Science.gov

Sample records for 2d color doppler

  1. Temporal enhancement of two-dimensional color doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.

    2016-03-01

    Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.

  2. Applications of Doppler Tomography in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  3. Color Doppler Imaging of Cardiac Catheters Using Vibrating Motors

    PubMed Central

    Reddy, Kalyan E.; Light, Edward D.; Rivera, Danny J.; Kisslo, Joseph A.; Smith, Stephen W.

    2010-01-01

    We attached a miniature motor rotating at 11,000 rpm onto the proximal end of cardiac electrophysiological (EP) catheters in order to produce vibrations at the tip which were then visualized by color Doppler on ultrasound scanners. We imaged the catheter tip within a vascular graft submerged in a water tank using the Volumetrics Medical Imaging 3D scanner, the Siemens Sonoline Antares 2D scanner, and the Philips ie33 3D ultrasound scanner with TEE probe. The vibrating catheter tip was visualized in each case though results varied with the color Doppler properties of the individual scanner. PMID:19514134

  4. Simultaneous 2D Doppler backscattering from edge turbulence

    NASA Astrophysics Data System (ADS)

    Thomas, David; Brunner, Kai; Freethy, Simon; Huang, Billy; Shevchenko, Vladimir; Vann, Roddy

    2015-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) diagnostic (previously at MAST and now at NSTX-U) actively probes the plasma edge using a wide (80 degree beam width) and broadband (10-34.5 GHz) beam. It digitizes the phase and amplitude of the Doppler backscattered signal using a receiving array of eight antennas which can be focused in any direction post shot to an angular range of 6-24 degree FWHM. This allows Doppler BackScattering (DBS) experiments to be conducted in every direction within the field of view simultaneously. This capability is unique to SAMI and is a novel way of conducting DBS experiments. SAMI has measured the magnetic pitch angle in the edge for the first time using a backscattering diagnostic. This is possible with simultaneous 2D DBS because the maximum backscattered power is perpendicular to the turbulence and turbulence is elongated along the magnetic field. SAMI has also studied the effect of NBI and the L-H transition on turbulent velocity, and turbulence suppression in the edge during H-mode. Initial results from all of these studies will be presented. This work is supported by the Engineering and Physical Sciences Research Council Grants EP/K504178 and EP/H016732.

  5. Color Doppler sonography in obstetrics and gynecology.

    PubMed

    Fleischer, Arthur C; Andreotti, Rochelle F

    2005-09-01

    This review aims to provide the reader with an overview of the present and future clinical applications in color Doppler sonography for the evaluation of vascularity and blood flow within the uterus (both gravid and nongravid), ovaries, fetus and placenta. The clinical use of color Doppler sonography has been demonstrated within many organ systems. Color Doppler sonography has become an integral part of cardiovascular imaging. Significant improvements have recently occurred, improving the visualization and evaluation of intra-organ vascularity, resulting from enhancements in delineation of tissue detail through electronic compounding and harmonics, as well as enhancements in signal processing of frequency- and/or amplitude-based color Doppler sonography. Spatial representation of vascularity can be improved by utilizing 3D and 4D (live 3D) processing. Greater sensitivity of color Doppler sonography to macro- and microvascular flow has provided improved anatomic and physiologic assessment throughout pregnancy and for pelvic organs. The potential use of contrast enhancement is also mentioned as a means to further differentiate benign from malignant ovarian lesions. The rapid development of these new sonographic techniques will continue to enlarge the scope of clinical applications in a variety of obstetric and gynecologic disorders.

  6. Scrotal inflammatory disease: color Doppler US findings.

    PubMed

    Horstman, W G; Middleton, W D; Melson, G L

    1991-04-01

    A study of 45 patients with 51 cases of hemiscrotal inflammatory disease was done to determine the color Doppler ultrasonographic appearance of scrotal inflammatory disorders. The diagnosis was ultimately established by means of appropriate response to antibiotic treatment (47 cases) or surgery (four cases). In all cases, there was evidence of hyperemia: an increased number and concentration of detectable vessels in the affected portion of the scrotum. In 17 cases, the gray scale images were normal, and the only evidence of inflammation was the presence of hypervascularity. Abnormally decreased epididymal vascular resistance was detected in 14 cases of epididymitis; abnormally decreased testicular vascular resistance was detected in six cases of orchitis. Spontaneous venous flow was present in 18 patients. The authors conclude that color Doppler can demonstrate the hyperemic response to scrotal inflammatory disease and that, in the proper clinical setting, it can supplement the gray scale findings and increase diagnostic confidence.

  7. Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system.

    PubMed

    Mariampillai, Adrian; Standish, Beau A; Munce, Nigel R; Randall, Cristina; Liu, George; Jiang, James Y; Cable, Alex E; Vitkin, I A; Yang, Victor X D

    2007-02-19

    We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images at 12 frames per second (fps). The gating technique allowed for ultra-high speed visualization of the blood flow pattern in the developing hearts of African clawed frog embryos (Xenopus laevis) at up to 1000 fps. In addition, four-dimensional (three spatial dimensions + temporal) Doppler imaging at 45 fps was demonstrated using this gating technique, producing detailed visualization of the complex cardiac motion and hemodynamics in a beating heart.

  8. Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system

    NASA Astrophysics Data System (ADS)

    Mariampillai, Adrian; Standish, Beau A.; Munce, Nigel R.; Randall, Cristina; Liu, George; Jiang, James Y.; Cable, Alex E.; Vitkin, I. A.; Yang, Victor X. D.

    2007-02-01

    We report a Doppler optical cardiogram gating technique for increasing the effective frame rate of Doppler optical coherence tomography (DOCT) when imaging periodic motion as found in the cardiovascular system of embryos. This was accomplished with a Thorlabs swept-source DOCT system that simultaneously acquired and displayed structural and Doppler images at 12 frames per second (fps). The gating technique allowed for ultra-high speed visualization of the blood flow pattern in the developing hearts of African clawed frog embryos (Xenopus laevis) at up to 1000 fps. In addition, four-dimensional (three spatial dimensions + temporal) Doppler imaging at 45 fps was demonstrated using this gating technique, producing detailed visualization of the complex cardiac motion and hemodynamics in a beating heart.

  9. [Color-Doppler semiology in transplanted kidney].

    PubMed

    Rivolta, R; Castagnone, D; Burdick, L; Mandelli, C; Mangiarotti, R

    1993-05-01

    Color-encoded duplex ultrasonography (CEDU) makes a more accurate technique in kidney graft monitoring by combining real-time US with pulsed Doppler studies of renal vasculature. It is a non-invasive and easy technique. Suitable to study the whole renal artery and vein, CEDU also allows the qualitative and quantitative assessment of the intrarenal vasculature and therefore the easy diagnosis of such vessel dysfunctions as arteriovenous fistulas following biopsy. Moreover, Doppler spectral analysis can be used to distinguish among different causes of renal allograft dysfunction--i.e. rejection, cyclosporine nephrotoxicity or acute tubular necrosis. The value of the resistive index for the differential diagnosis is discussed. CEDU allows a more reliable measurement of renal blood flow thanks to the more precise evaluation of renal artery diameter and mean flow velocity.

  10. Investigations of spectral resolution and angle dependency in a 2-D tracking Doppler method.

    PubMed

    Fredriksen, Tonje D; Avdal, Jorgen; Ekroll, Ingvild K; Dahl, Torbjorn; Lovstakken, Lasse; Torp, Hans

    2014-07-01

    An important source of error in velocity measurements from conventional pulsed wave (PW) Doppler is the angle used for velocity calibration. Because there are great uncertainties and interobserver variability in the methods used for Doppler angle correction in the clinic today, it is desirable to develop new and more robust methods. In this work, we have investigated how a previously presented method, 2-D tracking Doppler, depends on the tracking angle. A signal model was further developed to include tracking along any angle, providing velocity spectra which showed good agreement with both experimental data and simulations. The full-width at half-maximum (FWHM) bandwidth and the peak value of predicted power spectra were calculated for varying tracking angles. It was shown that the spectra have lowest bandwidth and maximum power when the tracking angle is equal to the beam-to-flow angle. This may facilitate new techniques for velocity calibration, e.g., by manually adjusting the tracking angle, while observing the effect on the spectral display. An in vitro study was performed in which the Doppler angles were predicted by the minimum FWHM and the maximum power of the 2-D tracking Doppler spectra for 3 different flow angles. The estimated Doppler angles had an overall error of 0.24° ± 0.75° when using the minimum FWHM. With an in vivo example, it was demonstrated that the 2-D tracking Doppler method is suited for measurements in a patient with carotid stenosis.

  11. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design.

  12. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  13. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images.

    PubMed

    Garcia, Damien; Del Alamo, Juan C; Tanne, David; Yotti, Raquel; Cortina, Cristina; Bertrand, Eric; Antoranz, José Carlos; Perez-David, Esther; Rieu, Régis; Fernandez-Aviles, Francisco; Bermejo, Javier

    2010-10-01

    Doppler echocardiography remains the most extended clinical modality for the evaluation of left ventricular (LV) function. Current Doppler ultrasound methods, however, are limited to the representation of a single flow velocity component. We thus developed a novel technique to construct 2D time-resolved (2D+t) LV velocity fields from conventional transthoracic clinical acquisitions. Combining color-Doppler velocities with LV wall positions, the cross-beam blood velocities were calculated using the continuity equation under a planar flow assumption. To validate the algorithm, 2D Doppler flow mapping and laser particle image velocimetry (PIV) measurements were carried out in an atrio-ventricular duplicator. Phase-contrast magnetic resonance (MR) acquisitions were used to measure in vivo the error due to the 2D flow assumption and to potential scan-plane misalignment. Finally, the applicability of the Doppler technique was tested in the clinical setting. In vitro experiments demonstrated that the new method yields an accurate quantitative description of the main vortex that forms during the cardiac cycle (mean error for vortex radius, position and circulation). MR image analysis evidenced that the error due to the planar flow assumption is close to 15% and does not preclude the characterization of major vortex properties neither in the normal nor in the dilated LV. These results are yet to be confirmed by a head-to-head clinical validation study. Clinical Doppler studies showed that the method is readily applicable and that a single large anterograde vortex develops in the healthy ventricle while supplementary retrograde swirling structures may appear in the diseased heart. The proposed echocardiographic method based on the continuity equation is fast, clinically-compliant and does not require complex training. This technique will potentially enable investigators to study of additional quantitative aspects of intraventricular flow dynamics in the clinical setting by

  14. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses a spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design. A parallel motor configuration was used to minimize the amount of space wasted inside the probe case while minimizing the overall case dimensions. The distance from the front edge of the crystal to the edge of the case was also minimized to allow positioning of the probe very close to the ear on the temporal lobe. The mechanical probe is able to achieve a +/-20deg tip and tilt with smooth repeatable action in a very compact package. The enclosed probe is about 7 cm long, 4 cm wide, and 1.8 cm tall. The device is compact, hands-free, and can be adjusted via an innovative touchscreen. Positioning of the probe to the head is performed via conventional transducer gels and pillows. This device is amendable to having advanced software, which could intelligently focus and optimize the TCD signal.

  15. Effects of transducer, velocity, Doppler angle, and instrument settings on the accuracy of color Doppler ultrasound.

    PubMed

    Stewart, S F

    2001-04-01

    The accuracy of a commercial color Doppler ultrasound (US) system was assessed in vitro using a rotating torus phantom. The phantom consisted of a thin rubber tube filled with a blood-mimicking fluid, joined at the ends to form a torus. The torus was mounted on a disk suspended in water, and rotated at constant speeds by a motor. The torus fluid was shown in a previous study to rotate as a solid body, so that the actual fluid velocity was dependent only on the motor speed and sample volume radius. The fluid velocity could, thus, be easily compared to the color Doppler-derived velocity. The effects of instrument settings, velocity and the Doppler angle was assessed in four transducers: a 2.0-MHz phased-array transducer designed for cardiac use, a 4.0-MHz curved-array transducer designed for general thoracic use, and two linear transducers designed for vascular use (one 4.0 MHz and one 6.0 MHz). The color Doppler accuracy was found to be significantly dependent on the transducer used, the pulse-repetition frequency and wall-filter frequency, the actual fluid velocity and the Doppler angle (p < 0.001 by analysis of variance). In particular, the phased array and curved array were observed to be significantly more accurate than the two linear arrays. The torus phantom was found to provide a sensitive measure of color Doppler accuracy. Clinicians need to be aware of these effects when performing color Doppler US exams.

  16. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  17. Grayscale and Color Doppler Features of Testicular Lymphoma

    PubMed Central

    Bertolotto, Michele; Derchi, Lorenzo E.; Secil, Mustafa; Dogra, Vikram; Sidhu, Paul S.; Clements, Richard; Freeman, Simon; Grenier, Nicolas; Mannelli, Lorenzo; Ramchandani, Parvati; Cicero, Calogero; Abete, Luca; Bussani, Rossana; Rocher, Laurence; Spencer, John; Tsili, Athina; Valentino, Massimo; Pavlica, Pietro

    2016-01-01

    Pooled data from 16 radiology centers were retrospectively analyzed to seek patients with pathologically proven testicular lymphoma and grayscale and color Doppler images available for review. Forty-three cases were found: 36 (84%) primary and 7 (16%) secondary testicular lymphoma. With unilateral primary lymphoma, involvement was unifocal (n = 10), multifocal (n = 11), or diffuse (n = 11). Synchronous bilateral involvement occurred in 6 patients. Color Doppler sonography showed normal testicular vessels within the tumor in 31 of 43 lymphomas (72%). Testicular lymphoma infiltrates through the tubules, preserving the normal vascular architecture of the testis. Depiction of normal testicular vessels crossing the lesion is a useful adjunctive diagnostic criterion. PMID:26014335

  18. Adaptive clutter filter in 2-D color flow imaging based on in vivo I/Q signal.

    PubMed

    Zhou, Xiaoming; Zhang, Congyao; Liu, Dong C

    2014-01-01

    Color flow imaging has been well applied in clinical diagnosis. For the high quality color flow images, clutter filter is important to separate the Doppler signals from blood and tissue. Traditional clutter filters, such as finite impulse response, infinite impulse response and regression filters, were applied, which are based on the hypothesis that the clutter signal is stationary or tissue moves slowly. However, in realistic clinic color flow imaging, the signals are non-stationary signals because of accelerated moving tissue. For most related papers, simulated RF signals are widely used without in vivo I/Q signal. Hence, in this paper, adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, was proposed based on in vivo carotid I/Q signal in realistic color flow imaging. To get the best performance, the optimal polynomial order of polynomial regression filter and the optimal polynomial order for estimation of instantaneous clutter frequency respectively were confirmed. Finally, compared with the mean blood velocity and quality of 2-D color flow image, the experiment results show that adaptive polynomial regression filter, which is down mixing with instantaneous clutter frequency, can significantly enhance the mean blood velocity and get high quality 2-D color flow image.

  19. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  20. Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry

    NASA Astrophysics Data System (ADS)

    Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.

    2016-11-01

    To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.

  1. 2D full wave modeling for a synthetic Doppler backscattering diagnostic

    SciTech Connect

    Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.

    2012-10-15

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  2. Color-flow Doppler sonography in Graves disease: "thyroid inferno".

    PubMed

    Ralls, P W; Mayekawa, D S; Lee, K P; Colletti, P M; Radin, D R; Boswell, W D; Halls, J M

    1988-04-01

    Graves disease is a common diffuse abnormality of the thyroid gland usually characterized by thyrotoxicosis. We performed color-flow Doppler sonography in 16 patients with Graves disease and compared the results with those in 15 normal volunteers and 14 patients with other thyroid diseases (eight with multinodular goiter, four with focal masses, and two with papillary thyroid carcinoma). All 16 Graves disease patients exhibited a pulsatile pattern we call "thyroid inferno." This pattern consists of multiple small areas of intrathyroidal flow seen diffusely throughout the gland in both systole and diastole. In systole, both high-velocity flow (color coded white) and lower velocity flow (color coded red and blue) were noted. In diastole, fewer areas of flow and lower velocity flow were noted. Patients with Graves disease also exhibited color flow around the periphery of the gland. The inferno pattern did not occur in normal subjects or in patients with other thyroid diseases. On occasion, focal areas of intrathyroidal flow were detected in patients with multinodular goiter and focal thyroid masses. High-resolution gray-scale images did not show the small vascular channels from which the flow signal originated. Color-flow Doppler sonography shows promise as a cost-effective, noninvasive technique for diagnosing Graves disease.

  3. Adaptive clutter rejection for ultrasound color Doppler imaging

    NASA Astrophysics Data System (ADS)

    Yoo, Yang Mo; Managuli, Ravi; Kim, Yongmin

    2005-04-01

    We have developed a new adaptive clutter rejection technique where an optimum clutter filter is dynamically selected according to the varying clutter characteristics in ultrasound color Doppler imaging. The selection criteria have been established based on the underlying clutter characteristics (i.e., the maximum instantaneous clutter velocity and the clutter power) and the properties of various candidate clutter filters (e.g., projection-initialized infinite impulse response and polynomial regression). We obtained an average improvement of 3.97 dB and 3.27 dB in flow signal-to-clutter-ratio (SCR) compared to the conventional and down-mixing methods, respectively. These preliminary results indicate that the proposed adaptive clutter rejection method could improve the sensitivity and accuracy in flow velocity estimation for ultrasound color Doppler imaging. For a 192 x 256 color Doppler image with an ensemble size of 10, the proposed method takes only 57.2 ms, which is less than the acquisition time. Thus, the proposed method could be implemented in modern ultrasound systems, while providing improved clutter rejection and more accurate velocity estimation in real time.

  4. Sevoflurane Used for Color Doppler Ultrasound Examination in Children.

    PubMed

    Fan, Conghai; Zhang, Fengchao; Huang, Xiaomei; Wen, Cheng; Shan, Chengjing

    2015-05-01

    The objective of this study is to investigate the feasibility of sevoflurane inhalation in pediatric color doppler ultrasound examination. In this study, 30 cases of children under 1 year were selected. They were all I or II levels according to American Society of Anesthesiology. Children with severe cyanotic congenital heart disease or severe pneumonia were excluded. All the children received anesthesia with sevoflurane. The University of Michigan Sedation Scale was assessed and bispectral index (BIS) was recorded before induction (T0), after induction (T1), when maintaining (T2), and when waking-up (T3). Blood pressure and heart rate were monitored during the color doppler ultrasound examination, the time to receive sedation examination and anesthesia recovery time were also recorded. (1) Score for UMSS was zero at T0 and 3 at T1; (2) BIS value was 93.18 ± 2.94 at T0 and decreased to 87.6 ± 3.9 at T1; (3) Blood pressure or heart rate did not decline obviously; (4) The time to receive sedation examination was 46.4 ± 13.1 s and anesthesia recovery time was 7.8 ± 5.3 min. In conclusion, sevoflurane can be used in pediatric color doppler ultrasound examination safely and effectively.

  5. Development of a novel 2D color map for interactive segmentation of histological images

    PubMed Central

    Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H.; Wang, May D.

    2016-01-01

    We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method’s results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.

  6. Role of Ultrasound with Color Doppler in Acute Scrotum Management

    PubMed Central

    Agrawal, Alka M.; Tripathi, Prem Siddharth; Shankhwar, Amit; Naveen, C.

    2014-01-01

    Background and Objective: An acute scrotum is defined as acute pain with or without scrotal swelling, may be accompanied by local signs or general symptoms. Acute scrotal pain is a medical emergency. Depending on cause, the management is entirely different. Torsion of testis and strangulated hernia are surgical emergency; whereas, epididymo-orchitis is treated by medicines. Testicular trauma and obstructed hernia can be differentiated by taking history from patient. Physical examination adds only a little information. Color Doppler ultrasound (US) is the modality of choice to differentiate testicular torsion from inflammatory conditions and can thus help in avoiding unnecessary surgical explorations. Subjects and Methods: A study on 50 patients was conducted who were referred with history of acute scrotal pain to our department between January 2013 and January 2014. Trauma and scrotal mass were excluded from the study. The clinical presentation, outcome, and US results were analyzed. Results: Color Doppler sonography yielded a positive and negative predictive value (PPV and NPV) of 100% each for torsion, whereas, 93.9 and 70.6% for epididymo-orchitis, respectively; a sensitivity and specificity of 100% for torsion, whereas, for epididymo-orchitis it was found to be 86.1 and 85.7%, respectively. In cases of incomplete or early torsion, some residual perfusion may be detected leading to false-negative results. Conclusion: We therefore conclude that color Doppler sonography can reliably rule out testicular torsion and can thus help in avoiding unnecessary surgical explorations. Hence, it can significantly improve outcome and decrease morbidity of patient. It is an accurate, rapid, nonexpensive, nonionizing, important adjunct to clinical assessment of scrotum. PMID:25657954

  7. Digital storage and analysis of color Doppler echocardiograms

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Thomas, J. D.

    1997-01-01

    Color Doppler flow mapping has played an important role in clinical echocardiography. Most of the clinical work, however, has been primarily qualitative. Although qualitative information is very valuable, there is considerable quantitative information stored within the velocity map that has not been extensively exploited so far. Recently, many researchers have shown interest in using the encoded velocities to address the clinical problems such as quantification of valvular regurgitation, calculation of cardiac output, and characterization of ventricular filling. In this article, we review some basic physics and engineering aspects of color Doppler echocardiography, as well as drawbacks of trying to retrieve velocities from video tape data. Digital storage, which plays a critical role in performing quantitative analysis, is discussed in some detail with special attention to velocity encoding in DICOM 3.0 (medical image storage standard) and the use of digital compression. Lossy compression can considerably reduce file size with minimal loss of information (mostly redundant); this is critical for digital storage because of the enormous amount of data generated (a 10 minute study could require 18 Gigabytes of storage capacity). Lossy JPEG compression and its impact on quantitative analysis has been studied, showing that images compressed at 27:1 using the JPEG algorithm compares favorably with directly digitized video images, the current goldstandard. Some potential applications of these velocities in analyzing the proximal convergence zones, mitral inflow, and some areas of future development are also discussed in the article.

  8. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  9. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  10. Interactive Region Matching for 2D Animation Coloring Based on Feature's Variation

    NASA Astrophysics Data System (ADS)

    Garcia Trigo, Pablo; Johan, Henry; Imagire, Takashi; Nishita, Tomoyuki

    We propose an interactive method for assisting the coloring process of 2D hand-drawn animated cartoons. It segments input frames (each hand-drawn drawing of the cartoon) into regions (areas surrounded by closed lines. E.g. the head, the hands) extracts their features, and then matches the regions between frames, allowing the user to fix coloring mistakes interactively. Its main contribution consists in storing matched regions in lists called “chains” for tracking how the region features vary along the animation. Consequently, the matching rate is improved and the matching mistakes are reduced, thus reducing the total effort needed until having a correctly colored cartoon.

  11. Color Doppler ultrasound of the hand: observations on clinical utility in rheumatoid arthritis.

    PubMed

    Saadeh, Constantine; Gaylor, Patrick; Lee, Doohi; Malacara, Jan; Gaylor, Michael

    2004-02-01

    The use of ultrasound with color Doppler in the evaluation of rheumatoid arthritis was followed in 25 patients with joint complaints. Small joint ultrasound of the metacarpophalangeal joints (MCPs) as well as the wrists was performed with supplementation by color Doppler. In addition, 6 patients were followed for at least 3 months after start of treatment of rheumatoid arthritis using the same technique. In patients with what appeared to be definite rheumatoid arthritis, ultrasound supported this diagnosis as evidenced by the finding of cortical defects, extensor tendon sheath thickening, and synovial proliferation. Increased activity by color Doppler ultrasonography was the most common finding. Significant decrease in color Doppler activity was noted in the 6 patients who were followed up after 3 months of therapy with disease-modifying agents. Therefore, the use of ultrasound with color Doppler could aid in the diagnosis and follow up of patients with rheumatoid arthritis.

  12. Bubble-induced Color Doppler Feedback for Histotripsy Tissue Fractionation

    PubMed Central

    Miller, Ryan M.; Zhang, Xi; Maxwell, Adam; Cain, Charles; Xu, Zhen

    2016-01-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with 2-cycle histotripsy pulses at > 30 MPa using a 500 kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression. PMID:26863659

  13. Blood flow velocity in monocular retinoblastoma assessed by color doppler

    PubMed Central

    Bonanomi, Maria Teresa B C; Saito, Osmar C; de Lima, Patricia Picciarelli; Bonanomi, Roberta Chizzotti; Chammas, Maria Cristina

    2015-01-01

    OBJECTIVE: To analyze the flow of retrobulbar vessels in retinoblastoma by color Doppler imaging. METHODS: A prospective study of monocular retinoblastoma treated by enucleation between 2010 and 2014. The examination comprised fundoscopy, magnetic resonance imaging, ultrasonography and color Doppler imaging. The peak blood velocities in the central retinal artery and central retinal vein of tumor-containing eyes (tuCRAv and tuCRVv, respectively) were assessed. The velocities were compared with those for normal eyes (nlCRAv and nlCRVv) and correlated with clinical and pathological findings. Tumor dimensions in the pathological sections were compared with those in magnetic resonance imaging and ultrasonography and were correlated with tuCRAv and tuCRVv. In tumor-containing eyes, the resistivity index in the central retinal artery and the pulse index in the central retinal vein were studied in relation to all variables. RESULTS: Eighteen patients were included. Comparisons between tuCRAv and nlCRAv and between tuCRVv and nlCRVv revealed higher velocities in tumor-containing eyes (p<0.001 for both), with a greater effect in the central retinal artery than in the central retinal vein (p=0.024). Magnetic resonance imaging and ultrasonography measurements were as reliable as pathology assessments (p=0.675 and p=0.375, respectively). A positive relationship was found between tuCRAv and the tumor volume (p=0.027). The pulse index in the central retinal vein was lower in male patients (p=0.017) and in eyes with optic nerve invasion (p=0.0088). CONCLUSIONS: TuCRAv and tuCRVv are higher in tumor-containing eyes than in normal eyes. Magnetic resonance imaging and ultrasonography measurements are reliable. The tumor volume is correlated with a higher tuCRAv and a reduced pulse in the central retinal vein is correlated with male sex and optic nerve invasion. PMID:26735219

  14. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  15. Influence of the Coanda effect on color Doppler jet area and color encoding. In vitro studies using color Doppler flow mapping.

    PubMed

    Chao, K; Moises, V A; Shandas, R; Elkadi, T; Sahn, D J; Weintraub, R

    1992-01-01

    We studied surface adherence and its effects on color Doppler jet areas and color encoding in an in vitro model with a noncompliant receiving chamber into which a steady flow jet was directed parallel to either a straight or a curved surface adjacent to and 4 mm away from the inflow orifice (1.50 mm2) with the control condition being a free jet matched for flow rates and driving pressures. Jets were imaged perpendicular to the plane of the surface, the plane in which most clinical images of jet-surface interactions are obtained. Ten different flow rates ranging from 0.13 to 0.30 l/min were used. Surface-adherent jet areas were smaller than control jets for every driving pressure-volume combination (paired t test, p less than 0.01). Computer analysis of color Doppler images showed more green and blue (reverse flow) pixels on the surface side of the adherent jets than the control jets (p less than 0.05), suggesting that viscous energy loss and flow deceleration and reversal play a role in the jet-surface interaction. Analysis of variance demonstrated that linear regression slopes of flow rate versus jet area for surface jets were lower (slopes, 11-21 cm2/l/min; r = 0.95-0.97) than those for the control (slope, 33 cm2/l/min; r = 0.97) (p less than 0.0001). Surface adherence (Coanda effect) influences jet size and color encoding, causing smaller color Doppler jet areas and greater variance and reverse velocity encoding.

  16. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    PubMed

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  17. Color Doppler imaging of the retrobulbar vessels in diabetic retinopathy.

    PubMed

    Pauk-Domańska, Magdalena; Walasik-Szemplińska, Dorota

    2014-03-01

    Diabetes is a metabolic disease characterized by elevated blood glucose level due to impaired insulin secretion and activity. Chronic hyperglycemia leads to functional disorders of numerous organs and to their damage. Vascular lesions belong to the most common late complications of diabetes. Microangiopathic lesions can be found in the eyeball, kidneys and nervous system. Macroangiopathy is associated with coronary and peripheral vessels. Diabetic retinopathy is the most common microangiopathic complication characterized by closure of slight retinal blood vessels and their permeability. Despite intensive research, the pathomechanism that leads to the development and progression of diabetic retinopathy is not fully understood. The examinations used in assessing diabetic retinopathy usually involve imaging of the vessels in the eyeball and the retina. Therefore, the examinations include: fluorescein angiography, optical coherence tomography of the retina, B-mode ultrasound imaging, perimetry and digital retinal photography. There are many papers that discuss the correlations between retrobulbar circulation alterations and progression of diabetic retinopathy based on Doppler sonography. Color Doppler imaging is a non-invasive method enabling measurements of blood flow velocities in small vessels of the eyeball. The most frequently assessed vessels include: the ophthalmic artery, which is the first branch of the internal carotid artery, as well as the central retinal vein and artery, and the posterior ciliary arteries. The analysis of hemodynamic alterations in the retrobulbar vessels may deliver important information concerning circulation in diabetes and help to answer the question whether there is a relation between the progression of diabetic retinopathy and the changes observed in blood flow in the vessels of the eyeball. This paper presents the overview of literature regarding studies on blood flow in the vessels of the eyeball in patients with diabetic

  18. [Graves' disease: ultrasonographic, color Doppler and histological aspects].

    PubMed

    Messina, G; Viceconti, N; Trinti, B

    1997-11-01

    The aim of the present work was to study the relationship between thyroid low echogenicity, the thyroid blood flow by color-Doppler (CD) and histological features in patients with Graves' disease (GD). Thyroid ultrasonography and CD was performed on 28 patients with GD. In 5 patients has been compared CD with histology. The thyroid volume was higher in 100% of patients with GD at the onset rather than in euthyroidism. Diffuse hypoechogenicity of the thyroid was discovered in 100% of patients with GD at the onset and it persisted in 57.1% of patients that became euthyroid after therapy. Qualitative CD resulted in different patterns that were classified as follow: pattern A ("thyroid inferno") in 17 patients (60.7%); pattern B (mildly increased of parenchymal blood flow) in 11 patients (39.3%). In the 5 histological proven cases, in the pattern A (3 cases) there was a diffuse microfollicular hyperplasia with functional activation notes. There was lymphocytic infiltration. While in the pattern B (two cases) there were a non-follicular hypercellular nodule with pseudocapsule and rare colloid. We conclude that there are two different histological types with different CD patterns in GD.

  19. Enhanced Doppler reflectometry power response: physical optics and 2D full wave modelling

    NASA Astrophysics Data System (ADS)

    Pinzón, J. R.; Happel, T.; Blanco, E.; Conway, G. D.; Estrada, T.; Stroth, U.

    2017-03-01

    The power response of a Doppler reflectometer is investigated by means of the physical optics model; a simple model which considers basic scattering processes at the reflection layer. Apart from linear and saturated scattering regimes, non-linear regimes with an enhanced backscattered power are found. The different regimes are characterized and understood based on analytical calculations. The power response is also studied with two-dimensional full wave simulations, where the enhanced backscattered power regimes are also found in qualitative agreement with the physical optics results. The ordinary and extraordinary modes are compared for the same angle of incidence, with the conclusion that the ordinary mode is better suited for Doppler reflectometry turbulence level measurements due to the linearity of its response. The scattering efficiency is studied and a first approximation to describe it is proposed. At the end, the application of the physical optics results to experimental data analysis is discussed. In particular, a formula to assess the linearity of Doppler reflectometry measurements is provided.

  20. Quantitative Evaluation of Vascularity Using 2-D Power Doppler Ultrasonography May Not Identify Malignancy of the Thyroid.

    PubMed

    Yoon, Jung Hyun; Shin, Hyun Joo; Kim, Eun-Kyung; Moon, Hee Jung; Roh, Yun Ho; Kwak, Jin Young

    2015-11-01

    The purpose of this study was to evaluate the usefulness of a quantitative vascular index in predicting thyroid malignancy. A total of 1309 thyroid nodules in 1257 patients (mean age: 50.2 y, range: 18-83 y) were included. The vascularity pattern and vascular index (VI) measured by quantification software for each nodule were obtained from 2-D power Doppler ultrasonography (US). Gray-scale US + vascularity pattern was compared with gray-scale US + VI with respect to diagnostic performance. Of the 1309 thyroid nodules, 927 (70.8%) were benign and 382 (29.2%) were malignant. The area under the receiver operating characteristics curve (Az) for gray-scale US (0.82) was significantly higher than that for US combined with vascularity pattern (0.77) or VI (0.70, all p < 0.001). Quantified VIs were higher in benign nodules, but did not improve the performance of 2-D US in diagnosing thyroid malignancy.

  1. Using rotation for steerable needle detection in 3D color-Doppler ultrasound images.

    PubMed

    Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne

    2015-08-01

    This paper demonstrates a new way to detect needles in 3D color-Doppler volumes of biological tissues. It uses rotation to generate vibrations of a needle using an existing robotic brachytherapy system. The results of our detection for color-Doppler and B-Mode ultrasound are compared to a needle location reference given by robot odometry and robot ultrasound calibration. Average errors between detection and reference are 5.8 mm on needle tip for B-Mode images and 2.17 mm for color-Doppler images. These results show that color-Doppler imaging leads to more robust needle detection in noisy environment with poor needle visibility or when needle interacts with other objects.

  2. Comparing Color Doppler Ultrasonography and Angiography to Assess Traumatic Arterial Injuries of the Extremities

    PubMed Central

    Pezeshki Rad, Masoud; Mohammadifard, Mahyar; Ravari, Hassan; Farrokh, Donya; Ansaripour, Emad; Saremi, Elena

    2015-01-01

    Background: Traumatic events are one of the major causes of arterial injuries. Physical examination is not a good predictor of the extent of injuries and arteriography is considered as the gold standard for this purpose. In the recent years, noninvasive modalities are increasingly replacing diagnostic arteriography. Color Doppler ultrasonography (USG) is an excellent method to investigate arterial diseases. Objectives: The present study aimed to evaluate the diagnostic value of color Doppler USG compared to conventional angiography in traumatic arterial injuries of extremities. Patients and Methods: Seventy-five patients with extremity trauma suspicious for arterial injury were examined by color Doppler USG just before angiography. Doppler pattern and flow states were assessed, then angiography was performed. The results of duplex USG were compared with angiography. Results: Color Doppler USG had a sensitivity of 95% and specificity of 98% in diagnosis of arterial injury. Positive and negative predictive values of Doppler USG were 92.5% and 94.2%, respectively. Conclusions: Color Doppler USG can be used as a reliable modality with acceptable sensitivity and specificity values to screen hemodynamically stable patients with limb trauma suspicious for arterial injury. PMID:25785180

  3. Localization of needle tip with color doppler during pericardiocentesis: In vitro validation and initial clinical application

    NASA Technical Reports Server (NTRS)

    Armstrong, G.; Cardon, L.; Vilkomerson, D.; Lipson, D.; Wong, J.; Rodriguez, L. L.; Thomas, J. D.; Griffin, B. P.

    2001-01-01

    This study evaluates a new device that uses color Doppler ultrasonography to enable real-time image guidance of the aspirating needle, which has not been possible until now. The ColorMark device (EchoCath Inc, Princeton, NJ) induces high-frequency, low-amplitude vibrations in the needle to enable localization with color Doppler. We studied this technique in 25 consecutive patients undergoing pericardiocentesis, and in vitro, in a urethane phantom with which the accuracy of color Doppler localization of the needle tip was compared with that obtained by direct measurement. Tip localization was excellent in vitro; errors axial to the ultrasound beam (velocity Doppler -0.13 +/- 0.90 mm, power Doppler -0.05 +/- 1.7 mm) were less than lateral errors (velocity -0.36 +/- 1.8 mm, power -0.02 +/- 2.8 mm). In 18 of 25 patients, the needle was identified and guided into the pericardial space with the ColorMark technique, and it allowed successful, uncomplicated drainage of fluid. Initial failures were the result of incorrect settings on the echocardiographic machine and inappropriate combinations of the needle puncture site and imaging window. This study demonstrates a novel color Doppler technique that is highly accurate at localizing a needle tip. The technique is feasible for guiding pericardiocentesis. Further clinical validation of this technique is required.

  4. Deconvolution of 2D coincident Doppler broadening spectroscopy using the Richardson Lucy algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, J. D.; Zhou, T. J.; Cheung, C. K.; Beling, C. D.; Fung, S.; Ng, M. K.

    2006-05-01

    Coincident Doppler Broadening Spectroscopy (CDBS) measurements are popular in positron solid-state studies of materials. By utilizing the instrumental resolution function obtained from a gamma line close in energy to the 511 keV annihilation line, it is possible to significantly enhance the quality of the CDBS spectra using deconvolution algorithms. In this paper, we compare two algorithms, namely the Non-Negativity Least Squares (NNLS) regularized method and the Richardson-Lucy (RL) algorithm. The latter, which is based on the method of maximum likelihood, is found to give superior results to the regularized least-squares algorithm and with significantly less computer processing time.

  5. Doppler Tomography in 2D and 3D of the X-ray Binary Cyg X-1 for June 2007

    NASA Astrophysics Data System (ADS)

    Sharova, O. I.; Agafonov, M. I.; Karitskaya, E. A.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar, A. V.

    2012-04-01

    The 2D and 3D Doppler tomograms of X-ray binary system Cyg X-1 (V1357 Cyg) were reconstructed from spectral data for the line HeII 4686Å obtained with 2-m telescope of the Peak Terskol Observatory (Russia) and 2.1-m telescope of the Mexican National Observatory in June, 2007. Information about gas motions outside the orbital plane, using all of the three velocity components Vx, Vy, Vz, was obtained for the first time. The tomographic reconstruction was carried out for the system inclination angle of 45°. The equal resolution (50 × 50 × 50 km/s) is realized in this case, in the orbital plane (Vx, Vy) and also in the perpendicular direction Vz. The checkout tomograms were realized also for the inclination angle of 40° because of the angle uncertainty. Two versions of the result showed no qualitative discrepancy. Details of the structures revealed by the 3D Doppler tomogram were analyzed.

  6. Noninvasive monitoring of myocardial function after surgical and cytostatic therapy in a peritoneal metastasis rat model: assessment with tissue Doppler and non-Doppler 2D strain echocardiography

    PubMed Central

    Hartmann, Jens; Knebel, Fabian; Eddicks, Stephan; Beling, Mark; Grohmann, Andrea; Panda, Alexander; Jacobi, Christoph A; Müller, Joachim M; Wernecke, Klaus-Dieter; Baumann, Gert; Borges, Adrian C

    2007-01-01

    Objective We sought to evaluate the impact of different antineoplastic treatment methods on systolic and diastolic myocardial function, and the feasibility estimation of regional deformation parameters with non-Doppler 2D echocardiography in rats. Background The optimal method for quantitative assessment of global and regional ventricular function in rats and the impact of complex oncological multimodal therapy on left- and right-ventricular function in rats remains unclear. Methods 90 rats after subperitoneal implantation of syngenetic colonic carcinoma cells underwent different onclogical treatment methods and were diveded into one control group and five treatment groups (with 15 rats in each group): group 1 = control group (without operation and without medication), group 2 = operation group without additional therapy, group 3 = combination of operation and photodynamic therapy, group 4 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with mitomycine, and group 5 = operation in combination with hyperthermic intraoperative peritoneal chemotherapy with gemcitabine, group 6 = operation in combination with taurolidin i.p. instillation. Echocardiographic examination with estimation of wall thickness, diameters, left ventricular fractional shortening, ejection fraction, early and late diastolic transmitral and myocardial velocities, radial and circumferential strain were performed 3–4 days after therapy. Results There was an increase of LVEDD and LVESD in all groups after the follow-up period (P = 0.0037). Other LV dimensions, FS and EF as well as diastolic mitral filling parameters measured by echocardiography were not significantly affected by the different treatments. Values for right ventricular dimensions and function remained unchanged, whereas circumferential 2D strain of the inferior wall was slightly, but significantly reduced under the treatment (-18.1 ± 2.5 before and -16.2 ± 2.9 % after treatment; P = 0.001) without

  7. [Echo-color Doppler in the study of hypothyroidism in the adult].

    PubMed

    Lagalla, R; Caruso, G; Benza, I; Novara, V; Calliada, F

    1993-09-01

    Color-Doppler US was performed on 20 patients with sub-clinic hypothyroidism which had been confirmed by laboratory tests. In all cases, color-Doppler US showed increased parenchymal flow, whose semiology was similar to the one known as "thyroid inferno" and currently associated, in the literature, with diffuse hyperfunction conditions. Quantitative measurements yielded no further element for differential diagnosis, while showing high flow speeds which were similar to those in hyperfunction. On the basis of consequent physiopathologic considerations, hypervascularization, as observed in hypothyroidism, is likely to be referred to the hypertrophic action of TSH, which was reported as high in all patients. In conclusion, the color-Doppler "thyroid inferno" pattern, which has been to date considered as specific of thyroid hyperfunction, has lost part of its diagnostic specificity, and further investigation--e.g. hormonal titers, scintigraphy--is needed for an unquestionable diagnosis to be made.

  8. Color-Doppler US features of a pyogenic granuloma of the upper dorsum tongue.

    PubMed

    Cantisani, Vito; Del Vecchio, Alessandro; Fioravanti, Eloisa; Romeo, Umberto; D'Ambrosio, Ferdinando

    2016-03-01

    The diagnosis of oral lesions is based on clinical history, clinical examination and imaging exams. Different imaging modalities are available for the diagnosis and follow-up of these lesions such as computed tomography, magnetic resonance imaging, color-Doppler ultrasound, angiography and positron emission tomography. To date, color-Doppler ultrasound is considered the first-line imaging approach since it provides a non-invasive, cost-effective, real-time evaluation of oral anomalies. It provides both morphological and vascular information which are useful to determine the best therapeutic options. Differential diagnosis of a bleeding lobular mass of the tongue is, however, not always easy and includes several vascular and non-vascular lesions. We present herein a case of pyogenic granuloma of the tongue that at Color-Doppler US appeared as hypervascular lesion.

  9. Color Doppler sonography in the study of chronic ischemic nephropathy.

    PubMed

    Meola, M; Petrucci, I

    2008-06-01

    In western countries, the risk of cardiovascular disease has increased considerably in recent decades. This trend has been paralleled by an increase in cases of atherosclerotic renal disease, which is related to the improved prognosis of cardiovascular diseases, aging, and the increasing mean age of the general population. It is reasonable to expect that in the near future, there will be a sharp increase in the number of elderly patients with atherosclerotic vascular disease in chronic dialysis programs. The result will be a dramatic rise in the social and economic costs of dialysis that could constitute a true clinical emergency. In this epidemiologic scenario, one of the most important targets of 21st century nephrology will be the early diagnosis of chronic ischemic nephropathy and the development of new and more effective strategies for its treatment.Color Doppler (CD) ultrasonography has displayed high sensitivity, specificity, and positive and negative predictive values in the diagnosis of this disease in selected population, making it an ideal tool for use in screening programs. Eligibility for screening should be based on clinical criteria. For the most part, it will be aimed at adults (especially those who are elderly) with atherosclerotic vascular disease involving multiple districts and chronic kidney disease (CKD), stage 2-3, in the absence of a documented history of renal disease. In these patients, hypertension may be a secondary manifestation or a symptom of the ischemic nephropathy itself. The objectives of sonographic screening should be (1) to identify subjects in the population at risk who are affected by stenosis of the main renal artery (RAS); (2) to identify and characterize patients without RAS who have chronic ischemic nephropathy caused by nephroangiosclerosis and/or atheroembolic disease. The former group will require second-level diagnostic studies or angioplasty with stenting; the latter can be managed conservatively. The most important

  10. Management of pseudoaneurysm of the leg: is Color Doppler US enough?

    PubMed

    Pagliariccio, G; Catalini, R; Giantomassi, L; Angelini, A

    2010-06-01

    The authors describe two clinical cases showing that Color Doppler Ultrasonography (US) examination is effective and sufficient in the presence of a clinical suspicion of pseudoaneurysm. In cases of iatrogenic damage and post-traumatic lesions, US provides an easy and accurate diagnosis depicting the location and the morphology of the false aneurysm. The patient can thus be referred to appropriate treatment without undergoing further diagnostic examinations. Moreover, regardless of the performed treatment, Color Doppler US is an efficient non-invasive diagnostic tool in the follow-up.

  11. Green tagging in displaying color Doppler aliasing: a comparison to standard color mapping in renal artery stenosis.

    PubMed

    Gao, Jing; Mennitt, Kevin; Belfi, Lily; Zheng, Yuan-Yi; Chen, Zong; Rubin, Jonathan M

    2013-11-01

    To quantitatively assess the contrast-to-noise ratio (CNR) of green tagging and standard color flow images in displaying fast flow velocity, we retrospectively reviewed 20 cases of hemodynamically significant renal artery stenosis (RAS) detected by renal color Doppler ultrasound and confirmed with digital subtraction angiography. At the site of RAS, blood flow with high velocity that appeared as aliasing on color flow images was computationally analyzed with both green tagging and standard color mapping. To assess the difference in the CNR between normal background flow and the aliased signal as a function of visualizing aliasing between the two color mappings, we used GetColorpixels (Chongqing Medical University, Chongqing, China) to count the values in the color channels after segmenting color pixels from gray-scale pixels. We then calculated the CNR in each color channel-red, green, and blue (RGB)--in the aliasing region on green tagging and standard color mapping. The CNRs in the red, green and blue channels were 0.35 ± 0.44, 1.11 ± 0.41 and 0.51 ± 0.19, respectively, on standard color mapping, and 0.97 ± 0.80, 4.01 ± 1.36 and 0.64 ± 0.29, respectively, on green tagging. We used a single-factor analysis of variance and two-tailed t-test to assess the difference in CNR in each color channel between the two color mappings at the site of RAS. With these comparisons, there was no significant difference in the CNR in the red or blue channel between green tagging and standard color mapping (p > 0.05). However, there was a statistically significant difference in the CNR in the green channel between the two color mappings (p = 0.00019). Furthermore, the CNR measured in the green channel on the green tagging image was significantly higher than the CNRs in all other color channels on both color mapping images (p = 0.000). Hence, we conclude that green tagging has significantly higher visibility as a function of high-velocity flow than standard color mapping. The

  12. Effect of scanline orientation on ventricular flow propagation: assessment using high frame-rate color Doppler echocardiography

    NASA Technical Reports Server (NTRS)

    Greenberg, N. L.; Castro, P. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    Color M-mode echocardiography has recently been utilized to describe diastolic flow propagation velocity (Vp) in the left ventricle. While increasing temporal resolution from 15 to 200 Hz, this M-mode technique requires the user to select a single scanline, potentially limiting quantification of Vp due to the complex three-dimensional inflow pattern. We previously performed computational fluid dynamics simulations to demonstrate the insignificance of the scanline orientation, however geometric complexity was limited. The purpose of this study was to utilize high frame-rate 2D color Doppler images to investigate the importance of scanline selection in patients for the quantification of Vp. 2D color Doppler images were digitally acquired at 50 frames/s in 6 subjects from the apical 4-chamber window (System 5, GE/Vingmed, Milwaukee, WI). Vp was determined for a set of scanlines positioned through 5 locations across the mitral annulus (from the anterior to posterior mitral annulus). An analysis of variance was performed to examine the differences in Vp as a function of scanline position. Vp was not effected by scanline position in sampled locations from the center of the mitral valve towards the posterior annulus. Although not statistically significant, there was a trend to slower propagation velocities on the anterior side of the valve (60.8 +/- 16.7 vs. 54.4 +/- 13.6 cm/s). This study clinically validates our previous numerical experiment showing that Vp is insensitive to small perturbations of the scanline through the mitral valve. However, further investigation is necessary to examine the impact of ventricular geometry in pathologies including dilated cardiomyopathy.

  13. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    DOE PAGES

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; ...

    2016-09-13

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI’s active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals aremore » directed perpendicular to the density fluctuations, SAMI’s 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. Lastly, the results demonstrate encouraging agreement between SAMI and other independent measurements.« less

  14. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    SciTech Connect

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-09-13

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI’s active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI’s 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. Lastly, the results demonstrate encouraging agreement between SAMI and other independent measurements.

  15. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    NASA Astrophysics Data System (ADS)

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  16. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; Panza, J. A.; Thomas, J. D.

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  17. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  18. Evaluation of bovine luteal blood flow by using color Doppler ultrasonography.

    PubMed

    Lüttgenau, J; Bollwein, H

    2014-04-01

    Since luteal vascularization plays a decisive role for the function of the corpus luteum (CL), the investigation of luteal blood flow (LBF) might give valuable information about the physiology and patho-physiology of the CL. To quantify LBF, usually Power mode color Doppler ultrasonography is used. This method detects the number of red blood cells moving through the vessels and shows them as color pixels on the B-mode image of the CL. The area of color pixels is measured with computer-assisted image analysis software and is used as a semiquantitative parameter for the assessment of LBF. Although Power mode is superior for the evaluation of LBF compared to conventional color Doppler ultrasonography, which detects the velocity of blood cells, it is still not sufficiently sensitive to detect the blood flow in the small vessels in the center of the bovine CL. Therefore, blood flow can only be measured in the bigger luteal vessels in the outer edge of the CL. Color Doppler ultrasonographic studies of the bovine estrous cycle have shown that plasma progesterone (P4) concentration can be more reliably predicted by LBF than by luteal size (LS), especially during the CL regression. During the midluteal phase, cows with low P4 level showed smaller CL, but LBF, related to LS, did not differ between cows with low and high P4 levels. In contrast to non-pregnant cows, a significant rise in LBF was observed three weeks after insemination in pregnant cows. However, LBF was not useful for an early pregnancy diagnosis due to high LBF variation among cows. When the effects of an acute systemic inflammation and exogenous hormones on the CL are examined, the LBF determination is more sensitive than LS assessment. In conclusion, color Doppler ultrasonography of the bovine CL provides additional information on luteal function compared to measurements of LS and plasma P4, but its value as a parameter concerning assessment of fertility in cows has to be clarified.

  19. [Color Doppler evaluation and diagnosis of local complications after arterial endovascular procedures].

    PubMed

    Novelli, Marco; Righi, Daniele; Pilato, Alida

    2012-09-01

    Diagnostic and therapeutic percutaneous endovascular procedures have become more and more common in recent years, and so also the number of local complications has increased. After such procedures a simple clinical examination may show the presence of an inguinal mass, but does not permit a diagnosis, while Color Doppler and Duplex Scanner can make a differential diagnosis between hematoma, pseudoaneurysm, arteriovenous fistula or other disease. Color Doppler is ubiquitously used to diagnose such complications as it offers a low-cost, easy-to-use method, only minimally uncomfortable for the patient. This ultrasound system can provide both anatomic and haemodynamic information. Our study highlights the diagnostic possibilities offered by the Color Doppler and Duplex Scanner and details, using many illustrations and examples, how the most common complications such as hematoma, pseudoaneurysm, arteriovenous fistula and thrombosis are imaged. Hematoma appears as a hypoechogenic zone, with no color inside, as flow is not present. Pseudoaneurysms, unlike hematoma, maintain a connection with an injured blood vessel, and so they show blood flow both inside the lesion and in the communicating channel, with a typical pattern. The arteriovenous fistula is a vascular channel created, after a percutaneous procedure, between an artery and an adjacent vein that have both been damaged. An endovascular thrombus is directly shown as a luminal defect of flow. Other less common complications are discussed and illustrated.

  20. Comparison of foetomaternal circulation in normal pregnancies and pregnancy induced hypertension using color Doppler studies.

    PubMed

    Gupta, Shikha; Misra, R; Ghosh, U K; Gupta, V; Srivastava, D

    2014-01-01

    The aim of present study was to assess fetomaternal blood flows in normal and abnormal pregnancies using color Doppler indices. Subjects were divided into two groups as: Group A of 25 subjects of normal pregnancy as controls and group B of 25 subjects of pregnancy induced hypertension. All the subjects were lying in the age-group of 25-35 years and having 28 to 34 weeks of gestation; the patients were evaluated by detailed history and were subjected to complete general examination. Blood pressure was taken on two occasions at least 6 hours apart. Systemic examination and obstetrical examination was done in all subjects. All cases were subjected to pathological tests- Haemogram, Test for proteins in urine. Ultrasound assessment of fetal growth was done by measuring BPD (Biparietal diameter), HC (Head circumference), FL (Femur length) and AC (Abdominal circumference): Average gestational age and effective fetal weight was then calculated by ultrasound machine. Color Doppler was used to assess the various Doppler indices indices: Pulsatility index (PI), Resistive index (RI) and Systolic diastolic ratio (S/D ratio) in bilateral uterine, umbilical and middle cerebral arteries and compared to the standard normograms. Percentage of subjects having abnormal Doppler indices were calculated. Assessment of percentage of SGA (small for gestational age) fetuses was done in all the three groups. Decline in mean values of all Doppler indices was found with advancing gestational age in normal pregnancy suggesting decreased vascular resistance and increased blood flow in fetomaternal circulation. In pregnancy induced hypertensives, the mean values of Doppler indices showed a decline as in normal pregnancy but showed an increase (more than 2 S.D. of the mean) for that gestational age in comparison to the control group suggesting increased impedance to blood flow in uteroplacental and fetomaternal circulation. Umbilical artery Doppler indices were found to be the most sensitive

  1. New method to obtain ultrasonic angle independent Doppler color images using a sector transducer.

    PubMed

    Fei, D Y; Fu, C T

    1999-01-01

    A new method based on the multiple beam procedure to obtain ultrasonic angle independent Doppler color (AIDC) images using Doppler color imaging with a sector transducer has been developed. The transducer was sequentially placed at three locations with different direction orientations to acquire velocity information for the same flow field. Equations have been derived and used to obtain the velocity amplitude and flow direction angle for each point in the flow field from the acquired velocity data and the known positions of the transducer. AIDC images then can be reconstructed. To evaluate the feasibility of this method, AIDC images using a sector transducer have been reconstructed for steady flow fields in a latex tube model and for blood flow in the abdominal aorta of normal human subjects. The quantitative results obtained using this method were in reasonably good agreement with those obtained from existing reference methods.

  2. Image analysis of placental issues using three-dimensional ultrasound and color power doppler

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Cheng, Qiong; Liu, J. G.

    2007-12-01

    With the development of birthing-process medical science, and insurance requirement of prepotency, the ultrasound technique is widely used in the application of obstetrics realm, especially on the monitoring of embryo's growth. In the recent decade, the introduction of high resolution three-dimensional ultrasonic and color power Doppler scanner provides a much more direct, sensitive, forerunner method for the monitoring of embryo and gravida's prediction. A novel method that depends on examining images of vasculature of placenta to determine the growth of embryo is introduced in this paper. First, get a set of placenta vascularity images of the pregnant woman, taken by Color Doppler Ultrasonic Scanner, then mark some points in these images, where we get a section image, thus we can observe the internal blood vessel distribution at those points. This method provides an efficient tool for doctors.

  3. Role of color-Doppler US in the evaluation of scrotal edema.

    PubMed

    Quiligotti, Caterina; Merico, Valentina; Bortolotto, Chandra

    2013-10-10

    Ultrasound (US) examination in combination with color-Doppler US is the imaging modality of choice for evaluating the scrotum. Scrotal conditions are generally divided into testicular and extratesticular disorders; the latter may affect the epididymis, the spermatic cord, the tunica vaginalis, the skin and the subcutaneous tissue. The embryology of the scrotal contents is complex and has a number of anatomical and clinical consequences. We present the case of a patient with extraosseous Ewing's sarcoma of the thigh and ipsilateral scrotal swelling caused by lymphatic edema secondary to inguinal lymph node involvement. US combined with color-Doppler allowed differentiation between lymphoma or neoplastic involvement and lymphedema or vascular edema. If the US operator is thoroughly familiar with the scrotal lymphatic and vascular system, US imaging can help identify the pathogenesis of the edema and provide the clinicians and surgeons with important information.

  4. Oxygen consumption estimation with combined color doppler ultrasound and photoacoustic microscopy: a phantom study

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Harrison, Tyler; Forbrich, Alex; Zemp, Roger J.

    2011-03-01

    The metabolic rate of oxygen consumption (MRO2) quantifies tissue metabolism, which is important for diagnosis of many diseases. For a single vessel model, the MRO2 can be estimated in terms of the mean flow velocity, vessel crosssectional area, total concentration of hemoglobin (CHB), and the difference between the oxygen saturation (sO2) of blood flowing into and out of the tissue region. In this work, we would like to show the feasibility to estimate MRO2 with our combined photoacoustic and high-frequency ultrasound imaging system. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow velocity can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate sO2 and CHB, all of these parameters necessary for MRO2 estimation can be provided by our system. Experiments have been performed on flow phantoms to generate co-registered color Doppler and photoacoustic images. To verify the sO2 estimation, two ink samples (red and blue) were mixed in various concentration ratios to mimic different levels of sO2, and the result shows a good match between the calculated concentration ratios and actual values.

  5. Role of color Doppler in differentiation of Graves' disease and thyroiditis in thyrotoxicosis

    PubMed Central

    Donkol, Ragab Hani; Nada, Aml Mohamed; Boughattas, Sami

    2013-01-01

    AIM: To evaluate the role of thyroid blood flow assessment by color-flow Doppler ultrasonography in the differential diagnosis of thyrotoxicosis and compare it to technetium pertechnetate thyroid scanning. METHODS: Twenty-six patients with thyrotoxicosis were included in the study. Clinical history was taken and physical examination and thyroid function tests were performed for all patients. Thyroid autoantibodies were measured. The thyroid glands of all patients were evaluated by gray scale ultrasonography for size, shape and echotexture. Color-flow Doppler ultrasonography of the thyroid tissue was performed and spectral flow analysis of both inferior thyroid arteries was assessed. Technetium99 pertechnetate scanning of the thyroid gland was done for all patients. According to thyroid scintigraphy, the patients were divided into two groups: 18 cases with Graves’ disease and 8 cases with Hashimoto’s thyroiditis. All patients had suppressed thyrotropin. The diagnosis of Graves’ disease and Hashimoto’s thyroiditis was supported by the clinical picture and follow up of patients. RESULTS: Peak systolic velocities of the inferior thyroid arteries were significantly higher in patients with Graves’ disease than in patients with thyroiditis (P = 0.004 in the right inferior thyroid artery and P = 0.001 in left inferior thyroid artery). Color-flow Doppler ultrasonography parameters demonstrated a sensitivity of 88.9% and a specificity of 87.5% in the differential diagnosis of thyrotoxicosis. CONCLUSION: Color Doppler flow of the inferior thyroid artery can be used in the differential diagnosis of thyrotoxicosis, especially when there is a contraindication of thyroid scintigraphy by radioactive material in some patients. PMID:23671754

  6. Wandering Spleen: Whirlpool Appearance in Color Doppler Ultrasonography. A Case Report

    PubMed Central

    MOHAMMADI, Afshin; GHASEMI-RAD, Mohammad

    2015-01-01

    Wandering spleen is an unusual surgical condition that is generally asymptomatic, but the long and mobile vascular pedicle of the spleen predisposes it to torsion. Various imaging modalities can be used to diagnose a wandering spleen. We present the case of a 23 year-old female patient with abdominal pain, in whom torsion of the spleen was diagnosed preoperatively, using color Doppler sonography, as a whirlpool appearance. PMID:26225153

  7. Wandering Spleen: Whirlpool Appearance in Color Doppler Ultrasonography. A Case Report.

    PubMed

    Mohammadi, Afshin; Ghasemi-Rad, Mohammad

    2015-03-01

    Wandering spleen is an unusual surgical condition that is generally asymptomatic, but the long and mobile vascular pedicle of the spleen predisposes it to torsion. Various imaging modalities can be used to diagnose a wandering spleen. We present the case of a 23 year-old female patient with abdominal pain, in whom torsion of the spleen was diagnosed preoperatively, using color Doppler sonography, as a whirlpool appearance.

  8. Color Doppler Ultrasound Velocimetry Flow Reconstruction using Vorticity-Streamfunction Formulation

    NASA Astrophysics Data System (ADS)

    Meyers, Brett; Vlachos, Pavlos; Goergen, Craig; Scalo, Carlo

    2016-11-01

    Clinicians commonly utilize Color Doppler imaging to qualitatively assess the velocity in patient cardiac or arterial flows. However Color Doppler velocity are restricted to two-dimensional one-component measurements. Recently new methods have been proposed to reconstruct a two-component velocity field from such data. Vector Flow Mapping (VFM), in particular, utilizes the conservation of mass to reconstruct the flow. However, this method over-simplifies the influence of wall and surrounding blood motion on local measurements, which produce large, non-physical velocity gradients, requiring excessive smoothing operations to remove. We propose a new approach based on the Vorticity-Stream Function (Ψ- ω) formulation that yields more physiologically accurate velocity gradients and avoids any added smoothing operations. Zero-penetration conditions are specified at the walls, removing the need for measurement of wall velocity from additional scans, which introduce further uncertainties in the reconstruction. Inflow and outflow boundary conditions are incorporated by prescribing Dirichlet boundary conditions. The proposed solver is compared against the VFM using computational data to evaluate measurement improvement. Finally we demonstrate the method by evaluating murine left ventricle Color Doppler scans.

  9. Preoperative color Doppler ultrasound assessment of the lateral thoracic artery perforator flap and its branching pattern.

    PubMed

    Tashiro, Kensuke; Harima, Mitsunobu; Mito, Daisuke; Shibata, Takashi; Furuya, Megumi; Kato, Motoi; Yamamoto, Takumi; Yamashita, Shuji; Narushima, Mitsunaga; Iida, Takuya; Koshima, Isao

    2015-06-01

    The anatomy of the lateral thoracic artery perforator flap remains controversial, but this region is extremely useful as a reconstructive donor site. In this report, we describe the usefulness of the preoperative color Doppler ultrasound evaluation for the harvesting of the lateral thoracic artery perforator flap, and we clarify its branching pattern. Twenty-seven patients underwent the preoperative color Doppler ultrasound assessment before perforator flaps were harvested. We evaluated the branching pattern and the diameter of the flaps by direct observation. All flaps were successfully transferred, and it was found that the branching pattern of the lateral thoracic perforator is divided into three groups: the superficial branch, the medial branch, and the deep branch. Their appearance ratios were 48.1% (13/27), 14.8% (4/27), and 81.5% (22/27), respectively. The lateral thoracic artery perforator flap has a great deal of anatomical variation, and vessels with relatively small diameters compared to those of other flaps. This is why flaps from this region are not currently popular. This study revealed the superiority of the color Doppler ultrasound for preoperative planning of the lateral thoracic artery perforator flap elevation. Furthermore, the branching pattern and the diameters of the different branches were specified.

  10. DIAGNOSTIC AGREEMENT BETWEEN PANORAMIC RADIOGRAPHS AND COLOR DOPPLER IMAGES OF CAROTID ATHEROMA

    PubMed Central

    Romano-Sousa, Claudia Maria; Krejci, Laís; Medeiros, Flavilene Marchioro Martins; Graciosa, Ricardo Gomes; Martins, Maria Fernanda Fonseca; Guedes, Vanessa Novaes; Fenyo-Pereira, Marlene

    2009-01-01

    The aim of this study was to investigate the agreement between diagnoses of calcified atheroma seen on panoramic radiographs and color Doppler images. Our interest stems from the fact that panoramic images can show the presence of atheroma regardless of the level of obstruction detected by color Doppler images. Panoramic and color Doppler images of 16 patients obtained from the archives of the Health Department of the city of Valença, RJ, Brazil, were analyzed in this study. Both sides of each patient were observed on the images, with a total of 32 analyzed cervical regions. The level of agreement between diagnoses was analyzed using the Kappa statistics. There was a high level of agreement, with a Kappa value of 0.78. In conclusion, panoramic radiographs can help detecting calcifications in the cervical region of patients susceptible to vascular diseases predisposing to myocardial infarction and cerebrovascular accidents. If properly trained and informed, dentists can refer their patients to a physician for a cardiovascular evaluation in order to receive proper and timely medical treatment. PMID:19148405

  11. Planning digital artery perforators using color Doppler ultrasonography: A preliminary report.

    PubMed

    Shintani, Kosuke; Takamatsu, Kiyohito; Uemura, Takuya; Onode, Ema; Okada, Mitsuhiro; Kazuki, Kenichi; Nakamura, Hiroaki

    2016-05-01

    Digital artery perforator (DAP) flaps have been applied for the coverage of finger soft tissue defects. Although an advantage of this method is that there is no scarification of the digital arteries, it is difficult to identify the location of the perforators during intraoperative elevation of the DAP flap. In this study, anatomically reliable locations of DAPs were confirmed using color Doppler ultrasonography (US) in healthy volunteers. A successful case using an adiposal-only DAP flap for the coverage of a released digital nerve using preoperative DAP mapping with color Doppler US is also described. A total of 40 digital arteries in 20 fingers of the right hands of five healthy volunteers (mean age: 32.2 years old) were evaluated. The DAPs were identified using color flow imaging based on the beat of the digital artery in the short axial view. In total, 133 perforators were detected, 76 (an average of 3.8 per finger) arising from the radial digital artery and 57 (an average of 2.9 per finger) arising from ulnar digital artery. Sixty-three perforators (an average of 3.2 per finger) in the middle phalanges and 70 (an average of 3.5 per finger) in the proximal phalanges were found. Overall, an average of 1.7 perforators from each digital artery was detected in the proximal or middle phalanges. Moreover, at least one DAP per phalanx was reliably confirmed using color Doppler US. Preoperative knowledge of DAP mapping could make elevating the DAP flap easier and safer.

  12. B-mode Ultrasound Versus Color Doppler Twinkling Artifact in Detecting Kidney Stones

    PubMed Central

    Harper, Jonathan D.; Hsi, Ryan S.; Shah, Anup R.; Dighe, Manjiri K.; Carter, Stephen J.; Moshiri, Mariam; Paun, Marla; Lu, Wei; Bailey, Michael R.

    2013-01-01

    Abstract Purpose To compare color Doppler twinkling artifact and B-mode ultrasonography in detecting kidney stones. Patients and Methods Nine patients with recent CT scans prospectively underwent B-mode and twinkling artifact color Doppler ultrasonography on a commercial ultrasound machine. Video segments of the upper pole, interpolar area, and lower pole were created, randomized, and independently reviewed by three radiologists. Receiver operator characteristics were determined. Results There were 32 stones in 18 kidneys with a mean stone size of 8.9±7.5 mm. B-mode ultrasonography had 71% sensitivity, 48% specificity, 52% positive predictive value, and 68% negative predictive value, while twinkling artifact Doppler ultrasonography had 56% sensitivity, 74% specificity, 62% positive predictive value, and 68% negative predictive value. Conclusions When used alone, B-mode is more sensitive, but twinkling artifact is more specific in detecting kidney stones. This information may help users employ twinkling and B-mode to identify stones and developers to improve signal processing to harness the fundamental acoustic differences to ultimately improve stone detection. PMID:23067207

  13. Tuning the Structural Color of a 2D Photonic Crystal Using a Bowl-like Nanostructure.

    PubMed

    Umh, Ha Nee; Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Yi, Jongheop

    2016-06-22

    Structural colors of the ordered photonic nanostructures are widely used as an effective platform for manipulating the propagation of light. Although several approaches have been explored in attempts to mimic the structural colors, improving the reproducibility, mechanical stability, and the economic feasibility of sophisticated photonic crystals prepared by complicated processes continues to pose a challenge. In this study, we report on an alternative, simple method for fabricating a tunable photonic crystal at room temperature. A bowl-like nanostructure of TiO2 was periodically arranged on a thin Ti sheet through a two-step anodization process where its diameters were systemically controlled by changing the applied voltage. Consequently, they displayed a broad color distribution, ranging from red to indigo, and the principal reason for color generation followed the Bragg diffraction theory. This noncolorant method was capable of reproducing a Mondrian painting on a centimeter scale without the need to employ complex architectures, where the generated structural colors were highly stable under mechanical or chemical influence. Such a color printing technique represents a potentially promising platform for practical applications for anticounterfeit trademarks, wearable sensors, and displays.

  14. Noninvasive color Doppler sonography of uterine blood flow throughout pregnancy in sheep and goats.

    PubMed

    Elmetwally, M; Rohn, K; Meinecke-Tillmann, S

    2016-04-01

    In contrast to cattle or horses, uterine blood flow in small ruminants has been investigated predominantly after surgical intervention and chronic instrumentation. The objective of the present study was to investigate the clinical applicability of noninvasive color Doppler sonography to characterize blood flow in the maternal uterine artery of sheep, n = 11 (18 pregnancies) and goats, n = 11 (20 pregnancies). The following parameters were measured transrectally or transabdominally: blood flow volume, time-averaged maximum velocity (TAMV), resistance index (RI), pulsatility index (PI), Time-averaged mean velocity, impedance of blood flow (AB or systolic/diastolic [S/D] velocity ratio), peak velocity of blood flow and blood flow acceleration. Examinations started 2 weeks after breeding and continued at 2-week intervals until parturition. Outcomes for sheep and goats were similar and will be discussed together. Based on noninvasive color Doppler sonography, blood flow volume increased (approximately 60-fold, P < 0.0001) until the end of pregnancy, with a rapid increase early in gestation, and a slow increase after week 18. Time-averaged maximum velocity in the uterine artery increased (approximately 4-fold; P < 0.0001) throughout pregnancy in sheep and goats. Furthermore, for uterine artery blood flow, there was an effect of stage of pregnancy on PI and RI (P < 0.001 and P < 0.0001, respectively), both indices decreased until the end of gestation. Time-averaged mean velocity decreased from week 18 to 20 in both species. The blood flow acceleration increased (P < 0.0001) until week 16 and week 14 in sheep and goats, respectively, and then decreased until parturition. Similar to PI and RI, vascular impedance of the uterine decreased (P < 0.0001) throughout pregnancy. This is apparently the first study using noninvasive color Doppler sonography of uterine blood flow throughout physiological pregnancy in small ruminants. Clearly, this technology facilitates repeated

  15. Color Doppler provides a reliable and rapid means of monitoring luteolysis in female donkeys.

    PubMed

    Miró, J; Vilés, K; Anglada, O; Marín, H; Jordana, J; Crisci, A

    2015-03-01

    When artificial reproduction technologies designed for use with horses are used with donkeys, success is dependent on awareness of the physiological differences between these species, yet little information is available on many aspects of donkey reproduction. The present work examines the activity of the CL in Catalonian jennies after induced luteolysis. Plasma progesterone concentration, luteal blood flow (determined by color Doppler), and CL cross-sectional area (CL-CSA; determined by B-mode ultrasound examination) were assessed after a single dose (5 mg intramuscular) of dinoprost thromethamine (DT, a PGF2α analog) on Day 10 after ovulation in two experiments. In experiment 1, a preliminary experiment, data were collected daily for 4 days after DT administration. Values for all the measured variables decreased over this period. In experiment 2, data were collected during the first 24 hours after DT administration because in experiment 1, most luteolytic activity occurred during this time. An increase in luteal blood flow was seen between 0 and 3 hours, followed by a progressive reduction, whereas the values for plasma progesterone and CL-CSA gradually decreased from 0 hours onward. In both studies, negative correlations were seen between all variables and the time of sampling. In contrast, positive correlations were seen between plasma progesterone, CL-CSA, uterine tone, and luteal blood flow. Indeed, a strong correlation was recorded between plasma progesterone and luteal blood flow (r = 0.70; P < 0.0001). In conclusion, plasma progesterone and CL-CSA both become reduced after induced luteolysis in Catalonian jennies. Unlike in mares, an increase in luteal blood flow occurs soon after induced luteolysis, rather like that seen in the cow. The luteal blood flow, as evaluated here by color Doppler, was also closely related to the plasma progesterone concentration. Color Doppler would appear therefore to offer a rapid and easy means of examining the state

  16. [Duplex ultrasound and color-coded Doppler ultrasound of visceral blood vessels in abdominal diseases].

    PubMed

    Mostbeck, G; Mallek, R; Gebauer, A; Tscholakoff, D

    1992-01-01

    Duplex Doppler sonography (DS) and color-flow Doppler sonography (FDS) are noninvasive diagnostic methods for the evaluation of a patient with suspected vascular disease of the abdomen. They represent a useful adjunct to realtime sonography in the identification of normal and variant visceral vascular anatomy. Aneurysms and pseudo-aneurysms of visceral arteries are readily differentiated from other cystic lesions. DS and FDS have a high sensitivity in the detection of portal vein thrombosis and stenosis. Both methods allow the observation and measurement of splanchnic hemodynamics in patients with chronic liver disease and portal hypertension. Hence, DS and FDS already play an important role in the pre- and postoperative assessment of patients undergoing liver or pancreas transplantation. The possibility that DS and FDS may enable discrimination between hypovascular and hypervascular tumors is under clinical investigation. FDS facilitates an excellent anatomic display of the abdominal vasculature and allows easy placement of the Doppler sample volume. Consequently, quantitative data acquired with DS are accomplished within short scanning times. However, the diagnostic impact of both modalities depends to a great extent on the experience of the investigator.

  17. Technology Insight: the role of color and power Doppler ultrasonography in rheumatology.

    PubMed

    Schmidt, Wolfgang A

    2007-01-01

    An increasing number of rheumatologists have access to ultrasound equipment that provide both color and power Doppler modes, which can be used to investigate musculoskeletal and vascular pathologies. Musculoskeletal Doppler ultrasonography can be used to estimate levels of inflammation, to document the anti-inflammatory effect of agents such as corticosteroids and tumor necrosis factor inhibitors, to differentiate between inflammatory and degenerative disease, and to distinguish between normal and inflamed joints in cases of minor synovial swelling. Vascular Doppler ultrasonography can be used to determine organ involvement in small-vessel vasculitides, to delineate aneurysms in vasculitides of medium-sized arteries, and to assess the characteristic findings in large-vessel vasculitis. Numerous studies, including a meta-analysis, have been published on the use of temporal-artery ultrasonography for the diagnosis of giant cell arteritis. Duplex ultrasonography is a sensitive approach for detecting characteristic edematous wall swellings in active temporal arteritis and for assessing vasculitis of the axillary arteries (large-vessel giant cell arteritis) in patients with suspected temporal arteritis, polymyalgia rheumatica, or fever of unknown origin. Duplex ultrasonography can also be used to assess vasculitis of subclavian and carotid arteries in younger patients with Takayasu's arteritis and acute finger artery occlusions in patients with small-vessel vasculitides.

  18. Prevalence in a volunteer population of pelvic cancer detected with transvaginal ultrasound and color flow Doppler.

    PubMed

    Schulman, H; Conway, C; Zalud, I; Farmakides, G; Haley, J; Cassata, M

    1994-09-01

    Our objective was to find the prevalence of non-symptomatic endometrial and ovarian neoplasms in a volunteer population of women, aged 40 and over. We offered a free volunteer screening program to asymptomatic women for a study using transvaginal ultrasound and color flow Doppler for the detection of pelvic cancer. In the first 2 years, 2117 women were examined, 51.3% post-menopausal. An ovarian cyst was defined as having a maximum diameter of more than 2.4 cm. Color flow was used to identify blood vessels feeding pelvic organs and adnexal enlargements. An abnormal Doppler flow velocity for the ovary was defined as a resistance index of less than 0.41. Ovarian cysts of less than 5 cm with normal Doppler indices were followed up in 6 months to 1 year. An adnexal morphology score was created to quantify the usefulness of this parameter, particularly in postmenopausal women. Indications for surgery were pre-defined as a persistent ovarian cyst of more than 5 cm, a persistent suspicious Doppler and a total endometrial thickness of greater than 0.59 cm in postmenopausal women not taking hormones.A total of 202 women (9.5%) had ovarian cysts. Fourteen women were operated upon because of size criteria, one because of family history and three for persistent abnormal flow. By Doppler study, 15 cysts were predicted to be benign and histology was confirmatory. There were two false positives and one true positive, a stage Ib ovarian cancer. There were no false negatives, although a stage I endometrioid cancer of the ovary was detected 8 months after a negative scan. In those cases in which follow-up data were available, 56% of the cysts regressed in premenopausal women. In postmenopausal women, 28% regressed. Twenty of 1086 postmenopausal women had endometrial biopsies. Three had endometrial cancer, two stage I and one stage IIA. Five had atypical or adenomatous hyperplasia, and seven had benign polyps. So many women have small asymptomatic cysts of the ovary that a major

  19. Vascular waveform analysis of flap-feeding vessels using color Doppler ultrasonography.

    PubMed

    Ogino, Akihiro; Onishi, Kiyoshi

    2014-01-01

    We performed vascular waveform analysis of flap-feeding vessels using color Doppler ultrasonography and evaluated the blood flow in the flaps prior to surgery. Vascular waveform analysis was performed in 19 patients. The analyzed parameters included the vascular diameter, flow volume, flow velocity, resistance index, pulsatility index, and acceleration time. The arterial waveform was classified into 5 types based on the partially modified blood flow waveform classification reported by Hirai et al.; in particular, D-1a, D-1b, and D-2 were considered as normal waveforms. They were 4 patients which observed abnormal vascular waveform among 19 patients (D-4 : 1, D-3 : 1, and Poor detect : 2). The case which presented D-4 waveform changed the surgical procedure, and a favorable outcome was achieved. Muscle flap of the case which presented D-3 waveform was partially necrosed. The case which detected blood flow poorly was judged to be the vascular obstruction of the internal thoracic artery. In the evaluation of blood flow in flaps using color Doppler ultrasonography, determination of not only basic blood flow information, such as the vascular distribution and diameter and flow velocity, but also the flow volume, vascular resistance, and arterial waveform is essential to elucidate the hemodynamics of the flap.

  20. [Echotomography and color-Doppler in the diagnosis of thyroid carcinoma].

    PubMed

    Messina, G; Viceconti, N; Trinti, B

    1996-01-01

    Ultrasound examination of the thyroid gland is used extensively in the diagnosis of thyroid carcinoma: it is easy and rapid to perform and widely available. Ultrasound enables easy identification of the image of disease foci within the gland, especially when high frequency probes (7.5-10 MHz) are used. Thyroid nodules are subdivided on the basis of their echostructure into hypoechoic solid, isoechoic solid, and hyperechoic solid, mixed, and liquid. In neoplastic pathologies, a hypoechoic echostructure is not pathognomonic of malignancy but must be regarded with suspicion, especially if it is an isolated nodule in a male patient and continues to grow during suppressive therapy. In fact, thyroid neoplasms evidence a hypoechoic echostructure in 60-70% of the cases, while a hyperechoic echostructure is present in only 2-4%. Only 15-25% of neoplasms appear as isoechoic nodules; a mixed echostructure is rarely (5-10% of the cases) seen. Color-Doppler patterns are classified into four types: I) nodules without internal or perinodular vascularization; II) nodules with vascularization confined to extranodular tissue; III) nodules with significant intra- and perinodular vascularization; IV) increased vascularization (or "thyroid inferno"). The vast majority of thyroid carcinoma (90%) presents type III vascularization. We therefore suggest the routine use of ultrasonography and color-Doppler studies in conjunction with fine-needle aspiration cytology for the diagnostic evaluation of thyroid carcinoma.

  1. Feasibility of angle independent Doppler color imaging for in vivo application: preliminary study on carotid arteries.

    PubMed

    Fei, D Y; Liu, D D; Fu, C T; Makhoul, R G; Fisher, M R

    1997-01-01

    An experimental system has been used to acquire Doppler color images using a linear transducer from an ultrasound scanner to reconstruct angle independent Doppler color (AIDC) images in normal carotid arteries in 21 volunteers. Images were first taken from relatively straight segments in the common carotid artery, and comparisons were made in a small area at the center stream. At peak systole, the correlation coefficient of the velocity amplitudes between AIDC imaging (AIDCI) and duplex scanning was 0.94; the correlation coefficient between the flow angles measured from AIDCI and the angles of the vessel wall was 0.99. Periodic variations of the flow angle over the cardiac cycle were always observed by AIDCI, whereas the changes in the geometric angle of the vessel itself were insignificant. This observation suggests that the AIDCI technique is sensitive to alterations of flow direction. On the other hand, the deviation of the flow angle from a fixed correction angle in duplex scanning may cause a certain degree of error in velocity determination. AIDC images were also obtained at the carotid bifurcation. The results show that the AIDCI technique is able to depict major flow features, such as velocity skewing, flow separation, flow reversal and vortical flow, in a complex flow field.

  2. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging

    SciTech Connect

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-14

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ∼243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ∼243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ∼243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H{sup +} images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

  3. New adaptive clutter rejection for ultrasound color Doppler imaging: in vivo study.

    PubMed

    Yoo, Yang Mo; Kim, Yongmin

    2010-03-01

    Clutter rejection is essential for accurate flow estimation in ultrasound color Doppler imaging. In this article, we present a new adaptive clutter rejection (ACR) technique where an optimum filter is dynamically selected depending upon the underlying clutter characteristics (e.g., tissue acceleration and power). We compared the performance of the ACR method with other adaptive methods, i.e., down-mixing (DM) and adaptive clutter filtering (ACF), using in vivo data acquired from the kidney, liver and common carotid artery. With the kidney data, the ACR method provided an average improvement of 3.05 dB and 1.7 dB in flow signal-to-clutter ratio (SCR) compared with DM and ACF, respectively. With the liver data, SCR was improved by 2.75 dB and 1.8 dB over DM and ACF while no significant improvement with ACR was found in the common carotid artery data. Thus, the proposed adaptive method could provide more accurate flow estimation by improving clutter rejection in abdominal ultrasound color Doppler imaging pending validation.

  4. 2-D multi-frequency imaging of a tumor inclusion in homogeneous breast phantom using harmonic motion doppler imaging method.

    PubMed

    Kamali Tafreshi, Azadeh; Top, Can; Gencer, Nevzat

    2017-02-02

    Harmonic Motion Microwave Doppler Imaging (HMMDI) is a novel imaging modality to image the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time domain data. The developed phantoms mimic elastic and dielectric properties of breast fat tissue, and include a 14 mm × 9 mm cylindrical inclusion representing tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to generate HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. Image resolution increased with increasing vibration frequency. The sensitivity of the designed receiver was higher compared to the spectrum analyzer measurements. The results also showed that time domain data acquisition should be used to fully exploit the potential of the HMMDI method.

  5. Local intense mosaic pattern at site of flail mitral leaflet: report of a new color Doppler sign.

    PubMed

    Khouzam, Rami N; D'Cruz, Ivan A; Minderman, Daniel; Kaiser, Jacqueline

    2005-10-01

    Color flow Doppler has been useful in diagnosing the presence and severity of mitral regurgitation (MR). We noted a hitherto unreported sign of MR due to flail mitral leaflet: intense local mosaic pattern at the site of the flail leaflet. This sign was seen well in 11 of 14 patients (79%) with the two-dimensional echocardiographic features of flail mitral leaflet, all with moderate or severe MR. In 3 other patients, the sign was absent; two of those had flail mitral leaflet with severe MR. No local mosaic pattern was seen on color Doppler in 20 other patients with MR but no flail mitral leaflet. We speculate that the focal intense mosaic color Doppler morphology may have been caused by intrusion of the flail leaflet into the MR stream, or to a Coanda-like effect of the MR jet "adhering" to the flail leaflet.

  6. In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Anthony M. D.; Ohtani, Keishi; MacAulay, Calum; McWilliams, Annette; Shaipanich, Tawimas; Yang, Victor X. D.; Lam, Stephen; Lane, Pierre

    2013-05-01

    For the first time, the use of fiber-optic color Doppler optical coherence tomography (CDOCT) to map in vivo the three-dimensional (3-D) vascular network of airway segments in human lungs is demonstrated. Visualizing the 3-D vascular network in the lungs may provide new opportunities for detecting and monitoring lung diseases such as asthma, chronic obstructive pulmonary disease, and lung cancer. Our CDOCT instrument employs a rotary fiber-optic probe that provides simultaneous two-dimensional (2-D) real-time structural optical coherence tomography (OCT) and CDOCT imaging at frame rates up to 12.5 frames per second. Controlled pullback of the probe allows 3-D vascular mapping in airway segments up to 50 mm in length in a single acquisition. We demonstrate the ability of CDOCT to map both small and large vessels. In one example, CDOCT imaging allows assignment of a feature in the structural OCT image as a large (˜1 mm diameter) blood vessel. In a second example, a smaller vessel (˜80 μm diameter) that is indistinguishable in the structural OCT image is fully visualized in 3-D using CDOCT.

  7. Aneurysms of the portal venous system. Gray-scale and color Doppler ultrasonographic findings with CT and MRI correlation.

    PubMed

    Atasoy, K C; Fitoz, S; Akyar, G; Aytaç, S; Erden, I

    1998-01-01

    Two cases of incidentally detected aneurysms involving the portal venous system are described with emphasis on gray-scale and color Doppler ultrasonographic (US) findings. Appearing on US as anechoic masses showing direct luminal continuity with the right portal vein and superior mesenteric vein, the lesions displayed spectral findings characteristic of portal venous system on color Doppler US. Dynamic helical computed tomography (CT) demonstrated simultaneous enhancement with the portal system, while the aneurysms were hypointense owing to flow void on T1-weighted spin-echo magnetic resonance (MR) images.

  8. Color-Doppler sonography in chronic venous insufficiency: what the radiologist should know.

    PubMed

    Cina, Alessandro; Pedicelli, Alessandro; Di Stasi, Carmine; Porcelli, Alessandra; Fiorentino, Alessandro; Cina, Gregorio; Rulli, Francesco; Bonomo, Lorenzo

    2005-01-01

    Chronic venous insufficiency (CVI) is a pathologic condition caused by valvular incompetence, with or without associated venous outflow obstruction, which may affect both the superficial and the deep venous system, causing venous hypertension and stasis. The most common form of CVI is primary varicose veins due to the insufficiency of the saphenous system. Color-Doppler sonography (CDS) is actually the main diagnostic technique of imaging for CVI. In this article, we describe the anatomy, the technique, and the information necessary to the radiologist to perform CDS in chronic venous insufficiency. The knowledge of the venous anatomy is the cornerstone for an adequate sonographic examination. The venous network in the lower extremities is divided into three systems: superficial, deep, and perforating veins. Deep veins are "comitantes" to the corresponding arteries and run under the muscular fascia. Superficial veins course into the subcutaneous fat, superficially to the deep muscular fascia; the main superficial veins are the greater and lesser saphenous and their tributaries. Connection between the saphenous veins are defined as communicating veins. Superficial and deep veins are connected by perforating veins, with flow directed, under normal circumstances, from the superficial to the deep system. The main perforating are the Hunter in the mid thigh, the Dodd in the lower thigh, the Boyd in the upper calf, and the Cockett's in the middle and lower calf. Sonographic examination must be performed in the upright and supine position. Compression sonography and color and PW Doppler are systematically employed to assess the absence of deep venous thrombosis. Femoro-popliteal veins are evaluated with color and PW Doppler for valvular insufficiency with reflux by performing Valsalva maneuver and calf compression. The sapheno-femoral and sapheno-popliteal junctions are examined to identify type of junction, continence, accessory saphenous, and incompetent collaterals

  9. [Ultrasonic quantification, value of color and contribution of transcranial Doppler sonography in carotid artery surgery].

    PubMed

    Berni, A; Cavaiola, S; Mele, R; Tombesi, T; Custureri, F; D'Andrea, V; Marchesi, M; Tromba, L

    1996-05-01

    The authors briefly report their experience regarding the opportunities offered by the use of current ultrasound methods in carotid surgery. They describe: a system for the quantification of athcromasic plaque used to monitor non-operated patients over time; ultrasound methods used to analyse the carotid wall to establish whether it can be utilised as an index of vascular aggression in hypertension, diabetes and atherosclerosis; the use of transcranial Doppler; criteria for the definition of high risk plaque; the applications of eco-color Doppler. The paper also illustrates a new pathology identified by the authors, defined as primary intimal fibrous hyperplasia, and the evolution of the carotid wall after endarterectomy. The structural characteristics of primary hyperplasia can only be shown using ultrasound given that arteriography cannot distinguish it from atheromatic stenosis. After endarterectomy the carotid wall is subject to hematic and hemodynamic stimuli which determine the type of evolution of the wall itself. The authors therefore examine the myointimal reaction, myointimal hyperplasia, early restenosis and late restenosis as different facets of the same phenomenon.

  10. [Ultrasound and color Doppler applications in nephrology. The normal kidney: anatomy, vessels and congenital anomalies].

    PubMed

    Meola, Mario; Petrucci, Ilaria; Giovannini, Lisa; Samoni, Sara; Dellafiore, Carolina

    2012-01-01

    Gray-scale ultrasound is the diagnostic technique of choice in patients with suspected or known renal disease. Knowledge of the normal and abnormal sonographic morphology of the kidney and urinary tract is essential for a successful diagnosis. Conventional sonography must always be complemented by Doppler sampling of the principal arterial and venous vessels. B-mode scanning is performed with the patient in supine, prone or side position. The kidney can be imaged by the anterior, lateral or posterior approach using coronal, transverse and oblique scanning planes. Morphological parameters that must be evaluated are the coronal diameter, the parenchymal thickness and echogenicity, the structure and state of the urinary tract, and the presence of congenital anomalies that may mimic a pseudomass. The main renal artery and the hilar-intraparenchymal branches of the arterial and venous vessels should be accurately evaluated using color Doppler. Measurement of intraparenchymal resistance indices (IP, IR) provides an indirect and quantitative parameter of the stiffness and eutrophic or dystrophic remodeling of the intrarenal microvasculature. These parameters differ depending on age, diabetic and hypertensive disease, chronic renal glomerular disease, and interstitial, vascular and obstructive nephropathy.

  11. Sub-Doppler infrared spectroscopy of CH2D radical in a slit supersonic jet: isotopic symmetry breaking in the CH stretching manifold.

    PubMed

    Roberts, Melanie A; Savage, Chandra; Dong, Feng; Sharp-Williams, Erin N; McCoy, Anne B; Nesbitt, David J

    2012-06-21

    First high-resolution infrared absorption spectra in the fundamental symmetric/asymmetric CH stretching region of isotopically substituted methyl radical, CH(2)D, are reported and analyzed. These studies become feasible in the difference frequency spectrometer due to (i) high density radical generation via dissociative electron attachment to CH(2)DI in a discharge, (ii) low rotational temperatures (23 K) from supersonic cooling in a slit expansion, (iii) long absorption path length (64 cm) along the slit axes, and (iv) near shot noise limited absorption sensitivity (5 × 10(-7)/√(Hz)). The spectra are fully rovibrationally resolved and fit to an asymmetric top rotational Hamiltonian to yield rotational/centrifugal constants and vibrational band origins. In addition, the slit expansion collisionally quenches the transverse velocity distribution along the laser probe direction, yielding sub-Doppler resolution of spin-rotation structure and even partial resolution of nuclear hyperfine structure for each rovibrational line. Global least-squares fits to the line shapes provide additional information on spin-rotation and nuclear hyperfine constants, which complement and clarify previous FTIR studies [K. Kawaguchi, Can. J. Phys. 79, 449 (2001)] of CH(2)D in the out-of-plane bending region. Finally, analysis of the spectral data from the full isotopomeric CH(m)D(3-m) series based on harmonically coupled Morse oscillators establishes a predictive framework for describing the manifold of planar stretching vibrations in this fundamental combustion radical.

  12. Cerebral laterality for language is related to adult salivary testosterone levels but not digit ratio (2D:4D) in men: A functional transcranial Doppler ultrasound study.

    PubMed

    Papadatou-Pastou, Marietta; Martin, Maryanne

    2017-03-01

    The adequacy of three competing theories of hormonal effects on cerebral laterality are compared using functional transcranial Doppler sonography (fTCD). Thirty-three adult males participated in the study (21 left-handers). Cerebral lateralization was measured by fTCD using an extensively validated word generation task. Adult salivary testosterone (T) and cortisol (C) concentrations were measured by luminescence immunoassay and prenatal T exposure was indirectly estimated by the somatic marker of 2nd to 4th digit length ratio (2D:4D). A significant quadratic relationship between degree of cerebral laterality for language and adult T concentrations was observed, with enhanced T levels for strong left hemisphere dominance and strong right hemisphere dominance. No systematic effects on laterality were found for cortisol or 2D:4D. Findings suggest that higher levels of T are associated with a relatively attenuated degree of interhemispheric sharing of linguistic information, providing support for the callosal and the sexual differentiation hypotheses rather than the Geschwind, Behan and Galaburda (GBG) hypothesis.

  13. Ultrasonography and color Doppler of proximal gluteal enthesitis in juvenile idiopathic arthritis: a descriptive study

    PubMed Central

    2011-01-01

    Background The presence of enthesitis (insertional inflammation) in patients with juvenile idiopathic arthritis (JIA) is difficult to establish clinically and may influence classification and treatment of the disease. We used ultrasonography (US) and color Doppler (CD) imaging to detect enthesitis at the small and deep-seated proximal insertion of the gluteus medius fascia on the posterior iliac crest where clinical diagnosis is difficult. The findings in JIA patients were compared with those obtained in healthy controls and with the patients' MRI results. Methods Seventy-six proximal gluteus medius insertions were studied clinically (tenderness to palpation of the posterior iliac crest) and by US and CD (echogenicity, thickness, hyperemia) in 38 patients with JIA and in 38 healthy controls, respectively (median age 13 years, range 7-18 years). In addition, an additional MRI examination of the sacroiliac joints and iliac crests was performed in all patients. Results In patients with focal, palpable tenderness, US detected decreased echogenicity of the entheses in 53% of the iliac crests (bilateral in 37% and unilateral in 32%). US also revealed significantly thicker entheses in JIA patients compared to healthy controls (p < 0.003 left side, p < 0.001 right side). There was no significant difference in thickness between the left and right sides in individual subjects. Hyperemia was detected by CD in 37% (28/76) of the iliac crests and by contrast-enhanced MRI in 12% (6/50). Conclusions According to US, the gluteus medius insertion was thicker in JIA patients than in controls, and it was hypoechoic (enthesitis) in about half of the patients. These findings may represent chronic, inactive disease in some of the patients, because there was only limited Doppler flow and MRI contrast enhancement. The present study indicates that US can be useful as an adjunct to clinical examination for improved assessment of enthesitis in JIA. This may influence disease classification

  14. Assessment of parathyroid glands in hemodialysis patients by using color Doppler sonography.

    PubMed

    Ozcan, Umit Aksoy; Oktay, Ilay

    2009-11-01

    The aim of this study was to assess the role of color and spectral Doppler ultrasound (CDU) in the evaluation of enlarged parathyroid glands in hemodialysis patients with secondary hyperparathyroidism. Fourteen hemodialysis patients with elevated intact parathyroid hormone (iPTH) levels were evaluated prospectively with CDU. The volume of each observed parathyroid gland and the spectral CDU data (velocities, resistance and pulsatility indices, systolic to diastolic ratio, and flow volume output (FVO)) were noted. The biochemical data (iPTH, calcium, phosphate levels), and CDU results were analyzed with the Spearman correlation test. Two patients were excluded, and 27 enlarged parathyroid glands were observed in 12 patients. The mean total volume of enlarged parathyroid glands per patient was 1.95 cm(3) (0.06-5.5 cm(3)). Arterial supply was demonstrated in 78% (21/27) of enlarged parathyroid glands. Mean total FVO of enlarged glands per patient was 238.5 ml/min (620-0 ml/min) and mean iPTH level was 1,477 pg/ml (643-3,132 pg/ml). The positive correlations of total volume (p = 0.022), iPTH (p = 0.024), and FVO (p = 0.022) were statistically significant. In secondary hyperparathyroidism, total volume of the visualized enlarged parathyroid glands and the total of FVOs per patient are positively correlated with iPTH levels which may help clinical management and follow-up of end-stage renal disease patients.

  15. Clinical value of color doppler ultrasound in prenatal diagnosis of umbilical cord entry abnormity

    PubMed Central

    Sun, Jiandong; Wang, Li; Li, Yinghui

    2016-01-01

    Objective: To study the clinical value of prenatal diagnosis of umbilical cord entry abnormity (UCEA) by means of color Doppler ultrasound (CDUS). Methods: Clinical data of sixty-four cases with confirmed umbilical cord entry abnormity were reviewed and the specific UCEA conditions and the outcomes of perinatal infants were analyzed. Results: Detection rates of marginal umbilical cord entry abnormity and velamentous umbilical cord entry abnormity by means of CDUS at second trimester were 94.1% and 93.8% respecdtively much higher than 80.0% and 68.8% which were those of third trimester. Discrepancy had statistical significance (P<0.05). True positive rate of prenatal diagnosis of UCEA by means of CDUS was 85.9% (55/64), and false negative rate was 14.1% (9/64). Among sixty four patients with UCEA, seventeen patients (26.6%) underwent selective caesarean delivery; twenty-six patients (35.9%) underwent emergency caesarean delivery and twenty-four patients (37.5%) had normal delivery. Conclusion: Prenatal diagnosis of UCEA by means of CDUS is intuitive and accurate. It provides an evidence for determination of the best time to diagnose UCEA, and also offers a proper advice for pregnant women about delivery mode to ensure the fetus survival rate, which is clinically valuable. PMID:28083036

  16. Inverse Problem for Color Doppler Ultrasound-Assisted Intracardiac Blood Flow Imaging

    PubMed Central

    Jang, Jaeseong

    2016-01-01

    For the assessment of the left ventricle (LV), echocardiography has been widely used to visualize and quantify geometrical variations of LV. However, echocardiographic image itself is not sufficient to describe a swirling pattern which is a characteristic blood flow pattern inside LV without any treatment on the image. We propose a mathematical framework based on an inverse problem for three-dimensional (3D) LV blood flow reconstruction. The reconstruction model combines the incompressible Navier-Stokes equations with one-direction velocity component of the synthetic flow data (or color Doppler data) from the forward simulation (or measurement). Moreover, time-varying LV boundaries are extracted from the intensity data to determine boundary conditions of the reconstruction model. Forward simulations of intracardiac blood flow are performed using a fluid-structure interaction model in order to obtain synthetic flow data. The proposed model significantly reduces the local and global errors of the reconstructed flow fields. We demonstrate the feasibility and potential usefulness of the proposed reconstruction model in predicting dynamic swirling patterns inside the LV over a cardiac cycle. PMID:27313657

  17. Characterization of intraventricular flow patterns in healthy neonates from conventional color-Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Tejman-Yarden, Shai; Rzasa, Callie; Benito, Yolanda; Alhama, Marta; Leone, Tina; Yotti, Raquel; Bermejo, Javier; Printz, Beth; Del Alamo, Juan C.

    2012-11-01

    Left ventricular vortices have been difficult to visualize in the clinical setting due to the lack of quantitative non-invasive modalities, and this limitation is especially important in pediatrics. We have developed and validated a new technique to reconstruct two-dimensional time-resolved velocity fields in the LV from conventional transthoracic color-Doppler images. This non-invasive modality was used to image LV flow in 10 healthy full-term neonates, ages 24-48 hours. Our results show that, in neonates, a diastolic vortex developed during LV filling, was maintained during isovolumic contraction, and decayed during the ejection period. The vortex was created near the base of the ventricle, moved toward the apex, and then back toward the base and LVOT during ejection. In conclusion, we have characterized for the first time the properties of the LV filling vortex in normal neonates, demonstrating that this vortex channels blood from the inflow to the outflow tract of the LV. Together with existing data from adults, our results confirm that the LV vortex is conserved through adulthood. Funded by NIH Grant R21HL108268.

  18. Color-coded Doppler imaging of systolic flow patterns in hypertrophic cardiomyopathy.

    PubMed

    Tencate, F J; Mayala, A P; Vletter, W B; Roelandt, J

    1985-01-01

    We studied 11 patients with hypertrophic cardiomyopathy by color Doppler echocardiography (Group I: 6 patients with outflow obstruction, and Group II: 5 patients without outflow obstruction) to assess systolic structure and function as observed by cross-sectional echocardiography in relation to the flow dynamics. The structure and function included systolic anterior motion of mitral valve (SAM), midsystolic aortic valve closure (AoC), systolic cavity obliteration and the presence and timing of mitral incompetence. Their occurrence and timing was related to presence of aortic systolic flow and presence of turbulence. While all patients in Group I had SAM and turbulence, none of the patients in Group II had SAM nor turbulence. Early mitral incompetence appearing before SAM and turbulence, occurred in all patients of Group I and in none of Group II. Midsystolic aortic valve closure was only present in Group I and blood flow was unilaterally directed so that only 60% of aortic cross-sectional area showed blood flow. We conclude that mitral incompetence in hypertrophic cardiomyopathy in early systole is common when outflow gradient is present and is independent of mitral incompetence of mid- and late systole. During SAM, turbulence in the subaortic area and mid and late mitral incompetence occurred simultaneously. The midsystolic aortic valve closure was related to the unilaterally directed blood flow through the aortic cross-sectional area.

  19. Automatic quantification of aortic regurgitation using 3D full volume color doppler echocardiography: a validation study with cardiac magnetic resonance imaging.

    PubMed

    Choi, Jaehuk; Hong, Geu-Ru; Kim, Minji; Cho, In Jeong; Shim, Chi Young; Chang, Hyuk-Jae; Mancina, Joel; Ha, Jong-Won; Chung, Namsik

    2015-10-01

    Recent advances in real-time three-dimensional (3D) echocardiography provide the automated measurement of mitral inflow and aortic stroke volume without the need to assume the geometry of the heart. The aim of this study is to explore the ability of 3D full volume color Doppler echocardiography (FVCDE) to quantify aortic regurgitation (AR). Thirty-two patients with more than a moderate degree of AR were enrolled. AR volume was measured by (1) two-dimensional-CDE, using the proximal isovelocity surface area (PISA) and (2) real-time 3D-FVCDE with (3) phase-contrast cardiac magnetic resonance imaging (PC-CMR) as the reference method. Automated AR quantification using 3D-FVCDE was feasible in 30 of the 32 patients. 2D-PISA underestimated the AR volume compared to 3D-FVCDE and PC-CMR (38.6 ± 9.9 mL by 2D-PISA; 49.5 ± 10.2 mL by 3D-FVCDE; 52.3 ± 12.6 mL by PC-CMR). The AR volume assessed by 3D-FVCDE showed better correlation and agreement with PC-CMR (r = 0.93, p < 0.001, 2SD: 9.5 mL) than did 2D-PISA (r = 0.76, p < 0.001, 2SD: 15.7 mL). When used to classify AR severity, 3D-FVCDE agreed better with PC-CMR (k = 0.94) than did 2D-PISA (k = 0.53). In patients with eccentric jets, only 30% were correctly graded by 2D-PISA. Conversely, almost all patients with eccentric jets (86.7%) were correctly graded by 3D-FVCDE. In patients with multiple jets, only 3 out of 10 were correctly graded by 2D-PISA, while 3D-FVCDE correctly graded 9 out of 10 of these patients. Automated quantification of AR using the 3D-FVCDE method is clinically feasible and more accurate than the current 2D-based method. AR quantification by 2D-PISA significantly misclassified AR grade in patients with eccentric or multiple jets. This study demonstrates that 3D-FVCDE is a valuable tool to accurately measure AR volume regardless of AR characteristics.

  20. Evaluation of a fractional filter-based receive beamforming method for low-cost ultrasound color Doppler imaging

    NASA Astrophysics Data System (ADS)

    Yang, Hana; Kang, Jeeun; Chang, Jin Ho; Yoo, Yangmo

    2012-03-01

    In medical ultrasound imaging, dynamic receive beamforming has been used for improving signal-to-noise ratio (SNR) and spatial resolution. For low-cost portable ultrasound imaging systems, a fractional filter-based receive beamforming (FFRB) method was previously proposed to reduce the hardware complexity compared to conventional interpolation filter-based receive beamforming methods (IFRB). While this new beamforming method substantially reduces the hardware complexity, it yields the nonlinear phase response for high frequencies due to the limited length of fractional filter coefficients, leading to the bias on flow estimation in ultrasound color Doppler imaging. In this paper, to evaluate the FFRB method for ultrasound color Doppler imaging, the Field II simulation and string phantom experiments were conducted. In Field II simulation, the radio-frequency (RF) data were generated by assuming a 7.5-MHz linear array probe with the transmit frequency of 6 MHz, the ensemble size of 8, and the sampling frequencies of 20 MHz. In string phantom experiments, the RF channel data were obtained with a commercial SonixTouch ultrasound scanner equipped with a research package (Ultrasonix Corp., Vancouver, BC, Canada; a 5-MHz linear array connected to a SonixDAQ parallel system. The ensemble size and the sampling frequency were set to 10 and 20 MHz, respectively. For the Field II simulation and string phantom experiments, only 1.2% and 2.3 % in color Doppler estimation error ratio was observed with mean and standard deviation along the lateral direction. This result indicates that the proposed FFRB method could be utilized for a low-cost ultrasound color Doppler imaging system with lowered hardware complexity and minimized phase errors.

  1. Digit ratio (2D:4D) in Lithuania once and now: testing for sex differences, relations with eye and hair color, and a possible secular change.

    PubMed

    Voracek, Martin; Bagdonas, Albinas; Dressler, Stefan G

    2007-09-01

    The second-to-fourth digit ratio (2D:4D) is a sexually dimorphic somatic trait and has been proposed as a biomarker for the organizational, i.e., permanent, effects of prenatal testosterone on the human brain. Accordingly, recent research has related 2D:4D to a variety of sex-dependent, hormonally influenced traits and phenotypes. The geographical variation in typical 2D:4D is marked and presently poorly understood. This study presents the first investigation into the 2D:4D ratio in a Baltic country. A contemporary sample of 109 Lithuanian men and women was compared with data from a historical sample of 100 Lithuanian men and women, collected and published in the 1880s and rediscovered only now. The findings included the following lines of evidence: (i) seen in an international perspective, the average 2D:4D in Lithuania is low; (ii) there was a sex difference in 2D:4D in the expected direction in both samples; (iii) a previously adduced hypothesis of an association of lighter eye and hair color with higher, i.e., more feminized, 2D:4D received no support in both samples; and (iv) the average 2D:4D in the contemporary sample was higher than in the historical sample. In view of a hypothesized increase in 2D:4D in modern populations, owing to increased environmental levels of endocrine disruptors such as xenoestrogens, this latter finding appears to be of particular notice. However, because finger-length measurement methods differed across the samples, it cannot be safely ruled out that the apparent time trend in Lithuanian 2D:4D in truth is an artifact. The puzzling geographical pattern seen in the 2D:4D ratio and the question of possible time trends therein deserve further investigations.

  2. Color Doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron-silica nanoshells.

    PubMed

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V; Viveros, Robert; Blair, Sarah L; Ellies, Lesley G; Vera, David R; Mattrey, Robert F; Kummel, Andrew C; Trogler, William C

    2013-07-23

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long-term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm nonbiodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with (111)In(3+) for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-(111)In labeling for studying silica nanoparticle biodistributions.

  3. Color Doppler Ultrasonography-Targeted Perforator Mapping and Angiosome-Based Flap Reconstruction.

    PubMed

    Gunnarsson, Gudjon Leifur; Tei, Troels; Thomsen, Jørn Bo

    2016-10-01

    Knowledge about perforators and angiosomes has inspired new and innovative flap designs for reconstruction of defects throughout the body. The purpose of this article is to share our experience using color Doppler ultrasonography (CDU)-targeted perforator mapping and angiosome-based flap reconstruction throughout the body. The CDU was used to identify the largest and best-located perforator adjacent to the defect to target the reconstruction. The cutaneous or fasciocutaneous flaps were raised, mobilized, and designed according to the reconstructive needs as rotation, advancement, or turnover flaps. We performed 148 reconstructions in 130 patients. Eleven facial reconstructions, 118 reconstructions in the body, 7 in the upper limbs, and 12 in the lower limbs. The propeller flap was used in 135 of 148 (91%) cases followed by the turnover design in 10 (7%) and the V to Y flap in 3 (2%) cases. The flaps were raised on 1 perforator in 98 (67%), 2 perforators in 48 (33%), and 3 perforators in 2 (1%) flaps. The reconstructive goal was achieved in 143 of 148 reconstructions (97%). In 5 cases, surgical revision was needed. No flaps were totally lost indicating a patent pedicle in all cases. We had 10 (7%) cases of major complications and 22 (15%) minor complications. The CDU-targeted perforator mapping and angiosome-based flap reconstruction are simple to perform, and we recommended its use for freestyle perforator flap reconstruction. All perforators selected by CDU was identified during surgery and used for reconstruction. The safe boundaries of angiosomes remain to be established.

  4. Adaptive clutter rejection for 3D color Doppler imaging: preliminary clinical study.

    PubMed

    Yoo, Yang Mo; Sikdar, Siddhartha; Karadayi, Kerem; Kolokythas, Orpheus; Kim, Yongmin

    2008-08-01

    In three-dimensional (3D) ultrasound color Doppler imaging (CDI), effective rejection of flash artifacts caused by tissue motion (clutter) is important for improving sensitivity in visualizing blood flow in vessels. Since clutter characteristics can vary significantly during volume acquisition, a clutter rejection technique that can adapt to the underlying clutter conditions is desirable for 3D CDI. We have previously developed an adaptive clutter rejection (ACR) method, in which an optimum filter is dynamically selected from a set of predesigned clutter filters based on the measured clutter characteristics. In this article, we evaluated the ACR method with 3D in vivo data acquired from 37 kidney transplant patients clinically indicated for a duplex ultrasound examination. We compared ACR against a conventional clutter rejection method, down-mixing (DM), using a commonly-used flow signal-to-clutter ratio (SCR) and a new metric called fractional residual clutter area (FRCA). The ACR method was more effective in removing the flash artifacts while providing higher sensitivity in detecting blood flow in the arcuate arteries and veins in the parenchyma of transplanted kidneys. ACR provided 3.4 dB improvement in SCR over the DM method (11.4 +/- 1.6 dB versus 8.0 +/- 2.0 dB, p < 0.001) and had lower average FRCA values compared with the DM method (0.006 +/- 0.003 versus 0.036 +/- 0.022, p < 0.001) for all study subjects. These results indicate that the new ACR method is useful for removing nonstationary tissue motion while improving the image quality for visualizing 3D vascular structure in 3D CDI.

  5. Real-time Feedback of Histotripsy Thrombolysis Using Bubble-induced Color Doppler

    PubMed Central

    Zhang, Xi; Miller, Ryan M.; Lin, Kuang-Wei; Levin, Albert M.; Owens, Gabe E.; Gurm, Hitinder S.; Cain, Charles A.; Xu, Zhen

    2014-01-01

    Histotripsy thrombolysis is a noninvasive, drug-free and image-guided therapy that fractionates blood clots using well-controlled acoustic cavitation alone. Real-time quantitative feedback is highly desired during histotripsy thrombolysis treatment to monitor the progress of clot fractionation. Bubble-induced color Doppler (BCD) monitors the motion following cavitation generated by each histotripsy pulse, which has been shown in gel and ex vivo liver tissue to be correlated with histotripsy fractionation. In this paper we investigate the potential of BCD to quantitatively monitor histotripsy thrombolysis in real-time. To visualize clot fractionation, transparent three-layered fibrin clots were developed. Results show a coherent motion follows the cavitation generated by each histotripsy pulse with a push and rebound pattern. The temporal profile of this motion expanded and saturated as the treatment progressed. A strong correlation existed between the degree of histotripsy clot fractionation and two metrics extracted from BCD: time of peak rebound velocity (tPRV) and focal mean velocity at a fixed delay (Vf,delay). The saturation of clot fractionation (i.e., treatment completion) matched well with the saturations detected using tPRV and Vf,delay. The mean Pearson correlation coefficients between the progressions of clot fractionation and the two BCD metrics were 93.1% and 92.6% respectively. To validate the BCD feedback in in vitro clots, debris volume from histotripsy thrombolysis were obtained at different therapy doses and compared with Vf,delay. The increasing and saturation trends of debris volume and Vf,delay also had good agreement. Finally, a real-time BCD feedback algorithm to predict complete clot fractionation during histotripsy thrombolysis was developed and tested. This work demonstrated the potential of BCD to monitor histotripsy thrombolysis treatment in real-time. PMID:25623821

  6. Basal ganglia perfusion using dynamic color Doppler sonography in infants with hypoxic ischemic encephalopathy receiving therapeutic hypothermia: a pilot study

    PubMed Central

    Cassia, Guilherme; Morneault, Linda; Saint-Martin, Christine; Sant’Anna, Guilherme

    2016-01-01

    Background The objective of this study was to evaluate the cerebral perfusion of the basal ganglia in infants with hypoxic-ischemic encephalopathy (HIE) receiving hypothermia using dynamic color Doppler sonography (CDS) and investigate for any correlation between these measurements and survival. Methods Head ultrasound (HUS) was performed with a 9S4 MHz sector transducer in HIE infants submitted to hypothermia as part of their routine care. Measurements of cerebral perfusion intensity (CPI) with an 11LW4 MHz linear array transducer were performed to obtain static images and DICOM color Doppler videos of the blood flow in the basal ganglia area. Clinical and radiological data were evaluated retrospectively. The video images were analyzed by two radiologists using dedicated software, which allows automatic quantification of color Doppler data from a region of interest (ROI) by dynamically assessing color pixels and flow velocity during the heart cycle. CPI is expressed in cm/sec and is calculated by multiplying the mean velocity of all pixels divided by the area of the ROI. Three videos of 3 seconds each were obtained of the ROI, in the coronal plane, and used to calculate the CPI. Data are presented as mean ± SEM or median (quartiles). Results A total of 28 infants were included in this study: 16 male, 12 female. HUS was performed within the first 48 hours of therapeutic hypothermia treatment. CPI values were significantly higher in the seven non-survivors when compared to survivors (0.226±0.221 vs. 0.111±0.082 cm/sec; P=0.02). Conclusions Increased perfusion intensity of the basal ganglia area within the first 48 of therapeutic hypothermia treatment was associated with poor outcome in neonates with HIE. PMID:27942470

  7. Estimation of two-dimensional intraventricular velocity and pressure maps by digital processing conventional color-Doppler sequences

    NASA Astrophysics Data System (ADS)

    Garcia, Damien; Del Alamo, Juan C.; Tanne, David; Cortina, Cristina; Yotti, Raquel; Fernandez-Aviles, Francisco; Bermejo, Javier

    2008-11-01

    Clinical echocardiographic quantification of blood flow in the left ventricle is limited because Doppler methods only provide one velocity component. We developed a new technique to obtain two-dimensional flow maps from conventional transthoracic echocardiographic acquisitions. Velocity and pressure maps were calculated from color-Doppler velocity (apical long-axis view) by solving the continuity and Euler equations under the assumptions of zero transverse fluxes of mass and momentum. This technique is fast, clinically-compliant and does not require any specific training. Particle image velocimetry experiments performed in an atrioventricular duplicator showed that the circulation and size of the diastolic vortex was quantified accurately. Micromanometer measurements in pigs showed that apex-base pressure differences extracted from two-dimensional maps qualitatively agreed with micromanometer data. Initial clinical measurements in healthy volunteers showed a large prograde vortex. Additional retrograde vortices appeared in patients with dilated cardiomyopathy and left ventricular hypertrophy.

  8. Image analysis of placental issues using three-dimensional ultrasound and color power Doppler based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Diyun; Liu, Jianguo

    2009-10-01

    With the development of medical science, three-dimensional ultrasound and color power Doppler tomography shooting placenta is widely used. To determine whether the fetus's development is abnormal or not is mainly through the analysis of the capillary's distribution of the obtained images which are shot by the Doppler scanner. In this classification process, we will adopt Support Vector Machine classifier. SVM achieves substantial improvements over the statistical learning methods and behaves robustly over a variety of different learning tasks. Furthermore, it is fully automatic, eliminating the need for manual parameter tuning and can solve the small sample problem wonderfully well. So SVM classifier is valid and reliable in the identification of placentas and is more accurate with the lower error rate.

  9. Carotid endarterectomy versus stenting: Does the flow really change? An Echo-Color-Doppler analysis.

    PubMed

    Lucatelli, Pierleone; Fanelli, Fabrizio; Cirelli, Carlo; Sacconi, Beatrice; Anzidei, Michele; Montisci, Roberto; Sanfilippo, Roberto; Tamponi, Elisabetta; Catalano, Carlo; Saba, Luca

    2015-04-01

    To assess potential hemodynamic differences after carotid endarterectomy (CEA) and carotid artery stenting (CAS) and their eventual impact on clinical management. Between July 2012 and October 2013 two groups of 30 patients each referred for CEA or CAS were prospectively enrolled in two tertiary hospital care centers. Pre-procedural imaging assessment of carotid artery disease was performed with Echo-Color-Doppler (ECD) and computed tomography angiography (CTA). ECD was repeated within 24 h and 1, 6 and 12 months after surgical/endovascular procedures. Peak systolic velocity (PSV) and end diastolic velocity (EDV) were assessed at two standard sites: common carotid artery (CCA) and distal internal carotid artery (ICA). Twenty-four hours ECD findings highly differ between the two populations. CCA PSV in the CEA and CAS groups was respectively 44.88 ± 9.16 and 69.20 ± 20.04 cm/s (p = 0.002); CCA EDV was 16.11 ± 2.29 and 19.13 ± 6.42 cm/s (p = 0.065); ICA PSV was 46.11 ± 7.9 and 94.02 ± 57.7 cm/s (p = 0.0012); ICA EDV was 20.22 ± 4.33 and 30.47 ± 18.33 cm/s (p = 0.025). One month, 6 months and 1 year findings confirmed the different trend in the two cohorts; in particular, at 1 year: CCA PSV was 50.94 ± 12.44 and 60.59 ± 26.84 cm/s (p = 0.181); CCA EDV was 17.11 ± 3.46 and 19 ± 16.35 cm/s (p = 0.634); ICA PSV was 51.66 ± 10.1 and 70.86 ± 20.64 cm/s (p = 0.014); ICA EDV was 25.05 ± 8.65 and 32.66 ± 13 cm/s (p = 0.0609). ECD follow-up of patients undergone CEA or CAS may play a critical role in the clinical management. Strict surveillance of blood flow velocities allows reducing false positive re-stenosis diagnosis and choosing the best anti-aggregation therapies. Within the first month CEA patients benefit from a lower risk condition in comparison with CAS patients, due to a significantly faster PSV drop; moreover, long-term CCA PSV after CEA could be used as a surrogate marker of neointima formation.

  10. Revascularization alone or combined with suture annuloplasty for ischemic mitral regurgitation. Evaluation by color Doppler echocardiography.

    PubMed Central

    Czer, L S; Maurer, G; Bolger, A F; DeRobertis, M; Chaux, A; Matloff, J M

    1996-01-01

    To determine the effectiveness of revascularization alone or combined with mitral valve repair for ischemic mitral regurgitation, we performed color Doppler echocardiography intraoperatively before and after cardiopulmonary bypass in 49 patients (mean age, 70 +/- 9 years) with concomitant mitral regurgitation and coronary artery disease (triple vessel or left main in 88%; prior infarction in 90%). After revascularization alone (n = 25), the mitral annulus diameter (2.88 +/- 0.44 cm vs 2.88 +/- 0.44 cm), leaflet-to-annulus ratio (1.44 +/- 0.30 vs 1.44 +/- 0.29), and mitral regurgitation grade (1.7 +/- 0.9 vs 1.8 +/- 0.7) remained unchanged (p = NS, postpump vs prepump); mitral regurgitation decreased by 2 grades in only 1 patient (4%). After combined revascularization and mitral valve suture annuloplasty (Kay-Zubiate; n = 24), the annulus diameter decreased (to 2.57 +/- 0.45 cm from 3.11 +/- 0.43 cm), the leaflet-to-annulus ratio increased (to 1.46 +/- 0.25 from 1.20 +/- 0.21), and the mitral regurgitation grade decreased significantly (to 0.9 +/- 0.9 from 2.8 +/- 1.0) (p < 0.01); mitral regurgitation decreased by 2 grades or more (successful repair) in 75%. The origin of the jet correlated with the site of prior infarction (p < 0.05), being inferior in cases of posterior or inferior infarction (67%), and central or broad in cases of combined anterior and inferior infarction (70%). Despite a slightly higher 30-day mortality in the repair group (p = 0.10), there was no significant difference in survival between the 2 surgical groups at 5 years or 8 years. Therefore, in this study of patients with mitral regurgitation and coronary artery disease, reduction in regurgitation grade with revascularization alone was infrequent. Concomitant suture annuloplasty significantly reduced regurgitation by reestablishing a more normal relationship between the leaflet and annulus sizes. The failure rate after suture annuloplasty was 25%; alternative repair techniques such as ring

  11. Color Doppler Ultrasound in Diagnosis and Assessment of Carotid Body Tumors: Comparison with Computed Tomography Angiography.

    PubMed

    Jin, Zhan-Qiang; He, Wen; Wu, Dong-Fang; Lin, Mei-Ying; Jiang, Hua-Tang

    2016-09-01

    A carotid body tumor (CBT) is a rare, non-chromaffin paraganglioma, and its diagnosis mainly depends on imaging modalities. The aim of this study was to investigate the ability of color Doppler ultrasound (CDU) in the diagnosis and assessment of CBT based on computed tomography (CT). We retrospectively reviewed the CDU and CT features of 49 consecutive CBTs and 23 schwannomas from 67 patients and compared these findings with surgical resection specimens. The mean size of CBT lesions on ultrasound scans and CT angiography (CTA) was 3.24 cm ± 0.82 cm (range, 1.6-5.2 cm) and 3.84 cm ± 1.08 cm (range, 1.8-6.8 cm), respectively, which had statistically significant difference (t = 9.815, p = 0.000). The vascularity of CBT lesions was richer than that of schwannoma lesions (p < 0.05). Intra-lesional vascularities feeding CBT mostly arose from the external carotid artery and had spectrum characteristics including low velocity and resistance. Peak systolic velocity (PSV) and resistance index (RI) of the vasa vasorum were 39.8 cm/s ± 19.8 cm/s and 0.54 ± 0.06, respectively. There was the correlation between CTA and CDU in identifying Shamblin type I CBT lesions, while CTA technique was superior for CDU, identifying Shamblin type II and III CBT lesions. Accuracy, specificity and sensitivity of CDU in diagnosing CBTs were 87.5% (63 of 72), 82.6% (19 of 23) and 89.8% (44 of 49), respectively. Both accuracy and sensitivity of CTA in diagnosing CBTs were 100%. CDU can be useful for assessment of Shamblin's type and intra-lesional blood flow of CBTs before its metastases, while CT imaging can reveal the relationship between lesions and adjacent arteries, as well as the involvement of the skull base. CDU combined with CT imaging can be used as an optimal detection modality for the assessment and management of CBT.

  12. The application of color Doppler flow imaging in the diagnosis and therapeutic effect evaluation of erectile dysfunction.

    PubMed

    Xuan, Xu-Jun; Bai, Gang; Zhang, Cai-Xia; Xu, Chao; Lu, Fu-Ding; Peng, Yang; Ma, Gang; Han, Cong-Hui; Chen, Jun

    2016-01-01

    We aim to investigate the correlations between hemodynamic parameters, penile rigidity grading, and the therapeutic effects of phosphodiesterase type 5 inhibitors using color Doppler flow imaging after intracavernosal injection in patients with erectile dysfunction. This study involved 164 patients. After intracavernosal injection with a mixture of papaverine (60 mg), prostaglandin E 1 (10 mg), and lidocaine (2%, 0.5-1 ml), the penile vessels were assessed using color Doppler flow imaging. Penile rigidity was classified based on the Erection Hardness Score system as Grades 4, 3, 2 or 1 (corresponding to Schramek Grades V to II). Then, the patients were given oral sildenafil (50-100 mg) and scored according to the International Index of Erectile Function (IIEF-5) questionnaire. The number of patients with penile rigidities of Schramek Grades II to V was 14, 18, 21, and 111, respectively. The IIEF-5 score was positively correlated with the refilling index of the penile cavernosal artery (r = 0.79, P< 0.05), the peak systolic velocity (r = 0.45, P< 0.05), and penile rigidity (r = 0.75, P< 0.05), and was negatively correlated with the end diastolic velocity (r = -0.74, P< 0.05). For patients with erectile dysfunction, both the IIEF-5 score after sildenafil administration, which is correlated with penile rigidity, and the hemodynamic parameters detected using color Doppler flow imaging may predict the effects of phosphodiesterase type 5 inhibitor treatment and could provide a reasonable model for the targeted-treatment of erectile dysfunction.

  13. Spatio-temporal mapping of intracardiac pressure gradients. A solution to Euler's equation from digital postprocessing of color Doppler M-mode echocardiograms.

    PubMed

    Bermejo, J; Antoranz, J C; Yotti, R; Moreno, M; García-Fernández, M A

    2001-05-01

    Doppler assessment of intracardiac pressure gradients using the simplified Bernoulli equation is inaccurate in the absence of a restricted orifice. The purpose of this study is to develop a new general method to map instantaneous pressure gradients inside the heart using Doppler echocardiography. Color Doppler M-mode recordings are digitally postprocessed with a software algorithm that decodes flow velocity and fits a bivariate spatio-temporal tensor-product smoothing spline. Temporal and spatial accelerations are then calculated by analytical derivation of the fitted velocity data, allowing solution of both inertial and convective terms of Euler's equation. A database of 39 transmitral inflow and transaortic outflow color Doppler M-mode recordings from 20 patients with a number of cardiac conditions was analysed, along with matched pulsed-wave spectral recordings. A close agreement was observed between the spectral and postprocessed color Doppler velocity values (error = 0.8 +/- 11.7 cm/s), validating the data decoding and fitting process. Spatio-temporal pressure-gradient maps were obtained from all studies, allowing visualisation of instantaneous pressure gradients from the atrium to the apex during left ventricular filling, and from the apex to the outflow tract during ejection. Instantaneous pressure differences between localised intracardiac sample points closely matched previously published catheterization findings, both in magnitude and waveform shape. Our method shows that intracardiac instantaneous pressure gradients can be analysed noninvasively using color Doppler M-mode echocardiography combined with image postprocessing methods.

  14. Device sizing for transcatheter closure of ruptured sinus of Valsalva as per echocardiography color Doppler turbulent flow jet diameter.

    PubMed

    Ahmed, Khurshid; Munawar, Muhammad; Chakraborty, Rabin; Hartono, Beny; Yusri, Achmad

    2015-01-01

    Rupture of sinus of Valsalva (SV) is a rare occurrence with a wide spectrum of presentation, ranging from an asymptomatic murmur to cardiogenic shock or even sudden cardiac death. We hereby report a case which was successfully closed by transcatheter technique. In this case, ruptured SV was entered from the aorta, an arteriovenous loop was created and device was implanted using a venous approach. The procedure was safe, effective and uncomplicated, obviating the need for surgery. In this case, the authors report for the first time the use of echo color Doppler turbulent flow jet diameter as a reference value for sizing the device.

  15. [Color-coded M-mode Doppler echocardiography in the diagnosis of fetal arrhythmia].

    PubMed

    Gembruch, U; Bald, R; Hansmann, M

    1990-04-01

    Colour-coded M-mode Doppler echocardiography is a simultaneous registration of the conventional M-mode echocardiogram and of the pulsed wave colour-coded Doppler echocardiogram with simultaneous analysis of several sample volumes along the ultrasound cursor with a high timely resolution, guided by the two-dimensional imaging. Within 9 months, 36 foetuses with arrhythmias were prospectively examined (24 foetuses with atrial premature beats, 9 foetuses with supraventricular tachycardia, and 3 foetuses with complete heart block). The classification of arrhythmia by the colour-coded M-mode Doppler echocardiography was always possible at first examination. The most important advantage of this method is the simultaneous registration of the information of conventional M-mode and Doppler echocardiography. Therefore, the intervals between atrial and ventricular contractions can also be analysed even when the angle of insonation to the foetal heart is unfavourable, since contractions cannot only be identified by wall movements but also by the flow velocities. Furthermore, the duration of regurgitation of atrioventricular valves can be exactly measured by colour-coded M-mode Doppler echocardiography. In foetal supraventricular tachycardia, it appears that severity of congestive heart failure is correlated with the duration of atrioventricular valve regurgitation up to a holosystolic insufficiency. Thus, it seems possible, that the duration of insufficiency of atrioventricular valves is a good parameter for evaluation of cardiac function and for modifying antiarrhythmic treatment in cases of supraventricular tachycardia.

  16. Support vector analysis of color-Doppler images: a new approach for estimating indices of left ventricular function.

    PubMed

    Rojo-Alvarez, J L; Bermejo, J; Juárez-Caballero, V M; Yotti, R; Cortina, C; García-Fernández, M A; Antoranz, J C

    2006-08-01

    Reliable noninvasive estimators of global left ventricular (LV) chamber function remain unavailable. We have previously demonstrated a potential relationship between color-Doppler M-mode (CDMM) images and two basic indices of LV function: peak-systolic elastance (Emax) and the time-constant of LV relaxation (tau). Thus, we hypothesized that these two indices could be estimated noninvasively by adequate postprocessing of CDMM recordings. A semiparametric regression (SR) version of support vector machine (SVM) is here proposed for building a blind model, capable of analyzing CDMM images automatically, as well as complementary clinical information. Simultaneous invasive and Doppler tracings were obtained in nine mini-pigs in a high-fidelity experimental setup. The model was developed using a test and validation leave-one-out design. Reasonably acceptable prediction accuracy was obtained for both Emax (intraclass correlation coefficient Ric, = 0.81) and tau (Ric, = 0.61). For the first time, a quantitative, noninvasive estimation of cardiovascular indices is addressed by processing Doppler-echocardiography recordings using a learning-from-samples method.

  17. An evaluation of B-mode and color Doppler ultrasonography for detecting periovulatory events in the bitch.

    PubMed

    Bergeron, Lindsay H; Nykamp, Stephanie G; Brisson, Brigitte A; Madan, Pavneesh; Gartley, Cathy J

    2013-01-15

    When determining optimal breeding time in the bitch, specific periovulatory events must be identified. The main objectives were to relate ultrasonographic changes in ovarian blood flow, follicle/corpora lutea count and echotexture to periovulatory events, and to assess the efficacy of each for identifying these events. Twelve Beagle (N = 3), Beagle-cross (N = 2) and hound-cross (N = 7) bitches (body weight range, 7.5-27.5 kg) were examined daily from the onset of proestrus to approximately 4 days post-LH peak. Follicle and corpora lutea count and echotexture analyses were performed using B-mode ultrasound and ovarian blood flow analysis was performed using color Doppler ultrasound. Serum LH concentrations were analyzed by validated RIA. There was an increase (P < 0.05) in ovarian blood flow from the day of the preovulatory LH peak (605 pixels; confidence interval, 397-856), to 1 day after this peak (1092 pixels; confidence interval, 724-1535), enabling detection of the preovulatory LH peak. There were no significant changes in follicle/corpora lutea echotexture relative to days from the preovulatory LH peak. There were significant decreases in follicle/corpora lutea number between Days -1 and 3; Days -1 and 4; and Days 0 and 3, relative to the preovulatory LH peak. We concluded that color Doppler ultrasound performed once daily was more accurate in identifying the preovulatory LH peak than B-mode ultrasound and enabled prospective determination of ovulation.

  18. Is color-Doppler US a reliable method in the follow-up of transjugular intrahepatic portosystemic shunt (TIPS)?

    PubMed Central

    Ricci, P.; Cantisani, V.; Lombardi, V.; Alfano, G.; D'Ambrosio, U.; Menichini, G.; Marotta, E.; Drudi, F.M.

    2007-01-01

    Transjugular intrahepatic portosystemic shunt (TIPS) has become a widely accepted treatment for complications of portal hypertension. Shunt or hepatic vein stenoses or occlusions are common short- and mid-term complications of the procedure, with a one-year primary patency ranging from 25% to 66%. When promptly identified, shunt stenosis or occlusion may be treated before the recurrence of gastrointestinal bleeding or ascites. The revision is usually successful and the primary-assisted patency of TIPS is approximately 85% at one year. Doppler sonography is a widely accepted screening modality for TIPS patients, both as a routine follow-up in asymptomatic patients and in those cases with clinically suspected TIPS malfunction. In a routine US follow-up, a TIPS patient is scheduled for a control 24 h after the procedure, and then after one week, 1 month, 3 months, and at 3-month intervals thereafter. Venography is at present performed solely on the basis of a suspected shunt dysfunction during the sonographic examination. Color-Doppler sonography is the most reliable method for monitoring the shunt function after TIPS implantation. Several studies have shown that Doppler sonography is a sensitive and relatively specific way to detect shunt malfunction, particularly when multiple parameters are examined. Achieving high sensitivity is optimal so that malfunctioning shunts can be identified and shunt revision can be performed before symptomatic deterioration. Venous angiography is at present indicated only on the basis of US suspicion of shunt compromise. Power-Doppler US and US contrast media can be useful in particular conditions, but are not really fundamental. PMID:23396711

  19. Soot volume fractions and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence

    NASA Astrophysics Data System (ADS)

    Boiarciuc, A.; Foucher, F.; Mounaïm-Rousselle, C.

    2006-06-01

    An original approach of laser-induced incandescence consisting in the simultaneous recording of the two-color-time-resolved and 2D LII signal is described in this paper. The application of this approach in an atmospheric pressure diffusion flame fueled with isooctane as well as inside the combustion chamber of a diesel engine is presented. Soot volume fraction and primary particle diameters are calculated, and the results are discussed. The mean diameter estimated by fitting the LII modeled curve on the experimental one is compared with the results obtained through soot sampling and microscope analyzing. The influence of the thermal accommodation coefficient and soot refractive index function is also discussed.

  20. Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound

    PubMed Central

    Höfling, Danilo Bianchini; Chavantes, Maria Cristina; Juliano, Adriana G.; Cerri, Giovanni G.; Knobel, Meyer; Yoshimura, Elisabeth M.; Chammas, Maria Cristina

    2012-01-01

    Background. Chronic autoimmune thyroiditis (CAT) frequently alters thyroid vascularization, likely as a result of the autoimmune process. Objective. To evaluate the effects of low-level laser therapy (LLLT) on the thyroid vascularization of patients with hypothyroidism induced by CAT using color Doppler ultrasound parameters. Methods. In this randomized clinical trial, 43 patients who underwent levothyroxine replacement for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (L group, n = 23) or 10 sessions of a placebo treatment (P group, n = 20). Color Doppler ultrasounds were performed before and 30 days after interventions. To verify the vascularity of the thyroid parenchyma, power Doppler was performed. The systolic peak velocity (SPV) and resistance index (RI) in the superior (STA) and inferior thyroid arteries (ITAs) were measured by pulsed Doppler. Results. The frequency of normal vascularization of the thyroid lobes observed in the postintervention power Doppler examination was significantly higher in the L than in the P group (P = 0.023). The pulsed Doppler examination revealed an increase in the SPV of the ITA in the L group compared with the P group (P = 0.016). No significant differences in the SPV of the STA and in the RI were found between the groups. Conclusion. These results suggest that LLLT can ameliorate thyroid parenchyma vascularization and increase the SPV of the ITA of patients with hypothyroidism caused by CAT. PMID:23316383

  1. Diagnostic value of color doppler ultrasonography in detecting stenosis and occlusion of central veins in patients with chronic kidney disease.

    PubMed

    Rad, Masoud Pezeshki; Kazemzadeh, Gholam Hosain; Ziaee, Masood; Azarkar, Ghodsieh

    2015-03-01

    Venography is an invasive diagnostic test that uses contrast material that provides a picture of the condition of the veins. But, complications, including adverse effects on the kidney, do occur. On the other hand, with the current technological development, application of ultrasound in the diagnosis of obstructive diseases of the veins is gaining popularity, being non-invasive, easy to perform and cost-effective. The aim of this study was to evaluate the diagnostic value of Doppler sonography in the diagnosis of central vein stenosis. In this descriptive-analytical study, 41 hemodialysis patients who had been referred for 50 upper limb venographies to the radiology department of Imam Reza (AS) were included. Patients with chronic kidney disease with a history of catheterization of the vein, jugular or subclavian, and who had established fistulas or synthetic vascular grafts were targeted. Central venous ultrasound was performed on both sides to evaluate stenosis or occlusion. Venography was performed by the radiologist the next day or the day before hemodialysis. Data on demographic characteristics, findings of clinical examination and findings of ultrasound as well as venography were recorded by using the SPSS software, Chi-square test and Spearman correlation, and Kappa agreement was calculated for sensitivity, specificity and predictive values. Twenty-three (56%) patients were male subjects and 18 patients (44%) were female. Twenty-three (56%) patients of the study population were aged <60 years and 18 (43/9%) patients were aged >60 years. The overall sensitivity, specificity and positive predictive value and negative predictive value of Doppler sonography in the proximal veins in hemodialysis patients compared with venography were, respectively, 80.9%, 79.3%, 73.9% and 85.1%. Color Doppler sonography, as a non-invasive method, could be a good alternative for venography in the assessment of the upper limb with central vein stenosis and occlusion.

  2. Ultrahigh-velocity resolution imaging of the microcirculation in-vivo using color Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2001-05-01

    Color Doppler optical coherence tomography (CDOCT) is a method for noninvasive cross-sectional imaging of blood flow in vivo. In previous implementations, velocity estimates were obtained by measuring the frequency shift of discrete depth-resolved backscatter spectra, resulting in a velocity resolution on the order of 1 mm/s. We present a novel processing method that detects Doppler shifts calculated across sequential axial scans, enabling ultrahigh velocity resolution (~1 micron/s) flow measurement in scattering media. This method of sequential scan processing was calibrated with a moving mirror mounted on a precision motorized translator. Latex microspheres suspended in deuterium oxide were used as a highly scattering test phantom. Laminar flow profiles down to ~15 micron/s centerline velocity (0.02 cc/hr) were observed with a sensitivity of 1.2 micron/s. Finally, vessels on the order of 10 microns in diameter were imaged in living human skin, with a relative frequency sensitivity less than 4 x 10-5. To our knowledge, these results are the lowest velocities ever measured with CDOCT.

  3. Color Doppler monitoring of changes of utero-placental-fetal circulation in normal pregnancy and intrauterine growth retardation.

    PubMed

    Xu, J; Wen, L; Ma, T; Zhang, Y; Zhang, Q; Gao, S; Zhao, M; Wu, H; Hu, J

    1997-01-01

    The utero-placental-fetal circulation (UPFC) of 150 subjects during second and third trimester was examined by using color Doppler. Of them 89 were normal woman and 58 were patients with intrauterine growth retardation IUGR). Our results showed that UPFC was increased gradually during normal pregnant period. In IUGR patients it was revealed that TAV and Q of UmA, UmV and UtA decreased at 20th week of gestation, especially after 30th week. PI, RI and S/D ratio of UmA were increased, but TAV, Q of UmA and UmV were markly reduced, so was UtA. PI were increased, but the changes of RI, S/D ratio in UtA were not significant. Hemodynamical findings of UmA, UmV and UtA were abnormal in 92.53% of IUGR patients. Only 81.03% present abnormal S/D ratio of UmA (P < 0.01) and the difference was statistically significant. Maternal serum E3, HPL level in IUGR were significantly lower than that of the normal. 6KP level was reduced, TXB2/6KP ratio was significantly increased. TXB2/6KP ratio was markedly related with TAV, Q of UmA, UmV and UtA. Our results suggested that using color doppler ultrasound for examination of hemodynamical changes of UmA, UmV and UtA could revealed UPFC function directly. It is one of the best methods for monitoring IUGR and might be used for early diagnosis of IUGR. The main pathophysiological changes of IUGR were UPFC obstruction and placental disfunction.

  4. [Varicose vein recurrence after surgery of the sapheno-femoral junction: color Doppler ultrasonography study].

    PubMed

    Roscitano, Giuseppe; Mirenda, Francesco; Mandolfino, Tommaso; De Caridi, Giovanni; Stilo, Francesco; Benedetto, Filippo; Spinelli, Francesco

    2003-01-01

    The aim of this study was to evaluate the accuracy and sensitivity of colour Doppler ultrasonography for the diagnosis of postoperative recurrent varicose veins in patients submitted to surgical ligation of the saphenofemoral junction with a view to classifying the recurrences according to the causes. We studied 401 lower limbs in the orthostatic position with colour Doppler ultrasonography in 318 patients (64 M and 254 F) presenting postoperative varicose vein recurrence during the follow-up (12-60 months). We evaluated the type of reflux at the inguinal level under the Valsalva manoeuvre and divided them into 5 types. We observed an incomplete crossectomy (type 1) in 23.2% of the cases; an incontinent saphenofemoral junction, intact and in an anatomical site in 12.5% (type 2); a major tributary (double saphena) originating from the common femoral vein near to the crossectomy site in 10.2% (type 3); neovascularization in 9.7% (type 4) and the presence of a number of major tributaries from the veins of the perineal and pudendal region or from the abdominal parietal veins in 44.4% (type 5). In all cases it was possible to note and classify the type of recurrence. Colour Doppler ultrasonography is an accurate, reliable tool for the diagnosis and classification of postoperative varicose vein recurrences in patients submitted to surgical obliteration of the saphenofemoral junction. It is decisive in the preoperative evaluation and follow-up of patients. In our experience, more than one half of the cases of recurrence were not due to an error of surgical technique.

  5. Diagnosis of Pentalogy of Cantrell in the First Trimester Using Transvaginal Sonography and Color Doppler

    PubMed Central

    Türkçapar, Ayşe Figen; Sargın Oruc, Ayla; Öksüzoglu, Aysegül; Danışman, Nuri

    2015-01-01

    We report the prenatal diagnosis of Cantrell syndrome in the first trimester. During a routine transabdominal ultrasonographic examination, a midline supraumbilical abdominal wall defect including herniated liver and ectopia cordis with a large omphalocele containing the intestines and cystic hygroma was incidentally identified at the 12th week of gestation. A transvaginal sonography examination revealed a severe lumbosacral scoliosis in addition to the inability to visualize the abdominal aorta which was indicative of a severe intracardiac defect. The parents opted for pregnancy to be terminated. In this case report, we discuss the complementary role of transvaginal sonography and Doppler imaging in the diagnosis of Cantrell syndrome in early pregnancy. PMID:25802780

  6. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  7. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  8. Significance of phentolamine redosing during prostaglandin E1 penile color Doppler ultrasonography in diagnosis of vascular erectile dysfunction.

    PubMed

    Arafa, Mohamed; Eid, Hazem; Shamloul, Rany

    2007-05-01

    Recently, it was reported that phentolamine redosing during penile duplex can abolish a false diagnosis of venous leakage in patients with impotence. The aim of this study is to identify any useful role of phentolamine redosing in diagnosis of venogenic impotence. Sixty-seven consecutive patients complaining of weak erection for at least 6 months were included in this study. Penile color Doppler ultrasound (CDU) was performed using a 7.5 MHz linear array transducer with a color flow mapping capability. Following intracavernous injection of 20 microg prostaglandin E1 (PGE1), all patients with persistent end diastolic velocity (EDV) >5 cm/sec with an erectile response of E3 or lower, 20 min after intracavernosal injection of PGE1, were asked to revisit our clinic for a second CDU, 2 weeks later. During initial CDU examination, all 67 patients experienced poor response to 20 microg PGE1 with their average peak systolic velocity (PSV) and EDV being 42.8 and 6.6 cm/sec, respectively. The second CDU examination had similar results to the first one. Addition of 2 mg phentolamine did not significantly change the PSV and EDV of cavernosal arteries in any of the 67 patients. In conclusion, addition of intracavernous phentolamine during PGE1 CDU examination carries no advantage over the use of PGE1 alone regarding cavernosal artery response in patients with suspected venogenic EDV.

  9. Significance of clearing differentiated thyroid carcinoma lymph node by high-frequency color Doppler ultrasonography

    PubMed Central

    Liu, Bing; Qin, Huadong; Zhang, Bin; Shi, Tiefeng; Li, Chuanle; Liu, Yao; Song, Meiyue

    2017-01-01

    We compared the clinical effects and prognosis of patients receiving lymph node dissection after surgical removal of the thyroid tissues and those not receiving it after the removal. A total of 80 patients diagnosed with differentiated thyroid carcinoma (DTC) by our hospital from March 2012 to March 2014 were successively included in the study. The cases were divided into the control group (n=36 cases) and observation group (n=44 cases), and the two groups underwent total or subtotal resection of the thyroid. In the control group, patients underwent preoperative high-frequency color ultrasonography, and the most suspicious lymph node was removed. In the observation group, patients underwent preoperative high-frequency color ultrasonography, and the surgeons cleared the lymph node of the widest range. Difference in clinical effects and prognosis of the two groups were compared. After nearly a year's follow-up observation, the tumor recurrence rate of the observation group was significantly lower than that of the control group and the survival rate of the observation group was significantly higher than that of the control group (P<0.05). The rate of surgery complications and comparative difference of the two patient groups had no statistical significance (P>0.05). When comparing the data of lymphatic metastasis tested by preoperative high-frequency color ultrasonography with intraoperative diagnosed figures, sensitivity was 97.4%, specificity 33.3%, positive predictive value 90.2% and the negative predictive value 66.7%. In conclusion, removal of the lymph node for DTC patients having undergone thyroid tissue excision with preoperative high-frequency color ultrasonography can be beneficial to improve the effects along with reduction in the recurrence rate. PMID:28123550

  10. New adaptive clutter rejection based on spectral analysis for ultrasound color Doppler imaging: phantom and in vivo abdominal study.

    PubMed

    Geunyong Park; Sunmi Yeo; Jae Jin Lee; Changhan Yoon; Hyun-Woo Koh; Hyungjoon Lim; Youngtae Kim; Hwan Shim; Yangmo Yoo

    2014-01-01

    Effective rejection of time-varying clutter originating from slowly moving vessels and surrounding tissues is important for depicting hemodynamics in ultrasound color Doppler imaging (CDI). In this paper, a new adaptive clutter rejection method based on spectral analysis (ACR-SA) is presented for suppressing nonstationary clutter. In ACR-SA, tissue and flow characteristics are analyzed by singular value decomposition and tissue acceleration of backscattered Doppler signals to determine an appropriate clutter filter from a set of clutter filters. To evaluate the ACR-SA method, 20 frames of complex baseband data were acquired by a commercial ultrasound system equipped with a research package (Accuvix V10, Samsung Medison, Seoul, Korea) using a 3.5-MHz convex array probe by introducing tissue movements to the flow phantom (Gammex 1425 A LE, Gammex, Middleton, WI, USA). In addition, 20 frames of in vivo abdominal data from five volunteers were captured. From the phantom experiment, the ACR-SA method provided 2.43 dB (p <; 0.001) and 1.09 dB ( ) improvements in flow signal-to-clutter ratio (SCR) compared to static (STA) and down-mixing (ACR-DM) methods. Similarly, it showed smaller values in fractional residual clutter area (FRCA) compared to the STA and ACR-DM methods (i.e., 2.3% versus 5.4% and 3.7%, respectively, ). The consistent improvements in SCR from the proposed ACR-SA method were obtained with the in vivo abdominal data (i.e., 4.97 dB and 3.39 dB over STA and ACR-DM, respectively). The ACR-SA method showed less than 1% FRCA values for all in vivo abdominal data. These results indicate that the proposed ACR-SA method can improve image quality in CDI by providing enhanced rejection of nonstationary clutter.

  11. New echocardiographic windows for quantitative determination of aortic regurgitation volume using color Doppler flow convergence and vena contracta

    NASA Technical Reports Server (NTRS)

    Shiota, T.; Jones, M.; Agler, D. A.; McDonald, R. W.; Marcella, C. P.; Qin, J. X.; Zetts, A. D.; Greenberg, N. L.; Cardon, L. A.; Sun, J. P.; Sahn, D. J.; Thomas, J. D.

    1999-01-01

    Color Doppler images of aortic regurgitation (AR) flow acceleration, flow convergence (FC), and the vena contracta (VC) have been reported to be useful for evaluating severity of AR. However, clinical application of these methods has been limited because of the difficulty in clearly imaging the FC and VC. This study aimed to explore new windows for imaging the FC and VC to evaluate AR volumes in patients and to validate this in animals with chronic AR. Forty patients with AR and 17 hemodynamic states in 4 sheep with strictly quantified AR volumes were evaluated. A Toshiba SSH 380A with a 3.75-MHz transducer was used to image the FC and VC. After routine echo Doppler imaging, patients were repositioned in the right lateral decubitus position, and the FC and VC were imaged from high right parasternal windows. In only 15 of the 40 patients was it possible to image clearly and measure accurately the FC and VC from conventional (left decubitus) apical or parasternal views. In contrast, 31 of 40 patients had clearly imaged FC regions and VCs using the new windows. In patients, AR volumes derived from the FC and VC methods combined with continuous velocity agreed well with each other (r = 0.97, mean difference = -7.9 ml +/- 9.9 ml/beat). In chronic animal model studies, AR volumes derived from both the VC and the FC agreed well with the electromagnetically derived AR volumes (r = 0.92, mean difference = -1.3 +/- 4.0 ml/beat). By imaging from high right parasternal windows in the right decubitus position, complementary use of the FC and VC methods can provide clinically valuable information about AR volumes.

  12. Quantification of Shunt Volume Through Ventricular Septal Defect by Real-Time 3-D Color Doppler Echocardiography: An in Vitro Study.

    PubMed

    Zhu, Meihua; Ashraf, Muhammad; Tam, Lydia; Streiff, Cole; Kimura, Sumito; Shimada, Eriko; Sahn, David J

    2016-05-01

    Quantification of shunt volume is important for ventricular septal defects (VSDs). The aim of the in vitro study described here was to test the feasibility of using real-time 3-D color Doppler echocardiography (RT3-D-CDE) to quantify shunt volume through a modeled VSD. Eight porcine heart phantoms with VSDs ranging in diameter from 3 to 25 mm were studied. Each phantom was passively driven at five different stroke volumes from 30 to 70 mL and two stroke rates, 60 and 120 strokes/min. RT3-D-CDE full volumes were obtained at color Doppler volume rates of 15, 20 and 27 volumes/s. Shunt flow derived from RT3-D-CDE was linearly correlated with pump-driven stroke volume (R = 0.982). RT3-D-CDE-derived shunt volumes from three color Doppler flow rate settings and two stroke rate acquisitions did not differ (p > 0.05). The use of RT3-D-CDE to determine shunt volume though VSDs is feasible. Different color volume rates/heart rates under clinically/physiologically relevant range have no effect on VSD 3-D shunt volume determination.

  13. Malignant thyroid nodules: comparison between color Doppler diagnosis and histological examination of surgical samples.

    PubMed

    Berni, Alberto; Tromba, Luciana; Falvo, Laura; Marchesi, Maurizio; Grilli, Paola; Peparini, Nadia

    2002-01-01

    The aim of this study was to verify the reliability of the differential diagnosis between benign and malignant thyroid nodules on the basis of vascularization. The study was conducted on 108 patients with a scintigraphically "cold" thyroid nodule, including 54 carcinomas and 54 benign nodules. All patients underwent total thyroidectomy. Diagnosis based on histological examination of the surgical specimen was compared with ultrasonographic diagnosis obtained according to a personal classification proposed by the authors. Vascular ultrasonographic investigation produced 10 false positives, 6 false negatives and 92 correct diagnoses, with 88.8% sensitivity, 81.5% specificity, an 82.7% positive predictive value and an 88% negative predictive value. It can thus be used effectively to identify the larger nodules, while it is unable to provide any indication as to their histological type. Ultrasound vascular thyroid study is a non-invasive and low-cost method and is very reliable in the differential diagnosis of cold thyroid nodules. The best ultrasonographic modality is power Doppler. Ultrasound contrast media increase vascular definition but, due to their higher cost and the longhier duration of the examination, they should only be used in the case of small nodules.

  14. Application of color Doppler flow mapping to calculate orifice area of St Jude mitral valve

    NASA Technical Reports Server (NTRS)

    Leung, D. Y.; Wong, J.; Rodriguez, L.; Pu, M.; Vandervoort, P. M.; Thomas, J. D.

    1998-01-01

    BACKGROUND: The effective orifice area (EOA) of a prosthetic valve is superior to transvalvular gradients as a measure of valve function, but measurement of mitral prosthesis EOA has not been reliable. METHODS AND RESULTS: In vitro flow across St Jude valves was calculated by hemispheric proximal isovelocity surface area (PISA) and segment-of-spheroid (SOS) methods. For steady and pulsatile conditions, PISA and SOS flows correlated with true flow, but SOS and not PISA underestimated flow. These principles were then used intraoperatively to calculate cardiac output and EOA of newly implanted St Jude mitral valves in 36 patients. Cardiac output by PISA agreed closely with thermodilution (r=0.91, Delta=-0.05+/-0.55 L/min), but SOS underestimated it (r=0.82, Delta=-1.33+/-0.73 L/min). Doppler EOAs correlated with Gorlin equation estimates (r=0.75 for PISA and r=0.68 for SOS, P<0.001) but were smaller than corresponding in vitro EOA estimates. CONCLUSIONS: Proximal flow convergence methods can calculate forward flow and estimate EOA of St Jude mitral valves, which may improve noninvasive assessment of prosthetic mitral valve obstruction.

  15. A new method for quantification of regurgitant flow rate using color Doppler flow imaging of the flow convergence region proximal to a discrete orifice. An in vitro study.

    PubMed

    Recusani, F; Bargiggia, G S; Yoganathan, A P; Raisaro, A; Valdes-Cruz, L M; Sung, H W; Bertucci, C; Gallati, M; Moises, V A; Simpson, I A

    1991-02-01

    While color Doppler flow mapping has yielded a quick and relatively sensitive method for visualizing the turbulent jets generated in valvular insufficiency, quantification of the degree of valvular insufficiency has been limited by the dependence of visualization of turbulent jets on hemodynamic as well as instrument-related factors. Color Doppler flow imaging, however, does have the capability of reliably showing the spatial relations of laminar flows. An area where flow accelerates proximal to a regurgitant orifice is commonly visualized on the left ventricular side of a mitral regurgitant orifice, especially when imaging is performed with high gain and a low pulse repetition frequency. This area of flow convergence, where the flow stream narrows symmetrically, can be quantified because velocity and the flow cross-sectional area change in inverse proportion along streamlines centered at the orifice. In this study, a gravity-driven constant-flow system with five sharp-edged diaphragm orifices (ranging from 2.9 to 12 mm in diameter) was imaged both parallel and perpendicular to the direction of flow through the orifice. Color Doppler flow images were produced by zero shifting so that the abrupt change in display color occurred at different velocities. This "aliasing boundary" with a known velocity and a measurable radial distance from the center of the orifice was used to determine an isovelocity hemisphere such that flow rate through the orifice was calculated as 2 pi r2 x Vr, where r is the radial distance from the center of the orifice to the color change and Vr is the velocity at which the color change was noted. Using Vr values from 54 to 14 cm/sec obtained with a 3.75-MHz transducer and from 75 to 18 cm/sec obtained with a 2.5-MHz transducer, we calculated flow rates and found them to correlate with measured flow rates (r = 0.94-0.99). The slope of the regression line was closest to unity when the lowest Vr and the correspondingly largest r were used in the

  16. Efficacy of Preoperative Color Doppler Sonography of Lower Extremity Veins on Postoperative Outcomes in Candidates of Saphenectomy: A Randomized Clinical Trial

    PubMed Central

    Zarepur, Rouhollah; Kargar, Saeed; Hadadzadeh, Mehdi; Hatamizadeh, Nooshin; Zarepur, Ehsan; Forouzannia, Seyed Khalil; Faraji, Reza; Sarebanhassanabadi, Mohammadtaghi

    2016-01-01

    Background Doppler sonography is a type of sonography used for imaging the blood flow in the vessels and heart. This technique uses ultrasound waves with high frequency. In some patient candidates for venous graft, the identification of the suitable vein is not possible with clinical examination. Objective This study compared the effects of preoperative color Doppler sonography of lower extremity veins on the postoperative outcomes of saphenectomy. Methods This randomized clinical trial was conducted on 100 candidates of an off-pump coronary artery bypass graft (CABG) hospitalized in Afshar Hospital in Yazd in 2015. Patients were divided into two groups: 50 patients in the study group and 50 patients in the control group. Patients in the study group underwent color Doppler sonography of lower extremity veins using the Medison 8000 Live device. Patients in the control group were assessed preoperatively by routine venous examination without undergoing color Doppler sonography. The prepping and draping methods and also the preoperative antibiotics were the same for both groups. The patients were assessed for wound infection, edema, hematoma, and DVT 2 days, 1 week, and 1 month after surgery. Data were analyzed by SPSS version 16 using t-test, Chi-square, and Fisher’s exact test. Results The length of incision for saphenectomy was 29.20 ± 3.71 cm in the Doppler group and 28.98 ± 3.72 cm in the non-Doppler group with no significant difference between the two groups (p=0.768). The two groups were not significantly different with respect to age, gender, diabetes, hypertension, hyperlipidemia, smoking, and history of peripheral vessels disease, postoperative infection, postoperative organ edema, postoperative hematoma, and postoperative DVT. Conclusion Preoperative color Doppler sonography of the saphenous vein before saphenectomy has no effect on reducing the postoperative complications, and saphenectomy on the basis of intraoperative examination of the vein course by

  17. Color Doppler ultrasonography: diagnosis of ectopic thyroid gland in patients with congenital hypothyroidism caused by thyroid dysgenesis.

    PubMed

    Ohnishi, Hisashi; Sato, Hirokazu; Noda, Hiromasa; Inomata, Hiroaki; Sasaki, Nozomu

    2003-11-01

    The etiology of congenital hypothyroidism (CH) may play an important role in determining disease severity, outcome, and, therefore, its treatment schedule. Radionuclide imaging (RI) is currently the most precise diagnostic technique to establish the etiology of CH. Conventional ultrasound can identify an athyrotic condition at the normal neck position and has gained acceptance for the initial evaluation of CH; however, its ability in delineating ectopic thyroid is limited. We used color Doppler ultrasonography (CDU) to assess blood flow and morphology in the detection of ectopic thyroid in 11 CH patients disclosed by neonatal screening; thyroid glands were undetectable at the normal location by gray-scale ultrasonography (GSU). The patients studied consisted of two infants for initial investigation and nine children for reevaluating the cause of CH. All of the patients underwent GSU, CDU, RI, and magnetic resonance imaging (MRI) investigation. We set RI as the defining diagnostic test for detecting ectopic thyroid and compared the imaging of CDU with those of GSU and MRI. The results of RI showed 10 ectopic thyroids and one athyreosis. In the patients with ectopic thyroid, the sensitivity of CDU, GSU, and MRI for detecting ectopic thyroid was 90, 70, and 70%, respectively. We conclude that CDU is superior to GSU and MRI for detecting ectopic thyroid and that CDU may be adopted as the diagnostic tool for the initial investigation of suspected CH.

  18. Relationship between Intraventricular Flow Patterns and the Shapes of the Aliasing Area in Color M-mode Doppler Echocardiograms

    NASA Astrophysics Data System (ADS)

    Nakamura, Masanori; Wada, Shigeo; Mikami, Taisei; Kitabatake, Akira; Karino, Takeshi

    Spatiotemporal maps of the velocity of intraventricular blood flows obtained with color M-mode Doppler (CMD) echocardiography are used to assess the diastolic function of the left ventricle (LV). However, theoretical basis for that is unclear. Hence, we studied the relationship between flow patterns in the LV and the shapes of aliasing areas that appear in CMD echocardiograms by means of computational fluid dynamics using an axisymmetric model of the LV. The results showed that a ring vortex formed in the early stage of expansion and grew larger while shifting its center towards the apex of the LV, occupying a large annular space between the mainflow along the long axis and the lateral wall of the LV and constricting the mainflow. Due to that, fluid elements in the mainflow increased their velocities and proceeded further deeper into the LV with high velocities, which appeared to be an elongated shape of the aliasing area in the CMD echocardiogram. From these results it was concluded that the shape of the aliasing area in a CMD echocardiogram shows the change in the velocity of the mainflow affected by the growth and migration of a ring vortex formed in the LV.

  19. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging.

    PubMed

    Ooi, Chin Chin; Schneider, Michal Elisabeth; Malliaras, Peter; Chadwick, Martine; Connell, David Alister

    2015-01-01

    This primary aim of this study was to evaluate the diagnostic performance of axial-strain sonoelastography (ASE), B-mode ultrasound (US) and color Doppler US in confirming clinically symptomatic Achilles tendinopathy. The secondary aim was to establish the relationship between the strain ratio during sonoelastography and Victorian Institute of Sport Assessment-Achilles (VISA-A) scores. The VISA-A questionnaire is a validated clinical rating scale that evaluates the symptoms and dysfunction of the Achilles tendon. One hundred twenty Achilles tendons of 120 consecutively registered patients with clinical symptoms of Achilles tendinopathy and another 120 gender- and age-matched, asymptomatic Achilles tendons of 120 healthy volunteers were assessed with B-mode US, ASE and color Doppler US. Symptomatic patients had significantly higher strain ratio scores and softer Achilles tendon properties compared with controls (p < 0.001). The strain ratio was moderately correlated with VISA-A scores (r = -0.62, p < 0.001). The diagnostic accuracy of B-mode US, ASE and color Doppler US in confirming clinically symptomatic Achilles tendinopathy was 94.7%, 97.8% and 82.5% respectively. There was excellent correlation between the clinical reference standard and the grade of tendon quality on ASE (κ = 0.91, p < 0.05), compared with B-mode US (κ = 0.74, p < 0.05) and color Doppler imaging (κ = 0.49, p < 0.05). ASE is an accurate clinical tool in the evaluation of Achilles tendinopathy, with results comparable to those of B-mode US and excellent correlation with clinical findings. The strain ratio may offer promise as a supplementary tool for the objective evaluation of Achilles tendon properties.

  20. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation

    NASA Technical Reports Server (NTRS)

    Garcia, M. J.; Smedira, N. G.; Greenberg, N. L.; Main, M.; Firstenberg, M. S.; Odabashian, J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). BACKGROUND: The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. METHODS: We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. RESULTS: In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). CONCLUSIONS: Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.

  1. Color Tissue Doppler to Analyze Fetal Cardiac Time Intervals: Normal Values and Influence of Sample Gate Size.

    PubMed

    Willruth, A M; Steinhard, J; Enzensberger, C; Axt-Fliedner, R; Gembruch, U; Doelle, A; Dimitriou, I; Fimmers, R; Bahlmann, F

    2016-02-04

    Purpose: To assess the time intervals of the cardiac cycle in healthy fetuses in the second and third trimester using color tissue Doppler imaging (cTDI) and to evaluate the influence of different sizes of sample gates on time interval values. Materials and Methods: Time intervals were measured from the cTDI-derived Doppler waveform using a small and large region of interest (ROI) in healthy fetuses. Results: 40 fetuses were included. The median gestational age at examination was 26 + 1 (range: 20 + 5 - 34 + 5) weeks. The median frame rate was 116/s (100 - 161/s) and the median heart rate 143 (range: 125 - 158) beats per minute (bpm). Using small and large ROIs, the second trimester right ventricular (RV) mean isovolumetric contraction times (ICTs) were 39.8 and 41.4 ms (p = 0.17), the mean ejection times (ETs) were 170.2 and 164.6 ms (p < 0.001), the mean isovolumetric relaxation times (IRTs) were 52.8 and 55.3 ms (p = 0.08), respectively. The left ventricular (LV) mean ICTs were 36.2 and 39.4 ms (p = 0.05), the mean ETs were 167.4 and 164.5 ms (p = 0.013), the mean IRTs were 53.9 and 57.1 ms (p = 0.05), respectively. The third trimester RV mean ICTs were 50.7 and 50.4 ms (p = 0.75), the mean ETs were 172.3 and 181.4 ms (p = 0.49), the mean IRTs were 50.2 and 54.6 ms (p = 0.03); the LV mean ICTs were 45.1 and 46.2 ms (p = 0.35), the mean ETs were 175.2 vs. 172.9 ms (p = 0.29), the mean IRTs were 47.1 and 50.0 ms (p = 0.01), respectively. Conclusion: Isovolumetric time intervals can be analyzed precisely and relatively independent of ROI size. In the near future, automatic time interval measurement using ultrasound systems will be feasible and the analysis of fetal myocardial function can become part of the clinical routine.

  2. Correlation of Transcranial Color Doppler to N20 Somatosensory Evoked Potential Detects Ischemic Penumbra in Subarachnoid Hemorrhage

    PubMed Central

    Di Pasquale, Piero; Zanatta, Paolo; Morghen, Ilaria; Bosco, Enrico; Forini, Elena

    2011-01-01

    Background: Normal subjects present interhemispheric symmetry of middle cerebral artery (MCA) mean flow velocity and N20 cortical somatosensory evoked potential (SSEP). Subarachnoid haemorrhage (SAH) can modify this pattern, since high regional brain vascular resistances increase blood flow velocity, and impaired regional brain perfusion reduces N20 amplitude. The aim of the study is to investigate the variability of MCA resistances and N20 amplitude between hemispheres in SAH. Methods: Measurements of MCA blood flow velocity (vMCA) by transcranial color-Doppler and median nerve SSEP were bilaterally performed in sixteen patients. MCA vascular changes on the compromised hemisphere were calculated as a ratio of the reciprocal of mean flow velocity (1/vMCA) to contralateral value and correlated to the simultaneous variations of interhemispheric ratio of N20 amplitude, within each subject. Data were analysed with respect to neuroimaging of MCA supplied areas. Results: Both interhemispheric ratios of 1/vMCA and N20 amplitude were detected >0.65 (p <0,01) in patients without neuroimages of injury. Both ratios became <0.65 (p <0.01) when patients showed unilateral images of ischemic penumbra and returned >0.65 if penumbra disappeared. The two ratios no longer correlated after structural lesion developed, as N20 detected in the damaged side remained pathological (ratio <0.65), whereas 1/vMCA reverted to symmetric interhemispheric state (ratio >0.65), suggesting a luxury perfusion. Conclusion: Variations of interhemispheric ratios of MCA resistance and cortical N20 amplitude correlate closely in SAH and allow identification of the reversible ischemic penumbra threshold, when both ratios become <0.65. The correlation is lost when structural damage develops. PMID:21660110

  3. Color Doppler analysis of uterine, spiral, and intraovarian artery blood flow before and after treatment with cabergoline in hyperprolactinemic patients.

    PubMed

    Temizkan, Osman; Temizkan, Sule; Asicioglu, Osman; Aydin, Kadriye; Kucur, Suna

    2015-01-01

    Prolactin (PRL) may have stimulatory effects on vascular resistance. We aimed to analyze uterine, spiral, and intraovarian artery blood flow by Doppler ultrasonography in hyperprolactinemic patients prior to and after treatment with cabergoline. The study was conducted in Sisli Etfal Training and Research Hospital gynecology outpatient clinic between 1 March 2010 and 30 September 2011. Twenty-four women with symptomatic hyperprolactinemia in reproduction age were included in the study. All hyperprolactinemic patients were studied prior to and following the suppression of circulating PRL levels by cabergoline. Patients were examined by standard B-mod and color transvaginal ultrasonography. Pulsality index (PI), resistance index (RI), and systolic/diastolic ratio (S/D) were recorded. The median PRL value was 86 (62-120) ng/ml before treatment and 4.0 (2.5-6.4) ng/ml after the treatment (p < 0.001). We found a significant association among PRL, uterine, spiral, and intraovarian artery RI with linear regression analysis (p < 0.001 for all three arteries). Uterine, spiral, and intraovarian artery PI (p = 0.021, p < 0.001, and p < 0.001, respectively) and RI (p = 0.001, p < 0.001, and p < 0.001, respectively) significantly decreased after cabergoline treatment. In conclusion, this is a pilot study which shows for the first time that PRL increases the uterine, endometrial, and intraovarian vascular resistance and cabergoline reverses this effect.

  4. Multiple sclerosis and optic nerve: an analysis of retinal nerve fiber layer thickness and color Doppler imaging parameters

    PubMed Central

    Akçam, H T; Capraz, I Y; Aktas, Z; Batur Caglayan, H Z; Ozhan Oktar, S; Hasanreisoglu, M; Irkec, C

    2014-01-01

    Purpose To compare both retinal nerve fiber layer thickness and orbital color Doppler ultrasonography parameters in patients with multiple sclerosis (MS) versus healthy controls. Methods This is an observational case–control study. Forty eyes from MS patients and twenty eyes from healthy volunteers were examined. Eyes were classified into three groups as group 1, eyes from MS patients with previous optic neuritis (n=20); group 2, eyes from MS patients without previous optic neuritis (n=20); and group 3, eyes from healthy controls (n=20). Following complete ophthalmologic examination and retinal nerve fiber layer thickness measurement for each group, blood flow velocities of posterior ciliary arteries, central retinal artery, ophthalmic artery, and superior ophthalmic vein were measured. Pourcelot index (resistive index), an indicator of peripheral vascular resistance, was also calculated. The statistical assessment was performed with the assistance of Pearson's Chi-square test, Mann–Whitney U-test, Kruskal–Wallis test, and Spearman's correlation test. Results The studied eyes exposed similar values in terms of intraocular pressure and central corneal thickness, implying no evidence in favor of glaucoma. All nerve fiber layer thickness values, except superior nasal quadrants, in group 1 were found to be significantly thinner than groups 2 and 3. Blood flow velocity and mean resistivity index parameters were similar in all the groups. Conclusions In MS patients, especially with previous optic neuritis, diminished retinal nerve fiber layer thickness was observed. Contrary to several studies in the current literature, no evidence supporting potential vascular origin of ocular involvement in MS was found. PMID:25081285

  5. Color Doppler Imaging Analysis of Retrobulbar Blood Flow Velocities in Primary Open-Angle Glaucomatous Eyes: A Meta-Analysis

    PubMed Central

    Meng, Nana; Zhang, Ping; Huang, Huadong; Ma, Jinlan; Zhang, Yue; Li, Hao; Qu, Yi

    2013-01-01

    Background To analyze the diagnostic value of color Doppler imaging (CDI) of blood flow in the retrobulbar vessels of eyes with primary open-angle glaucoma (POAG). Methods Pertinent publications were retrieved from the Cochrane Central Register of Controlled Trials, PubMed and the ISI Web of Knowledge up to October 2012. Changes in peak systolic velocity (PSV), end diastolic velocity (EDV) and resistive index (RI) of the ophthalmic artery (OA), central retinal artery (CRA) and short posterior ciliary artery (SPCA) of POAG eyes and normal controls were evaluated by CDI. Subgroup analyses were conducted according to whether patients received IOP-lowering drugs treatment and were defined as treated and untreated. Results PSV and EDV were statistically significantly reduced in the OA of POAG eyes (P = 0.0002; P<0.00001; respectively), with significant heterogeneity (Pheterogeneity<0.00001, I2 = 94%; Pheterogeneity<0.00001, I2 = 85%; respectively). Similar results were demonstrated for the CRA (P<0.00001; respectively) and SPCA (P = 0.005; P<0.00001; respectively), with significant heterogeneities for both the CRA (Pheterogeneity<0.00001, I2 = 81%; Pheterogeneity<0.00001, I2 = 98%; respectively) and the SPCA (Pheterogeneity<0.00001, I2 = 96%; Pheterogeneity<0.00001, I2 = 93%; respectively). Significant increases in RI were found in all retrobulbar vessels (P<0.00001; respectively), with significant heterogeneities (Pheterogeneity<0.00001, I2 = 95%; Pheterogeneity<0.00001, I2 = 94%; Pheterogeneity<0.00001, I2 = 97%; respectively). Conclusions This meta-analysis suggests that CDI is a potential diagnostic tool for POAG. PMID:23675419

  6. Value of sagittal color Doppler ultrasonography as a supplementary tool in the differential diagnosis of fetal cleft lip and palate

    PubMed Central

    2017-01-01

    Purpose The purpose of this study was to evaluate the feasibility and usefulness of sagittal color Doppler ultrasonography (CDUS) for the diagnosis of fetal cleft lip (CL) and cleft palate (CP). Methods We performed targeted ultrasonography on 25 fetuses with CL and CP, taking coronal and axial images of the upper lip and maxillary alveolar arch in each case. The existence of defects in and malalignment of the alveolus on the axial image, hard palate defects on the midsagittal image, and flow-through defects on CDUS taken during fetal breathing or swallowing were assessed. We compared the ultrasonography findings with postnatal findings in all fetuses. Results Alveolar defects were detected in 16 out of 17 cases with CP and four out of eight cases with CL. Alveolar malalignment and hard palate defects were detected in 11 out of 17 cases and 14 out of 17 cases with CP, respectively, but not detected in any cases with CL. Communicating flow through the palate defect was detected in 11 out of 17 cases of CL with CP. The accuracy of detection in axial scans of an alveolar defect and malalignment was 80% and 76%, respectively. Accuracy of detection of in mid-sagittal images of hard palate defect and flow was 80% and 86%, respectively. The overall diagnostic accuracy of combined axial and sagittal images with sagittal CDUS was 92%. Conclusion Sagittal CDUS of the fetal hard palate is a feasible method to directly reveal hard palate bony defects and flow through defects, which may have additional value in the differential diagnosis of fetal CL and CP. PMID:27764909

  7. Use of Color Doppler Ultrasonography to Measure Thyroid Blood Flow and Differentiate Graves' Disease from Painless Thyroiditis

    PubMed Central

    Hiraiwa, Tetsuya; Tsujimoto, Naoyuki; Tanimoto, Keiji; Terasaki, Jungo; Amino, Nobuyuki; Hanafusa, Toshiaki

    2013-01-01

    Backgrounds Color Doppler ultrasonography (CDU) has not yet been established as a method to investigate the pathogenesis of thyrotoxicosis. Objectives Our first objective was to determine whether the measurement of peak systolic blood-flow velocity in the superior thyroid artery (STV) and thyroid tissue blood flow (TBF) using CDU could differentiate Graves' disease (GD) from painless thyroiditis (PT). The second objective was to examine the factors mediating increased blood flow to the thyroid gland in GD. Methods Recruited patients had untreated GD or PT and visited the Department of Internal Medicine (I), Osaka Medical College, between April 1, 2006 and May 31, 2010. Age, gender, blood pressure, pulse rate, thyroid-stimulating hormone, free thyroxine, tri-iodothyronine, TSH receptor antibody and thyroid volume were evaluated in patients. In addition, bilateral measurements of STV, TBF and peak systolic velocity in the common carotid artery (CCV) were also performed. TBF was quantified by calculating the ratio of blood-flow pixels to total pixels in the region of interest using sagittal section images of the thyroid gland. Receiver-operating characteristic curve analysis was performed to determine the ability of STV and TBF measurements to differentiate GD from PT. Results For the average of STV measured on both sides, the area under the receiver-operating characteristic curve (AUC) was 0.956. For the average of TBF measured on both sides, the AUC was 0.920. At an average STV cut-off value of 43 cm/s, the sensitivity to discriminate GD from PT was 0.87 and the specificity was 1.00. At an average TBF cut-off value of 3.8%, the sensitivity was 0.71 and the specificity was 1.00. In the GD group, neither blood pressure nor pulse rate correlated with the average STV or TBF. Moreover, there was no correlation between STV and CCV or between TBF and CCV on either side. However, STV was correlated with TBF (right side: R = 0.47; left side: R = 0.52). Conclusions The

  8. Spontaneous rupture of a middle colic artery aneurysm arising from superior mesenteric artery dissection: Diagnosis by color Doppler ultrasonography and CT angiography.

    PubMed

    Yoo, Bo Reum; Han, Hyun Young; Cho, Young Kwon; Park, Suk Jin

    2012-05-01

    Both middle colic artery (MCA) aneurysm and spontaneous dissection of the superior mesenteric artery (SMA) are rare. We report the first case of concomitancy of both conditions, diagnosed by ultrasonography and CT angiography. A 56-year-old man with abrupt abdominal pain and hypovolemic shock was diagnosed initially with ruptured MCA aneurysm by color Doppler ultrasonography. Computed tomography and angiography confirmed MCA aneurysm and showed that it was arising from the false lumen of an SMA dissection and was probably associated with segmental arterial mediolysis. The MCA aneurysm was treated successfully by transcatheter coil embolization, and the SMA dissection was treated conservatively.

  9. Global testicular infarction in the presence of epididymitis: clinical features, appearances on grayscale, color Doppler, and contrast-enhanced sonography, and histologic correlation.

    PubMed

    Yusuf, Gibran; Sellars, Maria E; Kooiman, Gordon G; Diaz-Cano, Salvador; Sidhu, Paul S

    2013-01-01

    Epididymitis is common, presenting indolently with unilateral scrotal pain and swelling. Diagnosis is based on clinical assessment and resolves with antibiotic therapy. Recognized complications are abscess formation and segmental infarction. Global testicular infarction is rare. Diagnosis is important and requires surgical management. On grayscale sonography, global infarction may be difficult to establish. The addition of color Doppler imaging is useful but is observer experience dependent with limitations in the presence of low flow. Contrast-enhanced sonography is useful for unequivocally establishing the diagnosis. We report global testicular infarction in 2 patients with epididymitis clearly depicted on contrast-enhanced sonography, allowing immediate surgical management.

  10. Color Doppler flow imaging for the early detection of nonpregnant cattle at 20 days after timed artificial insemination.

    PubMed

    Siqueira, L G B; Areas, V S; Ghetti, A M; Fonseca, J F; Palhao, M P; Fernandes, C A C; Viana, J H M

    2013-10-01

    The objective was to determine the accuracy of a pregnancy test for predicting nonpregnant cattle based on the evaluation of corpus luteum (CL) blood flow at 20 d (CLBF-d20) after timed artificial insemination (TAI). Crossbred Holstein-Gir dairy heifers (n=209) and lactating cows (n=317) were synchronized for TAI using the following protocol: intravaginal implant (1.0 g of progesterone) and 2mg of estradiol benzoate i.m. on d -10, implant removal and 0.526 mg of sodium cloprostenol i.m. on d -2, 1mg of estradiol benzoate i.m. on d -1, and TAI on d 0. On d 20, animals underwent grayscale ultrasonography (US) to locate the CL and color flow Doppler to evaluate CLBF-d20 using a portable ultrasound equipped with a 7.5-MHz rectal transducer. Based only on a visual, subjective CLBF evaluation, the animals were classified as pregnant or not pregnant. On d 30 to 35, blinded from results of the previous diagnosis, the same operator performed a final pregnancy diagnosis using US to visualize the fetal heartbeat (gold standard; US-d30). A second evaluator also analyzed the CLBF-d20 in the same animals by watching 7-s recorded videos. Blood samples were collected from a subset of 171 females to determine, by RIA, plasma progesterone (P4) concentrations, which indicate CL function. The final pregnancy outcome (US-d30) was retrospectively compared with the CLBF-d20 diagnoses and then classified either as correct or incorrect. The number of true positive, true negative, false positive, and false negative decisions were inserted into a 2 × 2 decision matrix. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the CLBF-d20 test were calculated using specific equations. Binomial variables (pregnancy rate and proportions) were analyzed using Fisher's exact test for the effect of parity and to compare between evaluators and tests (CLBF-d20 vs. plasma P₄). The kappa values were calculated to quantify the agreement between CLBF-d20 and

  11. Validation of color Doppler ultrasonography for evaluating the uterine blood flow and perfusion during late normal pregnancy and uterine torsion in buffaloes.

    PubMed

    Hussein, Hassan A

    2013-04-15

    The aim of this study was to verify the efficacy of color Doppler ultrasonography for diagnosis of degree and duration of uterine torsion in buffaloes. In Assiut province/Upper Egypt, 65 buffaloes (37 with uterine torsion, 28 with normal late pregnancy) were examined clinically and using Doppler ultrasonography. The Doppler indices including resistance index (RI), pulsatility index (PI), time-averaged maximum velocity (TAMV), and blood flow volume (BFV) in the arteries ipsilateral to the uterine torsion (IPUT) and in arteries contralateral to the uterine torsion (COUT) were recorded. Methods of correction were documented along with dam and calf survival. Torsion was recorded postcervically with vaginal involvement in 35/37 (94.6%) of the cases. The degrees of uterine torsion were light and high in 9/37 (24.3%) and 28/37 (75.7%) of the cases, respectively (P = 0.001). Right uterine torsion was present in 36/37 (97.3%) of the cases (P = 0.0001). Pulsatility index, RI, TAMV, and BFV in IPUT and COUT did not differ significantly (P > 0.05) in normal late pregnancy. The PI and RI in IPUT were significantly higher (P < 0.01) than in COUT, and the TAMV and BFV in IPUT were less (P < 0.001) than that in COUT in uterine torsion. The PI and RI of torsion cases in IPUT were higher (P < 0.001) than that in normal pregnancy. Time-averaged maximum velocity and BFV in torsion cases were lower (P < 0.01) than that of normal pregnancy in IPUT. There was approximately 50% of RI and PI higher than in light degree uterine torsion in IPUT (P < 0.001). Consequently, TAMV and BFV were greatly lower (P < 0.0001) than that in light degree in IPUT. Pulsatility index and RI were positively correlated (r = 0.856; P < 0.001) with the duration and degree of the uterine torsion, and TAMV and BFV were negatively correlated (r = -0.763; P < 0.001). In all cases of uterine torsion the uterine flow velocity waveform showed high systolic flow and absence of early diastolic flow and poor uterine and

  12. ProgRes 3000: a digital color camera with a 2-D array CCD sensor and programmable resolution up to 2994 x 2320 picture elements

    NASA Astrophysics Data System (ADS)

    Lenz, Reimar K.; Lenz, Udo

    1990-11-01

    A newly developed imaging principle two dimensional microscanning with Piezo-controlled Aperture Displacement (PAD) allows for high image resolutions. The advantages of line scanners (high resolution) are combined with those of CCD area sensors (high light sensitivity geometrical accuracy and stability easy focussing illumination control and selection of field of view by means of TV real-time imaging). A custom designed sensor optimized for small sensor element apertures and color fidelity eliminates the need for color filter revolvers or mechanical shutters and guarantees good color convergence. By altering the computer controlled microscan patterns spatial and temporal resolution become interchangeable their product being a constant. The highest temporal resolution is TV real-time (50 fields/sec) the highest spatial resolution is 2994 x 2320 picture elements (Pels) for each of the three color channels (28 MBytes of raw image data in 8 see). Thus for the first time it becomes possible to take 35mm slide quality still color images of natural 3D scenes by purely electronic means. Nearly " square" Pels as well as hexagonal sampling schemes are possible. Excellent geometrical accuracy and low noise is guaranteed by sensor element (Sel) synchronous analog to digital conversion within the camera head. The cameras principle of operation and the procedure to calibrate the two-dimensional piezo-mechanical motion with an accuracy of better than O. 2. tm RMSE in image space is explained. The remaining positioning inaccuracy may be further

  13. Intraventricular vorticity favors conservation of kinetic energy along the cardiac cycle: analysis in patients with dilated cardiomyopathy by post-processing color-doppler images

    NASA Astrophysics Data System (ADS)

    Alhama, Marta; Benito, Yolanda; Bermejo, Javier; Yotti, Raquel; Perez-David, Esther; Barrio, Alicia; Perez Del Villar, Candelas; Gonzalez Mansilla, Ana; Fernandez Aviles, Francisco; Del Alamo, Juan Carlos

    2011-11-01

    Background: This study assesses if the left ventricle (LV) filling vortex developed during diastole may be a mechanism that improves systolic efficiency. 19 patients with dilated cardiomyopathy (DCM) and 37 healthy volunteers were studied. Recently, we have developed and validated a method that derives two-dimensional maps of the LV flow from standard color-Doppler sequences. Two-dimensional maps of instantaneous LV flow were obtained, and circulation, energy and position of the main and secondary vortices were calculated along the cardiac cycle. At aortic valve opening (AVO) the vortex circulation is higher in DCM subjects than healthy volunteers. However, the position of the vortex is farthest form LV outflow tract (LVOT), and this results in lower flow velocity in LVOT at AVO. This phenomenon is altered in patients with DCM. Supported by ISCIII (Spain) and NIH 1 R21 HL108268-01 (US).

  14. Different imaging methods in the comparative assessment of vascular lesions: color-coded duplex sonography, laser Doppler perfusion imaging, and infrared thermography

    NASA Astrophysics Data System (ADS)

    Urban, Peter; Philipp, Carsten M.; Weinberg, Lutz; Berlien, Hans-Peter

    1997-12-01

    Aim of the study was the comparative investigation of cutaneous and subcutaneous vascular lesions. By means of color coded duplex sonography (CCDS), laser doppler perfusion imaging (LDPI) and infrared thermography (IT) we examined hemangiomas, vascular malformations and portwine stains to get some evidence about depth, perfusion and vascularity. LDI is a helpful method to get an impression of the capillary part of vascular lesions and the course of superficial vessels. CCDS has disadvantages in the superficial perfusion's detection but connections to deeper vascularizations can be examined precisely, in some cases it is the only method for visualizing vascular malformations. IT gives additive hints on low blood flow areas or indicates arterial-venous-shunts. Only the combination of all imaging methods allows a complete assessment, not only for planning but also for controlling the laser treatment of vascular lesions.

  15. New method of dynamic color doppler signal quantification in metastatic lymph nodes compared to direct polarographic measurements of tissue oxygenation.

    PubMed

    Scholbach, Thomas; Scholbach, Jakob; Krombach, Gabriele A; Gagel, Bernd; Maneschi, Payam; Di Martino, Ercole

    2005-05-10

    Tumor growth depends on sufficient blood and oxygen supply. Hypoxia stimulates neovascularization and is a known cause for radio- and chemoresistance. The objective of this study was to investigate the use of a novel ultrasound technique for the dynamic assessment of vascularization and oxygenation in metastatic lymph nodes. Twenty-four patients (age 44-78 years) with cervical lymph node metastases of squamous cell head and neck cancer were investigated by color duplex sonography and 17 (age 46-78 years) were investigated additionally with polarography. Sonography was performed after contrast enhancer infusion under defined conditions. Intranodal perfusion data (color hue, colored area) were measured automatically by a novel software technique. This allows an evaluation of blood flow dynamics by calculating perfusion intensity--velocity, perfused area, as well as the novel parameters tissue resistance index (TRI) and tissue pulsatility index (TPI)--for each point of a complete heart cycle. Tumor tissue pO(2) was measured by means of polarographic needle electrodes placed intranodally. The sonographic and polarographic data were correlated using Pearson's test. Sonography demonstrated a statistically significant inverse correlation between hypoxia and perfusion and significant TPI and TRI changes with different N-stages. The percentage of nodal fraction with less than 10 mmHg oxygen saturation was significantly inversely correlated with lymph node perfusion (r = -0.551; p = 0.021). Nodes with a perfusion of less than 0.05 cm/sec flow velocity showed significantly larger hypoxic areas (p = 0.006). Significant differences of TPI and TRI existed between nodes in stage N(1) and N(2)/N(3) (p = 0.028 and 0.048, respectively). This new method of dynamic signal quantification allows a noninvasive and quantitative assessment of tumor and metastatic lymph node perfusion by means of commonly available ultrasound equipment.

  16. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  17. Arrhythmias in mitral valve prolapse: relation to anterior mitral leaflet thickening, clinical variables, and color Doppler echocardiographic parameters.

    PubMed

    Zuppiroli, A; Mori, F; Favilli, S; Barchielli, A; Corti, G; Montereggi, A; Dolara, A

    1994-11-01

    Atrial and ventricular arrhythmias have been reported with variable incidence in symptomatic patients with mitral valve prolapse (MVP). The role of clinical and echocardiographic parameters as predictors for arrhythmias still needs to be clarified. One hundred nineteen consecutive patients (56 women and 63 men, mean age 40 +/- 17 years) with echocardiographically diagnosed MVP were examined. A complete echocardiographic study (M-mode, two-dimensional, and Doppler) and 24-hour electrocardiographic monitoring were performed in all patients. Complex atrial arrhythmias (CAAs) included atrial couplets, atrial tachycardia, and paroxysmal or sustained atrial flutter or fibrillation. Complex ventricular arrhythmias (CVAs) included multiform ventricular premature contractions (VPCs), VPC couplets, and runs of three or more sequential VPCs (salvos of ventricular tachycardia). The relation between complex arrhythmias and clinical parameters (age and gender) and echocardiographic parameters (left atrial and left ventricular dimensions, anterior mitral leaflet thickness [AMLT], and presence and severity of mitral regurgitation) was evaluated by multiple logistic regression analysis. CAA were present in 14% of patients and CVA in 30%. According to multiple logistic modeling, CAA correlated separately in the univariate analysis with age, presence of MR, and left ventricular and left atrial diameters; age was the only independent predictor (p < 0.001). CVA, in the univariate analysis, correlated with age, female gender, left ventricular end-diastolic diameter, and AMLT; only female gender and AMLT were independent predictors in the multivariate analysis (p < 0.01). The incidence of mitral regurgitation (59%) was higher than expected in a general population of MVP patients.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Color Doppler dynamic tissue perfusion measurement: a novel tool in the assessment of renal parenchymal perfusion in children with vesicoureteral reflux

    PubMed Central

    Scholbach, Thomas M.; Scholbach, Jakob; Pawelec, Agata; Nachulewicz, Paweł; Wieczorek, Andrzej P.; Brodzisz, Agnieszka; Zajączkowska, Maria M.; Borzęcka, Halina

    2015-01-01

    Introduction Vesicoureteral reflux (VUR) occurs in 20–50% of children suffering from recurrent urinary tract infections (UTIs) and is associated with an increased risk of renal scarring and impaired renal function. Early detection of renal perfusion deterioration would allow for the implementation of more aggressive treatment and potentially prevent further damage to the renal parenchyma. The aim of the study was to assess renal parenchymal perfusions in children with recurrent UTIs with and without coexisting VUR, and compare the findings with the results of healthy patients. Material and methods Color Doppler sonographic dynamic renal parenchymal perfusion measurements were performed with PixelFlux (Chameleon-Software, Germany) software in 77 children with recurrent UTIs and coexisting VUR and in 30 children with UTIs without VUR. The findings were compared with the results of 53 healthy children. Results Cortical parenchymal perfusion of children suffering from UTIs and VUR was significantly reduced when compared to the control group. Statistically significant differences (p < 0.05) were found in all perfusion parameters (i.e. mean velocity (vmix), mean perfused area (Amix), mean perfusion intensity (Imix), tissue pulsatility index (TPI), and tissue resistance index (TRI)) between the control group and children suffering from UTIs and VUR, particularly VUR grades III and IV. There were no significant differences between the UTI group and the control group. No differences were found between the controls and VUR grade II. Conclusions Renal parenchymal perfusion decreases significantly with higher grades of VUR. PMID:27279857

  19. Color Doppler Sonographic Evaluation of Peak Systolic Velocity and Pulsatility Index in Artery after Pulsed HIFU Exposure

    NASA Astrophysics Data System (ADS)

    Yang, Feng-Yi; Chiu, Wei-Hsiu; Yeh, Chi-Fang

    2011-09-01

    The objective of current study was to investigate the functional changes in arteries induced by pulsed-HIFU with or without microbubbles. Sonication was applied at an ultrasound frequency of 1 MHz with a burst length of 50 ms and a repetition frequency of 1 Hz. The duration of the whole sonication was 6s. The abdominal aortas of Sprague-Dawley rats were surgically exposed and sonicated with pulsed HIFU; the pulsed HIFU beam was aimed using color images of the blood flow. There was no obvious normalized peak systolic velocity (PSV) change at various acoustic powers of pulsed-HIFU exposure in the absence of ultrasound contrast agent (UCA). However, the normalized PSV change induced by pulsed-HIFU decreased with the injected dose of UCA at acoustic powers. At this time, the normalized pulsatility index (PI) change in the vessel subjected to pulsed-HIFU increased in proportion to UCA dose. Additional research is needed to investigate the detailed mechanical effects of pulsed-HIFU exposure on blood flow and the structure of vessel walls.

  20. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience

    NASA Technical Reports Server (NTRS)

    Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.; Panza, Julio A.; Thomas, James D.

    2003-01-01

    BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS: real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.

  1. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  2. Time-dependent flow velocity measurement using two-dimensional color Doppler flow imaging and evaluation by Hagen-Poiseuille equation.

    PubMed

    Zhang, Bo; Sun, Yuqing; Xia, Lianghua; Gu, Junyi

    2015-12-01

    This paper aims to develop a technique to assess velocity flow profile and wall shear stress (WSS) spatial distribution across a vessel phantom representing an artery. Upon confirming the reliability of the technique, it was then used on a set of carotid arteries from a cohort of human subjects. We implemented color Doppler flow imaging (CDFI) for measurement of velocity profile in the artery cross section. Two dimensional instantaneous and time-dependent flow velocity and WSS vector fields were measured and their waveforms of peak velocities based on the technique were compared with WSS values generated by Hagen-Poiseuille equation. Seventy-five patients with intima-media thickening were prospectively enrolled and were divided into an IMT group. At the same time, another 75 healthy volunteers were enrolled as the control group. All the subjects were scanned and the DICOM files were imported into our in-house program. Next, we determine the velocity profile of carotid arteries in a set of 150 human subjects and compared them again. The peak velocities by the CDFI and Hagen-Poiseuille equation techniques were compared and statistically evaluated. The amounts of deviation for the two measured WSS profiles were performed and we demonstrated that they are not significantly different. At two different flow settings with peak flow velocity of 0.1, 0.5 (×10(-11)) m/s, the obtained WSS were 0.021 ± 0.04, 0.038 ± 0.05 m/s, respectively. For the patient population study, the mean WSS value calculated by Hagen-Poiseuille equation was 2.98 ± 0.15 dyne/cm(2), while it was 2.31 ± 0.14 dyne/cm(2) by our CDFI analysis program. The difference was not statistically significant (t = -1.057, P = 0.259). Similar to the Hagen-Poiseuille equation, a negative linear correlation was also found between the calculated WSS and intima-media thickness (P = 0.000). Using CDFI analysis, we found that the WSS distribution at the middle of the proximal plaque shoulder was larger than the top

  3. Contrast-enhanced ultrasound in combination with color Doppler ultrasound can improve the diagnostic performance of focal nodular hyperplasia and hepatocellular adenoma.

    PubMed

    Kong, Wen-Tao; Wang, Wen-Ping; Huang, Bei-Jian; Ding, Hong; Mao, Feng; Si, Qin

    2015-04-01

    The aim of our study was to evaluate the value of combining color Doppler ultrasound (CDUS) with contrast-enhanced ultrasound (CEUS) in identifying and comparing features of focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA). Thirty-eight patients with FNH (n = 28) or HCA (n = 10), whose diagnoses were later confirmed by pathology, were examined with conventional ultrasonography and CEUS between 2010 and 2013. Two doctors blinded to the pathology results independently reviewed the conventional ultrasound and CEUS images and then reached a consensus through discussion. The following parameters evaluated for all lesions included vascularity pattern on CDUS or CEUS, enhancement characteristics on CEUS and the presence of a central scar. Statistical analysis was performed with the independent sample t-test and Fisher exact test. On CDUS, FNH was characterized by the presence of abundant blood flow signals exhibiting dendritic (53.6%, 15/28) and spoke-wheel (28.6%, 8/28) patterns, whereas blood flow signal of HCA was slightly less than FNH and often showed subcapsular short rod-like (50%, 5/10) appearance. On CEUS, the most common arterial enhancement pattern was centrifugal or homogeneous enhancement in FNH (both, 12/28, 42.9%) and homogeneous enhancement in HCA (6/10, 60%). Spoke-wheel arteries, feeding artery and central scar were detected in 5 (17.9%), 8 (28.6%) and 5 (17.9%) of 28 FNHs. Hypo-echogenic pattern during delayed phase was more common in HCA (60%, 6/10) than in FNH (3/28, 10.7%) (p = 0.010). A total of 25 (25/38, 65.8%) lesions were correctly assessed using CDUS in combination with CEUS, whereas the number decreased to 15 (15/38, 39.5%) when CDUS was used alone (p = 0.038). The areas under the ROC curves before and after CEUS administration were 0.768 and 0.879, respectively. In conclusion, CEUS in combination with CDUS improve the diagnostic performance of FNH and HCA. Blood signal of HCA was less than FNH on CDUS. The differences of

  4. Quantitative analysis of aortic regurgitation: real-time 3-dimensional and 2-dimensional color Doppler echocardiographic method--a clinical and a chronic animal study

    NASA Technical Reports Server (NTRS)

    Shiota, Takahiro; Jones, Michael; Tsujino, Hiroyuki; Qin, Jian Xin; Zetts, Arthur D.; Greenberg, Neil L.; Cardon, Lisa A.; Panza, Julio A.; Thomas, James D.

    2002-01-01

    BACKGROUND: For evaluating patients with aortic regurgitation (AR), regurgitant volumes, left ventricular (LV) stroke volumes (SV), and absolute LV volumes are valuable indices. AIM: The aim of this study was to validate the combination of real-time 3-dimensional echocardiography (3DE) and semiautomated digital color Doppler cardiac flow measurement (ACM) for quantifying absolute LV volumes, LVSV, and AR volumes using an animal model of chronic AR and to investigate its clinical applicability. METHODS: In 8 sheep, a total of 26 hemodynamic states were obtained pharmacologically 20 weeks after the aortic valve noncoronary (n = 4) or right coronary (n = 4) leaflet was incised to produce AR. Reference standard LVSV and AR volume were determined using the electromagnetic flow method (EM). Simultaneous epicardial real-time 3DE studies were performed to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV), and LVSV by subtracting LVESV from LVEDV. Simultaneous ACM was performed to obtain LVSV and transmitral flows; AR volume was calculated by subtracting transmitral flow volume from LVSV. In a total of 19 patients with AR, real-time 3DE and ACM were used to obtain LVSVs and these were compared with each other. RESULTS: A strong relationship was found between LVSV derived from EM and those from the real-time 3DE (r = 0.93, P <.001, mean difference (3D - EM) = -1.0 +/- 9.8 mL). A good relationship between LVSV and AR volumes derived from EM and those by ACM was found (r = 0.88, P <.001). A good relationship between LVSV derived from real-time 3DE and that from ACM was observed (r = 0.73, P <.01, mean difference = 2.5 +/- 7.9 mL). In patients, a good relationship between LVSV obtained by real-time 3DE and ACM was found (r = 0.90, P <.001, mean difference = 0.6 +/- 9.8 mL). CONCLUSION: The combination of ACM and real-time 3DE for quantifying LV volumes, LVSV, and AR volumes was validated by the chronic animal study and was shown to be clinically applicable.

  5. Effect of a single injection of gonadotropin-releasing hormone (GnRH) and human chorionic gonadotropin (hCG) on testicular blood flow measured by color doppler ultrasonography in male Shiba goats.

    PubMed

    Samir, Haney; Sasaki, Kazuaki; Ahmed, Eman; Karen, Aly; Nagaoka, Kentaro; El Sayed, Mohamed; Taya, Kazuyoshi; Watanabe, Gen

    2015-05-01

    Although color Doppler ultrasonography has been used to evaluate testicular blood flow in many species, very little has been done in goat. Eight male Shiba goats were exposed to a single intramuscular injection of either gonadotropin-releasing hormone (GnRH group; 1 µg/kg BW) or human chorionic gonadotropin (hCG group; 25 IU/kg BW). Plasma testosterone (T), estradiol (E2) and inhibin (INH) were measured just before (0 hr) and at different intervals post injection by radioimmunoassay. Testis volume (TV) and Doppler indices, such as resistive index (RI) and pulsatility index (PI) of the supratesticular artery, were measured by B-mode and color Doppler ultrasonography, respectively. The results indicated an increase in testicular blood flow in both groups, as RI and PI decreased significantly (P<0.05), but this increase was significant higher and earlier in hCG group (1 hr) than in the GnRH group (2 hr). A high correlation was found for RI and PI with both T (RI, r= -0.862; PI, r= -0.707) and INH in the GnRH group (RI, r=0.661; PI, r=0.701). However, a significant (P<0.05) correlation was found between E2 and both RI (r= -0.610) and PI (r= -0.763) in hCG group. In addition, TV significantly increased and was highly correlated with RI in both groups (GnRH, r= -0.718; hCG, r= -0.779). In conclusion, hCG and GnRH may improve testicular blood flow and TV in Shiba goats.

  6. Imaging-based assessment of the mineral composition of urinary stones: an in vitro study of the combination of hounsfield unit measurement in noncontrast helical computerized tomography and the twinkling artifact in color Doppler ultrasound.

    PubMed

    Hassani, Hakim; Raynal, Gauthier; Spie, Romain; Daudon, Michel; Vallée, Jean-Noël

    2012-05-01

    We evaluated the value of combining noncontrast helical computerized tomography (NCHCT) and color Doppler ultrasound in the assessment of the composition of urinary stones. In vitro, we studied 120 stones of known composition, that separate into the five main types: 18 calcium oxalate monohydrate (COM) stones, 41 calcium oxalate dihydrate (COD) stones, 24 uric acid stones, 25 calcium phosphate stones and 12 cystine calculi. Stones were characterized in terms of their Hounsfield density (HU) in NCHCT and the presence of a twinkling artifact (TA) in color Doppler ultrasound. There were statistically significant HU differences between calcium and non-calcium stones (p < 0.001), calcium oxalate stones and calcium phosphate stones (p < 0.001) and uric acid stones and cystine calculi (p < 0.001) but not between COM and COD stones (p = 0.786). Hence, the HU was a predictive factor of the composition of all types of stones, other than for COM and COD stones within the calcium oxalate class (p > 0.05). We found that the TA does not enable differentiation between calcium and non-calcium stones (p > 0.999), calcium oxalate stones and calcium phosphate stones (p = 0.15), or uric acid stones and cystine calculi (p = 0.079). However, it did reveal a significant difference between COM and COD stones (p = 0.002). The absence of a TA is a predictive factor for the presence of COM stones (p = 0.008). Hence, the association of NCHCT and Doppler enables the accurate classification of the five types of stones in vitro.

  7. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  8. Two-dimensional blood flow vectors obtained with bidirectional Doppler ultrasound.

    PubMed

    Masuno, Genta; Nagaoka, Ryo; Omori, Aiko; Ishikawa, Yasuo; Akagawa, Osamu; Arakawa, Mototaka; Saijo, Yoshifumi

    2014-01-01

    Precise measurement of blood flow is important because blood flow closely correlates formation of thrombus and atherosclerotic plaque. Among clinically applied modalities for blood flow measurement, color Doppler ultrasound shows two-dimensional (2D) distribution of one-dimensional blood flow component along the ultrasound beam. In the present study, 2D blood flow vector is obtained with high temporal and bidirectional Doppler ultrasound technique. Linear array probe with the central frequency of 7.5 MHz and an ultrasound data acquisition system with 128 transmit and 128 receive channels were equipped. Frame rate of 5 kHz was achieved by parallel receive beam forming with a wide transmitted wave. The flow velocity was measured from two different angles by beam steering. The interval of two measurements was 0.8 msec and it was considered as almost one moment to obtain 2D blood flow vector. B-mode image and 2D blood flow vector of the pulsatile flow in a carotid artery model showed small vortex at the bifurcation area. The method was also applied for visualization of in vivo blood flow vector in human carotid arteries. 2D blood flow measurement may predict the risk area of thrombus and plaque formation induced by abnormal blood flow.

  9. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  10. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  11. [Phantom studies using echo contrast media to improve the Doppler color sonographic imaging of the superficial femoral artery in the adductor canal].

    PubMed

    Hendrickx, P; Brassel, F; Roth, U; Froehlich, H; Wagner, H H

    1991-01-01

    The adductor canal was simulated using 2.6 cm muscular tissue and 2 fasciae to analyse the limits of colour-coded Doppler sonography (angiodynography) in this region. Defects in the spectral signal cause a significant underestimation of mean, peak systolic and peak diastolic (backflow) velocities and of calculated blood flow. Furthermore the pulsatility index is overestimated and the colour-coded visualisation of the arteries is almost lost. For the most part, these changes can be compensated by administration of a sonographic contrast agent (SH U 454). A minimum of 9 mg microbubbles/ml blood is required. Nevertheless, the adjustment of system controls (e.g. transducer power) becomes more difficult and an ideal setting impossible.

  12. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  13. Doppler flowmeter

    DOEpatents

    Karplus, Henry H. B.; Raptis, Apostolos C.

    1983-01-01

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  14. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  15. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-12-14

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.

  16. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

    PubMed Central

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  17. Ultrasonographic Doppler Use for Female Reproduction Management.

    PubMed

    Bollwein, Heinrich; Heppelmann, Maike; Lüttgenau, Johannes

    2016-03-01

    Transrectal color Doppler ultrasonography is a useful technique to get new information about physiologic and pathophysiologic alterations of the uterus and ovaries in female cattle. During all reproductive stages characteristic changes in uterine blood flow are observed. Cows with puerperal disturbances show delayed decrease in uterine blood flow in the first few weeks postparturition compared with healthy cows. Measurement of follicular blood flow is used to identify normally developing follicles and predict superovulatory response. Determination of luteal blood is more reliable than B-mode sonography to distinguish between functional and nonfunctional corpora lutea. Color Doppler ultrasonography is a promising tool to improve reproductive management in female cattle.

  18. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  19. The Psychological Four-Color Mapping Problem

    ERIC Educational Resources Information Center

    Francis, Gregory; Bias, Keri; Shive, Joshua

    2010-01-01

    Mathematicians have proven that four colors are sufficient to color 2-D maps so that no neighboring regions share the same color. Here we consider the psychological 4-color problem: Identifying which 4 colors should be used to make a map easy to use. We build a model of visual search for this design task and demonstrate how to apply it to the task…

  20. The Detection and Exclusion of the Prostate Neuro-Vascular Bundle (NVB) in Automated HIFU Treatment Planning Using a Pulsed-Wave Doppler Ultrasound System

    NASA Astrophysics Data System (ADS)

    Chen, Wohsing; Carlson, Roy F.; Fedewa, Russell; Seip, Ralf; Sanghvi, Narendra T.; Dines, Kris A.; Pfile, Richard; Penna, Michael A.; Gardner, Thomas A.

    2005-03-01

    Men with prostate cancer are likely to develop impotence after prostate cancer therapy if the treatment damages the neuro-vascular bundles (NVB). The NVB are generally located at the periphery of the prostate gland. To preserve the NVB, a Doppler system is used to detect and localize the associated blood vessels. This information is used during the therapy planning procedure to avoid treatment surrounding the blood vessel areas. The Sonablate®500 (Focus Surgery, Inc.) image-guided HIFU device is enhanced with a pulse-wave multi-gate Doppler system that uses the current imaging transducer and mechanical scanner to acquire Doppler data. Doppler detection is executed after the regular B-mode images are acquired from the base to the apex of the prostate using parallel sector scans. The results are stored and rendered in 3-D display, registered with additional models generated for the capsule, urethra, and rectal wall, and the B-mode data and treatment plan itself. The display of the blood flow can be in 2-D color overlaid on the B-mode image or in 3-D color structure. Based on this 3-D model, the HIFU treatment planning can be executed in automated or manual mode by the physician to remove originally defined treatment zones that overlap with the NVB (for preservation of NVB). The results of the NVB detection in animal experiments, and the 3-D modeling and data registration of the prostate will be presented.

  1. Color Doppler ultrasonography of the abdominal aorta.

    PubMed

    Battaglia, S; Danesino, G M; Danesino, V; Castellani, S

    2010-09-01

    Alterations of the abdominal aorta are relatively common, particularly in older people. Technological advances in the fields of ultrasonography, computed tomography, angiography, and magnetic resonance imaging have greatly increased the imaging options for the assessment of these lesions. Because it can be done rapidly and is also non-invasive, ultrasonography plays a major role in the exploration of the abdominal aorta, from its emergence from the diaphragm to its bifurcation. It is indicated for the diagnosis and follow-up of various aortic diseases, especially aneurysms. It can be used to define the shape, size, and location of these lesions, the absence or presence of thrombi and their characteristics. It is also useful for monitoring the evolution of the lesion and for postoperative follow-up. However, its value is limited in surgical planning and in emergency situations.

  2. Available information in 2D motional Stark effect imaging.

    PubMed

    Creese, Mathew; Howard, John

    2010-10-01

    Recent advances in imaging techniques have allowed the extension of the standard polarimetric 1D motional Stark effect (MSE) diagnostic to 2D imaging of the internal magnetic field of fusion devices [J. Howard, Plasma Phys. Controlled Fusion 50, 125003 (2008)]. This development is met with the challenge of identifying and extracting the new information, which can then be used to increase the accuracy of plasma equilibrium and current density profile determinations. This paper develops a 2D analysis of the projected MSE polarization orientation and Doppler phase shift. It is found that, for a standard viewing position, the 2D MSE imaging system captures sufficient information to allow imaging of the internal vertical magnetic field component B(Z)(r,z) in a tokamak.

  3. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  4. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  5. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  6. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  7. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  8. New Doppler echocardiographic applications for the study of diastolic function

    NASA Technical Reports Server (NTRS)

    Garcia, M. J.; Thomas, J. D.; Klein, A. L.

    1998-01-01

    Doppler echocardiography is one of the most useful clinical tools for the assessment of left ventricular (LV) diastolic function. Doppler indices of LV filling and pulmonary venous (PV) flow are used not only for diagnostic purposes but also for establishing prognosis and evaluating the effect of therapeutic interventions. The utility of these indices is limited, however, by the confounding effects of different physiologic variables such as LV relaxation, compliance and filling pressure. Since alterations in these variables result in changes in Doppler indices of opposite direction, it is often difficult to determine the status of a given variable when a specific Doppler filling pattern is observed. Recently, color M-mode and tissue Doppler have provided useful insights in the study of diastolic function. These new Doppler applications have been shown to provide an accurate estimate of LV relaxation and appear to be relatively insensitive to the effects of preload compensation. This review will focus on the complementary role of color M-mode and tissue Doppler echocardiography and traditional Doppler indices of LV filling and PV flow in the assessment of diastolic function.

  9. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1985-01-01

    A laser doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows is described. All the mean velocities, Reynolds stresses, and higher-order products can be evaluated. The approach followed is to split one of the two colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. The laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and ASSEMBLY languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  10. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1986-01-01

    This report describes a laser Doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows. All the mean velocities, Reynolds stresses, and higher-order products can then be evaluated. The approach followed is to split one of the colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. In this report, the laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and assembly languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  11. Realistic fetus skin color processing for ultrasound volume rendering

    NASA Astrophysics Data System (ADS)

    Kim, Yun-Tae; Kim, Kyuhong; Park, Sung-Chan; Kang, Jooyoung; Kim, Jung-Ho

    2014-01-01

    This paper proposes realistic fetus skin color processing using a 2D color map and a tone mapping function (TMF) for ultrasound volume rendering. The contributions of this paper are a 2D color map generated through a gamut model of skin color and a TMF that depends on the lighting position. First, the gamut model of fetus skin color is calculated by color distribution of baby images. The 2D color map is created using a gamut model for tone mapping of ray casting. For the translucent effect, a 2D color map in which lightness is inverted is generated. Second, to enhance the contrast of rendered images, the luminance, color, and tone curve TMF parameters are changed using 2D Gaussian function that depends on the lighting position. The experimental results demonstrate that the proposed method achieves better realistic skin color reproduction than the conventional method.

  12. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  13. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  14. Doppler Imaging of Exoplanets and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Crossfield, I.; Biller, B.; Schlieder, J.; Deacon, N.; Bonnefoy, M.; Homeier, D.; Allard, F.; Buenzli, E.; Henning, T.; Brandner, W.; Goldman, Bertr; Kopytova, T.

    2014-03-01

    Doppler Imaging produces 2D global maps. When applied to cool planets or more massive brown dwarfs, it can map atmospheric features and track global weather patterns. The first substellar map, of the 2pc-distant brown dwarf Luhman 16B (Crossfeld et al. 2014), revealed patchy regions of thin & thick clouds. Here, I investigate the feasibility of future Doppler Imaging of additional objects. Searching the literature, I find that all 3 of P, v sin i, and variability are published for 22 brown dwarfs. At least one datum exists for 333 targets. The sample is very incomplete below ~L5; we need more surveys to find the best targets for Doppler Imaging! I estimate limiting magnitudes for Doppler Imaging with various hi-resolution near-infrared spectrographs. Only a handful of objects - at the M/L and L/T transitions - can be mapped with current tools. Large telescopes such as TMT and GMT will allow Doppler Imaging of many dozens of brown dwarfs and the brightest exoplanets. More targets beyond type L5 likely remain to be found. Future observations will let us probe the global atmospheric dynamics of many diverse objects.

  15. Software For Clear-Air Doppler-Radar Display

    NASA Technical Reports Server (NTRS)

    Johnston, Bruce W.

    1990-01-01

    System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.

  16. Real-time virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Khoshniat, Mahdieh; Thorne, Meghan L.; Poepping, Tamie L.; Holdsworth, David W.; Steinman, David A.

    2004-04-01

    Doppler ultrasound (DUS) is widely used to diagnose and plan treatments for vascular diseases, but the relationship between complex blood flow dynamics and the observed DUS signal is not completely understood. In this paper, we demonstrate that Doppler ultrasound can be realistically simulated in a real-time manner via the coupling of a known, previously computed velocity field with a simple model of the ultrasound physics. In the present case a 3D computational fluid dynamics (CFD) model of physiologically pulsatile flow a stenosed carotid bifurcation was interrogated using a sample volume of known geometry and power distribution. Velocity vectors at points within the sample volume were interpolated using a fast geometric search algorithm and, using the specified US probe characteristics and orientation, converted into Doppler shifts for subsequent display as a Doppler spectrogram or color DUS image. The important effect of the intrinsic spectral broadening was simulated by convolving the velocity at each point within the sample volume by a triangle function whose width was proportional to velocity. A spherical sample volume with a Gaussian power distribution was found to be adequate for producing realistic Doppler spectrogram in regions of uniform, jet, and recirculation flow. Fewer than 1000 points seeded uniformly within a radius comprising more than 99% of the total power were required, allowing spectra to be generated from high resolution CFD data at 100Hz frame rates on an inexpensive desktop workstation.

  17. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…

  18. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  19. Reducing registration error in cross-beam vector doppler imaging with position sensor.

    PubMed

    Xu, Canxing; Beach, Kirk W; Leotta, Daniel; Stuzman, Edward; Kim, Yongmin

    2009-01-01

    Various vector Doppler methods have been proposed in the last several decades to overcome the Doppler angle dependency in both conventional spectral Doppler and color Doppler by measuring both the speed and direction of blood flow. However, they have not been adopted for routine use because most of them require specialized hardware, which is not available in commercial ultrasound systems. An alternative approach (cross-beam method) that uses color Doppler images obtained from different steered beam angles is more feasible, but there is error in registering multiple color Doppler images because they are not acquired simultaneously. To alleviate this problem, we have evaluated a cross-beam vector Doppler system that registers spatially with a position sensor two color Doppler images from two different angles and temporally with ECG synchronization. The registration error was reduced to an average of 0.92 mm from 2.49 mm in 9 human subjects. Vector Doppler carotid artery images of a healthy subject and a patient with atherosclerotic plaques are also presented.

  20. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  1. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  2. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  3. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  4. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  5. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  6. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  7. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the most ...

  8. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  9. Pulse subtraction Doppler

    NASA Astrophysics Data System (ADS)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  10. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  11. Two-dimensional phase unwrapping in Doppler Fourier domain optical coherence tomography.

    PubMed

    Wang, Yimin; Huang, David; Su, Ya; Yao, X Steve

    2016-11-14

    For phase-related imaging modalities using interferometric techniques, it is important to develop effective method to recover phase information that is mathematically wrapped. In this paper, we propose and demonstrate a two-dimensional (2D) method to achieve effective phase unwrapping in Doppler Fourier-domain (FD) optical coherence tomography (OCT), and recover the discontinuous phase distribution in retinal blood flow successfully for the first time in Doppler OCT studies. The proposed method is based on phase gradient approach in the axial dimension, with phase denoising performed through 2D window moving average in the sampled phase image using complex Doppler OCT data. The 2D unwrapping is carried out to correct phase discontinuities in the wrapped Doppler phase map, and the abrupt phase changes can be identified and corrected accurately. The proposed algorithm is computationally efficient and easy to be implemented.

  12. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  13. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI.

    PubMed

    Faurie, Julia; Baudet, Mathilde; Assi, Kondo Claude; Auger, Dominique; Gilbert, Guillaume; Tournoux, Francois; Garcia, Damien

    2017-02-01

    Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.

  14. 2D Orthogonal Locality Preserving Projection for Image Denoising.

    PubMed

    Shikkenawis, Gitam; Mitra, Suman K

    2016-01-01

    Sparse representations using transform-domain techniques are widely used for better interpretation of the raw data. Orthogonal locality preserving projection (OLPP) is a linear technique that tries to preserve local structure of data in the transform domain as well. Vectorized nature of OLPP requires high-dimensional data to be converted to vector format, hence may lose spatial neighborhood information of raw data. On the other hand, processing 2D data directly, not only preserves spatial information, but also improves the computational efficiency considerably. The 2D OLPP is expected to learn the transformation from 2D data itself. This paper derives mathematical foundation for 2D OLPP. The proposed technique is used for image denoising task. Recent state-of-the-art approaches for image denoising work on two major hypotheses, i.e., non-local self-similarity and sparse linear approximations of the data. Locality preserving nature of the proposed approach automatically takes care of self-similarity present in the image while inferring sparse basis. A global basis is adequate for the entire image. The proposed approach outperforms several state-of-the-art image denoising approaches for gray-scale, color, and texture images.

  15. Doppler ultrasonography of the lower extremity arteries: anatomy and scanning guidelines

    PubMed Central

    2017-01-01

    Doppler ultrasonography of the lower extremity arteries is a valuable technique, although it is less frequently indicated for peripheral arterial disease than for deep vein thrombosis or varicose veins. Ultrasonography can diagnose stenosis through the direct visualization of plaques and through the analysis of the Doppler waveforms in stenotic and poststenotic arteries. To perform Doppler ultrasonography of the lower extremity arteries, the operator should be familiar with the arterial anatomy of the lower extremities, basic scanning techniques, and the parameters used in color and pulsed-wave Doppler ultrasonography. PMID:28219004

  16. Color blindness

    MedlinePlus

    ... have trouble telling the difference between red and green. This is the most common type of color ... color blindness often have problems seeing reds and greens, too. The most severe form of color blindness ...

  17. Doppler ion program description

    SciTech Connect

    Henline, P.

    1980-12-01

    The Doppler spectrometer is a conventional Czerny-Turner grating spectrometer with a 1024 channel multiple detector. Light is dispersed across the detector, and its output yields a spectrum covering approximately 200 A. The width of the spectral peak is directly proportional to the temperature of the emitting ions, and determination of the impurity ion temperature allows one to infer the plasma ion temperature. The Doppler ion software system developed at General Atomic uses a TRACOR Northern 1710-31 and an LSI-11/2. The exact configuration of Doublet III is different from TRACOR Northern systems at other facilities.

  18. Overview of mesocale research Doppler lidar activities

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, D. E.

    1984-01-01

    In evaluating the performance of the airborne Doppler lidar system, a large number of deficiencies or mistakes were identified in the original system and experiment plans. All of the known problems were addressed and corrected in the planning and engineering for the fall 1984/spring 1985 ADLS flight series. Thus, the most significant result of the data analysis was the input it has provided to the preparations for the new experiment. Attitude measurements are taken together with the streamlined operating procedures, color graphics real time displays of data, and better experiment design, the result is a second-generation system that is considerably better than the one used in 1981.

  19. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  20. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  1. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  2. Doppler wind profile experiment

    NASA Technical Reports Server (NTRS)

    Arnold, J. E.

    1985-01-01

    The data collection phase of a Doppler wind measurement experiment supported by high-resolution Jimsphere/FPS-16 wind data and Windsonde data was carried out at the Kennedy Space Center in February, March and early April of 1985. The Doppler wind measurements were made using a hybrid doppler profiler put in place by the Johnson Space Center and a SOUSY profiler operated by Radian Corporation. Both systems operated at 50 Mhz. Although the doppler profiler systems were located 10 km apart to enable concurrent operation of the systems for data comparison, little concurrent data were obtained due to set-up delays with the SOUSY system, and system problems with the WPL system during the last month of the test. During the test period, special serial Jimsphere soundings were taken at two-hour intervals on six days in March and April in addition to balloon soundings taken in support of the Shuttle launch operations. In addition, there is temperature, moisture and wind information available from the daily morning Radiosonde sounding taken at the Kennedy site. The balloon release point was at the same location as the SOUSY profiler. Vertical resolution of the SOUSY profiler was 150 M to approximately 20 km. The vertical resolution of the WPL profiler was 290 M to 10 km and 870 M to 17 km. Winds determined form the Jimsphere balloon have a vertical resolution of 30 M.

  3. [Tissue Doppler: the physical principles, representational and analytical modalities and clinical applications].

    PubMed

    Trambaiolo, P; Salustri, A; Tonti, G; Fedele, F; Palamara, A

    2000-01-01

    Tissue Doppler imaging or myocardial velocity imaging is a variation of conventional Doppler. This modality allows the quantification of the Doppler shift within the range of myocardial tissue motion. The velocity of motion at a variety of myocardial sites can be determined and distinguished very rapidly using Doppler techniques. The velocity of moving tissue can be studied with pulsed wave tissue Doppler sampling, which displays the velocity of a selected myocardial region against time, with high temporal resolution. In addition, the velocities can be calculated with time velocity maps and displayed as color coded velocity maps in either M-mode or two-dimensional format. This review will focus on the technical aspects and the different methods of tissue Doppler for regional systolic and diastolic left ventricular function analysis. While pulsed wave tissue Doppler allows us to measure the velocities of a selected myocardial region, color tissue Doppler gives the best overall view of cardiac dynamics because the whole scanned color data are displayed simultaneously. However, there is an increasing need for objective evaluation of tissue Doppler information. Digital images and data post-processing allow for quantitative off-line analysis, and the different approaches and parameters proposed from different centers are discussed. In recent years, tissue Doppler imaging has been applied for accurate evaluation of diastolic function, quantifying regional function particularly during stress, pre-excitation syndrome, and left ventricular hypertrophy. The results of these experiences indicate that tissue Doppler imaging is a promising technique for quantifying the response of the myocardium and endocardium during both normal and abnormal function. Again, there is a significant learning curve concerning its application, but with experience it will be a useful and reproducible technique.

  4. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  5. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  6. Doppler effect in optical velocimetry

    NASA Astrophysics Data System (ADS)

    Rinkevichius, Bronius S.

    1996-02-01

    The current state of the optical metrology based on the Doppler effect has been reviewed. Some historical and scientific information is given, in addition the contemporary optical methods of the velocity measurement using the Doppler effect are analyzed. The Doppler effect applications in astrophysics, plasma physics, investigations of gas and liquid flows, acoustics, mechanics of the deforming solid body and of the rotational motion are considered. The description is presented for the following techniques of the velocity measurement: laser Doppler anemometry, laser Doppler vibrometry, laser gyroscopy.

  7. Quantitation of protein in samples prepared for 2-D electrophoresis.

    PubMed

    Berkelman, Tom

    2008-01-01

    The concentration of protein in a sample prepared for two dimensional (2-D) electrophoretic analysis is usually determined by protein assay. Reasons for this include the following. (1) Protein quantitation ensures that the amount of protein to be separated is appropriate for the gel size and visualization method. (2) Protein quantitation facilitates comparison among similar samples, as image-based analysis is simplified when equivalent quantities of proteins have been loaded on the gels to be compared. (3) Quantitation is necessary in cases where the protein sample is labeled with dye before separation (1,2). The labeling chemistry is affected by the dye to protein ratio so it is essential to know the protein concentration before setting up the labeling reaction.A primary consideration with quantitating protein in samples prepared for 2-D electrophoresis is interference by nonprotein substances that may be present in the sample. These samples generally contain chaotropic solubilizing agents, detergents, reductants, buffers or carrier ampholytes, all of which potentially interfere with protein quantitation. The most commonly used protein assays in proteomics research are colorimetric assays in which the presence of protein causes a color change that can be measured spectrophotometrically (3). All protein assays utilize standards, a dilution series of a known concentration of a known protein, to create a standard curve. Two methods will be considered that circumvent some of the problems associated with interfering substances and are well suited for samples prepared for 2-D electrophoresis. The first method (4.1.1) relies on a color change that occurs upon binding of a dye to protein and the second (4.1.2) relies on binding and reduction of cupric ion (Cu2+) ion to cuprous ion (Cu+) by proteins.

  8. Laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Johnson, Dennis A.

    1988-01-01

    The material in this NASA TM is to appear as a chapter on Laser Doppler Anemometry (LDA) in the AGARDograph entitled, A Survey of Measurements and Measuring Techniques in Rapidly Distorted Compressible Turbulent Boundary Layers. The application of LDA (specifically, the dual-beam, burst-counter approach) to compressible flows is discussed. Subjects treated include signal processing, particle light scattering and tracking, data reduction and sampling bias, and three-dimensional measurements.

  9. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  10. The effect of dead elements on the accuracy of Doppler ultrasound measurements.

    PubMed

    Vachutka, Jaromir; Dolezal, Ladislav; Kollmann, Christian; Klein, Jakob

    2014-01-01

    The objective of this study is to investigate the effect of multiple dead elements in an ultrasound probe on the accuracy of Doppler ultrasound measurements. For this work, we used a specially designed ultrasound imaging system, the Ultrasonix Sonix RP, that provides the user with the ability to disable selected elements in the probe. Using fully functional convex, linear, and phased array probes, we established a performance baseline by measuring the parameters of a laminar parabolic flow profile. These same parameters were then measured using probes with 1 to 10 disabled elements. The acquired velocity spectra from the functional probes and the probes with disabled elements were then analyzed to determine the overall Doppler power, maximum flow velocity, and average flow velocity. Color Flow Doppler images were also evaluated in a similar manner. The analysis of the Doppler spectra indicates that the overall Doppler power as well as the detected maximum and average velocities decrease with the increasing number of disabled elements. With multiple disabled elements, decreases in the detected maximum and average velocities greater than 20% were recorded. Similar results were also observed with Color Flow Doppler measurements. Our results confirmed that the degradation of the ultrasound probe through the loss of viable elements will negatively affect the quality of the Doppler-derived diagnostic information. We conclude that the results of Doppler measurements cannot be considered accurate or reliable if there are four or more contiguous dead elements in any given probe.

  11. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  12. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  13. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  14. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  15. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  16. Color realism and color science.

    PubMed

    Byrne, Alex; Hilbert, David R

    2003-02-01

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically, types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in the mind." The article has two other purposes: First, to introduce an interdisciplinary audience to some distinctively philosophical tools that are useful in tackling the problem of color realism and, second, to clarify the various positions and central arguments in the debate. The first part explains the problem of color realism and makes some useful distinctions. These distinctions are then used to expose various confusions that often prevent people from seeing that the issues are genuine and difficult, and that the problem of color realism ought to be of interest to anyone working in the field of color science. The second part explains the various leading answers to the problem of color realism, and (briefly) argues that all views other than our own have serious difficulties or are unmotivated. The third part explains and motivates our own view, that colors are types of reflectances and defends it against objections made in the recent literature that are often taken as fatal.

  17. Clinical applications of doppler ultrasound

    SciTech Connect

    Taylor, K.J.W.; Burns, P.N.; Well, P.N.T.

    1987-01-01

    This book introduces a guide to the physical principles and instrumentation of duplex Doppler ultrasound and its applications in obstetrics, gynecology, neonatology, gastroentology, and evaluation of peripheral vascular disease. The book provides information needed to perform Doppler ultrasound examinations and interpret the results. An introduction to Doppler physics and instrumentation is followed by a thorough review of hemodynamics, which explains the principles underlying interpretation of Doppler signals. Of special note is the state-of-the-art coverage of new applications of Doppler in recognition of high-risk pregnancy, diagnosis of intrauterine growth retardation, investigation of neonatal blood flow, evaluation of first-trimester pregnancy, and diagnosis of gastrointestinal disease. The book also offers guidelines on the use of Doppler ultrasound in diagnosing carotid disease, deep venous thrombosis, and aorta/femoral disease.

  18. Entropy, color, and color rendering.

    PubMed

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  19. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  20. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  1. Color Facsimile.

    DTIC Science & Technology

    1995-02-01

    modification of existing JPEG compression and decompression software available from Independent JPEG Users Group to process CIELAB color images and to use...externally specificed Huffman tables. In addition a conversion program was written to convert CIELAB color space images to red, green, blue color space

  2. Seeing Color

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…

  3. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  4. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  5. Color Categories and Color Appearance

    ERIC Educational Resources Information Center

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  6. Color Terms and Color Concepts

    ERIC Educational Resources Information Center

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  7. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  8. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  9. Orthotropic Piezoelectricity in 2D Nanocellulose.

    PubMed

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V(-1), ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  10. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  11. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  12. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  13. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    PubMed

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  14. Color in Astronomy

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2002-05-01

    The vocabulary of astronomy is riddled with color terms. Stars are referred to as red or blue - even brown -- though rarely green. Astronomers say light from a star can be "blueshifted" or that it can be "reddened". Color, however, is not a simple one-dimensional physical parameter equal to wavelength or frequency. It is a complex, psychophysical phenomenon involving at least three degrees of freedom - hue, saturation and brightness -- as well as observational context. Nonetheless, many astronomers treat hue alone or hue plus saturation as the same thing as color. A recent report on "the color of the universe" is a case in point (Baldry and Glazebrook, Bull. Am. As. Soc., 34, No. 1, 571, 2002). Even discounting the authors' initial and (possibly) subsequent errors in arriving at a "color" associated with the composite spectrum derived from the 2dF Galaxy Redshift Survey (first reported as "pale turquoise", then "beige"), the method of viewing the light was left vague, and context is important. For example, consider the question "What color is the Moon?" When viewed from Earth, the Moon appears white against the black sky. Place a piece of "average" lunar material in a lighted room, and it will appear dark gray. To most human observers, the 2000 or so naked eye stars observable from the northern hemisphere all appear white, with the few exceptions which look reddish/orange such as Betelgeuse, Arcturus, Aldeberan, Antares and Pollux. Yet the dimmer double star companion to Alberio can appear bluish when viewed beside its much brighter yellowish/orange neighbor if both are viewed by eye through a small aperture, slightly defocused telescope. This presentation will explore several visual phenomena that can help clarify the concept of color in astronomy. Supported in part by NSF grant # DUE-9950551 for "Project LITE: Light Inquiry Through Experiments".

  15. ANL Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  16. areaDetector: Software for 2-D Detectors in EPICS

    SciTech Connect

    Rivers, M.

    2011-09-23

    areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

  17. 2D Distributed Sensing Via TDR

    DTIC Science & Technology

    2007-11-02

    plate VEGF CompositeSensor Experimental Setup Air 279 mm 61 78 VARTM profile: slope RTM profile: rectangle 22 1 Jul 2003© 2003 University of Delaware...2003 University of Delaware All rights reserved Vision: Non-contact 2D sensing ü VARTM setup constructed within TL can be sensed by its EM field: 2D...300.0 mm/ns. 1 2 1 Jul 2003© 2003 University of Delaware All rights reserved Model Validation “ RTM Flow” TDR Response to 139 mm VEGC

  18. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  19. Color terms and color concepts.

    PubMed

    Davidoff, Jules

    2006-08-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction are taken up in the current commentary, especially with regard to the neuropsychological evidence. Data from aphasic patients also argue for a priority for abstract thought, but nevertheless it may still be that the use of color terms is the only way in which to form color categories even if both linguistic and attentional factors play an important role.

  20. Doppler Beats or Interference Fringes?

    ERIC Educational Resources Information Center

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  1. Color Analysis

    NASA Astrophysics Data System (ADS)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  2. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  3. Spectroscopic properties of multilayered gold nanoparticle 2D sheets.

    PubMed

    Yoshida, Akihito; Imazu, Keisuke; Li, Xinheng; Okamoto, Koichi; Tamada, Kaoru

    2012-12-11

    We report the fabrication technique and optical properties of multilayered two-dimensional (2D) gold nanoparticle sheets ("Au nanosheet"). The 2D crystalline monolayer sheet composed of Au nanoparticles shows an absorption peak originating from a localized surface plasmon resonance (LSPR). It was found that the absorption spectra dramatically change when the monolayers are assembled into the multilayers on different substrates (quartz or Au). In the case of the multilayers on Au thin film (d = 200 nm), the LSPR peak is shifted to longer wavelength at the near-IR region by increasing the number of layers. The absorbance also depends on the layer number and shows the nonlinear behavior. On the other hand, the multilayers on quartz substrate show neither such LSPR peak shift nor nonlinear response of absorbance. The layer number dependence on metal surfaces can be interpreted as the combined effects between the near-field coupling of the LSPR and the far-field optics of the stratified metamaterial films, as proposed in our previous study. We also report the spectroscopic properties of hybrid multilayers composed of two kinds of monolayers, i.e., Au nanosheet and Ag nanosheet. The combination of the different metal nanoparticle sheets realizes more flexible plasmonic color tuning.

  4. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  5. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  6. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; ...

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  7. Quantum Color

    ScienceCinema

    Lincoln, Don

    2016-07-20

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  8. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  9. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  11. Compatible embedding for 2D shape animation.

    PubMed

    Baxter, William V; Barla, Pascal; Anjyo, Ken-Ichi

    2009-01-01

    We present new algorithms for the compatible embedding of 2D shapes. Such embeddings offer a convenient way to interpolate shapes having complex, detailed features. Compared to existing techniques, our approach requires less user input, and is faster, more robust, and simpler to implement, making it ideal for interactive use in practical applications. Our new approach consists of three parts. First, our boundary matching algorithm locates salient features using the perceptually motivated principles of scale-space and uses these as automatic correspondences to guide an elastic curve matching algorithm. Second, we simplify boundaries while maintaining their parametric correspondence and the embedding of the original shapes. Finally, we extend the mapping to shapes' interiors via a new compatible triangulation algorithm. The combination of our algorithms allows us to demonstrate 2D shape interpolation with instant feedback. The proposed algorithms exhibit a combination of simplicity, speed, and accuracy that has not been achieved in previous work.

  12. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  13. Extrinsic Cation Selectivity of 2D Membranes

    PubMed Central

    2017-01-01

    From a systematic study of the concentration driven diffusion of positive and negative ions across porous 2D membranes of graphene and hexagonal boron nitride (h-BN), we prove their cation selectivity. Using the current–voltage characteristics of graphene and h-BN monolayers separating reservoirs of different salt concentrations, we calculate the reversal potential as a measure of selectivity. We tune the Debye screening length by exchanging the salt concentrations and demonstrate that negative surface charge gives rise to cation selectivity. Surprisingly, h-BN and graphene membranes show similar characteristics, strongly suggesting a common origin of selectivity in aqueous solvents. For the first time, we demonstrate that the cation flux can be increased by using ozone to create additional pores in graphene while maintaining excellent selectivity. We discuss opportunities to exploit our scalable method to use 2D membranes for applications including osmotic power conversion. PMID:28157333

  14. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  15. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  16. Color Metric.

    ERIC Educational Resources Information Center

    Illinois State Office of Education, Springfield.

    This booklet was designed to convey metric information in pictoral form. The use of pictures in the coloring book enables the more mature person to grasp the metric message instantly, whereas the younger person, while coloring the picture, will be exposed to the metric information long enough to make the proper associations. Sheets of the booklet…

  17. GEOS-3 Doppler difference tracking

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1977-01-01

    The Doppler difference method as applied to track the GEOS 3 spacecraft is discussed. In this method a pair of 2 GHz ground tracking stations simultaneously track a spacecraft beacon to generate an observable signal in which bias and instability of the carrier frequency cancel. The baselines are formed by the tracking sites at Bermuda, Rosman, and Merritt Island. Measurements were made to evaluate the effectiveness of the Doppler differencing procedure in tracking a beacon target with the high dynamic rate of the GEOS 3 orbit. Results indicate the precision of the differenced data to be at a level comparable to the conventional precise two way Doppler tracking.

  18. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  19. Quasiparticle interference in unconventional 2D systems

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  20. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  1. 2D Metals by Repeated Size Reduction.

    PubMed

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  2. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  3. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  4. Irreversibility-inversions in 2D turbulence

    NASA Astrophysics Data System (ADS)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  5. Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy.

    PubMed

    Rajagopalan, N; Garcia, M J; Rodriguez, L; Murray, R D; Apperson-Hansen, C; Stugaard, M; Thomas, J D; Klein, A L

    2001-01-01

    This study assesses how the newer modalities of tissue Doppler echocardiography and color M-mode flow propagation compare with respiratory variation of Doppler flow in distinguishing between constrictive pericarditis and restrictive cardiomyopathy. We studied 30 patients referred for further evaluation of diastolic function who had a diagnosis of constrictive pericarditis or restrictive cardiomyopathy established by diagnostic tests, including clinical assessment, magnetic resonance imaging, cardiac catheterization, endomyocardial biopsy, and surgical findings. Nineteen patients had constrictive pericarditis and 11 had restrictive cardiomyopathy. We performed 2-dimensional transesophageal echocardiography combined with pulsed-wave Doppler of the pulmonary veins and mitral inflow with respiratory monitoring, tissue Doppler echocardiography of the lateral mitral annulus, and color M-mode flow propagation of left ventricular filling. Respiratory variation of the mitral inflow peak early (peak E) velocity of > or =10% predicted constrictive pericarditis with 84% sensitivity and 91% specificity and variation in the pulmonary venous peak diastolic (peak D) flow velocity of > or =18% distinguished constriction with 79% sensitivity and 91% specificity. Using tissue Doppler echocardiography, a peak early velocity of longitudinal expansion (peak Ea) of > or =8.0 cm/s differentiated patients with constriction from restriction with 89% sensitivity and 100% specificity. A slope of > or =100 cm/s for the first aliasing contour in color M-mode flow propagation predicted patients with constriction with 74% sensitivity and 91% specificity. Thus, the newer methods of tissue Doppler echocardiography and color M-mode flow propagation are equivalent and complimentary with Doppler respiratory variation in distinguishing between constrictive pericarditis and restrictive cardiomyopathy. The additive role of the new methods needs to be established in difficult cases of constrictive

  6. A reconstruction method of intra-ventricular blood flow using color flow ultrasound: a simulation study

    NASA Astrophysics Data System (ADS)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun

    2015-03-01

    A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.

  7. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  8. [Management of color-Doppler imaging in dialysis patients].

    PubMed

    Battaglia, Yuri; Granata, Antonio; Zamboli, Pasquale; Lusenti, Tiziano; Di Lullo, Luca; Floccari, Fulvio; Logias, Franco; D'Amelio, Alessandro; Fiorini, Fulvio

    2012-01-01

    In recent decades, the survival of dialysis patients has gradually increased thanks to the evolution of dialysis techniques and the availability of new drug therapies. These elements have led to an increased incidence of a series of dialysis-related diseases that might compromise the role of dialysis rehabilitation: vascular disease, skeletal muscle disease, infectious disease, cystic kidney disease and cancer. The nephrologist is therefore in charge of a patient group with complex characteristics including the presence of indwelling vascular and/or peritoneal catheters, conditions secondary to chronic renal failure (hyperparathyroidism, anemia, amyloid disease, etc.) and superimposed disorders due to old age (cardiac and respiratory failure, cancer, type 2 diabetes mellitus, etc.). Early clinical and organizational management of such patients is essential in a modern and ''economic'' vision of nephrology. The direct provision of ultrasound services by the nephrologist responds to these requirements. A minimum level of expertise in diagnostic ultrasonography of the urinary tract and dialysis access should be part of the nephrologist's cultural heritage, acquired through theoretical and practical training programs validated by scientific societies, especially for those who choose to specialize in these procedures and become experts in imaging or interventional ultrasonography.

  9. A Novel 2-D OFDM-DS-CDMA Receiver with Frequency-Time Spreading

    NASA Astrophysics Data System (ADS)

    Chen, Joy Iong-Zong

    This paper presents a novel 2-D (2-dimension) receiver that adopts the reception scheme to promote OFDM-DS-CDMA (orthogonal frequency division multiplexing multi-carrier coded-division multiple-access) system performance. The system model includes spread coding and a system block diagram of the 2-D receiver shown graphically with 3-D (three dimensions) plots. The analytical calculation of system performance for an OFDM-DS-CDMA system combined with the proposed receiver equipment is investigated. To evaluate the results from the channel fading effect is considered over the correlated fading environments. The correlated-Nakagami-m statistical distribution is taken into account in the evaluation. The results show that the number of users, the number of subcarriers and the fading channel correlation generally affect OFDM-DS-CDMA systems. The system is also influenced by the Doppler shift and the signal propagation environment (fading parameter).

  10. Is digit ratio (2D:4D) a reliable pointer to speech laterality?

    PubMed

    Hudson, John M; Hodgson, Jessica C

    2016-03-15

    The relative length of the second and fourth digits (2D:4D ratio) is sexually dimorphic and a retrospective biomarker of prenatal hormonal exposure. Low ratios indicate higher prenatal testosterone (pT) and lower estrogen exposure, whereas the reverse pattern is associated with high ratios. Elevated levels of pT exposure have long been thought to modulate hemispheric specialisation; subsequently many studies use the 2D:4D ratio as a proxy index for pT to examine the effects of prenatal hormonal exposure on lateralised cognitive abilities. Here we used Transcranial Doppler ultrasonography and digit ratio to investigate whether pT has an influence on speech laterality. We tested 34 right and 14 left handed adults. Our results indicate that speech representation is unrelated to digit characteristics and therefore purportedly pT. We discuss these findings in relation to androgen theories of lateralisation.

  11. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  12. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  13. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  14. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  15. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  16. Can Doppler or contrast-enhanced ultrasound analysis add diagnostically important information about the nature of breast lesions?

    PubMed Central

    Stanzani, Daniela; Chala, Luciano F.; de Barros, Nestor; Cerri, Giovanni G.; Chammas, Maria Cristina

    2014-01-01

    OBJECTIVES: Despite evidence suggesting that Doppler ultrasonography can help to differentiate between benign and malignant breast lesions, it is rarely applied in clinical practice. The aim of this study was to determine whether certain vascular features of breast masses observed by duplex Doppler and color Doppler ultrasonography (before and/or after microbubble contrast injection) add information to the gray-scale analysis and support the Breast Imaging-Reporting and Data System (BI-RADS) classification. METHODS: Seventy solid lesions were prospectively evaluated with gray-scale ultrasonography, color Doppler ultrasonography, and contrast-enhanced ultrasonography. The morphological analysis and lesion vascularity were correlated with the histological results. RESULTS: Percutaneous core biopsies revealed that 25/70 (17.5%) lesions were malignant, while 45 were benign. Hypervascular lesions with tortuous and central vessels, a resistive index (RI)≥0.73 before contrast injection, and an RI≥0.75 after contrast injection were significantly predictive of malignancy (p<0.001). CONCLUSION: The combination of gray-scale ultrasonography data with unenhanced or enhanced duplex Doppler and color Doppler US data can provide diagnostically useful information. These techniques can be easily implemented because Doppler devices are already present in most health centers. PMID:24519198

  17. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  18. Novel instantaneous laser Doppler velocimeter.

    PubMed

    Avidor, J M

    1974-02-01

    A laser Doppler velocimeter capable of directly measuring instantaneous velocities is described. The new LDV uses a novel detection technique based on the utilization of a static slightly defocused spherical Fabry-Perot interferometer used in conjunction with a special mask for the detection of instantaneous Doppler frequency shifts. The essential characteristics of this LDV are discussed, and such a system recently developed is described. Results of turbulent flow measurements show good agreement with data obtained using hot wire anemometry.

  19. Adaptive spectral doppler estimation.

    PubMed

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-04-01

    In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window is very short. The 2 adaptive techniques are tested and compared with the averaged periodogram (Welch's method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of matched filters (one for each velocity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out. Simulations in Field II for pulsating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior performance for short observation windows compared with the averaged periodogram. Computational costs and implementation details are also discussed.

  20. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  1. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  2. Quantum Color

    SciTech Connect

    Lincoln, Don

    2016-07-05

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  3. Two-dimensional, non-Doppler strain imaging during anesthesia and cardiac surgery.

    PubMed

    Skubas, Nikolaos J

    2009-03-01

    Transesophageal echochardiography (TEE) has become an essential intraoperative monitor during general anesthesia for cardiac surgical procedures. In clinical practice, ventricular function is visually evaluated using gray scale and Doppler modes, despite the fact that subjective interpretation is influenced by level of experience and training. Echocardiographic strain imaging measures cardiac deformation and provides objective quantification of regional myocardial function. Non-Doppler strain, which is derived by tracking speckles from two-dimensional (2D) images, bypasses the limitations of Doppler-based strain measurements and evaluates the complex myocardial deformation along three dimensions. As a result, longitudinal shortening, circumferential thinning and radial thickening can be quantified using standard midesophageal and transgastric views, being acquired during a comprehensive TEE examination. Once non-Doppler strain becomes available on "real time," it will have the potential to become a valuable tool for detection of ischemia on the regional level and objective quantification of global ventricular function.

  4. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  5. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  6. Codon Constraints on Closed 2D Shapes,

    DTIC Science & Technology

    2014-09-26

    19843$ CODON CONSTRAINTS ON CLOSED 2D SHAPES Go Whitman Richards "I Donald D. Hoffman’ D T 18 Abstract: Codons are simple primitives for describing plane...RSONAL AUT"ORtIS) Richards, Whitman & Hoffman, Donald D. 13&. TYPE OF REPORT 13b. TIME COVERED N/A P8 AT F RRrT t~r. Ago..D,) is, PlE COUNT Reprint...outlines, if figure and ground are ignored. Later, we will address the problem of indexing identical codon descriptors that have different figure

  7. Doppler ultrasound and renal artery stenosis: An overview.

    PubMed

    Granata, A; Fiorini, F; Andrulli, S; Logias, F; Gallieni, M; Romano, G; Sicurezza, E; Fiore, C E

    2009-12-01

    Renovascular disease is a complex disorder, most commonly caused by fibromuscular dysplasia and atherosclerotic diseases. It can be found in one of three forms: asymptomatic renal artery stenosis (RAS), renovascular hypertension, and ischemic nephropathy. Particularly, the atherosclerotic form is a progressive disease that may lead to gradual and silent loss of renal function. Thus, early diagnosis of RAS is an important clinical objective since interventional therapy may improve or cure hypertension and preserve renal function. Screening for RAS is indicated in suspected renovascular hypertension or ischemic nephropathy, in order to identify patients in whom an endoluminal or surgical revascularization is advisable. Screening tests for RAS have improved considerably over the last decade. While captopril renography was widely used in the past, Doppler ultrasound (US) of the renal arteries (RAs), angio-CT, or magnetic resonance angiography (MRA) have replaced other modalities and they are now considered the screening tests of choice. An arteriogram is rarely needed for diagnostic purposes only. Color-Doppler US (CDUS) is a noninvasive, repeatable, relatively inexpensive diagnostic procedure which can accurately screen for renovascular diseases if performed by an expert. Moreover, the evaluation of the resistive index (RI) at Doppler US may be very useful in RAS affected patients for predicting the response to revascularization. However, when a discrepancy exists between clinical data and the results of Doppler US, additional tests are mandatory.

  8. E-2D Advanced Hawkeye: primary flight display

    NASA Astrophysics Data System (ADS)

    Paolillo, Paul W.; Saxena, Ragini; Garruba, Jonathan; Tripathi, Sanjay; Blanchard, Randy

    2006-05-01

    This paper is a response to the challenge of providing a large area avionics display for the E-2D AHE aircraft. The resulting display design provides a pilot with high-resolution visual information content covering an image area of almost three square feet (Active Area of Samsung display = 33.792cm x 27.0336 cm = 13.304" x 10.643" = 141.596 square inches = 0.983 sq. ft x 3 = 2.95 sq. ft). The avionics display application, design and performance being described is the Primary Flight Display for the E-2D Advanced Hawkeye aircraft. This cockpit display has a screen diagonal size of 17 inches. Three displays, with minimum bezel width, just fit within the available instrument panel area. The significant design constraints of supporting an upgrade installation have been addressed. These constraints include a display image size that is larger than the mounting opening in the instrument panel. This, therefore, requires that the Electromagnetic Interference (EMI) window, LCD panel and backlight all fit within the limited available bezel depth. High brightness and a wide dimming range are supported with a dual mode Cold Cathode Fluorescent Tube (CCFT) and LED backlight. Packaging constraints dictated the use of multiple U shaped fluorescent lamps in a direct view backlight design for a maximum display brightness of 300 foot-Lamberts. The low intensity backlight levels are provided by remote LEDs coupled through a fiber optic mesh. This architecture generates luminous uniformity within a minimum backlight depth. Cross-cockpit viewing is supported with ultra-wide field-of-view performance including contrast and the color stability of an advanced LCD cell design supports. Display system design tradeoffs directed a priority to high optical efficiency for minimum power and weight.

  9. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  10. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  11. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  12. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  13. Applications of Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang

    stenosis and bifurcation will be described in this thesis. We also proposed the method to successfully obtain the 2D velocity vector map in the phantom models by overlapping the Doppler OCT scalar velocity distributions of different incident angles. This quantitative knowledge of blood velocity profiles in the vessels can provide very important information in studying some cardiovascular diseases such as atherosclerosis. (Abstract shortened by UMI.)

  14. Color vision test

    MedlinePlus

    ... from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... test - color; Ishihara color vision test Images Color blindness tests References Adams AJ, Verdon WA, Spivey BE. ...

  15. Transition to turbulence: 2D directed percolation

    NASA Astrophysics Data System (ADS)

    Chantry, Matthew; Tuckerman, Laurette; Barkley, Dwight

    2016-11-01

    The transition to turbulence in simple shear flows has been studied for well over a century, yet in the last few years has seen major leaps forward. In pipe flow, this transition shows the hallmarks of (1 + 1) D directed percolation, a universality class of continuous phase transitions. In spanwisely confined Taylor-Couette flow the same class is found, suggesting the phenomenon is generic to shear flows. However in plane Couette flow the largest simulations and experiments to-date find evidence for a discrete transition. Here we study a planar shear flow, called Waleffe flow, devoid of walls yet showing the fundamentals of planar transition to turbulence. Working with a quasi-2D yet Navier-Stokes derived model of this flow we are able to attack the (2 + 1) D transition problem. Going beyond the system sizes previously possible we find all of the required scalings of directed percolation and thus establish planar shears flow in this class.

  16. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  17. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse.

  18. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  19. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  20. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  1. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  2. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  3. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  4. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  5. Doppler Ultrasound: What Is It Used for?

    MedlinePlus

    ... in your neck (carotid artery stenosis) A Doppler ultrasound can estimate how fast blood flows by measuring the rate of change in its pitch (frequency). During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses ...

  6. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen M.; Hamilton, Douglas R.; Sargsyan, Ashot E.; Ebert, Douglas; Martin, David S.; Barratt, Michael R.; Martin, David S.; Bogomolov, Valery V.; Dulchavsky, Scott A.; Duncan, J. Michael

    2010-01-01

    The presentation slides review normal physiology of the right ventricle in space, general physiology of the right ventricle; difficulties in imaging the heart in space, imaging methods, tissue Doppler spectrum, right ventricle tissue Doppler, and Rt Tei Index.

  7. Color transparency

    SciTech Connect

    Jennings, B.K.; Miller, G.A.

    1993-11-01

    The anomously large transmission of nucleons through a nucleus following a hard collision is explored. This effect, known as color transparency, is believed to be a prediction of QCD. The necessary conditions for its occurrence and the effects that must be included a realistic calculation are discussed.

  8. Color Sense

    ERIC Educational Resources Information Center

    Johnson, Heidi S. S.; Maki, Jennifer A.

    2009-01-01

    This article reports a study conducted by members of the WellU Academic Integration Subcommittee of The College of St. Scholastica's College's Healthy Campus Initiative plan whose purpose was to determine whether changing color in the classroom could have a measurable effect on students. One simple improvement a school can make in a classroom is…

  9. Persistence Measures for 2d Soap Froth

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ruskin, H. J.; Zhu, B.

    Soap froths as typical disordered cellular structures, exhibiting spatial and temporal evolution, have been studied through their distributions and topological properties. Recently, persistence measures, which permit representation of the froth as a two-phase system, have been introduced to study froth dynamics at different length scales. Several aspects of the dynamics may be considered and cluster persistence has been observed through froth experiment. Using a direct simulation method, we have investigated persistent properties in 2D froth both by monitoring the persistence of survivor cells, a topologically independent measure, and in terms of cluster persistence. It appears that the area fraction behavior for both survivor and cluster persistence is similar for Voronoi froth and uniform froth (with defects). Survivor and cluster persistent fractions are also similar for a uniform froth, particularly when geometries are constrained, but differences observed for the Voronoi case appear to be attributable to the strong topological dependency inherent in cluster persistence. Survivor persistence, on the other hand, depends on the number rather than size and position of remaining bubbles and does not exhibit the characteristic decay to zero.

  10. SEM signal emulation for 2D patterns

    NASA Astrophysics Data System (ADS)

    Sukhov, Evgenii; Muelders, Thomas; Klostermann, Ulrich; Gao, Weimin; Braylovska, Mariya

    2016-03-01

    The application of accurate and predictive physical resist simulation is seen as one important use model for fast and efficient exploration of new patterning technology options, especially if fully qualified OPC models are not yet available at an early pre-production stage. The methodology of using a top-down CD-SEM metrology to extract the 3D resist profile information, such as the critical dimension (CD) at various resist heights, has to be associated with a series of presumptions which may introduce such small, but systematic CD errors. Ideally, the metrology effects should be carefully minimized during measurement process, or if possible be taken into account through proper metrology modeling. In this paper we discuss the application of a fast SEM signal emulation describing the SEM image formation. The algorithm is applied to simulated resist 3D profiles and produces emulated SEM image results for 1D and 2D patterns. It allows estimating resist simulation quality by comparing CDs which were extracted from the emulated and from the measured SEM images. Moreover, SEM emulation is applied for resist model calibration to capture subtle error signatures through dose and defocus. Finally, it should be noted that our SEM emulation methodology is based on the approximation of physical phenomena which are taking place in real SEM image formation. This approximation allows achieving better speed performance compared to a fully physical model.

  11. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  12. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  13. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  14. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  15. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  16. Doppler shifts in a tornado in the solar corona

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Mein, P.; Mein, N.; Levens, P. J.; Labrosse, N.; Ofman, L.

    2017-01-01

    Context. High resolution movies in 193 Å from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamic Observatory (SDO) show apparent rotation in the leg of a prominence observed during a coordinated campaign. Such structures are commonly referred to as tornadoes. Time-distance intensity diagrams of the AIA data show the existence of oscillations suggesting that the structure is rotating. Aims: The aim of this paper is to understand if the cool plasma at chromospheric temperatures inside the tornado is rotating around its central axis. Methods: The tornado was also observed in Hα with a cadence of 30 s by the MSDP spectrograph, operating at the Solar Tower in Meudon. The MSDP provides sequences of simultaneous spectra in a 2D field of view from which a cube of Doppler velocity maps is retrieved. Results: The Hα Doppler maps show a pattern with alternatively blueshifted and redshifted areas of 5 to 10'' wide. Over time the blueshifted areas become redshifted and vice versa, with a quasi-periodicity of 40 to 60 min. Weaker amplitude oscillations with periods of 4 to 6 min are superimposed onto these large period oscillations. Conclusions: The Doppler pattern observed in Hα cannot be interpreted as rotation of the cool plasma inside the tornado. The Hα velocity observations give strong constraints on the possible interpretations of the AIA tornado.

  17. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  18. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  19. Doppler Imaging of EI Eridani

    NASA Astrophysics Data System (ADS)

    Washuettl, Albert; Strassmeier, Klaus G.; Collier-Cameron, Andrew

    We present Doppler images of the rapidly rotating active close binary star EI Eridani. Several Doppler images have been produced since 1984 making use of different versions of the Doppler imaging technique. They all show high-latitude spots surrounding or covering the rotational pole as well as some smaller spots on lower latitudes. The high-latitude/polar spot seems to be long-lived (at least a decade) but changes its shape on comparatively short timescales (of the order of one month). From time to time spots along the stellar equator also occur, but their lifetimes tend to be relatively short (weeks). Furthermore, long-term photometric observations revealed the existence of a magnetic cycle which has been estimated to be around 11 years. We also present time-resolved Doppler images from EI Eri obtained at McMath/NSO in fall 1996 during 70 consecutive nights. The final aim of this program is to investigate the spot evolution over the whole activity cycle.

  20. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  1. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  2. Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.

    2001-05-01

    The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.

  3. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  4. Lighten the Olympia of the Flatland: Probing and Manipulating the Photonic Properties of 2D Transition-Metal Dichalcogenides.

    PubMed

    Zhou, Kai-Ge; Zhang, Hao-Li

    2015-07-15

    Following the adventures of graphene, 2D transition metal dichalcogenides (TMDs) have recently seized part of the territory in the flatland. Branched by different components of metals and chalcogenides, the families of 2D TMDs have grown rapidly, in which the semiconductive ones have shown colorful photonic properties. By tuning the atomic components and reducing the thickness or planar size of the layers, one can manipulate the optical performance of 2D TMDs, e.g., the intensity, angular momentum, and frequency of the emitted light, or toward ultrafast nonlinear absorption. As a powerful optical method, the Raman characteristics of 2D TMDs have been successfully used to explore their lattices and electronic structures. Along with the maturing of 2D TMDs, their hybrids play an important role. The unique photonic properties of 2D van der Waals heterostructures and 2D alloys are introduced here. Apart from the group VI TMDs, future prospects are identified to harness the optical properties of other 2D TMDs and the related investigations of their hybrids are underway.

  5. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1989-03-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  6. MAGNUM2D. Radionuclide Transport Porous Media

    SciTech Connect

    Langford, D.W.; Baca, R.G.

    1988-08-01

    MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.

  7. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  8. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  9. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  10. Structural color mechanism in the Papilio blumei butterfly.

    PubMed

    Lo, Mei-Ling; Lee, Cheng-Chung

    2014-02-01

    The structural color found in biological systems has complicated nanostructure. It is very important to determine its color mechanism. In this study, the 2D photonic crystal structures of the Papilio blumei butterfly were constructed, and the corresponding reflectance spectra were simulated by the finite-difference time-domain method. The structural color of the butterfly depends on the incident angle of light, film thickness, film material (film refractive index), and the size of the air hole (effective refractive index). Analysis of simulations can help us understand the hue, brightness, and saturation of structural color on the butterfly wing. As a result, the analysis can help us fabricate expected structural color.

  11. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies.

  12. High-performance digital color video camera

    NASA Astrophysics Data System (ADS)

    Parulski, Kenneth A.; D'Luna, Lionel J.; Benamati, Brian L.; Shelley, Paul R.

    1992-01-01

    Typical one-chip color cameras use analog video processing circuits. An improved digital camera architecture has been developed using a dual-slope A/D conversion technique and two full-custom CMOS digital video processing integrated circuits, the color filter array (CFA) processor and the RGB postprocessor. The system used a 768 X 484 active element interline transfer CCD with a new field-staggered 3G color filter pattern and a lenslet overlay, which doubles the sensitivity of the camera. The industrial-quality digital camera design offers improved image quality, reliability, manufacturability, while meeting aggressive size, power, and cost constraints. The CFA processor digital VLSI chip includes color filter interpolation processing, an optical black clamp, defect correction, white balance, and gain control. The RGB postprocessor digital integrated circuit includes a color correction matrix, gamma correction, 2D edge enhancement, and circuits to control the black balance, lens aperture, and focus.

  13. Introduction To Color Vision

    NASA Astrophysics Data System (ADS)

    Thorell, Lisa G.

    1983-08-01

    Several human cognitive studies have reported that color facilitates certain learning, memory and search tasks. Consideration of the color-opponent organization of human color vision and the spatial modulation transfer function for color suggests several simple sensory explanations.

  14. Development of quantitative Doppler indices for uteroplacental and fetal blood flow during the third trimester.

    PubMed

    Joern, H; Funk, A; Goetz, M; Kuehlwein, H; Klein, A; Fendel, H

    1996-01-01

    The aim of our study was to describe the development of uteroplacental and fetal blood flow during the third trimester. Doppler examination was carried out on 393 uncomplicated pregnancies with uncomplicated term delivery. Using a pulsed color Doppler, we calculated the maximum systolic, mean and maximum end-diastolic velocity after correcting the angle of insonation. Patients under tocolysis or other medication influencing blood flow parameters were excluded from this cross-sectional study. Summarizing the results gained by Doppler ultrasound investigation of the uteroplacental and fetal blood vessels, we created quantiles as quantitative Doppler indices for the maximum systolic, mean (TAMX = time averaged maximum velocity) and maximum end-diastolic velocity. The following conclusions could be drawn: (1) resistance to the blood flow in the maternal portion of the placenta does not change during the third trimester; (2) resistance to the blood flow on the fetal side of the placenta decreases up to week 42 of gestation; (3) cerebral vascular resistance decreases constantly up to gestational week 42; and (4) vascular resistance to the blood flow of the kidney decreases only slightly during the third trimester. This study offers clinically important values for quantitative Doppler flow velocimetry for the first time. We hope that our findings improve the usefulness of Doppler ultrasound as a diagnostic tool in obstetrical management.

  15. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.

    2016-03-01

    A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the

  16. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  17. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  18. Sample-Based Surface Coloring

    PubMed Central

    Bürger, Kai; Krüger, Jens; Westermann, Rüdiger

    2011-01-01

    In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392

  19. Velocity magnitude estimation with linear arrays using Doppler bandwidth.

    PubMed

    Tortoli, P; Guidi, G; Mantovani, L; Newhouse, V L

    2001-04-01

    The dependence of pulsed wave Doppler bandwidth on parameters typical of linear transducer arrays used in commercial Duplex and color flow mapping systems is investigated experimentally. For a single flow line it is observed that this bandwidth generally depends not only on the scatterer velocity and the beam-to-flow angle, but also on the flow line range and orientation. This is due to the fact that in Duplex and color flow systems the transducer is differently focused in the scan and elevation planes and its aperture and focal lengths are often made to vary, depending on the distance of the flow line from the transducer. It is however experimentally demonstrated that, at points where the ultrasound beamwidths in the scan and elevation planes are both comparable to the sample volume length, the Doppler bandwidth is independent of the beam-to-flow angle. It is also shown that this invariance can be extended to other ranges by appropriately modifying the array aperture. Finally, as an application of this independence, the flow-line velocity magnitude in these beam regions is estimated with better than 5% uncertainty through a simple bandwidth measurement.

  20. Facial expression recognition in perceptual color space.

    PubMed

    Lajevardi, Seyed Mehdi; Wu, Hong Ren

    2012-08-01

    This paper introduces a tensor perceptual color framework (TPCF) for facial expression recognition (FER), which is based on information contained in color facial images. The TPCF enables multi-linear image analysis in different color spaces and demonstrates that color components provide additional information for robust FER. Using this framework, the components (in either RGB, YCbCr, CIELab or CIELuv space) of color images are unfolded to two-dimensional (2- D) tensors based on multi-linear algebra and tensor concepts, from which the features are extracted by Log-Gabor filters. The mutual information quotient (MIQ) method is employed for feature selection. These features are classified using a multi-class linear discriminant analysis (LDA) classifier. The effectiveness of color information on FER using low-resolution and facial expression images with illumination variations is assessed for performance evaluation. Experimental results demonstrate that color information has significant potential to improve emotion recognition performance due to the complementary characteristics of image textures. Furthermore, the perceptual color spaces (CIELab and CIELuv) are better overall for facial expression recognition than other color spaces by providing more efficient and robust performance for facial expression recognition using facial images with illumination variation.

  1. Doppler ultrasound in the measurement of pulse wave velocity: agreement with the Complior method

    PubMed Central

    2011-01-01

    Aortic stiffness is an independent predictor factor for cardiovascular risk. Different methods for determining pulse wave velocity (PWV) are used, among which the most common are mechanical methods such as SphygmoCor or Complior, which require specific devices and are limited by technical difficulty in obtaining measurements. Doppler guided by 2D ultrasound is a good alternative to these methods. We studied 40 patients (29 male, aged 21 to 82 years) comparing the Complior method with Doppler. Agreement of both devices was high (R = 0.91, 0.84-0.95, 95% CI). The reproducibility analysis revealed no intra-nor interobserver differences. Based on these results, we conclude that Doppler ultrasound is a reliable and reproducible alternative to other established methods for the measurement of aortic PWV. PMID:21496271

  2. [The usefulness of range-gated pulsed Doppler echocardiography. A review (author's transl)].

    PubMed

    Lange, L; Allen, H D; Goldberg, S J; Sahn, D J

    1979-03-01

    Single-crystal RGPD Echocardiography has clearly become a useful noninvasive ultrasonic method which enlarges the capabilities of investigating the heart. Recording of flow direction and showing disturbed flow allows additional clarification and confirmation of various diagnoses. This single-crystal technique does not allow flow quantification at the present time. The TIH and auditory signal displays of Doppler shift as presently utilized in commercial devices allow qualitative observation but require much experience in test performance and evaluation. The future here is probably in the area of spectral analysis. Present instrumentation employs M-mode echo for Doppler sample localization. Drawbacks include inprecise sample beam localization and non-variable sample volume size. Further, standardization of the Doppler signal is necessary. Combination with 2-D echo in the future will allow more precise sample beam localization and accuracy in flow quantification. The latter area has particular promise and is under investigation but is not yet commercially available.

  3. Volumetric display containing multiple two-dimensional color motion pictures

    NASA Astrophysics Data System (ADS)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  4. Ultrasound imaging for the rheumatologist. XVII. Role of colour Doppler and power Doppler.

    PubMed

    Iagnocco, A; Epis, O; Delle Sedie, A; Meenagh, G; Filippucci, E; Riente, L; Scirè, C A; Montecucco, C; Bombardieri, S; Grassi, W; Valesini, G

    2008-01-01

    The use of Doppler ultrasound in rheumatology has grown in recent years. This is partly due to the increasing number of rheumatologists who perform US in their daily clinical practise and also to the technological advances of US systems. Both colour Doppler and power Doppler are used to evaluate the degree of intra- and peri-articular soft tissue inflammation. Moreover, Doppler US has been found to be of help in the assessment of vascular pathologies such as the vasculitides. In this review we provide an update of the data regarding the use of colour Doppler and power Doppler in rheumatology.

  5. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  6. Nanohole-array-based device for 2D snapshot multispectral imaging.

    PubMed

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J L

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems.

  7. Interactive Boundary Detection for Automatic Definition of 2D Opacity Transfer Function

    NASA Astrophysics Data System (ADS)

    Rauberger, Martin; Overhoff, Heinrich Martin

    In computer assisted diagnostics nowadays, high-value 3-D visualization intake a supporting role to the traditional 2-D slice wise visualization. 3-D visualization may create intuitive visual appearances of the spatial relations of anatomical structures, based upon transfer functions mapping data values to visual parameters, e.g. color or opacity. Manual definition of these transfer functions however requires expert knowledge and can be tedious. In this paper an approach to automatizing 2-D opacity transfer function definition is presented. Upon few parameters characterizing the image volume and an user-depicted area of interest, the procedure detects organ surfaces automatically, upon which transfer functions may automatically be defined. Parameter setting still requires experience about the imaging properties of modalities, and improper setting can cause falsely detected organ surfaces. Procedure tests with CT and MRI image volumes show, that real time structure detection is even possible for noisy image volumes.

  8. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  9. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  10. Do focal colors look particularly "colorful"?

    PubMed

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  11. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics.

    PubMed

    Potter, Brittney M J; Xie, Lisa H; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T; Bandara Herath, H M T; Dhammika Nanayakkara, N P; Tekwani, Babu L; Walker, Larry A; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Marcsisin, Sean R

    2015-04-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.

  12. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  13. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.

    PubMed

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L

    2013-03-10

    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (<50 m/s) Doppler wind fields in the lab. Procedures and techniques have been developed that allow Doppler wind and irradiance measurements to be determined on a bin by bin basis with an accuracy of less than 2.5 m/s from CCD images over the observed field of view. The interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  14. Observing crosswind over urban terrain using scintillometer and Doppler lidar

    NASA Astrophysics Data System (ADS)

    van Dinther, D.; Wood, C. R.; Hartogensis, O. K.; Nordbo, A.; O'Connor, E. J.

    2015-04-01

    In this study, the crosswind (wind component perpendicular to a path, U⊥) is measured by a scintillometer and estimated with Doppler lidar above the urban environment of Helsinki, Finland, for 15 days. The scintillometer allows acquisition of a path-averaged value of U⊥ (color: #000;">U⊥), while the lidar allows acquisition of path-resolved U⊥ (U⊥ (x), where x is the position along the path). The goal of this study is to evaluate the performance of scintillometer color: #000;">U⊥ estimates for conditions under which U⊥ (x) is variable. Two methods are applied to estimate color: #000;">U⊥ from the scintillometer signal: the cumulative-spectrum method (relies on scintillation spectra) and the look-up-table method (relies on time-lagged correlation functions). The values of color: #000;">U⊥ of both methods compare well with the lidar estimates, with root-mean-square deviations of 0.71 and 0.73 m s-1. This indicates that, given the data treatment applied in this study, both measurement technologies are able to obtain estimates of color: #000;">U⊥ in the complex urban environment. The detailed investigation of four cases indicates that the cumulative-spectrum method is less susceptible to a variable U⊥ (x) than the look-up-table method. However, the look-up-table method can be adjusted to improve its capabilities for estimating color: #000;">U⊥ under conditions under for which U⊥ (x) is variable.

  15. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  16. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  17. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  18. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-07

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs.

  19. Performance Of A Doppler-Corrected MDPSK Detector

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Jedrey, Thomas C.; Hinedi, Sami; Agan, Martin J.

    1994-01-01

    Report presents theoretical analysis of effect of rate of change of Doppler shift of received multiple-differential-phase-shift-keyed (MDPSK) radio signal on performance of Doppler-corrected differential detector. In particular detector, phase of received signal corrected for Doppler shift by use of Doppler estimator designed to operate in presence of negligibly small Doppler rate.

  20. Concepts and trade-offs in velocity estimation with plane-wave contrast-enhanced Doppler.

    PubMed

    Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul; Milot, Laurent; Bruce, Matthew; Burns, Peter

    2016-07-29

    While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced Doppler to mitigate microbubble destruction. This introduces inherent trade-offs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal, accounting for transit time, the echo frequency uncertainty and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles, and compensate the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2D autocorrelator, Radon projection) are better suited than simpler narrowband estimators (1D autocorrelator, 1D Fourier transform) for contrast-enhanced flow assessment. A case study of perfusion in a VX-2 carcinoma using contrast-enhanced planewave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the an axial velocity is achievable with planewave imaging.

  1. Concepts and Tradeoffs in Velocity Estimation With Plane-Wave Contrast-Enhanced Doppler.

    PubMed

    Tremblay-Darveau, Charles; Williams, Ross; Sheeran, Paul S; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2016-11-01

    While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced (CE) Doppler to mitigate microbubble destruction. This introduces inherent tradeoffs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal accounting for transit time, the echo frequency uncertainty, and contrast-agent destruction is derived and validated in vitro. It is further demonstrated that a local measurement of the center frequency of the microbubble echo is essential in order to avoid significant bias in velocity estimates arising from the linear and nonlinear frequency-dependent scattering of microbubbles and compensate for the inherent speckle nature of the received echo frequency. For these reasons, broadband Doppler estimators (2-D autocorrelator and Radon projection) are better suited than simpler narrow-band estimators (1-D autocorrelator and 1-D Fourier transform) for CE flow assessment. A case study of perfusion in a VX-2 carcinoma using CE plane-wave Doppler is also shown. We demonstrate that even when considering all uncertainties associated with microbubble-related decorrelation (destruction, pulse bandwidth, transit time, and flow gradient) and the need for real-time imaging, a coefficient of variation of 4% on the axial velocity is achievable with plane-wave imaging.

  2. Equations for Bistatic Doppler Shift and Rate of Change of Doppler Shift of Dark Satellite Observations

    DTIC Science & Technology

    Equations are given for the doppler shift and rate of change of doppler shift for the bistatic case where an orbiting, nontransmitting earth... of change of doppler shift, satellite height, earth-center angle between the receiver and the satellite, and zenith angle from receiver to satellite are shown for a typical satellite, 1958 Alpha, Explorer I....have been computed, using transmitting and receiving sites of the Space Surveillance System. Plots of various relationships between doppler shift, rate

  3. Displacement Vector Measurement Using 2D Modulation by Virtual Hyperbolic Beam Forming

    NASA Astrophysics Data System (ADS)

    Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    For the purpose of diagnosing ischemic heart disease by detection of malfunction area and cancer tumor by detection of hard area, 3-D tissue motion must be correctly evaluated. So far various methods of measuring multidimensional displacement have been developed. Most of present techniques are restricted to one-dimensional measurement of tissue displacement such as myocardial stain-rate imaging. Although lateral modulation method enables us to attain high-accuracy measurement of lateral displacement as well as axial direction by generating lateral oscillating RF signals, the method causes distorted RF far from center of aperture. As a result, the method is not suited to sector scan which is used for myocardial examination. We propose a method to solve the problem by using 2-D modulation with the virtual hyperbolic beam forming and detection of 2-D displacement vector. The feasibilities of the proposed method were evaluated by numerically simulating the left ventricle short-axis imaging of cylindrical myocardial model. The volume strain image obtained by the proposed method clearly depicted the hard infarction area where conventional multi-beam Doppler imaging could not.

  4. In-vivo characterization of 2D residence time maps in the left ventricle

    NASA Astrophysics Data System (ADS)

    Rossini, Lorenzo; Martinez-Legazpi, Pablo; Bermejo, Javier; Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Perez Del Villar, Candelas; Gonzalez-Mansilla, Ana; Barrio, Alicia; Fernandez-Aviles, Francisco; Shadden, Shawn; Del Alamo, Juan Carlos

    2014-11-01

    Thrombus formation is a multifactorial process involving biology and hemodynamics. Blood stagnation and wall shear stress are linked to thrombus formation. The quantification of residence time of blood in the left ventricle (LV) is relevant for patients affected by ventricular contractility dysfunction. We use a continuum formulation to compute 2D blood residence time (TR) maps in the LV using in-vivo 2D velocity fields in the apical long axis plane obtained from Doppler-echocardiography images of healthy and dilated hearts. The TR maps are generated integrating in time an advection-diffusion equation of a passive scalar with a time-source term. This equation represents the Eulerian translation of DTR / D t = 1 and is solved numerically with a finite volume method on a Cartesian grid using an immersed boundary for the LV wall. Changing the source term and the boundary conditions allows us to track blood transport (direct and retained flow) in the LV and the topology of early (E) and atrial (A) filling waves. This method has been validated against a Lagrangian Coherent Structures analysis, is computationally inexpensive and observer independent, making it a potential diagnostic tool in clinical settings.

  5. Circular photogalvanic effect caused by the transitions between edge and 2D states in a 2D topological insulator

    NASA Astrophysics Data System (ADS)

    Magarill, L. I.; Entin, M. V.

    2016-12-01

    The electron absorption and the edge photocurrent of a 2D topological insulator are studied for transitions between edge states to 2D states. The circular polarized light is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation. It is shown that the edge-state current is found to exceed the 2D current owing to the topological protection of the edge states.

  6. Color Relationalism and Relativism.

    PubMed

    Byrne, Alex; Hilbert, David R

    2017-01-01

    This paper critically examines color relationalism and color relativism, two theories of color that are allegedly supported by variation in normal human color vision. We mostly discuss color relationalism, defended at length in Jonathan Cohen's The Red and the Real, and argue that the theory has insuperable problems.

  7. Primary Theme Club. Colors.

    ERIC Educational Resources Information Center

    Walmsley, Bonnie Brown; Camp, Anne-Marie

    1997-01-01

    Presents a cross-curricular theme unit on colors that includes a pullout poster and a resource list. Social studies activities highlight flags of the world. Science activities teach about colors of animals and the science of color. Language arts activities describe colorful language. Mathematics activities involve sorting and graphing colors. (SM)

  8. Activities: Some Colorful Mathematics.

    ERIC Educational Resources Information Center

    DeTemple, Duane W.; Walker, Dean A.

    1996-01-01

    Describes three activities in discrete mathematics that involve coloring geometric objects: counting colored regions of overlapping simple closed curves, counting colored triangulations of polygons, and determining the number of colors required to paint the plane so that no two points one inch apart are the same color. (MKR)

  9. Assessment of left ventricular regional wall motion by color kinesis technique: comparison with angiographic findings.

    PubMed

    Vermes, E; Guyon, P; Weingrod, M; Otmani, A; Soussana, C; Halphen, C; Leroy, G; Haïat, R

    2000-08-01

    The analysis of segmental wall motion using two-dimensional (2-D) echocardiography is subjective with high interobserver variability. Color kinesis is a new technique providing a color-encoded map of endocardial motion. We evaluated the accuracy of color kinesis and 2-D for assessment of regional asynergy compared with left ventricular angiography as a reference method. Fifteen patients admitted for myocardial infarction were studied by echocardiography the day before left ventricular angiography. The left ventricle was divided into seven segments. Each segment was classified by two independent observers as normal or abnormal in 2-D and color kinesis. Accuracy of color kinesis and 2-D was evaluated and compared to left ventricular angiography. Color kinesis is significantly superior to 2-D for all seven segments (mean 0.80/0.68, P = 0.05), except for the septum (0.67/0.60, P = NS). Interobserver variability studied by chi-square statistic is lower with color kinesis (0.70) than with 2-D (0.57). We conclude that these data suggest that color kinesis is a useful method for assessing systolic wall motion in all segments, except the septum and for improving the accuracy of segmental ventricular function and interobserver variability.

  10. Energy Efficiency of D2D Multi-User Cooperation.

    PubMed

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  11. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  12. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  13. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  14. Normal Doppler velocimetry of renal vasculature in Persian cats.

    PubMed

    Carvalho, Cibele F; Chammas, Maria C

    2011-06-01

    Renal diseases are common in older cats. Decreased renal blood flow may be the first sign of dysfunction and can be evaluated by Doppler ultrasound. But previous studies suggest that the resistive index (RI) has a low sensitivity for detecting renal disease. Doppler waveforms of renal and intrarenal arteries demonstrate decreased blood flow before there are any changes in the RI. The purpose of this study was to evaluate the normal Doppler flowmetrics parameters of renal arteries (RAs), interlobar arteries (IAs) and abdominal aorta (AO) in adult healthy, Persian cats. Twenty-five Persian cats (13 females and 12 males with mean age of 30 months and an age range 12-60 months) with normal clinical examinations and biochemical tests and normal systemic blood pressure were given B-mode ultrasonographies in order to exclude all nephropathies, including polycystic kidney disease. All measurements were performed on both kidneys. Both kidneys (n=50) were examined by color mapping of the renal vasculature. Pulsed Doppler was used to examine both RAs, the IAs at cranial, middle and caudal sites, and the AO. The RI was calculated for all of the vessels. Early systolic acceleration (ESA) of RA and IA was obtained with Doppler spectral analysis. Furthermore, the ratio indices between RA/AO, and IA/RA velocities were calculated. The mean values of peak systolic velocity (PSV) and the diameter for AO were 53.17±13.46 cm/s and 0.38±0.08 cm, respectively. The mean RA diameter for all 50 kidneys was 0.15±0.02 cm. Considering the velocimetric values in both RAs, the mean PSV and RI that were obtained were 41.17±9.40 cm/s and 0.54±0.07. The RA had a mean ESA of 1.12±1.14 m/s(2) and the calculated upper limit of the reference value was 3.40 m/s(2). The mean renal-aortic ratio was 0.828±0.296. The IA showed PSV and RI values of 32.16±9.33 cm/s and 0.52±0.06, respectively. The mean ESA of all IAs was 0.73±0.61 m/s(2). The calculated upper limit of the reference value was 2.0m

  15. 2-D steering and propelling of acoustic bubble-powered microswimmers.

    PubMed

    Feng, Jian; Yuan, Junqi; Cho, Sung Kwon

    2016-06-21

    This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows that are generated when the trapped bubble is oscillated by an external acoustic wave. The bubble oscillation and thus propelling force are highly dependent on the frequency of the acoustic wave and the bubble length. This dependence is experimentally studied by measuring the resonance behaviors of the testing pool and bubble using a laser Doppler vibrometer (LDV) and by evaluating the generated streaming flows. The key idea in the present 2-D steering is to utilize this dependence. Multiple bubbles with different lengths are mounted on a single microswimmer with a variety of arrangements. By controlling the frequency of the acoustic wave, only frequency-matched bubbles can strongly oscillate and generate strong propulsion. By arranging multiple bubbles of different lengths in parallel but with their openings opposite and switching the frequency of the acoustic wave, bi-directionally linear propelling motions are successfully achieved. The propelling forces are calculated by a CFD analysis using the Ansys Fluent® package. For bi-directional rotations, a similar method but with diagonal arrangement of bubbles on a rectangular swimmer is also applied. The rotation can be easily reversed when the frequency of the acoustic wave is switched. For 2-D steering, short bubbles are aligned perpendicular to long bubbles. It is successfully demonstrated that the microswimmer navigates through a T-junction channel under full control with and without carrying a payload. During the navigation, the frequency is the main control input to select and resonate targeted bubbles. All of these operations are achieved by a single

  16. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  17. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  18. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  19. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice.

    PubMed

    Pan, Xian; Jeong, Hyunyoung

    2015-07-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼ 50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter.

  20. Color vision and color formation in dragonflies.

    PubMed

    Futahashi, Ryo

    2016-10-01

    Dragonflies including damselflies are colorful and large-eyed insects, which show remarkable sexual dimorphism, color transition, and color polymorphism. Recent comprehensive visual transcriptomics has unveiled an extraordinary diversity of opsin genes within the lineage of dragonflies. These opsin genes are differentially expressed between aquatic larvae and terrestrial adults, as well as between dorsal and ventral regions of adult compound eyes. Recent topics of color formation in dragonflies are also outlined. Non-iridescent blue color is caused by coherent light scattering from the quasiordered nanostructures, whereas iridescent color is produced by multilayer structures. Wrinkles or wax crystals sometimes enhances multilayer structural colors. Sex-specific and stage-specific color differences in red dragonflies is attributed to redox states of ommochrome pigments.

  1. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  2. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  3. LED Color Characteristics

    SciTech Connect

    2012-01-01

    Color quality is an important consideration when evaluating LED-based products for general illumination. This fact sheet reviews the basics regarding light and color and summarizes the most important color issues related to white-light LED systems.

  4. Color Blindness Simulations

    MedlinePlus

    ... Coordinator Color blindness Simulations Normal Color Vision Deuteranopia Color blindness marked by confusion of purplish red and green Tritanopia A dichromatism in which the spectrum is seen in tones of red and green. ...

  5. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps

    PubMed Central

    Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun

    2015-01-01

    In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video. PMID:26131674

  6. Augmented depth perception visualization in 2D/3D image fusion.

    PubMed

    Wang, Jian; Kreiser, Matthias; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal

    2014-12-01

    2D/3D image fusion applications are widely used in endovascular interventions. Complaints from interventionists about existing state-of-art visualization software are usually related to the strong compromise between 2D and 3D visibility or the lack of depth perception. In this paper, we investigate several concepts enabling improvement of current image fusion visualization found in the operating room. First, a contour enhanced visualization is used to circumvent hidden information in the X-ray image. Second, an occlusion and depth color-coding scheme is considered to improve depth perception. To validate our visualization technique both phantom and clinical data are considered. An evaluation is performed in the form of a questionnaire which included 24 participants: ten clinicians and fourteen non-clinicians. Results indicate that the occlusion correction method provides 100% correctness when determining the true position of an aneurysm in X-ray. Further, when integrating an RGB or RB color-depth encoding in the image fusion both perception and intuitiveness are improved.

  7. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  8. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-04

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  9. Observation of the Zero Doppler Effect.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-05

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  10. Development of the doppler electron velocimeter: theory.

    SciTech Connect

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  11. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  12. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  13. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  14. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  15. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    PubMed

    Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko

    2013-12-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  16. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    PubMed

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.

  17. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  18. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  19. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  20. Six-color solid state illuminator for cinema projector

    NASA Astrophysics Data System (ADS)

    Huang, Junejei; Wang, Yuchang

    2014-09-01

    Light source for cinema projector requires reliability, high brightness, good color and 3D for without silver screens. To meet these requirements, a laser-phosphor based solid state illuminator with 6 primary colors is proposed. The six primary colors are divided into two groups and include colors of R1, R2, G1, G2, B1 and B2. Colors of B1, B2 and R2 come from lasers of wavelengths 440 nm, 465 nm and 639 nm. Color of G1 comes from G-phosphor pumped by B2 laser. Colors of G2 and R1 come from Y-phosphor pumped by B1 laser. Two groups of colors are combined by a multiband filter and working by alternately switching B1 and B2 lasers. The combined two sequences of three colors are sent to the 3-chip cinema projector and synchronized with frame rate of 120Hz. In 2D mode, the resulting 6 primary colors provide a very wide color gamut. In 3D mode, two groups of red, green and blue primary colors provide two groups of images that received by left and right eyes.

  1. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  2. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  3. Diffractive parameric colors.

    PubMed

    Orava, Joni; Heikkila, Noora; Jaaskelainen, Timo; Parkkinen, Jussi

    2008-12-01

    A method of producing inkless parameric color pairs is studied. In this method, colors are formed additively using diffraction gratings with differing grating periods as primary colors. Gratings with different grating periods reflect different spectral radiance peaks of a fluorescent lamp to the desired viewing angle, according to the grating equation. Four spectral peaks of a 4000 K fluorescent lamp--red, green, cyan, and blue-are used as the primary colors. The colors are mixed additively by fixing the relative areas of different grating periods inside a pixel. With four primary colors it is possible to mix certain colors with different triplets of primary colors. Thus, it is theoretically possible to produce metameric colors. In this study, three parameric color pairs are fabricated using electron beam lithography, electroplating, and hot embossing. The radiance spectra of the color pairs are measured by spectroradiometer from hot-embossed plastic samples. The CIELAB DeltaE(ab) and CIEDE2000 color differences between radiance spectra of the color pairs are calculated. The CIEDE2000 color differences of color pairs are between 2.6 and 7.2 units in reference viewing conditions. The effects of viewing angle and different light sources are also evaluated. It is found that both the viewing angle and the light source have very strong influences on the color differences of the color pairs.

  4. Laser Doppler dust devil measurements

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.; Jeffreys, H. B.; Kaufman, J. W.; Weaver, E. A.

    1977-01-01

    A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors.

  5. Uniform color space based on color matching

    NASA Astrophysics Data System (ADS)

    Liao, Shih-Fang; Yang, Tsung-Hsun; Lee, Cheng-Chung

    2007-09-01

    This research intends to explore with a uniform color space based on the CIE 1931 x-y chromatic coordinate system. The goal is to improve the non-uniformity of the CIE 1931 x-y chromaticity diagram such as to approach the human color sensation as possible; however, its simple methodology still can be kept. In spite of the existence of various kinds of the uniform color coordinate systems built up early (CIE u'-v', CIE Lab, CIE LUV, etc.), the establishment of a genuine uniform color space is actually still an important work both for the basic research in color science and the practical applications of colorimetry, especially for recent growing request in illumination engineering and in display technology. In this study, the MacAdam ellipses and the Munsell color chips are utilized for the comparison with the human color sensation. One specific linear transformation matrix is found for the CIE 1931 color matching functions (see manuscript) to become the novel uniform ones. With the aid of the optimization method, the transformation matrix can be easily discovered and makes the 25 MacAdam ellipses are similar to each other in the novel uniform color space. On the other hand, the perfectiveness of the equal-hue curves and the equal-chroma contours from the Mnusell color chips evaluates for the best optimization conditions among several different definitions for the similarity of all the MacAdam ellipses. Finally, the color difference between any two colors can be simply measured by the Euclidean distance in the novel uniform color space and is still fitted to the human color sensation.

  6. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  7. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  8. Phonon thermal conduction in novel 2D materials

    NASA Astrophysics Data System (ADS)

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-01

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  9. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  10. Phonon thermal conduction in novel 2D materials.

    PubMed

    Xu, Xiangfan; Chen, Jie; Li, Baowen

    2016-12-07

    Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS2, black phosphorous and silicene.

  11. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  12. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  13. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  14. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-09

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  15. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  16. Studying Zeolite Catalysts with a 2D Model System

    SciTech Connect

    Boscoboinik, Anibal

    2016-12-07

    Anibal Boscoboinik, a materials scientist at Brookhaven’s Center for Functional Nanomaterials, discusses the surface-science tools and 2D model system he uses to study catalysis in nanoporous zeolites, which catalyze reactions in many industrial processes.

  17. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  18. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  19. RNA folding pathways and kinetics using 2D energy landscapes.

    PubMed

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  20. Supported and Free-Standing 2D Semimetals

    DTIC Science & Technology

    2015-01-15

    of this effort on focusing on rare- earth arsenides (RE-A), although not a van der Waals 2D solid, nonetheless, exhibits substantial 2D quantum size...this effort on focusing on rare- earth arsenides (RE- A), although not a van der Waals 20 solid, nonetheless, exhibits substantial 20 quantum size...Brongersma and S.R. Bank, "Rare- earth monopnictide alloys for tunable, epitaxial metals" in preparation. iii. S. Rahimi, E. M. Krivoy, J. Lee, M. E

  1. Application of 2-D graphical representation of DNA sequence

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Tan, Mingshu; Ding, Kequan

    2005-10-01

    Recently, we proposed a 2-D graphical representation of DNA sequence [Bo Liao, A 2-D graphical representation of DNA sequence, Chem. Phys. Lett. 401 (2005) 196-199]. Based on this representation, we consider properties of mutations and compute the similarities among 11 mitochondrial sequences belonging to different species. The elements of the similarity matrix are used to construct phylogenic tree. Unlike most existing phylogeny construction methods, the proposed method does not require multiple alignment.

  2. phase_space_cosmo_fisher: Fisher matrix 2D contours

    NASA Astrophysics Data System (ADS)

    Stark, Alejo

    2016-11-01

    phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

  3. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  4. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  5. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  6. Color identification testing device

    NASA Technical Reports Server (NTRS)

    Brawner, E. L.; Martin, R.; Pate, W.

    1970-01-01

    Testing device, which determines ability of a technician to identify color-coded electric wires, is superior to standard color blindness tests. It tests speed of wire selection, detects partial color blindness, allows rapid testing, and may be administered by a color blind person.

  7. Color Me Understood.

    ERIC Educational Resources Information Center

    Harris, Judy J.

    2000-01-01

    Describes the "color system" as a way of grouping children into different personality types based on a certain color: orange, blue, green, and gold. Lists stress producers for specific color people. Asserts that, through making groups of different colors, children begin to see the various specialties others can bring to the group and learn to…

  8. Digital Color Image Restoration

    DTIC Science & Technology

    1975-08-01

    color image recording system is derived and the equations representing the model and the equations of colorimetry are expressed in matrix form. Computer ... algorithms are derived which correct color errors introduced by imperfections in the color recording system. The sources of color error which are

  9. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG2D ligand gene expression a comparative sequence analysis of NKG2D ligand gene putative promoter regions was conducted. Sequence alignments demonstrated that there was significant sequence diversity; however, one region of high similarity between most of the genes is evident. This region contains a number of potential transcription factor binding sites, including those involved in shock responses and sites for retinoic acid-induced factors. Promoters of some NKG2D ligand genes are polymorphic and several sequence alterations in these alleles abolished putative transcription factor binding.

  10. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  11. 2D microscopic model of graphene fracture properties

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2015-05-01

    An analytical two-dimensional (2D) microscopic fracture model based on Morse-type interaction is derived containing no adjustable parameter. From the 2D Young’s moduli and 2D intrinsic strengths of graphene measured by nanoindentation based on biaxial tension and calculated by density functional theory for uniaxial tension the widely unknown breaking force, line or edge energy, surface energy, fracture toughness, and strain energy release rate were determined. The simulated line energy agrees well with ab initio calculations and the fracture toughness of perfect graphene sheets is in good agreement with molecular dynamics simulations and the fracture toughness evaluated for defective graphene using the Griffith relation. Similarly, the estimated critical strain energy release rate agrees well with result of various theoretical approaches based on the J-integral and surface energy. The 2D microscopic model, connecting 2D and three-dimensional mechanical properties in a consistent way, provides a versatile relationship to easily access all relevant fracture properties of pristine 2D solids.

  12. A Plenoptic Multi-Color Imaging Pyrometer

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Hutchins, William D.; Fahringer, Timothy; Thurow, Brian S.

    2017-01-01

    A three-color pyrometer has been developed based on plenoptic imaging technology. Three bandpass filters placed in front of a camera lens allow separate 2D images to be obtained on a single image sensor at three different and adjustable wavelengths selected by the user. Images were obtained of different black- or grey-bodies including a calibration furnace, a radiation heater, and a luminous sulfur match flame. The images obtained of the calibration furnace and radiation heater were processed to determine 2D temperature distributions. Calibration results in the furnace showed that the instrument can measure temperature with an accuracy and precision of 10 Kelvins between 1100 and 1350 K. Time-resolved 2D temperature measurements of the radiation heater are shown.

  13. Understanding quantification of microvascularity with high-frequency power Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Pinter, Stephen Z.; Lacefield, James C.

    2009-02-01

    High-frequency power Doppler imaging of angiogenesis can be challenging given the presence of small blood vessels and slow flow velocities. In the presence of substantial Doppler artifacts such as false-positive color pixels or undetected vessels, color pixel density (CPD) and related vascularity metrics do not provide accurate estimates of vascular volume fraction. As a step towards improved microvascular quantification, flow-phantom experiments were performed to establish relationships between CPD and wall filter cut-off velocity for various combinations of vessel size (160, 200, 250, 300, and 360 μm), flow velocity (4, 3, 2, 1, and 0.5 mm/s), and transducer frequency (30 and 40 MHz). Three distinct regions were observed in plots of CPD versus wall filter cut-off velocity: overestimation of CPD at low cut-offs, underestimation of CPD at high cut-offs, and a plateau at intermediate cut-offs. The CPD at the plateau closely matched the phantom's actual vascular volume fraction. The length of the plateau corresponded with the flow-detection performance of the Doppler system, which was assessed using receiver operating characteristic analysis. Color pixel density versus wall filter cut-off curves from analogous in vivo experiments exhibited the same shape, including a distinct CPD plateau. The similar shape of the flow-phantom and in vivo curves suggests that the presence of a plateau can be used to identify the best-estimate CPD value in an in vivo experiment. The ability to identify the best CPD estimate is expected to improve quantification of angiogenesis and anti-angiogenic treatment responses with power Doppler.

  14. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine.

    PubMed

    Khan, Aamar F; Brownson, Dale A C; Randviir, Edward P; Smith, Graham C; Banks, Craig E

    2016-10-04

    Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a

  15. Doppler backscatter properties of a blood-mimicking fluid for Doppler performance assessment.

    PubMed

    Ramnarine, K V; Hoskins, P R; Routh, H F; Davidson, F

    1999-01-01

    The Doppler backscatter properties of a blood-mimickig fluid (BMF) were studied to evaluate its suitability for use in a Doppler flow test object. Measurements were performed using a flow rig with C-flex tubing and BMF flow produced by a roller pump or a gear pump. A SciMed Doppler system was used to measure the backscattered Doppler power with a root-mean-square power meter connected to the audio output. Studies investigated the dependence of the backscattered Doppler power of the BMF with: circulation time; batch and operator preparations; storage; sieve size; flow speed; and pump type. A comparison was made with human red blood cells resuspended in saline. The backscatter properties are stable and within International Electrotechnical Commission requirements. The BMF is suitable for use in a test object for Doppler performance assessment.

  16. Chromatic settings and the structural color constancy index.

    PubMed

    Roca-Vila, Jordi; Parraga, C Alejandro; Vanrell, Maria

    2013-03-11

    Color constancy is usually measured by achromatic setting, asymmetric matching, or color naming paradigms, whose results are interpreted in terms of indexes and models that arguably do not capture the full complexity of the phenomenon. Here we propose a new paradigm, chromatic setting, which allows a more comprehensive characterization of color constancy through the measurement of multiple points in color space under immersive adaptation. We demonstrated its feasibility by assessing the consistency of subjects' responses over time. The paradigm was applied to two-dimensional (2-D) Mondrian stimuli under three different illuminants, and the results were used to fit a set of linear color constancy models. The use of multiple colors improved the precision of more complex linear models compared to the popular diagonal model computed from gray. Our results show that a diagonal plus translation matrix that models mechanisms other than cone gain might be best suited to explain the phenomenon. Additionally, we calculated a number of color constancy indices for several points in color space, and our results suggest that interrelations among colors are not as uniform as previously believed. To account for this variability, we developed a new structural color constancy index that takes into account the magnitude and orientation of the chromatic shift in addition to the interrelations among colors and memory effects.

  17. Simultaneous contrast and gamut relativity in achromatic color perception.

    PubMed

    Vladusich, Tony

    2012-09-15

    Simultaneous contrast refers to the respective whitening or blackening of physically identical image regions surrounded by regions of low or high luminance, respectively. A common method of measuring the strength of this effect is achromatic color matching, in which subjects adjust the luminance of a target region to achieve an achromatic color match with another region. Here I present psychophysical data questioning the assumption--built into many models of achromatic color perception--that achromatic colors are represented as points in a one-dimensional (1D) perceptual space, or an absolute achromatic color gamut. I present an alternative model in which the achromatic color gamut corresponding to a target region is defined relatively, with respect to surround luminance. Different achromatic color gamuts in this model correspond to different 1D lines through a 2D perceptual space composed of blackness and whiteness dimensions. Each such line represents a unique gamut of achromatic colors ranging from black to white. I term this concept gamut relativity. Achromatic color matches made between targets surrounded by regions of different luminance are shown to reflect the relative perceptual distances between points lying on different gamut lines. The model suggests a novel geometrical approach to simultaneous contrast and achromatic color matching in terms of the vector summation of local luminance and contrast components, and sets the stage for a unified computational theory of achromatic color perception.

  18. A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection

    NASA Astrophysics Data System (ADS)

    Ju, Kuanyu; Xiong, Hongkai

    2014-11-01

    To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.

  19. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  20. Live texturing of augmented reality characters from colored drawings.

    PubMed

    Magnenat, Stéphane; Ngo, Dat Tien; Zünd, Fabio; Ryffel, Mattia; Noris, Gioacchino; Rothlin, Gerhard; Marra, Alessia; Nitti, Maurizio; Fua, Pascal; Gross, Markus; Sumner, Robert W

    2015-11-01

    Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video stream is augmented with an animated 3-D version of the character that is textured according to the child's coloring. This is possible thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies that examine the quality of our texturing algorithm and the overall App experience.

  1. Teaching the Doppler effect in astrophysics

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.; Cowley, Michael

    2017-03-01

    The Doppler effect is a shift in the frequency of waves emitted from an object moving relative to the observer. By observing and analysing the Doppler shift in electromagnetic waves from astronomical objects, astronomers gain greater insight into the structure and operation of our Universe. In this paper, a simple technique is described for teaching the basics of the Doppler effect to undergraduate astrophysics students using acoustic waves. An advantage of the technique is that it produces a visual representation of the acoustic Doppler shift. The equipment comprises a 40 kHz acoustic transmitter and a microphone. The sound is bounced off a computer fan and the signal collected by a DrDAQ ADC and processed by a spectrum analyser. Widening of the spectrum is observed as the fan power supply potential is increased from 4 to 12 V.

  2. Generalized Doppler Formula in a Nonstatic Universe

    ERIC Educational Resources Information Center

    Gross, Peter G.

    1977-01-01

    Derives the general Doppler formula in a nonstatic universe using assumptions of special relativity, homogeneity and isotropy of the universe. Examples of applications to physical cosmology are given. (SL)

  3. Student Microwave Experiments Involving the Doppler Effect.

    ERIC Educational Resources Information Center

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  4. 2D properties of core turbulence on DIII-D and comparison to gyrokinetic simulations

    SciTech Connect

    Shafer, Morgan W; Fonck, R. J.; McKee, G. R.; Holland, Chris; White, A. E.; Schlossberg, D J

    2012-01-01

    Quantitative 2D characteristics of localized density fluctuations are presented over the range of 0.3 < r/a < 0.9 in L-mode plasmas on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. Broadband density fluctuations increase in amplitude from (n) over tilde/n < 0.5% in the deep core to (n) over tilde/n similar to 2.5% near the outer region. The observed Doppler-shift due to the E x B velocity matches well with the measured turbulence group and phase velocities (in toroidally rotating neutral beam heated plasmas). Turbulence decorrelation rates are found to be similar to 200 kHz at the edge and to decrease toward the core (0.45 < r/a < 0.9) where they approach the E x B shearing rate (similar to 50 kHz). Radial and poloidal correlation lengths are found to scale with the ion gyroradius and exhibit an asymmetric poloidally elongated eddy structure. The ensemble-averaged turbulent eddy structure changes its tilt with respect to the radial-poloidal coordinates in the core, consistent with an E x B shear mechanism. The 2D spatial correlation and wavenumber spectra [S(k(r); k(theta))] are presented and compared to nonlinear flux-tube GYRO simulations at two radii, r/a = 0.5 and r/a = 0.75, showing reasonable overall agreement, but the GYRO spectrum exhibits a peak at finite kr for r/a = 0.75 that is not observed experimentally; E x B shear may cause this discrepancy. (C) 2012 American Institute of Physics.

  5. Regulation of ligands for the activating receptor NKG2D

    PubMed Central

    Mistry, Anita R; O'Callaghan, Chris A

    2007-01-01

    The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877

  6. Rotation invariance principles in 2D/3D registration

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels C.; Jacob, Augustinus L.; Regazzoni, Pietro; Messmer, Peter

    2003-05-01

    2D/3D patient-to-computed tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 2D/3D registration is the fast that finding a registration includes sovling a minimization problem in six degrees-of-freedom in motion. This results in considerable time expenses since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations aroudn a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of its original value. The method was implemented and extensively tested on simulated x-ray images of a pelvis. We conclude that this hardware-indepenent optimization of 2D/3D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  7. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  8. 2D Materials for Optical Modulation: Challenges and Opportunities.

    PubMed

    Yu, Shaoliang; Wu, Xiaoqin; Wang, Yipei; Guo, Xin; Tong, Limin

    2017-02-21

    Owing to their atomic layer thickness, strong light-material interaction, high nonlinearity, broadband optical response, fast relaxation, controllable optoelectronic properties, and high compatibility with other photonic structures, 2D materials, including graphene, transition metal dichalcogenides and black phosphorus, have been attracting increasing attention for photonic applications. By tuning the carrier density via electrical or optical means that modifies their physical properties (e.g., Fermi level or nonlinear absorption), optical response of the 2D materials can be instantly changed, making them versatile nanostructures for optical modulation. Here, up-to-date 2D material-based optical modulation in three categories is reviewed: free-space, fiber-based, and on-chip configurations. By analysing cons and pros of different modulation approaches from material and mechanism aspects, the challenges faced by using these materials for device applications are presented. In addition, thermal effects (e.g., laser induced damage) in 2D materials, which are critical to practical applications, are also discussed. Finally, the outlook for future opportunities of these 2D materials for optical modulation is given.

  9. 2D DIGE saturation labeling for minute sample amounts.

    PubMed

    Arnold, Georg J; Fröhlich, Thomas

    2012-01-01

    The 2D DIGE technique, based on fluorophores covalently linked to amino acid side chain residues and the concept of an internal standard, has significantly improved reproducibility, sensitivity, and the dynamic range of protein quantification. In saturation DIGE, sulfhydryl groups of cysteines are labeled with cyanine dyes to completion, providing a so far unraveled sensitivity for protein detection and quantification in 2D gel-based proteomic experiments. Only a few micrograms of protein per 2D gel facilitate the analysis of about 2,000 analytes from complex mammalian cell or tissue samples. As a consequence, 2D saturation DIGE is the method of choice when only minute sample amounts are available for quantitative proteome analysis at the level of proteins rather than peptides. Since very low amounts of samples have to be handled in a reproducible manner, saturation DIGE-based proteomic experiments are technically demanding. Moreover, successful saturation DIGE approaches require a strict adherence to adequate reaction conditions at each step. This chapter is dedicated to colleagues already experienced in 2D PAGE protein separation and intends to support the establishment of this ultrasensitive technique in proteomic workgroups. We provide basic guidelines for the experimental design and discuss crucial aspects concerning labeling chemistry, sample preparation, and pitfalls caused by labeling artifacts. A detailed step-by-step protocol comprises all aspects from initial sample preparation to image analysis and statistical evaluation. Furthermore, we describe the generation of preparative saturation DIGE gels necessary for mass spectrometry-based spot identification.

  10. Mermin–Wagner fluctuations in 2D amorphous solids

    PubMed Central

    Illing, Bernd; Fritschi, Sebastian; Kaiser, Herbert; Klix, Christian L.; Maret, Georg; Keim, Peter

    2017-01-01

    In a recent commentary, J. M. Kosterlitz described how D. Thouless and he got motivated to investigate melting and suprafluidity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter 28:481001]. It was due to the lack of broken translational symmetry in two dimensions—doubting the existence of 2D crystals—and the first computer simulations foretelling 2D crystals (at least in tiny systems). The lack of broken symmetries proposed by D. Mermin and H. Wagner is caused by long wavelength density fluctuations. Those fluctuations do not only have structural impact, but additionally a dynamical one: They cause the Lindemann criterion to fail in 2D in the sense that the mean squared displacement of atoms is not limited. Comparing experimental data from 3D and 2D amorphous solids with 2D crystals, we disentangle Mermin–Wagner fluctuations from glassy structural relaxations. Furthermore, we demonstrate with computer simulations the logarithmic increase of displacements with system size: Periodicity is not a requirement for Mermin–Wagner fluctuations, which conserve the homogeneity of space on long scales. PMID:28137872

  11. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  12. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  13. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  14. Motion Alters Color Appearance

    PubMed Central

    Hong, Sang-Wook; Kang, Min-Suk

    2016-01-01

    Chromatic induction compellingly demonstrates that chromatic context as well as spectral lights reflected from an object determines its color appearance. Here, we show that when one colored object moves around an identical stationary object, the perceived saturation of the stationary object decreases dramatically whereas the saturation of the moving object increases. These color appearance shifts in the opposite directions suggest that normalization induced by the object’s motion may mediate the shift in color appearance. We ruled out other plausible alternatives such as local adaptation, attention, and transient neural responses that could explain the color shift without assuming interaction between color and motion processing. These results demonstrate that the motion of an object affects both its own color appearance and the color appearance of a nearby object, suggesting a tight coupling between color and motion processing. PMID:27824098

  15. Resolution for color photography

    NASA Astrophysics Data System (ADS)

    Hubel, Paul M.; Bautsch, Markus

    2006-02-01

    Although it is well known that luminance resolution is most important, the ability to accurately render colored details, color textures, and colored fabrics cannot be overlooked. This includes the ability to accurately render single-pixel color details as well as avoiding color aliasing. All consumer digital cameras on the market today record in color and the scenes people are photographing are usually color. Yet almost all resolution measurements made on color cameras are done using a black and white target. In this paper we present several methods for measuring and quantifying color resolution. The first method, detailed in a previous publication, uses a slanted-edge target of two colored surfaces in place of the standard black and white edge pattern. The second method employs the standard black and white targets recommended in the ISO standard, but records these onto the camera through colored filters thus giving modulation between black and one particular color component; red, green, and blue color separation filters are used in this study. The third method, conducted at Stiftung Warentest, an independent consumer organization of Germany, uses a whitelight interferometer to generate fringe pattern targets of varying color and spatial frequency.

  16. [Cerebral Doppler ultrasonography in newborn infants].

    PubMed

    Luciano, R; Velardi, F

    1995-01-01

    Following the first study of Bada et al. (1979), Doppler assessment of cerebral blood flow has increasingly been used in newborn infants, matching the technical progress in the available equipment. The experience gathered in recent years has confirmed that Doppler US is a reliable and reproducible examination while precising the limitations and the methodology to be followed in order to prevent gross errors of assessment and interpretation. The interest this procedure has arisen, among other things, stems from being noninvasive and feasible at the patient's bed. These features enable its repeated use in newborn infants in poor clinical condition. The diagnostic and prognostic role of Doppler velocimetry has been shown in a number of neonatal diseases and the cerebral hemodynamics has been assessed in physiologic conditions as well as after drug administration. The most common equipment used in newborn infants is at present Duplex Doppler consisting of a pulsed Doppler combined with bidimensional scanner, which, with visualization of study arteries, enables precise positioning of sample volume and correction of the ultrasonic angle of incidence with respect to the direction of blood flow in the examined vessel. In this report, after a survey of the techniques and modalities of cerebral Doppler examination in newborns, a review of the present state of the art, in neonatal cerebral as well as extracranial disease, is presented.

  17. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  18. Doppler-corrected differential detection system

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1991-01-01

    Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.

  19. FMCW CSAR Doppler shifting correction and the layover phenomenon analysising at a new received signal model

    NASA Astrophysics Data System (ADS)

    Song, Depeng; Qu, Yi; Xie, Yuehui

    2016-10-01

    Because of go-stop mode not applying to FMCW CSAR (frequency modulated continuous wave circular synthetic aperture radar), received signal include Doppler shifting result from the radar fly in one period, which have a bad effect on the quality of imaging in wide-field FMCW CSAR. However the compensation functions of liner SAR are not suitable for CSAR. To solve the problem, the paper rebuild a received mode and elicit the Doppler shifting. At the same time, based on the model, the paper analysis the layover phenomenon while obtaining two-dimensional (2D) representations of 3D large scenes due to the wide-field FMCW CSAR and simulate the phenomenon. By the simulation, the effect of the layover can be expressed clearly.

  20. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  1. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  2. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  3. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  4. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  5. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  6. 2D materials for photon conversion and nanophotonics

    NASA Astrophysics Data System (ADS)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  7. Rapid-scan coherent 2D fluorescence spectroscopy.

    PubMed

    Draeger, Simon; Roeding, Sebastian; Brixner, Tobias

    2017-02-20

    We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

  8. 2D-3D transition of gold cluster anions resolved

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael P.; Lechtken, Anne; Schooss, Detlef; Kappes, Manfred M.; Furche, Filipp

    2008-05-01

    Small gold cluster anions Aun- are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12 . It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

  9. IUPAP Award: Ion transport in 2D materials

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Intercalation in 2D materials drastically influences both physical and chemical properties, which leads to a new degree of freedom for fundamental studies and expands the potential applications of 2D materials. In this talk, I will discuss our work in the past two years related to ion intercalation of 2D materials, including insertion of Li and Na ions in graphene and MoS2. We focused on both fundamental mechanism and potential application, e.g. we measured in-situ optical transmittance spectra and electrical transport properties of few-layer graphene (FLG) nanostructures upon electrochemical lithiation/delithiation. By observing a simultaneous increase of both optical transmittance and DC conductivity, strikingly different from other materials, we proposed its application as a next generation transparent electrode.

  10. 2d-retrieval For Mipas-envisat

    NASA Astrophysics Data System (ADS)

    Steck, T.; von Clarmann, T.; Grabowski, U.; Höpfner, M.

    Limb sounding of the Earth's atmosphere provides vertically high resolved profiles of geophysical parameters. The long ray path through the atmosphere makes limb sounders sensitive to even little abundant species. On the other hand, horizontal in- homogeneities, if not taken into account properly, can cause systematic errors within the retrieval process. Especially for limb emission measurements in the mid IR, at- mopheric temperature gradients result in considerable vmr retrieval errors if they are neglected. We present a dedicated method of taking full 2D fields of state parameters (indepen- dent of tangent points) into account in the forward model and in the retrieval. The basic idea is that the 2D state vector is updated sequentially for each limb scan. This method is applied to the 2D retrieval of temperature and vmr for simulated radiances as expected from MIPAS-ENVISAT.

  11. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    PubMed

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  12. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  13. Chemical vapour deposition: Transition metal carbides go 2D

    DOE PAGES

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a highmore » crystallinity and very low defect concentration.« less

  14. Optoelectronics based on 2D TMDs and heterostructures

    NASA Astrophysics Data System (ADS)

    Huo, Nengjie; Yang, Yujue; Li, Jingbo

    2017-03-01

    2D materials including graphene and TMDs have proven interesting physical properties and promising optoelectronic applications. We reviewed the growth, characterization and optoelectronics based on 2D TMDs and their heterostructures, and demonstrated their unique and high quality of performances. For example, we observed the large mobility, fast response and high photo-responsivity in MoS2, WS2 and WSe2 phototransistors, as well as the novel performances in vdW heterostructures such as the strong interlayer coupling, am-bipolar and rectifying behaviour, and the obvious photovoltaic effect. It is being possible that 2D family materials could play an increasingly important role in the future nano- and opto-electronics, more even than traditional semiconductors such as silicon.

  15. Chemical vapour deposition: Transition metal carbides go 2D

    SciTech Connect

    Gogotsi, Yury

    2015-08-17

    Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour deposition with a high crystallinity and very low defect concentration.

  16. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    PubMed

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  17. "Fluid color" sign: a useful indicator for discrimination between pleural thickening and pleural effusion.

    PubMed

    Wu, R G; Yang, P C; Kuo, S H; Luh, K T

    1995-10-01

    Color Doppler imaging has been applied traditionally in the evaluation of cardiovascular diseases. Recently it was observed that color signal may appear within the fluid collection in the pleural space during respiratory and cardiac cycles ("fluid color sign"). We performed this applicability of fluid color sign to the detection of pleural fluid capable of being removed to assess needle aspiration. From July 1992 to February 1994, we prospectively analyzed 76 patients who were suspected of having minimal pleural effusion on the basis of their chest radiographs. All patients were examined by color Doppler ultrasonography for the presence of fluid color sign, which was followed by needle aspiration to verify the presence of pleural effusion. Among the 65 patients with aspiratable fluid, 58 demonstrated positive fluid color sign (sensitivity 89.2%). None of the patients with solid pleural thickening showed fluid color sign (specificity 100%). With its relatively high sensitivity and specificity, the fluid color sign may be a useful diagnostic aid to real-time, gray scale ultrasonography for minimal or loculated effusion.

  18. Efficiency of three-dimensional Doppler ultrasonography in assessing nodal metastasis of head and neck cancer.

    PubMed

    Hong, San-Fu; Lai, Yu-Shih; Lee, Kwo-Whei; Chen, Mu-Kuan

    2015-10-01

    The aim of this study was to assess the clinical usefulness of three-dimensional (3D) color Doppler ultrasonography with a novel predictive model in the detection of cervical metastasis of untreated head and neck squamous cell carcinoma patients. We assessed cervical lymph node metastasis in 52 head and neck squamous cell carcinoma patients by 3D color Doppler ultrasonography, magnetic resonance imaging, and [(18)F] fluorodeoxyglucose positron emission tomography with computed tomography. Pathologic analysis was used as the gold standard for evaluation of these imaging modalities. The rate of correct N staging was 84.6% on ultrasonography, 55.8% on magnetic resonance imaging, and 71.2% on positron emission tomography/computed tomography. On a level-by-level basis, the ultrasonography had 78.9% sensitivity, 99.0% specificity, 93.8% positive predictive value, 96.0% negative predictive value, and 95.7% accuracy. It also showed the highest agreement to histology results as compared with magnetic resonance imaging and positron emission tomography/computed tomography (kappa value = 0.832, 0.506, and 0.537, respectively). 3D Doppler ultrasonography with our prediction model provides a rapid, low-cost, noninvasive, and reliable method with low inter-observation variations for detecting neck metastasis of head and neck squamous cell carcinoma patients.

  19. Doppler ultrasonography in living donor liver transplantation recipients: Intra- and post-operative vascular complications

    PubMed Central

    Abdelaziz, Omar; Attia, Hussein

    2016-01-01

    Living-donor liver transplantation has provided a solution to the severe lack of cadaver grafts for the replacement of liver afflicted with end-stage cirrhosis, fulminant disease, or inborn errors of metabolism. Vascular complications remain the most serious complications and a common cause for graft failure after hepatic transplantation. Doppler ultrasound remains the primary radiological imaging modality for the diagnosis of such complications. This article presents a brief review of intra- and post-operative living donor liver transplantation anatomy and a synopsis of the role of ultrasonography and color Doppler in evaluating the graft vascular haemodynamics both during surgery and post-operatively in accurately defining the early vascular complications. Intra-operative ultrasonography of the liver graft provides the surgeon with useful real-time diagnostic and staging information that may result in an alteration in the planned surgical approach and corrections of surgical complications during the procedure of vascular anastomoses. The relevant intra-operative anatomy and the spectrum of normal and abnormal findings are described. Ultrasonography and color Doppler also provides the clinicians and surgeons early post-operative potential developmental complications that may occur during hospital stay. Early detection and thus early problem solving can make the difference between graft survival and failure. PMID:27468207

  20. Real-time 2-D temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2010-01-01

    We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy.