Science.gov

Sample records for 2d color doppler

  1. Temporal enhancement of two-dimensional color doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.

    2016-03-01

    Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.

  2. Color Doppler Imaging of Cardiac Catheters Using Vibrating Motors

    PubMed Central

    Reddy, Kalyan E.; Light, Edward D.; Rivera, Danny J.; Kisslo, Joseph A.; Smith, Stephen W.

    2010-01-01

    We attached a miniature motor rotating at 11,000 rpm onto the proximal end of cardiac electrophysiological (EP) catheters in order to produce vibrations at the tip which were then visualized by color Doppler on ultrasound scanners. We imaged the catheter tip within a vascular graft submerged in a water tank using the Volumetrics Medical Imaging 3D scanner, the Siemens Sonoline Antares 2D scanner, and the Philips ie33 3D ultrasound scanner with TEE probe. The vibrating catheter tip was visualized in each case though results varied with the color Doppler properties of the individual scanner. PMID:19514134

  3. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  4. [Color Doppler sonography of focal abdominal lesions].

    PubMed

    Licanin, Zoran; Lincender, Lidija; Djurović, V; Salihefendić, Nizama; Smajlović, Fahrudin

    2004-01-01

    Color Doppler sonography (CDS--spectral, color and power), harmonic imaging techniques (THI, PHI), possibility of 3D analysis of picture, usage of contrast agents, have raised the values of ultrasound as a diagnostic method to a very high level. THI--non-linear gray scale modality, is based on the processing of higher reflected frequencies, that has improved a picture resolution, which is presented with less artifacts and limiting effects of obesity and gases. Ultrasound contrast agents improve analysis of micro and macro circulation of the examined area, and with the assessment of velocity of supply in ROI (wash in), distribution and time of signal weakening (wash out), are significantly increasing diagnostic value of ultrasound. Besides the anatomical and topographic presentation of examined region (color, power), Color Doppler sonography gives us haemodynamic-functional information on vascularisation of that region, as well as on pathologic vascularisation if present. Avascular aspect of a focal pathologic lesion corresponds to a cyst or haematoma, while coloration and positive spectral curve discover that anechogenic lesions actually represents aneurysms, pseudoaneurysms or AVF. In local inflammatory lesion, abscess in an acute phase, CDS shows first increased, and then decreased central perfusion, while in a chronic phase, a pericapsular vascularisation is present. Contribution of CDS in differentiation of hepatic tumors (hemangioma, HCC and metastasis) is very significant. Central color dots along the peripheral blood vessels and the blush phenomenon are characteristics of capillary hemangioma, peritumoral vascular ring "basket" of HCC, and "detour" sign of metastasis. The central artery, RI from 0.45 to 0.60 and radial spreading characterize FNH. Hepatic adenoma is characterized by an intratumoral vein, and rarely by a vascular hallo. Further on, blood velocity in tumor defined by Color Doppler, distinguishes malignant from benign lesion, where 40 cm/s is a

  5. Early diagnosis of conjoined twins using two-dimensional color Doppler and three-dimensional ultrasound.

    PubMed Central

    Bonilla-Musoles, F.; Raga, F.; Bonilla, F.; Blanes, J.; Osborne, N. G.

    1998-01-01

    Transvaginal three-dimensional (3-D) and color Doppler ultrasound were used to establish a first-trimester definitive diagnosis and classification of thoracoomphalopagus conjoined twins following two-dimensional (2-D) transabdominal and transvaginal scans that indicated twin gestation of uncertain classification. Color Doppler in combination with 3-D ultrasound can be a useful complement to 2-D ultrasound to confirm early diagnosis and determine the extent of organ sharing and definitive classification of conjoined twins. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9770956

  6. Decompression induced venous gas emboli in sport diving: detection with 2D echocardiography and pulsed Doppler.

    PubMed

    Boussuges, A; Carturan, D; Ambrosi, P; Habib, G; Sainty, J M; Luccioni, R

    1998-01-01

    The aim of this study was to determine the utility of pulsed Doppler and 2D echocardiography for the detection and the quantification of circulating bubbles after decompression. Twenty-three sport divers performed 60 SCUBA dives (mean 32 msw). An evaluation of circulating bubbles was performed using 2D images one hour after diving. Circulating bubbles were also detected with pulsed Doppler. The sample volume was placed in the outflow area of the right ventricle 1-2 cm below the pulmonary valve. 2D echocardiography showed circulating bubbles in right cavities of the heart in 32 cases. Short axis parasternal view and right cavities long axis view were the best incidences. Pulsed Doppler confirmed the results in these 32 cases and detected circulating bubbles in seven other cases. Isometric contraction of muscle limb must be performed to increase the sensitivity of detection. The count of the bubbles may be evaluated when using a combination of Spencer's and Powell's grading. We conclude that 2D echocardiography is less accurate than pulsed Doppler in the detection of circulating bubbles after decompression. Further studies are needed to compare pulsed Doppler guided by 2D echocardiography to continuous Doppler for the detection of circulating bubbles.

  7. Investigations of spectral resolution and angle dependency in a 2-D tracking Doppler method.

    PubMed

    Fredriksen, Tonje D; Avdal, Jorgen; Ekroll, Ingvild K; Dahl, Torbjorn; Lovstakken, Lasse; Torp, Hans

    2014-07-01

    An important source of error in velocity measurements from conventional pulsed wave (PW) Doppler is the angle used for velocity calibration. Because there are great uncertainties and interobserver variability in the methods used for Doppler angle correction in the clinic today, it is desirable to develop new and more robust methods. In this work, we have investigated how a previously presented method, 2-D tracking Doppler, depends on the tracking angle. A signal model was further developed to include tracking along any angle, providing velocity spectra which showed good agreement with both experimental data and simulations. The full-width at half-maximum (FWHM) bandwidth and the peak value of predicted power spectra were calculated for varying tracking angles. It was shown that the spectra have lowest bandwidth and maximum power when the tracking angle is equal to the beam-to-flow angle. This may facilitate new techniques for velocity calibration, e.g., by manually adjusting the tracking angle, while observing the effect on the spectral display. An in vitro study was performed in which the Doppler angles were predicted by the minimum FWHM and the maximum power of the 2-D tracking Doppler spectra for 3 different flow angles. The estimated Doppler angles had an overall error of 0.24° ± 0.75° when using the minimum FWHM. With an in vivo example, it was demonstrated that the 2-D tracking Doppler method is suited for measurements in a patient with carotid stenosis.

  8. Color Doppler imaging of retinal diseases.

    PubMed

    Dimitrova, Galina; Kato, Satoshi

    2010-01-01

    Color Doppler imaging (CDI) is a widely used method for evaluating ocular circulation that has been used in a number of studies on retinal diseases. CDI assesses blood velocity parameters by using ultrasound waves. In ophthalmology, these assessments are mainly performed on the retrobulbar blood vessels: the ophthalmic, the central retinal, and the short posterior ciliary arteries. In this review, we discuss CDI use for the assessment of retinal diseases classified into the following: vascular diseases, degenerations, dystrophies, and detachment. The retinal vascular diseases that have been investigated by CDI include diabetic retinopathy, retinal vein occlusions, retinal artery occlusions, ocular ischemic conditions, and retinopathy of prematurity. Degenerations and dystrophies included in this review are age-related macular degeneration, myopia, and retinitis pigmentosa. CDI has been used for the differential diagnosis of retinal detachment, as well as the evaluation of retrobulbar circulation in this condition. CDI is valuable for research and is a potentially useful diagnostic tool in the clinical setting.

  9. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design.

  10. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  11. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses a spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design. A parallel motor configuration was used to minimize the amount of space wasted inside the probe case while minimizing the overall case dimensions. The distance from the front edge of the crystal to the edge of the case was also minimized to allow positioning of the probe very close to the ear on the temporal lobe. The mechanical probe is able to achieve a +/-20deg tip and tilt with smooth repeatable action in a very compact package. The enclosed probe is about 7 cm long, 4 cm wide, and 1.8 cm tall. The device is compact, hands-free, and can be adjusted via an innovative touchscreen. Positioning of the probe to the head is performed via conventional transducer gels and pillows. This device is amendable to having advanced software, which could intelligently focus and optimize the TCD signal.

  12. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  13. Unsupervised dealiasing and denoising of color-Doppler data.

    PubMed

    Muth, Stéphan; Dort, Sarah; Sebag, Igal A; Blais, Marie-Josée; Garcia, Damien

    2011-08-01

    Color Doppler imaging (CDI) is the premiere modality to analyze blood flow in clinical practice. In the prospect of producing new CDI-based tools, we developed a fast unsupervised denoiser and dealiaser (DeAN) algorithm for color Doppler raw data. The proposed technique uses robust and automated image post-processing techniques that make the DeAN clinically compliant. The DeAN includes three consecutive advanced and hands-off numerical tools: (1) statistical region merging segmentation, (2) recursive dealiasing process, and (3) regularized robust smoothing. The performance of the DeAN was evaluated using Monte-Carlo simulations on mock Doppler data corrupted by aliasing and inhomogeneous noise. Fifty aliased Doppler images of the left ventricle acquired with a clinical ultrasound scanner were also analyzed. The analytical study demonstrated that color Doppler data can be reconstructed with high accuracy despite the presence of strong corruption. The normalized RMS error on the numerical data was less than 8% even with signal-to-noise ratio as low as 10dB. The algorithm also allowed us to recover highly reliable Doppler flows in clinical data. The DeAN is fast, accurate and not observer-dependent. Preliminary results showed that it is also directly applicable to 3-D data. This will offer the possibility of developing new tools to better decipher the blood flow dynamics in cardiovascular diseases.

  14. Grayscale and color Doppler features of testicular lymphoma.

    PubMed

    Bertolotto, Michele; Derchi, Lorenzo E; Secil, Mustafa; Dogra, Vikram; Sidhu, Paul S; Clements, Richard; Freeman, Simon; Grenier, Nicolas; Mannelli, Lorenzo; Ramchandani, Parvati; Cicero, Calogero; Abete, Luca; Bussani, Rossana; Rocher, Laurence; Spencer, John; Tsili, Athina; Valentino, Massimo; Pavlica, Pietro

    2015-06-01

    Pooled data from 16 radiology centers were retrospectively analyzed to seek patients with pathologically proven testicular lymphoma and grayscale and color Doppler images available for review. Forty-three cases were found: 36 (84%) primary and 7 (16%) secondary testicular lymphoma. With unilateral primary lymphoma, involvement was unifocal (n = 10), multifocal (n = 11), or diffuse (n = 11). Synchronous bilateral involvement occurred in 6 patients. Color Doppler sonography showed normal testicular vessels within the tumor in 31 of 43 lymphomas (72%). Testicular lymphoma infiltrates through the tubules, preserving the normal vascular architecture of the testis. Depiction of normal testicular vessels crossing the lesion is a useful adjunctive diagnostic criterion. PMID:26014335

  15. 2D hexagonal quaternion Fourier transform in color image processing

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2016-05-01

    In this paper, we present a novel concept of the quaternion discrete Fourier transform on the two-dimensional hexagonal lattice, which we call the two-dimensional hexagonal quaternion discrete Fourier transform (2-D HQDFT). The concept of the right-side 2D HQDFT is described and the left-side 2-D HQDFT is similarly considered. To calculate the transform, the image on the hexagonal lattice is described in the tensor representation when the image is presented by a set of 1-D signals, or splitting-signals which can be separately processed in the frequency domain. The 2-D HQDFT can be calculated by a set of 1-D quaternion discrete Fourier transforms (QDFT) of the splitting-signals.

  16. Development of ultra-fast 2D ion Doppler tomography using image intensified CMOS fast camera

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Kuwahata, Akihiro; Yamanaka, Haruki; Inomoto, Michiaki; Ono, Yasushi; TS-group Team

    2015-11-01

    The world fastest novel time-resolved 2D ion Doppler tomography diagnostics has been developed using fast camera with high-speed gated image intensifier (frame rate: 200kfps. phosphor decay time: ~ 1 μ s). Time evolution of line-integrated spectra are diffracted from a f=1m, F/8.3 and g=2400L/mm Czerny-Turner polychromator, whose output is intensified and recorded to a high-speed camera with spectral resolution of ~0.005nm/pixel. The system can accommodate up to 36 (9 ×4) spatial points recorded at 5 μs time resolution, tomographic reconstruction is applied for the line-integrated spectra, time-resolved (5 μs/frame) local 2D ion temperature measurement has been achieved without any assumption of shot repeatability. Ion heating during intermittent reconnection event which tends to happen during high guide field merging tokamak was measured around diffusion region in UTST. The measured 2D profile shows ion heating inside the acceleration channel of reconnection outflow jet, stagnation point and downstream region where reconnected field forms thick closed flux surface as in MAST. Achieved maximum ion temperature increases as a function of Brec2 and shows good fit with MAST experiment, demonstrating promising CS-less startup scenario for spherical tokamak. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  17. 2D full wave modeling for a synthetic Doppler backscattering diagnostic

    SciTech Connect

    Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.

    2012-10-15

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  18. 2D full wave modeling for a synthetic Doppler backscattering diagnostica)

    NASA Astrophysics Data System (ADS)

    Hillesheim, J. C.; Holland, C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.

    2012-10-01

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (kθρs ˜ 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  19. The US color Doppler in acute renal failure.

    PubMed

    Nori, G; Granata, A; Leonardi, G; Sicurezza, E; Spata, C

    2004-12-01

    Imaging techniques, especially ultrasonography and Doppler, can give an effective assistance in the differential diagnosis of acute renal failure (ARF). An resistance Index (RI) value >0.75 is reported as optimal in attempting differential diagnosis between acute tubular necrosis (ANT) and prerenal ARF. In hepatorenal syndrome (HRS) RIs is very increased. In some renal vasculitis, as nodose panarteritis (PN), hemolytic-uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP), parenchymal perfusion is reduced and RI increased. In lupus nephritis the RI values are correlated with creatinine level and normal RI are considered as a good prognostic tool. In acute primitive or secondary glomerulonephritis (GN), RI value is normal, with diffuse parenchymal hypervascularization. In acute crescentic and proliferative GN and tubulo-interstitial disease, color Doppler (CD) and power Doppler (PD) reveal a decreased renal parenchymal perfusion, which correlates with increased RI values. In acute thrombosis of renal artery, US color Doppler (DUS) reveals either an absence of Doppler signal or a tardus-parvus pulse distal to the vascular obstruction. In this situation it is possible to visualize hyperthropic perforating vessels that redirect their flow from the capsular plexus to the renal parenchyma. In acute thrombosis of the renal vein Doppler analysis of parenchymal vessels reveals remarkable RI values, sometimes with reversed diastolic flow. In postrenal ARF an adjunct to the differentiation between obstruction and non obstructive dilatation can be found through RIs. Diagnostic criteria of obstruction as reported by literature are: RI>0.70 in the obstructed kidney and, mostly, a difference in RI between the 2 kidneys >0.06-0.1.

  20. Preoperative color Doppler assessment in planning of gluteal perforator flaps.

    PubMed

    Isken, Tonguc; Alagoz, M Sahin; Onyedi, Murat; Izmirli, Hakki; Isil, Eda; Yurtseven, Nagehan

    2009-02-01

    Gluteal artery perforator flaps have gained popularity due to reliability, preservation of the muscle, versatility in flap design without restricting other flap options, and low donor-site morbidity in ambulatory patients and possibility of enabling future reconstruction in paraplegic patients. But the inconstant anatomy of the vascular plexus around the gluteal muscle makes it hard to predict how many perforators are present, what their volume of blood flow and size are, where they exit the overlying fascia, and what their course through the muscle will be. Without any prior investigations, the reconstructive surgeon could be surprised intraoperatively by previous surgical damage, scar formation, or anatomic variants.For these reasons, to confirm the presence and the location of gluteal perforators preoperatively we have used color Doppler ultrasonography. With the help of the color Doppler ultrasonography 26 patients, 21 men and 5 women, were operated between the years 2002 and 2007. The mean age of patients was 47.7 (age range: 7-77 years). All perforator vessels were marked preoperatively around the defect locations. The perforator based flap that will allow primary closure of the donor site and the defect without tension was planned choosing the perforator that showed the largest flow in color Doppler ultrasonography proximally. Perforators were found in the sites identified with color Doppler ultrasonography in all other flaps. In our study, 94.4% flap viability was ensured in 36 perforator-based gluteal area flaps. Mean flap elevation time was 31.9 minutes. We found that locating the perforators preoperatively helps to shorten the operation time without compromising a reliable viability of the perforator flaps, thus enabling the surgeon easier treatment of pressure sores.

  1. Color-flow Doppler sonography in Graves disease: "thyroid inferno".

    PubMed

    Ralls, P W; Mayekawa, D S; Lee, K P; Colletti, P M; Radin, D R; Boswell, W D; Halls, J M

    1988-04-01

    Graves disease is a common diffuse abnormality of the thyroid gland usually characterized by thyrotoxicosis. We performed color-flow Doppler sonography in 16 patients with Graves disease and compared the results with those in 15 normal volunteers and 14 patients with other thyroid diseases (eight with multinodular goiter, four with focal masses, and two with papillary thyroid carcinoma). All 16 Graves disease patients exhibited a pulsatile pattern we call "thyroid inferno." This pattern consists of multiple small areas of intrathyroidal flow seen diffusely throughout the gland in both systole and diastole. In systole, both high-velocity flow (color coded white) and lower velocity flow (color coded red and blue) were noted. In diastole, fewer areas of flow and lower velocity flow were noted. Patients with Graves disease also exhibited color flow around the periphery of the gland. The inferno pattern did not occur in normal subjects or in patients with other thyroid diseases. On occasion, focal areas of intrathyroidal flow were detected in patients with multinodular goiter and focal thyroid masses. High-resolution gray-scale images did not show the small vascular channels from which the flow signal originated. Color-flow Doppler sonography shows promise as a cost-effective, noninvasive technique for diagnosing Graves disease.

  2. Use of Sonicated Albumin (Infoson) to Enhance Arterial Spectral and Color Doppler Imaging

    SciTech Connect

    Abildgaard, Andreas; Egge, Tor S.; Klow, Nils-Einar; Jakobsen, Jarl A.

    1996-04-15

    Purpose: To examine the effect of an ultrasound contrast medium (UCM), Infoson, on Doppler examination of stenotic arteries. Methods: Stenoses were created in the common carotid artery of six piglets, and examined with spectral Doppler and color Doppler imaging during UCM infusion in the left ventricle. Results: UCM caused a mean increase in recorded maximal systolic and end-diastolic velocities of 5% and 6%, respectively, while blood flow remained constant. Increased spectral intensity with UCM was accompanied by spectral broadening. Reduction of spectral intensity by adjustment of Doppler gain counteracted the velocity effects and the spectral broadening. With color Doppler, UCM caused dose-dependent color artifacts outside the artery. Flow in narrow stenoses could be visualized with UCM. Conclusion: The effects of UCM on velocity measurements were slight, and were related to changes in spectral intensity. With color Doppler, UCM may facilitate flow detection, but color artifacts may interfere.

  3. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  4. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  5. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  6. Tensor representation of color images and fast 2D quaternion discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, a general, efficient, split algorithm to compute the two-dimensional quaternion discrete Fourier transform (2-D QDFT), by using the special partitioning in the frequency domain, is introduced. The partition determines an effective transformation, or color image representation in the form of 1-D quaternion signals which allow for splitting the N × M-point 2-D QDFT into a set of 1-D QDFTs. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. In particular, a proposed method of calculating the 2r × 2r -point 2-D QDFT uses 18N2 less multiplications than the well-known column-row method and method of calculation based on the symplectic decomposition. The proposed algorithm is simple to apply and design, which makes it very practical in color image processing in the frequency domain.

  7. Color Doppler ultrasound of the hand: observations on clinical utility in rheumatoid arthritis.

    PubMed

    Saadeh, Constantine; Gaylor, Patrick; Lee, Doohi; Malacara, Jan; Gaylor, Michael

    2004-02-01

    The use of ultrasound with color Doppler in the evaluation of rheumatoid arthritis was followed in 25 patients with joint complaints. Small joint ultrasound of the metacarpophalangeal joints (MCPs) as well as the wrists was performed with supplementation by color Doppler. In addition, 6 patients were followed for at least 3 months after start of treatment of rheumatoid arthritis using the same technique. In patients with what appeared to be definite rheumatoid arthritis, ultrasound supported this diagnosis as evidenced by the finding of cortical defects, extensor tendon sheath thickening, and synovial proliferation. Increased activity by color Doppler ultrasonography was the most common finding. Significant decrease in color Doppler activity was noted in the 6 patients who were followed up after 3 months of therapy with disease-modifying agents. Therefore, the use of ultrasound with color Doppler could aid in the diagnosis and follow up of patients with rheumatoid arthritis.

  8. Bubble-Induced Color Doppler Feedback for Histotripsy Tissue Fractionation.

    PubMed

    Miller, Ryan M; Zhang, Xi; Maxwell, Adam D; Cain, Charles A; Xu, Zhen

    2016-03-01

    Histotripsy therapy produces cavitating bubble clouds to increasingly fractionate and eventually liquefy tissue using high-intensity ultrasound pulses. Following cavitation generated by each pulse, coherent motion of the cavitation residual nuclei can be detected using metrics formed from ultrasound color Doppler acquisitions. In this paper, three experiments were performed to investigate the characteristics of this motion as real-time feedback on histotripsy tissue fractionation. In the first experiment, bubble-induced color Doppler (BCD) and particle image velocimetry (PIV) analysis monitored the residual cavitation nuclei in the treatment region in an agarose tissue phantom treated with two-cycle histotripsy pulses at [Formula: see text] using a 500-kHz transducer. Both BCD and PIV results showed brief chaotic motion of the residual nuclei followed by coherent motion first moving away from the transducer and then rebounding back. Velocity measurements from both PIV and BCD agreed well, showing a monotonic increase in rebound time up to a saturation point for increased therapy dose. In a second experiment, a thin layer of red blood cells (RBC) was added to the phantom to allow quantification of the fractionation of the RBC layer to compare with BCD metrics. A strong linear correlation was observed between the fractionation level and the time to BCD peak rebound velocity over histotripsy treatment. Finally, the correlation between BCD feedback and histotripsy tissue fractionation was validated in ex vivo porcine liver evaluated histologically. BCD metrics showed strong linear correlation with fractionation progression, suggesting that BCD provides useful quantitative real-time feedback on histotripsy treatment progression.

  9. Blood flow velocity in monocular retinoblastoma assessed by color doppler

    PubMed Central

    Bonanomi, Maria Teresa B C; Saito, Osmar C; de Lima, Patricia Picciarelli; Bonanomi, Roberta Chizzotti; Chammas, Maria Cristina

    2015-01-01

    OBJECTIVE: To analyze the flow of retrobulbar vessels in retinoblastoma by color Doppler imaging. METHODS: A prospective study of monocular retinoblastoma treated by enucleation between 2010 and 2014. The examination comprised fundoscopy, magnetic resonance imaging, ultrasonography and color Doppler imaging. The peak blood velocities in the central retinal artery and central retinal vein of tumor-containing eyes (tuCRAv and tuCRVv, respectively) were assessed. The velocities were compared with those for normal eyes (nlCRAv and nlCRVv) and correlated with clinical and pathological findings. Tumor dimensions in the pathological sections were compared with those in magnetic resonance imaging and ultrasonography and were correlated with tuCRAv and tuCRVv. In tumor-containing eyes, the resistivity index in the central retinal artery and the pulse index in the central retinal vein were studied in relation to all variables. RESULTS: Eighteen patients were included. Comparisons between tuCRAv and nlCRAv and between tuCRVv and nlCRVv revealed higher velocities in tumor-containing eyes (p<0.001 for both), with a greater effect in the central retinal artery than in the central retinal vein (p=0.024). Magnetic resonance imaging and ultrasonography measurements were as reliable as pathology assessments (p=0.675 and p=0.375, respectively). A positive relationship was found between tuCRAv and the tumor volume (p=0.027). The pulse index in the central retinal vein was lower in male patients (p=0.017) and in eyes with optic nerve invasion (p=0.0088). CONCLUSIONS: TuCRAv and tuCRVv are higher in tumor-containing eyes than in normal eyes. Magnetic resonance imaging and ultrasonography measurements are reliable. The tumor volume is correlated with a higher tuCRAv and a reduced pulse in the central retinal vein is correlated with male sex and optic nerve invasion. PMID:26735219

  10. 3D reconstruction and quantitative assessment method of mitral eccentric regurgitation from color Doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yi Nan; Wang, Tian Fu; Zheng, Chang Qiong; Zheng, Yi

    2005-10-01

    Based on the two-dimensional color Doppler image in this article, multilane transesophageal rotational scanning method is used to acquire original Doppler echocardiography while echocardiogram is recorded synchronously. After filtering and interpolation, the surface rendering and volume rendering methods are performed. Through analyzing the color-bar information and the color Doppler flow image's superposition principle, the grayscale mitral anatomical structure and color-coded regurgitation velocity parameter were separated from color Doppler flow images, three-dimensional reconstruction of mitral structure and regurgitation velocity distribution was implemented separately, fusion visualization of the reconstructed regurgitation velocity distribution parameter with its corresponding 3D mitral anatomical structures was realized, which can be used in observing the position, phase, direction and measuring the jet length, area, volume, space distribution and severity level of the mitral regurgitation. In addition, in patients with eccentric mitral regurgitation, this new modality overcomes the inherent limitations of two-dimensional color Doppler flow image by depicting the full extent of the jet trajectory, the area of eccentric regurgitation on three-dimensional image was much larger than that on two-dimensional image, the area variation tendency and volume variation tendency of regurgitation have been shown in figure at different angle and different systolic phase. The study shows that three-dimensional color Doppler provides quantitative measurements of eccentric mitral regurgitation that are more accurate and reproducible than conventional color Doppler.

  11. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  12. Influence of the Coanda effect on color Doppler jet area and color encoding. In vitro studies using color Doppler flow mapping.

    PubMed

    Chao, K; Moises, V A; Shandas, R; Elkadi, T; Sahn, D J; Weintraub, R

    1992-01-01

    We studied surface adherence and its effects on color Doppler jet areas and color encoding in an in vitro model with a noncompliant receiving chamber into which a steady flow jet was directed parallel to either a straight or a curved surface adjacent to and 4 mm away from the inflow orifice (1.50 mm2) with the control condition being a free jet matched for flow rates and driving pressures. Jets were imaged perpendicular to the plane of the surface, the plane in which most clinical images of jet-surface interactions are obtained. Ten different flow rates ranging from 0.13 to 0.30 l/min were used. Surface-adherent jet areas were smaller than control jets for every driving pressure-volume combination (paired t test, p less than 0.01). Computer analysis of color Doppler images showed more green and blue (reverse flow) pixels on the surface side of the adherent jets than the control jets (p less than 0.05), suggesting that viscous energy loss and flow deceleration and reversal play a role in the jet-surface interaction. Analysis of variance demonstrated that linear regression slopes of flow rate versus jet area for surface jets were lower (slopes, 11-21 cm2/l/min; r = 0.95-0.97) than those for the control (slope, 33 cm2/l/min; r = 0.97) (p less than 0.0001). Surface adherence (Coanda effect) influences jet size and color encoding, causing smaller color Doppler jet areas and greater variance and reverse velocity encoding. PMID:1728465

  13. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    PubMed

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  14. Color Doppler imaging of the retrobulbar vessels in diabetic retinopathy.

    PubMed

    Pauk-Domańska, Magdalena; Walasik-Szemplińska, Dorota

    2014-03-01

    Diabetes is a metabolic disease characterized by elevated blood glucose level due to impaired insulin secretion and activity. Chronic hyperglycemia leads to functional disorders of numerous organs and to their damage. Vascular lesions belong to the most common late complications of diabetes. Microangiopathic lesions can be found in the eyeball, kidneys and nervous system. Macroangiopathy is associated with coronary and peripheral vessels. Diabetic retinopathy is the most common microangiopathic complication characterized by closure of slight retinal blood vessels and their permeability. Despite intensive research, the pathomechanism that leads to the development and progression of diabetic retinopathy is not fully understood. The examinations used in assessing diabetic retinopathy usually involve imaging of the vessels in the eyeball and the retina. Therefore, the examinations include: fluorescein angiography, optical coherence tomography of the retina, B-mode ultrasound imaging, perimetry and digital retinal photography. There are many papers that discuss the correlations between retrobulbar circulation alterations and progression of diabetic retinopathy based on Doppler sonography. Color Doppler imaging is a non-invasive method enabling measurements of blood flow velocities in small vessels of the eyeball. The most frequently assessed vessels include: the ophthalmic artery, which is the first branch of the internal carotid artery, as well as the central retinal vein and artery, and the posterior ciliary arteries. The analysis of hemodynamic alterations in the retrobulbar vessels may deliver important information concerning circulation in diabetes and help to answer the question whether there is a relation between the progression of diabetic retinopathy and the changes observed in blood flow in the vessels of the eyeball. This paper presents the overview of literature regarding studies on blood flow in the vessels of the eyeball in patients with diabetic

  15. Color Doppler imaging of the retrobulbar vessels in diabetic retinopathy

    PubMed Central

    Walasik-Szemplińska, Dorota

    2014-01-01

    Diabetes is a metabolic disease characterized by elevated blood glucose level due to impaired insulin secretion and activity. Chronic hyperglycemia leads to functional disorders of numerous organs and to their damage. Vascular lesions belong to the most common late complications of diabetes. Microangiopathic lesions can be found in the eyeball, kidneys and nervous system. Macroangiopathy is associated with coronary and peripheral vessels. Diabetic retinopathy is the most common microangiopathic complication characterized by closure of slight retinal blood vessels and their permeability. Despite intensive research, the pathomechanism that leads to the development and progression of diabetic retinopathy is not fully understood. The examinations used in assessing diabetic retinopathy usually involve imaging of the vessels in the eyeball and the retina. Therefore, the examinations include: fluorescein angiography, optical coherence tomography of the retina, B-mode ultrasound imaging, perimetry and digital retinal photography. There are many papers that discuss the correlations between retrobulbar circulation alterations and progression of diabetic retinopathy based on Doppler sonography. Color Doppler imaging is a non-invasive method enabling measurements of blood flow velocities in small vessels of the eyeball. The most frequently assessed vessels include: the ophthalmic artery, which is the first branch of the internal carotid artery, as well as the central retinal vein and artery, and the posterior ciliary arteries. The analysis of hemodynamic alterations in the retrobulbar vessels may deliver important information concerning circulation in diabetes and help to answer the question whether there is a relation between the progression of diabetic retinopathy and the changes observed in blood flow in the vessels of the eyeball. This paper presents the overview of literature regarding studies on blood flow in the vessels of the eyeball in patients with diabetic

  16. Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays.

    PubMed

    Walia, Jaspreet; Dhindsa, Navneet; Khorasaninejad, Mohammadreza; Saini, Simarjeet Singh

    2014-01-15

    Tunable structural color generation from vertical silicon nanowires arranged in different square lattices is demonstrated. The generated colors are adjustable using well-defined Bragg diffraction theory, and only depend on the lattice spacing and angles of incidence. Vivid colors spanning from bright red to blue are easily achieved. In keeping with this, a single square lattice of silicon nanowires is also able to produce different colors spanning the entire visible range. It is also shown that the 2D gratings also have a third grating direction when rotated 45 degrees. These simple and elegant solutions to color generation from silicon are used to demonstrate a cost-effective refractive index sensor. The sensor works by measuring color changes resulting from changes in the refractive index of the medium surrounding the nanowires using a trichromatic RGB decomposition. Moreover, the sensor produces linear responses in the trichromatic decomposition values versus the surrounding medium index. An index resolution of 10(-4) is achieved by performing basic image processing on the collected images, without the need for a laser or a spectrometer. Spectral analysis enables an increase in the index resolution of the sensor to a value of 10(-6) , with a sensitivity of 400 nm/RIU. PMID:23784866

  17. Color flow Doppler: a useful instrument in the diagnosis of funic presentation.

    PubMed Central

    Raga, F.; Osborne, N.; Ballester, M. J.; Bonilla-Musoles, F.

    1996-01-01

    Color Doppler sonography offers the opportunity to evaluate the umbilical cord and to study blood velocity wave forms within the cord. Funic (cord) presentation can be diagnosed unequivocally with color Doppler sonography. Because funic presentation is likely to be the harbinger of cord prolapse, the morbidity and mortality associated with cord prolapse can be prevented if funic presentation is diagnosed before membrane rupture. This article describes the first case in the obstetric literature of funic presentation diagnosed with color Doppler sonography. The potential complications associated with cord prolapse were avoided with a cesarean section. Images Figure 1 Figure 2 PMID:8776064

  18. Quantitative Evaluation of Vascularity Using 2-D Power Doppler Ultrasonography May Not Identify Malignancy of the Thyroid.

    PubMed

    Yoon, Jung Hyun; Shin, Hyun Joo; Kim, Eun-Kyung; Moon, Hee Jung; Roh, Yun Ho; Kwak, Jin Young

    2015-11-01

    The purpose of this study was to evaluate the usefulness of a quantitative vascular index in predicting thyroid malignancy. A total of 1309 thyroid nodules in 1257 patients (mean age: 50.2 y, range: 18-83 y) were included. The vascularity pattern and vascular index (VI) measured by quantification software for each nodule were obtained from 2-D power Doppler ultrasonography (US). Gray-scale US + vascularity pattern was compared with gray-scale US + VI with respect to diagnostic performance. Of the 1309 thyroid nodules, 927 (70.8%) were benign and 382 (29.2%) were malignant. The area under the receiver operating characteristics curve (Az) for gray-scale US (0.82) was significantly higher than that for US combined with vascularity pattern (0.77) or VI (0.70, all p < 0.001). Quantified VIs were higher in benign nodules, but did not improve the performance of 2-D US in diagnosing thyroid malignancy.

  19. [Graves' disease: ultrasonographic, color Doppler and histological aspects].

    PubMed

    Messina, G; Viceconti, N; Trinti, B

    1997-11-01

    The aim of the present work was to study the relationship between thyroid low echogenicity, the thyroid blood flow by color-Doppler (CD) and histological features in patients with Graves' disease (GD). Thyroid ultrasonography and CD was performed on 28 patients with GD. In 5 patients has been compared CD with histology. The thyroid volume was higher in 100% of patients with GD at the onset rather than in euthyroidism. Diffuse hypoechogenicity of the thyroid was discovered in 100% of patients with GD at the onset and it persisted in 57.1% of patients that became euthyroid after therapy. Qualitative CD resulted in different patterns that were classified as follow: pattern A ("thyroid inferno") in 17 patients (60.7%); pattern B (mildly increased of parenchymal blood flow) in 11 patients (39.3%). In the 5 histological proven cases, in the pattern A (3 cases) there was a diffuse microfollicular hyperplasia with functional activation notes. There was lymphocytic infiltration. While in the pattern B (two cases) there were a non-follicular hypercellular nodule with pseudocapsule and rare colloid. We conclude that there are two different histological types with different CD patterns in GD.

  20. Use of ultrasound, color Doppler imaging and radiography to monitor periapical healing after endodontic surgery.

    PubMed

    Tikku, Aseem P; Kumar, Sunil; Loomba, Kapil; Chandra, Anil; Verma, Promila; Aggarwal, Renu

    2010-09-01

    This study evaluated the effectiveness of ultrasound, color Doppler imaging and conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin. Fifteen patients who underwent periapical surgery for endodontic pathology were randomly selected. In all patients, periapical lesions were evaluated preoperatively using ultrasound, color Doppler imaging and conventional radiography, to analyze characteristics such as size, shape and dimensions. On radiographic evaluation, dimensions were measured in the superoinferior and mesiodistal direction using image-analysis software. Ultrasound evaluation was used to measure the changes in shape and dimensions on the anteroposterior, superoinferior, and mesiodistal planes. Color Doppler imaging was used to detect the blood-flow velocity. Postoperative healing was monitored in all patients at 1 week and 6 months by using ultrasound and color Doppler imaging, together with conventional radiography. The findings were then analyzed to evaluate the effectiveness of the 3 imaging techniques. At 6 months, ultrasound and color Doppler imaging were significantly better than conventional radiography in detecting changes in the healing of hard tissue at the surgical site (P < 0.004). This study demonstrates that ultrasound and color Doppler imaging have the potential to supplement conventional radiography in monitoring the post-surgical healing of periapical lesions of endodontic origin.

  1. Localization of needle tip with color doppler during pericardiocentesis: In vitro validation and initial clinical application

    NASA Technical Reports Server (NTRS)

    Armstrong, G.; Cardon, L.; Vilkomerson, D.; Lipson, D.; Wong, J.; Rodriguez, L. L.; Thomas, J. D.; Griffin, B. P.

    2001-01-01

    This study evaluates a new device that uses color Doppler ultrasonography to enable real-time image guidance of the aspirating needle, which has not been possible until now. The ColorMark device (EchoCath Inc, Princeton, NJ) induces high-frequency, low-amplitude vibrations in the needle to enable localization with color Doppler. We studied this technique in 25 consecutive patients undergoing pericardiocentesis, and in vitro, in a urethane phantom with which the accuracy of color Doppler localization of the needle tip was compared with that obtained by direct measurement. Tip localization was excellent in vitro; errors axial to the ultrasound beam (velocity Doppler -0.13 +/- 0.90 mm, power Doppler -0.05 +/- 1.7 mm) were less than lateral errors (velocity -0.36 +/- 1.8 mm, power -0.02 +/- 2.8 mm). In 18 of 25 patients, the needle was identified and guided into the pericardial space with the ColorMark technique, and it allowed successful, uncomplicated drainage of fluid. Initial failures were the result of incorrect settings on the echocardiographic machine and inappropriate combinations of the needle puncture site and imaging window. This study demonstrates a novel color Doppler technique that is highly accurate at localizing a needle tip. The technique is feasible for guiding pericardiocentesis. Further clinical validation of this technique is required.

  2. Low-level motion analysis of color and luminance for perception of 2D and 3D motion.

    PubMed

    Shioiri, Satoshi; Yoshizawa, Masanori; Ogiya, Mistuharu; Matsumiya, Kazumichi; Yaguchi, Hirohisa

    2012-01-01

    We investigated the low-level motion mechanisms for color and luminance and their integration process using 2D and 3D motion aftereffects (MAEs). The 2D and 3D MAEs obtained in equiluminant color gratings showed that the visual system has the low-level motion mechanism for color motion as well as for luminance motion. The 3D MAE is an MAE for motion in depth after monocular motion adaptation. Apparent 3D motion can be perceived after prolonged exposure of one eye to lateral motion because the difference in motion signal between the adapted and unadapted eyes generates interocular velocity differences (IOVDs). Since IOVDs cannot be analyzed by the high-level motion mechanism of feature tracking, we conclude that a low-level motion mechanism is responsible for the 3D MAE. Since we found different temporal frequency characteristics between the color and luminance stimuli, MAEs in the equiluminant color stimuli cannot be attributed to a residual luminance component in the color stimulus. Although a similar MAE was found with a luminance and a color test both for 2D and 3D motion judgments after adapting to either color or luminance motion, temporal frequency characteristics were different between the color and luminance adaptation. The visual system must have a low-level motion mechanism for color signals as for luminance ones. We also found that color and luminance motion signals are integrated monocularly before IOVD analysis, showing a cross adaptation effect between color and luminance stimuli. This was supported by an experiment with dichoptic presentations of color and luminance tests. In the experiment, color and luminance tests were presented in the different eyes dichoptically with four different combinations of test and adaptation: color or luminance test in the adapted eye after color or luminance adaptation. Findings of little or no influence of the adaptation/test combinations indicate the integration of color and luminance motion signals prior to the

  3. Role of Gray Scale, Color Doppler and Spectral Doppler in Differentiation Between Malignant and Benign Thyroid Nodules

    PubMed Central

    Palaniappan, Manoj Kumar; Aiyappan, Senthil Kumar

    2016-01-01

    Introduction High resolution ultrasound is the most sensitive imaging test available for the examination of the thyroid gland and due to increase in use of ultrasound more incidental thyroid nodules are diagnosed. In this study we try to establish the specific grayscale, color and spectral Doppler characteristics of malignant and benign thyroid nodules. Aim To determine the specific gray scale characteristics, angioarchitecture and cut-off values of Doppler indices of malignant and benign thyroid nodules. To assess the efficacy of grayscale, Doppler and combined conventional and Doppler using defined criteria in differentiating malignant from benign nodules. Materials and Methods We prospectively examined 194 thyroid nodules which were confirmed on FNAC. Each nodule was described according to size, number, contents, echogenicity, margins, halo, shape, calcification, local infiltration and lymphnode enlargement. Vascularity, RI and PI values of each nodule were assessed on Doppler. Each nodule was characterized as benign, indeterminate or malignant based on grayscale and Doppler characteristics. Cut-off RI and PI values for malignant thyroid nodules were obtained by ROC. Results Out of 194 nodules, 151 nodules were benign and 43 nodules were malignant. Significant relationship was observed between malignancy and hypoechogenicity, irregular margins, taller than wide, thick incomplete halo, micro calcifications, lymphnode enlargement and local infiltration. Intranodular vascularity was a significant criterion to suggest malignancy in thyroid nodules on color Doppler. Malignant nodules had a mean RI of 0.73 and mean PI of 1.3 which were significantly higher than the benign nodules. Accuracy of detecting malignant thyroid nodules by combining gray scale and Doppler is higher than either of them alone. Conclusion Using specific morphological pattern recognition features like microcalcifications, hypoechogenicity, taller than wide, irregular thick halo, lymphadenopathy

  4. Device to enhance visibility of needle or catheter tip at color Doppler US.

    PubMed

    Cockburn, J F; Cosgrove, D O

    1995-05-01

    The authors tested a device that allows the tip of a needle to be visualized at color Doppler ultrasonography. The device directs an oscillating air column through a 0.016-inch inner-diameter hollow stylet, creating movement at only the needle tip. The movement is reliably and accurately displayed as a beacon of color at depths of 15 cm in vitro.

  5. Fusion of color Doppler and magnetic resonance images of the heart.

    PubMed

    Wang, Chao; Chen, Ming; Zhao, Jiang-Min; Liu, Yi

    2011-12-01

    This study was designed to establish and analyze color Doppler and magnetic resonance fusion images of the heart, an approach for simultaneous testing of cardiac pathological alterations, performance, and hemodynamics. Ten volunteers were tested in this study. The echocardiographic images were produced by Philips IE33 system and the magnetic resonance images were generated from Philips 3.0-T system. The fusion application was implemented on MATLAB platform utilizing image processing technology. The fusion image was generated from the following steps: (1) color Doppler blood flow segmentation, (2) image registration of color Doppler and magnetic resonance imaging, and (3) image fusion of different image types. The fusion images of color Doppler blood flow and magnetic resonance images were implemented by MATLAB programming in our laboratory. Images and videos were displayed and saved as AVI and JPG. The present study shows that the method we have developed can be used to fuse color flow Doppler and magnetic resonance images of the heart. We believe that the method has the potential to: fill in information missing from the ultrasound or MRI alone, show structures outside the field of view of the ultrasound through MR imaging, and obtain complementary information through the fusion of the two imaging methods (structure from MRI and function from ultrasound). PMID:21656081

  6. [Color-coded doppler echocardiography in atrial septal defects].

    PubMed

    Kautzner, J; Kozáková, M; Serf, B; Munclinger, M

    1990-04-20

    The magnitude of a left-to-right shunt in atrial septal defects was evaluated independently in catheterizations of the heart according to saturations and characteristics of the shunt stream in colour-flow Doppler echocardiography. The ratio of the pulmonary and systemic flow (Qp/Qs) assessed in 14 patients with atrial septal defects during catheterization correlated significantly with the maximal breadth (r = 0.8; p less than 0.001) and maximum area (r = 0.78; p less than 0.01) of the visualized shunted stream in transthoracic colour-flow Doppler echocardiography. Examination by means of transoesophageal colour-flow Doppler echocardiography in 8 patients revealed a correlation only with the maximal breadth of the shunted stream (r = 0.95; p less than 0.001). The magnitude of the maximum area of the shunted stream in transthoracic colour-flow Doppler echocardiography made it only possible to differentiate patients with a significant and not significant left-to-right shunt, i.e. Qp/Qs greater or smaller than 1.5:1. All patients with a shunt greater than 1.5:1 had a maximal area of the shunted stream greater than 10 sq.cm or 6 sq.cm/sq.m resp. Colour-flow Doppler echocardiography is a suitable method for the semiquantitative evaluation of the haemodynamic significance of atrial septal defects in adult patients.

  7. [Echo-color Doppler in the study of hypothyroidism in the adult].

    PubMed

    Lagalla, R; Caruso, G; Benza, I; Novara, V; Calliada, F

    1993-09-01

    Color-Doppler US was performed on 20 patients with sub-clinic hypothyroidism which had been confirmed by laboratory tests. In all cases, color-Doppler US showed increased parenchymal flow, whose semiology was similar to the one known as "thyroid inferno" and currently associated, in the literature, with diffuse hyperfunction conditions. Quantitative measurements yielded no further element for differential diagnosis, while showing high flow speeds which were similar to those in hyperfunction. On the basis of consequent physiopathologic considerations, hypervascularization, as observed in hypothyroidism, is likely to be referred to the hypertrophic action of TSH, which was reported as high in all patients. In conclusion, the color-Doppler "thyroid inferno" pattern, which has been to date considered as specific of thyroid hyperfunction, has lost part of its diagnostic specificity, and further investigation--e.g. hormonal titers, scintigraphy--is needed for an unquestionable diagnosis to be made.

  8. Automated assessment of noninvasive filling pressure using color Doppler M-mode echocardiography

    NASA Technical Reports Server (NTRS)

    Greenberg, N. L.; Firstenberg, M. S.; Cardon, L. A.; Zuckerman, J.; Levine, B. D.; Garcia, M. J.; Thomas, J. D.

    2001-01-01

    Assessment of left ventricular filling pressure usually requires invasive hemodynamic monitoring to follow the progression of disease or the response to therapy. Previous investigations have shown accurate estimation of wedge pressure using noninvasive Doppler information obtained from the ratio of the wave propagation slope from color M-mode (CMM) images and the peak early diastolic filling velocity from transmitral Doppler images. This study reports an automated algorithm that derives an estimate of wedge pressure based on the spatiotemporal velocity distribution available from digital CMM Doppler images of LV filling.

  9. Color Doppler sonography in the study of chronic ischemic nephropathy.

    PubMed

    Meola, M; Petrucci, I

    2008-06-01

    In western countries, the risk of cardiovascular disease has increased considerably in recent decades. This trend has been paralleled by an increase in cases of atherosclerotic renal disease, which is related to the improved prognosis of cardiovascular diseases, aging, and the increasing mean age of the general population. It is reasonable to expect that in the near future, there will be a sharp increase in the number of elderly patients with atherosclerotic vascular disease in chronic dialysis programs. The result will be a dramatic rise in the social and economic costs of dialysis that could constitute a true clinical emergency. In this epidemiologic scenario, one of the most important targets of 21st century nephrology will be the early diagnosis of chronic ischemic nephropathy and the development of new and more effective strategies for its treatment.Color Doppler (CD) ultrasonography has displayed high sensitivity, specificity, and positive and negative predictive values in the diagnosis of this disease in selected population, making it an ideal tool for use in screening programs. Eligibility for screening should be based on clinical criteria. For the most part, it will be aimed at adults (especially those who are elderly) with atherosclerotic vascular disease involving multiple districts and chronic kidney disease (CKD), stage 2-3, in the absence of a documented history of renal disease. In these patients, hypertension may be a secondary manifestation or a symptom of the ischemic nephropathy itself. The objectives of sonographic screening should be (1) to identify subjects in the population at risk who are affected by stenosis of the main renal artery (RAS); (2) to identify and characterize patients without RAS who have chronic ischemic nephropathy caused by nephroangiosclerosis and/or atheroembolic disease. The former group will require second-level diagnostic studies or angioplasty with stenting; the latter can be managed conservatively. The most important

  10. Green tagging in displaying color Doppler aliasing: a comparison to standard color mapping in renal artery stenosis.

    PubMed

    Gao, Jing; Mennitt, Kevin; Belfi, Lily; Zheng, Yuan-Yi; Chen, Zong; Rubin, Jonathan M

    2013-11-01

    To quantitatively assess the contrast-to-noise ratio (CNR) of green tagging and standard color flow images in displaying fast flow velocity, we retrospectively reviewed 20 cases of hemodynamically significant renal artery stenosis (RAS) detected by renal color Doppler ultrasound and confirmed with digital subtraction angiography. At the site of RAS, blood flow with high velocity that appeared as aliasing on color flow images was computationally analyzed with both green tagging and standard color mapping. To assess the difference in the CNR between normal background flow and the aliased signal as a function of visualizing aliasing between the two color mappings, we used GetColorpixels (Chongqing Medical University, Chongqing, China) to count the values in the color channels after segmenting color pixels from gray-scale pixels. We then calculated the CNR in each color channel-red, green, and blue (RGB)--in the aliasing region on green tagging and standard color mapping. The CNRs in the red, green and blue channels were 0.35 ± 0.44, 1.11 ± 0.41 and 0.51 ± 0.19, respectively, on standard color mapping, and 0.97 ± 0.80, 4.01 ± 1.36 and 0.64 ± 0.29, respectively, on green tagging. We used a single-factor analysis of variance and two-tailed t-test to assess the difference in CNR in each color channel between the two color mappings at the site of RAS. With these comparisons, there was no significant difference in the CNR in the red or blue channel between green tagging and standard color mapping (p > 0.05). However, there was a statistically significant difference in the CNR in the green channel between the two color mappings (p = 0.00019). Furthermore, the CNR measured in the green channel on the green tagging image was significantly higher than the CNRs in all other color channels on both color mapping images (p = 0.000). Hence, we conclude that green tagging has significantly higher visibility as a function of high-velocity flow than standard color mapping. The

  11. Effect of scanline orientation on ventricular flow propagation: assessment using high frame-rate color Doppler echocardiography

    NASA Technical Reports Server (NTRS)

    Greenberg, N. L.; Castro, P. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    Color M-mode echocardiography has recently been utilized to describe diastolic flow propagation velocity (Vp) in the left ventricle. While increasing temporal resolution from 15 to 200 Hz, this M-mode technique requires the user to select a single scanline, potentially limiting quantification of Vp due to the complex three-dimensional inflow pattern. We previously performed computational fluid dynamics simulations to demonstrate the insignificance of the scanline orientation, however geometric complexity was limited. The purpose of this study was to utilize high frame-rate 2D color Doppler images to investigate the importance of scanline selection in patients for the quantification of Vp. 2D color Doppler images were digitally acquired at 50 frames/s in 6 subjects from the apical 4-chamber window (System 5, GE/Vingmed, Milwaukee, WI). Vp was determined for a set of scanlines positioned through 5 locations across the mitral annulus (from the anterior to posterior mitral annulus). An analysis of variance was performed to examine the differences in Vp as a function of scanline position. Vp was not effected by scanline position in sampled locations from the center of the mitral valve towards the posterior annulus. Although not statistically significant, there was a trend to slower propagation velocities on the anterior side of the valve (60.8 +/- 16.7 vs. 54.4 +/- 13.6 cm/s). This study clinically validates our previous numerical experiment showing that Vp is insensitive to small perturbations of the scanline through the mitral valve. However, further investigation is necessary to examine the impact of ventricular geometry in pathologies including dilated cardiomyopathy.

  12. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    DOE PAGES

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-09-13

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI’s active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals aremore » directed perpendicular to the density fluctuations, SAMI’s 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. Lastly, the results demonstrate encouraging agreement between SAMI and other independent measurements.« less

  13. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    NASA Astrophysics Data System (ADS)

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  14. [Conventional and color Doppler echocardiography in mitral balloon valvotomy].

    PubMed

    Rodrigo, J L; Aubele, A; Alfonso, F; Macaya, C; Fernández Ortiz, A; Zarco, P

    1992-01-01

    With the aim of assessing the value of conventional echocardiography and Doppler and colour Doppler during and in the follow-up of percutaneous mitral valvotomy we have studied prospectively 100 consecutive patients with 1 (90%), 6 (69%) and 12 (53%) months follow-up. Age was 50 years and 80% were women. The single balloon technique was used in 68%, mitral valve area increased from 0.9 +/- 0.2 to 1.8 +/- 0.3 cm2 and decrease in pulmonary artery pressure was 10 +/- 0.05 mmHg. We found that: 1) percutaneous mitral valvotomy produced and acute and transient decrease in left ventricular ejection fraction (pre 69 +/- 9%, post 61 +/- 10% p less than 0.001; 1 month 70 +/- 10; 2) a severe mitral regurgitation appeared in 4% of patients and 17% of patients had a moderate degree of regurgitation after valvotomy; 3) after valvular dilation an increase in the width of the aliasing greater than 29% predicted a successful procedure (final area greater than 1.5 cm2) with a sensibility 80% and specificity 94%, and 4) colour Doppler detected an atrial septal defect immediately after valvular dilation in 77% of patients, and permitted non invasive follow-up of the left to right shunt. At one year a left to right shunt at the atrial level persisted roughly in 1/3 of patients. We conclude that colour Doppler Echocardiography during percutaneous mitral valvotomy is useful for a rapid assessment of the increase in valve area, the detection and quantification of mitral regurgitation induced by valvular dilation and the follow-up in these patients.

  15. Alterations in regional cerebral blood flow in neonatal stroke: preliminary findings with color Doppler sonography.

    PubMed

    Taylor, G A

    1994-01-01

    Little information is available regarding alterations in regional cerebral blood flow and vascularity on cranial sonography in infants with focal ischemic brain injury. This study describes the use of color Doppler sonography in the characterization of these changes following acute neonatal stroke. Color Doppler examinations were performed as part of the series of clinically indicated cranial sonograms in eight infants with clinical, sonographic, and CT evidence of acute cerebral infarction. The cerebral vascularity of each hemisphere was assessed for symmetry and for presence of abnormal blood vessels. Initial Doppler study in four infants with hypoxic-ischemic infarcts showed increased size and number of visible vessels in the periphery of the infarct and increased mean blood flow velocity in vessels supplying or draining the infarcted areas. Diminished vessel number and size and frequency shifts suggestive of decreased hemispheric perfusion was identified in one infant with middle cerebral artery insufficiency. Repeat Doppler studies were performed on two infants. These showed the development of multiple small, irregular blood vessels in the periphery of the infarct. Focal abnormalities in regional cerebral blood flow may be present as part of the normal healing process following neonatal stroke, and can be demonstrated with color Doppler sonography. PMID:7915832

  16. {ital In vivo} bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography

    SciTech Connect

    Izatt, J.A.; Kulkarni, M.D.; Yazdanfar, S.; Barton, J.K.; Welch, A.J.

    1997-09-01

    We describe a novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution and demonstrate its use for {ital in vivo} imaging of blood flow in an animal model. Our technique, color Doppler optical coherence tomography (CDOCT), performs spatially localized optical Doppler velocimetry by use of scanning low-coherence interferometry. CDOCT is an extension of optical coherence tomography (OCT), employing coherent signal-acquisition electronics and joint time-frequency analysis algorithms to perform flow imaging simultaneous with conventional OCT imaging. Cross-sectional maps of blood flow velocity with {lt}50{minus}{mu}m spatial resolution and {lt}0.6{minus}mm/s velocity precision were obtained through intact skin in living hamster subdermal tissue. This technology has several potential medical applications. {copyright} {ital 1997} {ital Optical Society of America}

  17. [Color-coded Doppler in the diagnosis of vascular complications following heart catheterization].

    PubMed

    Alfonso, F; Macaya, C; Goicolea, J; Iñíguez, A; Hernández, R; Bañuelos, C; Alvarez, R; Moreno, R; Aroca, M; Zarco, P

    1992-01-01

    To determine the value of color Doppler in the diagnosis of vascular complications resulting from cardiac catheterization 5 consecutive patients, with the clinical suspicious of vascular iatrogenesis potentially requiring surgical repair, were analyzed. In 2 patients a femoral mass developed after a diagnostic catheterization but 3 patients underwent previously an interventional catheterization technique. In 3 patients color Doppler readily visualized a systolic jet originated in the femoral artery entering an anterior echo-free cavity, and a reversal flow in diastole, suggesting a femoral pseudoaneurysm. In 1 patient the clinical diagnosis of arteriovenous fistulae was confirmed by color Doppler which demonstrated a continuous turbulent flow within the femoral vein. In the remaining patient a diagnosis of simple femoral haematoma was made after the demonstration of a relatively echogenic structure overlying the femoral artery and vein but not interfering with their flows. In the 3 patients with femoral pseudoaneurysms and in the patient with arteriovenous fistulae the diagnosis was confirmed by angiography and during surgery. Our preliminary findings underscore the value of color Doppler, using the technology currently available in echocardiographic laboratories, in the differential diagnosis of vascular complications after cardiac catheterization.

  18. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; Panza, J. A.; Thomas, J. D.

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  19. Ultrasound Color Doppler Image Segmentation and Feature Extraction in MCP and Wrist Region in Evaluation of Rheumatoid Arthritis.

    PubMed

    Snekhalatha, U; Muthubhairavi, V; Anburajan, M; Gupta, Neelkanth

    2016-09-01

    The present study focuses on automatically to segment the blood flow pattern of color Doppler ultrasound in hand region of rheumatoid arthritis patients and to correlate the extracted the statistical features and color Doppler parameters with standard parameters. Thirty patients with rheumatoid arthritis (RA) and their total of 300 joints of both the hands, i.e., 240 MCP and 60 wrists were examined in this study. Ultrasound color Doppler of both the hands of all the patients was obtained. Automated segmentation of color Doppler image was performed using color enhancement scaling based segmentation algorithm. The region of interest is fixed in the MCP joints and wrist of the hand. Features were extracted from the defined ROI of the segmented output image. The color fraction was measured using Mimics software. The standard parameters such as HAQ score, DAS 28 score, and ESR was obtained for all the patients. The color fraction tends to be increased in wrist and MCP3 joints which indicate the increased blood flow pattern and color Doppler activity as part of inflammation in hand joints of RA. The ESR correlated significantly with the feature extracted parameters such as mean, standard deviation and entropy in MCP3, MCP4 joint and the wrist region. The developed automated color image segmentation algorithm provides a quantitative analysis for diagnosis and assessment of RA. The correlation study between the color Doppler parameters with the standard parameters provides moral significance in quantitative analysis of RA in MCP3 joint and the wrist region.

  20. Correlations between nonperfused ratio immediately after MRgFUS and color flow Doppler around uterine myomas

    NASA Astrophysics Data System (ADS)

    Funaki, Kaoru; Fukunishi, Hidenobu

    2010-03-01

    Objective: To examine the relationship between color flow Doppler indices and MRgFUS ablation effect. Materials and Methods: This study includes forty-seven myoma patients who underwent magnetic resonance-guided focused ultrasound surgery (MRgFUS). Single myoma was treated in 27 patients, and two or more myomas were treated at once in 20 patients. All patients were assessed color flow Doppler of peri-myoma artery just before MRgFUS procedure. Peak velocity, pulsatility index (PI), resistant index (RI) were measured. Treated area ratio was defined as nonperfused ratio of each ablated myoma immediately after MRgFUS. The treated area ratio is considered as an assumed ablation area, and the relationship between color flow Doppler indices and treated area ratio were examined respectively. We have already reported that high-intensity myomas (type-3) on pretreatment T2-weighted MR imaging are less effectively treated by MRgFUS than low- (type-1) and intermediate- (type-2) intensity myomas, therefore, as of today, we ceased to treat type-3 myomas. We also compared the color flow Doppler indices based on myoma type. Results: This study included 19 type-1 patients and 28 type-2 patients. Peak velocity, PI and RI were almost the same regardless of the myoma type. In cases where multiple myomas were targeted, we investigated only the largest myoma; the treated myoma volumes were 248.9±196.5 cm3 (mean±standard deviation) and treated area ratios were 59.8±18.0%. Mild correlation between RI and treated area ratio was observed (r = 0.30), however no relations were found for peak velocity and PI. Conclusion: The peripheral artery color flow Doppler of myoma correlates with NPR immediately after MRgFUS. Abundant blood flow is one of the predictive factors of poor ablation after MRgFUS.

  1. Evaluation of bovine luteal blood flow by using color Doppler ultrasonography.

    PubMed

    Lüttgenau, J; Bollwein, H

    2014-04-01

    Since luteal vascularization plays a decisive role for the function of the corpus luteum (CL), the investigation of luteal blood flow (LBF) might give valuable information about the physiology and patho-physiology of the CL. To quantify LBF, usually Power mode color Doppler ultrasonography is used. This method detects the number of red blood cells moving through the vessels and shows them as color pixels on the B-mode image of the CL. The area of color pixels is measured with computer-assisted image analysis software and is used as a semiquantitative parameter for the assessment of LBF. Although Power mode is superior for the evaluation of LBF compared to conventional color Doppler ultrasonography, which detects the velocity of blood cells, it is still not sufficiently sensitive to detect the blood flow in the small vessels in the center of the bovine CL. Therefore, blood flow can only be measured in the bigger luteal vessels in the outer edge of the CL. Color Doppler ultrasonographic studies of the bovine estrous cycle have shown that plasma progesterone (P4) concentration can be more reliably predicted by LBF than by luteal size (LS), especially during the CL regression. During the midluteal phase, cows with low P4 level showed smaller CL, but LBF, related to LS, did not differ between cows with low and high P4 levels. In contrast to non-pregnant cows, a significant rise in LBF was observed three weeks after insemination in pregnant cows. However, LBF was not useful for an early pregnancy diagnosis due to high LBF variation among cows. When the effects of an acute systemic inflammation and exogenous hormones on the CL are examined, the LBF determination is more sensitive than LS assessment. In conclusion, color Doppler ultrasonography of the bovine CL provides additional information on luteal function compared to measurements of LS and plasma P4, but its value as a parameter concerning assessment of fertility in cows has to be clarified.

  2. Joint Doppler frequency, 2D-DOD and 2D-DOA estimation for bistatic MIMO radar in spatial coloured noise

    NASA Astrophysics Data System (ADS)

    Xu, Lingyun; Zhang, Xiaofei; Xu, Zongze; Zeng, Xianwei; Yao, Fuqiang

    2015-06-01

    In this paper, we address the problem of four-dimensional angle and Doppler frequency estimation for L-shaped bistatic multiple input multiple output radar in spatial coloured noise. A novel method of joint estimation of Doppler frequency, two-dimensional direction of departure and two-dimensional direction of arrival based on the propagator method is discussed. Utilising the cross-correlation matrix which is formed by the adjacent outputs of matched filter in the time domain, the special matrix is constructed to eliminate the influence of spatial coloured noise. The proposed algorithm provides lower computational complexity and has very close parameter estimation to the estimation of signal parameters via rotational invariance techniques algorithm and DOA-matrix algorithm in high signal-to-noise ratio and Cramér-Rao bound is given. Furthermore, multidimensional parameters can be automatically paired by this algorithm to avoid the performance degradation resulting from wrong pairing. Numerical simulation results demonstrate the effectiveness of the proposed method.

  3. Role of color-Doppler US in the evaluation of scrotal edema.

    PubMed

    Quiligotti, Caterina; Merico, Valentina; Bortolotto, Chandra

    2013-10-10

    Ultrasound (US) examination in combination with color-Doppler US is the imaging modality of choice for evaluating the scrotum. Scrotal conditions are generally divided into testicular and extratesticular disorders; the latter may affect the epididymis, the spermatic cord, the tunica vaginalis, the skin and the subcutaneous tissue. The embryology of the scrotal contents is complex and has a number of anatomical and clinical consequences. We present the case of a patient with extraosseous Ewing's sarcoma of the thigh and ipsilateral scrotal swelling caused by lymphatic edema secondary to inguinal lymph node involvement. US combined with color-Doppler allowed differentiation between lymphoma or neoplastic involvement and lymphedema or vascular edema. If the US operator is thoroughly familiar with the scrotal lymphatic and vascular system, US imaging can help identify the pathogenesis of the edema and provide the clinicians and surgeons with important information.

  4. Image analysis of placental issues using three-dimensional ultrasound and color power doppler

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Cheng, Qiong; Liu, J. G.

    2007-12-01

    With the development of birthing-process medical science, and insurance requirement of prepotency, the ultrasound technique is widely used in the application of obstetrics realm, especially on the monitoring of embryo's growth. In the recent decade, the introduction of high resolution three-dimensional ultrasonic and color power Doppler scanner provides a much more direct, sensitive, forerunner method for the monitoring of embryo and gravida's prediction. A novel method that depends on examining images of vasculature of placenta to determine the growth of embryo is introduced in this paper. First, get a set of placenta vascularity images of the pregnant woman, taken by Color Doppler Ultrasonic Scanner, then mark some points in these images, where we get a section image, thus we can observe the internal blood vessel distribution at those points. This method provides an efficient tool for doctors.

  5. Detection of a lumbar foraminal venous varix by Color Doppler Ultrasound.

    PubMed

    Darrieutort-Laffite, Christelle; Desal, Hubert; Berthelot, Jean-Marie; Le Goff, Benoît

    2016-07-01

    Ultrasonography is currently widely used in the rheumatology practice. Although mainly performed to study peripheral joint, several articles have underlined its interest to study spinal anatomy. However, its ability to provide diagnostic features is unknown. We studied the case of a 25-year-old woman having low back pain. Three different imaging modalities (Computed Tomography [CT], Magnetic Resonance Imaging [MRI] and Ultrasound) were used to explore it. CT and MRI showed a foraminal dilation of the lombo-ovarian vein at the L3-L4 level with a scalloping of the lateral edge of L3. We were able to detect it with Color Doppler Ultrasound and a malformation of the inferior vena cava was also found. We showed for the first time that Color Doppler Ultrasound can detect venous malformation of the spine. This imaging modality could help us in the diagnosis of atypical lesions of the spine to confirm their vascular origin. PMID:27068620

  6. Temperature-dependent ultrasound color flow Doppler imaging in the study of a VX2 tumor in rabbits: preliminary findings.

    PubMed

    Shmulewitz, A; Teefey, S A; Coldwell, D; Starr, F L

    1993-01-01

    Neovascularity in a VX2 carcinoma in rabbit liver was detectable, using an ultrasonic color Doppler flow imager. Intraportal infusion of heated saline increased the fractional area of color flow Doppler signals by at least 5% and as much as 30%, within and surrounding the tumors of all six rabbits studied. The effect of the fluid load was an increase in fractional area of color flow Doppler signals by 5 to 20% and was determined by the measurements following infusion and return to baseline temperature. The largest increment in color Doppler signal was observed in peritumoral vessels (10-40%). In contrast, the fractional area of color-coded pixels within the tumor was only slightly higher or lower (5-10%) at the peak temperature than at the baseline measurements. The temperature within the tumors was as much as 1 degree lower than parenchymal tissue in all animals measured. This was presumably due to the portal vein blood supply to normal tissue and predominantly hepatic artery supply to the pathological tissue. High velocities and persistent bidirectional flow were observed within the tumors only at the peak temperatures (> 43.5 degrees C). This experiment suggests that thermal stress may enhance tumor detectability by color Doppler imaging. Further development of a quantitative analysis method for color Doppler studies is needed. PMID:8511828

  7. Role of ultrasonography with color-Doppler in diagnosis of penile Mondor's disease.

    PubMed

    Dell'Atti, Lucio

    2014-09-01

    Penile Mondor's disease (superficial thrombophlebitis of the penis dorsal vein) is an uncommon and benign pathology that affects sexually active men. Although the diagnosis is made by physical examination in most patients, sonography may be required in some cases. Color-Doppler ultrasonography clearly visualizes dorsal vein thrombosis and the associated hemodynamic alterations. We describe the symptoms, the sonographic findings and treatment of this disease in a 26-year-old male with superficial thrombophlebitis of the penis dorsal vein.

  8. Role of color Doppler in differentiation of Graves' disease and thyroiditis in thyrotoxicosis

    PubMed Central

    Donkol, Ragab Hani; Nada, Aml Mohamed; Boughattas, Sami

    2013-01-01

    AIM: To evaluate the role of thyroid blood flow assessment by color-flow Doppler ultrasonography in the differential diagnosis of thyrotoxicosis and compare it to technetium pertechnetate thyroid scanning. METHODS: Twenty-six patients with thyrotoxicosis were included in the study. Clinical history was taken and physical examination and thyroid function tests were performed for all patients. Thyroid autoantibodies were measured. The thyroid glands of all patients were evaluated by gray scale ultrasonography for size, shape and echotexture. Color-flow Doppler ultrasonography of the thyroid tissue was performed and spectral flow analysis of both inferior thyroid arteries was assessed. Technetium99 pertechnetate scanning of the thyroid gland was done for all patients. According to thyroid scintigraphy, the patients were divided into two groups: 18 cases with Graves’ disease and 8 cases with Hashimoto’s thyroiditis. All patients had suppressed thyrotropin. The diagnosis of Graves’ disease and Hashimoto’s thyroiditis was supported by the clinical picture and follow up of patients. RESULTS: Peak systolic velocities of the inferior thyroid arteries were significantly higher in patients with Graves’ disease than in patients with thyroiditis (P = 0.004 in the right inferior thyroid artery and P = 0.001 in left inferior thyroid artery). Color-flow Doppler ultrasonography parameters demonstrated a sensitivity of 88.9% and a specificity of 87.5% in the differential diagnosis of thyrotoxicosis. CONCLUSION: Color Doppler flow of the inferior thyroid artery can be used in the differential diagnosis of thyrotoxicosis, especially when there is a contraindication of thyroid scintigraphy by radioactive material in some patients. PMID:23671754

  9. The efficacy of magnetic resonance imaging and color Doppler ultrasonography in diagnosis of salivary gland tumors.

    PubMed

    Davachi, Behrooz; Imanimoghaddam, Mahrokh; Majidi, Mohamad Reza; Sahebalam, Ahmad; Johari, Masoomeh; Javadian Langaroodi, Adineh; Shakeri, Mohamad Taghi

    2014-01-01

    Background and aims. Although salivary gland tumors are not very common, early diagnosis and treatment is crucial because of their proximity to vital organs, and therefore, determining the efficacy of new imaging procedures becomes important. This study aimed to evaluate the efficacy of magnetic resonance imaging (MRI) and color doppler ultrasonography parameters in the diagnosis and differentiation of benign and malignant salivary gland tumors. Materials and methods. In this cross-sectional study, color doppler ultrasonography and MRI were performed for 22 patients with salivary gland tumor. Demographic data as well as MRI, color doppler ultrasonography, and surgical parameters including tumor site, signal in MRI images, ultrasound echo, tumor border, lymphadenopathy, invasion, perfusion, vascular resistance index (RI), vascular pulse index (PI) were analyzed using Chi-square test, Fisher's exact test, and independent t-test. Results. The mean age of patients was 46.59±13.97 years (8 males and 14females). Patients with malignant tumors were older (P < 0.01). The most common tumors were pleomorphic adenoma (36.4%), metastasis (36.4%), and mucoepidermoid carcinoma (9%). Nine tumors (40.9%) were benign and 13 (59.1%) were malignant. The overall accuracy of MRI and color doppler ultrasonography in determining tumor site was 100% and 95%, respectively. No significant difference observed between RI and PI and the diagnosis of tumor. Conclusion. Both MRI and ultrasonography have high accuracy in the localization of tumors. Well-identified border was a sign of benign tumors. Also, invasion to adjacent structures was a predictive factor for malignancy.

  10. Diagnostic efficacy of color Doppler ultrasound in evaluation of cervical lymphadenopathy

    PubMed Central

    Misra, Deepankar; Panjwani, Sapna; Rai, Shalu; Misra, Akansha; Prabhat, Mukul; Gupta, Prashant; Talukder, Subrata K.

    2016-01-01

    Background: To evaluate the efficacy of color Doppler ultrasound (CDUS) in differentiating benign and malignant cervical lymph nodes by detecting differences in blood flow patterns. Materials and Methods: In this cross-sectional prospective study, 25 untreated patients with clinical evidence of cervical lymphadenopathy were evaluated. CDUS was performed for 80 cervical lymph nodes. The gray scale parameters of the lymph node and intranodal perfusion sites were the key CDUS features used to differentiate between reactive and metastatic lymph nodes. Histopathological confirmations were obtained and compared with the results of CDUS. Results: Initially, 53 cervical lymph nodes were evaluated by clinical examination. Twenty-seven additional lymph nodes (53 + 27 = 80) were discovered by CDUS evaluation. Gray scale parameters for lymph nodes such as size of lymph node, shape of lymph node, and presence or absence of hilum revealed highly significant results (P < 0.0001). Color Doppler flow signals revealed that central/hilar flow was characteristic for benign nodes whereas peripheral/mixed flow was characteristic for malignant nodes, the findings were highly significant (P < 0.0001). Gray scale and color Doppler features are used to differentiate benign and malignant nodes. Conclusion: Within the limitations of this study, CDUS evaluation was found to be highly significant with a high sensitivity and specificity over clinical evaluation CDUS examination provides a prospect to reduce the need for biopsy/fine needle aspiration cytology in reactive nodes. PMID:27274341

  11. Three-dimensional color Doppler reconstruction of intracardiac blood flow in patients with different heart valve diseases.

    PubMed

    De Simone, R; Glombitza, G; Vahl, C F; Meinzer, H P; Hagl, S

    2000-12-15

    An improved perception of the magnitude and dynamics of intracardiac flow disturbances has been made possible by the advent of 3-dimensional (3-D) color Doppler, a new diagnostic procedure developed at our institution. This study describes the new insights derived from 3-D reconstruction of color Doppler flow patterns in patients with different heart valve diseases. The color Doppler flow data from 153 multiplanar transesophageal or transthoracic echocardiographic examinations has been obtained from 133 patients with heart valve disease; 73 patients had mitral regurgitation, 15 had mitral stenosis, 18 had aortic regurgitation, 26 had aortic stenosis, and 21 patients had tricuspid regurgitation. Four patients had pulmonary regurgitation associated with mitral valve disease. The 3-D reconstructions of color Doppler flow signals were accomplished by means of the "Heidelberg Raytracing model," developed at our institution. The 3-D color Doppler reconstructions were obtained in all patients. The 3-D images revealed for the first time the complex spatial distribution of the blood flow abnormalities in the heart chambers caused by different heart valve diseases. New patterns of intracardiac blood flow disturbances were observed and classified. Three-dimensional color Doppler provides a unique noninvasive method that can be easily applied for studying intracardiac blood flow disturbances in clinical practice. PMID:11113410

  12. Gender-related differences in physiologic color space: a functional transcranial Doppler (fTCD) study

    PubMed Central

    2011-01-01

    Simultaneous color contrast and color constancy are memory processes associated with color vision, however, the gender-related differences of 'physiologic color space' remains unknown. Color processing was studied in 16 (8 men and 8 women) right-handed healthy subjects using functional transcranial Doppler (fTCD) technique. Mean flow velocity (MFV) was recorded in both right (RMCA) and left (LMCA) middle cerebral arteries in dark and white light conditions, and during color (blue and yellow) stimulations. The data was plotted in a 3D quadratic curve fit to derive a 'physiologic color space' showing the effects of luminance and chromatic contrasts. In men, wavelength-differencing of opponent pairs (yellow-blue) was adjudged by changes in the RMCA MFV for Yellow plotted on the Y-axis, and the RMCA MFV for Blue plotted on the X-axis. In women, frequency-differencing for opponent pairs (blue-yellow) was adjudged by changes in the LMCA MFV for Yellow plotted on the Y-axis, and the LMCA MFV for Blue plotted on the X-axis. The luminance effect on the LMCA MFV in response to white light with the highest luminous flux, was plotted on the (Z - axis), in both men and women. The 3D-color space for women was a mirror-image of that for men, and showed enhanced color constancy. The exponential function model was applied to the data in men, while the logarithmic function model was applied to the data in women. Color space determination may be useful in the study of color memory, adaptive neuroplasticity, cognitive impairment in stroke and neurodegenerative diseases. PMID:21310045

  13. The flail mitral valve: echocardiographic findings by precordial and transesophageal imaging and Doppler color flow mapping.

    PubMed

    Himelman, R B; Kusumoto, F; Oken, K; Lee, E; Cahalan, M K; Shah, P M; Schiller, N B

    1991-01-01

    To determine the echocardiographic and Doppler characteristics of mitral regurgitation associated with a flail mitral valve, precordial and transesophageal echocardiography with pulsed wave and Doppler color flow mapping was performed in 17 patients with a flail mitral valve leaflet due to ruptured chordae tendineae (Group I) and 22 patients with moderate or severe mitral regurgitation due to other causes (Group II). Echocardiograms were performed before or during cardiac surgery; cardiac catheterization was also performed in 28 patients (72%). Mitral valve disease was confirmed at cardiac surgery in all patients. By echocardiography, the presence of a flail mitral valve leaflet was defined by the presence of abnormal mitral leaflet coaptation or ruptured chordae. Using these criteria, transesophageal imaging showed a trend toward greater sensitivity and specificity than precordial imaging in the diagnosis of flail mitral valve leaflet. By Doppler color flow mapping, a flail mitral valve leaflet was also characterized by an eccentric, peripheral, circular mitral regurgitant jet that closely adhered to the walls of the left atrium. The direction of flow of the eccentric jet in the left atrium distinguished a flail anterior from a flail posterior leaflet. By transesophageal echocardiography with Doppler color flow mapping, the ratio of mitral regurgitant jet arc length to radius of curvature was significantly higher in Group I than Group II patients (5.0 +/- 2.3 versus 0.7 +/- 0.6, p less than 0.001); all of the Group I patients and none of the Group II patients had a ratio greater than 2.5.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Planning digital artery perforators using color Doppler ultrasonography: A preliminary report.

    PubMed

    Shintani, Kosuke; Takamatsu, Kiyohito; Uemura, Takuya; Onode, Ema; Okada, Mitsuhiro; Kazuki, Kenichi; Nakamura, Hiroaki

    2016-05-01

    Digital artery perforator (DAP) flaps have been applied for the coverage of finger soft tissue defects. Although an advantage of this method is that there is no scarification of the digital arteries, it is difficult to identify the location of the perforators during intraoperative elevation of the DAP flap. In this study, anatomically reliable locations of DAPs were confirmed using color Doppler ultrasonography (US) in healthy volunteers. A successful case using an adiposal-only DAP flap for the coverage of a released digital nerve using preoperative DAP mapping with color Doppler US is also described. A total of 40 digital arteries in 20 fingers of the right hands of five healthy volunteers (mean age: 32.2 years old) were evaluated. The DAPs were identified using color flow imaging based on the beat of the digital artery in the short axial view. In total, 133 perforators were detected, 76 (an average of 3.8 per finger) arising from the radial digital artery and 57 (an average of 2.9 per finger) arising from ulnar digital artery. Sixty-three perforators (an average of 3.2 per finger) in the middle phalanges and 70 (an average of 3.5 per finger) in the proximal phalanges were found. Overall, an average of 1.7 perforators from each digital artery was detected in the proximal or middle phalanges. Moreover, at least one DAP per phalanx was reliably confirmed using color Doppler US. Preoperative knowledge of DAP mapping could make elevating the DAP flap easier and safer.

  15. Noninvasive color Doppler sonography of uterine blood flow throughout pregnancy in sheep and goats.

    PubMed

    Elmetwally, M; Rohn, K; Meinecke-Tillmann, S

    2016-04-01

    In contrast to cattle or horses, uterine blood flow in small ruminants has been investigated predominantly after surgical intervention and chronic instrumentation. The objective of the present study was to investigate the clinical applicability of noninvasive color Doppler sonography to characterize blood flow in the maternal uterine artery of sheep, n = 11 (18 pregnancies) and goats, n = 11 (20 pregnancies). The following parameters were measured transrectally or transabdominally: blood flow volume, time-averaged maximum velocity (TAMV), resistance index (RI), pulsatility index (PI), Time-averaged mean velocity, impedance of blood flow (AB or systolic/diastolic [S/D] velocity ratio), peak velocity of blood flow and blood flow acceleration. Examinations started 2 weeks after breeding and continued at 2-week intervals until parturition. Outcomes for sheep and goats were similar and will be discussed together. Based on noninvasive color Doppler sonography, blood flow volume increased (approximately 60-fold, P < 0.0001) until the end of pregnancy, with a rapid increase early in gestation, and a slow increase after week 18. Time-averaged maximum velocity in the uterine artery increased (approximately 4-fold; P < 0.0001) throughout pregnancy in sheep and goats. Furthermore, for uterine artery blood flow, there was an effect of stage of pregnancy on PI and RI (P < 0.001 and P < 0.0001, respectively), both indices decreased until the end of gestation. Time-averaged mean velocity decreased from week 18 to 20 in both species. The blood flow acceleration increased (P < 0.0001) until week 16 and week 14 in sheep and goats, respectively, and then decreased until parturition. Similar to PI and RI, vascular impedance of the uterine decreased (P < 0.0001) throughout pregnancy. This is apparently the first study using noninvasive color Doppler sonography of uterine blood flow throughout physiological pregnancy in small ruminants. Clearly, this technology facilitates repeated

  16. Color Doppler provides a reliable and rapid means of monitoring luteolysis in female donkeys.

    PubMed

    Miró, J; Vilés, K; Anglada, O; Marín, H; Jordana, J; Crisci, A

    2015-03-01

    When artificial reproduction technologies designed for use with horses are used with donkeys, success is dependent on awareness of the physiological differences between these species, yet little information is available on many aspects of donkey reproduction. The present work examines the activity of the CL in Catalonian jennies after induced luteolysis. Plasma progesterone concentration, luteal blood flow (determined by color Doppler), and CL cross-sectional area (CL-CSA; determined by B-mode ultrasound examination) were assessed after a single dose (5 mg intramuscular) of dinoprost thromethamine (DT, a PGF2α analog) on Day 10 after ovulation in two experiments. In experiment 1, a preliminary experiment, data were collected daily for 4 days after DT administration. Values for all the measured variables decreased over this period. In experiment 2, data were collected during the first 24 hours after DT administration because in experiment 1, most luteolytic activity occurred during this time. An increase in luteal blood flow was seen between 0 and 3 hours, followed by a progressive reduction, whereas the values for plasma progesterone and CL-CSA gradually decreased from 0 hours onward. In both studies, negative correlations were seen between all variables and the time of sampling. In contrast, positive correlations were seen between plasma progesterone, CL-CSA, uterine tone, and luteal blood flow. Indeed, a strong correlation was recorded between plasma progesterone and luteal blood flow (r = 0.70; P < 0.0001). In conclusion, plasma progesterone and CL-CSA both become reduced after induced luteolysis in Catalonian jennies. Unlike in mares, an increase in luteal blood flow occurs soon after induced luteolysis, rather like that seen in the cow. The luteal blood flow, as evaluated here by color Doppler, was also closely related to the plasma progesterone concentration. Color Doppler would appear therefore to offer a rapid and easy means of examining the state

  17. Anatomical Origins of Radial Artery Perforators Evaluated Using Color Doppler Ultrasonography.

    PubMed

    Onode, Ema; Takamatsu, Kiyohito; Shintani, Kosuke; Yokoi, Takuya; Uemura, Takuya; Okada, Mitsuhiro; Kazuki, Kenichi; Nakamura, Hiroaki

    2016-10-01

    Background The radial artery perforator (RAP) flap has been widely used for covering hand and forearm defects, and real-time accurate perforator mapping is important in planning and elevating the perforator flap. The origins of perforators, especially the superficial and ulnar perforators, arising from the radial artery are very important in the elevation of the RAP flap. Recently, color Doppler ultrasonography (US) using a higher frequency transducer has been developed for high-quality detection of lower flow in smaller vessels. This study aimed to identify the anatomical locations and origins of perforators arising from the radial artery using color Doppler US in healthy volunteers. Methods Twenty forearms of 10 volunteers were examined. Results In total, 120 perforators arising from the radial artery were identified 15 cm proximal to the distal wrist crease, with an average of six perforators per forearm. More than half the perforators (n = 72, 60%) were located within 50 mm proximal to the distal wrist crease. Regarding the perforator origins in the axial view, 40 perforators (33%) were located in the radial aspect of the radial artery, 47 (39%) in the ulnar aspect, 15 (13%) in the superficial aspect, and 18 (15%) in the deep aspect. In total, 62 (52%) perforators were located in the superficial and ulnar areas, which are important in nourishing and elevating the RAP flap. Conclusion We are the first to evaluate RAP using color Doppler US. This noninvasive, convenient, and real-time technique could be useful for preoperative planning and reliably elevating the RAP flaps. PMID:27276199

  18. In-vivo imaging of blood flow dynamics using color Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2000-04-01

    Noninvasive quantitation of blood flow in the retinal micro circulation may elucidate the progression and treatment of ocular disorders including diabetic retinopathy, age-related degeneration, and glaucoma. Color Doppler optical coherence tomography was recently introduced as a technique allowing simultaneous micron-scale resolution cross-sectional imaging of tissue micro structure and blood flow in the human retina. Here, time-resolved imaging of dynamics of blood flow profiles was performed to measure cardiac pulsatility within retinal vessels. Retinal pulsatility has been shown to decrease throughout the progression of diabetic retinopathy.

  19. Thermal effects in the 2D and 3D laser material marking and coloring

    NASA Astrophysics Data System (ADS)

    Sterian, P.; Mocanu, E.

    2008-06-01

    The objective of this paper is to analyze two marking laser systems and to discuss the possible industrial applications of laser techniques; the first uses a diode pumped Ytterbium fiber laser and the second a pumped flash light Nd:YAG. Starting from the phenomena of heating due to laser irradiation and the spatial profile of deposited energy we try to explain the marking technique, including the laser-assisted coloring by studying the dynamics and the evolution of the parameters involved in this process. Also we emphasize the industrial importance of the laser possibilities compared to classical methods.

  20. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    PubMed Central

    Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly; Robinson, Joshua D.; Markl, Michael

    2015-01-01

    Background Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. Objectives The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Materials and methods Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1±6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Results Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r=0.97, P<0.001) and excellent correlation with good agreement was found for regurgitant fraction (r= 0.88, P<0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P= 0.032) and MPA (P<0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P=0

  1. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging

    SciTech Connect

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-14

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ∼243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ∼243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ∼243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H{sup +} images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

  2. [Echotomography and color-Doppler in the diagnosis of thyroid carcinoma].

    PubMed

    Messina, G; Viceconti, N; Trinti, B

    1996-01-01

    Ultrasound examination of the thyroid gland is used extensively in the diagnosis of thyroid carcinoma: it is easy and rapid to perform and widely available. Ultrasound enables easy identification of the image of disease foci within the gland, especially when high frequency probes (7.5-10 MHz) are used. Thyroid nodules are subdivided on the basis of their echostructure into hypoechoic solid, isoechoic solid, and hyperechoic solid, mixed, and liquid. In neoplastic pathologies, a hypoechoic echostructure is not pathognomonic of malignancy but must be regarded with suspicion, especially if it is an isolated nodule in a male patient and continues to grow during suppressive therapy. In fact, thyroid neoplasms evidence a hypoechoic echostructure in 60-70% of the cases, while a hyperechoic echostructure is present in only 2-4%. Only 15-25% of neoplasms appear as isoechoic nodules; a mixed echostructure is rarely (5-10% of the cases) seen. Color-Doppler patterns are classified into four types: I) nodules without internal or perinodular vascularization; II) nodules with vascularization confined to extranodular tissue; III) nodules with significant intra- and perinodular vascularization; IV) increased vascularization (or "thyroid inferno"). The vast majority of thyroid carcinoma (90%) presents type III vascularization. We therefore suggest the routine use of ultrasonography and color-Doppler studies in conjunction with fine-needle aspiration cytology for the diagnostic evaluation of thyroid carcinoma.

  3. [Preoperative diagnosis using color Doppler flowmetry in focal and diffuse thyroid pathology].

    PubMed

    Alberti, A; Giannetto, G; Basile, G; Dattola, A; Basile, M

    1999-01-01

    Color-doppler was first used in the study and classification of specific pathologies in 1992. One hundred and eighteen patients with focal and diffuse thyroid pathologies underwent color-doppler, flowmetry analysis and peak systolic velocity measurement (CD-FM-PSV). The PSV results allowed us to identify two subclasses a and b in class three and four (a: = < or = 30 cm/sec., b: = > 30 cm/sec.). Class 3a and 3b lesions are the most likely to represent neoplastic nodules. Based on our results, we assigned 58 patients to type 2 (follicular hyperplasia), 20 patients to type 3a (follicular adenoma and carcinomas), 16 patients to type 3b (carcinomas and Plummer's adenoma), 15 patients to type 4a (autoimmune thyroiditis and hypothyroidism) and 12 patients to type 4b (Graves' disease). Preliminary results were compared with FNAB, intra-operative and post-operative histological data. The specificity of CD-FM-PSV in diagnosis is 86%. We have concluded that CD-FM-PSV is an effective imaging technique for pre-operative diagnosis of thyroid pathologies and along with FNAB, a adequate predictive tool for thyroid nodules.

  4. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging

    NASA Astrophysics Data System (ADS)

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-01

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ˜243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ˜243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ˜243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H+ images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

  5. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging.

    PubMed

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-14

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ~243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ~243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ~243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H(+) images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation. PMID:24320267

  6. In vivo lung microvasculature visualized in three dimensions using fiber-optic color Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Anthony M. D.; Ohtani, Keishi; MacAulay, Calum; McWilliams, Annette; Shaipanich, Tawimas; Yang, Victor X. D.; Lam, Stephen; Lane, Pierre

    2013-05-01

    For the first time, the use of fiber-optic color Doppler optical coherence tomography (CDOCT) to map in vivo the three-dimensional (3-D) vascular network of airway segments in human lungs is demonstrated. Visualizing the 3-D vascular network in the lungs may provide new opportunities for detecting and monitoring lung diseases such as asthma, chronic obstructive pulmonary disease, and lung cancer. Our CDOCT instrument employs a rotary fiber-optic probe that provides simultaneous two-dimensional (2-D) real-time structural optical coherence tomography (OCT) and CDOCT imaging at frame rates up to 12.5 frames per second. Controlled pullback of the probe allows 3-D vascular mapping in airway segments up to 50 mm in length in a single acquisition. We demonstrate the ability of CDOCT to map both small and large vessels. In one example, CDOCT imaging allows assignment of a feature in the structural OCT image as a large (˜1 mm diameter) blood vessel. In a second example, a smaller vessel (˜80 μm diameter) that is indistinguishable in the structural OCT image is fully visualized in 3-D using CDOCT.

  7. Local intense mosaic pattern at site of flail mitral leaflet: report of a new color Doppler sign.

    PubMed

    Khouzam, Rami N; D'Cruz, Ivan A; Minderman, Daniel; Kaiser, Jacqueline

    2005-10-01

    Color flow Doppler has been useful in diagnosing the presence and severity of mitral regurgitation (MR). We noted a hitherto unreported sign of MR due to flail mitral leaflet: intense local mosaic pattern at the site of the flail leaflet. This sign was seen well in 11 of 14 patients (79%) with the two-dimensional echocardiographic features of flail mitral leaflet, all with moderate or severe MR. In 3 other patients, the sign was absent; two of those had flail mitral leaflet with severe MR. No local mosaic pattern was seen on color Doppler in 20 other patients with MR but no flail mitral leaflet. We speculate that the focal intense mosaic color Doppler morphology may have been caused by intrusion of the flail leaflet into the MR stream, or to a Coanda-like effect of the MR jet "adhering" to the flail leaflet. PMID:16194168

  8. Longitudinal left ventricular myocardial dysfunction assessed by 2D colour tissue Doppler imaging in a dog with systemic hypertension and severe arteriosclerosis.

    PubMed

    Nicolle, A P; Carlos Sampedrano, C; Fontaine, J J; Tessier-Vetzel, D; Goumi, V; Pelligand, L; Pouchelon, J-L; Chetboul, V

    2005-03-01

    A 12-year-old sexually intact male Vendee Griffon Basset was presented for acute pulmonary oedema. Severe systemic systolic arterial hypertension (SAH) was diagnosed (290 mmHg). Despite blood and abdominal ultrasound tests, the underlying cause of the systemic hypertension could not be determined, and primary SAH was therefore suspected. Conventional echocardiography showed eccentric left ventricular hypertrophy with normal fractional shortening. Despite this apparent normal systolic function, 2D colour tissue Doppler imaging (TDI) identified a marked longitudinal systolic left ventricular myocardial alteration, whereas radial function was still preserved. Three months later, the dog underwent euthanasia because of an acute episode of distal aortic thromboembolism. Necropsy revealed severe aortic and iliac arteriosclerosis. SAH related to arteriosclerosis is a common finding in humans, but has not been previously described in dogs. Moreover, its consequence on longitudinal myocardial function using TDI has never been documented before in this species.

  9. [Ultrasound and color Doppler applications in nephrology. The normal kidney: anatomy, vessels and congenital anomalies].

    PubMed

    Meola, Mario; Petrucci, Ilaria; Giovannini, Lisa; Samoni, Sara; Dellafiore, Carolina

    2012-01-01

    Gray-scale ultrasound is the diagnostic technique of choice in patients with suspected or known renal disease. Knowledge of the normal and abnormal sonographic morphology of the kidney and urinary tract is essential for a successful diagnosis. Conventional sonography must always be complemented by Doppler sampling of the principal arterial and venous vessels. B-mode scanning is performed with the patient in supine, prone or side position. The kidney can be imaged by the anterior, lateral or posterior approach using coronal, transverse and oblique scanning planes. Morphological parameters that must be evaluated are the coronal diameter, the parenchymal thickness and echogenicity, the structure and state of the urinary tract, and the presence of congenital anomalies that may mimic a pseudomass. The main renal artery and the hilar-intraparenchymal branches of the arterial and venous vessels should be accurately evaluated using color Doppler. Measurement of intraparenchymal resistance indices (IP, IR) provides an indirect and quantitative parameter of the stiffness and eutrophic or dystrophic remodeling of the intrarenal microvasculature. These parameters differ depending on age, diabetic and hypertensive disease, chronic renal glomerular disease, and interstitial, vascular and obstructive nephropathy.

  10. Three-Dimensional Color/Power Doppler Sonography and HD live Silhouette Mode for Diagnosis of Molar Pregnancy.

    PubMed

    AboEllail, Mohamed Ahmed Mostafa; Ishimura, Mari; Sajapala, Suraphan; Yamamoto, Kenta; Tanaka, Tamaki; Nitta, Emiko; Kanenishi, Kenji; Hata, Toshiyuki

    2016-09-01

    We present our experience of using new 3-dimensional color/power Doppler sonography (HDliveFlow; GE Healthcare Japan, Tokyo, Japan) with the HD live silhouette mode for diagnosing complete molar pregnancy in the first trimester and differentiating it from missed abortion with hydropic degeneration. In the case of a complete mole, color Doppler sonography showed numerous vesicles without blood vessels, whereas HDliveFlow with the HD live silhouette mode clearly depicted these vesicles forming a mass with the clear demarcation of its edges and showed no blood flow inside the mass. In contrast to the hydropic abortion, which appeared as some vesicles with many blood vessels around them on color Doppler sonography, HDliveFlow with the HD live silhouette mode showed some vesicles embedded within the abundant blood vessels. The spatial relationship between the vesicles and surrounding highly vascularized uterus could be shown on HDliveFlow with the HD live silhouette mode. This technique might be beneficial as an additional diagnostic tool along with conventional color/power Doppler sonography, and it facilitates the early discrimination of these cases in the first trimester of pregnancy. PMID:27492394

  11. Three-Dimensional Color/Power Doppler Sonography and HD live Silhouette Mode for Diagnosis of Molar Pregnancy.

    PubMed

    AboEllail, Mohamed Ahmed Mostafa; Ishimura, Mari; Sajapala, Suraphan; Yamamoto, Kenta; Tanaka, Tamaki; Nitta, Emiko; Kanenishi, Kenji; Hata, Toshiyuki

    2016-09-01

    We present our experience of using new 3-dimensional color/power Doppler sonography (HDliveFlow; GE Healthcare Japan, Tokyo, Japan) with the HD live silhouette mode for diagnosing complete molar pregnancy in the first trimester and differentiating it from missed abortion with hydropic degeneration. In the case of a complete mole, color Doppler sonography showed numerous vesicles without blood vessels, whereas HDliveFlow with the HD live silhouette mode clearly depicted these vesicles forming a mass with the clear demarcation of its edges and showed no blood flow inside the mass. In contrast to the hydropic abortion, which appeared as some vesicles with many blood vessels around them on color Doppler sonography, HDliveFlow with the HD live silhouette mode showed some vesicles embedded within the abundant blood vessels. The spatial relationship between the vesicles and surrounding highly vascularized uterus could be shown on HDliveFlow with the HD live silhouette mode. This technique might be beneficial as an additional diagnostic tool along with conventional color/power Doppler sonography, and it facilitates the early discrimination of these cases in the first trimester of pregnancy.

  12. A unique case of "double-orifice aortic valve"-comprehensive assessment by 2-, 3-dimensional, and color Doppler echocardiography.

    PubMed

    Stirrup, James E; Cowburn, Peter J; Pousios, Dimitrios; Ohri, Sunil K; Shah, Benoy N

    2016-09-01

    Transesophageal echocardiography (TEE) is a powerful imaging tool for the comprehensive assessment of valvular structure and function. TEE may be of added benefit when anatomy is difficult to delineate accurately by transthoracic echocardiography. In this article, we present 2-, 3-dimensional, and color Doppler TEE images from a male patient with aortic stenosis. A highly unusual and complex pattern of valvular calcification created a functionally "double-orifice" valve. Such an abnormality may have implications for the accuracy of continuous-wave Doppler echocardiography, which assumes a single orifice valve in native aortic valves. PMID:27677645

  13. Contrast-enhanced color Doppler ultrasonography increases diagnostic accuracy for soft tissue tumors.

    PubMed

    Oebisu, Naoto; Hoshi, Manabu; Ieguchi, Makoto; Takada, Jun; Iwai, Tadashi; Ohsawa, Masahiko; Nakamura, Hiroaki

    2014-10-01

    Resolution of ultrasonography (US) has undergone marked development. Additionally, a new-generation contrast medium (Sonazoid) used for US is newly available. Contrast-enhanced US has been widely used for evaluating several types of cancer. In the present study, we evaluated the ability of color Doppler US (CDUS) and Sonazoid to differentiate between benign and malignant soft tissue tumors. A total of 180 patients (87 male, 93 female) were enrolled in the present study. The patient ages ranged from 1 to 91 years (mean 58.1±20.0 years). The maximum size, depth, tumor margins, shape, echogenicity and textural pattern were measured on gray-scale images. CDUS was used to evaluate the intratumoral blood flow with and without Sonazoid. Peak systolic flow velocity (Vp), mean flow velocity (Vm), resistivity index (RI) and pulsatility index (PI) of each detected intratumoral artery were automatically calculated with power Doppler US (PDUS). The present study included 118 benign and 62 malignant tumors. Statistical significances were found in size, depth, tumor margin and textural pattern but not in shape or echogenicity on gray-scale images. Before Sonazoid injection, CDUS findings showed 55% sensitivity, 77% specificity and 69% accuracy, whereas contrast-enhanced CDUS showed 87% sensitivity, 68% specificity and 74% accuracy. There were no statistically significant differences between malignant and benign tumors regarding the mean Vp, Vm, RI and PI values determined on PDUS. In conclusion, contrast-enhanced CDUS proved to be a reliable diagnostic tool for detecting malignant potential in soft tissue tumors.

  14. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  15. Characterization of intraventricular flow patterns in healthy neonates from conventional color-Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Tejman-Yarden, Shai; Rzasa, Callie; Benito, Yolanda; Alhama, Marta; Leone, Tina; Yotti, Raquel; Bermejo, Javier; Printz, Beth; Del Alamo, Juan C.

    2012-11-01

    Left ventricular vortices have been difficult to visualize in the clinical setting due to the lack of quantitative non-invasive modalities, and this limitation is especially important in pediatrics. We have developed and validated a new technique to reconstruct two-dimensional time-resolved velocity fields in the LV from conventional transthoracic color-Doppler images. This non-invasive modality was used to image LV flow in 10 healthy full-term neonates, ages 24-48 hours. Our results show that, in neonates, a diastolic vortex developed during LV filling, was maintained during isovolumic contraction, and decayed during the ejection period. The vortex was created near the base of the ventricle, moved toward the apex, and then back toward the base and LVOT during ejection. In conclusion, we have characterized for the first time the properties of the LV filling vortex in normal neonates, demonstrating that this vortex channels blood from the inflow to the outflow tract of the LV. Together with existing data from adults, our results confirm that the LV vortex is conserved through adulthood. Funded by NIH Grant R21HL108268.

  16. Inverse Problem for Color Doppler Ultrasound-Assisted Intracardiac Blood Flow Imaging

    PubMed Central

    Jang, Jaeseong

    2016-01-01

    For the assessment of the left ventricle (LV), echocardiography has been widely used to visualize and quantify geometrical variations of LV. However, echocardiographic image itself is not sufficient to describe a swirling pattern which is a characteristic blood flow pattern inside LV without any treatment on the image. We propose a mathematical framework based on an inverse problem for three-dimensional (3D) LV blood flow reconstruction. The reconstruction model combines the incompressible Navier-Stokes equations with one-direction velocity component of the synthetic flow data (or color Doppler data) from the forward simulation (or measurement). Moreover, time-varying LV boundaries are extracted from the intensity data to determine boundary conditions of the reconstruction model. Forward simulations of intracardiac blood flow are performed using a fluid-structure interaction model in order to obtain synthetic flow data. The proposed model significantly reduces the local and global errors of the reconstructed flow fields. We demonstrate the feasibility and potential usefulness of the proposed reconstruction model in predicting dynamic swirling patterns inside the LV over a cardiac cycle. PMID:27313657

  17. Inverse Problem for Color Doppler Ultrasound-Assisted Intracardiac Blood Flow Imaging.

    PubMed

    Jang, Jaeseong; Ahn, Chi Young; Choi, Jung-Il; Seo, Jin Keun

    2016-01-01

    For the assessment of the left ventricle (LV), echocardiography has been widely used to visualize and quantify geometrical variations of LV. However, echocardiographic image itself is not sufficient to describe a swirling pattern which is a characteristic blood flow pattern inside LV without any treatment on the image. We propose a mathematical framework based on an inverse problem for three-dimensional (3D) LV blood flow reconstruction. The reconstruction model combines the incompressible Navier-Stokes equations with one-direction velocity component of the synthetic flow data (or color Doppler data) from the forward simulation (or measurement). Moreover, time-varying LV boundaries are extracted from the intensity data to determine boundary conditions of the reconstruction model. Forward simulations of intracardiac blood flow are performed using a fluid-structure interaction model in order to obtain synthetic flow data. The proposed model significantly reduces the local and global errors of the reconstructed flow fields. We demonstrate the feasibility and potential usefulness of the proposed reconstruction model in predicting dynamic swirling patterns inside the LV over a cardiac cycle. PMID:27313657

  18. Color Doppler Ultrasonography-Targeted Perforator Mapping and Angiosome-Based Flap Reconstruction.

    PubMed

    Gunnarsson, Gudjon Leifur; Tei, Troels; Thomsen, Jørn Bo

    2016-10-01

    Knowledge about perforators and angiosomes has inspired new and innovative flap designs for reconstruction of defects throughout the body. The purpose of this article is to share our experience using color Doppler ultrasonography (CDU)-targeted perforator mapping and angiosome-based flap reconstruction throughout the body. The CDU was used to identify the largest and best-located perforator adjacent to the defect to target the reconstruction. The cutaneous or fasciocutaneous flaps were raised, mobilized, and designed according to the reconstructive needs as rotation, advancement, or turnover flaps. We performed 148 reconstructions in 130 patients. Eleven facial reconstructions, 118 reconstructions in the body, 7 in the upper limbs, and 12 in the lower limbs. The propeller flap was used in 135 of 148 (91%) cases followed by the turnover design in 10 (7%) and the V to Y flap in 3 (2%) cases. The flaps were raised on 1 perforator in 98 (67%), 2 perforators in 48 (33%), and 3 perforators in 2 (1%) flaps. The reconstructive goal was achieved in 143 of 148 reconstructions (97%). In 5 cases, surgical revision was needed. No flaps were totally lost indicating a patent pedicle in all cases. We had 10 (7%) cases of major complications and 22 (15%) minor complications. The CDU-targeted perforator mapping and angiosome-based flap reconstruction are simple to perform, and we recommended its use for freestyle perforator flap reconstruction. All perforators selected by CDU was identified during surgery and used for reconstruction. The safe boundaries of angiosomes remain to be established.

  19. Color Doppler Ultrasound and Gamma Imaging of Intratumorally Injected 500 nm Iron-Silica Nanoshells

    PubMed Central

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V.; Viveros, Robert; Blair, Sarah L.; Ellies, Lesley G.; Vera, David R.; Mattrey, Robert F.; Kummel, Andrew C.; Trogler, William C.

    2013-01-01

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm non-biodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with 111In3+ for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-111In labeling for studying silica nanoparticle biodistributions. PMID:23802554

  20. Color Doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron-silica nanoshells.

    PubMed

    Liberman, Alexander; Wu, Zhe; Barback, Christopher V; Viveros, Robert; Blair, Sarah L; Ellies, Lesley G; Vera, David R; Mattrey, Robert F; Kummel, Andrew C; Trogler, William C

    2013-07-23

    Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long-term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm nonbiodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with (111)In(3+) for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-(111)In labeling for studying silica nanoparticle biodistributions.

  1. Color Doppler Ultrasonography-Targeted Perforator Mapping and Angiosome-Based Flap Reconstruction.

    PubMed

    Gunnarsson, Gudjon Leifur; Tei, Troels; Thomsen, Jørn Bo

    2016-10-01

    Knowledge about perforators and angiosomes has inspired new and innovative flap designs for reconstruction of defects throughout the body. The purpose of this article is to share our experience using color Doppler ultrasonography (CDU)-targeted perforator mapping and angiosome-based flap reconstruction throughout the body. The CDU was used to identify the largest and best-located perforator adjacent to the defect to target the reconstruction. The cutaneous or fasciocutaneous flaps were raised, mobilized, and designed according to the reconstructive needs as rotation, advancement, or turnover flaps. We performed 148 reconstructions in 130 patients. Eleven facial reconstructions, 118 reconstructions in the body, 7 in the upper limbs, and 12 in the lower limbs. The propeller flap was used in 135 of 148 (91%) cases followed by the turnover design in 10 (7%) and the V to Y flap in 3 (2%) cases. The flaps were raised on 1 perforator in 98 (67%), 2 perforators in 48 (33%), and 3 perforators in 2 (1%) flaps. The reconstructive goal was achieved in 143 of 148 reconstructions (97%). In 5 cases, surgical revision was needed. No flaps were totally lost indicating a patent pedicle in all cases. We had 10 (7%) cases of major complications and 22 (15%) minor complications. The CDU-targeted perforator mapping and angiosome-based flap reconstruction are simple to perform, and we recommended its use for freestyle perforator flap reconstruction. All perforators selected by CDU was identified during surgery and used for reconstruction. The safe boundaries of angiosomes remain to be established. PMID:27387469

  2. Endoscopic Color Doppler Ultrasonography in Predicting the Safety of Endoscopic Submucosal Dissection for Antral Heterotopic Pancreas

    PubMed Central

    Xin, Ling; Jun, Li Qian; Hua, Xu Li; Hong, Zhu; Bao, Chen Tian; Hai, Tang Jin

    2016-01-01

    Background/Aims: Complications are important determining factors for safety of endoscopic submucosal dissection (ESD) for gastric heterotopic pancreas (HP). This study investigated whether endoscopic color Doppler ultrasonography (ECDUS) could be used to predict the feasibility, efficacy, and safety of ESD. Patients and Methods: The study included 52 patients with heterotopic pancreas of the gastric antrum who underwent ECDUS before ESD. ECDUS was used to evaluate the submucosal vascular structure and the location of HP in gastric wall. The patients who had a vessel at least 500 μm in diameter or at least 10 vascular structures per field of view were classified into the rich group (Group R), and others were classified into the non-rich group (Group N). Procedure time, decrease in hemoglobin, frequency of clip use, complications, recurrence rate, and others were retrospectively evaluated. Results: There were 18 patients in Group R and 34 patients in Group N. Mean procedure time was significantly longer in group R (55.4 min) than in group N (35.5 min) (P = 0.014). The incidence of muscle injury and clip use were significantly higher in group R (77.8/83.3%) than in group N (20.6/23.5%) (P < 0.05). Mean decrease in hemoglobin was 2.5 g/dL in group R and 2.4 g/dL in group N, with no significant difference. There were no recurrences in any cases during the follow-up period. Conclusion: Preoperative identification of submucosal vascular structure by ECDUS can predict procedure time and the incidence of muscle injury and clip use, which is particularly suitable for predicting ESD safety in heterotopic pancreas of stomach. PMID:27748325

  3. Real-time Feedback of Histotripsy Thrombolysis Using Bubble-induced Color Doppler

    PubMed Central

    Zhang, Xi; Miller, Ryan M.; Lin, Kuang-Wei; Levin, Albert M.; Owens, Gabe E.; Gurm, Hitinder S.; Cain, Charles A.; Xu, Zhen

    2014-01-01

    Histotripsy thrombolysis is a noninvasive, drug-free and image-guided therapy that fractionates blood clots using well-controlled acoustic cavitation alone. Real-time quantitative feedback is highly desired during histotripsy thrombolysis treatment to monitor the progress of clot fractionation. Bubble-induced color Doppler (BCD) monitors the motion following cavitation generated by each histotripsy pulse, which has been shown in gel and ex vivo liver tissue to be correlated with histotripsy fractionation. In this paper we investigate the potential of BCD to quantitatively monitor histotripsy thrombolysis in real-time. To visualize clot fractionation, transparent three-layered fibrin clots were developed. Results show a coherent motion follows the cavitation generated by each histotripsy pulse with a push and rebound pattern. The temporal profile of this motion expanded and saturated as the treatment progressed. A strong correlation existed between the degree of histotripsy clot fractionation and two metrics extracted from BCD: time of peak rebound velocity (tPRV) and focal mean velocity at a fixed delay (Vf,delay). The saturation of clot fractionation (i.e., treatment completion) matched well with the saturations detected using tPRV and Vf,delay. The mean Pearson correlation coefficients between the progressions of clot fractionation and the two BCD metrics were 93.1% and 92.6% respectively. To validate the BCD feedback in in vitro clots, debris volume from histotripsy thrombolysis were obtained at different therapy doses and compared with Vf,delay. The increasing and saturation trends of debris volume and Vf,delay also had good agreement. Finally, a real-time BCD feedback algorithm to predict complete clot fractionation during histotripsy thrombolysis was developed and tested. This work demonstrated the potential of BCD to monitor histotripsy thrombolysis treatment in real-time. PMID:25623821

  4. [Ultrasound artifacts and their diagnostic significance in internal medicine and gastroenterology - part 2: color and spectral Doppler artifacts].

    PubMed

    Jenssen, C; Tuma, J; Möller, K; Cui, X W; Kinkel, H; Uebel, S; Dietrich, C F

    2016-06-01

    Artifacts in ultrasonographic diagnostics are a result of the physical properties of the ultrasound waves and are caused by interaction of the ultrasound waves with biological structures and tissues of the body and with foreign materials. On the one hand, they may be diagnostically helpful. On the other hand, they may be distracting and may lead to misdiagnosis. Profound knowledge of the causes, avoidance, and interpretation of artifacts is a necessary precondition for correct clinical appraisal of ultrasound images. Part 1 of this review commented on the physics of artifacts and described the most important B-mode artifacts. Part 2 focuses on the clinically relevant artifacts in Doppler and color-coded duplex sonography. Problems and pitfalls of interpretation arising from artifacts, as well as the diagnostic use of Doppler and colour-coded duplex sonography, are discussed.

  5. Image analysis of placental issues using three-dimensional ultrasound and color power Doppler based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Diyun; Liu, Jianguo

    2009-10-01

    With the development of medical science, three-dimensional ultrasound and color power Doppler tomography shooting placenta is widely used. To determine whether the fetus's development is abnormal or not is mainly through the analysis of the capillary's distribution of the obtained images which are shot by the Doppler scanner. In this classification process, we will adopt Support Vector Machine classifier. SVM achieves substantial improvements over the statistical learning methods and behaves robustly over a variety of different learning tasks. Furthermore, it is fully automatic, eliminating the need for manual parameter tuning and can solve the small sample problem wonderfully well. So SVM classifier is valid and reliable in the identification of placentas and is more accurate with the lower error rate.

  6. [Ultrasound artifacts and their diagnostic significance in internal medicine and gastroenterology - part 2: color and spectral Doppler artifacts].

    PubMed

    Jenssen, C; Tuma, J; Möller, K; Cui, X W; Kinkel, H; Uebel, S; Dietrich, C F

    2016-06-01

    Artifacts in ultrasonographic diagnostics are a result of the physical properties of the ultrasound waves and are caused by interaction of the ultrasound waves with biological structures and tissues of the body and with foreign materials. On the one hand, they may be diagnostically helpful. On the other hand, they may be distracting and may lead to misdiagnosis. Profound knowledge of the causes, avoidance, and interpretation of artifacts is a necessary precondition for correct clinical appraisal of ultrasound images. Part 1 of this review commented on the physics of artifacts and described the most important B-mode artifacts. Part 2 focuses on the clinically relevant artifacts in Doppler and color-coded duplex sonography. Problems and pitfalls of interpretation arising from artifacts, as well as the diagnostic use of Doppler and colour-coded duplex sonography, are discussed. PMID:27284933

  7. The application of color Doppler flow imaging in the diagnosis and therapeutic effect evaluation of erectile dysfunction.

    PubMed

    Xuan, Xu-Jun; Bai, Gang; Zhang, Cai-Xia; Xu, Chao; Lu, Fu-Ding; Peng, Yang; Ma, Gang; Han, Cong-Hui; Chen, Jun

    2016-01-01

    We aim to investigate the correlations between hemodynamic parameters, penile rigidity grading, and the therapeutic effects of phosphodiesterase type 5 inhibitors using color Doppler flow imaging after intracavernosal injection in patients with erectile dysfunction. This study involved 164 patients. After intracavernosal injection with a mixture of papaverine (60 mg), prostaglandin E 1 (10 mg), and lidocaine (2%, 0.5-1 ml), the penile vessels were assessed using color Doppler flow imaging. Penile rigidity was classified based on the Erection Hardness Score system as Grades 4, 3, 2 or 1 (corresponding to Schramek Grades V to II). Then, the patients were given oral sildenafil (50-100 mg) and scored according to the International Index of Erectile Function (IIEF-5) questionnaire. The number of patients with penile rigidities of Schramek Grades II to V was 14, 18, 21, and 111, respectively. The IIEF-5 score was positively correlated with the refilling index of the penile cavernosal artery (r = 0.79, P< 0.05), the peak systolic velocity (r = 0.45, P< 0.05), and penile rigidity (r = 0.75, P< 0.05), and was negatively correlated with the end diastolic velocity (r = -0.74, P< 0.05). For patients with erectile dysfunction, both the IIEF-5 score after sildenafil administration, which is correlated with penile rigidity, and the hemodynamic parameters detected using color Doppler flow imaging may predict the effects of phosphodiesterase type 5 inhibitor treatment and could provide a reasonable model for the targeted-treatment of erectile dysfunction.

  8. Revascularization alone or combined with suture annuloplasty for ischemic mitral regurgitation. Evaluation by color Doppler echocardiography.

    PubMed Central

    Czer, L S; Maurer, G; Bolger, A F; DeRobertis, M; Chaux, A; Matloff, J M

    1996-01-01

    To determine the effectiveness of revascularization alone or combined with mitral valve repair for ischemic mitral regurgitation, we performed color Doppler echocardiography intraoperatively before and after cardiopulmonary bypass in 49 patients (mean age, 70 +/- 9 years) with concomitant mitral regurgitation and coronary artery disease (triple vessel or left main in 88%; prior infarction in 90%). After revascularization alone (n = 25), the mitral annulus diameter (2.88 +/- 0.44 cm vs 2.88 +/- 0.44 cm), leaflet-to-annulus ratio (1.44 +/- 0.30 vs 1.44 +/- 0.29), and mitral regurgitation grade (1.7 +/- 0.9 vs 1.8 +/- 0.7) remained unchanged (p = NS, postpump vs prepump); mitral regurgitation decreased by 2 grades in only 1 patient (4%). After combined revascularization and mitral valve suture annuloplasty (Kay-Zubiate; n = 24), the annulus diameter decreased (to 2.57 +/- 0.45 cm from 3.11 +/- 0.43 cm), the leaflet-to-annulus ratio increased (to 1.46 +/- 0.25 from 1.20 +/- 0.21), and the mitral regurgitation grade decreased significantly (to 0.9 +/- 0.9 from 2.8 +/- 1.0) (p < 0.01); mitral regurgitation decreased by 2 grades or more (successful repair) in 75%. The origin of the jet correlated with the site of prior infarction (p < 0.05), being inferior in cases of posterior or inferior infarction (67%), and central or broad in cases of combined anterior and inferior infarction (70%). Despite a slightly higher 30-day mortality in the repair group (p = 0.10), there was no significant difference in survival between the 2 surgical groups at 5 years or 8 years. Therefore, in this study of patients with mitral regurgitation and coronary artery disease, reduction in regurgitation grade with revascularization alone was infrequent. Concomitant suture annuloplasty significantly reduced regurgitation by reestablishing a more normal relationship between the leaflet and annulus sizes. The failure rate after suture annuloplasty was 25%; alternative repair techniques such as ring

  9. Hemodynamic changes in a patient with esophageal varices after endoscopic injection sclerotherapy evaluated by endoscopic color Doppler ultrasonography.

    PubMed

    Sato, Takahiro; Yamazaki, Katsu; Ohmura, Takumi; Suga, Toshihiro

    2007-03-01

    A 46-year-old man with alcoholic cirrhosis was admitted to our hospital for treatment of high-risk esophageal varices in February 2000. Images of the esophageal varices, paraesophageal veins and palisade veins were obtained by endoscopic color Doppler ultrasonography (ECDUS) before endoscopic injection sclerotherapy (EIS). Prophylactic EIS was performed six times per week for esophageal varices, and EIS was continued until the esophageal varices were completely eradicated. In July 2002, endoscopy revealed esophageal varices graded as Cb, F1, Lm, and RC(-), and color flow images of the palisade veins (hepatofugal flow), esophageal varices, and a developed paraesophageal vein were obtained with ECDUS. In April 2003, endoscopy showed esophageal varices graded as Cb, F1, Lm, and RC(-), and color flow images of the palisade veins and esophageal varices were obtained using ECDUS. The blood in the palisade veins flowed in an alternate direction on color flow images, and pulsatile waves were delineated at the gastroesophageal junction. In January 2004, endoscopy revealed esophageal varices graded as F0 and RC(-), and pulsatile waves were delineated in the lower esophagus with ECDUS. However, the esophageal varices and palisade veins had disappeared from color flow images. In conclusion, ECDUS was useful for evaluating hemodynamic changes after EIS.

  10. Multiple-Site Hemodynamic Analysis of Doppler Ultrasound with an Adaptive Color Relation Classifier for Arteriovenous Access Occlusion Evaluation

    PubMed Central

    Wu, Jian-Xing; Du, Yi-Chun; Wu, Ming-Jui; Li, Chien-Ming; Lin, Chia-Hung; Chen, Tainsong

    2014-01-01

    This study proposes multiple-site hemodynamic analysis of Doppler ultrasound with an adaptive color relation classifier for arteriovenous access occlusion evaluation in routine examinations. The hemodynamic analysis is used to express the properties of blood flow through a vital access or a tube, using dimensionless numbers. An acoustic measurement is carried out to detect the peak-systolic and peak-diastolic velocities of blood flow from the arterial anastomosis sites (A) to the venous anastomosis sites (V). The ratio of the supracritical Reynolds (Resupra) number and the resistive (Res) index quantitates the degrees of stenosis (DOS) at multiple measurement sites. Then, an adaptive color relation classifier is designed as a nonlinear estimate model to survey the occlusion level in monthly examinations. For 30 long-term follow-up patients, the experimental results show the proposed screening model efficiently evaluates access occlusion. PMID:24892039

  11. Support vector analysis of color-Doppler images: a new approach for estimating indices of left ventricular function.

    PubMed

    Rojo-Alvarez, J L; Bermejo, J; Juárez-Caballero, V M; Yotti, R; Cortina, C; García-Fernández, M A; Antoranz, J C

    2006-08-01

    Reliable noninvasive estimators of global left ventricular (LV) chamber function remain unavailable. We have previously demonstrated a potential relationship between color-Doppler M-mode (CDMM) images and two basic indices of LV function: peak-systolic elastance (Emax) and the time-constant of LV relaxation (tau). Thus, we hypothesized that these two indices could be estimated noninvasively by adequate postprocessing of CDMM recordings. A semiparametric regression (SR) version of support vector machine (SVM) is here proposed for building a blind model, capable of analyzing CDMM images automatically, as well as complementary clinical information. Simultaneous invasive and Doppler tracings were obtained in nine mini-pigs in a high-fidelity experimental setup. The model was developed using a test and validation leave-one-out design. Reasonably acceptable prediction accuracy was obtained for both Emax (intraclass correlation coefficient Ric, = 0.81) and tau (Ric, = 0.61). For the first time, a quantitative, noninvasive estimation of cardiovascular indices is addressed by processing Doppler-echocardiography recordings using a learning-from-samples method. PMID:16894996

  12. The use of non-contrast computed tomography and color Doppler ultrasound in the characterization of urinary stones - preliminary results

    PubMed Central

    Bulakçı, Mesut; Tefik, Tzevat; Akbulut, Fatih; Örmeci, Mehmet Tolgahan; Beşe, Caner; Şanlı, Öner; Oktar, Tayfun; Salmaslıoğlu, Artür

    2015-01-01

    Objective To investigate the role of density value in computed tomography (CT) and twinkling artifact observed in color Doppler analysis for the prediction of the mineral composition of urinary stones. Material and methods A total of 42 patients who were operated via percutaneous or endoscopic means and had undergone abdominal non-contrast CT and color Doppler ultrasonography examinations were included in the study. X-ray diffraction method was utilized to analyze a total of 86 stones, and the correlations between calculated density values and twinkling intensities with stone types were investigated for each stone. Results Analyses of extracted stones revealed the presence of 40 calcium oxalate monohydrate, 12 calcium oxalate dihydrate, 9 uric acid, 11 calcium phosphate, and 14 cystine stones. The density values were calculated as 1499±269 Hounsfield Units (HU) for calcium oxalate monohydrate, 1505±221 HU for calcium oxalate dihydrate, 348±67 HU for uric acid, 1106±219 HU for calcium phosphate, and 563±115 HU for cystine stones. The artifact intensities were determined as grade 0 in 15, grade 1 in 32, grade 2 in 24, and grade 3 in 15 stones. Conclusion In case the density value of the stone is measured below 780 HU and grade 3 artifact intensity is determined, it can be inferred that the mineral composition of the stone tends to be cystine. PMID:26623143

  13. Tumor vascularity evaluated by transrectal color Doppler US in predicting therapy outcome for low-lying rectal cancer

    SciTech Connect

    Barbaro, Brunella . E-mail: a.leonemd@tiscalinet.it; Valentini, Vincenzo; Coco, Claudio; Mancini, Anna Paola; Gambacorta, Maria Antonietta; Vecchio, Fabio Maria; Bonomo, Lorenzo

    2005-12-01

    Purpose: To evaluate the impact on T downstaging of the vasculature supplying blood flow to rectal cancer evaluated by color Doppler ultrasound. Methods and Materials: Color Doppler images were graded in 29 T3-staged rectal carcinoma patients sonographically just before chemoradiation. Any arterial vessels detected in rectal masses were assigned one of two grades: vascularity was considered as grade 1 for vessels feeding the periphery and as grade 2 for vessels coursing in all rectal masses within its peripheral and central portions. The pulsatility indices (PI = peak systolic velocity - end-diastolic velocity/time-averaged maximum velocity) were calculated in the central and peripheral portions. Results: The pathologic observations showed a change in stage in 15 of the 23 patients graded 2, positive predictive value 65.2% (p = 0.047), and in one of the six rectal cancers graded 1 (negative predictive value, 83.3%). The minimal peripheral PI values in rectal cancer graded 2 were higher in nonresponding (2.2 {+-} 1.3) than in responding lesions (1.6 {+-} 0.7) p = 0.01. Conclusion: Vascularity graded 2 associated with low peripheral PI values are indicators of therapy outcome. Vascularity graded 1 and high peripheral PI values in graded 2 have negative predictive value.

  14. Is color-Doppler US a reliable method in the follow-up of transjugular intrahepatic portosystemic shunt (TIPS)?

    PubMed Central

    Ricci, P.; Cantisani, V.; Lombardi, V.; Alfano, G.; D'Ambrosio, U.; Menichini, G.; Marotta, E.; Drudi, F.M.

    2007-01-01

    Transjugular intrahepatic portosystemic shunt (TIPS) has become a widely accepted treatment for complications of portal hypertension. Shunt or hepatic vein stenoses or occlusions are common short- and mid-term complications of the procedure, with a one-year primary patency ranging from 25% to 66%. When promptly identified, shunt stenosis or occlusion may be treated before the recurrence of gastrointestinal bleeding or ascites. The revision is usually successful and the primary-assisted patency of TIPS is approximately 85% at one year. Doppler sonography is a widely accepted screening modality for TIPS patients, both as a routine follow-up in asymptomatic patients and in those cases with clinically suspected TIPS malfunction. In a routine US follow-up, a TIPS patient is scheduled for a control 24 h after the procedure, and then after one week, 1 month, 3 months, and at 3-month intervals thereafter. Venography is at present performed solely on the basis of a suspected shunt dysfunction during the sonographic examination. Color-Doppler sonography is the most reliable method for monitoring the shunt function after TIPS implantation. Several studies have shown that Doppler sonography is a sensitive and relatively specific way to detect shunt malfunction, particularly when multiple parameters are examined. Achieving high sensitivity is optimal so that malfunctioning shunts can be identified and shunt revision can be performed before symptomatic deterioration. Venous angiography is at present indicated only on the basis of US suspicion of shunt compromise. Power-Doppler US and US contrast media can be useful in particular conditions, but are not really fundamental. PMID:23396711

  15. 3-dimensional sonographic analysis based on color flow Doppler and gray scale image data: a preliminary report.

    PubMed

    Pretorius, D H; Nelson, T R; Jaffe, J S

    1992-05-01

    This paper presents preliminary results of a technique that permits acquisition and display of three-dimensional (3D) anatomy using data collected from color flow Doppler and gray scale image sonography. 3D sonographic image data were acquired as two-dimensional planar images with commercially available equipment. A translational stage permitted the transducer position and orientation to be determined. Color flow sonographic video image data were digitized into a PC-AT computer along with transducer position and orientation information. Color flow velocity and gray scale data were separated, 3D filtered, and thresholded. A surface rendering program was used to define the vessel blood-lumen interface. Planar slices of arbitrary orientation and volume rendered images were displayed interactively on a graphics workstation. The technique was demonstrated in a lamb kidney in vitro and for the carotid artery at the bifurcation in vivo. Our results demonstrate the potential of 3D sonography as a technique for visualization of anatomy. Color flow data offer direct access to the vascular system, facilitating 3D analysis and display. 3D sonography offers potential advantages over existing diagnostic studies in that it is noninvasive, requires no intravenous contrast material, offers arbitrary plane extraction and review after the patient has completed the examination, and permits vascular anatomy to be visualized clearly via rendered images.

  16. Color Doppler analysis of female reproductive vasculature in Behçet's disease.

    PubMed

    Tezcan, M E; Temizkan, O; Ozderya, A; Melikoglu, M; Aydin, K; Sargin, M; Temizkan, S

    2015-12-30

    Behçet's disease (BD) may affect female reproductive vasculature. We aimed to evaluate Doppler sonographic characteristics of female reproductive vasculature and also ovarian volume, endometrial thickness (EMT) and antral follicle count of BD patients in comparison with a healthy control group. Seventeen premenopausal women aged between 18-45 years with BD, and a control group of 31 age- and body mass index-matched healthy women was included in the study. Uterine, spiral and intraovarian artery blood flow were examined by Doppler sonography in the late follicular phase. Resistance index, pulsatility index and systolic/diastolic ratio were recorded together with ovarian volume, EMT and antral follicle count. In particular this is a pilot study including the evaluation of the spiral and uterine arteries in BD. Doppler sonographic parameters, ovarian volume, EMT and antral follicle count of BD patients and healthy controls were not found to be statistically different. As a result of our analysis, we found similar Doppler sonographic features of both BD patients and the control group. Further studies conducted on a larger sample population with more aggressive BD symptoms may reveal the actual effect of BD on the female reproductive system.

  17. Toward Two-Color Sub-Doppler Saturation Recovery Kinetics in CN (x, v = 0, J)

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Forthomme, Damien; Sears, Trevor; Hall, Gregory; Dagdigian, Paul

    2015-06-01

    Collision-induced rotational energy transfer among rotational levels of ground state CN (X 2σ+, v = 0) radicals has been probed by saturation recovery experiments, using high-resolution, polarized transient FM spectroscopy to probe the recovery of population and the decay of alignment following ns pulsed laser depletion of selected CN rotational levels. Despite the lack of Doppler selection in the pulsed depletion and the thermal distribution of collision velocities, the recovery kinetics are found to depend on the probed Doppler shift of the depleted signal. The observed Doppler-shift-dependent recovery rates are a measure of the velocity dependence of the inelastic cross sections, combined with the moderating effects of velocity-changing elastic collisions. New experiments are underway, in which the pulsed saturation is performed with sub-Doppler velocity selection. The time evolution of the spectral hole bleached in the initially thermal CN absorption spectrum can characterize speed-dependent inelastic collisions along with competing elastic velocity-changing collisions, all as a function of the initially bleached velocity group and rotational state. The initial time evolution of the depletion recovery spectrum can be compared to a stochastic model, using differential cross sections for elastic scattering as well as speed-dependent total inelastic cross sections, derived from ab initio scattering calculations. Progress to date will be reported. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 and DE-SC0012704 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences.

  18. Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound

    PubMed Central

    Höfling, Danilo Bianchini; Chavantes, Maria Cristina; Juliano, Adriana G.; Cerri, Giovanni G.; Knobel, Meyer; Yoshimura, Elisabeth M.; Chammas, Maria Cristina

    2012-01-01

    Background. Chronic autoimmune thyroiditis (CAT) frequently alters thyroid vascularization, likely as a result of the autoimmune process. Objective. To evaluate the effects of low-level laser therapy (LLLT) on the thyroid vascularization of patients with hypothyroidism induced by CAT using color Doppler ultrasound parameters. Methods. In this randomized clinical trial, 43 patients who underwent levothyroxine replacement for CAT-induced hypothyroidism were randomly assigned to receive either 10 sessions of LLLT (L group, n = 23) or 10 sessions of a placebo treatment (P group, n = 20). Color Doppler ultrasounds were performed before and 30 days after interventions. To verify the vascularity of the thyroid parenchyma, power Doppler was performed. The systolic peak velocity (SPV) and resistance index (RI) in the superior (STA) and inferior thyroid arteries (ITAs) were measured by pulsed Doppler. Results. The frequency of normal vascularization of the thyroid lobes observed in the postintervention power Doppler examination was significantly higher in the L than in the P group (P = 0.023). The pulsed Doppler examination revealed an increase in the SPV of the ITA in the L group compared with the P group (P = 0.016). No significant differences in the SPV of the STA and in the RI were found between the groups. Conclusion. These results suggest that LLLT can ameliorate thyroid parenchyma vascularization and increase the SPV of the ITA of patients with hypothyroidism caused by CAT. PMID:23316383

  19. Role of ultrasound and color doppler in diagnosis of periapical lesions of endodontic origin at varying bone thickness

    PubMed Central

    Tikku, Aseem P; Bharti, Ramesh; Sharma, Neha; Chandra, Anil; Kumar, Ashutosh; Kumar, Sunil

    2016-01-01

    Aims: To access the role of ultrasound and color doppler in diagnosing periapical lesions of maxilla and mandible. Settings and Design: This study was conducted in the Department of Conservative Dentistry and Endodontics (Faculty of Dental Sciences), Department of Radiotherapy, and Department of Pathology. Materials and Methods: The study group comprised 30 patients with periapical lesions of endodontic origin in maxilla and mandible requiring endodontic surgery. After thorough clinical and radiographic examination patients were subjected to ultrasound and color doppler examination, where the lesions were assessed for their contents as to cystic or solid. Following which periapical surgery was done and the pathological tissue obtained was subjected to histopathological examination. The results of the ultrasound examination were correlated with histopathological features. The diagnostic validity of ultrasound was assessed by calculating the sensitivity, specificity, positive predictive value, and negative predictive value. Statistical Analysis Used: The statistical analysis was done using statistical package for social sciences (SPSS) version 15.0 statistical analysis software. The values were represented in number (%). Results: Within the limitations of the current study it can be stated that although ultrasound may not establish the definitive diagnosis, it can facilitate the differential diagnosis between cystic and solid granulomatous lesions. However, this technique may have a limited role in detecting periapical lesions present in the region with thick overlying cortical bone. Conclusion: Ultrasound can routinely be recommended as a complimentary method for the diagnosis of periapical lesions of endodontic origin. However, this technique may have a limited role in detecting periapical lesions present in the region with thick overlying cortical bone. PMID:27099421

  20. Use of color Doppler sonography during follicular aspiration in patients undergoing in vitro fertilization may reduce the risk of blood vessel injury.

    PubMed

    Shalev, Josef; Orvieto, Raul; Meizner, Israel

    2004-05-01

    The use of color Doppler to identify small blood vessels (diameter: 0.68 +/- 0.17 mm to 2.28 +/- 0.81 mm; peak systolic velocity: 10.3 +/- 4.15 cm/s to 25.15 +/- 7.68 cm/s) during follicular aspiration may reduce patient's morbidity.

  1. DOPPLER WEATHER SYSTEM

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever fivemore » minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.« less

  2. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  3. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  4. [Cesarean scar ectopic pregnancy: diagnosis with 2D, three-dimensional (3D) ultrasound and 3D power doppler of a case and review of the literature].

    PubMed

    Pavlova, E; Gunev, D; Diavolov, V; Slavchev, B

    2013-01-01

    Cesarean scar pregnancy is rare type of ectopic pregnancy. It is associated with severe complication if it is not diagnosed early in pregnancy. We present a case of difficult first-trimester diagnosis of Cesarean scar pregnancy. In this paper we discuss the incidence of this condition, the antenatal diagnosis, the prognosis and management and the importance of 2D and 3D ultrasound technique as a diagnostic tool. PMID:24501880

  5. Accuracy of flow convergence estimates of mitral regurgitant flow rates obtained by use of multiple color flow Doppler M-mode aliasing boundaries: an experimental animal study.

    PubMed

    Zhang, J; Jones, M; Shandas, R; Valdes-Cruz, L M; Murillo, A; Yamada, I; Kang, S U; Weintraub, R G; Shiota, T; Sahn, D J

    1993-02-01

    The proximal flow convergence method of multiplying color Doppler aliasing velocity by flow convergence surface area has yielded a new means of quantifying flow rate by noninvasively derived measurements. Unlike previous methods of visualizing the turbulent jet of mitral regurgitation on color flow Doppler mapping, flow convergence methods are less influenced by machine factors because of the systematic structure of the laminar flow convergence region. However, recent studies have demonstrated that the flow rate calculated from the first aliasing boundary of color flow Doppler imaging is dependent on orifice size, flow rate, aliasing velocity and therefore on the distance from the orifice chosen for measurement. In this study we calculated the regurgitant flow rates acquired by use of multiple proximal aliasing boundaries on color Doppler M-mode traces and assessed the effect of distances of measurement and aliasing velocities on the calculated regurgitant flow rate. Six sheep with surgically induced mitral regurgitation were studied. The distances from the mitral valve leaflet M-mode line to the first, second, and third sequential aliasing boundaries on color Doppler M-mode traces were measured and converted to the regurgitant flow rates calculated by applying the hemispheric flow equation and averaging instantaneous flow rates throughout systole. The flow rates that were calculated from the first, second, and third aliasing boundaries correlated well with the actual regurgitant flow rates (r = 0.91 to 0.96). The mean percentage error from the actual flow rates were 151% for the first aliasing boundary, 7% for the second aliasing boundary, and -43% for the third aliasing boundary; and the association between aliasing velocities and calculated flow rates indicates an inverse relationship, which suggests that in this model, there were limited velocity-distance combinations that fit with a hemispheric assumption for flow convergence geometry. The second aliasing

  6. New echocardiographic windows for quantitative determination of aortic regurgitation volume using color Doppler flow convergence and vena contracta

    NASA Technical Reports Server (NTRS)

    Shiota, T.; Jones, M.; Agler, D. A.; McDonald, R. W.; Marcella, C. P.; Qin, J. X.; Zetts, A. D.; Greenberg, N. L.; Cardon, L. A.; Sun, J. P.; Sahn, D. J.; Thomas, J. D.

    1999-01-01

    Color Doppler images of aortic regurgitation (AR) flow acceleration, flow convergence (FC), and the vena contracta (VC) have been reported to be useful for evaluating severity of AR. However, clinical application of these methods has been limited because of the difficulty in clearly imaging the FC and VC. This study aimed to explore new windows for imaging the FC and VC to evaluate AR volumes in patients and to validate this in animals with chronic AR. Forty patients with AR and 17 hemodynamic states in 4 sheep with strictly quantified AR volumes were evaluated. A Toshiba SSH 380A with a 3.75-MHz transducer was used to image the FC and VC. After routine echo Doppler imaging, patients were repositioned in the right lateral decubitus position, and the FC and VC were imaged from high right parasternal windows. In only 15 of the 40 patients was it possible to image clearly and measure accurately the FC and VC from conventional (left decubitus) apical or parasternal views. In contrast, 31 of 40 patients had clearly imaged FC regions and VCs using the new windows. In patients, AR volumes derived from the FC and VC methods combined with continuous velocity agreed well with each other (r = 0.97, mean difference = -7.9 ml +/- 9.9 ml/beat). In chronic animal model studies, AR volumes derived from both the VC and the FC agreed well with the electromagnetically derived AR volumes (r = 0.92, mean difference = -1.3 +/- 4.0 ml/beat). By imaging from high right parasternal windows in the right decubitus position, complementary use of the FC and VC methods can provide clinically valuable information about AR volumes.

  7. Quantification of Shunt Volume Through Ventricular Septal Defect by Real-Time 3-D Color Doppler Echocardiography: An in Vitro Study.

    PubMed

    Zhu, Meihua; Ashraf, Muhammad; Tam, Lydia; Streiff, Cole; Kimura, Sumito; Shimada, Eriko; Sahn, David J

    2016-05-01

    Quantification of shunt volume is important for ventricular septal defects (VSDs). The aim of the in vitro study described here was to test the feasibility of using real-time 3-D color Doppler echocardiography (RT3-D-CDE) to quantify shunt volume through a modeled VSD. Eight porcine heart phantoms with VSDs ranging in diameter from 3 to 25 mm were studied. Each phantom was passively driven at five different stroke volumes from 30 to 70 mL and two stroke rates, 60 and 120 strokes/min. RT3-D-CDE full volumes were obtained at color Doppler volume rates of 15, 20 and 27 volumes/s. Shunt flow derived from RT3-D-CDE was linearly correlated with pump-driven stroke volume (R = 0.982). RT3-D-CDE-derived shunt volumes from three color Doppler flow rate settings and two stroke rate acquisitions did not differ (p > 0.05). The use of RT3-D-CDE to determine shunt volume though VSDs is feasible. Different color volume rates/heart rates under clinically/physiologically relevant range have no effect on VSD 3-D shunt volume determination.

  8. Application of color Doppler flow mapping to calculate orifice area of St Jude mitral valve

    NASA Technical Reports Server (NTRS)

    Leung, D. Y.; Wong, J.; Rodriguez, L.; Pu, M.; Vandervoort, P. M.; Thomas, J. D.

    1998-01-01

    BACKGROUND: The effective orifice area (EOA) of a prosthetic valve is superior to transvalvular gradients as a measure of valve function, but measurement of mitral prosthesis EOA has not been reliable. METHODS AND RESULTS: In vitro flow across St Jude valves was calculated by hemispheric proximal isovelocity surface area (PISA) and segment-of-spheroid (SOS) methods. For steady and pulsatile conditions, PISA and SOS flows correlated with true flow, but SOS and not PISA underestimated flow. These principles were then used intraoperatively to calculate cardiac output and EOA of newly implanted St Jude mitral valves in 36 patients. Cardiac output by PISA agreed closely with thermodilution (r=0.91, Delta=-0.05+/-0.55 L/min), but SOS underestimated it (r=0.82, Delta=-1.33+/-0.73 L/min). Doppler EOAs correlated with Gorlin equation estimates (r=0.75 for PISA and r=0.68 for SOS, P<0.001) but were smaller than corresponding in vitro EOA estimates. CONCLUSIONS: Proximal flow convergence methods can calculate forward flow and estimate EOA of St Jude mitral valves, which may improve noninvasive assessment of prosthetic mitral valve obstruction.

  9. Efficacy of Preoperative Color Doppler Sonography of Lower Extremity Veins on Postoperative Outcomes in Candidates of Saphenectomy: A Randomized Clinical Trial

    PubMed Central

    Zarepur, Rouhollah; Kargar, Saeed; Hadadzadeh, Mehdi; Hatamizadeh, Nooshin; Zarepur, Ehsan; Forouzannia, Seyed Khalil; Faraji, Reza; Sarebanhassanabadi, Mohammadtaghi

    2016-01-01

    Background Doppler sonography is a type of sonography used for imaging the blood flow in the vessels and heart. This technique uses ultrasound waves with high frequency. In some patient candidates for venous graft, the identification of the suitable vein is not possible with clinical examination. Objective This study compared the effects of preoperative color Doppler sonography of lower extremity veins on the postoperative outcomes of saphenectomy. Methods This randomized clinical trial was conducted on 100 candidates of an off-pump coronary artery bypass graft (CABG) hospitalized in Afshar Hospital in Yazd in 2015. Patients were divided into two groups: 50 patients in the study group and 50 patients in the control group. Patients in the study group underwent color Doppler sonography of lower extremity veins using the Medison 8000 Live device. Patients in the control group were assessed preoperatively by routine venous examination without undergoing color Doppler sonography. The prepping and draping methods and also the preoperative antibiotics were the same for both groups. The patients were assessed for wound infection, edema, hematoma, and DVT 2 days, 1 week, and 1 month after surgery. Data were analyzed by SPSS version 16 using t-test, Chi-square, and Fisher’s exact test. Results The length of incision for saphenectomy was 29.20 ± 3.71 cm in the Doppler group and 28.98 ± 3.72 cm in the non-Doppler group with no significant difference between the two groups (p=0.768). The two groups were not significantly different with respect to age, gender, diabetes, hypertension, hyperlipidemia, smoking, and history of peripheral vessels disease, postoperative infection, postoperative organ edema, postoperative hematoma, and postoperative DVT. Conclusion Preoperative color Doppler sonography of the saphenous vein before saphenectomy has no effect on reducing the postoperative complications, and saphenectomy on the basis of intraoperative examination of the vein course by

  10. Clinical and color Doppler imaging features of one patient with occult giant cell arteritis presenting arteritic anterior ischemic optic neuropathy.

    PubMed

    Jianu, Dragoş Cătălin; Jianu, Silviana Nina; Petrica, Ligia; Motoc, Andrei Gheorghe Marius; Dan, Traian Flavius; Lăzureanu, Dorela CodruŢa; Munteanu, Mihnea

    2016-01-01

    Anterior ischemic optic neuropathies (AIONs) represent a segmental infarction of the optic nerve head (ONH) supplied by the posterior ciliary arteries (PCAs). Blood supply blockage can occur with or without arterial inflammation. For this reason, there are two types of AIONs: non-arteritic (NA-AION), and arteritic (A-AION), the latter is almost invariably due to giant cell arteritis (GCA). GCA is a primary vasculitis that predominantly affects extracranial medium-sized arteries, particularly the branches of the external carotid arteries (including superficial temporal arteries - TAs). One patient with clinical suspicion of acute left AION was examined at admission following a complex protocol including color Doppler imaging (CDI) of orbital vessels, and color duplex sonography of the TAs and of the carotid arteries. She presented an equivocal combination of an abrupt, painless, and severe vision loss in the left eye, and an atypical diffuse hyperemic left optic disc edema. She had characteristic CDI features for GCA with eye involvement: high resistance index, with absent, or severe diminished blood flow velocities, especially end-diastolic velocities, in all orbital vessels, especially on the left side (A-AION). Typical sonographic feature in temporal arteritis as part of GCA was "dark halo" sign. On the other hand, she did not present classic clinical or systemic symptoms of GCA: temporal headache, tender TAs, malaise (occult GCA). The left TA biopsy confirmed the diagnosis of GCA. The ultrasound investigations enabled prompt differentiation between NA-AION and A-AION, the later requiring in her case immediate steroid treatment, to prevent further visual loss in the right eye. PMID:27516038

  11. Echocardiographic and color flow Doppler assessment of systemic and pulmonary venous connection and drainage in the neonate with congenital heart disease.

    PubMed

    Seliem, M A

    1991-07-01

    Systemic and pulmonary venous anomalies are frequently encountered either as isolated lesions or as a significant component of a more complex lesion in the newborn infant with congenital heart disease. Two-dimensional echocardiography and Doppler techniques (conventional and color flow) have become the primary diagnostic imaging modality in this setting. Precise pre-operative definition of these variable venous connection and drainage patterns is critical as the required surgical procedure may solely be based on exact understanding of the veins' anatomy and physiology. On the systemic venous site, anomalies of superior and inferior venae cavae, innominate vein, and coronary sinus can be equally well imaged with either echocardiography or angiography. However, on the pulmonary venous site, echocardiography and Doppler techniques including color flow mapping are superior to angiography for precise definition of the connection and drainage sites of the individual pulmonary veins.

  12. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: comparison with B-mode ultrasound and color Doppler imaging.

    PubMed

    Ooi, Chin Chin; Schneider, Michal Elisabeth; Malliaras, Peter; Chadwick, Martine; Connell, David Alister

    2015-01-01

    This primary aim of this study was to evaluate the diagnostic performance of axial-strain sonoelastography (ASE), B-mode ultrasound (US) and color Doppler US in confirming clinically symptomatic Achilles tendinopathy. The secondary aim was to establish the relationship between the strain ratio during sonoelastography and Victorian Institute of Sport Assessment-Achilles (VISA-A) scores. The VISA-A questionnaire is a validated clinical rating scale that evaluates the symptoms and dysfunction of the Achilles tendon. One hundred twenty Achilles tendons of 120 consecutively registered patients with clinical symptoms of Achilles tendinopathy and another 120 gender- and age-matched, asymptomatic Achilles tendons of 120 healthy volunteers were assessed with B-mode US, ASE and color Doppler US. Symptomatic patients had significantly higher strain ratio scores and softer Achilles tendon properties compared with controls (p < 0.001). The strain ratio was moderately correlated with VISA-A scores (r = -0.62, p < 0.001). The diagnostic accuracy of B-mode US, ASE and color Doppler US in confirming clinically symptomatic Achilles tendinopathy was 94.7%, 97.8% and 82.5% respectively. There was excellent correlation between the clinical reference standard and the grade of tendon quality on ASE (κ = 0.91, p < 0.05), compared with B-mode US (κ = 0.74, p < 0.05) and color Doppler imaging (κ = 0.49, p < 0.05). ASE is an accurate clinical tool in the evaluation of Achilles tendinopathy, with results comparable to those of B-mode US and excellent correlation with clinical findings. The strain ratio may offer promise as a supplementary tool for the objective evaluation of Achilles tendon properties.

  13. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation

    NASA Technical Reports Server (NTRS)

    Garcia, M. J.; Smedira, N. G.; Greenberg, N. L.; Main, M.; Firstenberg, M. S.; Odabashian, J.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: To determine the effect of preload in color M-mode Doppler flow propagation velocity (v(p)). BACKGROUND: The interpretation of Doppler filling patterns is limited by confounding effects of left ventricular (LV) relaxation and preload. Color M-mode v(p) has been proposed as a new index of LV relaxation. METHODS: We studied four dogs before and during inferior caval (IVC) occlusion at five different inotropic stages and 14 patients before and during partial cardiopulmonary bypass. Left ventricular (LV) end-diastolic volumes (LV-EDV), the time constant of isovolumic relaxation (tau), left atrial (LA) pre-A and LV end-diastolic pressures (LV-EDP) were measured. Peak velocity during early filling (E) and v(p) were extracted by digital analysis of color M-mode Doppler images. RESULTS: In both animals and humans, LV-EDV and LV-EDP decreased significantly from baseline to IVC occlusion (both p < 0.001). Peak early filling (E) velocity decreased in animals from 56 +/- 21 to 42 +/- 17 cm/s (p < 0.001) without change in v(p) (from 35 +/- 15 to 35 +/- 16, p = 0.99). Results were similar in humans (from 69 +/- 15 to 53 +/- 22 cm/s, p < 0.001, and 37 +/- 12 to 34 +/- 16, p = 0.30). In both species, there was a strong correlation between LV relaxation (tau) and v(p) (r = 0.78, p < 0.001, r = 0.86, p < 0.001). CONCLUSIONS: Our results indicate that color M-mode Doppler v(p) is not affected by preload alterations and confirms that LV relaxation is its main physiologic determinant in both animals during varying lusitropic conditions and in humans with heart disease.

  14. Evaluation of carotid arteries in stroke patients using color Doppler sonography: A prospective study conducted in a tertiary care hospital in South India

    PubMed Central

    Fernandes, Merwyn; Keerthiraj, B; Mahale, Ajith R; Kumar, Ashwini; Dudekula, Anees

    2016-01-01

    Aims and Objectives: Cerebral ischemic stroke is life-threatening and debilitating neurological disease, it is the third leading cause of death in the world. Studies have shown that there is a close relationship between carotid artery stenosis and ischemic cerebral vascular disease. This study is done to assess the carotid arteries with the help of color Doppler sonography and to correlate cerebrovascular accidents. Materials and Methods: The prospective study was carried out on 50 patients using purposive sampling technique. Risk factors such as hypertension, diabetes mellitus, smoking, and family history were documented. The data gathered from color Doppler examination consisted of peak systolic velocity of common carotid artery (CCA) and internal carotid artery (ICA), velocity ratios between CCA and ICA and plaque characteristics as seen on real-time image. Statistical Analysis Used: The collected data were analyzed and presented in the form of tables, figures, graphs, and diagrams wherever necessary. As this study deals with the only frequency distribution of various factors, so no tests of significance were applied. Results: The highest incidence of stroke was found in the male population in the age group of 60–69 years. Various risk factors included hypertension, diabetes mellitus, smoking, and family history. Of 50 patients, 12 patients showed significant stenosis (>60%). Atherosclerotic plaques were seen in 39 patients (78%). Conclusion: Color Doppler examination is an economic, safe, reproducible, and less time-consuming method of demonstrating the cause of cerebrovascular insufficiency in extracranial carotid artery system and will guide in instituting treatment modalities. PMID:26958521

  15. [Pilot study of echocardiographic studies using color- and pulsed-wave spectral Doppler methods in blue-crowned amazons (Amazona ventralis) and blue-fronted amazons (Amazona a. aestiva)].

    PubMed

    Pees, M; Straub, J; Schumacher, J; Gompf, R; Krautwald-Junghanns, M E

    2005-02-01

    Colour-flow and pulsed-wave spectral Doppler echocardiography was performed on 6 healthy, adult Hispaniolan amazon parrots (Amazona ventralis) and 6 blue-fronted amazon parrots (Amazona a. aestiva) to establish normal reference values. Birds were anesthetized with isoflurane in oxygen and placed in dorsal recumbency. An electrocardiogram was recorded continuously and birds were imaged with a micro-phased-array scanner with a frequency of 7.0 MHz. After assessment of cardiac function in 2-D-echocardiography, blood flow across the left and the right atrioventricular valve and across the aortic valve was determined using color-flow and pulsed-wave spectral Doppler echocardiography. Diastolic inflow (mean value +/- standard deviation) into the left ventricle was 0.17 +/- 0.02 m/s (Hispaniolan amazons) and 0.18 +/- 0.03 m/s (Blue fronted amazons). Diastolic inflow into the right ventricle was 0.22 +/- 0.05 m/s (Hispaniolan amazons) and 0.22 +/- 0.04 m/s (Blue fronted amazons). Velocity across the aortic valve was 0.84 +/- 0.07 m/s (Hispaniolan amazons) and 0.83 +/- 0.08 m/s (Blue fronted amazons). Systolic pulmonary flow could not be detected in any of the birds in this study. No significant differences were evident between the two species examined. Results of this study indicate that Doppler echocardiography is a promising technique to determine blood flow in the avian heart. Further studies in other avian species are needed to establish reference values for assessment of cardiac function in diseased birds.

  16. Correlation of Transcranial Color Doppler to N20 Somatosensory Evoked Potential Detects Ischemic Penumbra in Subarachnoid Hemorrhage

    PubMed Central

    Di Pasquale, Piero; Zanatta, Paolo; Morghen, Ilaria; Bosco, Enrico; Forini, Elena

    2011-01-01

    Background: Normal subjects present interhemispheric symmetry of middle cerebral artery (MCA) mean flow velocity and N20 cortical somatosensory evoked potential (SSEP). Subarachnoid haemorrhage (SAH) can modify this pattern, since high regional brain vascular resistances increase blood flow velocity, and impaired regional brain perfusion reduces N20 amplitude. The aim of the study is to investigate the variability of MCA resistances and N20 amplitude between hemispheres in SAH. Methods: Measurements of MCA blood flow velocity (vMCA) by transcranial color-Doppler and median nerve SSEP were bilaterally performed in sixteen patients. MCA vascular changes on the compromised hemisphere were calculated as a ratio of the reciprocal of mean flow velocity (1/vMCA) to contralateral value and correlated to the simultaneous variations of interhemispheric ratio of N20 amplitude, within each subject. Data were analysed with respect to neuroimaging of MCA supplied areas. Results: Both interhemispheric ratios of 1/vMCA and N20 amplitude were detected >0.65 (p <0,01) in patients without neuroimages of injury. Both ratios became <0.65 (p <0.01) when patients showed unilateral images of ischemic penumbra and returned >0.65 if penumbra disappeared. The two ratios no longer correlated after structural lesion developed, as N20 detected in the damaged side remained pathological (ratio <0.65), whereas 1/vMCA reverted to symmetric interhemispheric state (ratio >0.65), suggesting a luxury perfusion. Conclusion: Variations of interhemispheric ratios of MCA resistance and cortical N20 amplitude correlate closely in SAH and allow identification of the reversible ischemic penumbra threshold, when both ratios become <0.65. The correlation is lost when structural damage develops. PMID:21660110

  17. Use of Color Doppler Ultrasonography to Measure Thyroid Blood Flow and Differentiate Graves' Disease from Painless Thyroiditis

    PubMed Central

    Hiraiwa, Tetsuya; Tsujimoto, Naoyuki; Tanimoto, Keiji; Terasaki, Jungo; Amino, Nobuyuki; Hanafusa, Toshiaki

    2013-01-01

    Backgrounds Color Doppler ultrasonography (CDU) has not yet been established as a method to investigate the pathogenesis of thyrotoxicosis. Objectives Our first objective was to determine whether the measurement of peak systolic blood-flow velocity in the superior thyroid artery (STV) and thyroid tissue blood flow (TBF) using CDU could differentiate Graves' disease (GD) from painless thyroiditis (PT). The second objective was to examine the factors mediating increased blood flow to the thyroid gland in GD. Methods Recruited patients had untreated GD or PT and visited the Department of Internal Medicine (I), Osaka Medical College, between April 1, 2006 and May 31, 2010. Age, gender, blood pressure, pulse rate, thyroid-stimulating hormone, free thyroxine, tri-iodothyronine, TSH receptor antibody and thyroid volume were evaluated in patients. In addition, bilateral measurements of STV, TBF and peak systolic velocity in the common carotid artery (CCV) were also performed. TBF was quantified by calculating the ratio of blood-flow pixels to total pixels in the region of interest using sagittal section images of the thyroid gland. Receiver-operating characteristic curve analysis was performed to determine the ability of STV and TBF measurements to differentiate GD from PT. Results For the average of STV measured on both sides, the area under the receiver-operating characteristic curve (AUC) was 0.956. For the average of TBF measured on both sides, the AUC was 0.920. At an average STV cut-off value of 43 cm/s, the sensitivity to discriminate GD from PT was 0.87 and the specificity was 1.00. At an average TBF cut-off value of 3.8%, the sensitivity was 0.71 and the specificity was 1.00. In the GD group, neither blood pressure nor pulse rate correlated with the average STV or TBF. Moreover, there was no correlation between STV and CCV or between TBF and CCV on either side. However, STV was correlated with TBF (right side: R = 0.47; left side: R = 0.52). Conclusions The

  18. Transient basilar artery occlusion monitored by transcranial color Doppler presenting with a spectacular shrinking deficit: a case report

    PubMed Central

    2010-01-01

    Introduction We describe the case of a 79-year-old Caucasian Italian woman with a transient basilar occlusion monitored by transcranial Doppler, with subsequent recanalization and clinical shrinking deficit. This is the first case of transient basilar occlusive disease diagnosed and monitored by transcranial Doppler. This case is important and needs to be reported because transient basilar occlusion may be easily diagnosed if transcranial Doppler is performed. Case presentation A 79-year-old woman affected by chronic atrial fibrillation and not treated with oral anticoagulants, cardioverted to sinus rhythm during a gastric endoscopy. She then showed a sudden-onset loss of consciousness, horizontal and vertical gaze palsy, tetraparesis and bilateral miosis and coma. Two hours later, the symptoms resolved quickly, leaving no residual neurologic deficits. Transcranial Doppler examination showed a dampened flow in the basilar artery in the emergency examination and a restored flow when the symptoms resolved. Conclusion This is the first case of transient basilar occlusive disease diagnosed and monitored by transcranial Doppler. We believe that transcranial Doppler should be performed in all cases of unexplained acute loss of consciousness, in particular, if associated with signs of brainstem dysfunctions. PMID:20205759

  19. The use of the color Doppler ultrasonography in the diagnosis and monitoring of an atypical case of giant-cell arteritis.

    PubMed

    Martins, N; Polido-Pereira, J; Rodrigues, A M; Soares, F; Batista, P; Pereira da Silva, J A

    2016-01-01

    Giant Cell Arteritis (GCA) is a large vessels vasculitis that is typically characterised by headache, scalp tenderness, jaw claudication and visual disturbances. Temporal arteries color Doppler ultrasonography (CDUS) is a sensitive and non-invasive image technique used in the diagnosis of this disease. This work highlights the importance of CDUS in the diagnostic workup of GCA and also demonstrates it´s usefullness in the evaluation and documentation of the response to corticosteroids therapy in an atypical case of ACG. PMID:27606478

  20. Global testicular infarction in the presence of epididymitis: clinical features, appearances on grayscale, color Doppler, and contrast-enhanced sonography, and histologic correlation.

    PubMed

    Yusuf, Gibran; Sellars, Maria E; Kooiman, Gordon G; Diaz-Cano, Salvador; Sidhu, Paul S

    2013-01-01

    Epididymitis is common, presenting indolently with unilateral scrotal pain and swelling. Diagnosis is based on clinical assessment and resolves with antibiotic therapy. Recognized complications are abscess formation and segmental infarction. Global testicular infarction is rare. Diagnosis is important and requires surgical management. On grayscale sonography, global infarction may be difficult to establish. The addition of color Doppler imaging is useful but is observer experience dependent with limitations in the presence of low flow. Contrast-enhanced sonography is useful for unequivocally establishing the diagnosis. We report global testicular infarction in 2 patients with epididymitis clearly depicted on contrast-enhanced sonography, allowing immediate surgical management.

  1. Multiparametric sonographic imaging of a capillary hemangioma of the testis: appearances on gray-scale, color Doppler, contrast-enhanced ultrasound and strain elastography.

    PubMed

    Bernardo, Silvia; Konstantatou, Eleni; Huang, Dean Y; Deganello, Annamaria; Philippidou, Marianna; Brown, Christian; Sellars, Maria E; Sidhu, Paul S

    2016-03-01

    We report a case of a lobular capillary hemangioma in a 66-year-old man, who presented with left testicular pain, with an asymptomatic incidental right testicular lesion found on ultrasonography. The sonographic examination demonstrated a heterogeneous mainly iso-echoic intratesticular lesion with marked vascularity on the color Doppler examination. Further evaluation with contrast-enhanced ultrasound and strain elastography was performed; the multiparametric imaging suggested a benign tumor. The multidisciplinary team decision with patient consent was to perform a radical orchiectomy with subsequent histopathology confirming a benign lobular capillary hemangioma.

  2. Serial color Doppler flow of uterine vasculature combined with serum beta-hCG measurements for improved monitoring of patients with gestational trophoblastic disease. A preliminary report.

    PubMed

    Maymon, R; Schneider, D; Shulman, A; Bukowsky, I; Weinraub, Z

    1996-01-01

    Weekly serum beta-hCG measurements and transvaginal ultrasound scans coupled with color Doppler flow were performed on 8 patients with hydatidiform mole. Two patients later developed persistent trophoblastic disease, necessitating chemotherapy. The correlation coefficients between Doppler flow indices, systolic-diastolic (S/D) ratio and pulsatility index (PI) with log beta-hCG were -0.96 and -0.97, respectively. The weekly S/D and PI indices were plotted on an individual curve. Only the 2 patients who developed persistent gestational trophoblastic disease had PI index levels of < or = 1.5 as early as 2 weeks after molar evacuation. At that stage their serum beta-hCG levels were not different from some of the other patients. In this preliminary report, the regression of the disease could be reliably assessed by observing the changes in low resistance flow which paralleled the gradual decrements in serial beta-hCG levels. Thus, the contribution of this noninvasive imaging technique encourages the authors to further investigate Doppler flow monitoring among a larger sample of patients suffering from various gestational trophoblastic diseases.

  3. Predictive value of endometrial thickness, pattern and sub-endometrial blood flows on the day of hCG by 2D doppler in in-vitro fertilization cycles: A prospective clinical study from a tertiary care unit

    PubMed Central

    Singh, Neeta; Bahadur, Anupama; Mittal, Suneeta; Malhotra, Neena; Bhatt, Ashok

    2011-01-01

    AIMS AND OBJECTIVES: To evaluate the role of endometrial thickness, pattern and sub-endometrial blood flows measured by 2D power Doppler ultrasound to predict pregnancy during in-vitro fertilization (IVF) treatment. STUDY DESIGN: Prospective, non-randomized clinical study. MATERIALS AND METHODS: This was a prospective observational study. A total of 101 infertile women were recruited from our IVF-ET program from January to December, 2009. Women with tubal factor, male factor and unexplained infertility were included in the study. RESULTS: The mean age was 35 years and mean duration of infertility was 8 years. Seventy five (74.25%) patients had primary infertility and 26 (25.74%) had secondary infertility. The mean endometrial thickness was 8.1 mm and endometrial blood flow was in Zone I in 18 patients, 28 patients had blood flow in Zone II and 54 had in Zone III. Overall, 27 (26.73%) patients conceived and in these women the endometrial thickness was between 6 and 12 mm. CONCLUSIONS: With a thin endometrium (≤7 mm) and no-triple-line endometrial pattern coexisting in an in-vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) candidate, cryopreservation should be recommended. With a thin endometrium and a good texture (triple-line), other prognostic factors, such as embryo quality, should be taken into account. The endometrial vascularity has a useful predictive value on the implantation rate in IVF cycles irrespective of the morphological appearance of the endometrium. However, further study is needed to make a definitive conclusion. PMID:21772737

  4. Quantitative, Noninvasive Assessment of Patent Ductus Arteriosus Shunt Flow by Measuring Proximal Isovelocity Surface Area on Color Doppler Mapping in Very Low-Birth-Weight Infants.

    PubMed

    Iwashima, Satoru; Ishikawa, Takamichi

    2016-08-01

    Background Our goal was to evaluate the hemodynamic status of very low-birth-weight infants (VLBWIs) with patent ductus arteriosus (PDA) by measuring the vena contracta width (VCW) and effective shunt orifice area (ESOA) using the proximal isovelocity surface area (PISA) on color Doppler imaging. Method and Results In this study, 34 VLBWIs with PDA (median weight: 949 g) were studied. We measured VCW and ESOA using the PISA on echocardiography. PDA-VCW was measured at the narrowest PDA flow region. ESOA determined using PISA (PDA-ESOA) was defined as the hemispheric area of laminar flow with aliased velocities on color Doppler flow imaging: PDA-ESOA = 2π (PDA radius) 2 × aligning velocity/PDA velocity. Of the 34 VLBWIs, 26 received indomethacin (IND) for symptomatic PDA. Comparing echocardiographic parameters between infants who did versus did not receive IND, significant differences were seen in the left atrial-to-aortic root ratio (LA/AO), PDA-VCW, and PDA-ESOA. Receiver operating characteristic curve analysis to differentiate between IND usage status produced statistically significant results for PDA-VCW (area under the curve [AUC] = 0.880), PDA-ESOA (AUC = 0.813), and LA/AO (AUC = 0.769). Conclusion PDA-VCW and PDA-ESOA may allow noninvasive assessment of PDA severity, and are useful when determining the timing of clinical decision making for IND administration.

  5. Impact of nodular size on the predictive values of gray-scale, color-Doppler ultrasound, and sonoelastography for assessment of thyroid nodules

    PubMed Central

    Hong, Yu-rong; Wu, Yu-lian; Luo, Zhi-yan; Wu, Ning-bo; Liu, Xue-ming

    2012-01-01

    Objective: To define the roles of gray-scale, color-Doppler ultrasound, and sonoelastography for the assessment of thyroid nodule to determine whether nodule size affects the differential diagnosis of benign and malignant. Methods: A total of 243 consecutive subjects (214 women, 29 men) with 329 thyroid nodules were examined by gray-scale, color-Doppler ultrasound, and sonoelastography in this prospective study. All patients underwent surgery and the final diagnosis was obtained from histopathological examination. Results: Three hundred and twenty-nine nodules (208 benign, 121 malignant) were divided into small (SNs, 5–10 mm, n=137) and large (LNs, >10 mm, n=192) nodules. Microcalcifications were more frequent in malignant LNs than in malignant SNs, but showed no significant difference between benign LNs and SNs. Poorly-circumscribed margins were not significantly different between malignant SNs and LNs, but were less frequent in benign LNs than in benign SNs. Among all nodules, marked intranodular vascularity was more frequent in LNs than in SNs. By comparison, shape ratio of anteroposterior to transverse dimensions (A/T) ≥1 was less frequent in LNs than in SNs. Otherwise, among all nodules, marked hypoechogenicity and elasticity score of 4–6 showed no significant difference between LNs and SNs. Conclusions: The predictive values of microcalcifications, nodular margins, A/T ratio, and marked intranodular vascularity depend on nodule size, but the predictive values of echogenicity and elastography do not. PMID:22949361

  6. Relation between three-dimensional geometry of the inflow tract to the orifice and the area, shape, and velocity of regurgitant color Doppler jets: an in vitro study.

    PubMed

    Nicolosi, G L; Budano, S; Grenci, G M; Mangano, S; Cervesato, E; Zanuttini, D

    1990-01-01

    The relation between three-dimensional geometry of the inflow tract to the orifice and the area, shape, and velocity of regurgitant jets was studied in a pulsatile in vitro color Doppler flow model. A 2.5 MHz transducer connected to a diagnostic ultrasound machine was placed in a water tank facing pulsatile jets (duration, 0.5 second) obtained by a calibrated injector. Flow rate from 6 to 52 ml/sec were tested through a 5 mm diameter circular orifice. Four different three-dimensional inflow tract geometries were compared: (A) sharp-edged, (B) Venturi (funnel), (C) converging conical, and (D) diverging conical. Mean velocities of jets were measured by continuous-wave Doppler echocardiography. Driving pressures were also measured by means of a fluid-filled catheter. Two observers independently digitized contours of maximal color jet areas by computer system from two separate sets of experiments. Results are given as the mean values of the four measurements for each parameter. Jet areas were correlated to flow rate, with no difference from A through D. The shape (eccentricity) of jets was different between A and B (p less than 0.05), between B and D (p less than 0.01), and between C and D (p less than 0.01). The shape of jets was correlated with flow rate, continuous-wave velocity, and pressure gradient in B, C, and D but not in A. Measured pressure gradients and estimated gradients by continuous-wave Doppler echocardiography were similarly correlated from A through D.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Color

    ERIC Educational Resources Information Center

    Bowman, Bruce

    1975-01-01

    The color wheel, because it is an excellent way to teach color theory has become somewhat of a traditional assignment in most basic design courses. Article described a way to change this situation by re-designing and improving upon the basic color wheel. (Author/RK)

  8. ProgRes 3000: a digital color camera with a 2-D array CCD sensor and programmable resolution up to 2994 x 2320 picture elements

    NASA Astrophysics Data System (ADS)

    Lenz, Reimar K.; Lenz, Udo

    1990-11-01

    A newly developed imaging principle two dimensional microscanning with Piezo-controlled Aperture Displacement (PAD) allows for high image resolutions. The advantages of line scanners (high resolution) are combined with those of CCD area sensors (high light sensitivity geometrical accuracy and stability easy focussing illumination control and selection of field of view by means of TV real-time imaging). A custom designed sensor optimized for small sensor element apertures and color fidelity eliminates the need for color filter revolvers or mechanical shutters and guarantees good color convergence. By altering the computer controlled microscan patterns spatial and temporal resolution become interchangeable their product being a constant. The highest temporal resolution is TV real-time (50 fields/sec) the highest spatial resolution is 2994 x 2320 picture elements (Pels) for each of the three color channels (28 MBytes of raw image data in 8 see). Thus for the first time it becomes possible to take 35mm slide quality still color images of natural 3D scenes by purely electronic means. Nearly " square" Pels as well as hexagonal sampling schemes are possible. Excellent geometrical accuracy and low noise is guaranteed by sensor element (Sel) synchronous analog to digital conversion within the camera head. The cameras principle of operation and the procedure to calibrate the two-dimensional piezo-mechanical motion with an accuracy of better than O. 2. tm RMSE in image space is explained. The remaining positioning inaccuracy may be further

  9. Validation of color Doppler ultrasonography for evaluating the uterine blood flow and perfusion during late normal pregnancy and uterine torsion in buffaloes.

    PubMed

    Hussein, Hassan A

    2013-04-15

    The aim of this study was to verify the efficacy of color Doppler ultrasonography for diagnosis of degree and duration of uterine torsion in buffaloes. In Assiut province/Upper Egypt, 65 buffaloes (37 with uterine torsion, 28 with normal late pregnancy) were examined clinically and using Doppler ultrasonography. The Doppler indices including resistance index (RI), pulsatility index (PI), time-averaged maximum velocity (TAMV), and blood flow volume (BFV) in the arteries ipsilateral to the uterine torsion (IPUT) and in arteries contralateral to the uterine torsion (COUT) were recorded. Methods of correction were documented along with dam and calf survival. Torsion was recorded postcervically with vaginal involvement in 35/37 (94.6%) of the cases. The degrees of uterine torsion were light and high in 9/37 (24.3%) and 28/37 (75.7%) of the cases, respectively (P = 0.001). Right uterine torsion was present in 36/37 (97.3%) of the cases (P = 0.0001). Pulsatility index, RI, TAMV, and BFV in IPUT and COUT did not differ significantly (P > 0.05) in normal late pregnancy. The PI and RI in IPUT were significantly higher (P < 0.01) than in COUT, and the TAMV and BFV in IPUT were less (P < 0.001) than that in COUT in uterine torsion. The PI and RI of torsion cases in IPUT were higher (P < 0.001) than that in normal pregnancy. Time-averaged maximum velocity and BFV in torsion cases were lower (P < 0.01) than that of normal pregnancy in IPUT. There was approximately 50% of RI and PI higher than in light degree uterine torsion in IPUT (P < 0.001). Consequently, TAMV and BFV were greatly lower (P < 0.0001) than that in light degree in IPUT. Pulsatility index and RI were positively correlated (r = 0.856; P < 0.001) with the duration and degree of the uterine torsion, and TAMV and BFV were negatively correlated (r = -0.763; P < 0.001). In all cases of uterine torsion the uterine flow velocity waveform showed high systolic flow and absence of early diastolic flow and poor uterine and

  10. Factors influencing the structure and shape of stenotic and regurgitant jets: an in vitro investigation using Doppler color flow mapping and optical flow visualization.

    PubMed

    Krabill, K A; Sung, H W; Tamura, T; Chung, K J; Yoganathan, A P; Sahn, D J

    1989-06-01

    To evaluate factors influencing the structure and shape of stenotic and regurgitant jets, Doppler color flow mapping and optical flow visualization studies were performed with use of a syringe model with a constant rate of ejection to simulate jets of valvular regurgitation and a pulsatile flow model of the right heart chambers to simulate jets of mild, moderate and severe valvular pulmonary stenosis. Ink-(0 to 40%) glycerol-water jets (viscosity 1 to 3.5 centiPoise) were produced by injecting the fluid at a constant rate into a 10 gallon rectangular reservoir of the same still fluid through 1.4 and 3.4 mm needles. The Doppler color flow scanners imaged the laminar jet length within 3 mm of actual jet length (2 to 6 cm) and the jet width within 2 to 3 mm of the actual jet width. Jet flows with Reynolds numbers ranging from 230 to 1,200 injected into still fluid yielded jet length/width ratios that decreased with increasing Reynolds numbers and leveled off to a length/width ratio of 5-6:1 at a Reynolds number near 600. When the fluid reservoir was swirled to better mimic the effect of flow entering the same cardiac chamber from a second source, the jets showed diminution of the jet length/width ratio and a clearly defined zone of turbulence. Studies of the pulsatile flow model were performed at cardiac outputs of 1 to 6 liters/min for the normal and each stenotic valve. Mild stenosis had an orifice area of 2.8 cm2, moderate stenosis an area of 1.0 cm2 and severe stenosis an area of 0.5 cm2. Laminar jet length represented the length of the total jet, which had a symmetric width and was measured from the valve opening to a region where the jet exhibited a spray effect. Laminar jet lengths (0.2 to 1.1 cm) were imaged by Doppler color flow mapping and optical visualization only in the moderate and severely stenotic valves and only at flows less than or equal to 3 liters/min (mean Reynolds numbers less than or equal to 3,470). Beyond this flow rate the jets exhibited a

  11. Different imaging methods in the comparative assessment of vascular lesions: color-coded duplex sonography, laser Doppler perfusion imaging, and infrared thermography

    NASA Astrophysics Data System (ADS)

    Urban, Peter; Philipp, Carsten M.; Weinberg, Lutz; Berlien, Hans-Peter

    1997-12-01

    Aim of the study was the comparative investigation of cutaneous and subcutaneous vascular lesions. By means of color coded duplex sonography (CCDS), laser doppler perfusion imaging (LDPI) and infrared thermography (IT) we examined hemangiomas, vascular malformations and portwine stains to get some evidence about depth, perfusion and vascularity. LDI is a helpful method to get an impression of the capillary part of vascular lesions and the course of superficial vessels. CCDS has disadvantages in the superficial perfusion's detection but connections to deeper vascularizations can be examined precisely, in some cases it is the only method for visualizing vascular malformations. IT gives additive hints on low blood flow areas or indicates arterial-venous-shunts. Only the combination of all imaging methods allows a complete assessment, not only for planning but also for controlling the laser treatment of vascular lesions.

  12. A study of the distribution of color Doppler flows in the superficial digital flexor tendon of young Thoroughbreds during their training periods

    PubMed Central

    HATAZOE, Takashi; ENDO, Yoshiro; IWAMOTO, Yohei; KOROSUE, Kenji; KURODA, Taisuke; INOUE, Saemi; MURATA, Daiki; HOBO, Seiji; MISUMI, Kazuhiro

    2016-01-01

    ABSTRACT Aim of this study was to evaluate the relationships of exercise and tendon injury with Doppler flows appearing in the superficial digital flexor tendon (SDFT) of young Thoroughbreds during training periods. The forelimb SDFTs of 24 one- to two-year-old Thoroughbreds clinically free of any orthopaedic disorders were evaluated using grey-scale (GS) and color Doppler (CD) images during two training periods between December 2013 to April 2015. Twelve horses per year were examined in December, February, and April in training periods that began in September and ended in April. The SDFT was evaluated in 3 longitudinal images of equal lengths (labelled 1, 2, 3 in order from proximal to distal), and 6 transversal images separated by equal lengths (labelled 1A, 1B, 2A, 2B, 3A and 3B in order from proximal to distal) of the metacarpus using both GS and CD. The running (canter and gallop) distance for 1 month before the date of the ultrasonographic examinations was increased in December, February, and April in both of the two training periods. CD flows defined as rhythmically blinking or pulsatory colored signals were found in 56 of 864 (6.4%) transversal CD images, in 28, 12, 13, and 3 images of 1A, 1B, 2A and 2B, respectively, and in 7, 14, and 35 images captured in December, February, and April, respectively. There were no longitudinal or transversal GS images indicating injury in the SDFTs in either of the two training periods. The increase of CD flows in the proximal regions of the SDFT are possibly related to the increase of the running distance during the training periods of the one- to two-year-old Thoroughbreds. Because no injury was diagnosed in the SDFTs by GS images during the training periods, the increase of CD flows in the proximal parts of SDFT is not necessarily predictive of tendon injury in the near future during the training period of young Thoroughbreds. PMID:26858574

  13. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  14. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  15. The effect of isometric exercise of the hand on the synovial blood flow in patients with rheumatoid arthritis measured by color Doppler ultrasound.

    PubMed

    Ellegaard, Karen; Torp-Pedersen, Søren; Lund, Hans; Pedersen, Kirsten; Henriksen, Marius; Danneskiold-Samsøe, Bente; Bliddal, Henning

    2013-01-01

    In 90% of patients with rheumatoid arthritis (RA), the joints of the hand are affected. Studies of grip strength training have not indicated a negative effect on disease activity after training. Introduction of ultrasound Doppler (USD) to measure increased blood flow induced by inflammation has made it possible to investigate the direct effect on blood supply in the synovium after training. In this case-control study, 24 patients with RA with USD activity in the wrist joint participated. The USD activity was measured by the color fraction (CF) (CF = colored pixels/total number of pixels in ROI). Twenty-four patients were assigned to an 8-week grip strength training program. At baseline and after 8 weeks of training, an USD examination of the wrist joint was performed. In the training group, we measured grip strength and pain in the wrist joint. Six patients withdrew from the training because of pain or change in medication. Eighteen patients served as control group. There was a modest, not significant, decrease in the CF in response to training (1.86%; P = 0.08). Grip strength increased 8.8% after training (P = 0.055). Pain in motion deceased after training (P = 0.04). No difference in the CF was seen between the training and control groups, neither at baseline nor at follow-up (P = 0.82 and P = 0.48). Patients withdrawing from training had a significantly higher CF than the other patients (P > 0.001). The results in this study might indicate that the flow in the synovium assessed by USD is not affected by grip strength training.

  16. The Diagnostic Value of Superb Microvascular Imaging (SMI) in Detecting Blood Flow Signals of Breast Lesions: A Preliminary Study Comparing SMI to Color Doppler Flow Imaging.

    PubMed

    Ma, Yan; Li, Gang; Li, Jing; Ren, Wei-dong

    2015-09-01

    The correlation between color Doppler flow imaging (CDFI) and Superb Microvascular Imaging (SMI) for detecting blood flow in breast lesions was investigated, as was the diagnostic value of SMI in differentiating benign from malignant breast lesions.These lesions were evaluated using both CDFI and SMI according to Adler's method. Pathologic examination showed 57 malignant lesions and 66 benign lesions. The number of blood vessels in a single mass was detected by 2 techniques (SMI and CDFI), and the difference between the 2 values (SMI-CDFI) was calculated. The optimal threshold for the diagnosis of malignant neoplasms and the diagnostic performances of SMI, CDFI, and SMI-CDFI were calculated.For the total lesions and malignant lesions alone, the difference between SMI and CDFI for detecting blood flow was significant (P < 0.01), but the difference was not significant for benign lesions (P = 0.15). The area under the receiver operating characteristic curve was 0.73 (95% confidence interval [CI]: 0.64-0.82) for CDFI; 0.81 (95% CI: 0.74-0.89) for SMI; and 0.89 (95% CI: 0.82-0.95) for SMI-CDFI. Furthermore, the modality of "SMI-CDFI" showed the best diagnostic performance.SMI provides further microvessel information in breast lesions. The diagnostic modality of "SMI-CDFI" can improve the diagnostic performance of ultrasound in the differentiation between benign and malignant masses.

  17. Detection of septal coronary collaterals by color flow Doppler mapping is a marker for anomalous origin of a coronary artery from the pulmonary artery.

    PubMed

    Frommelt, Michele A; Miller, Elaine; Williamson, Jeff; Bergstrom, Sarita

    2002-03-01

    Between August 1991 and September 2000, 15 patients received a diagnosis of the anomalous origin of the coronary artery from the pulmonary artery, at the Children's Hospital of Wisconsin. All were evaluated initially by transthoracic echocardiography, with subsequent diagnosis confirmation at cardiac catheterization and/or surgery. Seven of the 15 patients were referred in infancy (mean age 4.3 months) with symptoms of congestive heart failure. The remaining 8 patients were older (mean age 7.0 years) at the time of diagnosis, and 7 of those 8 patients were clinically asymptomatic and were referred for evaluation of a heart murmur and/or cardiomegaly on chest radiograph. One older patient, previously healthy, was referred at age 18 for an episode of sudden death while playing basketball. All the older asymptomatic patients had echocardiographic detection of multiple unusual color flow Doppler signals within the ventricular septum, believed to represent septal coronary collaterals, which raised suspicion of a coronary artery abnormality and led to more detailed imaging of the coronary artery anatomy. In the younger infants with congestive heart failure, septal coronary collaterals were less frequent, but did aid in the diagnosis of an anomalous coronary artery when present.

  18. Gray-scale and color duplex Doppler ultrasound of hand joints in the evaluation of disease activity and treatment in rheumatoid arthritis

    PubMed Central

    Ivanac, Gordana; Morović-Vergles, Jadranka; Brkljačić, Boris

    2015-01-01

    Aim To evaluate the role of gray-scale and color duplex-Doppler ultrasound (CDUS) in diagnosis of changes of hand joints and assessment of treatment efficacy in patients with rheumatoid arthritis (RA) by comparing qualitative and quantitative US parameters with clinical and laboratory indicators of disease activity. Methods Ulnocarpal (UC), metacarpophalangeal (MCP), and proximal interphalangeal (PIP) joints in 30 patients with RA were examined by gray-scale and CDUS before and after six months of treatment. Morphologic and quantitative Doppler findings (synovial thickness, effusion quantity, vascularization degree, resistance index, velocities) were compared with clinical indicators of disease progression: disease activity score (DAS 28), Health Assessment Questionnaire (HAQ), rheumatoid factor (RF), erythrocyte sedimentation rate (ESR), and C reactive protein (CRP). Results Clinical indicators changed significantly after treatment: ESR from 38.1 ± 22.4 mm/h to 27.8 ± 20.9 mm/h (P = 0.013), DAS 28 from 5.47 ± 1.56 to 3.87 ± 1.65 (P < 0.001), and HAQ from 1.26 ± 0.66 to 0.92 ± 0.74 (P = 0.030), indicating therapeutic effectiveness. In all MCP and UC joints we observed a significant change in at least one US parameter, in 6 out of 12 joints we observed a significant change in ≥2 parameters, and in 2 UC joints we observed significant changes in ≥3 parameters. The new finding was that the cut-off values of resistance index of 0.40 at baseline and of 0.55 after the treatment indicated the presence of active disease and the efficacy of treatment, respectively; also it was noticed that PIP joints can be omitted from examination protocol. Conclusion Gray scale and CDUS are useful in diagnosis of changes in UC and MCP joints of patients with RA and in monitoring the treatment efficacy. PMID:26088853

  19. Use of color Doppler ultrasonography for evaluating vascularity of small intestinal lesions in Crohn's disease: correlation with endoscopic and surgical macroscopic findings.

    PubMed

    Sasaki, Tomohiko; Kunisaki, Reiko; Kinoshita, Hiroto; Yamamoto, Hisae; Kimura, Hideaki; Hanzawa, Akiho; Shibata, Naomi; Yonezawa, Hiromi; Miyajima, Eiji; Sakamaki, Kentaro; Numata, Kazushi; Tanaka, Katsuaki; Maeda, Shin

    2014-03-01

    OBJECTIVE. Ultrasonography (US) is a simple, inexpensive and minimally invasive method. We evaluated the vascularity of small intestinal lesions in Crohn's disease using color Doppler US (CD-US) and retrospectively compared them with endoscopic and surgical macroscopic findings. MATERIAL AND METHODS. In order to compare CD-US and endoscopic findings, 108 Crohn's disease patients who underwent examination of the terminal ileum by both colonoscopy and CD-US were included in the study. Vascularity was evaluated in CD-US using a semiquantitative method, the Limberg score. We analyzed correlations between Limberg score and simple endoscopic score for Crohn's disease (SES-CD), an index reflecting endoscopic activity. Scores of SES-CD 3 and higher were defined as endoscopically active. For comparison with surgical macroscopic findings, 22 Crohn's disease patients who received CD-US and subsequent iliectomies were included. Lesions with apparent open ulcers were defined as active, and those without as non-active. These findings were compared with the Limberg score. RESULTS. A substantial positive correlation was observed between Limberg scores and SES-CD (ρ = 0.709 [p < 0.001]). Notably, all 27 cases with a Limberg score of 3 or 4 were classified as endoscopically active. Compared to surgical macroscopic activity, Limberg scores of active lesions were significantly higher than those of non-active lesions (p = 0.005). In particular, all 11 cases with a Limberg score of 3 or 4 were classified as active lesions. CONCLUSION. Vascularity of small intestinal lesions of Crohn's disease evaluated by CD-US with Limberg score is well correlated with endoscopic and surgical macroscopic findings.

  20. Color flow Doppler mapping studies of "physiologic" pulmonary and tricuspid regurgitation: evidence for true regurgitation as opposed to a valve closing volume.

    PubMed

    Maciel, B C; Simpson, I A; Valdes-Cruz, L M; Recusani, F; Hoit, B; Dalton, N; Weintraub, R; Sahn, D J

    1991-01-01

    Color flow Doppler mapping using either an Aloka 880 or a Toshiba SSH65A system was performed in 39 normal subjects (aged 13 to 45 years) and 43 patients (aged 13 to 82 years) with pathologic tricuspid or pulmonary regurgitation to evaluate the incidence of "physiologic" regurgitation of right heart valves and to determine the differentiating characteristics in the spatial distribution and velocity encoding of "normal" and "pathologic" regurgitant jets. In the normal subjects, tricuspid and pulmonary regurgitation were documented in 32 (83%) and 36 (93%), respectively, and were unrelated to the system being used. Flow acceleration and aliasing were imaged on the right ventricular side of the tricuspid regurgitant orifice and on the pulmonary artery side of the pulmonary valve (in both normal subjects and patients), and indicated flow convergence for true regurgitation through an orifice as opposed to blood being driven retrogradely by the closing valve. Such proximal acceleration was documented in all patients with pathologic tricuspid regurgitation, in 31/32 of the normal subjects with tricuspid regurgitation, and was also observed in 12/15 (80%) of the patients and 4/12 (33%) of normal subjects with pulmonary regurgitation who were examined with the Toshiba system. The dimensions (mean +/- SD) of tricuspid regurgitant jets (length [JL] and area [JA]) were consistently larger in the patients than in the normal subjects [JL: 3.4 +/- 0.9 vs 1.2 +/- 0.5 cm, p less than 0.001; and JA: 5.7 +/- 2.0 vs 1.4 +/- 0.7 cm2, p less than 0.001) as were the pulmonary regurgitation jet dimensions (JL: 1.8 +/- 0.4 vs 0.9 +/- 0.08 cm, p less than 0.001; JA: 1.8 +/- 0.7 vs 0.3 +/- 0.08 cm2, p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience

    NASA Technical Reports Server (NTRS)

    Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.; Panza, Julio A.; Thomas, James D.

    2003-01-01

    BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS: real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.

  2. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  3. Quantitative analysis of aortic regurgitation: real-time 3-dimensional and 2-dimensional color Doppler echocardiographic method--a clinical and a chronic animal study

    NASA Technical Reports Server (NTRS)

    Shiota, Takahiro; Jones, Michael; Tsujino, Hiroyuki; Qin, Jian Xin; Zetts, Arthur D.; Greenberg, Neil L.; Cardon, Lisa A.; Panza, Julio A.; Thomas, James D.

    2002-01-01

    BACKGROUND: For evaluating patients with aortic regurgitation (AR), regurgitant volumes, left ventricular (LV) stroke volumes (SV), and absolute LV volumes are valuable indices. AIM: The aim of this study was to validate the combination of real-time 3-dimensional echocardiography (3DE) and semiautomated digital color Doppler cardiac flow measurement (ACM) for quantifying absolute LV volumes, LVSV, and AR volumes using an animal model of chronic AR and to investigate its clinical applicability. METHODS: In 8 sheep, a total of 26 hemodynamic states were obtained pharmacologically 20 weeks after the aortic valve noncoronary (n = 4) or right coronary (n = 4) leaflet was incised to produce AR. Reference standard LVSV and AR volume were determined using the electromagnetic flow method (EM). Simultaneous epicardial real-time 3DE studies were performed to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV), and LVSV by subtracting LVESV from LVEDV. Simultaneous ACM was performed to obtain LVSV and transmitral flows; AR volume was calculated by subtracting transmitral flow volume from LVSV. In a total of 19 patients with AR, real-time 3DE and ACM were used to obtain LVSVs and these were compared with each other. RESULTS: A strong relationship was found between LVSV derived from EM and those from the real-time 3DE (r = 0.93, P <.001, mean difference (3D - EM) = -1.0 +/- 9.8 mL). A good relationship between LVSV and AR volumes derived from EM and those by ACM was found (r = 0.88, P <.001). A good relationship between LVSV derived from real-time 3DE and that from ACM was observed (r = 0.73, P <.01, mean difference = 2.5 +/- 7.9 mL). In patients, a good relationship between LVSV obtained by real-time 3DE and ACM was found (r = 0.90, P <.001, mean difference = 0.6 +/- 9.8 mL). CONCLUSION: The combination of ACM and real-time 3DE for quantifying LV volumes, LVSV, and AR volumes was validated by the chronic animal study and was shown to be clinically applicable.

  4. Time-dependent flow velocity measurement using two-dimensional color Doppler flow imaging and evaluation by Hagen-Poiseuille equation.

    PubMed

    Zhang, Bo; Sun, Yuqing; Xia, Lianghua; Gu, Junyi

    2015-12-01

    This paper aims to develop a technique to assess velocity flow profile and wall shear stress (WSS) spatial distribution across a vessel phantom representing an artery. Upon confirming the reliability of the technique, it was then used on a set of carotid arteries from a cohort of human subjects. We implemented color Doppler flow imaging (CDFI) for measurement of velocity profile in the artery cross section. Two dimensional instantaneous and time-dependent flow velocity and WSS vector fields were measured and their waveforms of peak velocities based on the technique were compared with WSS values generated by Hagen-Poiseuille equation. Seventy-five patients with intima-media thickening were prospectively enrolled and were divided into an IMT group. At the same time, another 75 healthy volunteers were enrolled as the control group. All the subjects were scanned and the DICOM files were imported into our in-house program. Next, we determine the velocity profile of carotid arteries in a set of 150 human subjects and compared them again. The peak velocities by the CDFI and Hagen-Poiseuille equation techniques were compared and statistically evaluated. The amounts of deviation for the two measured WSS profiles were performed and we demonstrated that they are not significantly different. At two different flow settings with peak flow velocity of 0.1, 0.5 (×10(-11)) m/s, the obtained WSS were 0.021 ± 0.04, 0.038 ± 0.05 m/s, respectively. For the patient population study, the mean WSS value calculated by Hagen-Poiseuille equation was 2.98 ± 0.15 dyne/cm(2), while it was 2.31 ± 0.14 dyne/cm(2) by our CDFI analysis program. The difference was not statistically significant (t = -1.057, P = 0.259). Similar to the Hagen-Poiseuille equation, a negative linear correlation was also found between the calculated WSS and intima-media thickness (P = 0.000). Using CDFI analysis, we found that the WSS distribution at the middle of the proximal plaque shoulder was larger than the top

  5. Brief history of vector Doppler

    NASA Astrophysics Data System (ADS)

    Dunmire, Barbrina; Beach, Kirk W.

    2001-05-01

    Since the development of the directional Doppler by McLeod in 1967, methods of acquiring, analyzing, and displaying blood velocity information have been under constant exploration. These efforts are motivated by a variety of interest and objectives including, to: a) simplify clinical examination, examiner training, and study interpretation, b) provide more hemodynamic information, and c) reduce examination variability and improve accuracy. The vector Doppler technique has been proposed as one potential avenue to achieve these objects. Vector Doppler systems are those that determine the true 2D or 3D blood flow velocity by combining multiple independent velocity component measurements. Most instruments can be divided into two broad categories: 1) cross-beam and 2) time-domain. This paper provides a brief synopsis of the progression of vector Doppler techniques, from its onset in 1970 to present, as well as possible avenues for future work. This is not intended to be a comprehensive review of all vector Doppler systems.

  6. Effect of a single injection of gonadotropin-releasing hormone (GnRH) and human chorionic gonadotropin (hCG) on testicular blood flow measured by color doppler ultrasonography in male Shiba goats.

    PubMed

    Samir, Haney; Sasaki, Kazuaki; Ahmed, Eman; Karen, Aly; Nagaoka, Kentaro; El Sayed, Mohamed; Taya, Kazuyoshi; Watanabe, Gen

    2015-05-01

    Although color Doppler ultrasonography has been used to evaluate testicular blood flow in many species, very little has been done in goat. Eight male Shiba goats were exposed to a single intramuscular injection of either gonadotropin-releasing hormone (GnRH group; 1 µg/kg BW) or human chorionic gonadotropin (hCG group; 25 IU/kg BW). Plasma testosterone (T), estradiol (E2) and inhibin (INH) were measured just before (0 hr) and at different intervals post injection by radioimmunoassay. Testis volume (TV) and Doppler indices, such as resistive index (RI) and pulsatility index (PI) of the supratesticular artery, were measured by B-mode and color Doppler ultrasonography, respectively. The results indicated an increase in testicular blood flow in both groups, as RI and PI decreased significantly (P<0.05), but this increase was significant higher and earlier in hCG group (1 hr) than in the GnRH group (2 hr). A high correlation was found for RI and PI with both T (RI, r= -0.862; PI, r= -0.707) and INH in the GnRH group (RI, r=0.661; PI, r=0.701). However, a significant (P<0.05) correlation was found between E2 and both RI (r= -0.610) and PI (r= -0.763) in hCG group. In addition, TV significantly increased and was highly correlated with RI in both groups (GnRH, r= -0.718; hCG, r= -0.779). In conclusion, hCG and GnRH may improve testicular blood flow and TV in Shiba goats.

  7. Effect of a single injection of gonadotropin-releasing hormone (GnRH) and human chorionic gonadotropin (hCG) on testicular blood flow measured by color doppler ultrasonography in male Shiba goats

    PubMed Central

    SAMIR, Haney; SASAKI, Kazuaki; AHMED, Eman; KAREN, Aly; NAGAOKA, Kentaro; EL SAYED, Mohamed; TAYA, Kazuyoshi; WATANABE, Gen

    2015-01-01

    Although color Doppler ultrasonography has been used to evaluate testicular blood flow in many species, very little has been done in goat. Eight male Shiba goats were exposed to a single intramuscular injection of either gonadotropin-releasing hormone (GnRH group; 1 µg/kg BW) or human chorionic gonadotropin (hCG group; 25 IU/kg BW). Plasma testosterone (T), estradiol (E2) and inhibin (INH) were measured just before (0 hr) and at different intervals post injection by radioimmunoassay. Testis volume (TV) and Doppler indices, such as resistive index (RI) and pulsatility index (PI) of the supratesticular artery, were measured by B-mode and color Doppler ultrasonography, respectively. The results indicated an increase in testicular blood flow in both groups, as RI and PI decreased significantly (P<0.05), but this increase was significant higher and earlier in hCG group (1 hr) than in the GnRH group (2 hr). A high correlation was found for RI and PI with both T (RI, r= −0.862; PI, r= −0.707) and INH in the GnRH group (RI, r=0.661; PI, r=0.701). However, a significant (P<0.05) correlation was found between E2 and both RI (r= −0.610) and PI (r= −0.763) in hCG group. In addition, TV significantly increased and was highly correlated with RI in both groups (GnRH, r= −0.718; hCG, r= −0.779). In conclusion, hCG and GnRH may improve testicular blood flow and TV in Shiba goats. PMID:25715956

  8. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  9. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  10. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  11. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  12. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  13. Microcalcifications in the breast detected by a color Doppler method using twinkling artifacts: some important discussions based on clinical cases and experiments with a new ultrasound modality called multidetector-ultrasonography (MD-US).

    PubMed

    Tsujimoto, Fumio

    2014-01-01

    The twinkling artifact is well known as a color Doppler artifact but it is still an unresolved phenomenon [Rahmouni et al., Radiology 1996;199:269-271 ; Atan et al., Astas Urol Esp 2001;35:396-402; Kamaya et al., AJR 2003;80:215-222]. Many factors affect the appearance of the twinkling artifact, such as the surface roughness of stones creating multiple reflections and a form of intrinsic noise known as clock jitter within the Doppler circuitry of the ultrasound equipment. However, no studies have reported on the twinkling artifact of breast microcalcifications. While considering these premises, I detected microcalcifications in the breast using twinkling artifacts that could not be detected on B-mode imaging. The twinkling artifact is a well-defined but not well-understood phenomenon that may assist in the detection of calcified foci. The phenomenon of the twinkling artifact is discussed here with regard to prospectively and retrospectively studied cases including experiments with a new ultrasound modality called multidetector-ultrasonography (MD-US). MD-US using detectability of the twinkling artifact in microcalcifications of the breast may play an important role in breast screening.

  14. Microcalcifications in the breast detected by a color Doppler method using twinkling artifacts: some important discussions based on clinical cases and experiments with a new ultrasound modality called multidetector-ultrasonography (MD-US).

    PubMed

    Tsujimoto, Fumio

    2014-01-01

    The twinkling artifact is well known as a color Doppler artifact but it is still an unresolved phenomenon [Rahmouni et al., Radiology 1996;199:269-271 ; Atan et al., Astas Urol Esp 2001;35:396-402; Kamaya et al., AJR 2003;80:215-222]. Many factors affect the appearance of the twinkling artifact, such as the surface roughness of stones creating multiple reflections and a form of intrinsic noise known as clock jitter within the Doppler circuitry of the ultrasound equipment. However, no studies have reported on the twinkling artifact of breast microcalcifications. While considering these premises, I detected microcalcifications in the breast using twinkling artifacts that could not be detected on B-mode imaging. The twinkling artifact is a well-defined but not well-understood phenomenon that may assist in the detection of calcified foci. The phenomenon of the twinkling artifact is discussed here with regard to prospectively and retrospectively studied cases including experiments with a new ultrasound modality called multidetector-ultrasonography (MD-US). MD-US using detectability of the twinkling artifact in microcalcifications of the breast may play an important role in breast screening. PMID:27277641

  15. Laser Doppler flowmetry imaging

    NASA Astrophysics Data System (ADS)

    Nilsson, Gert E.; Wardell, Karin

    1994-02-01

    A laser Doppler perfusion imager has been developed that makes possible mapping of tissue blood flow over surfaces with extensions up to about 12 cm X 12 cm. The He-Ne laser beam scans the tissue under study throughout 4096 measurement sites. A fraction of the backscattered and Doppler broadened light is detected by a photo diode positioned about 20 cm above the tissue surface. After processing, a signal that scales linearly with perfusion is stored in a computer and a color coded image of the spatial tissue perfusion is shown on a monitor. A full format scan is completed in about 4.5 minutes. Algorithms for calculating perfusion profiles and averages as well as substraction of one image from another, form an integral part of the system data analysis software. The perfusion images can also be exported to other software packages for further processing and analysis.

  16. [Evaluation of the diagnostic value of color Doppler ultrasound examination of salivary gland neoplasms and metastatic tumors from the facial bones].

    PubMed

    Falkowski, A

    1998-01-01

    The aim of the study was to evaluate usefulness of colour Doppler ultrasound examination in diagnosing the salivary gland tumours and the metastatic tumours of the neck originating from the facial part of the skull. Epidemiology and histopathology of the neoplasms involving the salivary glands and the facial skeleton were discussed including the route of their spreading to the neck. The author presents update techniques of bony face radiologic imaging and basic principles of modern colour Doppler ultrasound. The examinations with the use of a colour Doppler equipment-Acuson 128-XP 10 were performed in 150 patients with the neck tumours. The exact location, size, morphology and blood supply were assessed using B and B colour mode. Then some big neck vessels like the common, internal and external carotid artery, vertebral artery, internal jugular vein were visualized. All the patients were divided into three groups according to what they were suffering from: sialoadenitis, benign and malignant tumours. The obtained results were compared and confronted with clinical features. The pattern of vascularization failed to allow for establishing preliminary diagnosis in patients in each group. Within the first group, with inflamed glands did not compress the neck vessels. Of all the patients with benign tumours, extrinsic compression on the internal jugular vein and the carotid arteries was found in 16 and 14 patients respectively. In the third group of patients with malignant disease, compression on the veins was detected in 10 cases while 5 tumours compressed the arteries. The invasion involved the internal jugular vein in 7 patients while the common and internal carotid arteries were invaded in 6. The vertebral artery was never found to be affected. It was demonstrated that compression on veins resulted in disturbing the flow which was not observed as far as the arteries were concerned. Disturbing in the flow of veins and arteries was disclosed in cases of invasion

  17. Color tunable and near white-light emission of two solvent-induced 2D lead(II) coordination networks based on a rigid ligand 1-tetrazole-4-imidazole-benzene.

    PubMed

    Chen, Jun; Zhang, Qing; Liu, Zhi-Fa; Wang, Shuai-Hua; Xiao, Yu; Li, Rong; Xu, Jian-Gang; Zhao, Ya-Ping; Zheng, Fa-Kun; Guo, Guo-Cong

    2015-06-01

    Two new lead(II) coordination polymers, [Pb(NO3)(tzib)]n (1) and [Pb(tzib)2]n (2), were successfully synthesized from the reaction of a rigid ligand 1-tetrazole-4-imidazole-benzene (Htzib) and lead(II) nitrate in different solvents. The obtained polymers have been characterized by single-crystal X-ray diffraction analyses, which show that both polymers feature 2D layer structures. The inorganic anion nitrate in 1 shows a μ2-κO3:κO3 bridging mode to connect adjacent lead ions into a zigzag chain, and then the organic ligands tzib(-) join the neighboring chains into a 2D layer by a μ3-κN1:κN2:κN6 connection mode. In 2, there are two different bridging modes of the tzib(-) ligand: μ3-κN1:κN2:κN6 and μ3-κN1:κN6 to coordinate the lead ions into a 2D layer structure. Interestingly, both polymers displayed broadband emissions covering the entire visible spectra, which could be tunable to near white-light emission by varying excitation wavelengths. PMID:25952460

  18. Application of the laser Doppler velocimeter in aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Yanta, W. J.; Ausherman, D. W.

    1982-01-01

    Applications of the laser doppler velocimeter (LDV) are discussed. Measurements were made of the flowfield around a tangent-ogive model in a low turbulent, incompressible flow at an incidence of 45 deg. The free-stream velocity was 80 ft per second. The flowfield velocities in several cross-flow planes were measured with a 2-D, two-color LDC operated in a backscatter mode. Measurements were concentrated in the secondary separation region. A typical survey is given. The survey was taken at a model location where the maximum side force occurs. The overall character of the leeward flowfield with the influence of the two body vorticles are shown. Measurements of the velocity and density flowfields in the shock-layer region of a reentry-vehicle indented nose configuration were carried out at Mach 5. The velocity flowfield was measured with a 2-color, 2-D, forward-scatter LDV system. Because of the need to minimize particle lag in the shock-layer region, polystyrene particles with a mean diameter of 0.312 microns were used for the scattering particles. The model diameter was 6 inches.

  19. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-12-14

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results.

  20. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar.

    PubMed

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters' outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  1. Multiple-Parameter Estimation Method Based on Spatio-Temporal 2-D Processing for Bistatic MIMO Radar

    PubMed Central

    Yang, Shouguo; Li, Yong; Zhang, Kunhui; Tang, Weiping

    2015-01-01

    A novel spatio-temporal 2-dimensional (2-D) processing method that can jointly estimate the transmitting-receiving azimuth and Doppler frequency for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise and an unknown number of targets is proposed. In the temporal domain, the cross-correlation of the matched filters’ outputs for different time-delay sampling is used to eliminate the spatial colored noise. In the spatial domain, the proposed method uses a diagonal loading method and subspace theory to estimate the direction of departure (DOD) and direction of arrival (DOA), and the Doppler frequency can then be accurately estimated through the estimation of the DOD and DOA. By skipping target number estimation and the eigenvalue decomposition (EVD) of the data covariance matrix estimation and only requiring a one-dimensional search, the proposed method achieves low computational complexity. Furthermore, the proposed method is suitable for bistatic MIMO radar with an arbitrary transmitted and received geometrical configuration. The correction and efficiency of the proposed method are verified by computer simulation results. PMID:26694385

  2. Combined soot optical characterization using 2-D multi-angle light scattering and spectrally resolved line-of-sight attenuation and its implication on soot color-ratio pyrometry

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Long, Marshall B.

    2014-10-01

    Soot characterization using multiple techniques has been performed in a series of nitrogen-diluted ethylene coflow laminar diffusion flames. Soot aggregate sizes have been measured in two dimensions, as opposed to traditional point measurements, by a newly developed two-dimensional multi-angle light scattering technique where image processing was applied to align images for Guinier analysis. Extinction measurements have also been performed using spectrally resolved line-of-sight attenuation with an imaging spectrometer. Spectrally and spatially resolved extinction measurements have been obtained as well. Combined with previously obtained time-resolved laser-induced incandescence measurements of primary particle diameters, the scattering and absorption components of extinction can be estimated. The so-called dispersion exponent that describes the wavelength dependence of spectral emissivity was determined in two dimensions and found to improve the accuracy of soot color-ratio pyrometry measurements.

  3. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  4. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  5. Ultrafast 2D IR microscopy

    PubMed Central

    Baiz, Carlos R.; Schach, Denise; Tokmakoff, Andrei

    2014-01-01

    We describe a microscope for measuring two-dimensional infrared (2D IR) spectra of heterogeneous samples with μm-scale spatial resolution, sub-picosecond time resolution, and the molecular structure information of 2D IR, enabling the measurement of vibrational dynamics through correlations in frequency, time, and space. The setup is based on a fully collinear “one beam” geometry in which all pulses propagate along the same optics. Polarization, chopping, and phase cycling are used to isolate the 2D IR signals of interest. In addition, we demonstrate the use of vibrational lifetime as a contrast agent for imaging microscopic variations in molecular environments. PMID:25089490

  6. [Postpartal ovarian thrombophlebitis. Value of Doppler ultrasonograph y].

    PubMed

    Renaud-Giono, A; Giraud, J R; Poulain, P; Proudhon, J F; Grall, J Y; Moquet, P Y; Darnault, J P

    1996-01-01

    Thrombophlebitis of the ovarian vein is a well recognized but uncommon complication during the postpartum period. We report a small series and emphasize the contribution of color Doppler and the basic therapeutic measures.

  7. Assessment of right ventricular systolic function by tissue Doppler echocardiography.

    PubMed

    Kjærgaard, Jesper

    2012-03-01

    -massive pulmonary embolism quantifies degree of RV dysfunction, and supports the existence of the McConnell sign of mid-ventricular RV dysfunction. Echocardiographic signs of RV dysfunction are present if > 25% of the pulmonary vascular bed is obstructed. However, Tissue Doppler echocardiography and deformation analysis has no independent value over other clinical and quantitative echocardiographic measures of RV size, pressure and function in these patients [IV and V]. Regional deformation of the RV free wall has significant prognostic importance in a population suspected of first non-massive pulmonary embolism, and is significantly associated with adverse events in patients with proven pulmonary embolism, however, it does not add to the information gained from other quantitative echocardiographic measures of LV and RV function and pressure [VI]. Changes in tissue Doppler based measures of RV systolic function can be used to monitor the effect of selective vasodilation by phosphodiestares-5 inhibition in hypoxic pulmonary hypertension and exercise in normal individuals. Phosphodiestares-5 inhibition by sildenafil may predominantly be effective during hypoxia in resting conditions, and may improve the blunted response in RV contractility seen with exercise in hypoxia [VII]. Reduced RV free wall deformation can be quantified by tissue Doppler echocardiography in patients with confirmed Arrhythmogenic Right Ventricular Cardiomyopathy, but the clinical application of the technique may be limited by considerable overlap with normal values [VIII]. Acute RV volume loading in free pulmonary regurgitation is associated with abrupt geometric changes in the RV structure including significant dilatation, but is well tolerated with only mild reduction in measures of global RV systolic function as estimated by 2D echocardiography in an experimental animal model. Regional RV myocardial function is also only mildly reduced. Also no differences in global or regional RV function can be observed

  8. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  9. The Psychological Four-Color Mapping Problem

    ERIC Educational Resources Information Center

    Francis, Gregory; Bias, Keri; Shive, Joshua

    2010-01-01

    Mathematicians have proven that four colors are sufficient to color 2-D maps so that no neighboring regions share the same color. Here we consider the psychological 4-color problem: Identifying which 4 colors should be used to make a map easy to use. We build a model of visual search for this design task and demonstrate how to apply it to the task…

  10. Color Doppler ultrasonography of the abdominal aorta

    PubMed Central

    Battaglia, S.; Danesino, G.M.; Danesino, V.; Castellani, S.

    2010-01-01

    Alterations of the abdominal aorta are relatively common, particularly in older people. Technological advances in the fields of ultrasonography, computed tomography, angiography, and magnetic resonance imaging have greatly increased the imaging options for the assessment of these lesions. Because it can be done rapidly and is also non-invasive, ultrasonography plays a major role in the exploration of the abdominal aorta, from its emergence from the diaphragm to its bifurcation. It is indicated for the diagnosis and follow-up of various aortic diseases, especially aneurysms. It can be used to define the shape, size, and location of these lesions, the absence or presence of thrombi and their characteristics. It is also useful for monitoring the evolution of the lesion and for postoperative follow-up. However, its value is limited in surgical planning and in emergency situations. PMID:23396814

  11. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  12. DYNA2D96. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.

    1992-04-01

    DYNA2D is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  13. Two-dimensional SLIM with application to pulse Doppler MIMO radars

    NASA Astrophysics Data System (ADS)

    Jabbarian-Jahromi, Mohammad; Kahaei, Mohammad Hossein

    2015-12-01

    A two-dimensional (2D) sparse signal model is developed for pulse Doppler MIMO radars. Using this model, we develop the 2D sparse learning via iterative minimization (2D SLIM) algorithm. Simulation results show that the 2D SLIM compared to the 1D SLIM drastically reduces the computational burden while both of them have the same performance. Also, for estimation of range-angle-Doppler parameters, the 2D SLIM outperforms the matched filter (MF), smoothed L0-norm (SL0), iterative adaptive approach (IAA), and spectral projected gradient for l 1-norm minimization (SPGL1) algorithms.

  14. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  15. Realistic fetus skin color processing for ultrasound volume rendering

    NASA Astrophysics Data System (ADS)

    Kim, Yun-Tae; Kim, Kyuhong; Park, Sung-Chan; Kang, Jooyoung; Kim, Jung-Ho

    2014-01-01

    This paper proposes realistic fetus skin color processing using a 2D color map and a tone mapping function (TMF) for ultrasound volume rendering. The contributions of this paper are a 2D color map generated through a gamut model of skin color and a TMF that depends on the lighting position. First, the gamut model of fetus skin color is calculated by color distribution of baby images. The 2D color map is created using a gamut model for tone mapping of ray casting. For the translucent effect, a 2D color map in which lightness is inverted is generated. Second, to enhance the contrast of rendered images, the luminance, color, and tone curve TMF parameters are changed using 2D Gaussian function that depends on the lighting position. The experimental results demonstrate that the proposed method achieves better realistic skin color reproduction than the conventional method.

  16. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1986-01-01

    This report describes a laser Doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows. All the mean velocities, Reynolds stresses, and higher-order products can then be evaluated. The approach followed is to split one of the colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. In this report, the laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and assembly languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  17. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  18. Doppler Imaging of Exoplanets and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Crossfield, I.; Biller, B.; Schlieder, J.; Deacon, N.; Bonnefoy, M.; Homeier, D.; Allard, F.; Buenzli, E.; Henning, T.; Brandner, W.; Goldman, Bertr; Kopytova, T.

    2014-03-01

    Doppler Imaging produces 2D global maps. When applied to cool planets or more massive brown dwarfs, it can map atmospheric features and track global weather patterns. The first substellar map, of the 2pc-distant brown dwarf Luhman 16B (Crossfeld et al. 2014), revealed patchy regions of thin & thick clouds. Here, I investigate the feasibility of future Doppler Imaging of additional objects. Searching the literature, I find that all 3 of P, v sin i, and variability are published for 22 brown dwarfs. At least one datum exists for 333 targets. The sample is very incomplete below ~L5; we need more surveys to find the best targets for Doppler Imaging! I estimate limiting magnitudes for Doppler Imaging with various hi-resolution near-infrared spectrographs. Only a handful of objects - at the M/L and L/T transitions - can be mapped with current tools. Large telescopes such as TMT and GMT will allow Doppler Imaging of many dozens of brown dwarfs and the brightest exoplanets. More targets beyond type L5 likely remain to be found. Future observations will let us probe the global atmospheric dynamics of many diverse objects.

  19. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  20. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  1. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    NASA Astrophysics Data System (ADS)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  2. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  3. Doppler, Johann Christian Andreas (1803-53)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Salzburg, Austria, Doppler studied and taught mathematics in Vienna. On the verge, because of economic hardship, of emigrating to America, he was offered posts in Prague. Despite huge teaching loads, he was able to carry out some research of his own (in the face of complaints of neglect by his students). In 1842 read a paper to the Royal Bohemian Society `On the colored light of the doubl...

  4. Doppler and Zeeman Doppler Imaging of Stars

    NASA Astrophysics Data System (ADS)

    Kochukhov, Oleg

    In this chapter we discuss the problem of reconstructing two-dimensional stellar surface maps from the variability of intensity and/or polarisation profiles of spectral lines. We start by outlining the main principles of the scalar Doppler imaging problem concerned with recovering maps of chemical spots, temperature or brightness from the intensity spectra. After presenting the physical and mathematical foundations of this remote sensing method, we review its applications to mapping different types of spots in early-type chemically peculiar and late-type active stars, and non-radial pulsations in early-type stars. We also discuss an extension of Doppler imaging to the problem of recovering vector distributions of stellar magnetic fields from spectropolarimetric observations and review applications of this Zeeman Doppler imaging technique in the context of stellar magnetism studies.

  5. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  6. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize effective…

  7. A multi-dimensional approach for describing internal bleeding in an artery: implications for Doppler ultrasound guiding HIFU hemostasis

    NASA Astrophysics Data System (ADS)

    Yang, Di; Zhang, Dong; Guo, Xiasheng; Gong, Xiufen; Fei, Xingbo

    2008-09-01

    Doppler ultrasound has shown promise in detecting and localizing internal bleeding. A mathematical approach was developed to describe the internal bleeding of the injured artery surrounded by tissue. This approach consisted of a two-dimensional (2D) model describing the injured vessel and a one-dimensional model (1D) mimicking the downstream of the vessel system. The validity of this approach was confirmed by both the numerical simulation and in vivo measurement of a normal porcine femoral artery. Furthermore, the artery was injured using a 16-gauge needle to model a penetrating injury. The velocity waveform at the puncture site was modeled and compared with those at the upstream and downstream of the artery. The results demonstrated that there was a significant increase in magnitude and a phase lag for the peak systolic velocity at the injury site. These results were qualitatively in agreement with the in vivo experiment. Flow turbulence indicated by this approach was also observed in a color Doppler image in the form of a checkered color pattern. This approach might be useful for quantitative internal bleeding detection and localization. Also, the phase lag of the peak systolic velocity was indicated to be potential in the application of internal bleeding detection.

  8. Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging.

    PubMed

    Liu, Gangjun; Qi, Wenjuan; Yu, Lingfeng; Chen, Zhongping

    2011-02-14

    In this paper, we analyze the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images are compared. Blood vessels down to the capillary level were detected and visualized with the optimized optical coherence color Doppler and Doppler variance method. For in-vivo imaging of human eyes, bulk-motion induced bulk phase must be identified and removed before using the color Doppler method. It was found that the Doppler variance method is not sensitive to bulk-motion and the method can be used without correcting the bulk-motion when the sample-movement-induced velocity changes gradually. Real-time processing and displaying of the structure and blood vessel images are very interesting and is demonstrated using a dual quad-core Central Processing Unit (CPU) workstation. High resolution images of choroidal capillary of the vasculature network with phased-resolved color Doppler and Doppler variance are shown.

  9. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  10. Color Blindness

    MedlinePlus

    ... three color cone cells to determine our color perception. Color blindness can occur when one or more ... Anyone who experiences a significant change in color perception should see an ophthalmologist (Eye M.D.). Next ...

  11. Color blindness

    MedlinePlus

    Color deficiency; Blindness - color ... Color blindness occurs when there is a problem with the pigments in certain nerve cells of the eye that sense color. These cells are called cones. They are found ...

  12. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the ...

  13. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  14. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  15. Cosmology with Doppler lensing

    NASA Astrophysics Data System (ADS)

    Bacon, David J.; Andrianomena, Sambatra; Clarkson, Chris; Bolejko, Krzysztof; Maartens, Roy

    2014-09-01

    Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect dominates over the usual gravitational lensing magnification at low redshift. Doppler lensing is a promising new probe of cosmology, and we explore in detail how to utilize the effect with forthcoming surveys. We present cosmological simulations of the Doppler and gravitational lensing effects based on the Millennium simulation. We show that Doppler lensing can be detected around stacked voids or unvirialized overdensities. New power spectra and correlation functions are proposed which are designed to be sensitive to Doppler lensing. We consider the impact of gravitational lensing and intrinsic size correlations on these quantities. We compute the correlation functions and forecast the errors for realistic forthcoming surveys, providing predictions for constraints on cosmological parameters. Finally, we demonstrate how we can make 3D potential maps of large volumes of the Universe using Doppler lensing.

  16. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  17. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  18. Characterization of pelvic organs by Doppler sonography waveform shape.

    PubMed

    Ronnie, Tepper; Yodfat, Shaharabany; Ron, Shiri; Hershkovitz, Reli

    2010-05-01

    The purpose was to describe blood flow waveform of pelvic organs obtained by Doppler according to their unique characteristics. A prospective study was designed and 79 premenopausal and postmenopausal women were screened. Transvaginal ultrasonography combined with color Doppler was performed. Arterial blood flow of the uterus, fallopian tubes and both ovarian center and periphery were assessed, by a unique computerized program exclusively developed for this research (MATLAB language). Waveform characterization was performed by calculating alpha and beta angles, representing upward curve of each waveform and angles of refraction gamma and delta. alpha to delta angles were found significantly different for each of the pelvic organs. Significant differences in the characteristics of Doppler waveforms were also observed between pre and postmenopausal women. Luteal and follicular phase blood flow waveforms were similar. These findings contribute to our ability to classify the origin of blood vessel by processing Doppler waveforms by a computerized method. PMID:20420968

  19. Ultrasonic Doppler Modes

    NASA Astrophysics Data System (ADS)

    Tortoli, Piero; Fidanzati, Paolo; Luca, Bassi

    Any US equipment includes Doppler facilities capable of providing information about moving structures inside the human body. In most cases, the primary interest is in the investigation of blood flow dynamics, since this may be helpful for early diagnosis of cardiovascular diseases. However, there is also an increasing interest in tracking the movements of human tissues, since such movements can give an indirect evaluation of their elastic properties, which are valuable indicators of the possible presence of pathologies. This paper aims at presenting an overview of the different ways in which the Doppler technique has been developed and used in medical ultrasound (US), from early continuous wave (CW) systems to advanced pulsed wave (PW) colour-Doppler equipment. In particular, the most important technical features and clinical applications of CW, single-gate PW, multi-gate PW and flow-imaging systems are reviewed. The main signal processing approaches used for detection of Doppler frequencies are described, including time-domain and frequency-domain (spectral) methods, as well as novel strategies like, e.g., harmonic Doppler mode, which have been recently introduced to exploit the benefits of US contrast agents.

  20. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  1. Dimensionality of color space in natural images.

    PubMed

    Buades, Antoni; Lisani, Jose-Luis; Morel, Jean-Michel

    2011-02-01

    The color histogram (or color cloud) of a digital image displays the colors present in an image regardless of their spatial location and can be visualized in (R,G,B) coordinates. Therefore, it contains essential information about the structure of colors in natural scenes. The analysis and visual exploration of this structure is difficult. The color cloud being thick, its more dense points are hidden in the clutter. Thus, it is impossible to properly visualize the cloud density. This paper proposes a visualization method that also enables one to validate a general model for color clouds. It argues first by physical arguments that the color cloud must be essentially a two-dimensional (2D) manifold. A color cloud-filtering algorithm is proposed to reveal this 2D structure. A quantitative analysis shows that the reconstructed 2D manifold is strikingly close to the color cloud and only marginally depends on the filtering parameter. Thanks to this algorithm, it is finally possible to visualize the color cloud density as a gray-level function defined on the 2D manifold.

  2. Laser Doppler projection tomography.

    PubMed

    Zeng, Yaguang; Xiong, Ke; Lu, Xuanlong; Feng, Guanping; Han, Dingan; Wu, Jing

    2014-02-15

    We propose a laser Doppler projection tomography (LDPT) method to obtain visualization of three-dimensional (3D) flowing structures. With LDPT, the flowing signal is extracted by a modified laser Doppler method, and the 3D flowing image is reconstructed by the filtered backprojection algorithm. Phantom experiments are performed to demonstrate that LDPT is able to obtain 3D flowing structure with higher signal-to-noise ratio and spatial resolution. Our experiment results display its potentially useful application to develop 3D label-free optical angiography for the circulation system of live small animal models or microfluidic experiments.

  3. Atmospheric probing by Doppler radar

    NASA Technical Reports Server (NTRS)

    Lhermitte, R. M.

    1969-01-01

    A survey is presented of the application of Doppler techniques to the study of atmospheric phenomena. Particular emphasis is placed on the requirement of adequate digital processing means for the Doppler signal and the Doppler data which are acquired at a very high rate. The need is discussed of a two or three Doppler method as an ultimate approach to the problem of observing the three-dimensional field of particle motion inside convective storms.

  4. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  5. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  6. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  7. 2D materials: to graphene and beyond.

    PubMed

    Mas-Ballesté, Rubén; Gómez-Navarro, Cristina; Gómez-Herrero, Julio; Zamora, Félix

    2011-01-01

    This review is an attempt to illustrate the different alternatives in the field of 2D materials. Graphene seems to be just the tip of the iceberg and we show how the discovery of alternative 2D materials is starting to show the rest of this iceberg. The review comprises the current state-of-the-art of the vast literature in concepts and methods already known for isolation and characterization of graphene, and rationalizes the quite disperse literature in other 2D materials such as metal oxides, hydroxides and chalcogenides, and metal-organic frameworks.

  8. Colorful Chemistry.

    ERIC Educational Resources Information Center

    Williams, Suzanne

    1991-01-01

    Described is an color-making activity where students use food coloring, eyedroppers, and water to make various colored solutions. Included are the needed materials and procedures. Students are asked to write up the formulas for making their favorite color. (KR)

  9. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  10. Photonic doppler velocimetry

    SciTech Connect

    Lowry, M E; Molau, N E; Sargis, P D; Strand, O T; Sweider, D

    1999-01-01

    We are developing a novel fiber-optic approach to laser Doppler velocimetry as a diagnostic for high explosives tests. Using hardware that was originally developed for the telecommunications industry, we are able to measure surface velocities ranging from centimeters per second to kilometers per second. Laboratory measurements and field trials have shown excellent agreement with other diagnostics.

  11. Ultrasonic colour Doppler imaging

    PubMed Central

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been found to be of great value in assessing blood flow in many clinical conditions. Although the method for obtaining the velocity information is in many ways similar to the method for obtaining the anatomical information, it is technically more demanding for a number of reasons. It also has a number of weaknesses, perhaps the greatest being that in conventional systems, the velocities measured and thus displayed are the components of the flow velocity directly towards or away from the transducer, while ideally the method would give information about the magnitude and direction of the three-dimensional flow vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new techniques that seek to overcome the vector problem mentioned above are described. Finally, some examples of vector velocity images are presented. PMID:22866227

  12. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  13. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  14. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  15. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  16. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology.

  17. Glitter in a 2D monolayer.

    PubMed

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  18. 2d index and surface operators

    NASA Astrophysics Data System (ADS)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  19. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  20. Holographic laser Doppler ophthalmoscopy.

    PubMed

    Simonutti, M; Paques, M; Sahel, J A; Gross, M; Samson, B; Magnain, C; Atlan, M

    2010-06-15

    We report laser Doppler ophthalmoscopic fundus imaging in the rat eye with near-IR heterodyne holography. Sequential sampling of the beat of the reflected radiation against a frequency-shifted optical local oscillator is made onto an array detector. Wide-field maps of fluctuation spectra in the 10 Hz to 25 kHz band exhibit angiographic contrasts in the retinal vascular tree without requirement of an exogenous marker.

  1. Uncalibrated color

    NASA Astrophysics Data System (ADS)

    Moroney, Nathan

    2006-01-01

    Color calibration or the use of color measurement processes to characterize the color properties of a device or workflow is often expected or assumed for many color reproduction applications. However it is interesting to consider applications or situations in which color calibration is not as critical. In the first case it is possible to imagine an implicit color calibration resulting from a standardization or convergence of the colorant and substrate spectrum. In the second case it is possible to imagine cases where the device color variability is significantly less than the user color thresholds or expectations for color consistency. There are still general requirements for this form of pragmatic color but they are generally lower than for the higher end of digital color reproduction. Finally it is possible to imagine an implicit calibration that leverages in some way the highly accurate memory color for the hue of common objects. This scenario culminates with a challenge to create a natural capture calibration standard that does not require individual calibration, is spectrally diverse, is inexpensive and is environmentally friendly.

  2. The effect of dead elements on the accuracy of Doppler ultrasound measurements.

    PubMed

    Vachutka, Jaromir; Dolezal, Ladislav; Kollmann, Christian; Klein, Jakob

    2014-01-01

    The objective of this study is to investigate the effect of multiple dead elements in an ultrasound probe on the accuracy of Doppler ultrasound measurements. For this work, we used a specially designed ultrasound imaging system, the Ultrasonix Sonix RP, that provides the user with the ability to disable selected elements in the probe. Using fully functional convex, linear, and phased array probes, we established a performance baseline by measuring the parameters of a laminar parabolic flow profile. These same parameters were then measured using probes with 1 to 10 disabled elements. The acquired velocity spectra from the functional probes and the probes with disabled elements were then analyzed to determine the overall Doppler power, maximum flow velocity, and average flow velocity. Color Flow Doppler images were also evaluated in a similar manner. The analysis of the Doppler spectra indicates that the overall Doppler power as well as the detected maximum and average velocities decrease with the increasing number of disabled elements. With multiple disabled elements, decreases in the detected maximum and average velocities greater than 20% were recorded. Similar results were also observed with Color Flow Doppler measurements. Our results confirmed that the degradation of the ultrasound probe through the loss of viable elements will negatively affect the quality of the Doppler-derived diagnostic information. We conclude that the results of Doppler measurements cannot be considered accurate or reliable if there are four or more contiguous dead elements in any given probe.

  3. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  4. Doppler optical coherence tomography.

    PubMed

    Leitgeb, Rainer A; Werkmeister, René M; Blatter, Cedric; Schmetterer, Leopold

    2014-07-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  5. Color realism and color science.

    PubMed

    Byrne, Alex; Hilbert, David R

    2003-02-01

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically, types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in the mind." The article has two other purposes: First, to introduce an interdisciplinary audience to some distinctively philosophical tools that are useful in tackling the problem of color realism and, second, to clarify the various positions and central arguments in the debate. The first part explains the problem of color realism and makes some useful distinctions. These distinctions are then used to expose various confusions that often prevent people from seeing that the issues are genuine and difficult, and that the problem of color realism ought to be of interest to anyone working in the field of color science. The second part explains the various leading answers to the problem of color realism, and (briefly) argues that all views other than our own have serious difficulties or are unmotivated. The third part explains and motivates our own view, that colors are types of reflectances and defends it against objections made in the recent literature that are often taken as fatal.

  6. Color realism and color science.

    PubMed

    Byrne, Alex; Hilbert, David R

    2003-02-01

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically, types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in the mind." The article has two other purposes: First, to introduce an interdisciplinary audience to some distinctively philosophical tools that are useful in tackling the problem of color realism and, second, to clarify the various positions and central arguments in the debate. The first part explains the problem of color realism and makes some useful distinctions. These distinctions are then used to expose various confusions that often prevent people from seeing that the issues are genuine and difficult, and that the problem of color realism ought to be of interest to anyone working in the field of color science. The second part explains the various leading answers to the problem of color realism, and (briefly) argues that all views other than our own have serious difficulties or are unmotivated. The third part explains and motivates our own view, that colors are types of reflectances and defends it against objections made in the recent literature that are often taken as fatal. PMID:14598439

  7. Orthotropic Piezoelectricity in 2D Nanocellulose

    NASA Astrophysics Data System (ADS)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  8. Orthotropic Piezoelectricity in 2D Nanocellulose

    PubMed Central

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-01-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V−1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies. PMID:27708364

  9. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  10. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  11. Entropy, color, and color rendering.

    PubMed

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  12. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  13. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials.

  14. Seeing Color

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…

  15. areaDetector: Software for 2-D Detectors in EPICS

    SciTech Connect

    Rivers, M.

    2011-09-23

    areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

  16. areaDetector: Software for 2-D Detectors in EPICS

    SciTech Connect

    Rivers, Mark L.

    2010-06-23

    areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

  17. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  18. Parallel stitching of 2D materials

    DOE PAGES

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  19. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-23

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  20. Color Terms and Color Concepts

    ERIC Educational Resources Information Center

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  1. Color Categories and Color Appearance

    ERIC Educational Resources Information Center

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  2. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  3. Color in Astronomy

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2002-05-01

    The vocabulary of astronomy is riddled with color terms. Stars are referred to as red or blue - even brown -- though rarely green. Astronomers say light from a star can be "blueshifted" or that it can be "reddened". Color, however, is not a simple one-dimensional physical parameter equal to wavelength or frequency. It is a complex, psychophysical phenomenon involving at least three degrees of freedom - hue, saturation and brightness -- as well as observational context. Nonetheless, many astronomers treat hue alone or hue plus saturation as the same thing as color. A recent report on "the color of the universe" is a case in point (Baldry and Glazebrook, Bull. Am. As. Soc., 34, No. 1, 571, 2002). Even discounting the authors' initial and (possibly) subsequent errors in arriving at a "color" associated with the composite spectrum derived from the 2dF Galaxy Redshift Survey (first reported as "pale turquoise", then "beige"), the method of viewing the light was left vague, and context is important. For example, consider the question "What color is the Moon?" When viewed from Earth, the Moon appears white against the black sky. Place a piece of "average" lunar material in a lighted room, and it will appear dark gray. To most human observers, the 2000 or so naked eye stars observable from the northern hemisphere all appear white, with the few exceptions which look reddish/orange such as Betelgeuse, Arcturus, Aldeberan, Antares and Pollux. Yet the dimmer double star companion to Alberio can appear bluish when viewed beside its much brighter yellowish/orange neighbor if both are viewed by eye through a small aperture, slightly defocused telescope. This presentation will explore several visual phenomena that can help clarify the concept of color in astronomy. Supported in part by NSF grant # DUE-9950551 for "Project LITE: Light Inquiry Through Experiments".

  4. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  5. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research

    PubMed Central

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2013-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists’ demands for qualitative analysis of confocal microscopy data. PMID:23584131

  6. FluoRender: An Application of 2D Image Space Methods for 3D and 4D Confocal Microscopy Data Visualization in Neurobiology Research.

    PubMed

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data.

  7. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  8. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  9. Stimulated acoustic emission: pseudo-Doppler shifts seen during the destruction of nonmoving microbubbles.

    PubMed

    Tiemann, K; Pohl, C; Schlosser, T; Goenechea, J; Bruce, M; Veltmann, C; Kuntz, S; Bangard, M; Becher, H

    2000-09-01

    The purpose of this study was to evaluate the appearance and the characteristics of stimulated acoustic emission (SAE) as an echo contrast-specific color Doppler phenomenon with impact on myocardial contrast echocardiography (MCE). Stationary microbubbles of the new contrast agent SH-U 563A (Schering AG) were embedded within a tissue-mimicking gel material. Harmonic power Doppler imaging (H-PDI), color Doppler and pulse-wave Doppler data were acquired using an HDI-5000 equipped with a phased-array transducer (1.67/3.3 MHz). In color Doppler mode, bubble destruction resulted in random noise like Doppler signals. PW-Doppler revealed short "pseudo-Doppler" shifts with a broadband frequency spectrum. Quantification of SAE events by H-PDI demonstrated an exponential decay of signal intensities over successive frames. A strong linear relationship was found between bubble concentration and the square root of the linearized H-PDI signal for a range of concentrations of more than two orders of magnitude (R = 0.993, p < 0.0001). Intensity of the H-PDI signals correlated well with emission power (R = 0.96, p = 0.0014). SAE results from disintegration of microbubbles and can be demonstrated by all Doppler imaging modalities, including H-PDI. Intensity of SAE signals is influenced by the applied acoustic power and correlates highly with the concentration of microbubbles. Because intensity of SAE signals correlates highly with echo contrast concentrations, analysis of SAE signals might be used for quantitative MCE. PMID:11053751

  10. Laser Doppler perfusion monitoring and imaging of blood microcirculation

    NASA Astrophysics Data System (ADS)

    Nilsson, Gert E.; Wardell, Karin

    1994-07-01

    Laser Doppler perfusion monitoring is a method of assessing tissue perfusion based on measurements performed using Doppler broadening of monochromatic light scattered in moving blood cells. Ever since laser Doppler perfusion monitors became available about 15 years ago they have been used in numerous applications in both clinical and laboratory settings. The high spatial resolution has in practice manifested itself as one of the main limitations of the method. The reason for this is the difficulty in attaining reproducible values at successive measurement sites because most skin tissue possesses a substantial variation in blood flow even at adjacent measurement sites. In order to overcome this difficulty the laser Doppler perfusion imager was developed. In this camera-like device, the laser beam successively scans the tissue and the Doppler components of the backscattered light are detected by a remote photodiode. After a scanning procedure is complete, a color-coded perfusion map showing the spatial variation of skin blood flow is displayed on a monitor. The operating principle and early applications of this emerging technology are addressed in further detail.

  11. Color Analysis

    NASA Astrophysics Data System (ADS)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  12. Color categories and color appearance

    PubMed Central

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  13. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  14. Doubled Color Codes

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey

    Combining protection from noise and computational universality is one of the biggest challenges in the fault-tolerant quantum computing. Topological stabilizer codes such as the 2D surface code can tolerate a high level of noise but implementing logical gates, especially non-Clifford ones, requires a prohibitively large overhead due to the need of state distillation. In this talk I will describe a new family of 2D quantum error correcting codes that enable a transversal implementation of all logical gates required for the universal quantum computing. Transversal logical gates (TLG) are encoded operations that can be realized by applying some single-qubit rotation to each physical qubit. TLG are highly desirable since they introduce no overhead and do not spread errors. It has been known before that a quantum code can have only a finite number of TLGs which rules out computational universality. Our scheme circumvents this no-go result by combining TLGs of two different quantum codes using the gauge-fixing method pioneered by Paetznick and Reichardt. The first code, closely related to the 2D color code, enables a transversal implementation of all single-qubit Clifford gates such as the Hadamard gate and the π / 2 phase shift. The second code that we call a doubled color code provides a transversal T-gate, where T is the π / 4 phase shift. The Clifford+T gate set is known to be computationally universal. The two codes can be laid out on the honeycomb lattice with two qubits per site such that the code conversion requires parity measurements for six-qubit Pauli operators supported on faces of the lattice. I will also describe numerical simulations of logical Clifford+T circuits encoded by the distance-3 doubled color code. Based on a joint work with Andrew Cross.

  15. ANL Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  16. Visualization of tumor vascularity in a rabbit VX2 carcinoma by Doppler flow mapping.

    PubMed

    Rubin, J M; Carson, P L; Zlotecki, R A; Ensminger, W D

    1987-03-01

    Using an ultrasonic dynamic flow imager that displays both soft tissues and color-coded flow in the same two-dimensional slice, we were able to display neovascularity in a rabbit VX2 carcinoma. Intravenous infusion of epinephrine altered the flow dynamics in two arteries, one within the tumor and one at the periphery. Further, we were also able to visualize areas of multidirectional flow presumably due to complex arterial patterns and arteriovenous shunts. It is concluded that the color-coded Doppler instrument may overcome some of the methodological problems associated with tumor diagnosis via flow characteristics in the human breast. The literature indicates that the vascular response to the vasoactive drugs or thermal stress may increase differentiation of malignant breast lesions. This experiment suggests that Doppler images and measurements may be made efficiently with color-coded Doppler images, particularly with the addition of more quantitative features to the imager. PMID:3550135

  17. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  18. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  19. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  20. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  1. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  2. Explicit 2-D Hydrodynamic FEM Program

    SciTech Connect

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.

  3. 2D photonic-crystal optomechanical nanoresonator.

    PubMed

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  4. Laser Doppler holographic microscopy in transmission: application to fish embryo imaging.

    PubMed

    Verrier, Nicolas; Alexandre, Daniel; Gross, Michel

    2014-04-21

    We have extended Laser Doppler holographic microscopy to transmission geometry. The technique is validated with living fish embryos imaged by a modified upright bio-microcope. By varying the frequency of the holographic reference beam, and the combination of frames used to calculate the hologram, multimodal imaging has been performed. Doppler images of the blood vessels for different Doppler shifts, images where the flow direction is coded in RGB colors or movies showing blood cells individual motion have been obtained as well. The ability to select the Fourier space zone that is used to calculate the signal, makes the method quantitative. PMID:24787825

  5. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  6. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  7. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  8. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  9. Doppler Beats or Interference Fringes?

    ERIC Educational Resources Information Center

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  10. 2D Spinodal Decomposition in Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; Diamond, Patrick; Chacon, Luis; Li, Hui

    2015-11-01

    Spinodal decomposition is a second order phase transition for binary fluid mixture, from one thermodynamic phase to form two coexisting phases. The governing equation for this coarsening process below critical temperature, Cahn-Hilliard Equation, is very similar to 2D MHD Equation, especially the conserved quantities have a close correspondence between each other, so theories for MHD turbulence are used to study spinodal decomposition in forced turbulence. Domain size is increased with time along with the inverse cascade, and the length scale can be arrested by a forced turbulence with direct cascade. The two competing mechanisms lead to a stabilized domain size length scale, which can be characterized by Hinze Scale. The 2D spinodal decomposition in forced turbulence is studied by both theory and simulation with ``pixie2d.'' This work focuses on the relation between Hinze scale and spectra and cascades. Similarities and differences between spinodal decomposition and MHD are investigated. Also some transport properties are studied following MHD theories. This work is supported by the Department of Energy under Award Number DE-FG02-04ER54738.

  11. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  12. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  13. [Hair colorants].

    PubMed

    Urbanek-Karłowska, B; Luks, E; Jedra, M; Kiss, E; Malanowska, M

    1997-01-01

    The properties, mode of action and its duration of the preparations used for hair dyeing are described, together with their chemical components, and also preparations of herbal origin. The chemical reactions are described in detail which lead the development of a color polymer occurring during hair dyeing. The studies are presented which are used for toxicological assessment of the raw materials which are the components of the colorants, and the list is included of hair colorants permitted for use in Poland. PMID:9562811

  14. Acceleration of color computer-generated hologram from RGB-D images using color space conversion

    NASA Astrophysics Data System (ADS)

    Hiyama, Daisuke; Shimobaba, Tomoyoshi; Kakue, Takashi; Ito, Tomoyoshi

    2015-04-01

    We report acceleration of color computer-generated holograms (CGHs) from three dimensional (3D) scenes that are expressed as RGB and depth (D) images. These images are captured by a depth camera and depth buffer of 3D graphics library. RGB and depth images preserve color and depth information of 3D scene, respectively. Then we can regard them as two-dimensional (2D) section images along the depth direction. In general, convolution-based diffraction such as the angular spectrum method is used in calculating CGHs from the 2D section images. However, it takes enormous amount of time because of multiple diffraction calculations. In this paper, we first describe 'band-limited double-step Fresnel diffraction (BL-DSF)' which can accelerate the diffraction calculation than convolution-based diffraction. Next, we describe acceleration of color CGH using color space conversion. Color CGHs are generally calculated on RGB color space; however, we need to perform the same calculations for each color component repeatedly, so that computational cost of color CGH calculation is three times as that of monochrome CGH calculation. Instead, we use YCbCr color space because the 2D section images on YCbCr color space can be down-sampled without deterioration of the image quality.

  15. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  16. Quantum Color

    ScienceCinema

    Lincoln, Don

    2016-07-20

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  17. Methodological Gaps in Left Atrial Function Assessment by 2D Speckle Tracking Echocardiography

    PubMed Central

    Rimbaş, Roxana Cristina; Dulgheru, Raluca Elena; Vinereanu, Dragoş

    2015-01-01

    The assessment of left atrial (LA) function is used in various cardiovascular diseases. LA plays a complementary role in cardiac performance by modulating left ventricular (LV) function. Transthoracic two-dimensional (2D) phasic volumes and Doppler echocardiography can measure LA function non-invasively. However, evaluation of LA deformation derived from 2D speckle tracking echocardiography (STE) is a new feasible and promising approach for assessment of LA mechanics. These parameters are able to detect subclinical LA dysfunction in different pathological condition. Normal ranges for LA deformation and cut-off values to diagnose LA dysfunction with different diseases have been reported, but data are still conflicting, probably because of some methodological and technical issues. This review highlights the importance of an unique standardized technique to assess the LA phasic functions by STE, and discusses recent studies on the most important clinical applications of this technique. PMID:26761370

  18. Methods for defect characterisation in thin film materials by depth-selective 2D-ACAR

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Falub, C. V.; van Veen, A.; Schut, H.; Mijnarends, P. E.

    2002-06-01

    The advent of intense positron beams makes it possible to perform depth-selective 2D-ACAR (two-dimensional angular correlation of annihilation radiation) studies. The Delft POSH-ACAR setup employs a strong permanent magnet for focusing of the POSH beam on the sample, which leads to a ˜15% spread in implantation energy. The effects of this spread on positron depth-profiling data are discussed, and are shown to be consistent with Doppler experiments on Si(1 0 0) with a subsurface layer of nanocavities. A method is presented to decompose depth-selective 2D-ACAR spectra reliably into their various (layer) components. This is used to reveal strong positron trapping in the nanocavities in Si(1 0 0).

  19. A reconstruction method of intra-ventricular blood flow using color flow ultrasound: a simulation study

    NASA Astrophysics Data System (ADS)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun

    2015-03-01

    A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.

  20. Signal Processing Schemes for Doppler Global Velocimetry

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.

    1991-01-01

    Two schemes for processing signals obtained from the Doppler global velocimeter are described. The analog approach is a simple, real time method for obtaining an RS-170 video signal containing the normalized intensity image. Pseudo colors are added using a monochromatic frame grabber producing a standard NTSC video signal that can be monitored and/or recorded. The digital approach is more complicated, but maintains the full resolution of the acquisition cameras with the capabilities to correct the signal image for pixel sensitivity variations and to remove of background light. Prototype circuits for each scheme are described and example results from the investigation of the vortical flow field above a 75-degree delta wing presented.

  1. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  2. Ultrafast Doppler reveals the mapping of cerebral vascular resistivity in neonates

    PubMed Central

    Demené, Charlie; Pernot, Mathieu; Biran, Valérie; Alison, Marianne; Fink, Mathias; Baud, Olivier; Tanter, Mickaël

    2014-01-01

    In vivo mapping of the full vasculature dynamics based on Ultrafast Doppler is showed noninvasively in the challenging case of the neonatal brain. Contrary to conventional pulsed-wave (PW) Doppler Ultrasound limited for >40 years to the estimation of vascular indices at a single location, the ultrafast frame rate (5,000 Hz) obtained using plane-wave transmissions leads to simultaneous estimation of full Doppler spectra in all pixels of wide field-of-view images within a single cardiac cycle and high sensitivity Doppler imaging. Consequently, 2D quantitative maps of the cerebro-vascular resistivity index (RI) are processed and found in agreement with local measurements obtained on large arteries of healthy neonates using conventional PW Doppler. Changes in 2D resistivity maps are monitored during recovery after therapeutic whole-body cooling of full-term neonates treated for hypoxic ischemic encephalopathy. Arterial and venous vessels are unambiguously differentiated on the basis of their distinct hemodynamics. The high spatial (250 × 250 μm2) and temporal resolution (<1 ms) of Ultrafast Doppler imaging combined with deep tissue penetration enable precise quantitative mapping of deep brain vascular dynamics and RI, which is far beyond the capabilities of any other imaging modality. PMID:24667916

  3. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  4. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  5. Comparison of transesophageal Doppler methods with angiography for evaluation of the severity of mitral regurgitation.

    PubMed

    Flachskampf, F A; Frieske, R; Engelhard, B; Grenner, H; Frielingsdorf, J; Beck, F; Reineke, T; Thomas, J D; Hanrath, P

    1998-09-01

    Doppler evaluation of mitral regurgitation remains difficult; thus, a head-to-head comparison of the diagnostic accuracy of Doppler methods was undertaken. Fifty patients with native mitral regurgitation underwent multiplane transesophageal echocardiography within 5 days of catheterization. Angiographic grade of mitral regurgitation and, in 20 patients with grade II-IV regurgitation, invasively determined regurgitant stroke volume were compared with color Doppler area, regurgitant jet diameter, ratio of systolic to diastolic peak pulmonary venous flow velocities, and (based on the proximal convergence zone) maximal regurgitant flow rate and regurgitant orifice area. Rank correlation coefficients of angiographic grade with Doppler parameters were 0.61 for color jet area, -0.61 for pulmonary venous flow velocity ratio, 0.69 for color jet diameter, 0.79 for maximal regurgitant flow rate, and 0.78 for regurgitant orifice area (all P < .01). Convergence zone-based parameters also correlated best (r=0.73) with invasively determined regurgitant stroke volume. Receiver operating characteristic curve analysis confirmed higher diagnostic accuracy for proximal jet width and proximal convergence zone parameters than for color jet area or pulmonary venous flow velocity ratio. Proximal convergence zone parameters and proximal color jet diameter best distinguished severe from mild forms of mitral regurgitation. PMID:9758380

  6. Sample training based wildfire segmentation by 2D histogram θ-division with minimum error.

    PubMed

    Zhao, Jianhui; Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong

    2013-01-01

    A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation.

  7. GEOS-3 Doppler difference tracking

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1977-01-01

    The Doppler difference method as applied to track the GEOS 3 spacecraft is discussed. In this method a pair of 2 GHz ground tracking stations simultaneously track a spacecraft beacon to generate an observable signal in which bias and instability of the carrier frequency cancel. The baselines are formed by the tracking sites at Bermuda, Rosman, and Merritt Island. Measurements were made to evaluate the effectiveness of the Doppler differencing procedure in tracking a beacon target with the high dynamic rate of the GEOS 3 orbit. Results indicate the precision of the differenced data to be at a level comparable to the conventional precise two way Doppler tracking.

  8. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  9. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  10. E-2D Advanced Hawkeye: primary flight display

    NASA Astrophysics Data System (ADS)

    Paolillo, Paul W.; Saxena, Ragini; Garruba, Jonathan; Tripathi, Sanjay; Blanchard, Randy

    2006-05-01

    This paper is a response to the challenge of providing a large area avionics display for the E-2D AHE aircraft. The resulting display design provides a pilot with high-resolution visual information content covering an image area of almost three square feet (Active Area of Samsung display = 33.792cm x 27.0336 cm = 13.304" x 10.643" = 141.596 square inches = 0.983 sq. ft x 3 = 2.95 sq. ft). The avionics display application, design and performance being described is the Primary Flight Display for the E-2D Advanced Hawkeye aircraft. This cockpit display has a screen diagonal size of 17 inches. Three displays, with minimum bezel width, just fit within the available instrument panel area. The significant design constraints of supporting an upgrade installation have been addressed. These constraints include a display image size that is larger than the mounting opening in the instrument panel. This, therefore, requires that the Electromagnetic Interference (EMI) window, LCD panel and backlight all fit within the limited available bezel depth. High brightness and a wide dimming range are supported with a dual mode Cold Cathode Fluorescent Tube (CCFT) and LED backlight. Packaging constraints dictated the use of multiple U shaped fluorescent lamps in a direct view backlight design for a maximum display brightness of 300 foot-Lamberts. The low intensity backlight levels are provided by remote LEDs coupled through a fiber optic mesh. This architecture generates luminous uniformity within a minimum backlight depth. Cross-cockpit viewing is supported with ultra-wide field-of-view performance including contrast and the color stability of an advanced LCD cell design supports. Display system design tradeoffs directed a priority to high optical efficiency for minimum power and weight.

  11. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  12. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  13. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  14. Color Blind or Color Conscious?

    ERIC Educational Resources Information Center

    Tatum, Beverly Daniel

    1999-01-01

    A color-blind approach often signifies that an educator has not considered what racial/ethnic identity means to youngsters. Students want to find themselves reflected in the faces of teachers and other students. Color-conscious teachers seek out materials that positively reflect students' identities and initiate discussions about race and racism.…

  15. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  16. Can Doppler or contrast-enhanced ultrasound analysis add diagnostically important information about the nature of breast lesions?

    PubMed Central

    Stanzani, Daniela; Chala, Luciano F.; de Barros, Nestor; Cerri, Giovanni G.; Chammas, Maria Cristina

    2014-01-01

    OBJECTIVES: Despite evidence suggesting that Doppler ultrasonography can help to differentiate between benign and malignant breast lesions, it is rarely applied in clinical practice. The aim of this study was to determine whether certain vascular features of breast masses observed by duplex Doppler and color Doppler ultrasonography (before and/or after microbubble contrast injection) add information to the gray-scale analysis and support the Breast Imaging-Reporting and Data System (BI-RADS) classification. METHODS: Seventy solid lesions were prospectively evaluated with gray-scale ultrasonography, color Doppler ultrasonography, and contrast-enhanced ultrasonography. The morphological analysis and lesion vascularity were correlated with the histological results. RESULTS: Percutaneous core biopsies revealed that 25/70 (17.5%) lesions were malignant, while 45 were benign. Hypervascular lesions with tortuous and central vessels, a resistive index (RI)≥0.73 before contrast injection, and an RI≥0.75 after contrast injection were significantly predictive of malignancy (p<0.001). CONCLUSION: The combination of gray-scale ultrasonography data with unenhanced or enhanced duplex Doppler and color Doppler US data can provide diagnostically useful information. These techniques can be easily implemented because Doppler devices are already present in most health centers. PMID:24519198

  17. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  18. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  19. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  20. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  1. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  2. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  3. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  4. 2D quantum gravity from quantum entanglement.

    PubMed

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  5. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  6. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  7. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  8. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  9. Color vision.

    PubMed

    Gegenfurtner, Karl R; Kiper, Daniel C

    2003-01-01

    Color vision starts with the absorption of light in the retinal cone photoreceptors, which transduce electromagnetic energy into electrical voltages. These voltages are transformed into action potentials by a complicated network of cells in the retina. The information is sent to the visual cortex via the lateral geniculate nucleus (LGN) in three separate color-opponent channels that have been characterized psychophysically, physiologically, and computationally. The properties of cells in the retina and LGN account for a surprisingly large body of psychophysical literature. This suggests that several fundamental computations involved in color perception occur at early levels of processing. In the cortex, information from the three retino-geniculate channels is combined to enable perception of a large variety of different hues. Furthermore, recent evidence suggests that color analysis and coding cannot be separated from the analysis and coding of other visual attributes such as form and motion. Though there are some brain areas that are more sensitive to color than others, color vision emerges through the combined activity of neurons in many different areas.

  10. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  11. CYP2D6*36 gene arrangements within the cyp2d6 locus: association of CYP2D6*36 with poor metabolizer status.

    PubMed

    Gaedigk, Andrea; Bradford, L Dianne; Alander, Sarah W; Leeder, J Steven

    2006-04-01

    Unexplained cases of CYP2D6 genotype/phenotype discordance continue to be discovered. In previous studies, several African Americans with a poor metabolizer phenotype carried the reduced function CYP2D6*10 allele in combination with a nonfunctional allele. We pursued the possibility that these alleles harbor either a known sequence variation (i.e., CYP2D6*36 carrying a gene conversion in exon 9 along the CYP2D6*10-defining 100C>T single-nucleotide polymorphism) or novel sequences variation(s). Discordant cases were evaluated by long-range polymerase chain reaction (PCR) to test for gene rearrangement events, and a 6.6-kilobase pair PCR product encompassing the CYP2D6 gene was cloned and entirely sequenced. Thereafter, allele frequencies were determined in different study populations comprising whites, African Americans, and Asians. Analyses covering the CYP2D7 to 2D6 gene region established that CYP2D6*36 did not only exist as a gene duplication (CYP2D6*36x2) or in tandem with *10 (CYP2D6*36+*10), as previously reported, but also by itself. This "single" CYP2D6*36 allele was found in nine African Americans and one Asian, but was absent in the whites tested. Ultimately, the presence of CYP2D6*36 resolved genotype/phenotype discordance in three cases. We also discovered an exon 9 conversion-positive CYP2D6*4 gene in a duplication arrangement (CYP2D6*4Nx2) and a CYP2D6*4 allele lacking 100C>T (CYP2D6*4M) in two white subjects. The discovery of an allele that carries only one CYP2D6*36 gene copy provides unequivocal evidence that both CYP2D6*36 and *36x2 are associated with a poor metabolizer phenotype. Given a combined frequency of between 0.5 and 3% in African Americans and Asians, genotyping for CYP2D6*36 should improve the accuracy of genotype-based phenotype prediction in these populations.

  12. Multichannel linear predictive coding of color images

    NASA Astrophysics Data System (ADS)

    Maragos, P. A.; Mersereau, R. M.; Schafer, R. W.

    This paper reports on a preliminary study of applying single-channel (scalar) and multichannel (vector) 2-D linear prediction to color image modeling and coding. Also, the novel idea of a multi-input single-output 2-D ADPCM coder is introduced. The results of this study indicate that texture information in multispectral images can be represented by linear prediction coefficients or matrices, whereas the prediction error conveys edge-information. Moreover, by using a single-channel edge-information the investigators obtained, from original color images of 24 bits/pixel, reconstructed images of good quality at information rates of 1 bit/pixel or less.

  13. Photorealistic image synthesis and camera validation from 2D images

    NASA Astrophysics Data System (ADS)

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  14. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  15. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  16. [Doppler ultrasound of penis arteries].

    PubMed

    Jünemann, K P; Siegsmund, M; Löbelenz, M; Alken, P

    1990-05-01

    In addition to pharmaco testing, pharmaco-Doppler sonography of the penile arteries is part of the basic work-up for erectile dysfunction. Insufficient training with the Doppler method, lack of standardized criteria for evaluation of the penis, and analysis of the Doppler curves all make it difficult to use Doppler sonography for the evaluation of impotent men. The aim of this study was to explain the principal criteria of the method and demonstrate the most important details for analyzing the form of the Doppler waves. Pharmaco-Doppler sonography includes the evaluation of blood-flow velocities within the dorsal and deep cavernous arteries of the penis before and after intracavernous application of a vasoactive drug. The following main criteria have proven to be most important for analysis of the Doppler curves: evaluation of the amplitude height, the actual wave form, differences between the left and right arteries and along the individual vessel, amplitude increase, and elevation of the curve baseline after pharmaco stimulation. The most frequent mistakes made during evaluation of the penile arteries are changes in the probe angle, pressure put on the artery by the probe during evaluation and a false estimation of the evaluation time after pharmaco stimulation. Recently, duplex sonography of the penile arteries has been introduced, and this method allows an accurate measurement of the blood-flow velocity and arterial diameter changes before and after application of the drug. Furthermore, additional calculation of the resistancy index permits determination of the vascular resistance and optimizes the evaluation of the penile arterial status. The technical details, the method, and the analyzation criteria are all explained in detail.

  17. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  18. Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.

    PubMed

    Tremblay-Darveau, Charles; Williams, Ross; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2014-12-01

    Plane-wave imaging offers image acquisition rates at the pulse repetition frequency, effectively increasing the imaging frame rates by up to two orders of magnitude over conventional line-by-line imaging. This form of acquisition can be used to achieve very long ensemble lengths in nonlinear modes such as pulse inversion Doppler, which enables new imaging trade-offs that were previously unattainable. We first demonstrate in this paper that the coherence of microbubble signals under repeated exposure to acoustic pulses of low mechanical index can be as high as 204 ± 5 pulses, which is long enough to allow an accurate power Doppler measurement. We then show that external factors, such as tissue acceleration, restrict the detection of perfusion at the capillary level with linear Doppler, even if long Doppler ensembles are considered. Hence, perfusion at the capillary level can only be detected with ultrasound through combined microbubbles and Doppler imaging. Finally, plane-wave contrast-enhanced power and color Doppler are performed on a rabbit kidney in vivo as a proof of principle. We establish that long pulse-inversion Doppler sequences and conventional wall-filters can create an image that simultaneously resolves both the vascular morphology of veins and arteries, and perfusion at the capillary level with frame rates above 100 Hz.

  19. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  20. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  1. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations.

  2. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  3. Color Duplex evaluation of the mesenteric artery☆

    PubMed Central

    Catalini, R.; Alborino, S.; Giovagnoli, A.; Zingaretti, O.

    2010-01-01

    Ischemic colitis is the most common form of intestinal ischemia. Diagnosis is made at clinical examination and endoscopy and completed by vascular imaging, but color Doppler US may become a first-line imaging technique for the evaluation of the mesenteric circulation. We present the case of an 80-year-old woman hospitalized for recurrent ischemic colitis of the sigmoid. At a previous hospitalization, color Doppler US examination showed medium to severe stenosis at the origin of the inferior mesenteric artery. However, CT angiography was negative and the condition was therefore misdiagnosed. Eight months later the patient was admitted again with abdominal pain and rectal hemorrhage. Rectosigmoidoscopy documented the presence of ischemia of the sigmoid mucosa. Angiography showed the presence of severe stenosis at the origin of the inferior mesenteric artery so revascularization was carried out by percutaneous transluminal angioplasty (PTA) during the same session. Follow-up showed normal patency of the inferior mesenteric artery after revascularization, and subsequent endoscopic evaluation documented gradual colonic mucosal ischemia resolution. Blood flow at the level of the inferior mesenteric artery was assessed using color Doppler US. The presented case confirms that color Doppler US is a valid first-line imaging technique in the assessment of ischemic intestinal lesions. It is reliable in the evaluation of the mesenteric arterial circulation, and it also allows assessment of blood flow alterations caused by stenosis and identification of localized hemodynamic stenosis which may be missed at CT-angiography or MR-angiography. Arteriography remains the examination of choice in case of discrepancy between first-and second-line imaging techniques and in all cases which offer the possibility of endovascular revascularization. PMID:23396804

  4. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  5. Doppler echocardiography in stress testing.

    PubMed

    Teague, S M

    1991-06-01

    Doppler ultrasound may have a role in the stress testing laboratory for the identification of patients with coronary disease through the assessment of dynamic ventricular systolic function. Quantitative systolic ejection phase indexes of maximal acceleration, peak velocity, and volume of blood ejected from the left ventricle can be obtained in the exercising patient. Trials comparing stress Doppler ultrasound with ST-segment changes, gated blood pool radionuclide or echocardiographic studies of ejection fraction or wall motion abnormality, and thallium scintigraphic perfusion defects have returned comparable or better sensitivity and specificity referencing coronary angiography. Graded treadmill exercise, stationary bicycle exercise, and pharmacological stress (dipyridamole) have been used. The normal Doppler stress response is a near linear increase in peak ejection velocity with increasing cardiac work, as reflected in heart rate. Patients with coronary artery disease show blunted augmentation of Doppler ejection dynamics between rest and peak stress, and the degree of blunting appears to be proportional to the anatomic extent of coronary disease and the magnitude of ventricular perfusion and performance impairment. Stress Doppler ultrasound achieves diagnostic power for coronary disease with ultrasonic technology, inexpensive equipment, without ionizing radiation, and few personnel.

  6. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  7. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  8. Planetary Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  9. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  10. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  11. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  12. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  13. Position control using 2D-to-2D feature correspondences in vision guided cell micromanipulation.

    PubMed

    Zhang, Yanliang; Han, Mingli; Shee, Cheng Yap; Ang, Wei Tech

    2007-01-01

    Conventional camera calibration that utilizes the extrinsic and intrinsic parameters of the camera and the objects has certain limitations for micro-level cell operations due to the presence of hardware deviations and external disturbances during the experimental process, thereby invalidating the extrinsic parameters. This invalidation is often neglected in macro-world visual servoing and affects the visual image processing quality, causing deviation from the desired position in micro-level cell operations. To increase the success rate of vision guided biological micromanipulations, a novel algorithm monitoring the changing image pattern of the manipulators including the injection micropipette and cell holder is designed and implemented based on 2 dimensional (2D)-to 2D feature correspondences and can adjust the manipulator and perform position control simultaneously. When any deviation is found, the manipulator is retracted to the initial focusing plane before continuing the operation.

  14. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  15. 'Brukin2D': a 2D visualization and comparison tool for LC-MS data

    PubMed Central

    Tsagkrasoulis, Dimosthenis; Zerefos, Panagiotis; Loudos, George; Vlahou, Antonia; Baumann, Marc; Kossida, Sophia

    2009-01-01

    Background Liquid Chromatography-Mass Spectrometry (LC-MS) is a commonly used technique to resolve complex protein mixtures. Visualization of large data sets produced from LC-MS, namely the chromatogram and the mass spectra that correspond to its compounds is the focus of this work. Results The in-house developed 'Brukin2D' software, built in Matlab 7.4, which is presented here, uses the compound data that are exported from the Bruker 'DataAnalysis' program, and depicts the mean mass spectra of all the chromatogram compounds from one LC-MS run, in one 2D contour/density plot. Two contour plots from different chromatograph runs can then be viewed in the same window and automatically compared, in order to find their similarities and differences. The results of the comparison can be examined through detailed mass quantification tables, while chromatogram compound statistics are also calculated during the procedure. Conclusion 'Brukin2D' provides a user-friendly platform for quick, easy and integrated view of complex LC-MS data. The software is available at . PMID:19534737

  16. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone.

    PubMed Central

    Wu, D; Otton, S V; Sproule, B A; Busto, U; Inaba, T; Kalow, W; Sellers, E M

    1993-01-01

    1. In microsomes prepared from three human livers, methadone competitively inhibited the O-demethylation of dextromethorphan, a marker substrate for CYP2D6. The apparent Ki value of methadone ranged from 2.5 to 5 microM. 2. Two hundred and fifty-two (252) white Caucasians, including 210 unrelated healthy volunteers and 42 opiate abusers undergoing treatment with methadone were phenotyped using dextromethorphan as the marker drug. Although the frequency of poor metabolizers was similar in both groups, the extensive metabolizers among the opiate abusers tended to have higher O-demethylation metabolic ratios and to excrete less of the dose as dextromethorphan metabolites than control extensive metabolizer subjects. These data suggest inhibition of CYP2D6 by methadone in vivo as well. 3. Because methadone is widely used in the treatment of opiate abuse, inhibition of CYP2D6 activity in these patients might contribute to exaggerated response or unexpected toxicity from drugs that are substrates of this enzyme. PMID:8448065

  17. The Doppler signal: where does it come from and what does it mean?

    PubMed

    Nelson, T R; Pretorius, D H

    1988-09-01

    Doppler sonographic measurement of blood velocity and associated physiologic parameters is a powerful diagnostic technique. State-of-the-art instrumentation incorporates velocity measurement with two-dimensional imaging capability; it uses intensity and color coding to display complex physiologic and anatomic data to the observer in an easily understood format. Although the concepts underlying Doppler sonography are not complex, mastery of the technique requires extra training and commitment. The principal features and clinical practicalities associated with Doppler sonography are summarized in the following paragraphs. Continuous-wave Doppler is very sensitive to small vessels and has no upper velocity limit. In addition, the instrumentation is not complex and produces relatively low acoustic power. A significant drawback to continuous-wave Doppler is that there is no depth sensitivity, and thus complex structures or multiple vessels can give conflicting information. Pulsed Doppler (including duplex and color-flow) instrumentation has the capability of depth resolution and a variable sample volume. Pulsed Doppler equipment is prone to aliasing (false velocity indications) under some circumstances and also produces higher peak power levels than does continuous-wave equipment. Duplex equipment is more complex and expensive than continuous-wave equipment because the two-dimensional and Doppler modes must be synchronized in operation and display. Color-flow equipment is extremely complex and expensive. Color flow provides information of a qualitative and limited quantitative value. Absolute measurement still requires range-gate measurements. Technical and anatomic factors will affect the measured velocity profiles. Thus, it is important to fully appreciate the anatomy of the vessel and the angle between the vessel and the ultrasound beam when making quantitative measurements. Measurements that evaluate the velocity waveform and make use of ratios, such as the

  18. Color Sense

    ERIC Educational Resources Information Center

    Johnson, Heidi S. S.; Maki, Jennifer A.

    2009-01-01

    This article reports a study conducted by members of the WellU Academic Integration Subcommittee of The College of St. Scholastica's College's Healthy Campus Initiative plan whose purpose was to determine whether changing color in the classroom could have a measurable effect on students. One simple improvement a school can make in a classroom is…

  19. Differential Doppler as a diagnostic

    SciTech Connect

    Dzieciuch, M.; Munk, W. )

    1994-10-01

    Differential Doppler compression and travel time of individual peaks in the arrival sequence (relative to an overall average) are measured for the 5500-km acoustic transmissions from a moving source at Heard Island to Christmas (Crab) Island. The differentials cannot be explained by simple adiabatic propagation models. A hybrid theory, coupling polar and temperate models at the Antarctic Front can account for some of the qualitative features. Differential Doppler could be a useful tool for identifying ray arrivals. 10 refs., 11 figs., 3 tabs.

  20. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  1. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen M.; Hamilton, Douglas R.; Sargsyan, Ashot E.; Ebert, Douglas; Martin, David S.; Barratt, Michael R.; Martin, David S.; Bogomolov, Valery V.; Dulchavsky, Scott A.; Duncan, J. Michael

    2010-01-01

    The presentation slides review normal physiology of the right ventricle in space, general physiology of the right ventricle; difficulties in imaging the heart in space, imaging methods, tissue Doppler spectrum, right ventricle tissue Doppler, and Rt Tei Index.

  2. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  3. Automatic 2D to 3D conversion implemented for real-time applications

    NASA Astrophysics Data System (ADS)

    Ponomaryov, Volodymyr; Ramos-Diaz, Eduardo; Gonzalez Huitron, Victor

    2014-05-01

    Different hardware implementations of designed automatic 2D to 3D video color conversion employing 2D video sequence are presented. The analyzed framework includes together processing of neighboring frames using the following blocks: CIELa*b* color space conversion, wavelet transform, edge detection using HF wavelet sub-bands (HF, LH and HH), color segmentation via k-means on a*b* color plane, up-sampling, disparity map (DM) estimation, adaptive postfiltering, and finally, the anaglyph 3D scene generation. During edge detection, the Donoho threshold is computed, then each sub-band is binarized according to a threshold chosen and finally the thresholding image is formed. DM estimation is performed in the following matter: in left stereo image (or frame), a window with varying sizes is used according to the information obtained from binarized sub-band image, distinguishing different texture areas into LL sub-band image. The stereo matching is performed between two (left and right) LL sub-band images using processing with different window sizes. Upsampling procedure is employed in order to obtain the enhanced DM. Adaptive post-processing procedure is based on median filter and k-means segmentation in a*b* color plane. The SSIM and QBP criteria are applied in order to compare the performance of the proposed framework against other disparity map computation techniques. The designed technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7 and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode.

  4. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  5. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  6. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  7. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  8. Improvement of vertical profiles of raindrop size distribution from micro rain radar using 2D video disdrometer measurements

    NASA Astrophysics Data System (ADS)

    Adirosi, E.; Baldini, L.; Roberto, N.; Gatlin, P.; Tokay, A.

    2016-03-01

    A measurement scheme aimed at investigating precipitation properties based on collocated disdrometer and profiling instruments is used in many experimental campaigns. Raindrop size distribution (RSD) estimated by disdrometer is referred to the ground level; the collocated profiling instrument is supposed to provide complementary estimation at different heights of the precipitation column above the instruments. As part of the Special Observation Period 1 of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) project, conducted between 5 September and 6 November 2012, a K-band vertically pointing micro rain radar (MRR) and a 2D video disdrometer (2DVD) were installed close to each other at a site in the historic center of Rome (Italy). The raindrop size distributions collected by 2D video disdrometer are considered to be fairly accurate within the typical sizes of drops. Vertical profiles of raindrop sizes up to 1085 m are estimated from the Doppler spectra measured by the micro rain radar with a height resolution of 35 m. Several issues related to vertical winds, attenuation correction, Doppler spectra aliasing, and range-Doppler ambiguity limit the performance of MRR in heavy precipitation or in convection, conditions that frequently occur in late summer or in autumn in Mediterranean regions. In this paper, MRR Doppler spectra are reprocessed, exploiting the 2DVD measurements at ground to estimate the effects of vertical winds at 105 m (the most reliable MRR lower height), in order to provide a better estimation of vertical profiles of raindrop size distribution from MRR spectra. Results show that the reprocessing procedure leads to a better agreement between the reflectivity computed at 105 m from the reprocessed MRR spectra and that obtained from the 2DVD data. Finally, vertical profiles of MRR-estimated RSDs and their relevant moments (namely median volume diameter and reflectivity) are presented and discussed in order to investigate the

  9. Positron Annihilation 3-D Momentum Spectrometry by Synchronous 2D-ACAR and DBAR

    NASA Astrophysics Data System (ADS)

    Burggraf, Larry W.; Bonavita, Angelo M.; Williams, Christopher S.; Fagan-Kelly, Stefan B.; Jimenez, Stephen M.

    2015-05-01

    A positron annihilation spectroscopy system capable of determining 3D electron-positron (e--e+) momentum densities has been constructed and tested. In this technique two opposed HPGe strip detectors measure angular coincidence of annihilation radiation (ACAR) and Doppler broadening of annihilation radiation (DBAR) in coincidence to produce 3D momentum datasets in which the parallel momentum component obtained from the DBAR measurement can be selected for annihilation events that possess a particular perpendicular momentum component observed in the 2D ACAR spectrum. A true 3D momentum distribution can also be produced. Measurement of 3-D momentum spectra in oxide materials has been demonstrated including O-atom defects in 6H SiC and silver atom substitution in lithium tetraborate crystals. Integration of the 3-D momentum spectrometer with a slow positron beam for future surface resonant annihilation spectrometry measurements will be described. Sponsorship from Air Force Office of Scientific Research

  10. Airborne cw Doppler lidar (ADOLAR)

    NASA Astrophysics Data System (ADS)

    Rahm, Stefan; Werner, Christian; Nagel, E.; Herrmann, H.; Klier, M.; Knott, H. P.; Haering, R.; Wildgruber, J.

    1994-12-01

    During the last 10 years the DLR container LDA (Laser Doppler Anemometer) was used for many wind related measurements in the atmospheric boundary layer. The experience out of this were used to construct an airborne Doppler lidar ADOLAR. Based on the available Doppler lidars it is now proposed to perform a campaign to demonstrate the concept of the spaceborne sensor ALADIN, and to answer some questions concerning the signal quality from clouds, water and land. For the continuous wave CO2 laser, the energy is focused by the telescope into the region of investigation. Some of the radiation is back scattered by small aerosol particles drifting with the wind speed through the sensing volume. The back scattered radiation is collected by the telescope and detected by coherent technique. With the laser Doppler method one gets the radial wind component. To determine the magnitude and direction of the horizontal wind, some form of scanning in azimuth and elevation is required. To keep the airborne system compact, the transceiver optics is directly coupled to a wedge scanner which provides the conical scan with the axis in Nadir direction from the aircraft. The system ADOLAR was tested in 1994. Results of the flight over the lake Ammersee are presented and are compared with the data of the inertial reference system of the aircraft.

  11. Simulating photospheric Doppler velocity fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1988-01-01

    A method is described for constructing artificial data that realistically simulate photospheric velocity fields. The velocity fields include rotation, differential rotation, meridional circulation, giant cell convection, supergranulation, convective limb shift, p-mode oscillations, and observer motion. Data constructed by this method can be used for testing algorithms designed to extract and analyze these velocity fields in real Doppler velocity data.

  12. JAWS multiple Doppler derived winds

    NASA Technical Reports Server (NTRS)

    Elmore, Kimberly L.

    1987-01-01

    An elementary working knowledge is given of the advantages and limitations of the multiple Doppler radar analyses that have recently become available from the Joint Airport Weather Studies (JAWS) project. What Doppler radar is and what it does is addressed and the way Doppler radars were used in the JAWS project to gather wind shear data is described. The working definition of wind shear used is winds that affect aircraft flight over a span of 15 to 45 seconds and turbulence is defined as air motion that cause abrupt aircraft motions. The JAWS data current available contain no turbulence data. The concept of multiple Doppler analysis and the geometry of how it works are described, followed by an explanation of how data gathered in radar space are interpolated to a common Cartesian coordinate system and the limitations involved. A discussion is also presented of the analysis grid and how it was constructed. What the user actually gets is discussed, followed by a discussion of the expected errors in the three orthogonal wind components. Finally, a discussion is presented of why JAWS data are significant.

  13. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  14. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  15. Human polarimetric micro-doppler

    NASA Astrophysics Data System (ADS)

    Tahmoush, David; Silvious, Jerry

    2011-06-01

    Modern radars can pick up target motions other than just the principle target Doppler; they pick out the small micro-Doppler variations as well. These can be used to visually identify both the target type as well as the target activity. We model and measure some of the micro-Doppler motions that are amenable to polarimetric measurement. Understanding the capabilities and limitations of radar systems that utilize micro-Doppler to measure human characteristics is important for improving the effectiveness of these systems at securing areas. In security applications one would like to observe humans unobtrusively and without privacy issues, which make radar an effective approach. In this paper we focus on the characteristics of radar systems designed for the estimation of human motion for the determination of whether someone is loaded. Radar can be used to measure the direction, distance, and radial velocity of a walking person as a function of time. Detailed radar processing can reveal more characteristics of the walking human. The parts of the human body do not move with constant radial velocity; the small micro-Doppler signatures are timevarying and therefore analysis techniques can be used to obtain more characteristics. Looking for modulations of the radar return from arms, legs, and even body sway are being assessed by researchers. We analyze these techniques and focus on the improved performance that fully polarimetric radar techniques can add. We perform simulations and fully polarimetric measurements of the varying micro-Doppler signatures of humans as a function of elevation angle and azimuthal angle in order to try to optimize this type of system for the detection of arm motion, especially for the determination of whether someone is carrying something in their arms. The arm is often bent at the elbow, providing a surface similar to a dihedral. This is distinct from the more planar surfaces of the body and allows us to separate the signals from the arm (and

  16. Nanohole-array-based device for 2D snapshot multispectral imaging

    PubMed Central

    Najiminaini, Mohamadreza; Vasefi, Fartash; Kaminska, Bozena; Carson, Jeffrey J. L.

    2013-01-01

    We present a two-dimensional (2D) snapshot multispectral imager that utilizes the optical transmission characteristics of nanohole arrays (NHAs) in a gold film to resolve a mixture of input colors into multiple spectral bands. The multispectral device consists of blocks of NHAs, wherein each NHA has a unique periodicity that results in transmission resonances and minima in the visible and near-infrared regions. The multispectral device was illuminated over a wide spectral range, and the transmission was spectrally unmixed using a least-squares estimation algorithm. A NHA-based multispectral imaging system was built and tested in both reflection and transmission modes. The NHA-based multispectral imager was capable of extracting 2D multispectral images representative of four independent bands within the spectral range of 662 nm to 832 nm for a variety of targets. The multispectral device can potentially be integrated into a variety of imaging sensor systems. PMID:24005065

  17. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  18. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  19. Introduction To Color Vision

    NASA Astrophysics Data System (ADS)

    Thorell, Lisa G.

    1983-08-01

    Several human cognitive studies have reported that color facilitates certain learning, memory and search tasks. Consideration of the color-opponent organization of human color vision and the spatial modulation transfer function for color suggests several simple sensory explanations.

  20. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  1. Investigation of retinal vessel autoregulation using real-time spectral domain Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bower, Bradley A.; Zhao, Mingtao; Izatt, Joseph A.

    2006-02-01

    Investigation of the autoregulatory mechanism of human retinal perfusion was conducted with a novel real-time spectral domain Doppler optical coherence tomography (SDOCT) system. Volumetric, time-sequential, and Doppler flow imaging was performed in the superior arcade region on normal healthy subjects breathing normal room air and 100% oxygen. The real-time Doppler SDOCT system displays fully processed, high-resolution [512 (axial) x 1000 (lateral) pixels] B-scans at 17 frames/sec in volumetric and time-sequential imaging modes, and also displays fully processed overlaid color Doppler flow images comprising 512 (axial) x 500 (lateral) pixels at 6 frames/sec. OCT fundus images generated from volumetric datasets updated in real time (up to 2 fundus images/sec for 100 x 100 pixel volumes) were used to image and localize retinal vessels for time-sequential and Doppler flow analysis. In preliminary measurements, data acquired following 5 minutes of 100% oxygen inhalation was compared with that acquired 5 minutes post-inhalation. The same arterial segments examined at both time points exhibit constriction in vessel diameter under pure oxygen inhalation of up to 7% and reduction in peak flow velocity as great as 38%, both of which are in good agreement with previous laser Doppler velocimetry studies.

  2. Volumetric display containing multiple two-dimensional color motion pictures

    NASA Astrophysics Data System (ADS)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  3. Computational Screening of 2D Materials for Photocatalysis.

    PubMed

    Singh, Arunima K; Mathew, Kiran; Zhuang, Houlong L; Hennig, Richard G

    2015-03-19

    Two-dimensional (2D) materials exhibit a range of extraordinary electronic, optical, and mechanical properties different from their bulk counterparts with potential applications for 2D materials emerging in energy storage and conversion technologies. In this Perspective, we summarize the recent developments in the field of solar water splitting using 2D materials and review a computational screening approach to rapidly and efficiently discover more 2D materials that possess properties suitable for solar water splitting. Computational tools based on density-functional theory can predict the intrinsic properties of potential photocatalyst such as their electronic properties, optical absorbance, and solubility in aqueous solutions. Computational tools enable the exploration of possible routes to enhance the photocatalytic activity of 2D materials by use of mechanical strain, bias potential, doping, and pH. We discuss future research directions and needed method developments for the computational design and optimization of 2D materials for photocatalysis.

  4. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  5. Synthetic Covalent and Non-Covalent 2D Materials.

    PubMed

    Boott, Charlotte E; Nazemi, Ali; Manners, Ian

    2015-11-16

    The creation of synthetic 2D materials represents an attractive challenge that is ultimately driven by their prospective uses in, for example, electronics, biomedicine, catalysis, sensing, and as membranes for separation and filtration. This Review illustrates some recent advances in this diverse field with a focus on covalent and non-covalent 2D polymers and frameworks, and self-assembled 2D materials derived from nanoparticles, homopolymers, and block copolymers.

  6. A Geometric Boolean Library for 2D Objects

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  7. VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey (2dFGRS) (2dFGRS Team, 1998-2003)

    NASA Astrophysics Data System (ADS)

    Colless, M.; Dalton, G.; Maddox, S.; Sutherland, W.; Norberg, P.; Cole, S.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Collins, C.; Couch, W.; Cross, N.; Deeley, K.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Price, I.; Seaborne, M.; Taylor, K.

    2007-11-01

    The 2dF Galaxy Redshift Survey (2dFGRS) is a major spectroscopic survey taking full advantage of the unique capabilities of the 2dF facility built by the Anglo-Australian Observatory. The 2dFGRS is integrated with the 2dF QSO survey (2QZ, Cat. VII/241). The 2dFGRS obtained spectra for 245591 objects, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of bJ=19.45. Reliable (quality>=3) redshifts were obtained for 221414 galaxies. The galaxies cover an area of approximately 1500 square degrees selected from the extended APM Galaxy Survey in three regions: a North Galactic Pole (NGP) strip, a South Galactic Pole (SGP) strip, and random fields scattered around the SGP strip. Redshifts are measured from spectra covering 3600-8000 Angstroms at a two-pixel resolution of 9.0 Angstrom and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8% but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS data base is available on the World Wide Web at http://www.mso.anu.edu.au/2dFGRS/. (6 data files).

  8. Hidden Color

    NASA Astrophysics Data System (ADS)

    Ji, C.-R.

    2014-10-01

    With the acceptance of QCD as the fundamental theory of strong interactions, one of the basic problems in the analysis of nuclear phenomena became how to consistently account for the effects of the underlying quark/gluon structure of nucleons and nuclei. Besides providing more detailed understanding of conventional nuclear physics, QCD may also point to novel phenomena accessible by new or upgraded nuclear experimental facilities. We discuss a few interesting applications of QCD to nuclear physics with an emphasis on the hidden color degrees of freedom.

  9. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    NASA Astrophysics Data System (ADS)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  10. Epitaxial 2D SnSe2/ 2D WSe2 van der Waals Heterostructures.

    PubMed

    Aretouli, Kleopatra Emmanouil; Tsoutsou, Dimitra; Tsipas, Polychronis; Marquez-Velasco, Jose; Aminalragia Giamini, Sigiava; Kelaidis, Nicolaos; Psycharis, Vassilis; Dimoulas, Athanasios

    2016-09-01

    van der Waals heterostructures of 2D semiconductor materials can be used to realize a number of (opto)electronic devices including tunneling field effect devices (TFETs). It is shown in this work that high quality SnSe2/WSe2 vdW heterostructure can be grown by molecular beam epitaxy on AlN(0001)/Si(111) substrates using a Bi2Se3 buffer layer. A valence band offset of 0.8 eV matches the energy gap of SnSe2 in such a way that the VB edge of WSe2 and the CB edge of SnSe2 are lined up, making this materials combination suitable for (nearly) broken gap TFETs. PMID:27537619

  11. CVMAC 2D Program: A method of converting 3D to 2D

    SciTech Connect

    Lown, J.

    1990-06-20

    This paper presents the user with a method of converting a three- dimensional wire frame model into a technical illustration, detail, or assembly drawing. By using the 2D Program, entities can be mapped from three-dimensional model space into two-dimensional model space, as if they are being traced. Selected entities to be mapped can include circles, arcs, lines, and points. This program prompts the user to digitize the view to be mapped, specify the layers in which the new two-dimensional entities will reside, and select the entities, either by digitizing or windowing. The new two-dimensional entities are displayed in a small view which the program creates in the lower left corner of the drawing. 9 figs.

  12. Do focal colors look particularly "colorful"?

    PubMed

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  13. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    NASA Astrophysics Data System (ADS)

    Sezen, S.; Ertüzün, A.

    2006-12-01

    A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  14. Displacement Vector Measurement Using 2D Modulation by Virtual Hyperbolic Beam Forming

    NASA Astrophysics Data System (ADS)

    Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    For the purpose of diagnosing ischemic heart disease by detection of malfunction area and cancer tumor by detection of hard area, 3-D tissue motion must be correctly evaluated. So far various methods of measuring multidimensional displacement have been developed. Most of present techniques are restricted to one-dimensional measurement of tissue displacement such as myocardial stain-rate imaging. Although lateral modulation method enables us to attain high-accuracy measurement of lateral displacement as well as axial direction by generating lateral oscillating RF signals, the method causes distorted RF far from center of aperture. As a result, the method is not suited to sector scan which is used for myocardial examination. We propose a method to solve the problem by using 2-D modulation with the virtual hyperbolic beam forming and detection of 2-D displacement vector. The feasibilities of the proposed method were evaluated by numerically simulating the left ventricle short-axis imaging of cylindrical myocardial model. The volume strain image obtained by the proposed method clearly depicted the hard infarction area where conventional multi-beam Doppler imaging could not.

  15. In-vivo characterization of 2D residence time maps in the left ventricle

    NASA Astrophysics Data System (ADS)

    Rossini, Lorenzo; Martinez-Legazpi, Pablo; Bermejo, Javier; Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Perez Del Villar, Candelas; Gonzalez-Mansilla, Ana; Barrio, Alicia; Fernandez-Aviles, Francisco; Shadden, Shawn; Del Alamo, Juan Carlos

    2014-11-01

    Thrombus formation is a multifactorial process involving biology and hemodynamics. Blood stagnation and wall shear stress are linked to thrombus formation. The quantification of residence time of blood in the left ventricle (LV) is relevant for patients affected by ventricular contractility dysfunction. We use a continuum formulation to compute 2D blood residence time (TR) maps in the LV using in-vivo 2D velocity fields in the apical long axis plane obtained from Doppler-echocardiography images of healthy and dilated hearts. The TR maps are generated integrating in time an advection-diffusion equation of a passive scalar with a time-source term. This equation represents the Eulerian translation of DTR / D t = 1 and is solved numerically with a finite volume method on a Cartesian grid using an immersed boundary for the LV wall. Changing the source term and the boundary conditions allows us to track blood transport (direct and retained flow) in the LV and the topology of early (E) and atrial (A) filling waves. This method has been validated against a Lagrangian Coherent Structures analysis, is computationally inexpensive and observer independent, making it a potential diagnostic tool in clinical settings.

  16. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  17. Functional characterization of CYP2D6 enhancer polymorphisms

    PubMed Central

    Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun

    2015-01-01

    CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333

  18. Analysis of Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Rothermel, J.

    1985-01-01

    Dual Doppler lidar analyses of data taken by pulsed lidars demonstrated feasibility of deriving wind fields from coordinated lidar scans. Limited case histories of thunderstorm outflows were obtained. Co-located comparison between Marshall Space Flight Center lidar and NCAR 5.5 cm radar demonstrated desirability of lidar in cases of marginal radar reflectivity in clear air and low-elevation scans. Analysis continued on backscattered intensity and velocity measurements made from April 1983 to February 1984. A slant path method was used to calculate vertical profiles of volumetric backscatter and adsorption in the lower troposphere. High-quality VAD scans were identified as candidates for investigating feasibility of calculating horizontal motion fields using single Doppler lidar. Activities during FY-85 also included participation in Fall 1984 airborne Doppler lidar flight experiments. Preliminary data review was begun using McIdas system. Analysis of backscatter and absorpiton profiles continues. Focus is on understanding spatial and temporal variations, as well as frequency distribution, of backscatter at several tropospheric levels. Results from this study provide input to evaluation of clean/dirty airmass hypothesis of aerosol distribution. Assistance is being given to preparation of a comprehensive, global backscatter measurement plan. Analysis of data from Fall 1984 flight experiments is just beginning. Work has begun on preprocessing data to minimize errors due to electro-optic modulator malfunction during flights.

  19. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  20. Cognitive aspects of color

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  1. Adaptation algorithms for 2-D feedforward neural networks.

    PubMed

    Kaczorek, T

    1995-01-01

    The generalized weight adaptation algorithms presented by J.G. Kuschewski et al. (1993) and by S.H. Zak and H.J. Sira-Ramirez (1990) are extended for 2-D madaline and 2-D two-layer feedforward neural nets (FNNs).

  2. Integrating Mobile Multimedia into Textbooks: 2D Barcodes

    ERIC Educational Resources Information Center

    Uluyol, Celebi; Agca, R. Kagan

    2012-01-01

    The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…

  3. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788

  4. CYP2D6: novel genomic structures and alleles

    PubMed Central

    Kramer, Whitney E.; Walker, Denise L.; O’Kane, Dennis J.; Mrazek, David A.; Fisher, Pamela K.; Dukek, Brian A.; Bruflat, Jamie K.; Black, John L.

    2010-01-01

    Objective CYP2D6 is a polymorphic gene. It has been observed to be deleted, to be duplicated and to undergo recombination events involving the CYP2D7 pseudogene and surrounding sequences. The objective of this study was to discover the genomic structure of CYP2D6 recombinants that interfere with clinical genotyping platforms that are available today. Methods Clinical samples containing rare homozygous CYP2D6 alleles, ambiguous readouts, and those with duplication signals and two different alleles were analyzed by long-range PCR amplification of individual genes, PCR fragment analysis, allele-specific primer extension assay, and DNA sequencing to characterize alleles and genomic structure. Results Novel alleles, genomic structures, and the DNA sequence of these structures are described. Interestingly, in 49 of 50 DNA samples that had CYP2D6 gene duplications or multiplications where two alleles were detected, the chromosome containing the duplication or multiplication had identical tandem alleles. Conclusion Several new CYP2D6 alleles and genomic structures are described which will be useful for CYP2D6 genotyping. The findings suggest that the recombination events responsible for CYP2D6 duplications and multiplications are because of mechanisms other than interchromosomal crossover during meiosis. PMID:19741566

  5. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.

    PubMed

    Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo

    2016-09-01

    Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density.

  6. Observing crosswind over urban terrain using scintillometer and Doppler lidar

    NASA Astrophysics Data System (ADS)

    van Dinther, D.; Wood, C. R.; Hartogensis, O. K.; Nordbo, A.; O'Connor, E. J.

    2015-04-01

    In this study, the crosswind (wind component perpendicular to a path, U⊥) is measured by a scintillometer and estimated with Doppler lidar above the urban environment of Helsinki, Finland, for 15 days. The scintillometer allows acquisition of a path-averaged value of U⊥ (color: #000;">U⊥), while the lidar allows acquisition of path-resolved U⊥ (U⊥ (x), where x is the position along the path). The goal of this study is to evaluate the performance of scintillometer color: #000;">U⊥ estimates for conditions under which U⊥ (x) is variable. Two methods are applied to estimate color: #000;">U⊥ from the scintillometer signal: the cumulative-spectrum method (relies on scintillation spectra) and the look-up-table method (relies on time-lagged correlation functions). The values of color: #000;">U⊥ of both methods compare well with the lidar estimates, with root-mean-square deviations of 0.71 and 0.73 m s-1. This indicates that, given the data treatment applied in this study, both measurement technologies are able to obtain estimates of color: #000;">U⊥ in the complex urban environment. The detailed investigation of four cases indicates that the cumulative-spectrum method is less susceptible to a variable U⊥ (x) than the look-up-table method. However, the look-up-table method can be adjusted to improve its capabilities for estimating color: #000;">U⊥ under conditions under for which U⊥ (x) is variable.

  7. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  8. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  9. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  10. 2-D steering and propelling of acoustic bubble-powered microswimmers.

    PubMed

    Feng, Jian; Yuan, Junqi; Cho, Sung Kwon

    2016-06-21

    This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows that are generated when the trapped bubble is oscillated by an external acoustic wave. The bubble oscillation and thus propelling force are highly dependent on the frequency of the acoustic wave and the bubble length. This dependence is experimentally studied by measuring the resonance behaviors of the testing pool and bubble using a laser Doppler vibrometer (LDV) and by evaluating the generated streaming flows. The key idea in the present 2-D steering is to utilize this dependence. Multiple bubbles with different lengths are mounted on a single microswimmer with a variety of arrangements. By controlling the frequency of the acoustic wave, only frequency-matched bubbles can strongly oscillate and generate strong propulsion. By arranging multiple bubbles of different lengths in parallel but with their openings opposite and switching the frequency of the acoustic wave, bi-directionally linear propelling motions are successfully achieved. The propelling forces are calculated by a CFD analysis using the Ansys Fluent® package. For bi-directional rotations, a similar method but with diagonal arrangement of bubbles on a rectangular swimmer is also applied. The rotation can be easily reversed when the frequency of the acoustic wave is switched. For 2-D steering, short bubbles are aligned perpendicular to long bubbles. It is successfully demonstrated that the microswimmer navigates through a T-junction channel under full control with and without carrying a payload. During the navigation, the frequency is the main control input to select and resonate targeted bubbles. All of these operations are achieved by a single

  11. 2-D steering and propelling of acoustic bubble-powered microswimmers.

    PubMed

    Feng, Jian; Yuan, Junqi; Cho, Sung Kwon

    2016-06-21

    This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows that are generated when the trapped bubble is oscillated by an external acoustic wave. The bubble oscillation and thus propelling force are highly dependent on the frequency of the acoustic wave and the bubble length. This dependence is experimentally studied by measuring the resonance behaviors of the testing pool and bubble using a laser Doppler vibrometer (LDV) and by evaluating the generated streaming flows. The key idea in the present 2-D steering is to utilize this dependence. Multiple bubbles with different lengths are mounted on a single microswimmer with a variety of arrangements. By controlling the frequency of the acoustic wave, only frequency-matched bubbles can strongly oscillate and generate strong propulsion. By arranging multiple bubbles of different lengths in parallel but with their openings opposite and switching the frequency of the acoustic wave, bi-directionally linear propelling motions are successfully achieved. The propelling forces are calculated by a CFD analysis using the Ansys Fluent® package. For bi-directional rotations, a similar method but with diagonal arrangement of bubbles on a rectangular swimmer is also applied. The rotation can be easily reversed when the frequency of the acoustic wave is switched. For 2-D steering, short bubbles are aligned perpendicular to long bubbles. It is successfully demonstrated that the microswimmer navigates through a T-junction channel under full control with and without carrying a payload. During the navigation, the frequency is the main control input to select and resonate targeted bubbles. All of these operations are achieved by a single

  12. Estrogen-Induced Cholestasis Leads to Repressed CYP2D6 Expression in CYP2D6-Humanized Mice

    PubMed Central

    Pan, Xian

    2015-01-01

    Cholestasis activates bile acid receptor farnesoid X receptor (FXR) and subsequently enhances hepatic expression of small heterodimer partner (SHP). We previously demonstrated that SHP represses the transactivation of cytochrome P450 2D6 (CYP2D6) promoter by hepatocyte nuclear factor (HNF) 4α. In this study, we investigated the effects of estrogen-induced cholestasis on CYP2D6 expression. Estrogen-induced cholestasis occurs in subjects receiving estrogen for contraception or hormone replacement, or in susceptible women during pregnancy. In CYP2D6-humanized transgenic (Tg-CYP2D6) mice, cholestasis triggered by administration of 17α-ethinylestradiol (EE2) at a high dose led to 2- to 3-fold decreases in CYP2D6 expression. This was accompanied by increased hepatic SHP expression and subsequent decreases in the recruitment of HNF4α to CYP2D6 promoter. Interestingly, estrogen-induced cholestasis also led to increased recruitment of estrogen receptor (ER) α, but not that of FXR, to Shp promoter, suggesting a predominant role of ERα in transcriptional regulation of SHP in estrogen-induced cholestasis. EE2 at a low dose (that does not cause cholestasis) also increased SHP (by ∼50%) and decreased CYP2D6 expression (by 1.5-fold) in Tg-CYP2D6 mice, the magnitude of differences being much smaller than that shown in EE2-induced cholestasis. Taken together, our data indicate that EE2-induced cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice in part through ERα transactivation of Shp promoter. PMID:25943116

  13. Assessment of left ventricular regional wall motion by color kinesis technique: comparison with angiographic findings.

    PubMed

    Vermes, E; Guyon, P; Weingrod, M; Otmani, A; Soussana, C; Halphen, C; Leroy, G; Haïat, R

    2000-08-01

    The analysis of segmental wall motion using two-dimensional (2-D) echocardiography is subjective with high interobserver variability. Color kinesis is a new technique providing a color-encoded map of endocardial motion. We evaluated the accuracy of color kinesis and 2-D for assessment of regional asynergy compared with left ventricular angiography as a reference method. Fifteen patients admitted for myocardial infarction were studied by echocardiography the day before left ventricular angiography. The left ventricle was divided into seven segments. Each segment was classified by two independent observers as normal or abnormal in 2-D and color kinesis. Accuracy of color kinesis and 2-D was evaluated and compared to left ventricular angiography. Color kinesis is significantly superior to 2-D for all seven segments (mean 0.80/0.68, P = 0.05), except for the septum (0.67/0.60, P = NS). Interobserver variability studied by chi-square statistic is lower with color kinesis (0.70) than with 2-D (0.57). We conclude that these data suggest that color kinesis is a useful method for assessing systolic wall motion in all segments, except the septum and for improving the accuracy of segmental ventricular function and interobserver variability.

  14. Augmented depth perception visualization in 2D/3D image fusion.

    PubMed

    Wang, Jian; Kreiser, Matthias; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal

    2014-12-01

    2D/3D image fusion applications are widely used in endovascular interventions. Complaints from interventionists about existing state-of-art visualization software are usually related to the strong compromise between 2D and 3D visibility or the lack of depth perception. In this paper, we investigate several concepts enabling improvement of current image fusion visualization found in the operating room. First, a contour enhanced visualization is used to circumvent hidden information in the X-ray image. Second, an occlusion and depth color-coding scheme is considered to improve depth perception. To validate our visualization technique both phantom and clinical data are considered. An evaluation is performed in the form of a questionnaire which included 24 participants: ten clinicians and fourteen non-clinicians. Results indicate that the occlusion correction method provides 100% correctness when determining the true position of an aneurysm in X-ray. Further, when integrating an RGB or RB color-depth encoding in the image fusion both perception and intuitiveness are improved.

  15. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples.

  16. Performance Of A Doppler-Corrected MDPSK Detector

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Jedrey, Thomas C.; Hinedi, Sami; Agan, Martin J.

    1994-01-01

    Report presents theoretical analysis of effect of rate of change of Doppler shift of received multiple-differential-phase-shift-keyed (MDPSK) radio signal on performance of Doppler-corrected differential detector. In particular detector, phase of received signal corrected for Doppler shift by use of Doppler estimator designed to operate in presence of negligibly small Doppler rate.

  17. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  18. Doppler effects on periodicities in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.

    2015-11-01

    The magnetosphere of Saturn exhibits a wide variety of periodic phenomena in magnetic fields, charged particles, and radio emissions. The periodicities are observed from a moving spacecraft, so an issue arises about the periodicities being influenced by the Doppler effects. Doppler effects can be investigated using models of the periodicities and then flying the spacecraft through the model, effectively measuring any Doppler phenomena with the simulation. Using 200 days of typical elliptical orbits from the Cassini mission at Saturn, three models were tested: an azimuthal wave (or "searchlight") model, a radial wave (or "pond ripple") model, and a model of an outwardly traveling spiral wave. The azimuthal wave model produced virtually no Doppler effects in the periodicities because its wave vector is nearly perpendicular to the spacecraft trajectory. The radial wave model generated strong Doppler effects of an upshifted and a downshifted signal (a dual period) on either side of the true period, because the wave vector is either parallel or antiparallel to the spacecraft trajectory. Being intermediate to the searchlight and radial waves, the spiral wave produced Doppler effects but only for low wave speeds (<10 RS/h). For higher wave speeds the Doppler effects were not as clear. The Doppler effects can be mitigated by employing only observations beyond ~15 RS where the spacecraft speed is low compared to the wave speed. The observed periodicities over the same 200 day interval do not show evidence of Doppler effects but generally display a single feature at the expected ~10.7 h period.

  19. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    PubMed

    Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko

    2013-12-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices. PMID:24263010

  20. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    PubMed

    Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko

    2013-12-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  1. Practical Algorithm For Computing The 2-D Arithmetic Fourier Transform

    NASA Astrophysics Data System (ADS)

    Reed, Irving S.; Choi, Y. Y.; Yu, Xiaoli

    1989-05-01

    Recently, Tufts and Sadasiv [10] exposed a method for computing the coefficients of a Fourier series of a periodic function using the Mobius inversion of series. They called this method of analysis the Arithmetic Fourier Transform(AFT). The advantage of the AFT over the FN 1' is that this method of Fourier analysis needs only addition operations except for multiplications by scale factors at one stage of the computation. The disadvantage of the AFT as they expressed it originally is that it could be used effectively only to compute finite Fourier coefficients of a real even function. To remedy this the AFT developed in [10] is extended in [11] to compute the Fourier coefficients of both the even and odd components of a periodic function. In this paper, the improved AFT [11] is extended to a two-dimensional(2-D) Arithmetic Fourier Transform for calculating the Fourier Transform of two-dimensional discrete signals. This new algorithm is based on both the number-theoretic method of Mobius inversion of double series and the complex conjugate property of Fourier coefficients. The advantage of this algorithm over the conventional 2-D FFT is that the corner-turning problem needed in a conventional 2-D Discrete Fourier Transform(DFT) can be avoided. Therefore, this new 2-D algorithm is readily suitable for VLSI implementation as a parallel architecture. Comparing the operations of 2-D AFT of a MxM 2-D data array with the conventional 2-D FFT, the number of multiplications is significantly reduced from (2log2M)M2 to (9/4)M2. Hence, this new algorithm is faster than the FFT algorithm. Finally, two simulation results of this new 2-D AFT algorithm for 2-D artificial and real images are given in this paper.

  2. [Tissue Doppler in the assessment of myocardial function in stress echocardiography].

    PubMed

    Citro, Rodolfo; Salustri, Alessandro; Trambaiolo, Paolo; Gregorio, Giovanni

    2002-02-01

    Recently, stress echocardiography has emerged as a valuable tool for the diagnosis and evaluation of coronary artery disease, but its interpretation still remains subjective, relying on image quality and reader's experience. These problems could be overcome by quantitative analysis of wall motion. Tissue Doppler provides quantitative information on regional myocardial systolic and diastolic velocities that can be displayed either in spectral mode or color coded, reflecting the peak velocity increment induced by exercise or dobutamine administration. Pulsed wave tissue Doppler allows to measure regional instantaneous myocardial velocities with high temporal resolution and has been shown valuable for detecting stress-induced changes of both myocardial systolic and diastolic function. This method may also identify myocardial viability by measuring increase in systolic peak velocity at low-dose of dobutamine in dysfunctional myocardial segments. Color coded tissue Doppler resolves mean velocities with higher spatial resolution, and post-processing analysis of digital acquired images has been shown feasible and reproducible. Myocardial velocity gradient is a more sensitive parameter compared to the simple measurement of the peak endocardial systolic velocity for evaluating myocardial ischemia during dobutamine echocardiography. From the raw data, it is also possible to measure strain and strain rate. These new parameters have the potential to differentiate between wall motion and contractility, with obvious implications when applied to stress echocardiography. In conclusion, tissue Doppler is able to quantify regional myocardial function. After a large scale validation, this technique will be incorporated with stress echocardiography in clinical practice.

  3. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    SciTech Connect

    Classen, I. G. J.; Boom, J. E.; Vries, P. C. de; Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A.; Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr.; Donne, A. J. H.; Jaspers, R. J. E.; Park, H. K.; Munsat, T.

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  4. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  5. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-01

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  6. Masking the Color Wheel.

    ERIC Educational Resources Information Center

    Greene, Charlene

    1982-01-01

    Describes an art activity in which sixth graders made mirror-image masks using only two primary colors and one secondary color. Students discussed the effect of color combinations and the use of masks in folk and modern cultures. (AM)

  7. LED Color Characteristics

    SciTech Connect

    2012-01-01

    Color quality is an important consideration when evaluating LED-based products for general illumination. This fact sheet reviews the basics regarding light and color and summarizes the most important color issues related to white-light LED systems.

  8. An adaptive approach to computing the spectrum and mean frequency of Doppler signals.

    PubMed

    Herment, A; Giovannelli, J F

    1995-01-01

    Modern ultrasound Doppler systems are facing the problem of processing increasingly shorter data sets. Spectral analysis of the strongly nonstationary Doppler signal needs to shorten the analysis window while maintaining a low variance and high resolution spectrum. Color flow imaging requires estimation of the Doppler mean frequency from even shorter Doppler data sets to obtain both a high frame rate and high spatial resolution. We reconsider these two estimation problems in light of adaptive methods. A regularized parametric method for spectral analysis as well as an adapted mean frequency estimator are developed. The choice of the adaptive criterion is then addressed and adaptive spectral and mean frequency estimators are developed to minimize the mean square error on estimation in the presence of noise. Two suboptimal spectral and mean-frequency estimators are then derived for real-time applications. Finally, their performance is compared to that of both the FFT based periodogram and the AR parametric spectral analysis for the spectral estimator, and, to both the correlation angle and the Kristoffersen's [8] estimators for the mean frequency estimator using Doppler data recorded in vitro. PMID:7638930

  9. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices.

  10. Emerging and potential opportunities for 2D flexible nanoelectronics

    NASA Astrophysics Data System (ADS)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  11. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  12. Double resonance rotational spectroscopy of CH2D+

    NASA Astrophysics Data System (ADS)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  13. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  14. Basic Color Theory and Color in Computers.

    ERIC Educational Resources Information Center

    Stroh, Charles

    1997-01-01

    Discusses the nature of light and its relationship to color, particularly two models of color production: the additive and subtractive models. Explains the importance of these models for understanding how computers and printers generate colors. Argues that it is important to understand these processes given the prevalence of computers in art. (DSK)

  15. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  16. Generating a 2D Representation of a Complex Data Structure

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  17. Anisotropic 2D Materials for Tunable Hyperbolic Plasmonics.

    PubMed

    Nemilentsau, Andrei; Low, Tony; Hanson, George

    2016-02-12

    Motivated by the recent emergence of a new class of anisotropic 2D materials, we examine their electromagnetic modes and demonstrate that a broad class of the materials can host highly directional hyperbolic plasmons. Their propagation direction can be manipulated on the spot by gate doping, enabling hyperbolic beam reflection, refraction, and bending. The realization of these natural 2D hyperbolic media opens up a new avenue in dynamic control of hyperbolic plasmons not possible in the 3D version.

  18. A simultaneous 2D/3D autostereo workstation

    NASA Astrophysics Data System (ADS)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  19. QUENCH2D. Two-Dimensional IHCP Code

    SciTech Connect

    Osman, A.; Beck, J.V.

    1995-01-01

    QUENCH2D* is developed for the solution of general, non-linear, two-dimensional inverse heat transfer problems. This program provides estimates for the surface heat flux distribution and/or heat transfer coefficient as a function of time and space by using transient temperature measurements at appropriate interior points inside the quenched body. Two-dimensional planar and axisymmetric geometries such as turnbine disks and blades, clutch packs, and many other problems can be analyzed using QUENCH2D*.

  20. Doppler photoacoustic and Doppler ultrasound in blood with optical contrast agent

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2013-03-01

    Photoacoustic Doppler flowmetry as well as Doppler ultrasound were performed in acoustic resolution regime on tubes filled with flowing blood with indocyanine green (ICG) at different concentrations. The photoacoustic excitation utilized a pair of directly-modulated fiber-coupled 830nm laser-diodes, modulated with either CW or tone-bursts for depthresolved measurements. The amplitude of the Doppler peak in photoacoustic Doppler measurements was found to be proportional to the ICG concentration. Photoacoustic Doppler was measured in ICG at human safe concentrations, but not in whole blood. Comparing the results between the two modalities implied that using a wavelength with higher optical absorption may improve the photoacoustic signal in blood.

  1. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  2. Six-color solid state illuminator for cinema projector

    NASA Astrophysics Data System (ADS)

    Huang, Junejei; Wang, Yuchang

    2014-09-01

    Light source for cinema projector requires reliability, high brightness, good color and 3D for without silver screens. To meet these requirements, a laser-phosphor based solid state illuminator with 6 primary colors is proposed. The six primary colors are divided into two groups and include colors of R1, R2, G1, G2, B1 and B2. Colors of B1, B2 and R2 come from lasers of wavelengths 440 nm, 465 nm and 639 nm. Color of G1 comes from G-phosphor pumped by B2 laser. Colors of G2 and R1 come from Y-phosphor pumped by B1 laser. Two groups of colors are combined by a multiband filter and working by alternately switching B1 and B2 lasers. The combined two sequences of three colors are sent to the 3-chip cinema projector and synchronized with frame rate of 120Hz. In 2D mode, the resulting 6 primary colors provide a very wide color gamut. In 3D mode, two groups of red, green and blue primary colors provide two groups of images that received by left and right eyes.

  3. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  4. Doppler tomography in fusion plasmas and astrophysics

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Geiger, B.; Heidbrink, W. W.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Stagner, L.; Steeghs, D.; Stejner, M.; Tardini, G.; Weiland, M.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures and flow patterns. Fusion plasma Doppler tomography has led to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications.

  5. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  6. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  7. Observation of the Zero Doppler Effect

    PubMed Central

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology. PMID:27046395

  8. Observation of the Zero Doppler Effect

    NASA Astrophysics Data System (ADS)

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  9. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  10. Observation of the Zero Doppler Effect.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-05

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  11. Development of the doppler electron velocimeter: theory.

    SciTech Connect

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  12. Observation of the Zero Doppler Effect.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology. PMID:27046395

  13. Opponent-colors approach to color rendering.

    PubMed

    Worthey, J A

    1982-01-01

    Starting with an opponent-colors formulation of color vision, two parameters, t and d, may be defined that express an illuminant's ability to realize red-green and blue-yellow contrasts of objects. For instance, calculation of t and d for daylight shows that on a gray day, color contrasts are actually reduced. By these measures, many common vapor-discharge illuminants systematically distort object colors. Because red-green contrasts contribute to border distinctness, and both types of color contrast contribute to brightness, such systematic distortions probably affect the overall clarity and brightness of what is perceived visually, Experimental data are consistent with this idea. In relation to color-constancy (retinex) experiments, it is approximately true that the visual system discounts the color of an illuminant but not its t and d.

  14. Use of the 'Precessions' process for prepolishing and correcting 2D & 2(1/2)D form.

    PubMed

    Walker, David D; Freeman, Richard; Morton, Roger; McCavana, Gerry; Beaucamp, Anthony

    2006-11-27

    The Precessions process polishes complex surfaces from the ground state preserving the ground-in form, and subsequently rectifies measured form errors. Our first paper introduced the technology and focused on the novel tooling. In this paper we describe the unique CNC machine tools and how they operate in polishing and correcting form. Experimental results demonstrate both the '2D' and '2(1/2)D' form-correction modes, as applied to aspheres with rotationally-symmetric target-form.

  15. A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection

    NASA Astrophysics Data System (ADS)

    Ju, Kuanyu; Xiong, Hongkai

    2014-11-01

    To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.

  16. Converting color images to grayscale images by reducing dimensions

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hee; Kim, Byoung-Kwang; Song, Woo-Jin

    2010-05-01

    A novel color-to-grayscale method is presented for converting color images to grayscale images by reducing dimensions. The proposed method converts three-dimensional (3-D) RGB color vectors into one-dimensional (1-D) grayscale values by projecting the 3-D vector into a two-dimensional (2-D) intermediate one followed by compressing the 2-D vector into the 1-D value. Characteristics of color are introduced to facilitate the final determination of the 1-D values in the reducing dimensions. The proposed method has the advantages of preserving chromatic contrasts, maintaining luminance consistency, and having a low computational cost. Furthermore, the proposed method has high resistance to artifacts, such as halos, which can occur when using local contents.

  17. Color Me Understood.

    ERIC Educational Resources Information Center

    Harris, Judy J.

    2000-01-01

    Describes the "color system" as a way of grouping children into different personality types based on a certain color: orange, blue, green, and gold. Lists stress producers for specific color people. Asserts that, through making groups of different colors, children begin to see the various specialties others can bring to the group and learn to…

  18. Color identification testing device

    NASA Technical Reports Server (NTRS)

    Brawner, E. L.; Martin, R.; Pate, W.

    1970-01-01

    Testing device, which determines ability of a technician to identify color-coded electric wires, is superior to standard color blindness tests. It tests speed of wire selection, detects partial color blindness, allows rapid testing, and may be administered by a color blind person.

  19. Color: An Unsuspected Influence.

    ERIC Educational Resources Information Center

    Scargall, Hollie

    1999-01-01

    Discusses the appropriate use of colors in school libraries. Highlights include how colors affect students' learning and behavior; influences on users' moods; users' ages; the use of colors to bring out the best physical attributes; and the use of color for floor coverings, window treatments, furnishings, and accessories. (LRW)

  20. An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates

    NASA Astrophysics Data System (ADS)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-04-01

    A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  1. Resonant Doppler imaging with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Leitgeb, Rainer A.; Szklumowska, Anna; Pircher, Michael; Gotzinger, Erich; Fercher, Adolf F.

    2005-04-01

    Fourier Domain Optical Coherene Tomography (FD OCT) is a high speed imaging modality with increased sensitivity as compared to standard time domain (TD) OCT. The higher sensitivity is especially important, if strongly scattering tissue such as blood is investigated. Recently it could be shown that retinal blood flow can be assessed in-vivo by high speed FD OCT. However the detection bandwidth of color Doppler (CD) FDOCT is strongly limited due to blurring of the detected interference fringes during exposure. This leads to a loss of sensitivity for detection of fast changes in tissue. Using a moving mirror as a reference one can effectively increase the detection bandwidth for CD FDOCT and perform perfusion sectioning. The modality is called resonant CD FDOCT imaging. The principle of the method is presented and experimentally verified.

  2. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  3. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide

    NASA Astrophysics Data System (ADS)

    El Khoury, Youssef; Van Wilderen, Luuk J. G. W.; Bredenbeck, Jens

    2015-06-01

    We demonstrate the coupling of ultrafast two-dimensional infrared (2D-IR) spectroscopy to electrochemistry in solution and apply it to flavin mononucleotide, an important cofactor of redox proteins. For this purpose, we designed a spectroelectrochemical cell optimized for 2D-IR measurements in reflection and measured the time-dependent 2D-IR spectra of the oxidized and reduced forms of flavin mononucleotide. The data show anharmonic coupling and vibrational energy transfer between different vibrational modes in the two redox species. Such information is inaccessible with redox-controlled steady-state FTIR spectroscopy. The wide range of applications offered by 2D-IR spectroscopy, such as sub-picosecond structure determination, IR band assignment via energy transfer, disentangling reaction mixtures through band connectivity in the 2D spectra, and the measurement of solvation dynamics and chemical exchange can now be explored under controlled redox potential. The development of this technique furthermore opens new horizons for studying the dynamics of redox proteins.

  4. Ultrafast 2D-IR spectroelectrochemistry of flavin mononucleotide.

    PubMed

    El Khoury, Youssef; Van Wilderen, Luuk J G W; Bredenbeck, Jens

    2015-06-01

    We demonstrate the coupling of ultrafast two-dimensional infrared (2D-IR) spectroscopy to electrochemistry in solution and apply it to flavin mononucleotide, an important cofactor of redox proteins. For this purpose, we designed a spectroelectrochemical cell optimized for 2D-IR measurements in reflection and measured the time-dependent 2D-IR spectra of the oxidized and reduced forms of flavin mononucleotide. The data show anharmonic coupling and vibrational energy transfer between different vibrational modes in the two redox species. Such information is inaccessible with redox-controlled steady-state FTIR spectroscopy. The wide range of applications offered by 2D-IR spectroscopy, such as sub-picosecond structure determination, IR band assignment via energy transfer, disentangling reaction mixtures through band connectivity in the 2D spectra, and the measurement of solvation dynamics and chemical exchange can now be explored under controlled redox potential. The development of this technique furthermore opens new horizons for studying the dynamics of redox proteins.

  5. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  6. Sparse radar imaging using 2D compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.

  7. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  8. 2D nanostructures for water purification: graphene and beyond.

    PubMed

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  9. Gosling's Doppler pulsatility index revisited.

    PubMed

    Michel, E; Zernikow, B

    1998-05-01

    In Doppler sonography, the physiological meaning of Gosling's pulsatility index (PI) as a measure of downstream resistance is still under dispute. We deliver the theoretical derivation of its physiological significance. We present a mathematical model based on the linked theories of critical closing pressure (CCP) and cerebrovascular impedance, verified in preterm neonates. Mathematical transformation results in a series of equations interrelating several physiological parameters. Instead of indicating cerebrovascular resistance, PI is linked to the ratio of cerebrovascular impedances at the heart rate and at zero frequency. Next to arterial blood pressure, CCP is the principal determinant of PI. PI is identical to the ratio of the alternate and the direct component of the effective driving force. Thus, PI has no distinctive physiological meaning by itself. At present, our model is confined to physiological conditions where the lowest velocity is the end diastolic, and always more than zero.

  10. Laser Doppler dust devil measurements

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.; Jeffreys, H. B.; Kaufman, J. W.; Weaver, E. A.

    1977-01-01

    A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors.

  11. Optical Doppler tomography and spectral Doppler imaging of localized ischemic stroke in a mouse model

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Nguyen, Elaine; Liu, Gangjun; Rao, Bin; Choi, Bernard; Chen, Zhongping

    2010-02-01

    We present a combined optical Doppler tomography/spectral Doppler imaging modality to quantitatively evaluate the dynamic blood circulation and the artery blockage before and after a localized ischemic stroke in a mouse model. Optical Doppler Tomography (ODT) combines the Doppler principle with optical coherence tomography for noninvasive localization and measurement of particle flow velocity in highly scattering media with micrometer scale spatial resolution. Spectral Doppler imaging (SDI) provides complementary temporal flow information to the spatially distributed flow information of Doppler imaging. Fast, repeated, ODT scans across an entire vessel were performed to record flow dynamic information with high temporal resolution of cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time for scatters within the imaging volume using spectral Doppler waveforms. Furthermore, vascular conditions can be quantified with various Doppler-angle-independent flow indices. Non-invasive in-vivo mice experiments were performed to evaluate microvascular blood circulation of a localized ischemic stroke mouse model.

  12. Photoacoustic perfusion measurements: a comparison with power Doppler in phantoms

    NASA Astrophysics Data System (ADS)

    Heres, H. M.; Arabul, M. Ü.; Tchang, B. C.; van de Vosse, F. N.; Rutten, M. C.; Lopata, R. G.

    2015-03-01

    Ultrasound-based measurements using Doppler, contrast, and more recently photoacoustics (PA), have emerged as techniques for tissue perfusion measurements. In this study, the feasibility of in vitro perfusion measurements with a fully integrated, hand-held, photoacoustic probe was investigated and compared to Power Doppler (PD). Three cylindrical polyvinyl alcohol (PVA) phantoms were made (diameter = 15 mm) containing 100, 200 and 400 parallel polysulfone tubes (diameter = 0.2 mm), resulting in a perfused cross-sectional area of 1.8, 3.6 and 7.1% respectively. Each phantom was perfused with porcine blood (15 mL/min). Cross-sectional PA images (λ = 805nm, frame rate = 10Hz) and PD images (PRF = 750Hz) were acquired with a MyLab One and MyLab 70 scanner (Esaote, NL), respectively. Data were averaged over 70 frames. The average PA signal intensity was calculated in a region-of-interest of 4 mm by 6 mm. The percentage of colored PD pixels was measured in the entire phantom region. The average signal intensity of the PA images increased linearly with perfusion density, being 0.54 (+/- 0.01), 0.56 (+/- 0.01), 0.58 (+/- 0.01) with an average background signal of 0.53 in the three phantoms, respectively. For PD, the percentage of colored pixels in the phantom area (1.5% (+/- 0.2%), 4.4% (+/- 0.2%), 13.7% (+/- 0.8%)) also increased linearly. The preliminary results suggest that PA, like PD, is capable of detecting an increase of blood volume in tissue. In the future, in vivo measurements will be explored, although validation will be more complex.

  13. Simultaneous contrast and gamut relativity in achromatic color perception.

    PubMed

    Vladusich, Tony

    2012-09-15

    Simultaneous contrast refers to the respective whitening or blackening of physically identical image regions surrounded by regions of low or high luminance, respectively. A common method of measuring the strength of this effect is achromatic color matching, in which subjects adjust the luminance of a target region to achieve an achromatic color match with another region. Here I present psychophysical data questioning the assumption--built into many models of achromatic color perception--that achromatic colors are represented as points in a one-dimensional (1D) perceptual space, or an absolute achromatic color gamut. I present an alternative model in which the achromatic color gamut corresponding to a target region is defined relatively, with respect to surround luminance. Different achromatic color gamuts in this model correspond to different 1D lines through a 2D perceptual space composed of blackness and whiteness dimensions. Each such line represents a unique gamut of achromatic colors ranging from black to white. I term this concept gamut relativity. Achromatic color matches made between targets surrounded by regions of different luminance are shown to reflect the relative perceptual distances between points lying on different gamut lines. The model suggests a novel geometrical approach to simultaneous contrast and achromatic color matching in terms of the vector summation of local luminance and contrast components, and sets the stage for a unified computational theory of achromatic color perception.

  14. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  15. Graphene based 2D-materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  16. Perception-based reversible watermarking for 2D vector maps

    NASA Astrophysics Data System (ADS)

    Men, Chaoguang; Cao, Liujuan; Li, Xiang

    2010-07-01

    This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.

  17. Secretory pathways generating immunosuppressive NKG2D ligands

    PubMed Central

    Baragaño Raneros, Aroa; Suarez-Álvarez, Beatriz; López-Larrea, Carlos

    2014-01-01

    Natural Killer Group 2 member D (NKG2D) activating receptor, present on the surface of various immune cells, plays an important role in activating the anticancer immune response by their interaction with stress-inducible NKG2D ligands (NKG2DL) on transformed cells. However, cancer cells have developed numerous mechanisms to evade the immune system via the downregulation of NKG2DL from the cell surface, including the release of NKG2DL from the cell surface in a soluble form. Here, we review the mechanisms involved in the production of soluble NKG2DL (sNKG2DL) and the potential therapeutic strategies aiming to block the release of these immunosuppressive ligands. Therapeutically enabling the NKG2D-NKG2DL interaction would promote immunorecognition of malignant cells, thus abrogating disease progression. PMID:25050215

  18. Focusing surface wave imaging with flexible 2D array

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan

    2016-04-01

    Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.

  19. Live texturing of augmented reality characters from colored drawings.

    PubMed

    Magnenat, Stéphane; Ngo, Dat Tien; Zünd, Fabio; Ryffel, Mattia; Noris, Gioacchino; Rothlin, Gerhard; Marra, Alessia; Nitti, Maurizio; Fua, Pascal; Gross, Markus; Sumner, Robert W

    2015-11-01

    Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video stream is augmented with an animated 3-D version of the character that is textured according to the child's coloring. This is possible thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies that examine the quality of our texturing algorithm and the overall App experience.

  20. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. PMID:25965703

  1. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  2. On 2D bisection method for double eigenvalue problems

    SciTech Connect

    Ji, X.

    1996-06-01

    The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.

  3. Design of the LRP airfoil series using 2D CFD

    NASA Astrophysics Data System (ADS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

    2014-06-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

  4. Laboratory Experiments On Continually Forced 2d Turbulence

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; Van Heijst, G. J. F.

    There has been much recent interest in the advection of tracers by 2D turbulence in geophysical flows. While there is a large body of literature on decaying 2D turbulence or forced 2D turbulence in unbounded domains, there have been very few studies of forced turbulence in bounded domains. In this study we present new experimental results from a continuously forced quasi 2D turbulent field. The experiments are performed in a square Perspex tank filled with water. The flow is made quasi 2D by a steady background rotation. The rotation rate of the tank has a small (<8 %) sinusoidal perturbation which leads to the periodic formation of eddies in the corners of the tank. When the oscillation period of the perturbation is greater than an eddy roll-up time-scale, dipole structures are observed to form. The dipoles can migrate away from the walls, and the interior of the tank is continually filled with vortexs. From experimental visualizations the length scale of the vortexs appears to be largely controlled by the initial formation mechanism and large scale structures are not observed to form at large times. Thus the experiments provide a simple way of cre- ating a continuously forced 2D turbulent field. The resulting structures are in contrast with most previous laboratory experiments on 2D turbulence which have investigated decaying turbulence and have observed the formations of large scale structure. In these experiments, decaying turbulence had been produced by a variety of methods such as the decaying turbulence in the wake of a comb of rods (Massen et al 1999), organiza- tion of vortices in thin conducting liquids (Cardoso et al 1994) or in rotating systems where there are sudden changes in angular rotation rate (Konijnenberg et al 1998). Results of dye visualizations, particle tracking experiments and a direct numerical simulation will be presented and discussed in terms of their oceanographic application. Bibliography Cardoso,O. Marteau, D. &Tabeling, P

  5. EM 2dV1.0.F

    2012-01-05

    Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less

  6. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  7. Self-dual strings and 2D SYM

    NASA Astrophysics Data System (ADS)

    Hosomichi, Kazuo; Lee, Sungjay

    2015-01-01

    We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.

  8. Finite temperature corrections in 2d integrable models

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Hasenbusch, M.

    2002-09-01

    We study the finite size corrections for the magnetization and the internal energy of the 2d Ising model in a magnetic field by using transfer matrix techniques. We compare these corrections with the functional form recently proposed by Delfino and LeClair-Mussardo for the finite temperature behaviour of one-point functions in integrable 2d quantum field theories. We find a perfect agreement between theoretical expectations and numerical results. Assuming the proposed functional form as an input in our analysis we obtain a relevant improvement in the precision of the continuum limit estimates of both quantities.

  9. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  10. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  11. Nomenclature for human CYP2D6 alleles.

    PubMed

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  12. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    PubMed

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory. PMID:15278693

  13. Evaluation of 2D ceramic matrix composites in aeroconvective environments

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza

    1992-01-01

    An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.

  14. Quantum process tomography by 2D fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  15. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  16. A novel improved method for analysis of 2D diffusion-relaxation data--2D PARAFAC-Laplace decomposition.

    PubMed

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T; Engelsen, Søren B

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T(2)-D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T(2)-D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T(2)-D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D=3 x 10(-12) m(2) s(-1) and T(2)=180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D=10(-9) m(2) s(-1), T(2)=10 ms and D=3 x 10(-13) m(2) s(-1), T(2)=13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  17. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

  18. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  19. Error Correction Method for Wind Speed Measured with Doppler Wind LIDAR at Low Altitude

    NASA Astrophysics Data System (ADS)

    Liu, Bingyi; Feng, Changzhong; Liu, Zhishen

    2014-11-01

    For the purpose of obtaining global vertical wind profiles, the Atmospheric Dynamics Mission Aeolus of European Space Agency (ESA), carrying the first spaceborne Doppler lidar ALADIN (Atmospheric LAser Doppler INstrument), is going to be launched in 2015. DLR (German Aerospace Center) developed the A2D (ALADIN Airborne Demonstrator) for the prelaunch validation. A ground-based wind lidar for wind profile and wind field scanning measurement developed by Ocean University of China is going to be used for the ground-based validation after the launch of Aeolus. In order to provide validation data with higher accuracy, an error correction method is investigated to improve the accuracy of low altitude wind data measured with Doppler lidar based on iodine absorption filter. The error due to nonlinear wind sensitivity is corrected, and the method for merging atmospheric return signal is improved. The correction method is validated by synchronous wind measurements with lidar and radiosonde. The results show that the accuracy of wind data measured with Doppler lidar at low altitude can be improved by the proposed error correction method.

  20. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146