protection from host defenses. Mucosal invasion may also result in access of gonococci and meningococci to the bloodstream, leading to dissemination. Images PMID:2497953

  5. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  6. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids

    PubMed Central

    Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A.; Falvo D’Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  7. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    NASA Astrophysics Data System (ADS)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  8. Transfer of the human NKG2D ligands UL16 binding proteins (ULBP) 1-3 is related to lytic granule release and leads to ligand retransfer and killing of ULBP-recipient natural killer cells.

    PubMed

    López-Cobo, Sheila; Romera-Cárdenas, Gema; García-Cuesta, Eva M; Reyburn, Hugh T; Valés-Gómez, Mar

    2015-09-01

    After immune interactions, membrane fragments can be transferred between cells. This fast transfer of molecules is transient and shows selectivity for certain proteins; however, the constraints underlying acquisition of a protein are unknown. To characterize the mechanism and functional consequences of this process in natural killer (NK) cells, we have compared the transfer of different NKG2D ligands. We show that human NKG2D ligands can be acquired by NK cells with different efficiencies. The main findings are that NKG2D ligand transfer is related to immune activation and receptor-ligand interaction and that NK cells acquire these proteins during interactions with target cells that lead to degranulation. Our results further demonstrate that NK cells that have acquired NKG2D ligands can stimulate activation of autologous NK cells. Surprisingly, NK cells can also re-transfer the acquired molecule to autologous effector cells during this immune recognition that leads to their death. These data demonstrate that transfer of molecules occurs as a consequence of immune recognition and imply that this process might play a role in homeostatic tuning-down of the immune response or be used as marker of interaction.

  9. Ascorbic acid transport into cultured pituitary cells

    SciTech Connect

    Cullen, E.I.; May, V.; Eipper, R.A.

    1986-05-01

    An amidating enzyme designated peptidyl-glycine ..cap alpha..-amidating monooxygenase (PAM) has been studied in a variety of tissues and is dependent on molecular oxygen and stimulated by copper and ascorbic acid. To continue investigating the relationship among cellular ascorbic acid concentrations, amidating ability, and PAM activity, the authors studied ascorbic acid transport in three cell preparations that contain PAM and produce amidated peptides: primary cultures of rat anterior and intermediate pituitary and mouse AtT-20 tumor cells. When incubated in 50 ..mu..M (/sup 14/C)ascorbic acid all three cell preparations concentrated ascorbic acid 20- to 40-fold, producing intracellular ascorbate concentrations of 1 to 2 mM, based on experimentally determined cell volumes. All three cell preparations displayed saturable ascorbic acid uptake with half-maximal initial rates occurring between 9 and 18 ..mu..M ascorbate. Replacing NaCl in the uptake buffer with choline chloride significantly diminished ascorbate uptake in all three preparations. Ascorbic acid efflux from these cells was slow, displaying half-lives of 7 hours. Unlike systems that transport dehydroascorbic acid, the transport system for ascorbic acid in these cells was not inhibited by glucose. Thus, ascorbate is transported into pituitary cells by a sodium-dependent, active transport system.

  10. Post-translational modification of the NKG2D ligand RAET1G leads to cell surface expression of a glycosylphosphatidylinositol-linked isoform.

    PubMed

    Ohashi, Maki; Eagle, Robert A; Trowsdale, John

    2010-05-28

    NKG2D is an important activating receptor on lymphocytes. In human, it interacts with two groups of ligands: the major histocompatibility complex class I chain-related A/B (MICA/B) family and the UL-16 binding protein (ULBP) family, also known as retinoic acid early transcript (RAET1). MIC proteins are membrane-anchored, but all of the ULBP/RAET1 proteins, except for RAET1E and RAET1G, are glycosylphosphatidylinositol (GPI)-anchored. To address the reason for these differences we studied the association of RAET1G with the membrane. Using epitope-tagged RAET1G protein in conjunction with antibodies to different parts of the molecule and in pulse-chase experiments, we showed that the C terminus of the protein was cleaved soon after protein synthesis. Endoglycosidase H and peptide N-glycosidase treatment and cell surface immunoprecipitation indicated that most of the protein stayed in the endoplasmic reticulum, but some of the cleaved form was modified in the Golgi and transported to the cell surface. We examined the possibility of GPI anchoring of the protein in three ways: (i) Phosphatidylinositol (PI)-specific phospholipase C released the PI-linked form of the protein. (ii) The surface expression pattern of RAET1G decreased in cells defective in GPI anchoring through mutant GPI-amidase. (iii) Site-directed mutagenesis, to disrupt residues predicted to facilitate GPI-anchoring, resulted in diminished surface expression of RAET1G. Thus, a form of RAET1G is GPI-anchored, in line with most other ULBP/RAET1 family proteins. The cytoplasmic tail and transmembrane domains appear to result from gene duplication and frameshift mutation. Together with our previous results, our data suggest that RAET1G is regulated post-translationally to produce a GPI-anchored isoform.

  11. Post-translational Modification of the NKG2D Ligand RAET1G Leads to Cell Surface Expression of a Glycosylphosphatidylinositol-linked Isoform*

    PubMed Central

    Ohashi, Maki; Eagle, Robert A.; Trowsdale, John

    2010-01-01

    NKG2D is an important activating receptor on lymphocytes. In human, it interacts with two groups of ligands: the major histocompatibility complex class I chain-related A/B (MICA/B) family and the UL-16 binding protein (ULBP) family, also known as retinoic acid early transcript (RAET1). MIC proteins are membrane-anchored, but all of the ULBP/RAET1 proteins, except for RAET1E and RAET1G, are glycosylphosphatidylinositol (GPI)-anchored. To address the reason for these differences we studied the association of RAET1G with the membrane. Using epitope-tagged RAET1G protein in conjunction with antibodies to different parts of the molecule and in pulse-chase experiments, we showed that the C terminus of the protein was cleaved soon after protein synthesis. Endoglycosidase H and peptide N-glycosidase treatment and cell surface immunoprecipitation indicated that most of the protein stayed in the endoplasmic reticulum, but some of the cleaved form was modified in the Golgi and transported to the cell surface. We examined the possibility of GPI anchoring of the protein in three ways: (i) Phosphatidylinositol (PI)-specific phospholipase C released the PI-linked form of the protein. (ii) The surface expression pattern of RAET1G decreased in cells defective in GPI anchoring through mutant GPI-amidase. (iii) Site-directed mutagenesis, to disrupt residues predicted to facilitate GPI-anchoring, resulted in diminished surface expression of RAET1G. Thus, a form of RAET1G is GPI-anchored, in line with most other ULBP/RAET1 family proteins. The cytoplasmic tail and transmembrane domains appear to result from gene duplication and frameshift mutation. Together with our previous results, our data suggest that RAET1G is regulated post-translationally to produce a GPI-anchored isoform. PMID:20304922

  12. Observation of ovarian cancer stem cell behavior and investigation of potential mechanisms of drug resistance in three-dimensional cell culture.

    PubMed

    Chen, Junsong; Wang, Jing; Zhang, Yunxia; Chen, Dengyu; Yang, Cuiping; Kai, Cai; Wang, Xiaoying; Shi, Fangfang; Dou, Jun

    2014-08-01

    Cancer cells behave differently in a three-dimensional (3D) cell culture compared with in the conventional two-dimensional (2D) one. Accumulated evidences indicate that the characteristics of cancer stem cells (CSCs) are different from common cancer cells due to their ability to produce tumors and resist chemoradiation. The objective of this work was to observe CSC behavior and investigate the potential mechanisms of CSC drug resistance in 3D versus 2D in vitro environment. We first demonstrated that the CD44(+)CD117(+)cells isolated from the human epithelial ovarian cancer HO8910 cell line have the properties of CSCs that revealed faster growth, larger tumorsphere and stronger survival potential in the hypoxic environment in 3D cell culture as well as more powerful tumorigenicity in a xenograft mice than the HO8910 cells. The CD44(+)CD117(+)CSCs also exhibited high chemoresistance to anticancer drugs when the cells were incubated with 5-fluorouracil, cisplatin and carboplatin, respectively in 3D versus 2D environment. This might be associated with the high expression of ABCG2, ABCB1 and the high expression of MMP-2 and MMP-9 in CD44(+)CD117(+)CSCs. Overall, these results suggest the advantages of using 3D culture model to accurately display CSC behavior in vitro. 3D model may improve the efficacy of screening anticancer drugs for treatment of ovarian CSCs.

  13. Reversible gelling culture media for in-vitro cell culture in three-dimensional matrices

    DOEpatents

    An, Yuehuei H.; Mironov, Vladimir A.; Gutowska, Anna

    2000-01-01

    A gelling cell culture medium useful for forming a three dimensional matrix for cell culture in vitro is prepared by copolymerizing an acrylamide derivative with a hydrophilic comonomer to form a reversible (preferably thermally reversible) gelling linear random copolymer in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff, mixing the copolymer with an aqueous solvent to form a reversible gelling solution and adding a cell culture medium to the gelling solution to form the gelling cell culture medium. Cells such as chondrocytes or hepatocytes are added to the culture medium to form a seeded culture medium, and temperature of the medium is raised to gel the seeded culture medium and form a three dimensional matrix containing the cells. After propagating the cells in the matrix, the cells may be recovered by lowering the temperature to dissolve the matrix and centrifuging.

  14. Monolayer and three-dimensional cell culture and living tissue culture of gallbladder epithelium.

    PubMed

    Nakanuma, Y; Katayanagi, K; Kawamura, Y; Yoshida, K

    1997-10-01

    Several models for preparing and isolating human and animal gallbladder epithelial cells, including low-grade gallbladder carcinoma cells, as well as proposed systems for culturing these isolated epithelial cells are reviewed here. Several reports concerning tissue culture of the gallbladder are also reviewed. The cell culture systems are divided into monolayer cell culture on collagen-coated or uncoated culture dishes or other culture substrate and three-dimensional cell culture in collagen gel. To prepare and isolate gallbladder epithelial cells, digestion of the gallbladder mucosa, abrasion of the mucosal epithelial cells, and excision of epithelial outgrowth of mucosal explants are applied. In monolayer cell culture, most of the specific biological features of isolated and cultured cells characteristic to the gallbladder are gradually lost after several passages, though quantitative and objective analyses of the pathophysiology of cultured cells and their secretory substances can be performed. Tissue culture using explants of the gallbladder has mainly been used for physiological studies of the gallbladder, such as investigating the transport of water and electrolytes. In this tissue culture system, quantitative assessment is difficult, though the original and specific biological and histological characteristics of the gallbladder are retained. Three-dimensional collagen gel culture could be an ideal model combining monolayer cell culture and tissue culture systems, and create controllable conditions or environments when several biologically active substances, such as growth factors, proinflammatory cytokines and adhesion molecules, are added to the culture medium. Advantages and shortcomings of individual cultivation models are discussed, and selecting the culture model most appropriate to the purpose of the study will facilitate investigations of the biology and pathogenetic mechanisms of gallbladder diseases such as cholelithiasis.

  15. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques

    ERIC Educational Resources Information Center

    Mozdziak, Paul E.; Petitte, James N.; Carson, Susan D.

    2004-01-01

    Animal cell culture is a core laboratory technique in many molecular biology, developmental biology, and biotechnology laboratories. Cell culture is a relatively old technique that has been sparingly taught at the undergraduate level. The traditional methodology for acquiring cell culture training has been through trial and error, instruction when…

  16. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cultured animal and human cells. 864.2280 Section 864.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  17. 21 CFR 864.2280 - Cultured animal and human cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cultured animal and human cells. 864.2280 Section 864.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Cultured animal and human cells. (a) Identification. Cultured animal and human cells are in...

  18. Microfluidic devices for cell culture and handling in organ-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Schulz, Ingo; Mosig, Alexander; Jahn, Tobias; Gärtner, Claudia

    2014-03-01

    For many problems in system biology or pharmacology, in-vivo-like models of cell-cell interactions or organ functions are highly sought after. Conventional stationary cell culture in 2D plates quickly reaches its limitations with respect to an in-vivo like expression and function of individual cell types. Microfabrication technologies and microfluidics offer an attractive solution to these problems. The ability to generate flow as well as geometrical conditions for cell culture and manipulation close to the in-vivo situation allows for an improved design of experiments and the modeling of organ-like functionalities. Furthermore, reduced internal volumes lead to a reduction in reagent volumes necessary as well as an increased assay sensitivity. In this paper we present a range of microfluidic devices designed for the co-culturing of a variety of cells. The influence of substrate materials and surface chemistry on the cell morphology and viability for long-term cell culture has been investigated as well as strategies and medium supply for on-chip cell cultivation.

  19. Distribution of chromosome 18 and X centric heterochromatin in the interphase nucleus of cultured human cells

    SciTech Connect

    Popp, S.; Scholl, H.P.; Loos, P.; Jauch, A.; Cremer, C.; Cremer, T. ); Stelzer, E. )

    1990-07-01

    In situ hybridization of human chromosome 18 and X-specific alphoid DNA-probes was performed in combination with three dimensional (3D) and two dimensional (2D) image analysis to study the interphase distribution of the centric heterochromatin (18c and Xc) of these chromosomes in cultured human cells. 3D analyses of 18c targets using confocal laser scanning microscopy indicated a nonrandom disposition in 73 amniotic fluid cell nuclei. In agreement with the 3D observations 18c targets were found significantly closer to the center of the 2D nuclear image (CNI) and to each other in all these cultures compared to a random distribution derived from corresponding ellipsoid or cylinder model nuclei. For comparison, a chromosome X-specific alphoid DNA probe was used to investigate the 2D distribution of chromosome X centric heterochromatin in the same cell types. Two dimensional Xc-Xc and Xc-CNI distances fit a random distribution in diploid normal and Bloom's syndrome nuclei, as well as in nuclei with trisomy X. The different distributions of 18c and Xc targets were confirmed by the simultaneous staining of these targets in different colors within individual nuclei using a double in situ hybridization approach.

  20. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography.

    PubMed

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen

    2013-11-29

    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC.

  1. 2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdeněk; Bourdon, Anne; Chabert, Pascal

    2017-03-01

    In this work we study the electron drift instability in Hall-effect thrusters (HETs) using a 2D electrostatic particle-in-cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system modeling the radial-azimuthal (r{--}θ ) plane for large radius thrusters. A magnetic field, {{B}}0, is aligned along the Oy axis (r direction), a constant applied electric field, {{E}}0, along the Oz axis (perpendicular to the simulation plane), and the {{E}}0× {{B}}0 direction is along the Ox axis (θ direction). Although electron transport can be well described by electron–neutral collisions for low plasma densities, at high densities (similar to those in typical HETs), a strong instability is observed that enhances the electron cross-field mobility; even in the absence of electron–neutral collisions. The instability generates high frequency (of the order of MHz) and short wavelength (of the order of mm) fluctuations in both the azimuthal electric field and charged particle densities, and propagates in the {{E}}0× {{B}}0 direction with a velocity close to the ion sound speed. The correlation between the electric field and density fluctuations (which leads to an enhanced electron–ion friction force) is investigated and shown to be directly responsible for the increased electron transport. Results are compared with a recent kinetic theory, showing good agreement with the instability properties and electron transport.

  2. Comparative 2D-DIGE proteomic analysis of bovine mammary epithelial cells during lactation reveals protein signatures for lactation persistency and milk yield.

    PubMed

    Janjanam, Jagadeesh; Singh, Surender; Jena, Manoj K; Varshney, Nishant; Kola, Srujana; Kumar, Sudarshan; Kaushik, Jai K; Grover, Sunita; Dang, Ajay K; Mukesh, Manishi; Prakash, B S; Mohanty, Ashok K

    2014-01-01

    Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC) reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling.

  3. Bioactive Copper-Doped Glass Scaffolds Can Stimulate Endothelial Cells in Co-Culture in Combination with Mesenchymal Stem Cells

    PubMed Central

    Rath, Subha N.; Brandl, Andreas; Hiller, Daniel; Hoppe, Alexander; Gbureck, Uwe; Horch, Raymund E.; Boccaccini, Aldo R.; Kneser, Ulrich

    2014-01-01

    Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells)-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture) or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture). Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased vascular endothelial growth factor (VEGF) expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering approaches. PMID

  4. Amino acid pools in cultured muscle cells.

    PubMed

    Low, R B; Stirewalt, W S; Rittling, S R; Woodworth, R C

    1984-01-01

    Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships--in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.

  5. Chromosomal mosaicism in amniotic fluid cell cultures.

    PubMed Central

    Peakman, D C; Moreton, M F; Corn, B J; Robinson, A

    1979-01-01

    Over the past 6 years, using in situ processing methods, we have identified 32 cases of mosaicism in amniotic fluid cell cultures prepared from 1,100 samples. Two of these (45,X/46,XX and 46,XX/47,XX, + 21) were called true mosaics because multiple colonies demonstrated the same abnormal chromosome complement, and on subsequent evaluation of the newborn blood or fetal tissues, mosaicism was confirmed. Of the remaining cases, 29 were designated as pseudomosaics because only single or partial colonies exhibited an aberrant chromosome complement, 12 having a trisomy 2 line. In the final case, a double trisomy was demonstrated in only one of eight colonies in the first culture, but in the culture from a repeat sample an additional two colonies showed the same double trisomy. Since no abnormal cells were observed in infant blood, it was postulated that the mosaicism may only have been present in the extraembryonic tissues. It is our conviction that the use of these cloning methods should diminish the danger of misdiagnosis in genetic amniocentesis. PMID:453199

  6. Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Delgado, Oliver; Ding, Liang-Hao; Story, Michael D.; Minna, John D.; Shay, Jerry W.; Chen, David J.

    2011-01-01

    DNA damage and consequent mutations initiate the multistep carcinogenic process. Differentiated cells have a reduced capacity to repair DNA lesions, but the biological impact of unrepaired DNA lesions in differentiated lung epithelial cells is unclear. Here, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We showed, consistent with existing notions that the kinetics of loss of simple double-strand breaks (DSBs) were significantly reduced in organotypic 3D culture compared to kinetics of repair in two-dimensional (2D) culture. Strikingly, we found that, unlike simple DSBs, a majority of complex DNA lesions were irreparable in organotypic 3D culture. Levels of expression of multiple DNA damage repair pathway genes were significantly reduced in the organotypic 3D culture compared with those in 2D culture providing molecular evidence for the defective DNA damage repair in organotypic culture. Further, when differentiated cells with unrepaired DNA lesions re-entered the cell cycle, they manifested a spectrum of gross-chromosomal aberrations in mitosis. Our data suggest that downregulation of multiple DNA repair pathway genes in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis. PMID:21421565

  7. Rotating bio-reactor cell culture apparatus

    NASA Technical Reports Server (NTRS)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)

    1991-01-01

    A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.

  8. The Corticostriatal System in Dissociated Cell Culture

    PubMed Central

    Randall, Fiona E.; Garcia-Munoz, Marianela; Vickers, Catherine; Schock, Sarah C.; Staines, William A.; Arbuthnott, Gordon W.

    2011-01-01

    The sparse connectivity within the striatum in vivo makes the investigation of individual corticostriatal synapses very difficult. Most studies of the corticostriatal input have been done using electrical stimulation under conditions where it is hard to identify the precise origin of the cortical input. We have employed an in vitro dissociated cell culture system that allows the identification of individual corticostriatal pairs and have been developing methods to study individual neuron inputs to striatal neurons. In mixed corticostriatal cultures, neurons had resting activity similar to the system in vivo. Up/down states were obvious and seemed to encompass the entire culture. Mixed cultures of cortical neurons from transgenic mice expressing green fluorescent protein with striatal neurons from wild-type mice of the same developmental stage allowed visual identification of individual candidate corticostriatal pairs. Recordings were performed between 12 and 37 days in vitro (DIV). To investigate synaptic connections we recorded from 69 corticostriatal pairs of which 44 were connected in one direction and 25 reciprocally. Of these connections 41 were corticostriatal (nine inhibitory) and 53 striatocortical (all inhibitory). The observed excitatory responses were of variable amplitude (−10 to −370 pA, n = 32). We found the connections very secure – with negligible failures on repeated stimulation (approximately 1 Hz) of the cortical neuron. Inhibitory corticostriatal responses were also observed (−13 to −314 pA, n = 9). Possibly due to the mixed type of culture we found an inhibitory striatocortical response (−14 to −598 pA, n = 53). We are now recording from neurons in separate compartments to more closely emulate neuroanatomical conditions but still with the possibility of the easier identification of the connectivity. PMID:21743806

  9. How do culture media influence in vitro perivascular cell behavior?

    PubMed

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries.

  10. Novel 3-D cell culture system for in vitro evaluation of anticancer drugs under anchorage-independent conditions.

    PubMed

    Aihara, Ayako; Abe, Natsuki; Saruhashi, Koichiro; Kanaki, Tatsuro; Nishino, Taito

    2016-12-01

    Anticancer drug discovery efforts have used 2-D cell-based assay models, which fail to forecast in vivo efficacy and result in a lower success rate of clinical approval. Recent 3-D cell culture models are expected to bridge the gap between 2-D and in vivo models. However, 3-D cell culture methods that are available for practical anticancer drug screening have not yet been fully attained. In this study, we screened several polymers for their ability to suspend cells or cell spheroids homogeneously in a liquid medium without changing the viscosity behavior, and identified gellan gum (FP001), as the most potent polymer. FP001 promoted cell dispersion in the medium and improved the proliferation of a wide range of cancer cell lines under low attachment conditions by inhibiting the formation of large-sized spheroids. In addition, cancer cells cultured with FP001-containing medium were more susceptible to inhibitors of epidermal growth factor (EGF) signaling than those cultured under attachment conditions. We also showed that ligands of the EGF receptor family clearly enhance proliferation of SKOV3 ovarian carcinoma cells under anchorage-independent conditions with FP001. Consistent with this result, the cells grown with FP001 showed higher EGF receptor content compared with cells cultured under attachment conditions. In conclusion, we developed a novel 3-D cell culture system that is available for high throughput screening of anticancer agents, and is suitable for evaluation of molecular-targeted anticancer drugs. Three-dimensional cell culture using FP001 will be of value in the development of useful technologies for anticancer drug discovery.

  11. Progesterone biotransformation by plant cell suspension cultures.

    PubMed Central

    Yagen, B; Gallili, G E; Mateles, R I

    1978-01-01

    Progesterone was converted to 5alpha-pregnane-3alpha-ol-20-one, delta4-pregnene-20alpha-ol-3-one, delta4-pregnene-14alpha-ol-3,20-dione, delta4-pregnene-7beta,14alpha-diol-3,20-dione, and delta4-pregnene-6beta,11alpha-diol-3,20-dione by cell cultures of Lycopersicon esculentum. Cell cultures of Capsicum frutescens (green) metabolized progesterone to delta4-pregnene-20alpha-ol-3-one in very high yield, and Vinca rosea yielded delta4-pregnene-20beta-ol-3-one and delta4-pregnene-14alpha-ol-3,20-dione. A stereospecific reduction of the keto groups and a double bond and stereospecific introduction of hydroxyl groups at the 6, 11, and 14 positions have been observed. The mono- and dihydroxylated progesterones have not previously been reported as metabolic products of progesterone by plant cell systems and represent de novo hydroxylation of a nonglycosylated steroid. PMID:697360

  12. Sarcoma derived from cultured mesenchymal stem cells.

    PubMed

    Tolar, Jakub; Nauta, Alma J; Osborn, Mark J; Panoskaltsis Mortari, Angela; McElmurry, Ron T; Bell, Scott; Xia, Lily; Zhou, Ning; Riddle, Megan; Schroeder, Tania M; Westendorf, Jennifer J; McIvor, R Scott; Hogendoorn, Pancras C W; Szuhai, Karoly; Oseth, Leann; Hirsch, Betsy; Yant, Stephen R; Kay, Mark A; Peister, Alexandra; Prockop, Darwin J; Fibbe, Willem E; Blazar, Bruce R

    2007-02-01

    To study the biodistribution of MSCs, we labeled adult murine C57BL/6 MSCs with firefly luciferase and DsRed2 fluorescent protein using nonviral Sleeping Beauty transposons and coinfused labeled MSCs with bone marrow into irradiated allogeneic recipients. Using in vivo whole-body imaging, luciferase signals were shown to be increased between weeks 3 and 12. Unexpectedly, some mice with the highest luciferase signals died and all surviving mice developed foci of sarcoma in their lungs. Two mice also developed sarcomas in their extremities. Common cytogenetic abnormalities were identified in tumor cells isolated from different animals. Original MSC cultures not labeled with transposons, as well as independently isolated cultured MSCs, were found to be cytogenetically abnormal. Moreover, primary MSCs derived from the bone marrow of both BALB/c and C57BL/6 mice showed cytogenetic aberrations after several passages in vitro, showing that transformation was not a strain-specific nor rare event. Clonal evolution was observed in vivo, suggesting that the critical transformation event(s) occurred before infusion. Mapping of the transposition insertion sites did not identify an obvious transposon-related genetic abnormality, and p53 was not overexpressed. Infusion of MSC-derived sarcoma cells resulted in malignant lesions in secondary recipients. This new sarcoma cell line, S1, is unique in having a cytogenetic profile similar to human sarcoma and contains bioluminescent and fluorescent genes, making it useful for investigations of cellular biodistribution and tumor response to therapy in vivo. More importantly, our study indicates that sarcoma can evolve from MSC cultures.

  13. Effects of the polymeric niche on neural stem cell characteristics during primary culturing.

    PubMed

    Haubenwallner, Stefan; Katschnig, Matthias; Fasching, Ulrike; Patz, Silke; Trattnig, Christa; Andraschek, Natascha; Grünbacher, Gerda; Absenger, Markus; Laske, Stephan; Holzer, Clemens; Balika, Werner; Wagner, Manuela; Schäfer, Ute

    2014-05-01

    The polymeric niche encountered by cells during primary culturing can affect cell fate. However, most cell types are primarily propagated on polystyrene (PS). A cell type specific screening for optimal primary culture polymers particularly for regenerative approaches seems inevitable. The effect of physical and chemical properties of treated (corona, oxygen/nitrogen plasma) and untreated cyclic olefin polymer (COP), polymethymethacrylate (PMMA), PP, PLA, PS, PC on neuronal stem cell characteristics was analyzed. Our comprehensive approach revealed plasma treated COP and PMMA as optimal polymers for primary neuronal stem cell culturing and propagation. An increase in the number of NT2/D1 cells with pronounced adhesion, metabolic activities and augmented expression of neural precursor markers was associated to the plasma treatment of surfaces of COP and PMMA with nitrogen or oxygen, respectively. A shift towards large cell sizes at stable surface area/volume ratios that might promote the observed increase in metabolic activities and distinct modulations in F-actin arrangements seem to be primarily mediated by the plasma treatment of surfaces. These results indicate that the polymeric niche has a distinct impact on various cell characteristics. The selection of distinct polymers and the controlled design of an optimized polymer microenvironment might thereby be an effective tool to promote essential cell characteristics for subsequent approaches.

  14. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  15. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture

    PubMed Central

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2017-01-01

    The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were “adipose-like microtissues” that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation. PMID:28174673

  16. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture.

    PubMed

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2017-01-08

    The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were "adipose-like microtissues" that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation.

  17. CYP2D6 Is Inducible by Endogenous and Exogenous Corticosteroids.

    PubMed

    Farooq, Muhammad; Kelly, Edward J; Unadkat, Jashvant D

    2016-05-01

    Although cytochrome P450 (CYP) 2D6 has been widely considered to be noninducible on the basis of human hepatocyte studies, in vivo data suggests that it is inducible by endo- and xenobiotics. Therefore, we investigated if the experimental conditions routinely used in human hepatocyte studies may be a confounding factor in the lack of in vitro induction of CYP2D6. Sandwich cultured human hepatocytes (SCHH) were preincubated with or without dexamethasone (100 nM) for 72 hours before incubation with 1μM endogenous (cortisol or corticosterone) or exogenous (dexamethasone or prednisolone) corticosteroids. At 72 hours, CYP2D6 mRNA, protein, and activity were quantified by real-time quantitative polymerase chain reaction, quantitative proteomics, and formation of dextrorphan from dextromethorphan, respectively. In the absence of supplemental dexamethasone, CYP2D6 activity, mRNA, and protein were significantly and robustly (>10-fold) induced by all four corticosteroids. However, this CYP2D6 induction was abolished in cells preincubated with supplemental dexamethasone. These data show, for the first time, that CYP2D6 is inducible in vitro but the routine presence of 100 nM dexamethasone in the culture medium masks this induction. Our cortisol data are in agreement with the clinical observation that CYP2D6 is inducible during the third trimester of pregnancy when the plasma concentrations of cortisol increase to ∼1μM. These findings, if confirmed in vivo, have implications for predicting CYP2D6-mediated drug-drug interactions and call for re-evaluation of regulatory guidelines on screening for CYP2D6 induction by xenobiotics. Our findings also suggest that cortisol may be a causative factor in the in vivo induction of CYP2D6 during pregnancy.

  18. Cardiac Cells Beating in Culture: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Weaver, Debora

    2007-01-01

    This article describes how to establish a primary tissue culture, where cells are taken directly from an organ of a living animal. Cardiac cells are taken from chick embryos and transferred to culture dishes. These cells are not transformed and therefore have a limited life span. However, the unique characteristics of cardiac cells are maintained…

  19. The metabolism of methadone by cultured mammalian cells.

    PubMed

    Will, P C; Noteboom, W D

    1978-02-15

    Rat hepatoma tissue culture cells and mouse leukemic cells were found to metabolize [1-3H] methadone to at least 2 unidentified radioactive compounds. These results suggest that cultured cells may be useful models for studying methadone metabolism by specific cell types.

  20. Human norovirus culture in B cells

    PubMed Central

    Jones, Melissa K; Grau, Katrina R; Costantini, Veronica; Kolawole, Abimbola O; de Graaf, Miranda; Freiden, Pamela; Graves, Christina L; Koopmans, Marion; Wallet, Shannon M; Tibbetts, Scott A; Schultz-Cherry, Stacey; Wobus, Christiane E; Vinjé, Jan; Karst, Stephanie M

    2015-01-01

    Human noroviruses (HunoVs) are a leading cause of foodborne disease and severe childhood diarrhea, and they cause a majority of the gastroenteritis outbreaks worldwide. However, the development of effective and long-lasting HunoV vaccines and therapeutics has been greatly hindered by their uncultivability. We recently demonstrated that a HunoV replicates in human B cells, and that commensal bacteria serve as a cofactor for this infection. In this protocol, we provide detailed methods for culturing the GII.4-sydney HunoV strain directly in human B cells, and in a coculture system in which the virus must cross a confluent epithelial barrier to access underlying B cells. We also describe methods for bacterial stimulation of HunoV B cell infection and for measuring viral attachment to the surface of B cells. Finally, we highlight variables that contribute to the efficiency of viral replication in this system. Infection assays require 3 d and attachment assays require 3 h. analysis of infection or attachment samples, including rna extraction and rt-qpcr, requires ~6 h. PMID:26513671

  1. Oxygenation of intensive cell-culture system.

    PubMed

    Emery, A N; Jan, D C; al-Rubeai, M

    1995-11-01

    The abilities of various methods of oxygenation to meet the demands of high-cell-density culture were investigated using a spin filter perfusion system in a bench-top bioreactor. Oxygen demand at high cell density could not be met by sparging with air inside a spin filter (oxygen transfer values in this condition were comparable with those for surface aeration). Sparging with air outside a spin filter gave adequate oxygen transfer for the support of cell concentrations above 10(7) ml-1 in fully aerobic conditions but the addition of antifoam to control foaming caused blockage of the spinfilter mesh. Bubble-free aeration through immersed silicone tubing with pure oxygen gave similar oxygen transfer rates to that of sparging with air but without the problems of bubble damage and fouling of the spin filter. A supra-optimal level of dissolved oxygen (478% air saturation) inhibited cell growth. However, cells could recover from this stress and reach high density after reduction of the dissolved oxygen level to 50% air saturation.

  2. 2D immunoblots show differential response of mouse IgG and IgM antibodies to antigens of mammary carcinoma 4 T1 cells

    PubMed Central

    2014-01-01

    Background Immunosuppression in breast cancer has been reported in women and in the highly metastatic mouse mammary tumor model 4 T1. The immunosuppressive environment complicates the use of the humoral response against the tumor as an immunodiagnostic tool. IgM has not been used in immunodiagnostic in part because its antitumor responses, both innate and adaptive, have not been studied in function of time in breast cancer. We show a new approach to analyzing the mouse humoral immune response, and compare the evolution with time of IgG and IgM responses against the antigens of 4 T1 cells. Methods The study is based on 2-dimensional immunoblotting detection of antigens from 4 T1 cells by the IgG and IgM antibodies in the serum of female mice injected with 4 T1 cells. Results There was a high variability in the intra-and inter-mouse response. Variability in the IgM response was manifested as a pattern of spots that could become a multibinomial variable of 0 and 1, which could represent a signature of the immune response. Different numbers of spots was found in the IgG and IgM responses from week 1 to 5. On average, the IgM had more but the IgG response decrease with the time. The natural IgM at t = 0 responds stronger than w1; the adaptive response of both IgM and IgG were elicited where, with the former being stronger better than the latter. Antigens that are recognized by some female mice in the first week are also recognized by other female mice at time 0. Contamination of the natural IgM makes difficult use the adaptive IgM as a tool for immunodiagnostic. Conclusions IgM and IgG response varied with the time and individuals. Spot variation in 2D pattern for the natural IgM could be expressed as a binomial signature, which opens up the way to correlate a particular pattern with resistance or susceptibility. This uncovers a battery of IgMs for each individual to confront cancer or infections. The possibility to differentiate between adaptive IgM antibodies

  3. Equipment for large-scale mammalian cell culture.

    PubMed

    Ozturk, Sadettin S

    2014-01-01

    This chapter provides information on commonly used equipment in industrial mammalian cell culture, with an emphasis on bioreactors. The actual equipment used in the cell culture process can vary from one company to another, but the main steps remain the same. The process involves expansion of cells in seed train and inoculation train processes followed by cultivation of cells in a production bioreactor. Process and equipment options for each stage of the cell culture process are introduced and examples are provided. Finally, the use of disposables during seed train and cell culture production is discussed.

  4. Loss of CD28 within CD4(+) T cell subsets from cervical cancer patients is accompanied by the acquisition of intracellular perforin, and is further enhanced by NKG2D expression.

    PubMed

    Escarra-Senmarti, Marta; Bueno-Topete, Miriam Ruth; Jave-Suarez, Luis Felipe; Gomez-Bañuelos, Eduardo; Gutierrez-Franco, Jorge; Vega-Magaña, Natali; Aguilar-Lemarroy, Adriana; Pereira-Suarez, Ana Laura; Haramati, Jesse; Del Toro-Arreola, Susana

    2017-02-01

    CD28 is well characterized as an essential co-stimulatory receptor critical for activation, proliferation and survival processes in CD4(+) T cells. Populations of CD4(+)CD28(null) T cells, with apparently contradictory physiological roles, have recently been reported, along with the co-expression of the NK activating receptor NKG2D, in autoimmune diseases and chronic viral inflammation. Paradoxically, studies in cancer suggest that an expanded CD4(+)NKG2D(+) population may be armed with immunosuppressive properties. We have recently reported the existence of two separate CD4(+)NKG2D(+) T cell populations, which were defined by the presence or absence of the co-stimulatory molecule CD28, with the CD4(+)CD28(null)NKG2D(+) population more frequently observed in women with cervical cancer. This has led to the present effort to further characterize this population and to determine if the loss of CD28 influences the acquisition of cytotoxic or regulatory markers. In the present work, a multicolor flow cytometry protocol was used to analyze the expression of cytotoxic and immunoregulatory markers on circulating CD4(+) T cells characterized by the presence or absence of CD28 and NKG2D in patients with invasive cervical carcinoma and age/gender-matched healthy controls. A noticeable expansion of CD4(+)CD28(null) cells, many of them NKG2D(+), were observed in selected cervical cancer samples. This CD4(+)CD28(null) T cell population was characterized by a lack of immunoregulatory markers, as well as very low basal levels of intracellular IFN-γ, TNF-α, TGF-β, and IL-10. Intracellular perforin, however, was found to be significantly increased in this CD4(+)CD28(null) population, and increases in the mean fluorescence intensity of perforin were found to be enhanced by the presence of NKG2D. In conclusion, our data provide the first evidence of a strict link between the absence of CD28 and the expression of perforin, which is likewise enhanced by the expression of NKG2D

  5. Metabolic flux rewiring in mammalian cell cultures

    PubMed Central

    Young, Jamey D.

    2013-01-01

    Continuous cell lines (CCLs) engage in “wasteful” glucose and glutamine metabolism that leads to accumulation of inhibitory byproducts, primarily lactate and ammonium. Advances in techniques for mapping intracellular carbon fluxes and profiling global changes in enzyme expression have led to a deeper understanding of the molecular drivers underlying these metabolic alterations. However, recent studies have revealed that CCLs are not necessarily entrenched in a glycolytic or glutaminolytic phenotype, but instead can shift their metabolism toward increased oxidative metabolism as nutrients become depleted and/or growth rate slows. Progress to understand dynamic flux regulation in CCLs has enabled the development of novel strategies to force cultures into desirable metabolic phenotypes, by combining fed-batch feeding strategies with direct metabolic engineering of host cells. PMID:23726154

  6. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  7. Modelling of Mammalian cells and cell culture processes.

    PubMed

    Sidoli, F R; Mantalaris, A; Asprey, S P

    2004-01-01

    Mammalian cell cultures represent the major source for a number of very high-value biopharmaceutical products, including monoclonal antibodies (MAbs), viral vaccines, and hormones. These products are produced in relatively small quantities due to the highly specialised culture conditions and their susceptibility to either reduced productivity or cell death as a result of slight deviations in the culture conditions. The use of mathematical relationships to characterise distinct parts of the physiological behaviour of mammalian cells and the systematic integration of this information into a coherent, predictive model, which can be used for simulation, optimisation, and control purposes would contribute to efforts to increase productivity and control product quality. Models can also aid in the understanding and elucidation of underlying mechanisms and highlight the lack of accuracy or descriptive ability in parts of the model where experimental and simulated data cannot be reconciled. This paper reviews developments in the modelling of mammalian cell cultures in the last decade and proposes a future direction - the incorporation of genomic, proteomic, and metabolomic data, taking advantage of recent developments in these disciplines and thus improving model fidelity. Furthermore, with mammalian cell technology dependent on experiments for information, model-based experiment design is formally introduced, which when applied can result in the acquisition of more informative data from fewer experiments. This represents only part of a broader framework for model building and validation, which consists of three distinct stages: theoretical model assessment, model discrimination, and model precision, which provides a systematic strategy from assessing the identifiability and distinguishability of a set of competing models to improving the parameter precision of a final validated model.

  8. Lipoprotein binding to cultured human hepatoma cells.

    PubMed Central

    Krempler, F; Kostner, G M; Friedl, W; Paulweber, B; Bauer, H; Sandhofer, F

    1987-01-01

    Binding of various 125I-lipoproteins to hepatic receptors was studied on cultured human hepatoma cells (Hep G2). Chylomicrons, isolated from a chylothorax, chylomicron remnants, hypertriglyceridemic very low-density lipoproteins, normotriglyceridemic very low-density lipoproteins (NTG-VLDL), their remnants, low-density lipoproteins (LDL), and HDL-E (an Apo E-rich high-density lipoprotein isolated from the plasma of a patient with primary biliary cirrhosis) were bound by high-affinity receptors. Chylomicron remnants and HDL-E were bound with the highest affinity. The results, obtained from competitive binding experiments, are consistent with the existence of two distinct receptors on Hep G2 cells: (a) a remnant receptor capable of high-affinity binding of triglyceride-rich lipoproteins and HDL-E, but not of Apo E free LDL, and (b) a LDL receptor capable of high-affinity binding of LDL, NTG-VLDL, and HDL-E. Specific binding of Apo E-free LDL was completely abolished in the presence of 3 mM EDTA, indicating that binding to the LDL receptor is calcium dependent. Specific binding of chylomicron remnants was not inhibited by the presence of even 10 mM EDTA. Preincubation of the Hep G2 cells in lipoprotein-containing medium resulted in complete suppression of LDL receptors but did not affect the remnant receptors. Hep G2 cells seem to be a suitable model for the study of hepatic receptors for lipoprotein in man. Images PMID:3038957

  9. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    PubMed

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems.

  10. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  11. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  12. Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells.

    PubMed

    Li, Bo-Jiang; Li, Ping-Hua; Huang, Rui-Hua; Sun, Wen-Xing; Wang, Han; Li, Qi-Fa; Chen, Jie; Wu, Wang-Jun; Liu, Hong-Lin

    2015-08-01

    The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

  13. Data fusion-based assessment of raw materials in mammalian cell culture.

    PubMed

    Lee, Hae Woo; Christie, Andrew; Xu, Jin; Yoon, Seongkyu

    2012-11-01

    In mammalian cell culture producing therapeutic proteins, one of the important challenges is the use of several complex raw materials whose compositional variability is relatively high and their influences on cell culture is poorly understood. Under these circumstances, application of spectroscopic techniques combined with chemometrics can provide fast, simple, and non-destructive ways to evaluate raw material quality, leading to more consistent cell culture performance. In this study, a comprehensive data fusion strategy of combining multiple spectroscopic techniques is investigated for the prediction of raw material quality in mammalian cell culture. To achieve this purpose, four different spectroscopic techniques of near-infrared, Raman, 2D fluorescence, and X-ray fluorescence spectra were employed for comprehensive characterization of soy hydrolysates which are commonly used as supplements in culture media. First, the different spectra were compared separately in terms of their prediction capability. Then, ensemble partial least squares (EPLS) was further employed by combining all of these spectral datasets in order to produce a more accurate estimation of raw material properties, and compared with other data fusion techniques. The results showed that data fusion models based on EPLS always exhibit best prediction accuracy among all the models including individual spectroscopic methods, demonstrating the synergetic effects of data fusion in characterizing the raw material quality.

  14. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  15. Tailoring microfluidic systems for organ-like cell culture applications using multiphysics simulations

    NASA Astrophysics Data System (ADS)

    Hagmeyer, Britta; Schütte, Julia; Böttger, Jan; Gebhardt, Rolf; Stelzle, Martin

    2013-03-01

    Replacing animal testing with in vitro cocultures of human cells is a long-term goal in pre-clinical drug tests used to gain reliable insight into drug-induced cell toxicity. However, current state-of-the-art 2D or 3D cell cultures aiming at mimicking human organs in vitro still lack organ-like morphology and perfusion and thus organ-like functions. To this end, microfluidic systems enable construction of cell culture devices which can be designed to more closely resemble the smallest functional unit of organs. Multiphysics simulations represent a powerful tool to study the various relevant physical phenomena and their impact on functionality inside microfluidic structures. This is particularly useful as it allows for assessment of system functions already during the design stage prior to actual chip fabrication. In the HepaChip®, dielectrophoretic forces are used to assemble human hepatocytes and human endothelial cells in liver sinusoid-like structures. Numerical simulations of flow distribution, shear stress, electrical fields and heat dissipation inside the cell assembly chambers as well as surface wetting and surface tension effects during filling of the microchannel network supported the design of this human-liver-on-chip microfluidic system for cell culture applications. Based on the device design resulting thereof, a prototype chip was injection-moulded in COP (cyclic olefin polymer). Functional hepatocyte and endothelial cell cocultures were established inside the HepaChip® showing excellent metabolic and secretory performance.

  16. Differentiation Potential of Human Chorion-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells in Two- and Three-Dimensional Culture Systems.

    PubMed

    Faghihi, Faezeh; Mirzaei, Esmaeil; Ai, Jafar; Lotfi, Abolfazl; Sayahpour, Forough Azam; Ebrahimi-Barough, Somayeh; Barough, Somayeh Ebrahimi; Joghataei, Mohammad Taghi

    2016-04-01

    Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).

  17. In situ gelation for cell immobilization and culture in alginate foam scaffolds.

    PubMed

    Andersen, Therese; Markussen, Christine; Dornish, Michael; Heier-Baardson, Helene; Melvik, Jan Egil; Alsberg, Eben; Christensen, Bjørn E

    2014-02-01

    Essential cellular functions are often lost under culture in traditional two-dimensional (2D) systems. Therefore, biologically more realistic three-dimensional (3D) cell culture systems are needed that provide mechanical and biochemical cues which may otherwise be unavailable in 2D. For the present study, an alginate-based hydrogel system was used in which cells in an alginate solution were seeded onto dried alginate foams. A uniform distribution of NIH:3T3 and NHIK 3025 cells entrapped within the foam was achieved by in situ gelation induced by calcium ions integrated in the foam. The seeding efficiency of the cells was about 100% for cells added in a seeding solution containing 0.1-1.0% alginate compared with 18% when seeded without alginate. The NHIK 3025 cells were allowed to proliferate and form multi-cellular structures inside the transparent gel that were later vital stained and evaluated by confocal microscopy. Gels were de-gelled at different time points to isolate the multi-cellular structures and to determine the spheroid growth rate. It was also demonstrated that the mechanical properties of the gel could largely be varied through selection of type and concentration of the applied alginate and by immersing the already gelled disks in solutions providing additional gel-forming ions. Cells can efficiently be incorporated into the gel, and single cells and multi-cellular structures that may be formed inside can be retrieved without influencing cell viability or contaminating the sample with enzymes. The data show that the current system may overcome some limitations of current 3D scaffolds such as cell retrieval and in situ cell staining and imaging.

  18. Improved conditions for murine epidermal cell culture.

    PubMed

    Fischer, S M; Viaje, A; Harris, K L; Miller, D R; Bohrman, J S; Slaga, T J

    1980-02-01

    An improved method for cultivating newborn mouse epidermal cells has been developed that increases the longevity, epithelial nature and efficiency of cell-line establishment. The use of Super Medium, an enriched Waymouth's formulation, increased proliferation for long periods of time, as did incubation at 31 degrees C rather than 37 degrees C. The fetal bovine serum requirement was found to be reduced at the lower temperature. An increase in labeling indices was seen when epidermal growth factor (EGF) or the cyclic nucleotides were added and the presence of EGF receptors was determined. Of the prostaglandins (PG) examined, PGE1 and PGE2 produced the greatest increase in DNA synthesis. The PG precursors, arachidonic and 8,11,14-eicosatrienoic acid, were also greatly stimulatory. The use of a lethally irradiated 3T3 feeder layer at 31 degrees C proved superior in maintenance of an epithelial morphology. Subculturable cell lines were established much more readily and reproducibly in carcinogen-treated cultures grown under the improved conditions.

  19. Biolistic transformation of cotton embryogenic cell suspension cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation of cotton is highly dependent on the ability to regenerate fertile plants from transgenic cells through somatic embryogenesis. Induction of embryogenic cell cultures is genotype-dependant. However, once embryogenic cell cultures are available, they can be effectively used fo...

  20. Cholera toxin stimulation of human mammary epithelial cells in culture

    SciTech Connect

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial