Science.gov

Sample records for 2d correlation analysis

  1. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  2. A 2D correlation Raman spectroscopy analysis of a human cataractous lens

    NASA Astrophysics Data System (ADS)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Paluszkiewicz, Czesława; Chaniecki, Piotr; Błażewicz, Marta

    2016-11-01

    This work is a continuation of our study of a cataractous human eye lens removed after phacoemulsification surgery. There are clear differences in the lens colors that allowed for distinguishing two opaque phases in the obtained biological material: the white- and yellow-phase. The Raman spectroscopy and 2D correlation spectroscopy method were used to trace a pathologically altered human cataract lens at a molecular level. Although the Raman spectra of these two phases are relatively similar, taking advantage of 2D correlation, and considering time as an external perturbation, the synchronous and asynchronous spectra were obtained showing completely different patterns. Prominent synchronous auto-peaks appear at 3340, 2920, 1736, 1665 and 1083 cm-1 for the white-, and at 2929 and 1670 cm-1 for the yellow phase. The white phase is characterized by intensive asynchronous peaks at -(2936, 3360), -(1650, 1674) and +(1620,1678). The modifications in the water contained in the white phase structure are ahead of the changes in the protein (CH3-groups), furthermore changes in β-conformation are asynchronous with respect to the α-structure. The yellow phase demonstrates asynchronous peaks: +(2857, 2928), +(1645,1673), +(1663, 1679), and +(1672,1707). These illustrate concomitant modifications in the β- and unordered conformation. Both forms of cataractous human eye lens, white- and yellow-phases, are degenerate forms of the eye lens proteins, both are arranged in a different way. The main differences are observed for the amide I, methyl, methylene and Osbnd H vibrational band region. The effect of Asp, Glu and Tyr amino acids in cataractous lens transformations was observed.

  3. 2D correlation analysis of the magnetic excitations in Raman spectra of HoMnO3

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Huyen; Nguyen, Thi Minh Hien; Chen, Xiang-Bai; Yang, In-Sang; Park, Yeonju; Jung, Young Mee

    2014-07-01

    2D correlation analysis is performed on the temperature-dependent Raman spectra of HoMnO3 thin films. As the temperature of the HoMnO3 thin films decrease, the depletion of the spectral weight at 336, 656, and 1304 cm-1 occurs at higher temperatures than the increase of the intensity at 508, 766, and 945 cm-1 below ∼70 K, the Néel temperature. The power spectrum asserts that all the changes in the spectral weight are strongly correlated. Most of the temperature-induced spectral changes of HoMnO3 occur at lower temperature than 70 K, while there is slight depletion of the spectral weight at 336, 656, and 1304 cm-1 even at higher temperature than 70 K. PCA scores and loading vectors plots also support these 2D correlation results. Our 2D correlation analysis supports the existence of the short range spin correlations between Mn sites in HoMnO3 even above the Néel temperature.

  4. Multielectron Correlation in High-Harmonic Generation: A 2D Model Analysis

    SciTech Connect

    Sukiasyan, Suren; McDonald, Chris; Destefani, Carlos; Brabec, Thomas; Ivanov, Misha Yu.

    2009-06-05

    We analyze the role of multielectron dynamics in high-harmonic generation spectroscopy, using an example of a two-electron system. We identify and systematically quantify the importance of correlation and exchange effects. One of the main sources for correlation is identified to be the polarization of the ion by the recombining continuum electron. This effect, which plays an important qualitative and quantitative role, seriously undermines the validity of the standard approaches to high-harmonic generation, which ignore the contribution of excited ionic states to the radiative recombination of the continuum electron.

  5. Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation.

    PubMed

    Zhao, Zhihua; Zheng, Zhiqin; Roux, Clément; Delmas, Céline; Marty, Jean-Daniel; Kahn, Myrtil L; Mingotaud, Christophe

    2016-08-22

    Analysis of nanoparticle size through a simple 2D plot is proposed in order to extract the correlation between length and width in a collection or a mixture of anisotropic particles. Compared to the usual statistics on the length associated with a second and independent statistical analysis of the width, this simple plot easily points out the various types of nanoparticles and their (an)isotropy. For each class of nano-objects, the relationship between width and length (i.e., the strong or weak correlations between these two parameters) may suggest information concerning the nucleation/growth processes. It allows one to follow the effect on the shape and size distribution of physical or chemical processes such as simple ripening. Various electron microscopy pictures from the literature or from the authors' own syntheses are used as examples to demonstrate the efficiency and simplicity of the proposed 2D plot combined with a multivariate analysis.

  6. Monitoring guanidinium-induced structural changes in ribonuclease proteins using Raman spectroscopy and 2D correlation analysis.

    PubMed

    Brewster, Victoria L; Ashton, Lorna; Goodacre, Royston

    2013-04-02

    Assessing the stability of proteins by comparing their unfolding profiles is a very important characterization and quality control step for any biopharmaceutical, and this is usually measured by fluorescence spectroscopy. In this paper we propose Raman spectroscopy as a rapid, noninvasive alternative analytical method and we shall show this has enhanced sensitivity and can therefore reveal very subtle protein conformational changes that are not observed with fluorescence measurements. Raman spectroscopy is a powerful nondestructive method that has a strong history of applications in protein characterization. In this work we describe how Raman microscopy can be used as a fast and reliable method of tracking protein unfolding in the presence of a chemical denaturant. We have compared Raman spectroscopic data to the equivalent samples analyzed using fluorescence spectroscopy in order to validate the Raman approach. Calculations from both Raman and fluorescence unfolding curves of [D]50 values and Gibbs free energy correlate well with each other and more importantly agree with the values found in the literature for these proteins. In addition, 2D correlation analysis has been performed on both Raman and fluorescence data sets in order to allow further comparisons of the unfolding behavior indicated by each method. As many biopharmaceuticals are glycosylated in order to be functional, we compare the unfolding profiles of a protein (RNase A) and a glycoprotein (RNase B) as measured by Raman spectroscopy and discuss the implications that glycosylation has on the stability of the protein.

  7. Anisotropic multi-resolution analysis in 2D, application to long-range correlations in cloud mm-radar fields

    SciTech Connect

    Davis, A.B.; Clothiaux, E.

    1999-03-01

    Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where the dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.

  8. [Identification and analysis of genuine and false Flos Rosae Rugosae by FTIR and 2D correlation IR spectroscopy].

    PubMed

    Cai, Fang; Sun, Su-qin; Yan, Wen-rong; Niu, Shi-jie; Li, Xian-en

    2009-09-01

    The genuine and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora) were examined in terms of their differences by using Fourier transform infrared spectroscopy (FTIR) combined with two-dimensional (2D) correlation IR spectroscopy. The three species were shown very similar in FTIR spectra. The peak of 1318 cm(-1) of genuine Flos Rosae Rugosae is not obvious but this peak could be found sharp in Flos Rosae Chinensis and Flos Rosa multiflora. Generally, the second derivative IR spectrum can clearly enhance the spectral resolution. Flos Rosae Rugosae and Flos rosae Chinensis have aromatic compounds distinct fingerprint characteristics at 1 617 and 1 618 cm(-1), respectively. Nevertheless, FlosRosa multiflora has the peak at 1612 cm(-1). There is a discrepancy of 5 to 6 cm(-1). FlosRosa multiflora has glucide's distinct fingerprint characteristics at 1 044 cm(-1), but Flos Rosae Rugosae and Flos Rosae Chinensis don't. The second derivative infrared spectra indicated different fingerprint characteristics. Three of them showed aromatic compounds with autopeaks at 1620, 1560 and 1460 cm(-1). Flos Rosae Chinensis and Flos Rosa multiflora have the shoulder peak at 1660 cm(-1). In the range of 850-1250 cm(-1), three of them are distinct different, Flos Rosae Rugosae has the strongest autopeak, Flos Rosae Chinensis has the feeble autopeak and Flos Rosa multiflora has no autopeak at 1050 cm(-1). In third-step identification, the different contents of aromatic compounds and glucide in Flos Rosae Rugosae, Flos Rosae Chinensis and Flos Rosa multiflora were revealed. It is proved that the method is fast and effective for distinguishing and analyzing genuine Flos Rosae Rugosae and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora).

  9. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao

    2008-06-01

    As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.

  10. Peak width issues with generalised 2D correlation NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kirwan, Gemma M.; Adams, Michael J.

    2008-12-01

    Two-dimensional spectral correlation analysis is shown to be sensitive to fluctuations in spectral peak width as a function of perturbation variable. This is particularly significant where peak width fluctuations are of similar order of magnitude as the peak width values themselves and where changes in peak width are not random but are, for example, proportional to intensity. In such cases these trends appear in the asynchronous matrix as false peaks that serve to interfere with interpretation of the data. Complex, narrow band spectra such as provided by 1H NMR spectroscopy are demonstrated to be prone to such interference. 2D correlation analysis was applied to a series of NMR spectra corresponding to a commercial wine fermentation, in which the samples collected over a period of several days exhibit dramatic changes in concentration of minor and major components. The interference due to changing peak width effects is eliminated by synthesizing the recorded spectra using a constant peak width value prior to performing 2D correlation analysis.

  11. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  12. A model of adsorption of albumin on the implant surface titanium and titanium modified carbon coatings (MWCNT-EPD). 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Stodolak-Zych, Ewa; Piś, Wojciech; Długoń, Elżbieta; Benko, Aleksandra; Błażewicz, Marta

    2016-11-01

    Common materials used as orthopedic implants are titanium and its alloys. To improve its compatibility with the environment of a living organism titanium implant surfaces are covered with bioactive layers of MWCNT. During the insertion into a living organism such material is exposed to direct contact with the patient's blood, which includes proteins - eg. albumin. The adsorption of albumin may constitute one of the early stages of implant surface modification serving cell adhesion. An analysis of this phenomenon in terms of the kinetics of deposition of protein on the surface of the implant confirms its biocompatibility in vivo. The proposed working model of the adsorption of albumin allows for choosing the best of time for the protein to form a stable connection with the surface of the titanium implant. Traditional methods of materials engineering and chemistry allow for the obtaining of information about the presence of a protein on the surface (UV-Vis, the wettability). The application of 2D correlation analysis, in turn, gains insight into the dynamics of the changes associated with the deposition of protein (the formation of a uniform layer, the change in conformation). This analysis has allowed for the selection of an optimal time of protein adsorption to the surface of the implant. Better compatibility with the body of the implant provides its modification by introducing layers that accelerate the material-tissue interactions. Such a composition is a layer of carbon nanotubes (MWCNTs) deposited on titanium by the electrophoretic (EPD) method. Using Raman spectroscopy and analyzing the spectra with the 2D correlation method it is possible to gain insight into the molecular structure of this layer. Our studies indicate that albumin in contact with the surface of titanium has obtained stable conformation after 30 min (confirmed by: UV-Vis, Raman). Shifts of the CH2, CH3 stretching bands position as well as an analysis of the amide I band confirms this

  13. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  14. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  15. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    PubMed

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  16. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  17. Abnormal expression levels of sMICA and NKG2D are correlated with poor prognosis in pancreatic cancer

    PubMed Central

    Chen, Jiong; Xu, Hong; Zhu, Xing-Xing

    2016-01-01

    Soluble major histocompatibility complex class I-related chain A molecules (sMICA) and natural-killer group 2 member D (NKG2D) not only correlate with tumorigenesis and progression, but also with tumor invasion and metastasis. In this study, we used immunohistochemistry to investigate the correlation and prognostic significance of the differential expression of sMICA and NKG2D in pancreatic carcinoma and paracarcinoma tissues from 70 patients with pancreatic carcinomas. The results showed that sMICA expression was significantly (P<0.05) higher in tumor tissues (67.1%) than that in adjacent nontumor tissues (31.4%), whereas NKG2D expression was significantly (P<0.001) lower in tumor tissues (32.9%) than that in adjacent nontumor tissues (60.0%). Spearman’s rank correlation test showed a negative correlation between the expression of sMICA and that of NKG2D (r=−0.676, P<0.001). Kaplan–Meier survival analysis showed that a high sMICA expression was significantly correlated with decreased disease-free survival (DFS) (P<0.001) and overall survival (OS) (P<0.001), while a high NKG2D expression was significantly associated with increased DFS (P=0.001) and OS (P=0.001) of the patients. Multivariate analysis showed that a high sMICA expression was an independent predictive factor for poor DFS (P<0.001) and OS (P=0.012); but low NKG2D expression was not an independent prognostic factor for poor DFS (P=0.238) and OS (P=0.574). In conclusion, our findings suggest that the expression levels of sMICA and NKG2D are abnormal and negatively correlated with one another in pancreatic carcinoma tissues; they may be considered as valuable biomarkers for the prognosis of pancreatic carcinoma. PMID:26730197

  18. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  19. Noise reduction methods applied to two-dimensional correlation spectroscopy (2D-COS) reveal complementary benefits of pre- and post-treatment.

    PubMed

    Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B

    2011-05-01

    Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.

  20. In-die photomask registration and overlay metrology with PROVE using 2D correlation methods

    NASA Astrophysics Data System (ADS)

    Seidel, D.; Arnz, M.; Beyer, D.

    2011-11-01

    According to the ITRS roadmap, semiconductor industry drives the 193nm lithography to its limits, using techniques like double exposure, double patterning, mask-source optimization and inverse lithography. For photomask metrology this translates to full in-die measurement capability for registration and critical dimension together with challenging specifications for repeatability and accuracy. Especially, overlay becomes more and more critical and must be ensured on every die. For this, Carl Zeiss SMS has developed the next generation photomask registration and overlay metrology tool PROVE® which serves the 32nm node and below and which is already well established in the market. PROVE® features highly stable hardware components for the stage and environmental control. To ensure in-die measurement capability, sophisticated image analysis methods based on 2D correlations have been developed. In this paper we demonstrate the in-die capability of PROVE® and present corresponding measurement results for shortterm and long-term measurements as well as the attainable accuracy for feature sizes down to 85nm using different illumination modes and mask types. Standard measurement methods based on threshold criteria are compared with the new 2D correlation methods to demonstrate the performance gain of the latter. In addition, mask-to-mask overlay results of typical box-in-frame structures down to 200nm feature size are presented. It is shown, that from overlay measurements a reproducibility budget can be derived that takes into account stage, image analysis and global effects like mask loading and environmental control. The parts of the budget are quantified from measurement results to identify critical error contributions and to focus on the corresponding improvement strategies.

  1. Synchronous two-dimensional MIR correlation spectroscopy (2D-COS) as a novel method for screening smoke tainted wine.

    PubMed

    Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel

    2013-08-15

    In this study, two-dimensional correlation spectroscopy (2D-COS) combined with mid-infrared (MIR) spectroscopy was evaluated as a novel technique for the identification of spectral regions associated with smoke-affected wine, for the purpose of screening taint arising from grapevine exposure to smoke. Smoke-affected wines obtained from experimental and industry sources were analysed using MIR spectroscopy and chemometrics, and calibration models developed. 2D-COS analysis was used to generate synchronous data maps for red and white cask wines spiked with guaiacol, a marker of smoke taint. Correlations were observed at wavelengths that could be attributable to aromatic C-C stretching, i.e., between 1400 and 1500 cm(-1), indicative of volatile phenols. These results demonstrate the potential of 2D-COS as a rapid, high-throughput technique for the preliminary screening of smoke tainted wine.

  2. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential

    NASA Astrophysics Data System (ADS)

    Guillamon, I.; Vieira, S.; Suderow, H.; Cordoba, R.; Sese, J.; de Teresa, J. M.; Ibarra, R.

    In two dimensional (2D) systems, theory has proposed that random disorder destroys long range correlations driving a transition to a glassy state. Here, I will discuss new insights into this issue obtained through the direct visualization of the critical behaviour of a 2D superconducting vortex lattice formed in a thin film with a smooth 1D thickness modulation. Using scanning tunneling microscopy at 0.1K, we have tracked the modification in the 2D vortex arrangements induced by the 1D thickness modulation while increasing the vortex density by three orders of magnitude. Upon increasing the field, we observed a two-step order-disorder transition in the 2D vortex lattice mediated by the appearance of dislocations and disclinations and accompanied by an increase in the local vortex density fluctuations. Through a detailed analysis of correlation functions, we find that the transition is driven by the incommensurate 1D thickness modulation. We calculate the critical points and exponents and find that they are well above theoretical expectation for random disorder. Our results show that long range 1D correlations in random potentials enhance the stability range of the ordered phase in a 2D vortex lattice. Work supported by Spanish MINECO, CIG Marie Curie Grant, Axa Research Fund and FBBVA.

  3. CC2D2A mutations in Meckel and Joubert syndromes indicate a genotype-phenotype correlation

    PubMed Central

    Mougou-Zerelli, Soumaya; Thomas, Sophie; Szenker, Emmanuelle; Audollent, Sophie; Elkhartoufi, Nadia; Babarit, Candice; Romano, Stéphane; Salomon, Rémi; Amiel, Jeanne; Esculpavit, Chantal; Gonzales, Marie; Escudier, Estelle; Leheup, Bruno; Loget, Philippe; Odent, Sylvie; Roume, Joëlle; Gérard, Marion; Delezoide, Anne-Lise; Khung, Suonavy; Patrier, Sophie; Cordier, Marie-Pierre; Bouvier, Raymonde; Martinovic, Jéléna; Gubler, Marie-Claire; Boddaert, Nathalie; Munnich, Arnold; Encha-Razavi, Férechté; Valente, Enza Maria; Saad, Ali; Saunier, Sophie; Vekemans, Michel; Attié-Bitach, Tania

    2009-01-01

    The Meckel syndrome (MKS) is a lethal fetal disorder characterized by diffuse renal cystic dysplasia, polydactyly, a brain malformation that is usually occipital encephalocele and/or vermian agenesis, with intrahepatic biliary duct proliferation. Joubert syndrome (JBS) is a viable neurological disorder with a characteristic “molar tooth sign” (MTS) on axial images reflecting cerebellar vermian hypoplasia/dysplasia. Both conditions are classified as ciliopathies with an autosomal recessive mode of inheritance. Allelism of MS and JBS has been reported for TMEM67/MKS3, CEP290/MKS4, and RPGRIP1L/MKS5. Recently, one homozygous splice mutation with a founder effect was reported in the CC2D2A gene in Finnish fetuses with MKS, defining the 6th locus for MKS. Shortly thereafter, CC2D2A mutations were reported in JBS also. The analysis of the CC2D2A gene in our series of MKS fetuses, identified 14 novel truncating mutations in 11 cases. These results confirm the involvement of CC2D2A in MKS and reveal a major contribution of CC2D2A to the disease. We also identified three missense CC2D2A mutations in two JBS cases. Therefore and in accordance with the data reported regarding RPGRIP1L, our results indicate phenotype-genotype correlations, as missense and presumably hypomorphic mutations lead to JBS while all null alleles lead to MKS. PMID:19777577

  4. [Study on the processing of leech by FTIR and 2D-IR correlation spectroscopy].

    PubMed

    Li, Bing-Ning; Wu, Yan-Wen; Ouyang, Jie; Sun, Su-Qin; Chen, Shun-Cong

    2011-04-01

    The chemical differences of traditional Chinese medicine leech before and after processing were analyzed by FTIR and two-dimensional correlation infrared (2D-IR) spectroscopy. The result showed that the leech was high in protein, with characteristic peaks of amide I, II bands. Comparing the IR spectra of samples, the primary difference was that the characteristic peak of fresh leech was at 1 543 cm(-1), while that of crude and processed leech was at 1 535 cm(-1). A 2D-IR spectrum with heating perturbation was used to track the processing dynamics of leech In the 2D-IR correlation spectra, fresh leech exhibited stronger automatic peaks of the amide I and II bands than that of processed leech, which indicates that the protein components of the fresh leech were more sensitive to heat perturbation than the processed one. Moreover, the result of FTIR and 2D-IR correlation spectra validated that the 3-dimensional structure of protein was damaged and hydrogen bonds were broken after processing, which resulted in the inactivation of protein. The fatty acids and cholesterol components of leech were also oxidized in this process.

  5. Simulation study of 2D spectrum of molecular aggregates coupled to correlated vibrations

    NASA Astrophysics Data System (ADS)

    Abramavicius, Darius; Butkus, Vytautas; Valkunas, Leonas; Mukamel, Shaul

    2011-03-01

    Oscillatory dynamics of two-dimensional (2D) spectra of photosynthetic pigment-protein complexes raise the questions of how to disentangle various origins of these oscillations, which may include quantum beats, quantum transport, or molecular vibrations. We study the effects of correlated overdamped fluctuations and under-damped vibrations on the 2D spectra of Fenna-Matthews-Olson (FMO) aggregate, which has well-resolved exciton resonances, and a circular porphyrin aggregate (P6), whose absorption shows vibrational progression. We use a generic exciton Hamiltonian coupled to a bath, characterized by a spectral density. Fluctuations have smooth, while vibtations have δ -type spectral densities. We show how various scenarios of correlated molecular fluctuations lead to some highly oscillatory crosspeaks. Molecular vibrations cause progression of diagonal peaks in the 2D spectrum and make their corresponding cross-peaks highly oscillatory. We, thus, demonstrate that bath fluctuations and molecular vibrations of realistic molecular aggregates are highly entangled in 2D spectroscopy. DA acknowledges grant VP1-3.1-SMM-07-V, SM - the grants CHE0745892 (NSF), DRPA BAA-10-40 QUBE.

  6. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    PubMed Central

    Murienne, Barbara J.; Nguyen, Thao D.

    2015-01-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions. PMID:26543296

  7. A comparison of 2D and 3D digital image correlation for a membrane under inflation.

    PubMed

    Murienne, Barbara J; Nguyen, Thao D

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  8. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    NASA Astrophysics Data System (ADS)

    Murienne, Barbara J.; Nguyen, Thao D.

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  9. 2D focal-field aberration dependence on time/phase screen position and correlation lengths

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter

    2004-05-01

    For high-frequency annular array transducers used in medical ultrasound imaging, aberrations due to tissue and body wall have a significant effect on energy transfer from the main lobe to the sidelobes of the acoustic field: that is, the aberrations make the total sidelobe level increase. This effect makes the ultrasound image poor when imaging heterogeneous organs. This study performs an analysis of the focal-field quality as a function of time/phase screen z position and time/phase screen correlation length. It establishes some rules of thumb which indicate when the focal-field sidelobe energy is at its highest. It also introduces a simple screen-scaling model which is useful as long as the screen position is not closer to the focus than a certain limit distance. The scaling model allows the real screen at a depth z=zscreen to be treated as a scaled screen at the position z=ztransd. 2D sound fields after 3D propagation from the annular arrays to the focal plane have been simulated using an angular spectrum method. The aberrators are represented by amplitude and phase/time screens.

  10. Meshfree natural vibration analysis of 2D structures

    NASA Astrophysics Data System (ADS)

    Kosta, Tomislav; Tsukanov, Igor

    2014-02-01

    Determination of resonance frequencies and vibration modes of mechanical structures is one of the most important tasks in the product design procedure. The main goal of this paper is to describe a pioneering application of the solution structure method (SSM) to 2D structural natural vibration analysis problems and investigate the numerical properties of the method. SSM is a meshfree method which enables construction of the solutions to the engineering problems that satisfy exactly all prescribed boundary conditions. This method is capable of using spatial meshes that do not conform to the shape of a geometric model. Instead of using the grid nodes to enforce boundary conditions, it employs distance fields to the geometric boundaries and combines them with the basis functions and prescribed boundary conditions at run time. This defines unprecedented geometric flexibility of the SSM as well as the complete automation of the solution procedure. In the paper we will explain the key points of the SSM as well as investigate the accuracy and convergence of the proposed approach by comparing our results with the ones obtained using analytical methods or traditional finite element analysis. Despite in this paper we are dealing with 2D in-plane vibrations, the proposed approach has a straightforward generalization to model vibrations of 3D structures.

  11. Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system

    NASA Astrophysics Data System (ADS)

    Manivannan, N.; Neil, M. A. A.

    2011-04-01

    In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.

  12. Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization

    NASA Astrophysics Data System (ADS)

    Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken

    How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.

  13. Probing Spatio-Temporal Correlation in Complex Aqueous Systems through 2D-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bagchi, Biman; Biswas, Rajib; Samanta, Tuhin; Ghosh, Rikhia; Roy, Susmita

    2015-03-01

    Heterogeneity is ubiquitous in aqueous solutions, e.g., in protein and DNA solutions, micelles and reverse micelles, density fluctuations during phase transitions (e,g., water to ice). Origin of heterogeneity can be diverse, sometimes stimulated by external biomolecular subsystems (proteins, DNA, lipids), nanoscopic materials etc, but may also be intrinsic to the thermodynamic nature of the aqueous solution itself. The altered dynamics of water in presence of such diverse surfaces have attracted considerable attention in recent years. However, efficiently capturing the length and timescale of heterogeneous dynamics of water is indeed a challenging task. Recent development of two dimensional infra-red (2D-IR) allows us to estimate length and time scales of such dynamics fairly accurately. In this work, we present a series of interesting studies employing two dimensional infra-red spectroscopy (2D-IR) to investigate (i) dynamics of water inside reverse micelles of varying sizes, (ii) supercritical water near the Widom line that is known to exhibit pronounced density fluctuation and calculate. The respective studies reveal a number of interesting facts. Spatio-temporal correlation of water dynamics with varying size of reverse micelles is well captured through the spectral diffusion of corresponding 2D-IR spectra. In case of supercritical water also, we observe strong signature of dynamic heterogeneity from the elongated nature of the spectra.

  14. 2-D Finite Element Cable and Box IEMP Analysis

    SciTech Connect

    Scivner, G.J.; Turner, C.D.

    1998-12-17

    A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.

  15. 2D versus 3D cross-correlation-based radial and circumferential strain estimation using multiplane 2D ultrafast ultrasound in a 3D atherosclerotic carotid artery model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-08-25

    Three-dimensional strain estimation might improve the detection and localization of high strain regions in the carotid artery for identification of vulnerable plaques. This study compares 2D vs. 3D displacement estimation in terms of radial and circumferential strain using simulated ultrasound images of a patient specific 3D atherosclerotic carotid artery model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on literature data. A Philips L11-3 linear array transducer was simulated which transmitted plane waves at 3 alternating angles at a pulse repetition rate of 10 kHz. Inter-frame radiofrequency ultrasound data were simulated in Field II for 191 equally spaced longitudinal positions of the internal carotid artery. Accumulated radial and circumferential displacements were estimated using tracking of the inter-frame displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2D and 3D method was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3D displacement estimation for the entire cardiac cycle. The 3D technique clearly outperformed the 2D technique in phases with high inter-frame longitudinal motion. In fact the large inter-frame longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2D technique.

  16. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  17. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation.

  18. Spatial Correlation of Rain Drop Size Distribution from Polarimetric Radar and 2D-Video Disdrometers

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Bringi, Viswanathan; Gatlin, Patrick N.; Wingo, Matt; Petersen, Walter Arthur; Carey, Lawrence D.

    2011-01-01

    Spatial correlations of two of the main rain drop-size distribution (DSD) parameters - namely the median-volume diameter (Do) and the normalized intercept parameter (Nw) - as well as rainfall rate (R) are determined from polarimetric radar measurements, with added information from 2D video disdrometer (2DVD) data. Two cases have been considered, (i) a widespread, long-duration rain event in Huntsville, Alabama, and (ii) an event with localized intense rain-cells within a convection line which occurred during the MC3E campaign. For the first case, data from a C-band polarimetric radar (ARMOR) were utilized, with two 2DVDs acting as ground-truth , both being located at the same site 15 km from the radar. The radar was operated in a special near-dwelling mode over the 2DVDs. In the second case, data from an S-band polarimetric radar (NPOL) data were utilized, with at least five 2DVDs located between 20 and 30 km from the radar. In both rain event cases, comparisons of Do, log10(Nw) and R were made between radar derived estimates and 2DVD-based measurements, and were found to be in good agreement, and in both cases, the radar data were subsequently used to determine the spatial correlations For the first case, the spatial decorrelation distance was found to be smallest for R (4.5 km), and largest fo Do (8.2 km). For log10(Nw) it was 7.2 km (Fig. 1). For the second case, the corresponding decorrelation distances were somewhat smaller but had a directional dependence. In Fig. 2, we show an example of Do comparisons between NPOL based estimates and 1-minute DSD based estimates from one of the five 2DVDs.

  19. Discrimination of adulterated milk based on two-dimensional correlation spectroscopy (2D-COS) combined with kernel orthogonal projection to latent structure (K-OPLS).

    PubMed

    Yang, Renjie; Liu, Rong; Xu, Kexin; Yang, Yanrong

    2013-12-01

    A new method for discrimination analysis of adulterated milk and pure milk is proposed by combining two-dimensional correlation spectroscopy (2D-COS) with kernel orthogonal projection to latent structure (K-OPLS). Three adulteration types of milk with urea, melamine, and glucose were prepared, respectively. The synchronous 2D spectra of adulterated milk and pure milk samples were calculated. Based on the characteristics of 2D correlation spectra of adulterated milk and pure milk, a discriminant model of urea-tainted milk, melamine-tainted milk, glucose-tainted milk, and pure milk was built by K-OPLS. The classification accuracy rates of unknown samples were 85.7, 92.3, 100, and 87.5%, respectively. The results show that this method has great potential in the rapid discrimination analysis of adulterated milk and pure milk.

  20. Human- and computer-accessible 2D correlation data for a more reliable structure determination of organic compounds. Future roles of researchers, software developers, spectrometer managers, journal editors, reviewers, publisher and database managers toward artificial-intelligence analysis of NMR spectra.

    PubMed

    Jeannerat, Damien

    2017-01-01

    The introduction of a universal data format to report the correlation data of 2D NMR spectra such as COSY, HSQC and HMBC spectra will have a large impact on the reliability of structure determination of small organic molecules. These lists of assigned cross peaks will bridge signals found in NMR 1D and 2D spectra and the assigned chemical structure. The record could be very compact, human and computer readable so that it can be included in the supplementary material of publications and easily transferred into databases of scientific literature and chemical compounds. The records will allow authors, reviewers and future users to test the consistency and, in favorable situations, the uniqueness of the assignment of the correlation data to the associated chemical structures. Ideally, the data format of the correlation data should include direct links to the NMR spectra to make it possible to validate their reliability and allow direct comparison of spectra. In order to take the full benefits of their potential, the correlation data and the NMR spectra should therefore follow any manuscript in the review process and be stored in open-access database after publication. Keeping all NMR spectra, correlation data and assigned structures together at all time will allow the future development of validation tools increasing the reliability of past and future NMR data. This will facilitate the development of artificial intelligence analysis of NMR spectra by providing a source of data than can be used efficiently because they have been validated or can be validated by future users. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    SciTech Connect

    Lei Ran; Chai Xiaochuan; Mei Hongxin; Zhang Hanhui; Chen Yiping; Sun Yanqiong

    2010-07-15

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H{sub 2}L{sup 1}(HL{sup 1}){sub 2}(H{sub 2}O){sub 2}].2H{sub 2}O 1, [Ni{sub 2}(4,4'-bipy)(L{sup 2})(OH)(H{sub 2}O){sub 2}].3H{sub 2}O 2, Mn(phen){sub 2}(H{sub 2}L{sup 1}){sub 2}3 and Mn(phen)(HL{sup 2}) 4 (H{sub 3}L{sup 1}=p-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, H{sub 3}L{sup 2}=m-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni{sub 4} cluster units are connected by pairs of H{sub 3}L{sup 2} ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R{sub 2}{sup 2}(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H{sub 3}L{sup 2} ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H{sub 3}L{sup 1} and H{sub 3}L{sup 2} ligands in the compounds more efficiently. - Graphical abstract: A series of divalent transition metal carboxyarylphosphonate compounds were synthesized under hydrothermal conditions. The figure displays 2D sheet structure with large windows in compound 2.

  2. The correlation between CYP2D6 isoenzyme activity and haloperidol efficacy and safety profile in patients with alcohol addiction during the exacerbation of the addiction

    PubMed Central

    Sychev, Dmitry Alekseevich; Zastrozhin, Mikhail Sergeevich; Smirnov, Valery Valerieevich; Grishina, Elena Anatolievna; Savchenko, Ludmila Mikhailovna; Bryun, Evgeny Alekseevich

    2016-01-01

    Background Today, it is proved that isoenzymes CYP2D6 and CYP3A4 are involved in metabolism of haloperidol. In our previous investigation, we found a medium correlation between the efficacy and safety of haloperidol and the activity of CYP3A4 in patients with alcohol abuse. Objective The aim of this study was to evaluate the correlation between the activity of CYP2D6 and the efficacy and safety of haloperidol in patients with diagnosed alcohol abuse. Methods The study involved 70 men (average age: 40.83±9.92 years) with alcohol addiction. A series of psychometric scales were used in the research. The activity of CYP2D6 was evaluated by high-performance liquid chromatography with mass spectrometry using the ratio of 6-hydroxy-1,2,3,4-tetrahydro-beta-carboline to pinoline. Genotyping of CYP2D6 (1846G>A) was performed using real-time polymerase chain reaction. Results According to results of correlation analysis, statistically significant values of Spearman correlation coefficient (rs) between the activity of CYP2D6 and the difference of points in psychometric scale were obtained in patients receiving haloperidol in injection form (Sheehan Clinical Anxiety Rating Scale =−0.721 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.692 [P<0.001]) and in those receiving haloperidol in tablet form (Covi Anxiety Scale =−0.851 [P<0.001] and Udvald for Kliniske Undersogelser Side Effect Rating Scale =0.797 [P<0.001]). Conclusion This study demonstrated the correlations between the activity of CYP2D6 isozyme and the efficacy and safety of haloperidol in patients with alcohol addiction. PMID:27695358

  3. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra

    NASA Astrophysics Data System (ADS)

    Ampt, Kirsten A. M.; Aspers, Ruud L. E. G.; Dvortsak, Peter; van der Werf, Ramon M.; Wijmenga, Sybren S.; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{Cacq} and F-C{H,Cacq} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the JCH, JCF, and JHF coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization.

  4. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  5. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D

  6. Theoretical analysis of the 2D thermal cloaking problem

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Spivak, Yu E.; Yashchenko, E. N.

    2017-01-01

    Coefficient inverse problems for the model of heat scattering with variable coefficients arising when developing technologies of design of thermal cloaking devices are considered. By the optimization method, these problems are reduced to respective control problems. The material parameters (radial and azimuthal conductivities) of the inhomogeneous anisotropic medium, filling the thermal cloak, play the role of control. The model of heat scattering acts as a functional restriction. A unique solvability of direct heat scattering problem in the Sobolev space is proved and the new estimates of solutions are established. Using these results, the solvability of control problem is proved and the optimality system is derived. Based on analysis of optimality system, the stability estimates of optimal solutions are established and efficient numerical algorithm of solving thermal cloaking problems is proposed.

  7. Modulating the vibronic correlation in 2D superconductor by electric field

    NASA Astrophysics Data System (ADS)

    Kazempour, Ali; Morshedloo, Toktam

    2017-04-01

    Superconductivity in the extreme two-dimensional atomic layers has been suffered because of the strong affection dimensionality confinement on electron-phonon binding. Here, using first-principles method, we study the effect of applied perpendicular and parallel electric field on the strength of phonon renormalization and electron-phonon coupling in bi-layer MgB2 as a known 2D superconductor. The changes of phonon frequency and line-width demonstrate that important E2 g optical modes are strongly sensitive to the applied parallel electric field which directs to sharp reduction of vibronic coupling. Whereas, we show that perpendicular electric field modulates the system to the strong-coupling superconductor and predict the enhancement of critical temperature Tc . Our study opens up the use of electric filed to probe and measure the variation amount of electron-phonon renormalization as a gauge in 2D superconductivity.

  8. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution

  9. A study on correlation between 2D and 3D gamma evaluation metrics in patient-specific quality assurance for VMAT

    SciTech Connect

    Rajasekaran, Dhanabalan Jeevanandam, Prakash; Sukumar, Prabakar; Ranganathan, Arulpandiyan; Johnjothi, Samdevakumar; Nagarajan, Vivekanandan

    2014-01-01

    In this study, we investigated the correlation between 2-dimensional (2D) and 3D gamma analysis using the new PTW OCTAVIUS 4D system for various parameters. For this study, we selected 150 clinically approved volumetric-modulated arc therapy (VMAT) plans of head and neck (50), thoracic (esophagus) (50), and pelvic (cervix) (50) sites. Individual verification plans were created and delivered to the OCTAVIUS 4D phantom. Measured and calculated dose distributions were compared using the 2D and 3D gamma analysis by global (maximum), local and selected (isocenter) dose methods. The average gamma passing rate for 2D global gamma analysis in coronal and sagittal plane was 94.81% ± 2.12% and 95.19% ± 1.76%, respectively, for commonly used 3-mm/3% criteria with 10% low-dose threshold. Correspondingly, for the same criteria, the average gamma passing rate for 3D planar global gamma analysis was 95.90% ± 1.57% and 95.61% ± 1.65%. The volumetric 3D gamma passing rate for 3-mm/3% (10% low-dose threshold) global gamma was 96.49% ± 1.49%. Applying stringent gamma criteria resulted in higher differences between 2D planar and 3D planar gamma analysis across all the global, local, and selected dose gamma evaluation methods. The average gamma passing rate for volumetric 3D gamma analysis was 1.49%, 1.36%, and 2.16% higher when compared with 2D planar analyses (coronal and sagittal combined average) for 3 mm/3% global, local, and selected dose gamma analysis, respectively. On the basis of the wide range of analysis and correlation study, we conclude that there is no assured correlation or notable pattern that could provide relation between planar 2D and volumetric 3D gamma analysis. Owing to higher passing rates, higher action limits can be set while performing 3D quality assurance. Site-wise action limits may be considered for patient-specific QA in VMAT.

  10. 2-D Acousto-Optic Signal Processors for Simultaneous Spectrum Analysis and Direction Finding

    DTIC Science & Technology

    1990-11-01

    National Dfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS 00 AND DIRECTION FINDING (U) by NM Jim P.Y...Wr pdft .1w I0~1111191 3 05089 National DIfense Defence nationale 2-D ACOUSTO - OPTIC SIGNAL PROCESSORS FOR SIMULTANEOUS SPECTRUM ANALYSIS AND DIRECTION...Processing, J.T. Tippet et al., Eds., Chapter 38, pp. 715-748, MIT Press, Cambridge 1965. [6] A.E. Spezio," Acousto - optics for Electronic Warfare

  11. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  12. Frustrating a correlated superconductor: the 2D Attractive Hubbard Model in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Hongbo; Engelbrecht, Jan R.

    2000-03-01

    At the Mean Field level (G. Murthy and R. Shankar, J. Phys. Condens. Matter, 7) (1995), the frustration due to an external field first makes the uniform BCS ground state unstable to an incommensurate (qne0) superconducting state and then to a spin-polarized Fermi Liquid state. Our interest is how fluctuations modify this picture, as well as the normal state of this system which has a quantum critical point. We use the Fluctuation-Exchange Approximation for the 2D Attractive Hubbard Model, to study this system beyond the Mean-Field level. Earlier work in zero field has shown that this numerical method successfully captures the critical scaling of the KT superconducting transition upon cooling in the normal state. Here we investigate how the pair-breaking external field modifies this picture, and the development of incommensurate pairing.

  13. Scientometric analysis and bibliography of digit ratio (2D:4D) research, 1998-2008.

    PubMed

    Voracek, Martin; Loibl, Lisa Mariella

    2009-06-01

    A scientometric analysis of modern research on the second-to-fourth digit ratio (2D:4D), a widely studied putative marker for prenatal androgen action, is presented. In early 2009, this literature totalled more than 300 publications and, since its initiation in 1998, has grown at a rate slightly faster than linear. Key findings included evidence of publication bias and citation bias, incomplete coverage and outdatedness of existing reviews, and a dearth of meta-analyses in this field. 2D:4D research clusters noticeably in terms of researchers, institutions, countries, and journals involved. Although 2D:4D is an anthropometric trait, most of the research has been conducted at psychology departments, not anthropology departments. However, 2D:4D research has not been predominantly published in core and specialized journals of psychology, but rather in more broadly scoped journals of the behavioral sciences, biomedical social sciences, and neurosciences. Total citation numbers of 2D:4D papers for the most part were not larger than their citation counts within 2D:4D research, indicating that until now, only a few 2D:4D studies have attained broader interest outside this specific field. Comparative citation analyses show that 2D:4D research presently is commensurate in size and importance to evolutionary psychological jealousy research, but has grown faster than the latter field. In contrast, it is much smaller and has spread more slowly than research about the Implicit Association Test Fifteen conjectures about anticipated trends in 2D:4D research are outlined, appendixed by a first-time bibliography of the entirety of the published 2D:4D literature.

  14. Two-dimensional (2D) infrared correlation study of the structural characterization of a surface immobilized polypeptide film stimulated by pH

    NASA Astrophysics Data System (ADS)

    Chae, Boknam; Son, Seok Ho; Kwak, Young Jun; Jung, Young Mee; Lee, Seung Woo

    2016-11-01

    The pH-induced structural changes to surface immobilized poly (L-glutamic acid) (PLGA) films were examined by Fourier transform infrared (FTIR) spectroscopy and two-dimensional (2D) correlation analysis. Significant spectral changes were observed in the FTIR spectra of the surface immobilized PLGA film between pH 6 and 7. The 2D correlation spectra constructed from the pH-dependent FTIR spectra of the surface immobilized PLGA films revealed the spectral changes induced by the alternations of the protonation state of the carboxylic acid group in the PLGA side chain. When the pH was increased from 6 to 8, weak spectral changes in the secondary structure of the PLGA main chain were induced by deprotonation of the carboxylic acid side group.

  15. Study on molecular structure and hydration mechanism of Domyoji-ko starch by IR and NIR hetero 2D analysis

    NASA Astrophysics Data System (ADS)

    Katayama, Norihisa; Kondo, Miyuki; Miyazawa, Mitsuhiro

    2010-06-01

    The hydration structure of starch molecule in Domyoji-ko, which is made from gluey rice, was investigated by hetero 2D correlation analysis of IR and NIR spectroscopy. The feature near 1020 cm -1 in the IR spectra of Domyoji-ko is changed by rehydration process, indicating that the molecular structure of amylopectin in the starch has been varied by the hydration without heating. The intensity of a band at 4770 cm -1 in NIR spectra is decreasing with the increasing of either the heating time with water or rehydration time without heating. These results suggest that the hydration of Domyoji-ko has proceeded in similar mechanisms on these processes. The generalized hetero 2D IR-NIR correlation analysis for rehydration of Domyoji-ko has supported the assignments for NIR bands concerning the gelatinization of starch.

  16. Experimental determination of the correlation properties of plasma turbulence using 2D BES systems

    NASA Astrophysics Data System (ADS)

    Fox, M. F. J.; Field, A. R.; van Wyk, F.; Ghim, Y.-c.; Schekochihin, A. A.; the MAST Team

    2017-04-01

    A procedure is presented to map from the spatial correlation parameters of a turbulent density field (the radial and binormal correlation lengths and wavenumbers, and the fluctuation amplitude) to correlation parameters that would be measured by a beam emission spectroscopy (BES) diagnostic. The inverse mapping is also derived, which results in resolution criteria for recovering correct correlation parameters, depending on the spatial response of the instrument quantified in terms of point-spread functions (PSFs). Thus, a procedure is presented that allows for a systematic comparison between theoretical predictions and experimental observations. This procedure is illustrated using the Mega-Ampere Spherical Tokamak BES system and the validity of the underlying assumptions is tested on fluctuating density fields generated by direct numerical simulations using the gyrokinetic code GS2. The measurement of the correlation time, by means of the cross-correlation time-delay method, is also investigated and is shown to be sensitive to the fluctuating radial component of velocity, as well as to small variations in the spatial properties of the PSFs.

  17. Superconducting correlations and thermodynamic properties in 2D square and triangular t-J model

    NASA Astrophysics Data System (ADS)

    Ogata, Masao

    2006-03-01

    Equal-time superconducting correlation functions of the two-dimensional t-J model on the square lattice are studied using high-temperature expansion method.[1] The sum of the pairing correlation, its spatial dependence and correlation length are obtained down to T ˜0.2t. By comparison of single-particle contributions in the correlation functions, we find effective attractive interactions between quasi-particles in dx^2-y^2-wave channel. It is shown that d-wave correlation grows rapidly at low temperatures for the doping 0.1 < δ< 0.5. The temperature for this growth is roughly scaled by J/2. This is in sharp contrast to the Hubbard model in a weak or intermediate coupling region, where there are few numerical evidences of superconductivity. We also study the possible d- and f-wave pairing in the triangular t-J model.[2] When t>0 with hole doping, a rapid growth of effective d-wave paring interaction is found that indicates the resonating-valence-bond superconductivity. In contrast, when t<0, where the ferromagnetic- and antiferromagnetic correlation compete, correlation lengths of the f-wave triplet paring tends to diverge around δ=0.6, although its effective interaction is small. This result is compared and discussed with the recently discovered superconductor, NaxCoO2.yH2O, where Co atoms form a triangular lattice. Specific heat in low temperatures are also obtained in the high-temperature expansion method. We will discuss that the doping dependence of the specific heat coefficient, γ, agrees with experimental data. [1] T. Koretsune and M. Ogata, J. Phys. Soc. Japan 74, 1390 (2005). [2] T. Koretsune and M. Ogata, Phys. Rev. Lett. 89, 116401 (2002), and Phys. Rev. B72, 134513 (2005).

  18. Anisotropic Power Law Strain Correlations in Sheared Amorphous 2D Solids

    SciTech Connect

    Maloney, C. E.; Robbins, M. O.

    2009-06-05

    The local deformation of steadily sheared two-dimensional Lennard-Jones glasses is studied via computer simulations at zero temperature. In the quasistatic limit, spatial correlations in the incremental strain field are highly anisotropic. The data show power law behavior with a strong angular dependence of the scaling exponent, and the strongest correlations along the directions of maximal shear stress. These results support the notion that the jamming transition at the onset of flow is critical, but suggest unusual critical behavior. The predicted behavior is testable through experiments on sheared amorphous materials such as bubble rafts, foams, emulsions, granular packings, and other systems where particle displacements can be tracked.

  19. FT-Raman study of cinchonine aqueous solutions with varying pH; 2D correlation method

    NASA Astrophysics Data System (ADS)

    Wesetucha-Birczyńska, Aleksandra

    1999-05-01

    Cinchonine (C 19H 22N 2O) is one of the Cinchona tree alkaloids. It consists of two moieties, a quinoline ring and quinuclidine linked by a hydroxymethylene bridge. Each one of these parts contains nitrogen atoms, which are proton acceptor and cause that cinchonine can be treated as a weak base. For the first time the protonation effect was evidenced in the RR spectra of cinchonine while interacting with DNA (A. Wesetucha-Birczyńska and K. Nakamoto, J. Raman Spectrosc. 27 (1996) 915). In the current study 2D correlation method was applied to analyze the FT-Raman spectra of cin aqueous solutions with varying pH, which was regarded as external perturbation in the 1300-1700 cm -1 range, which is quinuclidine and quinoline ring stretching vibration region. These monitored fluctuations transformed into 2D spectra allows to analyze these vibrations and differentiate them.

  20. Two-dimensional correlation spectroscopy (2D-COS) variable selection for near-infrared microscopy discrimination of meat and bone meal in compound feed.

    PubMed

    Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia

    2014-01-01

    This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm(-1). All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data.

  1. Aircraft target identification based on 2D ISAR images using multiresolution analysis wavelet

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Xiao, Huaitie; Hu, Xiangjiang

    2001-09-01

    The formation of 2D ISAR images for radar target identification hold much promise for additional distinguish- ability between targets. Since an image contains important information is a wide range of scales, and this information is often independent from one scale to another, wavelet analysis provides a method of identifying the spatial frequency content of an image and the local regions within the image where those spatial frequencies exist. In this paper, a multiresolution analysis wavelet method based on 2D ISAR images was proposed for use in aircraft radar target identification under the wide band high range resolution radar background. The proposed method was performed in three steps; first, radar backscatter signals were processed in the form of 2D ISAR images, then, Mallat's wavelet algorithm was used in the decomposition of images, finally, a three layer perceptron neural net was used as classifier. The result of experiments demonstrated that the feasibility of using multiresolution analysis wavelet for target identification.

  2. CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations.

    PubMed

    Province, M A; Goetz, M P; Brauch, H; Flockhart, D A; Hebert, J M; Whaley, R; Suman, V J; Schroth, W; Winter, S; Zembutsu, H; Mushiroda, T; Newman, W G; Lee, M-T M; Ambrosone, C B; Beckmann, M W; Choi, J-Y; Dieudonné, A-S; Fasching, P A; Ferraldeschi, R; Gong, L; Haschke-Becher, E; Howell, A; Jordan, L B; Hamann, U; Kiyotani, K; Krippl, P; Lambrechts, D; Latif, A; Langsenlehner, U; Lorizio, W; Neven, P; Nguyen, A T; Park, B-W; Purdie, C A; Quinlan, P; Renner, W; Schmidt, M; Schwab, M; Shin, J-G; Stingl, J C; Wegman, P; Wingren, S; Wu, A H B; Ziv, E; Zirpoli, G; Thompson, A M; Jordan, V C; Nakamura, Y; Altman, R B; Ames, M M; Weinshilboum, R M; Eichelbaum, M; Ingle, J N; Klein, T E

    2014-02-01

    The International Tamoxifen Pharmacogenomics Consortium was established to address the controversy regarding cytochrome P450 2D6 (CYP2D6) status and clinical outcomes in tamoxifen therapy. We performed a meta-analysis on data from 4,973 tamoxifen-treated patients (12 globally distributed sites). Using strict eligibility requirements (postmenopausal women with estrogen receptor-positive breast cancer, receiving 20 mg/day tamoxifen for 5 years, criterion 1); CYP2D6 poor metabolizer status was associated with poorer invasive disease-free survival (IDFS: hazard ratio = 1.25; 95% confidence interval = 1.06, 1.47; P = 0.009). However, CYP2D6 status was not statistically significant when tamoxifen duration, menopausal status, and annual follow-up were not specified (criterion 2, n = 2,443; P = 0.25) or when no exclusions were applied (criterion 3, n = 4,935; P = 0.38). Although CYP2D6 is a strong predictor of IDFS using strict inclusion criteria, because the results are not robust to inclusion criteria (these were not defined a priori), prospective studies are necessary to fully establish the value of CYP2D6 genotyping in tamoxifen therapy.

  3. PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES

    NASA Technical Reports Server (NTRS)

    Lawrence, C.

    1994-01-01

    PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.

  4. A Comparison of 1D and 2D (Unbiased) Experimental Methods for Measuring CSAsolarDD Cross-Correlated Relaxation

    NASA Astrophysics Data System (ADS)

    Batta, Gy.; Kövér, K. E.; Kowalewski, J.

    1999-01-01

    Conventional and enhanced 1D experiments and different NOESY experiments (the 2D unbiased method) were performed for measuring CSA/DD cross-correlated relaxation on trehalose, a compound which could be approximated as a spherical top, and on simple model compounds comprisingC3vsymmetry (CHCl3, triphenylsilane (TPSi)). The comparison gives experimental evidence for the equivalence of the methods within the limits of the two-spin approach. 1D data are evaluated with both the simple initial rate and the Redfield relaxation matrix approach. The 2D data are obtained from the so-called transfer matrix using the Perrin-Gipe eigenvalue/eigenvector method. For the improved performance of the 2D method, anX-filtered (HHH) NOESY is suggested at the natural abundance of13C (or other dilute, low γ species). Also, experimental parameters crucial for reliable CSA data are tested (e.g., the impact of insufficient relaxation delay). Error estimation is carried out for fair comparison of methods. Revised liquid state1H and13C (29Si) CSA data are presented for chloroform and TPSi.

  5. Study of the equilibrium vacancy ensemble in aluminum using 1D- and 2D-angular correlation of annihilation radiation

    SciTech Connect

    Fluss, M.J.; Berko, S.; Chakraborty, B.; Hoffmann, K.R.; Lippel, P.; Siegel, R.W.

    1985-03-12

    One- and two-dimensional angular correlation of positron-electron annihilation radiation (1D and 2D-ACAR) data have been obtained between 293 and 903 K for single crystals of aluminum. The peak counting rates vs temperature, which were measured using the 1D-ACAR technique, provide a model independent value for the temperature dependence of the positron trapping probability. Using these results it is possible to strip out the Bloch state contribution from the observed 2D-ACAR surfaces and then compare the resulting defect ACAR surfaces to calculated 2D-ACAR surfaces for positrons annihilating from the Bloch, monovacancy, and divacancy-trapped states. The result of this comparison is that the presence of an increasing equilibrium divacancy population is consistent with the observed temperature dependence of ACAR data at high temperature in Al and that the present results when compared to earlier studies on Al indicate that the ratio of the trapping rates at divacancies and monovacancies is of order two.

  6. Impact of lens distortions on strain measurements obtained with 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Lava, P.; Van Paepegem, W.; Coppieters, S.; De Baere, I.; Wang, Y.; Debruyne, D.

    2013-05-01

    The determination of strain fields based on displacements obtained via digital image correlation (DIC) at the micro-strain level (≤1000 μm/m) is still a cumbersome task. In particular when high-strain gradients are involved, e.g. in composite materials with multidirectional fibre reinforcement, uncertainties in the experimental setup and errors in the derivation of the displacement fields can substantially hamper the strain identification process. In this contribution, the aim is to investigate the impact of lens distortions on strain measurements. To this purpose, we first perform pure rigid body motion experiments, revealing the importance of precise correction of lens distortions. Next, a uni-axial tensile test on a textile composite with spatially varying high strain gradients is performed, resulting in very accurately determined strains along the fibers of the material.

  7. Experimental validation of 2D uncertainty quantification for digital image correlation.

    SciTech Connect

    Reu, Phillip L.

    2010-03-01

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

  8. Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements.

    PubMed

    Liu, Tian; Lizzi, Frederic L; Ketterling, Jeffrey A; Silverman, Ronald H; Kutcher, Gerald J

    2007-03-01

    A theoretical model is described for application in ultrasonic tissue characterization using a calibrated 2-D spectrum analysis method. This model relates 2-D spectra computed from ultrasonic backscatter signals to intrinsic physical properties of tissue microstructures, e.g., size, shape, and acoustic impedance. The model is applicable to most clinical diagnostic ultrasound systems. Two experiments employing two types of tissue architectures, spherical and cylindrical scatterers, are conducted using ultrasound with center frequencies of 10 and 40 MHz, respectively. Measurements of a tissue-mimicking phantom with an internal suspension of microscopic glass beads are used to validate the theoretical model. Results from in vitro muscle fibers are presented to further elucidate the utility of 2-D spectrum analysis in ultrasonic tissue characterization.

  9. Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma.

    PubMed

    Dawkins, Joshua B N; Wang, Jun; Maniati, Eleni; Heward, James A; Koniali, Lola; Kocher, Hemant M; Martin, Sarah A; Chelala, Claude; Balkwill, Frances R; Fitzgibbon, Jude; Grose, Richard P

    2016-08-15

    Genes encoding the histone H3 lysine 4 methyltransferases KMT2C and KMT2D are subject to deletion and mutation in pancreatic ductal adenocarcinoma (PDAC), where these lesions identify a group of patients with a more favorable prognosis. In this study, we demonstrate that low KMT2C and KMT2D expression in biopsies also defines better outcome groups, with median survivals of 15.9 versus 9.2 months (P = 0.029) and 19.9 versus 11.8 months (P = 0.001), respectively. Experiments with eight human pancreatic cell lines showed attenuated cell proliferation when these methyltransferases were depleted, suggesting that this improved outcome may reflect a cell-cycle block with diminished progression from G0-G1 RNA-seq analysis of PDAC cell lines following KMT2C or KMT2D knockdown identified 31 and 124 differentially expressed genes, respectively, with 19 genes in common. Gene-set enrichment analysis revealed significant downregulation of genes related to cell-cycle and growth. These data were corroborated independently by examining KMT2C/D signatures extracted from the International Cancer Genome Consortium and The Cancer Genome Atlas datasets. Furthermore, these experiments highlighted a potential role for NCAPD3, a condensin II complex subunit, as an outcome predictor in PDAC using existing gene expression series. Kmt2d depletion in KC/KPC cell lines also led to an increased response to the nucleoside analogue 5-fluorouracil, suggesting that lower levels of this methyltransferase may mediate the sensitivity of PDAC to particular treatments. Therefore, it may also be therapeutically beneficial to target these methyltransferases in PDAC, especially in those patients demonstrating higher KTM2C/D expression. Cancer Res; 76(16); 4861-71. ©2016 AACR.

  10. Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Dawkins, Joshua B.N.; Wang, Jun; Maniati, Eleni; Heward, James A.; Koniali, Lola; Kocher, Hemant M.; Martin, Sarah A.; Chelala, Claude; Balkwill, Frances R.; Fitzgibbon, Jude; Grose, Richard P.

    2017-01-01

    Genes encoding the histone H3 lysine 4 methyltransferases KMT2C and KMT2D are subject to deletion and mutation in pancreatic ductal adenocarcinoma (PDAC), where these lesions identify a group of patients with a more favorable prognosis. In this study, we demonstrate that low KMT2C and KMT2D expression in biopsies also defines better outcome groups, with median survivals of 15.9 versus 9.2 months (P = 0.029) and 19.9 versus 11.8 months (P = 0.001), respectively. Experiments with eight human pancreatic cell lines showed attenuated cell proliferation when these methyltransferases were depleted, suggesting that this improved outcome may reflect a cell-cycle block with diminished progression from G0–G1. RNA-seq analysis of PDAC cell lines following KMT2C or KMT2D knockdown identified 31 and 124 differentially expressed genes, respectively, with 19 genes in common. Gene-set enrichment analysis revealed significant downregulation of genes related to cell-cycle and growth. These data were corroborated independently by examining KMT2C/D signatures extracted from the International Cancer Genome Consortium and The Cancer Genome Atlas datasets. Furthermore, these experiments highlighted a potential role for NCAPD3, a condensin II complex subunit, as an outcome predictor in PDAC using existing gene expression series. Kmt2d depletion in KC/KPC cell lines also led to an increased response to the nucleoside analogue 5-fluorouracil, suggesting that lower levels of this methyltransferase may mediate the sensitivity of PDAC to particular treatments. Therefore, it may also be therapeutically beneficial to target these methyltransferases in PDAC, especially in those patients demonstrating higher KTM2C/D expression. PMID:27280393

  11. Two-dimensional (2D) Chemiluminescence (CL) correlation spectroscopy for studying thermal oxidation of isotactic polypropylene (iPP)

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hagihara, Hideaki; Suda, Hiroyuki; Mizukado, Jyunji

    2016-11-01

    Application of the two-dimensional (2D) correlation spectroscopy is extended to Chemiluminescence (CL) spectra of isotactic polypropylene (iPP) under thermally induced oxidation. Upon heating, the polymer chains of the iPP undergoes scissoring and fragmentation to develop several intermediates. While different chemical species provides the emission at different wavelength regions, entire feature of the time-dependent CL spectra of the iPP samples were complicated by the presence of overlapped contributions from singlet oxygen (1O2) and carbonyl species within sample. 2D correlation spectra showed notable enhancement of the spectral resolution to provide penetrating insight into the thermodynamics of the polymer system. For example, the, oxidation induce scissoring and fragmentation of the polymer chains to develop the carbonyl group. Further reaction results in the consumption of the carbonyl species and subsequent production of different 1O2 species each developed in different manner. Consequently, key information on the thermal oxidation can be extracted in a surprisingly simple manner without any analytical expression for the actual response curves of spectral intensity signals during the reaction.

  12. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  13. New technologies of 2-D and 3-D modeling for analysis and management of natural resources

    NASA Astrophysics Data System (ADS)

    Cheremisina, E. N.; Lyubimova, A. V.; Kirpicheva, E. Yu.

    2016-09-01

    For ensuring technological support of research and administrative activity in the sphere of environmental management a specialized modular program complex was developed. The special attention in developing a program complex is focused to creation of convenient and effective tools for creation and visualization 2d and 3D models providing the solution of tasks of the analysis and management of natural resources.

  14. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  15. SU-E-T-422: Correlation Between 2D Passing Rates and 3D Dose Differences for Pretreatment VMAT QA

    SciTech Connect

    Jin, X; Xie, C

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) quality assurance (QA) is typically using QA methods and action levels taken from fixedbeam intensity-modulated radiotherapy (IMRT) QA methods. However, recent studies demonstrated that there is no correlation between the percent gamma passing rate (%GP) and the magnitude of dose discrepancy between the planned dose and the actual delivered dose for IMRT. The purpose of this study is to investigate whether %GP is correlated with clinical dosimetric difference for VMAT. Methods: Twenty nasopharyngeal cancer (NPC) patients treated with dual-arc simultaneous integrated boost VMAT and 20 esophageal cancer patients treated with one-arc VMAT were enrolled in this study. Pretreatment VMAT QA was performed by a 3D diode array ArcCheck. Acceptance criteria of 2%/2mm, 3%/3mm, and 4%/4mm were applied for 2D %GP. Dose values below 10% of the per-measured normalization maximum dose were ignored.Mean DVH values obtained from 3DVH software and TPS were calculated and percentage dose differences were calculated. Statistical correlation between %GP and percent dose difference was studied by using Pearson correlation. Results: The %GP for criteria 2%/2mm, 3%/3mm, and 4%/4mm were 82.33±4.45, 93.47±2.31, 97.13±2.41, respectively. Dose differences calculated from 3DVH and TPS for beam isocenter, mean dose of PTV, maximum dose of PTV, D2 of PTV and D98 of PTV were -1.04±3.24, -0.74±1.71, 2.92±3.62, 0.89±3.29, -1.46±1.97, respectively. No correction were found between %GP and dose differences. Conclusion: There are weak correlations between the 2D %GP and dose differences calculated from 3DVH. The %GP acceptance criteria of 3%/3mm usually applied for pretreatment QA of IMRT and VMAT is not indicating strong clinical correlation with 3D dose difference. 3D dose reconstructions on patient anatomy may be necessary for physicist to predict the accuracy of delivered dose for VMAT QA.

  16. Near-infrared (NIR) monitoring of Nylon 6 during quenching studied by projection two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2016-11-01

    Evolutionary change in supermolecular structure of Nylon 6 during its melt-quenched process was studied by Near-infrared (NIR) spectroscopy. Time-resolved NIR spectra was measured by taking the advantage of high-speed NIR monitoring based on an acousto-optic tunable filter (AOTF). Fine spectral features associated with the variation of crystalline and amorphous structure occurring in relatively short time scale were readily captured. For example, synchronous and asynchronous 2D correlation spectra reveal the initial decrease in the contribution of the NIR band at 1485 nm due to the amorphous structure, predominantly existing in the melt Nylon 6. This is then followed by the emerging contribution of the band intensity at 1535 nm associated with the crystalline structure. Consequently, the results clearly demonstrate a definite advantage of the high-speed NIR monitoring for analyzing fleeting phenomena.

  17. Robust initialization of 2D-3D image registration using the projection-slice theorem and phase correlation

    SciTech Connect

    Bom, M. J. van der; Bartels, L. W.; Gounis, M. J.; Homan, R.; Timmer, J.; Viergever, M. A.; Pluim, J. P. W.

    2010-04-15

    Purpose: The image registration literature comprises many methods for 2D-3D registration for which accuracy has been established in a variety of applications. However, clinical application is limited by a small capture range. Initial offsets outside the capture range of a registration method will not converge to a successful registration. Previously reported capture ranges, defined as the 95% success range, are in the order of 4-11 mm mean target registration error. In this article, a relatively computationally inexpensive and robust estimation method is proposed with the objective to enlarge the capture range. Methods: The method uses the projection-slice theorem in combination with phase correlation in order to estimate the transform parameters, which provides an initialization of the subsequent registration procedure. Results: The feasibility of the method was evaluated by experiments using digitally reconstructed radiographs generated from in vivo 3D-RX data. With these experiments it was shown that the projection-slice theorem provides successful estimates of the rotational transform parameters for perspective projections and in case of translational offsets. The method was further tested on ex vivo ovine x-ray data. In 95% of the cases, the method yielded successful estimates for initial mean target registration errors up to 19.5 mm. Finally, the method was evaluated as an initialization method for an intensity-based 2D-3D registration method. The uninitialized and initialized registration experiments had success rates of 28.8% and 68.6%, respectively. Conclusions: The authors have shown that the initialization method based on the projection-slice theorem and phase correlation yields adequate initializations for existing registration methods, thereby substantially enlarging the capture range of these methods.

  18. Evaluation on intrinsic quality of licorice influenced by environmental factors by using FTIR combined with 2D-IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Ying-qun; Yu, Hua; Zhang, Yan-ling; Sun, Su-qin; Chen, Shi-lin; Zhao, Run-huai; Zhou, Qun; Noda, Isao

    2010-06-01

    To evaluate the intrinsic quality of licorice influenced by environmental factors, the spectral comparison of licorice from two typical ecological habitats was conducted by using FTIR and 2D-IR correlation spectroscopy. There were differences in the peak intensities of 1155, 1076 and 1048 cm -1 of FTIR profiles. The difference was amplified by the second derivative spectrum for the peak intensities at 1370, 1365 and 1317 cm -1 and the peak shape in 958-920 cm -1 and 1050-988 cm -1. The synchronous 2D-IR spectra within the range of 860-1300 cm -1 were classified into type I and type II and their frequency in the two groups was noticeably different. Although the chemical compounds of licorice samples from two areas were generally similar, the contents of starch, calcium oxalate, and some chemical compounds containing alcohol hydroxyl group were different, indicating the influence of precipitation and temperature. This study demonstrates that the systematical analysis of FTIR, the second derivative spectrum and 2D-IR can effectively determine the differences in licorice samples from different ecological habitats.

  19. Elastic shape analysis of cylindrical surfaces for 3D/2D registration in endometrial tissue characterization.

    PubMed

    Samir, Chafik; Kurtek, Sebastian; Srivastava, Anuj; Canis, Michel

    2014-05-01

    We study the problem of joint registration and deformation analysis of endometrial tissue using 3D magnetic resonance imaging (MRI) and 2D trans-vaginal ultrasound (TVUS) measurements. In addition to the different imaging techniques involved in the two modalities, this problem is complicated due to: 1) different patient pose during MRI and TVUS observations, 2) the 3D nature of MRI and 2D nature of TVUS measurements, 3) the unknown intersecting plane for TVUS in MRI volume, and 4) the potential deformation of endometrial tissue during TVUS measurement process. Focusing on the shape of the tissue, we use expert manual segmentation of its boundaries in the two modalities and apply, with modification, recent developments in shape analysis of parametric surfaces to this problem. First, we extend the 2D TVUS curves to generalized cylindrical surfaces through replication, and then we compare them with MRI surfaces using elastic shape analysis. This shape analysis provides a simultaneous registration (optimal reparameterization) and deformation (geodesic) between any two parametrized surfaces. Specifically, it provides optimal curves on MRI surfaces that match with the original TVUS curves. This framework results in an accurate quantification and localization of the deformable endometrial cells for radiologists, and growth characterization for gynecologists and obstetricians. We present experimental results using semi-synthetic data and real data from patients to illustrate these ideas.

  20. Analysis of 2D Phase Contrast MRI in Renal Arteries by Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Zöllner, Frank G.; Schad, Lothar R.

    We present an approach based on self organizing maps to segment renal arteries from 2D PC Cine MR, images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percu-tan transluminal angioplasty. Results show that the renal arteries could be extracted automatically. The corresponding velocity profiles show high correlation (r=0.99) compared those from manual delineated vessels. Furthermore, the method could detect possible blood flow patterns within the vessel.

  1. Multiple triangulation analysis: application to determine the velocity of 2-D structures

    NASA Astrophysics Data System (ADS)

    Zhou, X.-Z.; Zong, Q.-G.; Wang, J.; Pu, Z. Y.; Zhang, X. G.; Shi, Q. Q.; Cao, J. B.

    2006-11-01

    In order to avoid the ambiguity of the application of the Triangulation Method (multi-spacecraft timing method) to two-dimensional structures, another version of this method, the Multiple Triangulation Analysis (MTA) is used, to calculate the velocities of these structures based on 4-point measurements. We describe the principle of MTA and apply this approach to a real event observed by the Cluster constellation on 2 October 2003. The resulting velocity of the 2-D structure agrees with the ones obtained by some other methods fairly well. So we believe that MTA is a reliable version of the Triangulation Method for 2-D structures, and thus provides us a new way to describe their motion.

  2. SU-E-T-20: A Correlation Study of 2D and 3D Gamma Passing Rates for Prostate IMRT Plans

    SciTech Connect

    Zhang, D; Wang, B; Ma, C; Deng, X

    2015-06-15

    Purpose: To investigate the correlation between the two-dimensional gamma passing rate (2D %GP) and three-dimensional gamma passing rate (3D %GP) in prostate IMRT quality assurance. Methods: Eleven prostate IMRT plans were randomly selected from the clinical database and were used to obtain dose distributions in the phantom and patient. Three types of delivery errors (MLC bank sag errors, central MLC errors and monitor unit errors) were intentionally introduced to modify the clinical plans through an in-house Matlab program. This resulted in 187 modified plans. The 2D %GP and 3D %GP were analyzed using different dose-difference and distance-toagreement (1%-1mm, 2%-2mm and 3%-3mm) and 20% dose threshold. The 2D %GP and 3D %GP were then compared not only for the whole region, but also for the PTVs and critical structures using the statistical Pearson’s correlation coefficient (γ). Results: For different delivery errors, the average comparison of 2D %GP and 3D %GP showed different conclusions. The statistical correlation coefficients between 2D %GP and 3D %GP for the whole dose distribution showed that except for 3%/3mm criterion, 2D %GP and 3D %GP of 1%/1mm criterion and 2%/2mm criterion had strong correlations (Pearson’s γ value >0.8). Compared with the whole region, the correlations of 2D %GP and 3D %GP for PTV were better (the γ value for 1%/1mm, 2%/2mm and 3%/3mm criterion was 0.959, 0.931 and 0.855, respectively). However for the rectum, there was no correlation between 2D %GP and 3D %GP. Conclusion: For prostate IMRT, the correlation between 2D %GP and 3D %GP for the PTV is better than that for normal structures. The lower dose-difference and DTA criterion shows less difference between 2D %GP and 3D %GP. Other factors such as the dosimeter characteristics and TPS algorithm bias may also influence the correlation between 2D %GP and 3D %GP.

  3. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    PubMed

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  4. A 2-D diode array and analysis software for verification of intensity modulated radiation therapy delivery.

    PubMed

    Jursinic, Paul A; Nelms, Ben E

    2003-05-01

    An analysis is made of a two-dimensional array of diodes that can be used for measuring dose generated in a plane by a radiation beam. This measuring device is the MapCHECK Model 1175 (Sun Nuclear, Melbourne, FL). This device has 445 N-type diodes in a 22 x 22 cm2 2-D array with variable spacing. The entire array of diodes is easily calibrated to allow for measurements in absolute dose. For IMRT quality assurance, each beam is measured individually with the beam central axis oriented perpendicular to the plane of diodes. Software is available to do the analytical comparison of measurements versus dose distributions calculated by a treatment planning system. Comparison criteria of percent difference and distance-to-agreement are defined by the operator. Data are presented that show the diode array has linear response when beam fluence changes by over 300-fold, which is typical of the level of modulation in intensity modulated radiation therapy, IMRT, beams. A linear dependence is also shown for a 100-fold change in monitors units delivered. Methods for how this device can be used in the clinic for quality assurance of IMRT fields are described. Measurements of typical IMRT beams that are modulated by compensators and MLCs are presented with comparisons to treatment planning system dose calculations. A time analysis is done for typical IMRT quality assurance measurements. The setup, calibration, and analysis time for the 2-D diode array are on the order of 20 min, depending on numbers of fields. This is significantly less time than required to do similar analysis with radiographic film. The 2-D diode array is ideal for per-plan quality assurance after an IMRT system is fully commissioned.

  5. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification

    NASA Astrophysics Data System (ADS)

    Torgoev, Almaz; Havenith, Hans-Balder

    2016-07-01

    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  6. Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Wirth, Benedikt; Yang, Haizhao

    2016-04-01

    We develop a variational optimization method for crystal analysis in atomic resolution images, which uses information from a 2D synchrosqueezed transform (SST) as input. The synchrosqueezed transform is applied to extract initial information from atomic crystal images: crystal defects, rotations and the gradient of elastic deformation. The deformation gradient estimate is then improved outside the identified defect region via a variational approach, to obtain more robust results agreeing better with the physical constraints. The variational model is optimized by a nonlinear projected conjugate gradient method. Both examples of images from computer simulations and imaging experiments are analyzed, with results demonstrating the effectiveness of the proposed method.

  7. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.

    PubMed

    Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao

    2015-11-01

    Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.

  8. Development of an affordable system for 2D kinematics and dynamics analysis of human gait

    NASA Astrophysics Data System (ADS)

    Mahyuddin, A. I.; Mihradi, S.; Dirgantara, T.; Sukmajaya, A.; Juliyad, N.; Purba, U.

    2009-12-01

    Development of a low-cost, yet reliable, system for 2D gait analysis is presented in this paper. The system consists of a home video camera with speed of 25 fps, LED markers, PC and a technical computing software, which are used for capturing and processing the digital image of markers attached to human body during motion. In the experiments, a person is instructed to walk in a specially arranged measurement area. The recorded images are then digitally processed to detect and track the 2D coordinate of the markers over time. To conduct a dynamics analysis, a mathematical formulation for human motion is constructed where the body is modeled by a system of five rigid bars connected by joints. Finally, a program is developed to plot and calculate the kinematics and dynamics data of human gait, where the markers position data over time, and other variables such as dimensions and weight of the body are used as the input in the program.

  9. Development of an affordable system for 2D kinematics and dynamics analysis of human gait

    NASA Astrophysics Data System (ADS)

    Mahyuddin, A. I.; Mihradi, S.; Dirgantara, T.; Sukmajaya, A.; Juliyad, N.; Purba, U.

    2010-03-01

    Development of a low-cost, yet reliable, system for 2D gait analysis is presented in this paper. The system consists of a home video camera with speed of 25 fps, LED markers, PC and a technical computing software, which are used for capturing and processing the digital image of markers attached to human body during motion. In the experiments, a person is instructed to walk in a specially arranged measurement area. The recorded images are then digitally processed to detect and track the 2D coordinate of the markers over time. To conduct a dynamics analysis, a mathematical formulation for human motion is constructed where the body is modeled by a system of five rigid bars connected by joints. Finally, a program is developed to plot and calculate the kinematics and dynamics data of human gait, where the markers position data over time, and other variables such as dimensions and weight of the body are used as the input in the program.

  10. Radiographic Trabecular 2D and 3D Parameters of Proximal Femoral Bone Cores Correlate with Each Other and with Yield Stress

    PubMed Central

    Steines, Daniel; Liew, Siau-Way; Arnaud, Claude; Voracek, Rene Vargas; Nazarian, Ara; Müller, Ralph; Snyder, Brian; Hess, Patrick; Lang, Philipp

    2010-01-01

    Introduction We compared morphometric measurements of trabecular patterns in two-dimensional (2D) projection radiographic images of cores from cadaver proximal femoral bones with conceptually equivalent measurements from three-dimensional (3D) μCT images. Methods Seven cadaver proximal femora provided 47 excised cores from seven regions. Digitized radiographs of those cores were processed with software that extracts trabecular patterns. Measurements of their distribution, geometry, and connectivity were compared with 3D parameters of similar definition derived from μCT of those cores. The relationship between 2D and 3D measurements and yield stress was also examined. Results 2D measurements strongly correlated with conceptually equivalent measurements obtained using 3D μCT. In all cases, the correlation coefficients were high, ranging from r=0.84 (p<0.001) to r=0.93 (p<0.001). The correlation coefficients between 2D and 3D measurements and yield stress of the cores were also high (r=0.60 and 0.82, p<0.001 respectively). Conclusions These findings provide correlative and biomechanical evidence supporting the qualitative similarity of 2D microstructural parameters extracted from plain proximal femoral core X-ray images to conceptually equivalent 3D microstuctural measurements of those same cores. PMID:19319618

  11. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns

    NASA Astrophysics Data System (ADS)

    Dong, Pinliang

    2009-10-01

    Spatial scale plays an important role in many fields. As a scale-dependent measure for spatial heterogeneity, lacunarity describes the distribution of gaps within a set at multiple scales. In Earth science, environmental science, and ecology, lacunarity has been increasingly used for multiscale modeling of spatial patterns. This paper presents the development and implementation of a geographic information system (GIS) software extension for lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Depending on the application requirement, lacunarity analysis can be performed in two modes: global mode or local mode. The extension works for: (1) binary (1-bit) and grey-scale datasets in any raster format supported by ArcGIS and (2) 1D, 2D, and 3D point datasets as shapefiles or geodatabase feature classes. For more effective measurement of lacunarity for different patterns or processes in raster datasets, the extension allows users to define an area of interest (AOI) in four different ways, including using a polygon in an existing feature layer. Additionally, directionality can be taken into account when grey-scale datasets are used for local lacunarity analysis. The methodology and graphical user interface (GUI) are described. The application of the extension is demonstrated using both simulated and real datasets, including Brodatz texture images, a Spaceborne Imaging Radar (SIR-C) image, simulated 1D points on a drainage network, and 3D random and clustered point patterns. The options of lacunarity analysis and the effects of polyline arrangement on lacunarity of 1D points are also discussed. Results from sample data suggest that the lacunarity analysis extension can be used for efficient modeling of spatial patterns at multiple scales.

  12. Length of psychiatric hospitalization is correlated with CYP2D6 functional status in inpatients with major depressive disorder

    PubMed Central

    Ruaño, Gualberto; Szarek, Bonnie L; Villagra, David; Gorowski, Krystyna; Kocherla, Mohan; Seip, Richard L; Goethe, John W; Schwartz, Harold I

    2016-01-01

    Aim This study aimed to determine the effect of the CYP2D6 genotype on the length of hospitalization stay for patients treated for major depressive disorder. Methods A total of 149 inpatients with a diagnosis of major depressive disorder at the Institute of Living, Hartford Hospital (CT, USA), were genotyped to detect altered alleles in the CYP2D6 gene. Prospectively defined drug metabolism indices (metabolic reserve, metabolic alteration and allele alteration) were determined quantitatively and assessed for their relationship to length of hospitalization stay. Results Hospital stay was significantly longer in deficient CYP2D6 metabolizers (metabolic reserve <2) compared with functional or suprafunctional metabolizers (metabolic reserve ≥2; 7.8 vs 5.7 days, respectively; p = 0.002). Conclusion CYP2D6 enzymatic functional status significantly affected length of hospital stay, perhaps due to reduced efficacy or increased side effects of the medications metabolized by the CYP2D6 isoenzyme. Functional scoring of CYP2D6 alleles may have a substantial impact on the quality of care, patient satisfaction and the economics of psychiatric treatment. PMID:23734807

  13. Simultaneous immunoblotting analysis with activity gel electrophoresis and 2-D gel electrophoresis.

    PubMed

    Lee, Der-Yen; Chang, Geen-Dong

    2015-01-01

    Diffusion blotting method can couple immunoblotting analysis with another biochemical technique in a single polyacrylamide gel, however, with lower transfer efficiency as compared to the conventional electroblotting method. Thus, with diffusion blotting, protein blots can be obtained from an SDS polyacrylamide gel for zymography assay, from a native polyacrylamide gel for electrophoretic mobility shift assay (EMSA) or from a 2-D polyacrylamide gel for large-scale screening and identification of a protein marker. Thereafter, a particular signal in zymography, electrophoretic mobility shift assay, and 2-dimensional gel can be confirmed or identified by simultaneous immunoblotting analysis with a corresponding antiserum. These advantages make diffusion blotting desirable when partial loss of transfer efficiency can be tolerated or be compensated by a more sensitive immunodetection reaction using enhanced chemiluminescence detection.

  14. Experimental Analysis of a 2-D Lightcraft in Static and Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Rego, Israel S.; Toro, Paulo G. P.; Channes, José B.

    2010-05-01

    Aiming at the hypersonic phase of the Earth-to-Orbit trajectory for a laser propelled vehicle, a 2-D Lightcraft model was designed to be tested at the T3 Hypersonic Shock Tunnel at the Henry T. Nagamatsu Laboratory for Aerodynamics and Hypersonics. A high energy laser pulse was supplied by a Lumonics TEA 620 laser system operating in unstable resonator cavity mode. The experiments were performed at quiescent (no flow) conditions and at a nominal Mach number of 9.2. A Schlieren visualization apparatus was used in order to access both the cold hypersonic flowfield structure (without laser deposition) and the time dependent flowfield structure, taking place after the laser induced breakdown inside the absorption chamber. The model was fitted with piezoelectric pressure transducers and surface junction thermocouples in an attempt to measure pressure and heat transfer time dependent distributions at the internal surfaces of the model's absorption chamber. The 2-D model followed a modular design for flexibility on the analysis of geometrical features contribution on the expansion of the laser induced blast wave. Finally, future evolution of the experiments being currently pursued is addressed.

  15. Robust 2D principal component analysis: a structured sparsity regularized approach.

    PubMed

    Yipeng Sun; Xiaoming Tao; Yang Li; Jianhua Lu

    2015-08-01

    Principal component analysis (PCA) is widely used to extract features and reduce dimensionality in various computer vision and image/video processing tasks. Conventional approaches either lack robustness to outliers and corrupted data or are designed for one-dimensional signals. To address this problem, we propose a robust PCA model for two-dimensional images incorporating structured sparse priors, referred to as structured sparse 2D-PCA. This robust model considers the prior of structured and grouped pixel values in two dimensions. As the proposed formulation is jointly nonconvex and nonsmooth, which is difficult to tackle by joint optimization, we develop a two-stage alternating minimization approach to solve the problem. This approach iteratively learns the projection matrices by bidirectional decomposition and utilizes the proximal method to obtain the structured sparse outliers. By considering the structured sparsity prior, the proposed model becomes less sensitive to noisy data and outliers in two dimensions. Moreover, the computational cost indicates that the robust two-dimensional model is capable of processing quarter common intermediate format video in real time, as well as handling large-size images and videos, which is often intractable with other robust PCA approaches that involve image-to-vector conversion. Experimental results on robust face reconstruction, video background subtraction data set, and real-world videos show the effectiveness of the proposed model compared with conventional 2D-PCA and other robust PCA algorithms.

  16. Coherent X-ray beam metrology using 2D high-resolution Fresnel-diffraction analysis.

    PubMed

    Ruiz-Lopez, M; Faenov, A; Pikuz, T; Ozaki, N; Mitrofanov, A; Albertazzi, B; Hartley, N; Matsuoka, T; Ochante, Y; Tange, Y; Yabuuchi, T; Habara, T; Tanaka, K A; Inubushi, Y; Yabashi, M; Nishikino, M; Kawachi, T; Pikuz, S; Ishikawa, T; Kodama, R; Bleiner, D

    2017-01-01

    Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M(2) were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

  17. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    NASA Astrophysics Data System (ADS)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  18. Analysis of stochastic phenomena in 2D Hindmarsh-Rose neuron model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, I.; Ryashko, L.; Slepukhina, E.

    2016-10-01

    In mathematical research of neuronal activity, conceptual models play an important role. We consider 2D Hindmarsh-Rose model, which exhibits the fundamental property of neuron, the excitability. We study how random disturbances affect this property. The effects of noise are analysed in the parametric zone where the deterministic model is characterized by the coexistence of two stable equilibria. We show that under random disturbances, noise-induced transitions between the attractors occur, forming a new complex dynamic regime of stochastic bursting. It is confirmed by changes of distribution of random trajectories and interspike intervals. For the analysis of this noise-induced phenomenon, we apply the stochastic sensitivity technique and confidence domains method. We suggest a method for estimation of threshold noise intensity corresponding to the onset of noise-induced bursting. We show that the obtained values are in a good agreement with direct numerical simulations.

  19. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    PubMed Central

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.

    2015-01-01

    We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice. PMID:26644220

  20. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    DOE PAGES

    Disseler, S. M.; Chen, Y.; Yeo, S.; ...

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ionsmore » on the spinel lattice.« less

  1. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    SciTech Connect

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice.

  2. Correlation between 3D microstructural and 2D histomorphometric properties of subchondral bone with healthy and degenerative cartilage of the knee joint.

    PubMed

    Lahm, Andreas; Kasch, Richard; Spank, Heiko; Erggelet, Christoph; Esser, Jan; Merk, Harry; Mrosek, Eike

    2014-11-01

    Cartilage degeneration of the knee joint is considered to be a largely mechanically driven process. We conducted a microstructural and histomorphometric analysis of subchondral bone samples of intact cartilage and in samples with early and higher- grade arthritic degeneration to compare the different states and correlate the findings with the condition of hyaline cartilage. These findings will enable us to evaluate changes in biomechanical properties of subchondral bone during the evolution of arthritic degeneration, for which bone density alone is an insufficient parameter. From a continuous series of 80 patients undergoing implantation of total knee endoprosthesis 30 osteochondral samples with lesions macroscopically classified as ICRS grade 1b (group A) and 30 samples with ICRS grade 3a or 3b lesions (group B) were taken. The bone samples were assessed by 2D histomorphometry (semiautomatic image analysis system) and 3D microstructural analysis (high-resolution micro-CT system). The cartilage was examined using the semiquantitative real-time PCR gene expression of collagen type I and II and aggrecan. Both histomorphometry and microstructural and biomechanical analysis of subchondral bone in groups A and B consistently revealed progressive changes of both bone and cartilage compared with healthy controls. The severity of cartilage degeneration as assessed by RT PCR was significantly correlated with BV/TV (Bone Volume Fraction), Tb.Th (Trabecular Thickness) showed a slight increase. Tb.N (Trabecular Number), Tb.Sp (Trabecular separation) SMI (Structure Model Index), Conn.D (Connectivity Density) and DA (Degree of Anisotropy) were inversely correlated. We saw sclerotic transformation and phagocytic reticulum cells. Bone volume fraction decreased with an increasing distance from the cartilage with the differences compared with healthy controls becoming greater in more advanced cartilage damage. The density of subchondral bone alone is considered an unreliable

  3. Analysis of the antiferromagnetic phase transitions of the 2D Kondo lattice

    NASA Astrophysics Data System (ADS)

    Jones, Barbara

    2010-03-01

    The Kondo lattice continues to present an interesting and relevant challenge, with its interactions between Kondo, RKKY, and coherent order. We present our study[1] of the antiferromagnetic quantum phase transitions of a 2D Kondo-Heisenberg square lattice. Starting from the nonlinear sigma model as a model of antiferromagnetism, we carry out a renormalization group analysis of the competing Kondo-RKKY interaction to one-loop order in an ɛ-expansion. We find a new quantum critical point (QCP) strongly affected by Kondo fluctuations. Near this QCP, there is a breakdown of hydrodynamic behavior, and the spin waves are logarithmically frozen out. The renormalization group results allow us to propose a new phase diagram near the antiferromagnetic fixed point of this 2D Kondo lattice model. The T=0 phase diagram contains four phases separated by a tetracritical point, the new QCP. For small spin fluctuations, we find a stable local magnetic moment antiferromagnet. For stronger coupling, region II is a metallic quantum disordered paramagnet. We find in region III a paramagnetic phase driven by Kondo interactions, with possible ground states of a heavy fermion liquid or a Kondo driven spin-liquid. The fourth phase is a spiral phase, or a large-Fermi-surface antiferromagnetic phase. We will describe these phases in more detail, including possible experimental confirmation of the spiral phase. The existence of the tetracritical point found here would be expected to affect the phase diagram at finite temperatures as well. In addition, It is hoped that these results, and particularly the Kondo interaction paramagnetic phase, will serve to bridge to solutions starting from the opposite limit, of a Kondo effect leading to a heavy fermion ground state. Work in collaboration with T. Tzen Ong. [4pt] [1] T. Ong and B. A. Jones, Phys. Rev. Lett. 103, 066405 (2009).

  4. 2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs

    PubMed Central

    Sendra, G. Hernán; Hoerth, Christian H.; Wunder, Christian; Lorenz, Holger

    2015-01-01

    We introduce Map3-2D, a freely available software to accurately project up to five-dimensional (5D) fluorescence microscopy image data onto full-content 2D maps. Similar to the Earth’s projection onto cartographic maps, Map3-2D unfolds surface information from a stack of images onto a single, structurally connected map. We demonstrate its applicability for visualization and quantitative analyses of spherical and uneven surfaces in fixed and dynamic live samples by using mammalian and yeast cells, and giant unilamellar vesicles. Map3-2D software is available at http://www.zmbh.uni-heidelberg.de//Central_Services/Imaging_Facility/Map3-2D.html. PMID:26208256

  5. Striatal D2/D3 Receptor Availability is Inversely Correlated with Cannabis Consumption in Chronic Marijuana Users

    PubMed Central

    Albrecht, Daniel S.; Skosnik, Patrick D.; Vollmer, Jennifer M.; Brumbaugh, Margaret S.; Perry, Kevin M.; Mock, Bruce H.; Zheng, Qi-Huang; Federici, Lauren A.; Patton, Elizabeth A.; Herring, Christine M.; Yoder, Karmen K.

    2012-01-01

    BACKGROUND Although the incidence of cannabis abuse/dependence in Americans is rising, the neurobiology of cannabis addiction is not well understood. Imaging studies have demonstrated deficits in striatal D2/D3 receptor availability in several substance-dependent populations. However, this has not been studied in currently-using chronic cannabis users. OBJECTIVE The purpose of this study was to compare striatal D2/D3 receptor availability between currently-using chronic cannabis users and healthy controls. METHODS Eighteen right-handed males age 18–34 were studied. Ten subjects were chronic cannabis users; eight were demographically matched controls. Subjects underwent a [11C] raclopride (RAC) PET scan. Striatal RAC binding potential (BPND) was calculated on a voxel-wise basis. Prior to scanning, urine samples were obtained from cannabis users for quantification of urine Δ-9-tetrahydrocannabinol (THC) and THC metabolites (11-nor-Δ-9-THC-9-carboxylic acid; THC-COOH and 11-hydroxy-THC;OH-THC). Results There were no differences in D2/D3 receptor availability between cannabis users and controls. Voxel-wise analyses revealed that RAC BPND values were negatively associated with both urine levels of cannabis metabolites and self-report of recent cannabis consumption. CONCLUSIONS In this sample, current cannabis use was not associated with deficits in striatal D2/D3 receptor availability. There was an inverse relationship between chronic cannabis use and striatal RAC BPND. Additional studies are needed to identify the neurochemical consequences of chronic cannabis use on the dopamine system. PMID:22909787

  6. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    Maskaly, Karlene Rosera

    2005-06-01

    increasing RMS roughness. Again, the homogenization approximation is able to predict these results. The problem of surface scratches on 1D photonic crystals is also addressed. Although the reflectivity decreases are lower in this study, up to a 15% change in reflectivity is observed in certain scratched photonic crystal structures. However, this reflectivity change can be significantly decreased by adding a low index protective coating to the surface of the photonic crystal. Again, application of homogenization theory to these structures confirms its predictive power for this type of imperfection as well. Additionally, the problem of a circular pores in 2D photonic crystals is investigated, showing that almost a 50% change in reflectivity can occur for some structures. Furthermore, this study reveals trends that are consistent with the 1D simulations: parameter changes that increase the absolute reflectivity of the photonic crystal will also increase its tolerance to structural imperfections. Finally, experimental reflectance spectra from roughened 1D photonic crystals are compared to the results predicted computationally in this thesis. Both the computed and experimental spectra correlate favorably, validating the findings presented herein.

  7. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture

    SciTech Connect

    Apostol, Lian; Boudousq, Vincent; Basset, Oliver; Odet, Christophe; Yot, Sophie; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Kotzki, Pierre-Olivier; Peyrin, Francoise

    2006-09-15

    Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further used for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.

  8. Digit ratio (2D:4D) and male facial attractiveness: new data and a meta-analysis.

    PubMed

    Hönekopp, Johannes

    2013-10-01

    Digit ratio (2D:4D) appears to correlate negatively with prenatal testosterone (T) effects in humans. As T probably increases facial masculinity, which in turn might be positively related to male facial attractiveness, a number of studies have looked into the relationship between 2D:4D and male facial attractiveness, showing equivocal results. Here, I present the largest and third largest samples so far, which investigate the relationship between 2D:4D and male facial attractiveness in adolescents (n = 115) and young men (n = 80). I then present random-effects meta-analyses of the available data (seven to eight samples, overall n = 362 to 469). These showed small (r ≈ -.09), statistically non-significant relationships between 2D:4D measures and male facial attractiveness. Thus, 2D:4D studies offer no convincing evidence at present that prenatal T has a positive effect on male facial attractiveness. However, a consideration of confidence intervals shows that, at present, a theoretically meaningful relationship between 2D:4D and male facial attractiveness cannot be ruled out either.

  9. The Design and Analysis of Split Row-Column Addressing Array for 2-D Transducer

    PubMed Central

    Li, Xu; Jia, Yanping; Ding, Mingyue; Yuchi, Ming

    2016-01-01

    For 3-D ultrasound imaging, the row-column addressing (RCA) with 2N connections for an N × N 2-D array makes the fabrication and interconnection simpler than the fully addressing with N2 connections. However, RCA degrades the image quality because of defocusing in signal channel direction in the transmit event. To solve this problem, a split row-column addressing scheme (SRCA) is proposed in this paper. Rather than connecting all the elements in the signal channel direction together, this scheme divides the elements in the signal channel direction into several disconnected blocks, thus enables focusing beam access in both signal channel and switch channel directions. Selecting an appropriate split scheme is the key for SRCA to maintaining a reasonable tradeoff between the image quality and the number of connections. Various split schemes for a 32 × 32 array are fully investigated with point spread function (PSF) analysis and imaging simulation. The result shows the split scheme with five blocks (4, 6, 12, 6, and 4 elements of each block) can provide similar image quality to fully addressing. The splitting schemes for different array sizes from 16 × 16 to 96 × 96 are also discussed. PMID:27690029

  10. Analysis of capacitive sensing for 2D-MEMS scanner laser projection

    NASA Astrophysics Data System (ADS)

    von Wantoch, Thomas; Mallas, Christian; Hofmann, Ulrich; Janes, Joachim; Wagner, Bernhard; Benecke, Wolfgang

    2014-03-01

    Typical applications for resonantly driven vacuum packaged MEMS scanners including laser projection displays require a feedback signal for closed-loop operation as well as high accuracy angle synchronization for data processing. A well known and widely used method is based on determining the angular velocity of the oscillating micromirror by measuring the time derivative of a capacitance. In this work we analyze a capacitive sensing approach that uses integrated vertical comb structures to synchronize the angular motion of a torsional micromirror oscillating in resonance. The investigated measurement method is implemented in a laser display that generates a video projection by scanning a RBG laser beam. As the 2D-micromirror performs sinusoidal oscillations on both perpendicular axes a continuously moving Lissajous pattern is projected. By measuring the displacement current due to an angular deflection of the movable comb structures an appropriate feedback signal for actuation and data synchronization is computed. In order to estimate the angular deflection and velocity a mathematical model of the capacitive sensing system is presented. In particular, the nonlinear characteristic of the capacitance as a function of the angle that is calculated using FEM analysis is approximated using cubic splines. Combining this nonlinear function with a dynamic model of the micromirror oscillation and the analog electronics a mathematical model of the capacitive measurement system is derived. To evaluate the proposed model numerical simulations are realized using MATLAB/Simulink and are compared to experimental measurements.

  11. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques

    PubMed Central

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  12. 2-D Fourier transform analysis of the gravitational field of Northern Sinai Peninsula

    NASA Astrophysics Data System (ADS)

    Khalil, Mohamed A.; Santos, Fernando M.; Farzamian, Mohammad; El-Kenawy, Abeer

    2015-04-01

    The Sinai Peninsula has fascinated the consideration of many geophysical studies as it is influenced by major tectonic events. Those are (1) the Mesozoic to Early Cenozoic tectonically active opening of Tethys, (2) the Late Cretaceous to Early Tertiary (Laramide) Syrian arc system, due to closing of the Tethys (3) the Oligo-Miocene Gulf of Suez rifted basin, and (4) the Late Miocene to Recent transform Dead Sea-Gulf of Aqaba rift. Moreover, the shear zones inside Sinai have affected intensely the structure development of the northern Sinai area. 2-D fast Fourier transform (FFT) analysis has been applied to transfer the data from space domain to frequency domain, in which basic gradients and derived gradients have been estimated. The frequency domain operations resulted in frequency filtering, first and second degree xyz gradients, horizontal, total (analytical signal) and tilt gradients, maximum horizontal gradient amplitude (total horizontal derivative), and theta map. As a result, the basic and derived gradient maps have succeeded to outline the major structure elements of Northern Sinai Peninsula. Comparisons with some well known surface structures showed a large degree of matching.

  13. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    PubMed

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-12-05

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  14. The Design and Analysis of Split Row-Column Addressing Array for 2-D Transducer.

    PubMed

    Li, Xu; Jia, Yanping; Ding, Mingyue; Yuchi, Ming

    2016-09-27

    For 3-D ultrasound imaging, the row-column addressing (RCA) with 2N connections for an N × N 2-D array makes the fabrication and interconnection simpler than the fully addressing with N² connections. However, RCA degrades the image quality because of defocusing in signal channel direction in the transmit event. To solve this problem, a split row-column addressing scheme (SRCA) is proposed in this paper. Rather than connecting all the elements in the signal channel direction together, this scheme divides the elements in the signal channel direction into several disconnected blocks, thus enables focusing beam access in both signal channel and switch channel directions. Selecting an appropriate split scheme is the key for SRCA to maintaining a reasonable tradeoff between the image quality and the number of connections. Various split schemes for a 32 × 32 array are fully investigated with point spread function (PSF) analysis and imaging simulation. The result shows the split scheme with five blocks (4, 6, 12, 6, and 4 elements of each block) can provide similar image quality to fully addressing. The splitting schemes for different array sizes from 16 × 16 to 96 × 96 are also discussed.

  15. 2-D Stress Accumulation Analysis of the North Anatolian Fault East of the Marmara Sea

    NASA Astrophysics Data System (ADS)

    Karimi, B.; McQuarrie, N.; Harbert, W.; Lin, J.

    2011-12-01

    mesh model. To further validate the results of the simulations, we analyzed lineaments from a digital elevation model (DEM) and a daytime ASTER image. Lineaments were then plotted on a rose diagram to determine the directions of principle stress, which trend SE-NW (sigma-1), and SW-NE (sigma-3). The 2-D geophysical model allows for changes in stress direction and magnitude to be depicted over the entire region, while the lineament analysis is a potential sum of how stress has evolved over time. The map of modeled stress accumulation allows us to evaluate the potential geometry of the faults in this section of the NAF system as well as highlight which faults are host to more stress, and thus predict how that stress may migrate to the east, either north or south of the Marmara Sea. Based on a hundred year record of seismicity in Turkey, it is theorized that a higher magnitude of total stress accumulation will migrate south of the Marmara Sea along the SW-NE trending faults within our region of interest. A greater understanding of the stress field will allow researchers to evaluate the seismic risk within the larger region of Eastern Turkey, as well as understand fault dynamics along the NAF.

  16. Mutation Analysis Identifies GUCY2D as the Major Gene Responsible for Autosomal Dominant Progressive Cone Degeneration

    PubMed Central

    Kitiratschky, Veronique B. D.; Wilke, Robert; Renner, Agnes B.; Kellner, Ulrich; Vadalà, Maria; Birch, David G.; Wissinger, Bernd; Zrenner, Eberhart; Kohl, Susanne

    2017-01-01

    Purpose Heterozygous mutations in the GUCY2D gene, which encodes the membrane-bound retinal guanylyl cyclase-1 protein (RetGC-1), have been shown to cause autosomal dominant inherited cone degeneration and cone–rod degeneration (adCD, adCRD). The present study was a comprehensive screening of the GUCY2D gene in 27 adCD and adCRD unrelated families of these rare disorders. Methods Mutation analysis was performed by direct sequencing as well as PCR and subsequent restriction length polymorphism analysis (PCR/RFLP). Haplotype analysis was performed in selected patients by using microsatellite markers. Results GUCY2D gene mutations were identified in 11 (40%) of 27 patients, and all mutations clustered to codon 838, including two known and one novel missense mutation: p.R838C, p.R838H, and p.R838G. Haplotype analysis showed that among the studied patients only two of the six analyzed p.R838C mutation carriers shared a common haplotype and that none of the p.R838H mutation carriers did. Conclusions GUCY2D is a major gene responsible for progressive autosomal dominant cone degeneration. All identified mutations localize to codon 838. Haplotype analysis indicates that in most cases these mutations arise independently. Thus, codon 838 is likely to be a mutation hotspot in the GUCY2D gene. PMID:18487367

  17. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  18. Atom Probe Tomography Analysis of Ag Doping in 2D Layered Material (PbSe)5(Bi2Se3)3.

    PubMed

    Ren, Xiaochen; Singh, Arunima K; Fang, Lei; Kanatzidis, Mercouri G; Tavazza, Francesca; Davydov, Albert V; Lauhon, Lincoln J

    2016-10-12

    Impurity doping in two-dimensional (2D) materials can provide a route to tuning electronic properties, so it is important to be able to determine the distribution of dopant atoms within and between layers. Here we report the tomographic mapping of dopants in layered 2D materials with atomic sensitivity and subnanometer spatial resolution using atom probe tomography (APT). APT analysis shows that Ag dopes both Bi2Se3 and PbSe layers in (PbSe)5(Bi2Se3)3, and correlations in the position of Ag atoms suggest a pairing across neighboring Bi2Se3 and PbSe layers. Density functional theory (DFT) calculations confirm the favorability of substitutional doping for both Pb and Bi and provide insights into the observed spatial correlations in dopant locations.

  19. Analysis of 2D hyperbolic metamaterial dispersion by elementary excitation coupling

    NASA Astrophysics Data System (ADS)

    Vaianella, Fabio; Maes, Bjorn

    2016-04-01

    Hyperbolic metamaterials are examined for many applications thanks to the large density of states and extreme confinement of light they provide. For classical hyperbolic metal/dielectric multilayer structures, it was demon- strated that the properties originate from a specific coupling of the surface plasmon polaritons between the metal/dielectric interfaces. We show a similar analysis for 2D hyperbolic arrays of square (or rectangular) silver nanorods in a TiO2 host. In this case the properties derive from a specific coupling of the plasmons carried by the corners of the nanorods. The dispersion can be seen as the coupling of single rods for a through-metal connection of the corners, as the coupling of structures made of four semi-infinite metallic blocks separated by dielectric for a through-dielectric connection, or as the coupling of two semi-infinite rods for a through-metal and through-dielectric situation. For arrays of small square nanorods the elementary structure that explains the dispersion of the array is the single rod, and for arrays of large square nanorods it is four metallic corners. The medium size square nanorod case is more complicated, because the elementary structure can be one of the three basic designs, depending on the frequency and symmetry of the modes. Finally, we show that for arrays of rectangular nanorods the dispersion is explained by coupling of the two coupled rod structure. This work opens the way for a better understanding of a wide class of metamaterials via their elementary excitations.

  20. Study of Positronium in Low-k Dielectric Films by means of 2D-Angular Correlation Experiments at a High-Intensity Slow-Positron Beam

    SciTech Connect

    Gessmann, T; Petkov, M P; Weber, M H; Lynn, K G; Rodbell, K P; Asoka-Kumar, P; Stoeffl, W; Howell, R H

    2001-06-20

    Depth-resolved measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed at the high-intensity slow-positron beam of Lawrence Livermore National Laboratory. We studied the formation of positronium in thin films of methyl-silsesquioxane (MSSQ) spin-on glass containing open-volume defects in the size of voids. Samples with different average void sizes were investigated and positronium formation could be found in all cases. The width of the angular correlation related to the annihilation of parapositronium increased with the void size indicating the annihilation of non-thermalized parapositronium.

  1. 2-D nonlinear IIR-filters for image processing - An exploratory analysis

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; Sartori, M.

    1991-01-01

    A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.

  2. [Applications of 2D and 3D landscape pattern indices in landscape pattern analysis of mountainous area at county level].

    PubMed

    Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na

    2012-05-01

    Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic

  3. Applicability extent of 2-D heat equation for numerical analysis of a multiphysics problem

    NASA Astrophysics Data System (ADS)

    Khawaja, H.

    2017-01-01

    This work focuses on thermal problems, solvable using the heat equation. The fundamental question being answered here is: what are the limits of the dimensions that will allow a 3-D thermal problem to be accurately modelled using a 2-D Heat Equation? The presented work solves 2-D and 3-D heat equations using the Finite Difference Method, also known as the Forward-Time Central-Space (FTCS) method, in MATLAB®. For this study, a cuboidal shape domain with a square cross-section is assumed. The boundary conditions are set such that there is a constant temperature at its center and outside its boundaries. The 2-D and 3-D heat equations are solved in a time dimension to develop a steady state temperature profile. The method is tested for its stability using the Courant-Friedrichs-Lewy (CFL) criteria. The results are compared by varying the thickness of the 3-D domain. The maximum error is calculated, and recommendations are given on the applicability of the 2-D heat equation.

  4. Analysis of Korean Students' International Mobility by 2-D Model: Driving Force Factor and Directional Factor

    ERIC Educational Resources Information Center

    Park, Elisa L.

    2009-01-01

    The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek…

  5. The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control

    ERIC Educational Resources Information Center

    Page, A.; Moreno, R.; Candelas, P.; Belmar, F.

    2008-01-01

    In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…

  6. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  7. Multiple Ising models coupled to 2-d gravity: a CSD analysis

    NASA Astrophysics Data System (ADS)

    Bowick, Mark; Falcioni, Marco; Harris, Geoffrey; Marinari, Enzo

    1994-04-01

    We simulate single and multiple Ising models coupled to 2-d gravity and we measure critical slowing down (CSD) with the standard methods. We find that the Swendsen-Wang and Wolff cluster algorithms do not eliminate CSD. We interpret the result as an effect of the mesh dynamics.

  8. A New Family of 2-D Optical Orthogonal Codes and Analysis of Its Performance in Optical CDMA Access Networks

    NASA Astrophysics Data System (ADS)

    Shurong, Sun; Yin, Hongxi; Wang, Ziyu; Xu, Anshi

    2006-04-01

    A new family of two-dimensional optical orthogonal code (2-D OOC), one-coincidence frequency hop code (OCFHC)/OOC, which employs OCFHC and OOC as wavelengthhopping and time-spreading patterns, respectively, is proposed in this paper. In contrary to previously constructed 2-D OOCs, OCFHC/OOC provides more choices on the number of available wavelengths and its cardinality achieves the upper bound in theory without sacrificing good auto-and-cross correlation properties, i.e., the correlation properties of the code is still ideal. Meanwhile, we utilize a new method, called effective normalized throughput, to compare the performance of diverse codes applicable to optical code division multiple access (OCDMA) systems besides conventional measure bit error rate, and the results indicate that our code performs better than obtained OCDMA codes and is truly applicable to OCDMA networks as multiaccess codes and will greatly facilitate the implementation of OCDMA access networks.

  9. Experimental analysis of natural convection in square cavities heated from below with 2D-PIV and holographic interferometry techniques

    SciTech Connect

    Corvaro, F.; Paroncini, M.

    2007-07-15

    A numerical and experimental analysis was performed to study the natural convection heat transfer in a square cavity heated from below and cooled by the sidewalls. The enclosure was filled with air (Pr = 0.71) and a discrete heater was mounted on its lower surface; the effect of three different positions was evaluated. The air temperature distribution and the Nusselt numbers at different Rayleigh numbers on the heated strip were measured by an holographic interferometry thanks to the real-time and the double-exposure technique. The double-exposure technique was performed at steady-state and it was used to obtain the isothermal lines in the cavity at different Rayleigh numbers; while the real-time technique was used to control the presence of the plume oscillations and to determinate the achievement of the steady-state. A 2D particle image velocimetry (PIV) was utilized to measure the velocity fields at the same Rayleigh numbers. In particular we analysed the distribution of the velocity vectors and their modulus inside the cavity. The convective phenomenon was studied and the Nusselt numbers were presented as well as the Rayleigh numbers analysed. Moreover experimental and numerical correlations were determined for each position analysed to connect the Rayleigh numbers with the Nusselt numbers. Measured quantities were compared with the numerical results which were obtained with the finite volume code Fluent 6.2.16. (author)

  10. High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang

    2014-02-01

    The ideal pinhole imaging model commonly assumed for an ordinary two-dimensional digital image correlation (2D-DIC) system is neither perfect nor stable because of the existence of small out-of-plane motion of the test sample surface that occurred after loading, small out-of-plane motion of the sensor target due to temperature variation of a camera and unavoidable geometric distortion of an imaging lens. In certain cases, these disadvantages can lead to significant errors in the measured displacements and strains. Although a high-quality bilateral telecentric lens has been strongly recommended to be used in the 2D-DIC system as an essential optical component to achieve high-accuracy measurement, it is not generally applicable due to its fixed field of view, limited depth of focus and high cost. To minimize the errors associated with the imperfectness and instability of a common 2D-DIC system using a low-cost imaging lens, a generalized compensation method using a non-deformable reference sample is proposed in this work. With the proposed method, the displacement of the reference sample rigidly attached behind the test sample is first measured using 2D-DIC, and then it is fitted using a parametric model. The fitted parametric model is then used to correct the displacements of the deformed sample to remove the influences of these unfavorable factors. The validity of the proposed compensation method is first verified using out-of-plane translation, out-of-plane rotation, in-plane translation tests and their combinations. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively examine the strain accuracy of the proposed compensation method. Experiments show that the proposed compensation method is an easy-to-implement yet effective technique for achieving high-accuracy deformation measurement using an ordinary 2D-DIC system.

  11. Detailed landfill leachate plume mapping using 2D and 3D electrical resistivity tomography - with correlation to ionic strength measured in screens

    NASA Astrophysics Data System (ADS)

    Maurya, P. K.; Rønde, V. K.; Fiandaca, G.; Balbarini, N.; Auken, E.; Bjerg, P. L.; Christiansen, A. V.

    2017-03-01

    Leaching of organic and inorganic contamination from landfills is a serious environmental problem as surface water and aquifers are affected. In order to assess these risks and investigate the migration of leachate from the landfill, 2D and large scale 3D electrical resistivity tomography were used at a heavily contaminated landfill in Grindsted, Denmark. The inverted 2D profiles describe both the variations along the groundwater flow as well as the plume extension across the flow directions. The 3D inversion model shows the variability in the low resistivity anomaly pattern corresponding to differences in the ionic strength of the landfill leachate. Chemical data from boreholes agree well with the observations indicating a leachate plume which gradually sinks and increases in size while migrating from the landfill in the groundwater flow direction. Overall results show that the resistivity method has been very successful in delineating the landfill leachate plume and that good correlation exists between the resistivity model and leachate ionic strength.

  12. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    PubMed

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  13. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  14. Molecular analysis and modeling of inactivation of human CYP2D6 by four mechanism based inactivators.

    PubMed

    Livezey, Mara; Nagy, Leslie D; Diffenderfer, Laura E; Arthur, Evan J; Hsi, David J; Holton, Jeffrey M; Furge, Laura Lowe

    2012-03-01

    Human cytochrome P450 2D6 (CYP2D6) is involved in metabolism of approximately 25% of pharmaceutical drugs. Inactivation of CYP2D6 can lead to adverse drug interactions. Four inactivators of CYP2D6 have previously been identified: 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine(SCH66712), (1-[(2-ethyl- 4-methyl-1H-imidazol-5-yl)-methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine(EMTPP), paroxetine, and 3,4- methylenedioxymethamphetamine (MDMA). All four contain planar, aromatic groups as well as basic nitrogens common to CYP2D6 substrates. SCH66712 and EMTPP also contain piperazine groups and substituted imidazole rings that are common in pharmaceutical agents, though neither of these compounds is clinically relevant. Paroxetine and MDMA contain methylenedioxyphenyls. SCH66712 and EMTPP are both known protein adductors while paroxetine and MDMA are probable heme modifiers. The current study shows that each inactivator displays Type I binding with Ks values that vary by 2-orders of magnitude with lower Ks values associated with greater inactivation. Comparison of KI, kinact, and partition ratio values shows SCH66712 is the most potent inactivator. Molecular modeling experiments using AutoDock identify Phe120 as a key interaction for all four inactivators with face-to-face and edge-to-face pi interactions apparent. Distance between the ligand and heme iron correlates with potency of inhibition. Ligand conformations were scored according to their binding energies as calculated by AutoDock and correlation was observed between molecular models and Ks values.

  15. MOLECULAR ANALYSIS AND MODELING OF INACTIVATION OF HUMAN CYP2D6 BY FOUR MECHANISM BASED INACTIVATORS

    PubMed Central

    Livezey, Mara; Nagy, Leslie D.; Diffenderfer, Laura E.; Arthur, Evan J.; Hsi, David J.; Holton, Jeffrey M.; Furge, Laura Lowe

    2014-01-01

    Human cytochrome P450 2D6 (CYP2D6) is involved in metabolism of approximately 25% of pharmaceutical drugs. Inactivation of CYP2D6 can lead to adverse drug interactions. Four inactivators of CYP2D6 have previously been identified: 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH66712), (1-[(2-ethyl-4-methyl-1H(-EMTPP-imidazol-5-yl)-methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine (EMTPP), paroxetine, and 3,4-methylenedioxymethamphetamine (MDMA). All four contain planar, aromatic groups as well as basic nitrogens common to CYP2D6 substrates. SCH66712 and EMTPP also contain piperazine groups and substituted imidazole rings that are common in pharmaceutical agents, though neither of these compounds is clinically relevant. Paroxetine and MDMA contain methylenedioxyphenyls. SCH66712 and EMTPP are both known protein adductors while paroxetine and MDMA are probable heme modifiers. The current study shows that each inactivator displays Type I binding with Ks values that vary by 2-orders of magnitude with lower Ks values associated with greater inactivation. Comparison of KI, kinact, and partition ratio values shows SCH66712 is the most potent inactivator. Molecular modeling experiments using AutoDock identify Phe120 as a key interaction for all four inactivators with face-to-face and edge-to-face pi interactions apparent. Distance between the ligand and heme iron correlates with potency of inhibition. Ligand conformations were scored according to their binding energies as calculated by AutoDock and correlation was observed between molecular models and Ks values. PMID:22372551

  16. Validation Test Report for the NRL Ocean Surface Flux (NFLUX) Quality Control and 2D Variational Analysis System

    DTIC Science & Technology

    2014-06-11

    Test Report for the NRL Ocean Surface Flux (NFLUX) Quality Control and 2D Variational Analysis System Jackie May Neil VaN de Voorde QinetiQ North...OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Validation Test ...1 2.0 VALIDATION TEST DESIGN

  17. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  18. First experiences with 2D-mXRF analysis of gunshot residue on garment, tissue, and cartridge cases

    NASA Astrophysics Data System (ADS)

    Knijnenberg, Alwin; Stamouli, Amalia; Janssen, Martin

    2014-09-01

    The investigation of garment and human tissue originating from a victim of a shooting incident can provide crucial information for the reconstruction of such an incident. The use of 2D-mXRF for such investigations has several advantages over current methods as this new technique can be used to scan large areas, provides simultaneous information on multiple elements, can be applied under ambient conditions and is non-destructive. In this paper we report our experiences and challenges with the implementation of 2D-mXRF in GSR analysis. Currently we mainly focus on the use of 2D-mXRF as a tool for visualizing elemental distributions on various samples.

  19. 2dFLenS and KiDS: determining source redshift distributions with cross-correlations

    NASA Astrophysics Data System (ADS)

    Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian

    2017-03-01

    We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.

  20. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  1. Dynamical Analysis and Big Bang Bifurcations of 1D and 2D Gompertz's Growth Functions

    NASA Astrophysics Data System (ADS)

    Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.

    In this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz's growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz's growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon's map type embedding: a “continuous” embedding of 1D Gompertz's growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism.

  2. A Block-matching based technique for the analysis of 2D gel images.

    PubMed

    Freire, Ana; Seoane, José A; Rodríguez, Alvaro; Ruiz-Romero, Cristina; López-Campos, Guillermo; Dorado, Julián

    2010-01-01

    Research at protein level is a useful practice in personalized medicine. More specifically, 2D gel images obtained after electrophoresis process can lead to an accurate diagnosis. Several computational approaches try to help the clinicians to establish the correspondence between pairs of proteins of multiple 2D gel images. Most of them perform the alignment of a patient image referred to a reference image. In this work, an approach based on block-matching techniques is developed. Its main characteristic is that it does not need to perform the whole alignment between two images considering each protein separately. A comparison with other published methods is presented. It can be concluded that this method works over broad range of proteomic images, although they have a high level of difficulty.

  3. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  4. A procedure for the evaluation of 2D radiographic texture analysis to assess 3D bone micro-architecture

    NASA Astrophysics Data System (ADS)

    Apostol, Lian; Peyrin, Francoise; Yot, Sophie; Basset, Olivier; Odet, Christophe; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Boudousq, Vincent; Kotzki, Pierre-Olivier

    2004-05-01

    Although the diagnosis of osteoporosis is mainly based on Dual X-ray Absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regards of fracture risk, which can be efficiently assessed in vitro using three-dimensional x-ray microtomography (μCT). In vivo, techniques based on high-resolution s-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. The purpose of this work was to develop a method for evaluating the relationships betweeen 3D micro-architecture and 2D texture parameters, and optimizing the conditions for radiographic imaging. Bone sample images taken from cortical to cortical were acquired using 3D-synchrotron x-ray μCT at the ESRF. The 3D digital imagees were further used for two purposes: 1) quantification of three-dimensional bone micro-architecture, 2) simulation of realistic x-ray radiographs under different acquisition conditions. Texture analysis was then applied to these 2D radiographs using a large variety of methods (co-occurence, spectrum, fractal...). First results of the statistical analysis between 2D and 3D parameters allowed identfying the most relevant 2D texture parameters.

  5. Spin Correlations and Excitations in the Quasi-2D Triangular Bilayer Spin Glass LuCoGaO4

    NASA Astrophysics Data System (ADS)

    Fritsch, K.; Granroth, G. E.; Savici, A. T.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.

    2012-02-01

    LuCoGaO4 is a layered magnetic-bilayer material wherein Co2+ magnetic moments and nonmagnetic Ga3+ ions are randomly distributed on planar triangular bilayers. This makes it an ideal case to study the interplay between geometric frustration, site disorder and low dimensionality and its influence on the magnetic ground of the system. This novel material has been grown for the first time in single crystal form at McMaster University. We have performed magnetization measurements, revealing a previously identified spin glass transition near Tf˜19K, and a Curie Weiss temperature of Tcw˜-96K, consistent with antiferromagnetic interactions[1]. We discuss time-of-flight neutron scattering measurements using SEQUOIA at SNS which elucidate the evolution of the static and dynamic spin correlations in LuCoGaO4 over a range of temperatures from T<< Tf to T>Tcw. We observe quasielastic scattering at (1/3,1/3,L) positions in reciprocal space and rods of scattering along the c*-direction, consistent with short range antiferromagnetic correlations within decoupled bilayers, and which comfirm the 2-dimensional character of this system. Inelastic scattering measurements show a gapped ˜ 12 meV spin excitation which softens and broadens in energy, filling in the gap on a temperature scale of ˜ Tcw/2. [1] Cava et al., J. Solid State Chem. 140, 337 (1998).

  6. Parametrics on 2D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Saunders, J. D.

    1995-01-01

    The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-e turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than inviscid methods, in a reasonable turnaround time.

  7. Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs.

    PubMed

    Allain, Ariane; Chauvot de Beauchêne, Isaure; Langenfeld, Florent; Guarracino, Yann; Laine, Elodie; Tchertanov, Luba

    2014-01-01

    Allostery is a universal phenomenon that couples the information induced by a local perturbation (effector) in a protein to spatially distant regulated sites. Such an event can be described in terms of a large scale transmission of information (communication) through a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. To elaborate a rational description of allosteric coupling, we propose an original approach - MOdular NETwork Analysis (MONETA) - based on the analysis of inter-residue dynamical correlations to localize the propagation of both structural and dynamical effects of a perturbation throughout a protein structure. MONETA uses inter-residue cross-correlations and commute times computed from molecular dynamics simulations and a topological description of a protein to build a modular network representation composed of clusters of residues (dynamic segments) linked together by chains of residues (communication pathways). MONETA provides a brand new direct and simple visualization of protein allosteric communication. A GEPHI module implemented in the MONETA package allows the generation of 2D graphs of the communication network. An interactive PyMOL plugin permits drawing of the communication pathways between chosen protein fragments or residues on a 3D representation. MONETA is a powerful tool for on-the-fly display of communication networks in proteins. We applied MONETA for the analysis of communication pathways (i) between the main regulatory fragments of receptors tyrosine kinases (RTKs), KIT and CSF-1R, in the native and mutated states and (ii) in proteins STAT5 (STAT5a and STAT5b) in the phosphorylated and the unphosphorylated forms. The description of the physical support for allosteric coupling by MONETA allowed a comparison of the mechanisms of (a) constitutive activation induced by equivalent mutations in two RTKs and (b) allosteric regulation in the activated and non

  8. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  9. Nitrite reactivity of the binuclear copper site in T2D Rhus laccase: preparation of half met-NO2- T2D laccase and its correlation to half met-NO2- hemocyanin and tyrosinase.

    PubMed

    Spira, D J; Solomon, E I

    1983-04-29

    Through chemistry directly comparable to that of the hemocyanins and tyrosinase, half met-NO2- T2D laccase derivatives have been prepared; this NO2- reactivity entails both two electron oxidation of the cuprous binuclear site in deoxy T2D laccase and one electron reduction of the coupled cupric site in the met derivative. However, the labile ligand substitution chemistry and lack of dimer formation in half met-NO2- T2D are in marked contrast to behavior of the simpler binuclear copper containing proteins under analagous conditions. This chemistry supports and extends our earlier studies on the ferrocyanide-generated half met T2D which first indicated an inability of exogenous ligands to bridge the binuclear copper site in laccase.

  10. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  11. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGES

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; ...

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  12. CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations.

    PubMed

    Alfaro, C L; Lam, Y W; Simpson, J; Ereshefsky, L

    2000-01-01

    The authors report the CYP2D6 inhibitory effects of fluoxetine, paroxetine, sertraline, and venlafaxine in an open-label, multiple-dose, crossover design. Twelve CYP2D6 extensive metabolizers were phenotyped, using the dextromethorphan/dextrorphan (DM/DX) urinary ratio, before and after administration of fluoxetine 60 mg (loading dose strategy), paroxetine 20 mg, sertraline 100 mg, and venlafaxine 150 mg. Paroxetine, sertraline, and venlafaxine sequences were randomized with 2-week washouts between treatments; fluoxetine was the last antidepressant (AD) administered. Comparing within groups, baseline DM/DX ratios (0.017) were significantly lower than DM/DX ratios after treatment (DM/DXAD) with fluoxetine (0.313, p < 0.0001) and paroxetine (0.601, p < 0.0001) but not for sertraline (0.026, p = 0.066) or venlafaxine (0.023, p = 0.485). Between groups, DM/DXAD ratios were significantly higher for fluoxetine and paroxetine compared to sertraline and venlafaxine. No differences between DM/DXAD ratios were found for fluoxetine and paroxetine although more subjects phenocopied to PM status after receiving the latter (42% vs. 83%; chi 2 = 4.44, p = 0.049, df = 1). Similarly, no differences between DM/DXAD ratios were found for sertraline and venlafaxine. Of note, the DM/DXAD for 1 subject was much lower after treatment with paroxetine (0.058) compared to fluoxetine (0.490), while another subject exhibited a much lower ratio after treatment with fluoxetine (0.095) compared to paroxetine (0.397). Significant correlations between AD plasma concentration and DM/DXAD were found for paroxetine (r2 = 0.404, p = 0.026) and sertraline (r2 = 0.64, p = 0.002) but not fluoxetine or venlafaxine. In addition, DM/DXAD correlated with baseline isoenzyme activity for paroxetine, sertraline, and venlafaxine groups. These results demonstrate the potent, but variable, CYP2D6 inhibition of fluoxetine and paroxetine compared to sertraline and venlafaxine. CYP2D6 inhibition may be related, in

  13. Rovibrational analysis of the ethylene isotopologue 13C2D4 by high-resolution Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Gabona, M. G.; Godfrey, Peter D.; McNaughton, Don

    2015-01-01

    The Fourier transform infrared (FTIR) spectrum of the unperturbed a-type ν12 band of 13C2D4 was recorded at an unapodized resolution of 0.0063 cm-1 between 1000 and 1140 cm-1 for a rovibrational analysis. By assigning and fitting a total of 2068 infrared transitions using a Watson's A-reduced and S-reduced Hamiltonians in the Ir representation, rovibrational constants for the upper state (ν12 = 1) up to five quartic centrifugal distortion terms were derived for the first time. The root-mean-square (rms) deviation of the fits was 0.00034 cm-1 both in the A-reduction and S-reduction Hamiltonian. The ground state rovibrational constants of 13C2D4 in the A-reduced and S-reduced Hamiltonians were also determined for the first time by a fit of 985 combination-differences from the present infrared measurements, with rms deviation of 0.00036 cm-1. The ν12 band centre of 13C2D4 was at 1069.970824(17) cm-1 and at 1069.970799(17) cm-1 for the A-reduced and S-reduced Hamiltonians respectively. The ground state constants of 13C2D4 from this experimental work are in close agreement to those derived from theoretical calculations using the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and CSSD(T)/cc-pVTZ levels of theory.

  14. Perpendicular ultrasound velocity measurement by 2D cross correlation of RF data. Part A: validation in a straight tube

    NASA Astrophysics Data System (ADS)

    Beulen, Bart; Bijnens, Nathalie; Rutten, Marcel; Brands, Peter; van de Vosse, Frans

    2010-11-01

    An ultrasound velocity assessment technique was validated, which allows the estimation of velocity components perpendicular to the ultrasound beam, using a commercially available ultrasound scanner equipped with a linear array probe. This enables the simultaneous measurement of axial blood velocity and vessel wall position, rendering a viable and accurate flow assessment. The validation was performed by comparing axial velocity profiles as measured in an experimental setup to analytical and computational fluid dynamics calculations. Physiologically relevant pulsating flows were considered, employing a blood analog fluid, which mimics both the acoustic and rheological properties of blood. In the core region (| r|/ a < 0.9), an accuracy of 3 cm s-1 was reached. For an accurate estimation of flow, no averaging in time was required, making a beat to beat analysis of pulsating flows possible.

  15. HEAT.PRO - THERMAL IMBALANCE FORCE SIMULATION AND ANALYSIS USING PDE2D

    NASA Technical Reports Server (NTRS)

    Vigue, Y.

    1994-01-01

    HEAT.PRO calculates the thermal imbalance force resulting from satellite surface heating. The heated body of a satellite re-radiates energy at a rate that is proportional to its temperature, losing the energy in the form of photons. By conservation of momentum, this momentum flux out of the body creates a reaction force against the radiation surface, and the net thermal force can be observed as a small perturbation that affects long term orbital behavior of the satellite. HEAT.PRO calculates this thermal imbalance force and then determines its effects on satellite orbits, especially where the Earth's shadowing of an orbiting satellite causes periodic changes in the spacecraft's thermal environment. HEAT.PRO implements a finite element method routine called PDE2D which incorporates material properties to determine the solar panel surface temperatures. The nodal temperatures are computed at specified time steps and are used to determine the magnitude and direction of the thermal force on the spacecraft. These calculations are based on the solar panel orientation and satellite's position with respect to the earth and sun. It is necessary to have accurate, current knowledge of surface emissivity, thermal conductivity, heat capacity, and material density. These parameters, which may change due to degradation of materials in the environment of space, influence the nodal temperatures that are computed and thus the thermal force calculations. HEAT.PRO was written in FORTRAN 77 for Cray series computers running UNICOS. The source code contains directives for and is used as input to the required partial differential equation solver, PDE2D. HEAT.PRO is available on a 9-track 1600 BPI magnetic tape in UNIX tar format (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution tape. HEAT.PRO was developed in 1991. Cray and UNICOS are

  16. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument.

  17. Red wine proteins: two dimensional (2-D) electrophoresis and mass spectrometry analysis.

    PubMed

    Mainente, Federica; Zoccatelli, Gianni; Lorenzini, Marilinda; Cecconi, Daniela; Vincenzi, Simone; Rizzi, Corrado; Simonato, Barbara

    2014-12-01

    The aim of the present study was to optimize protein extraction from red wine (cv. Cabernet) in order to obtain a separation by two-dimensional electrophoresis (2-DE) compatible with mass spectrometry identification. Proteins were denatured by sodium dodecyl-sulphate (SDS) and precipitated as potassium salts. The potassium-DS (KDS) protein complexes obtained were treated with different solutions in order to remove the detergent. Proteins were solubilized with different buffers and separated by different electrophoretic approaches [native, urea, acid urea PAGEs and isoelectric focusing (IEF)] as the first-dimension (1-DE). The best 2D separation was achieved by using 10% saccharose in the DS removal step, and 6-cyclohexylhexyl β-d-maltoside detergent in the solubilisation buffer combined with the IEF approach. Several well focalized protein spots were obtained and analyzed through mass-spectrometry.

  18. Analysis of pyruvylated beta-carrageenan by 2D NMR spectroscopy and reductive partial hydrolysis.

    PubMed

    Falshaw, Ruth; Furneaux, Richard H; Wong, Herbert

    2003-06-23

    A polysaccharide rich in 4',6'-O-(1-carboxyethylidene)-substituted (i.e., pyruvylated) beta-carrageenan has been prepared by solvolytic desulfation of a polysaccharide containing predominantly pyruvylated alpha-carrageenan, which was extracted from the red seaweed, Callophycus tridentifer. The 13C and 1H NMR chemical shifts of pyruvylated beta-carrageenan have been fully assigned using 2D NMR spectroscopic techniques. The 4',6'-O-(1-methoxycarbonylethylidene) group, generated during chemical methylation of the polysaccharide, has been shown to survive under the conditions of acidic hydrolysis that cleave the 3,6-anhydro-alpha-D-galactosidic bonds in permethylated samples of both pyruvylated beta- and pyruvylated alpha-carrageenans. As a result, two novel pyruvylated carrabiitol derivatives have been prepared.

  19. Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations

    NASA Astrophysics Data System (ADS)

    Han, Zhong; Chen, Yong

    2017-01-01

    To find intrinsically different symmetry reductions and inequivalent group invariant solutions of the 2D unsteady incompressible boundary-layer equations, a two-dimensional optimal system is constructed which attributed to the classification of the corresponding Lie subalgebras. The comprehensiveness and inequivalence of the optimal system are shown clearly under different values of invariants. Then by virtue of the optimal system obtained, the boundary-layer equations are directly reduced to a system of ordinary differential equations (ODEs) by only one step. It has been shown that not only do we recover many of the known results but also find some new reductions and explicit solutions, which may be previously unknown. Supported by the Global Change Research Program of China under Grant No. 2015CB953904, National Natural Science Foundation of China under Grant Nos. 11275072, 11435005, 11675054, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213

  20. Two-dimensional correlation analysis of near-infrared spectral intensity variations of ground wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Generalized two-dimensional (2D) correlation analysis was applied to characterize the NIR spectral intensity fluctuations among many spectra of ground wheat with multi-variable variations. Prior to 2D analysis, the spectra having neighboring protein / SDSS reference values were averaged and then new...

  1. Correlation of CpG Island Methylation of the Cytochrome P450 2E1/2D6 Genes with Liver Injury Induced by Anti-Tuberculosis Drugs: A Nested Case-Control Study

    PubMed Central

    Zhang, Jinling; Zhu, Xuebin; Li, Yuhong; Zhu, Lingyan; Li, Shiming; Zheng, Guoying; Ren, Qi; Xiao, Yonghong; Feng, Fumin

    2016-01-01

    This study investigated the role of CpG island methylation of the CYP2E1 and CYP2D6 genes in liver injury induced by anti-TB drugs from an epigenetic perspective in a Chinese cohort. A 1:1 matched nested case-control study design was applied. Pulmonary tuberculosis (TB) patients, who underwent standard anti-TB therapy and developed liver injury were defined as cases, while those who did not develop liver injury were defined as control. The two groups were matched in terms of sex, treatment regimen, and age. In 114 pairs of cases, CpG island methylation levels of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of anti-TB drug-induced liver injury (ADLI), with odds ratio (OR) values of 2.429 and 3.500, respectively (p < 0.01). Moreover, through multivariate logistic regression analysis, CpG island methylation of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of ADLI, with adjusted OR values of 4.390 (95% confidence interval (CI): 1.982–9.724) and 9.193 (95% CI: 3.624–25.888), respectively (p < 0.001). These results suggest that aberrantly elevated methylation of CpG islands of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA may increase the risk of ADLI in Chinese TB patients. PMID:27490558

  2. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the

  3. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  4. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery

    PubMed Central

    Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E.; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-01-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600

  5. Advanced Photoemission Spectroscopy Investigations Correlated with DFT Calculations on the Self-Assembly of 2D Metal Organic Frameworks Nano Thin Films.

    PubMed

    Elzein, Radwan; Chang, Chun-Min; Ponomareva, Inna; Gao, Wen-Yang; Ma, Shengqian; Schlaf, Rudy

    2016-11-16

    Metal-organic frameworks (MOFs) deposited from solution have the potential to form 2-dimensional supramolecular thin films suitable for molecular electronic applications. However, the main challenges lie in achieving selective attachment to the substrate surface, and the integration of organic conductive ligands into the MOF structure to achieve conductivity. The presented results demonstrate that photoemission spectroscopy combined with preparation in a system-attached glovebox can be used to characterize the electronic structure of such systems. The presented results demonstrate that porphyrin-based 2D MOF structures can be produced and that they exhibit similar electronic structure to that of corresponding conventional porphyrin thin films. Porphyrin MOF multilayer thin films were grown on Au substrates prefunctionalized with 4-mercaptopyridine (MP) via incubation in a glovebox, which was connected to an ultrahigh vacuum system outfitted with photoelectron spectroscopy. The thin film growth process was carried out in several sequential steps. In between individual steps the surface was characterized by photoemission spectroscopy to determine the valence bands and evaluate the growth mode of the film. A comprehensive evaluation of X-ray photoemission spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and inverse photoemission spectroscopy (IPES) data was performed and correlated with density functional theory (DFT) calculations of the density of states (DOS) of the films involved to yield the molecular-level insights into the growth and the electronic properties of MOF-based 2D thin films.

  6. Synthesis, structure and temperature-depended 2D IR correlation spectroscopy of an organo-bismuth benzoate with 1,10-phenanthroline

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Qiong; Zhong, Jie-Cen; Liu, Le-Hui; Qiu, Xing-Tai; Chen, Yi-Ping

    2016-11-01

    An organo-bismuth benzoate with phen as auxiliary ligand, [Bi(phen)(C6H5COO)(C6H4COO)] (1) (phen = 1,10-phenanthroline) has been hydrothermally synthesized from bismuth nitrate, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, PXRD, IR spectra, TG analyses, temperature-depended 2D-IR COS (two-dimensional infrared correlation spectroscopy). Interestingly, benzoate anions in 1 came from the desulfuration reaction of 2-mercaptonbenzoic acid under hydrothermal condition. Compound 1 is a discrete organo-bismuth compound with benzoate and phen ligands. The offset face-to-face π-π stacking interactions and C-H⋯O hydrogen bonds link the isolate complex into a 3D supramolecular network. The temperature-depended 2D-IR COS indicates that the stretching vibrations of Cdbnd C/Cdbnd N of aromatic rings and Cdbnd O bonds are sensitive to the temperature change.

  7. 2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap

    NASA Astrophysics Data System (ADS)

    Jaksich, Dylan; Shen, Jinwei

    2014-11-01

    Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.

  8. 2D-DIGE proteome analysis on the platelet proteins of patients with major depression

    PubMed Central

    2014-01-01

    Introduction Platelet activation is related to the psychopathology of major depression. We attempted to search and identify protein biomarkers from the platelets of patients with major depression. High resolution two-dimensional Differential Gel Electrophoresis (2D-DIGE), the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Western blot, and bioinformatic tools were applied to examine the platelet proteins of 10 patients with major depression and 10 healthy controls. Results The levels of 8 proteins were significantly different between the patients with major depression in the acute phase and healthy controls. The levels of protein disulfide-isomerase A3 (PDIA3) and F-actin-capping protein subunit beta (CAPZB) were higher in patients with major depression than in healthy controls. The levels of fibrinogen beta chain (FIBB), fibrinogen gamma chain (FIBG), retinoic acid receptor beta (RARB), glutathione peroxidase 1 (GPX1), SH3 domain-containing protein 19 (SH319), and T-complex protein 1 subunit beta (TCPB) were lower in patients with major depression than in healthy controls. Conclusions Platelet provided valuable information about the pathways and processes of inflammation/immunity, oxidative stress, and neurogenesis, related to major depression. PMID:24383611

  9. Usability analysis of 2D graphics software for designing technical clothing.

    PubMed

    Teodoroski, Rita de Cassia Clark; Espíndola, Edilene Zilma; Silva, Enéias; Moro, Antônio Renato Pereira; Pereira, Vera Lucia D V

    2012-01-01

    With the advent of technology, the computer became a working tool increasingly present in companies. Its purpose is to increase production and reduce the inherent errors in manual production. The aim of this study was to analyze the usability of 2D graphics software in creating clothing designs by a professional during his work. The movements of the mouse, keyboard and graphical tools were monitored in real time by software Camtasia 7® installed on the user's computer. To register the use of mouse and keyboard we used auxiliary software called MouseMeter®, which quantifies the number of times they pressed the right, middle and left mouse's buttons, the keyboard and also the distance traveled in meters by the cursor on the screen. Data was collected in periods of 15 minutes, 1 hour and 8 hours, consecutively. The results showed that the job is considered repetitive and high demands physical efforts, which can lead to the appearance of repetitive strain injuries. Thus, the goal of minimizing operator efforts and thereby enhance the usability of the examined tool, becomes imperative to replace the mouse by a device called tablet, which also offers an electronic pen and a drawing platform for design development.

  10. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.

    PubMed

    Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.

  11. A robust cell counting approach based on a normalized 2D cross-correlation scheme for in-line holographic images.

    PubMed

    Ra, Ho-Kyeong; Kim, Hyungseok; Yoon, Hee Jung; Son, Sang Hyuk; Park, Taejoon; Moon, Sangjun

    2013-09-07

    To achieve the important aims of identifying and marking disease progression, cell counting is crucial for various biological and medical procedures, especially in a Point-Of-Care (POC) setting. In contrast to the conventional manual method of counting cells, a software-based approach provides improved reliability, faster speeds, and greater ease of use. We present a novel software-based approach to count in-line holographic cell images using the calculation of a normalized 2D cross-correlation. This enables fast, computationally-efficient pattern matching between a set of cell library images and the test image. Our evaluation results show that the proposed system is capable of quickly counting cells whilst reliably and accurately following human counting capability. Our novel approach is 5760 times faster than manual counting and provides at least 68% improved accuracy compared to other image processing algorithms.

  12. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.

    PubMed

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-05

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL (labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm). It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments performed

  13. Variable-temperature Fourier-transform infrared studies of poly(L-lactic acid) in different states of order: A 2DCOS and PCMW2D analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Pudun; Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W.

    2016-11-01

    Variable-temperature Fourier-transform infrared (FT-IR) spectra of a predominantly amorphous and a semi-crystalline poly(L-lactic acid) (PLLA) film were measured between 30 °C and 170 °C in order to investigate their temperature-dependent structural changes as a function of the initial state of order. For an in-depth analysis of the spectral variations in the carbonyl stretching band region (1803-1722 cm-1) two-dimensional correlation spectroscopy (2DCOS) and perturbation-correlation moving-window two-dimensional (PCMW2D) analyses were applied. Significant spectral changes were observed during heating of the amorphous PLLA sample whereas the semi-crystalline specimen showed only slight band shifts as a function of the external perturbation. The PCMW2D results suggested that for efficient 2DCOS analyses the heating process should be split up in two temperature intervals. These analyses then provided information on the recrystallization of the amorphous regions, the presence of an intermediate state of order and a sequence scenario for the observed spectral changes.

  14. A detailed postprocess analysis of an argon gas puff Z-pinch plasma using SPEC2D

    NASA Astrophysics Data System (ADS)

    Chong, Y. K.; Kammash, T.; Davis, J.

    1997-05-01

    A postprocess analysis of a single time frame hydrodynamic profile from the PRISM two-dimensional MHD simulation of an argon gas puff Z-pinch plasma experiment on Double-Eagle generator at Physics Internationals, Co. is presented. In addition, spatially resolved emission spectra and filtered (K- and L-shell radiation) x-ray pinhole images, generated using the SPEC2D code, are examined toward the understanding of the emission characteristics of the hot spots and the formation of the Rayleigh-Taylor instability in the plasma.

  15. Analysis of high Reynolds numbers effects on a wind turbine airfoil using 2D wind tunnel test data

    NASA Astrophysics Data System (ADS)

    Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Snel, H.

    2016-09-01

    The aerodynamic behaviour of a wind turbine airfoil has been measured in a dedicated 2D wind tunnel test at the DNW High Pressure Wind Tunnel in Gottingen (HDG), Germany. The tests have been performed on the DU00W212 airfoil at different Reynolds numbers: 3, 6, 9, 12 and 15 million, and at low Mach numbers (below 0.1). Both clean and tripped conditions of the airfoil have been measured. An analysis of the impact of a wide Reynolds number variation over the aerodynamic characteristics of this airfoil has been performed.

  16. Global 2D stability analysis of the cross lid-driven cavity flow with a streamfunction-vorticity approach

    NASA Astrophysics Data System (ADS)

    Gogoi, Bidyut B.

    2016-07-01

    We have recently analyzed the global two-dimensional (2D) stability of the staggered lid-driven cavity (LDC) flow with a higher order compact (HOC) approach. In the analysis, critical parameters are determined for both the parallel and anti-parallel motion of the lids and a detailed analysis has been carried out on either side of the critical values. In this article, we carry out an investigation of flow stabilities inside a two-sided cross lid-driven cavity with a pair of opposite lids moving in both parallel and anti-parallel directions. On discretization, the governing 2D Navier-Stokes (N-S) equations describing the steady flow and flow perturbations results in a generalized eigenvalue problem which is solved for determining the critical parameters on four different grids. Elaborate computation is performed for a wide range of Reynolds numbers (Re) on either side of the critical values in the range 200 ⩽ Re ⩽ 10000. For flows below the critical Reynolds number Rec, our numerical results are compared with established steady-state results and excellent agreement is obtained in all the cases. For Reynolds numbers above Rec, phase plane and spectral density analysis confirmed the existence of periodic, quasi-periodic, and stable flow patterns.

  17. Application of 2D-HPLC/taste dilution analysis on taste compounds in aniseed (Pimpinella anisum L.).

    PubMed

    Pickrahn, Stephen; Sebald, Karin; Hofmann, Thomas

    2014-09-24

    This is the first application of fully automated, preparative, two-dimensional HPLC combined with sensory analysis for taste compound discovery using a sweet and licorice-like bitter-tasting aniseed extract as an example. Compared to the traditional iterative fractionation of food extracts by sensory-guided sequential application of separation techniques, the fully automated 2D-HPLC allowed the comprehensive separation of the aniseed extract into 256 subfractions and reduced the fractionation time from about 1 week to <1day. Using a smart sensory strategy to locate high-impact fractions, e.g., by evaluating first-dimension fractions by reconstituting them from second-dimension subfractions, followed by straightforward application of the taste dilution analysis on the individual second-dimension subfractions revealed the sweet-tasting trans-anethole and the bitter-tasting trans-pseudoisoeugenol 2-methylbutyrate, showing recognition thresholds of 70 and 68 μmol/L, respectively, as the primary orosensory active compounds in aniseed. 2D-HPLC combined with smart sensory analysis seems to be a promising strategy to speed the discovery of the key players imparting the attractive taste of foods.

  18. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    SciTech Connect

    Wei, Jun Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-04-15

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  19. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications

    NASA Astrophysics Data System (ADS)

    Cole, Shaun; Percival, Will J.; Peacock, John A.; Norberg, Peder; Baugh, Carlton M.; Frenk, Carlos S.; Baldry, Ivan; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Cross, Nicholas J. G.; Dalton, Gavin; Eke, Vincent R.; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Jenkins, Adrian; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2005-09-01

    We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the `baryon oscillations' that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial ns= 1 spectrum, h= 0.72 and negligible neutrino mass, the preferred parameters are Ωmh= 0.168 +/- 0.016 and a baryon fraction Ωb/Ωm= 0.185 +/- 0.046 (1σ errors). The value of Ωmh is 1σ lower than the 0.20 +/- 0.03 in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard Ωm= 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer Ωm= 0.231 +/- 0.021.

  20. 2D pair distribution function analysis of anisotropic small-angle scattering patterns from elongated nano-composite hydrogels.

    PubMed

    Nishi, Kengo; Shibayama, Mitsuhiro

    2017-03-01

    Small angle scattering (SAS) on polymer nanocomposites under elongation or shear flow is an important experimental method to investigate the reinforcement effects of the mechanical properties by fillers. However, the anisotropic scattering patterns that appear in SAS are very complicated and difficult to interpret. A representative example is a four-spot scattering pattern observed in the case of polymer materials containing silica nanoparticles, the origin of which is still in debate because of the lack of quantitative analysis. The difficulties in the interpretation of anisotropic scattering patterns mainly arise from the abstract nature of the reciprocal space. Here, we focus on the 2D pair distribution function (PDF) directly evaluated from anisotropic scattering patterns. We applied this method to elongated poly(N,N-dimethylacrylamide) gels containing silica nanoparticles (PDAM-NP gel), which show a four-spot scattering pattern under elongation. From 2D PDFs, we obtained detailed and concrete structural information about the elongated PDAM-NP gel, such as affine and non-affine displacements of directly attached and homogeneously dispersed silica nanoparticles, respectively. We proposed that nanoparticles homogeneously dispersed in the perpendicular direction are not displaced due to the collision of the adsorbed polymer layer during elongation, while those in the parallel direction are displaced in an affine way. We assumed that this suppression of the lateral compression is the origin of the four-spot pattern in this study. These results strongly indicate that our 2D PDF analysis will provide deep insight into the internal structure of polymer nanocomposites hidden in the anisotropic scattering patterns.

  1. A 2-D oscillating flow analysis in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.; Ibrahim, Mounir B.

    1991-01-01

    A two dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.

  2. Feasibility of radial and circumferential strain analysis using 2D speckle tracking echocardiography in cats

    PubMed Central

    TAKANO, Hiroshi; ISOGAI, Tomomi; AOKI, Takuma; WAKAO, Yoshito; FUJII, Yoko

    2014-01-01

    The purpose of the present study is to investigate the feasibility of strain analysis using speckle tracking echocardiography (STE) in cats and to evaluate STE variables in cats with hypertrophic cardiomyopathy (HCM). Sixteen clinically healthy cats and 17 cats with HCM were used. Radial and circumferential strain and strain rate variables in healthy cats were measured using STE to assess the feasibility. Comparisons of global strain and strain variables between healthy cats and cats with HCM were performed. Segmental assessments of left ventricle (LV) wall for strain and strain rate variables in cats with HCM were also performed. As a result, technically adequate images were obtained in 97.6% of the segments for STE analysis. Sedation using buprenorphine and acepromazine did not affect any global strain nor strain rate variable. In LV segments of cats with HCM, reduced segmental radial strain and strain rate variables had significantly related with segmental LV hypertrophy. It is concluded that STE analysis using short axis images of LV appeared to be clinically feasible in cats, having the possibility to be useful for detecting myocardial dysfunctions in cats with diseased heart. PMID:25373881

  3. Feasibility of radial and circumferential strain analysis using 2D speckle tracking echocardiography in cats.

    PubMed

    Takano, Hiroshi; Isogai, Tomomi; Aoki, Takuma; Wakao, Yoshito; Fujii, Yoko

    2015-02-01

    The purpose of the present study is to investigate the feasibility of strain analysis using speckle tracking echocardiography (STE) in cats and to evaluate STE variables in cats with hypertrophic cardiomyopathy (HCM). Sixteen clinically healthy cats and 17 cats with HCM were used. Radial and circumferential strain and strain rate variables in healthy cats were measured using STE to assess the feasibility. Comparisons of global strain and strain variables between healthy cats and cats with HCM were performed. Segmental assessments of left ventricle (LV) wall for strain and strain rate variables in cats with HCM were also performed. As a result, technically adequate images were obtained in 97.6% of the segments for STE analysis. Sedation using buprenorphine and acepromazine did not affect any global strain nor strain rate variable. In LV segments of cats with HCM, reduced segmental radial strain and strain rate variables had significantly related with segmental LV hypertrophy. It is concluded that STE analysis using short axis images of LV appeared to be clinically feasible in cats, having the possibility to be useful for detecting myocardial dysfunctions in cats with diseased heart.

  4. Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.

    1977-01-01

    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.

  5. Modeling of 2D diffusion processes based on microscopy data: parameter estimation and practical identifiability analysis

    PubMed Central

    2013-01-01

    Background Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. Methods We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. Results and conclusion As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods. PMID:24267545

  6. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements.

    PubMed

    Pham, Tran N; Watson, Simon A; Edwards, Andrew J; Chavda, Manisha; Clawson, Jacalyn S; Strohmeier, Mark; Vogt, Frederick G

    2010-10-04

    Solid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation. Dispersions of acetaminophen and indomethacin in different polymers are examined using this approach, as well as (1)H double-quantum correlation experiments to probe additional structural features. (1)H-(19)F CP-HETCOR serves a similar role for fluorinated drug molecules such as diflunisal in dispersions, providing a rapid means to prove the formation of a glass solution. Phase separation is detected using (13)C, (19)F, and (23)Na-detected (1)H T(1) experiments in crystalline and amorphous solid dispersions that contain small domains. (1)H T(1) measurements of amorphous nanosuspensions of trehalose and dextran illustrate the ability of SSNMR to detect domain size effects in dispersions that are not glass solutions via spin diffusion effects. Two previously unreported amorphous solid dispersions involving up to three components and containing voriconazole and telithromycin are analyzed using these experiments to demonstrate the general applicability of the approach.

  7. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-08-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  8. Uncertainty Estimation for 2D PIV: An In-Depth Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron; Bhattacharya, Syantan; Troolin, Dan; Vlachos, Pavlos; Pothos, Stamatios

    2016-11-01

    Uncertainty quantification methods have recently made great strides in accurately predicting uncertainties for planar PIV, and several different approaches are now documented. In the present study, we provide an analysis of these methods across different experiments and different PIV processing codes. To assess the performance of said methods, we follow the approach of Sciacchitano et al. (2015) and utilize two PIV measurement systems with overlapping fields of view-one acting as a reference (which is validated using simultaneous LDV measurements) and the other as a measurement system, paying close attention to the effects of interrogation window overlap and bias errors on the analysis. A total of three experiments were performed: a jet flow and a cylinder in cross flow at two Reynolds numbers. In brief, the standard coverages (68% confidence interval) ranged from approximately 65%-77% for PPR and MI methods, 40%-50% for image matching methods. We present an in-depth survey of both global (e.g., coverage and error histograms) and local (e.g., spatially varying statistics) parameters to examine the strengths and weaknesses of each method in monitor their responses to different regions of the experimental flows.

  9. Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis.

    PubMed

    Biot, Eric; Cortizo, Millán; Burguet, Jasmine; Kiss, Annamaria; Oughou, Mohamed; Maugarny-Calès, Aude; Gonçalves, Beatriz; Adroher, Bernard; Andrey, Philippe; Boudaoud, Arezki; Laufs, Patrick

    2016-09-15

    A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics.

  10. Multi-level model for 2D human motion analysis and description

    NASA Astrophysics Data System (ADS)

    Foures, Thomas; Joly, Philippe

    2003-01-01

    This paper deals with the proposition of a model for human motion analysis in a video. Its main caracteristic is to adapt itself automatically to the current resolution, the actual quality of the picture, or the level of precision required by a given application, due to its possible decomposition into several hierarchical levels. The model is region-based to address some analysis processing needs. The top level of the model is only defined with 5 ribbons, which can be cut into sub-ribbons regarding to a given (or an expected) level of details. Matching process between model and current picture consists in the comparison of extracted subject shape with a graphical rendering of the model built on the base of some computed parameters. The comparison is processed by using a chamfer matching algorithm. In our developments, we intend to realize a platform of interaction between a dancer and tools synthetizing abstract motion pictures and music in the conditions of a real-time dialogue between a human and a computer. In consequence, we use this model in a perspective of motion description instead of motion recognition: no a priori gestures are supposed to be recognized as far as no a priori application is specially targeted. The resulting description will be made following a Description Scheme compliant with the movement notation called "Labanotation".

  11. Heterogeneity of Particle Deposition by Pixel Analysis of 2D Gamma Scintigraphy Images

    PubMed Central

    Xie, Miao; Zeman, Kirby; Hurd, Harry; Donaldson, Scott

    2015-01-01

    Abstract Background: Heterogeneity of inhaled particle deposition in airways disease may be a sensitive indicator of physiologic changes in the lungs. Using planar gamma scintigraphy, we developed new methods to locate and quantify regions of high (hot) and low (cold) particle deposition in the lungs. Methods: Initial deposition and 24 hour retention images were obtained from healthy (n=31) adult subjects and patients with mild cystic fibrosis lung disease (CF) (n=14) following inhalation of radiolabeled particles (Tc99m-sulfur colloid, 5.4 μm MMAD) under controlled breathing conditions. The initial deposition image of the right lung was normalized to (i.e., same median pixel value), and then divided by, a transmission (Tc99m) image in the same individual to obtain a pixel-by-pixel ratio image. Hot spots were defined where pixel values in the deposition image were greater than 2X those of the transmission, and cold spots as pixels where the deposition image was less than 0.5X of the transmission. The number ratio (NR) of the hot and cold pixels to total lung pixels, and the sum ratio (SR) of total counts in hot pixels to total lung counts were compared between healthy and CF subjects. Other traditional measures of regional particle deposition, nC/P and skew of the pixel count histogram distribution, were also compared. Results: The NR of cold spots was greater in mild CF, 0.221±0.047(CF) vs. 0.186±0.038 (healthy) (p<0.005) and was significantly correlated with FEV1 %pred in the patients (R=−0.70). nC/P (central to peripheral count ratio), skew of the count histogram, and hot NR or SR were not different between the healthy and mild CF patients. Conclusions: These methods may provide more sensitive measures of airway function and localization of deposition that might be useful for assessing treatment efficacy in these patients. PMID:25393109

  12. Comparison of new and existing algorithms for the analysis of 2D radioxenon beta gamma spectra

    DOE PAGES

    Deshmukh, Nikhil; Prinke, Amanda; Miller, Brian; ...

    2017-01-13

    The aim of this study is to compare radioxenon beta–gamma analysis algorithms using simulated spectra with experimentally measured background, where the ground truth of the signal is known. We believe that this is among the largest efforts to date in terms of the number of synthetic spectra generated and number of algorithms compared using identical spectra. We generate an estimate for the minimum detectable counts for each isotope using each algorithm. The paper also points out a conceptual model to put the various algorithms into a continuum. Finally, our results show that existing algorithms can be improved and some newermore » algorithms can be better than the ones currently used.« less

  13. UCF WASTE PACKAGE SHIELDING ANALYSIS/2-D DORT (SCPB: N/A)

    SciTech Connect

    D.J. Skulina

    1996-01-18

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the dose rates from the UCF waste packages to be used by the EBS and other repository systems to incorporate ALARA practices in the overall repository design in compliance with the goals of the Waste Package Implementation Plan for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objectives of this evaluation are (1) to show the dose rate as a function of distance from the waste package surface and (2) to provide the shielding thicknesses required for the waste package transporter to meet a 10 mr/hr target dose rate at 2 meters from the transporter surface.

  14. High pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis

    SciTech Connect

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-04-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic ranges of proteome measurements. Concatenated high pH reversed phase liquid chromatography affords better separations than the strong cation exchange conventionally applied for two-dimensional shotgun proteomic analysis. For example, concatenated high pH reversed phase liquid chromatography increased identification coverage for peptides (e.g., by 1.8-fold) and proteins (e.g., by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of concatenated high pH RPLC include improved protein sequence coverage, simplified sample processing, and reduced sample losses, making this an attractive first dimension separation strategy for two-dimensional proteomics analyses.

  15. 2D analysis of polydisperse core-shell nanoparticles using analytical ultracentrifugation.

    PubMed

    Walter, Johannes; Gorbet, Gary; Akdas, Tugce; Segets, Doris; Demeler, Borries; Peukert, Wolfgang

    2016-12-19

    Accurate knowledge of the size, density and composition of nanoparticles (NPs) is of major importance for their applications. In this work the hydrodynamic characterization of polydisperse core-shell NPs by means of analytical ultracentrifugation (AUC) is addressed. AUC is one of the most accurate techniques for the characterization of NPs in the liquid phase because it can resolve particle size distributions (PSDs) with unrivaled resolution and detail. Small NPs have to be considered as core-shell systems when dispersed in a liquid since a solvation layer and a stabilizer shell will significantly contribute to the particle's hydrodynamic diameter and effective density. AUC measures the sedimentation and diffusion transport of the analytes, which are affected by the core-shell compositional properties. This work demonstrates that polydisperse and thus widely distributed NPs pose significant challenges for current state-of-the-art data evaluation methods. The existing methods either have insufficient resolution or do not correctly reproduce the core-shell properties. First, we investigate the performance of different data evaluation models by means of simulated data. Then, we propose a new methodology to address the core-shell properties of NPs. This method is based on the parametrically constrained spectrum analysis and offers complete access to the size and effective density of polydisperse NPs. Our study is complemented using experimental data derived for ZnO and CuInS2 NPs, which do not have a monodisperse PSD. For the first time, the size and effective density of such structures could be resolved with high resolution by means of a two-dimensional AUC analysis approach.

  16. Proteomic analysis of heat treated bitter gourd (Momordica charantia L. var. Hong Kong Green) using 2D-DIGE.

    PubMed

    Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani

    2014-04-01

    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd.

  17. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  18. Analysis of 2D periodic nanostructures with an oxide overlayer via spectroscopic ellipsometry.

    PubMed

    Ghong, T H; Byun, J S; Han, S-H; Chung, J-M; Kim, Y D

    2011-07-01

    The accurate nondestructive determination of the shapes or critical dimensions of periodic nanostructures is essential to the current integrated-circuits technology. Optical critical dimension (OCD) metrology is fast, nondestructive, and can be used in air, allows higher sampling rates compared to the non-optical methods such as scanning electron microscopy (SEM) or atomic-force microscopy (AFM), and does not damage the sample. The data are typically analyzed via rigorous coupled-wave analysis (RCWA), where the sample is modeled as a series of layers whose dimensional parameters are determined by a least-squares fit. The layers are typically approximated as a combination of core material and ambient. Oxide overlayers and surface roughness are common, however, and call into question two-phase approximation. In this study, a structure that is periodic in two dimensions and that is coated with a thin (3 nm) oxide was studied, and an extension of the RCWA method that allows structural information to be extracted from optical data even in the presence of oxide overlayers or surface roughness was developed.

  19. A Complete 2D Stability Analysis of Fast MHD Shocks in an Ideal Gas

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    An algorithm of numerical testing of the uniform Lopatinski condition for linearized stability problems for 1-shocks is suggested. The algorithm is used for finding the domains of uniform stability, neutral stability, and instability of planar fast MHD shocks. A complete stability analysis of fast MHD shock waves is first carried out in two space dimensions for the case of an ideal gas. Main results are given for the adiabatic constant γ=5/3 (mono-atomic gas), that is most natural for the MHD model. The cases γ=7/5 (two-atomic gas) and γ>5/3 are briefly discussed. Not only the domains of instability and linear (in the usual sense) stability, but also the domains of uniform stability, for which a corresponding linearized stability problem satisfies the uniform Lopatinski condition, are numerically found for different given angles of inclination of the magnetic field behind the shock to the planar shock front. As is known, uniform linearized stability implies the nonlinear stability, that is local existence of discontinuous shock front solutions of a quasilinear system of hyperbolic conservation laws.

  20. 2D-PAGE protein analysis of dinoflagellate Alexandrium minutum based on three different temperatures

    NASA Astrophysics Data System (ADS)

    Latib, Norhidayu Abdul; Norshaha, Safida Anira; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    Harmful algae bloom or red tide seems to be considered as threat to ecosystem, especially to human consumption because of the production of neurotoxin by dinoflagellates species such as Alexandrium minutum which can lead to paralytic shellfish poisoning. The aim of this study is to determine the most suitable method for protein extraction of A. minutum followed by determination of differential protein expression of A. minutum on three different temperatures (15°C, 26°C and 31.5°C). After the optimization, the protein extract was subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) to compare the intensity and distribution of the protein spots. Based on quantitative and qualitative protein assessment, use of Trizol reagent is the most suitable method to extract protein from A. minutum. 2-DE analysis of the samples results in different distribution and intensity of the protein spots were compared between 15°C, 26°C and 31.5°C.

  1. Micropolar dissipative models for the analysis of 2D dispersive waves in periodic lattices

    NASA Astrophysics Data System (ADS)

    Reda, H.; Ganghoffer, J. F.; Lakiss, H.

    2017-03-01

    The computation of the dispersion relations for dissipative periodic lattices having the attributes of metamaterials is an actual research topic raising the interest of researchers in the field of acoustics and wave propagation phenomena. We analyze in this contribution the impact of wave damping on the dispersion features of periodic lattices, which are modeled as beam-lattices. The band diagram structure and damping ratio are computed for different repetitive lattices, based on the homogenized continuum response of the initially discrete lattice architecture, modeled as Kelvin-Voigt viscoelastic beams. Three of these lattices (reentrant hexagonal, chiral diamond, hexachiral lattice) are auxetic metamaterials, since they show negative Poisson's ratio. The effective viscoelastic anisotropic continuum behavior of the lattices is first computed in terms of the homogenized stiffness and viscosity matrices, based on the discrete homogenization technique. The dynamical equations of motion are obtained for an equivalent homogenized micropolar continuum evaluated based on the homogenized properties, and the dispersion relation and damping ratio are obtained by inserting an harmonic plane waves Ansatz into these equations. The comparison of the acoustic properties obtained in the low frequency range for the four considered lattices shows that auxetic lattices attenuate waves at lower frequencies compared to the classical hexagonal lattice. The diamond chiral lattice shows the best attenuation properties of harmonic waves over the entire Brillouin zone, and the hexachiral lattice presents better acoustic properties than the reentrant hexagonal lattice. The range of validity of the effective continuum obtained by the discrete homogenization has been assessed by comparing the frequency band structure of this continuum with that obtained by a Floquet-Bloch analysis.

  2. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  3. Characterization of the isomeric configuration and impurities of (Z)-endoxifen by 2D NMR, high resolution LC⬜MS, and quantitative HPLC analysis.

    PubMed

    Elkins, Phyllis; Coleman, Donna; Burgess, Jason; Gardner, Michael; Hines, John; Scott, Brendan; Kroenke, Michelle; Larson, Jami; Lightner, Melissa; Turner, Gregory; White, Jonathan; Liu, Paul

    2014-01-01

    (Z)-Endoxifen (4-hydroxy-N-desmethyltamoxifen), an active metabolite generated via actions of CYP3A4/5 and CYP2D6, is a more potent selective estrogen receptor modulator (SERM) than tamoxifen. In the MCF-7 human mammary tumor xenograft model with female athymic mice, (Z)-endoxifen, at an oral dose of 4⬜8 mg/kg, significantly inhibits tumor growth. (Z)-Endoxifen's potential as an alternative therapeutic agent independent of CYP2D6 activities, which can vary widely in ER+ breast cancer patients, is being actively evaluated. This paper describes confirmation of the configuration of the active (Z)-isomer through 2D NMR experiments, including NOE (ROESY) to establish spatial proton⬜proton correlations, and identification of the major impurity as the (E)-isomer in endoxifen drug substance by HPLC/HRMS (HPLC/MS-TOF). Stability of NMR solutions was confirmed by HPLC/UV analysis. For pre-clinical studies, a reverse-phase HPLC⬜UV method, with methanol/water mobile phases containing 10 mM ammonium formate at pH 4.3, was developed and validated for the accurate quantitation and impurity profiling of drug substance and drug product. Validation included demonstration of linearity, method precision, accuracy, and specificity in the presence of impurities, excipients (for the drug product), and degradation products. Ruggedness and reproducibility of the method were confirmed by collaborative studies between two independent laboratories. The method is being applied for quality control of the API and oral drug product. Kinetic parameters of Z- to E-isomerization were also delineated in drug substance and in aqueous formulation, showing conversion at temperatures above 25 °C.

  4. Characterization of the isomeric configuration and impurities of (Z)-endoxifen by 2D NMR, high resolution LC–MS, and quantitative HPLC analysis

    PubMed Central

    Elkins, Phyllis; Coleman, Donna; Burgess, Jason; Gardner, Michael; Hines, John; Scott, Brendan; Kroenke, Michelle; Larson, Jami; Lightner, Melissa; Turner, Gregory; White, Jonathan; Liu, Paul

    2014-01-01

    (Z)-Endoxifen (4-hydroxy-N-desmethyltamoxifen), an active metabolite generated via actions of CYP3A4/5 and CYP2D6, is a more potent selective estrogen receptor modulator (SERM) than tamoxifen. In the MCF-7 human mammary tumor xenograft model with female athymic mice, (Z)-endoxifen, at an oral dose of 4– 8 mg/kg, significantly inhibits tumor growth. (Z)-Endoxifen's potential as an alternative therapeutic agent independent of CYP2D6 activities, which can vary widely in ER+ breast cancer patients, is being actively evaluated. This paper describes confirmation of the configuration of the active (Z)-isomer through 2D NMR experiments, including NOE (ROESY) to establish spatial proton–proton correlations, and identification of the major impurity as the (E)-isomer in endoxifen drug substance by HPLC/HRMS (HPLC/MS-TOF). Stability of NMR solutions was confirmed by HPLC/UV analysis. For pre-clinical studies, a reverse-phase HPLC–UV method, with methanol/water mobile phases containing 10 mM ammonium formate at pH 4.3, was developed and validated for the accurate quantitation and impurity profiling of drug substance and drug product. Validation included demonstration of linearity, method precision, accuracy, and specificity in the presence of impurities, excipients (for the drug product), and degradation products. Ruggedness and reproducibility of the method were confirmed by collaborative studies between two independent laboratories. The method is being applied for quality control of the API and oral drug product. Kinetic parameters of Z- to E-isomerization were also delineated in drug substance and in aqueous formulation, showing conversion at temperatures above 25 °C. PMID:24055701

  5. Stress analysis of a rectangular implant in laminated composites using 2-D and 3-D finite elements

    NASA Technical Reports Server (NTRS)

    Chow, Wai T.; Graves, Michael J.

    1992-01-01

    An analysis method using the FEM based on the Hellinger-Reissner variation principle has been developed to determine the 3-D stresses and displacements near a rectangular implant inside a laminated composite material. Three-dimensional elements are employed in regions where the interlaminar stress is considered to be significant; 2-D elements are used in other areas. Uniaxially loaded graphite-epoxy laminates have been analyzed; the implant was modeled as four plies of 3501/6 epoxy located in the middle of the laminate. It is shown that the interlaminar stresses are an order of magnitude lower than the stress representing the applied far-field load. The stress concentration factors of both the interlaminar and in-plane stresses depend on the stacking sequence of the laminate.

  6. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening.

    PubMed

    Andrade, Jonathan de Magalhães; Toledo, Tatiana Torres; Nogueira, Silvia Beserra; Cordenunsi, Beatriz Rosana; Lajolo, Franco Maria; do Nascimento, João Roberto Oliveira

    2012-06-18

    A comparative proteomic investigation between the pre-climacteric and climacteric mango fruits (cv. Keitt) was performed to identify protein species with variable abundance during ripening. Proteins were phenol-extracted from fruits, cyanine-dye-labeled, and separated on 2D gels at pH 4-7. Total spot count of about 373 proteins spots was detected in each gel and forty-seven were consistently different between pre-climacteric and climacteric fruits and were subjected to LC-MS/MS analysis. Functional classification revealed that protein species involved in carbon fixation and hormone biosynthesis decreased during ripening, whereas those related to catabolism and the stress-response, including oxidative stress and abiotic and pathogen defense factors, accumulated. In relation to fruit quality, protein species putatively involved in color development and pulp softening were also identified. This study on mango proteomics provides an overview of the biological processes that occur during ripening.

  7. The 2dF Galaxy Redshift Survey: correlation with the ROSAT-ESO flux-limited X-ray galaxy cluster survey

    NASA Astrophysics Data System (ADS)

    Hilton, Matt; Collins, Chris; De Propris, Roberto; Baldry, Ivan K.; Baugh, Carlton M.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Cole, Shaun; Colless, Matthew; Couch, Warrick J.; Dalton, Gavin B.; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Frenk, Carlos S.; Glazebrook, Karl; Jackson, Carole A.; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve J.; Madgwick, Darren; Norberg, Peder; Peacock, John A.; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2005-10-01

    The ROSAT-European Southern Observatory (ESO) flux-limited X-ray (REFLEX) galaxy cluster survey and the Two-degree Field Galaxy Redshift Survey (2dFGRS), respectively, comprise the largest, homogeneous X-ray selected cluster catalogue and completed galaxy redshift survey. In this work, we combine these two outstanding data sets in order to study the effect of the large-scale cluster environment, as traced by X-ray luminosity, on the properties of the cluster member galaxies. We measure the LX-σr relation from the correlated data set and find it to be consistent with recent results found in the literature. Using a sample of 19 clusters with LX>= 0.36 × 1044 erg s-1 in the 0.1-2.4 keV band, and 49 clusters with lower X-ray luminosity, we find that the fraction of early spectral type (η<=-1.4), passively evolving galaxies is significantly higher in the high-LX sample within R200. We extend the investigation to include composite bJ cluster luminosity functions, and find that the characteristic magnitude of the Schechter-function fit to the early-type luminosity function is fainter for the high-LX sample compared to the low-LX sample (ΔM*= 0.58 +/- 0.14). This seems to be driven by a deficit of such galaxies with MbJ~-21. In contrast, we find no significant differences between the luminosity functions of star-forming, late-type galaxies. We believe these results are consistent with a scenario in which the high-LX clusters are more dynamically evolved systems than the low-LX clusters.

  8. WASI-2D: A software tool for regionally optimized analysis of imaging spectrometer data from deep and shallow waters

    NASA Astrophysics Data System (ADS)

    Gege, Peter

    2014-01-01

    An image processing software has been developed which allows quantitative analysis of multi- and hyperspectral data from oceanic, coastal and inland waters. It has been implemented into the Water Colour Simulator WASI, which is a tool for the simulation and analysis of optical properties and light field parameters of deep and shallow waters. The new module WASI-2D can import atmospherically corrected images from airborne sensors and satellite instruments in various data formats and units like remote sensing reflectance or radiance. It can be easily adapted by the user to different sensors and to optical properties of the studied area. Data analysis is done by inverse modelling using established analytical models. The bio-optical model of the water column accounts for gelbstoff (coloured dissolved organic matter, CDOM), detritus, and mixtures of up to 6 phytoplankton classes and 2 spectrally different types of suspended matter. The reflectance of the sea floor is treated as sum of up to 6 substrate types. An analytic model of downwelling irradiance allows wavelength dependent modelling of sun glint and sky glint at the water surface. The provided database covers the spectral range from 350 to 1000 nm in 1 nm intervals. It can be exchanged easily to represent the optical properties of water constituents, bottom types and the atmosphere of the studied area.

  9. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements

    SciTech Connect

    Wang, Yueqi; Lava, Pascal; Reu, Phillip; Debruyne, Dimitri; Van Houtte, Paul

    2015-12-23

    This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.

  10. Two-dimensional correlation analysis and waterfall plots for detecting positional fluctuations of spectral changes.

    PubMed

    Ryu, Soo Ryeon; Noda, Isao; Lee, Chang-Hee; Lee, Phil Ho; Hwang, Hyonseok; Jung, Young Mee

    2011-04-01

    In this study, we demonstrate the potentials and pitfalls of using various waterfall plots, such as conventional waterfall plots, two-dimensional (2D) gradient maps, moving window two-dimensional analysis (MW2D), perturbation-correlation moving window two-dimensional analysis (PCMW2D), and moving window principal component analysis two-dimensional correlation analysis (MWPCA2D), in the detection of the existence of band position shifts. Waterfall plots of the simulated spectral datasets are compared with conventional 2D correlation spectra. Different waterfall plots give different features in differentiating the behaviors of frequency shift versus two overlapped bands. Two-dimensional correlation spectra clearly show the very characteristic cluster pattern for both band position shifts and two overlapped bands. The vivid pattern differences are readily detectable in various waterfalls plots. Various types of waterfall plots of temperature-dependent infrared (IR) spectra of ethylene glycol, which does not have the actual band shift but only two overlapped bands, and of Fourier transform infrared (FT-IR) spectra of 2 wt% acetone in a mixed solvent of CHCl(3)/CCl(4) demonstrate that waterfall plots are not able to unambiguously detect the difference between real band shift and two overlapped bands. Thus, the presence or lack of the asynchronous 2D butterfly pattern seems like the most effective diagnostic tool for band shift detection.

  11. Integral equation analysis and optimization of 2D layered nanolithography masks by complex images Green's function technique in TM polarization.

    PubMed

    Haghtalab, Mohammad; Faraji-Dana, Reza

    2012-05-01

    Analysis and optimization of diffraction effects in nanolithography through multilayered media with a fast and accurate field-theoretical approach is presented. The scattered field through an arbitrary two-dimensional (2D) mask pattern in multilayered media illuminated by a TM-polarized incident wave is determined by using an electric field integral equation formulation. In this formulation the electric field is represented in terms of complex images Green's functions. The method of moments is then employed to solve the resulting integral equation. In this way an accurate and computationally efficient approximate method is achieved. The accuracy of the proposed method is vindicated through comparison with direct numerical integration results. Moreover, the comparison is made between the results obtained by the proposed method and those obtained by the full-wave finite-element method. The ray tracing method is combined with the proposed method to describe the imaging process in the lithography. The simulated annealing algorithm is then employed to solve the inverse problem, i.e., to design an optimized mask pattern to improve the resolution. Two binary mask patterns under normal incident coherent illumination are designed by this method, where it is shown that the subresolution features improve the critical dimension significantly.

  12. Interaction Between Tropical Convection and its Embedding Environment: An Energetics Analysis of a 2-D Cloud Resolving Simulation

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    The phase relation between the perturbation kinetic energy (K') associated with the tropical convection and the horizontal-mean moist available potential energy (bar-P) associated with environmental conditions is investigated by an energetics analysis of a numerical experiment. This experiment is performed using a 2-D cloud resolving model forced by the TOGA-COARE derived vertical velocity. The imposed upward motion leads to a decrease of bar-P directly through the associated vertical advective cooling, and to an increase of K' directly through cloud related processes, feeding the convection. The maximum K' and its maximum growth rate lags and leads, respectively, the maximum imposed large-scale upward motion by about 1-2 hours, indicating that convection is phase locked with large-scale forcing. The dominant life cycle of the simulated convection is about 9 hours, whereas the time scales of the imposed large-scale forcing are longer than the diurnal cycle. In the convective events, maximum growth of K' leads maximum decay of the perturbation moist available potential energy (P') by about 3 hours through vertical heat transport by perturbation circulation, and perturbation cloud heating. Maximum decay of P' leads maximum decay of bar-P by about one hour through the perturbation radiative, processes, the horizontal-mean cloud heating, and the large-scale vertical advective cooling. Therefore, maximum gain of K' occurs about 4-5 hours before maximum decay of bar-P.

  13. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  14. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  15. The roles of carbohydrates, proteins and lipids in the process of aggregation of natural marine organic matter investigated by means of 2D correlation spectroscopy applied to infrared spectra.

    PubMed

    Mecozzi, Mauro; Pietrantonio, Eva; Pietroletti, Marco

    2009-01-01

    In this paper the marine organic matter soluble in an alkaline medium called extractable humic substance (EHS), was extracted from three sediment samples of Tyrrhenian Sea and separated by precipitation at pH 2 in the two fractions of fulvic acids (FAs) and humic acids (HAs). FAs were further fractionated in seven sub-samples of different molecular weight (mw) by means of seven different ultrafiltration membranes operating in the range between mw<1 kDa and mw>100 kDa. Then the qualitative composition of each sample of fractionated FAs and HAs was studied by means of one-dimensional Fourier transform infrared spectroscopy in reflectance mode (FTIR-DRIFT) and by two-dimensional (2D) correlation spectroscopy both in wavelength-wavelength (WW) and in sample-sample (SS) mode. The application of 2D correlation WW spectroscopy allows to elucidate the different roles played by carbohydrates and proteins with respect to some lipid compounds such as fatty acids and ester fatty acids during the process of aggregate formations from mw approximately 1 kDa to higher size aggregates. In addition, 2D correlation WW spectroscopy allows to observe some peculiar interactions between carbohydrates and proteins in the formation of EHS aggregates, interactions which vary from a sample to another sample. The results of 2D correlation SS spectroscopy confirm the general evidences obtained by 2D WW spectroscopy and moreover, they also describe the formation of EHS aggregates as a complex process where evolutionary links and connectivity between aggregates of neighbour molecular size ranges are not evident. Two-dimensional correlation spectroscopy applied to FTIR spectroscopy shows to be a powerful tool for the investigation of the mechanisms involved in EHS aggregation because it supports the acquisition of structural information which sometimes can be hardly obtained by one-dimensional FTIR spectroscopy.

  16. The roles of carbohydrates, proteins and lipids in the process of aggregation of natural marine organic matter investigated by means of 2D correlation spectroscopy applied to infrared spectra

    NASA Astrophysics Data System (ADS)

    Mecozzi, Mauro; Pietrantonio, Eva; Pietroletti, Marco

    2009-01-01

    In this paper the marine organic matter soluble in an alkaline medium called extractable humic substance (EHS), was extracted from three sediment samples of Tyrrhenian Sea and separated by precipitation at pH 2 in the two fractions of fulvic acids (FAs) and humic acids (HAs). FAs were further fractionated in seven sub-samples of different molecular weight (mw) by means of seven different ultrafiltration membranes operating in the range between mw < 1 kDa and mw > 100 kDa. Then the qualitative composition of each sample of fractionated FAs and HAs was studied by means of one-dimensional Fourier transform infrared spectroscopy in reflectance mode (FTIR-DRIFT) and by two-dimensional (2D) correlation spectroscopy both in wavelength-wavelength (WW) and in sample-sample (SS) mode. The application of 2D correlation WW spectroscopy allows to elucidate the different roles played by carbohydrates and proteins with respect to some lipid compounds such as fatty acids and ester fatty acids during the process of aggregate formations from mw ˜1 kDa to higher size aggregates. In addition, 2D correlation WW spectroscopy allows to observe some peculiar interactions between carbohydrates and proteins in the formation of EHS aggregates, interactions which vary from a sample to another sample. The results of 2D correlation SS spectroscopy confirm the general evidences obtained by 2D WW spectroscopy and moreover, they also describe the formation of EHS aggregates as a complex process where evolutionary links and connectivity between aggregates of neighbour molecular size ranges are not evident. Two-dimensional correlation spectroscopy applied to FTIR spectroscopy shows to be a powerful tool for the investigation of the mechanisms involved in EHS aggregation because it supports the acquisition of structural information which sometimes can be hardly obtained by one-dimensional FTIR spectroscopy.

  17. Functional Multiple-Set Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  18. FDTD analysis of 2D triangular-lattice photonic crystals with arbitrary-shape inclusions based on unit cell transformation

    NASA Astrophysics Data System (ADS)

    Ma, Zetao; Ogusu, Kazuhiko

    2009-04-01

    A finite-difference time-domain method based on Yee's orthogonal cell is utilized to calculate the band structures of 2D triangular-lattice-based photonic crystals through a simple modification to properly shifting the boundaries of the original unit cell. A strategy is proposed for transforming the triangular unit cell into an orthogonal one, which can be used to calculate the band structures of 2D PhCs with various shapes of inclusions, such as triangular, quadrangular, and hexagonal shapes, to overcome the shortage of plane-wave expansion method for circular one. The band structures of 2D triangular-lattice-based PhCs with hexagonal air-holes are calculated and discussed for different values of its radius and rotation angle. The obtained results provide an insight to manipulate the band structures of PhCs.

  19. Time evolution analysis of a 2D solid gas equilibrium: a model system for molecular adsorption and diffusion

    NASA Astrophysics Data System (ADS)

    Berner, S.; Brunner, M.; Ramoino, L.; Suzuki, H.; Güntherodt, H.-J.; Jung, T. A.

    2001-11-01

    The adsorption of sub-phthalocyanine molecules on Ag(1 1 1) has been studied by means of scanning tunneling microscopy (STM). The molecules are observed in different two-dimensional (2D) phases of adsorption which coexist in thermodynamic equilibrium. In the condensed phase the molecules form well-ordered islands with a honeycomb pattern. In the gas phase single molecules can be discriminated in single scan lines by characteristic tip excursions which occur randomly. The energy barrier for surface diffusion as well as the condensation energy to form 2D islands is estimated and discussed.

  20. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    NASA Astrophysics Data System (ADS)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is

  1. 2D FT-IR Study of Compositional and Structural Change in Developing Cotton Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of immature and mature cotton fibers. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity of 660 cm-1 to ...

  2. Analysis of the terrestrial ion foreshock: 2D Full-Particle simulation of a curved supercritical shock

    NASA Astrophysics Data System (ADS)

    Lembege, B.; Savoini, P.; Stienlet, J.

    2013-05-01

    Two distinct ion populations backstreaming into the solar wind have been clearly evidenced by various space missions within the quasi-perpendicular region of the ion foreshock located upstream of the Earth's Bow shock (i.e. for 45° ≤ Theta_Bn ≤ 90°, where Theta_Bn is the angle between the shock normal and the upstream magnetostatic field): (i) field-aligned ion beams (« FAB ») characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions («GPB »), characterized by a NON gyrotropic distribution. The origin of these backstreaming ions has not been clearly identified and is presently analyzed with the help of 2D PIC simulation of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described within a self consistent approach. Present simulations evidence that these two populations can be effectively created directly by the shock front without invoking microinstabilities. The analysis of both individual and statistical ion trajectories evidences that: (i) two new parameters, namely the interaction time DT_inter and distance of penetration L_depth into the shock wave, play a key role and allow to discriminate these two populations. "GPB" population is characterized by a very short interaction time (DT_inter = 1 to 2 Tci) in comparison to the "FAB" population (DT_inter = 2 Tci to 10 Tci) which moves back and forth between the upstream edge of the shock front and the overshoot, where tci is the upstream ion gyroperiod. (ii) the importance of the injection angle (i.e. the angle between the normal of the shock front and the gyration velocity when ions reach the shock) to understand how the reflection process takes place. (iii) "FAB" population drifts along the curved shock front scanning a large Theta_Bn range from 90°. (iv) "GPB" population is embedded within the "FAB" population near the shock front which explains the difficulty to identify such a population in the experimental

  3. Modeling and Analysis of Granite Matrix Pore Structure and Hydraulic Characteristics in 2D and 3D Networks

    NASA Astrophysics Data System (ADS)

    Gvozdik, L.; Polak, M.; Zaruba, J.; Vanecek, M.

    2010-12-01

    A geological environment labeled as a Granite massif represents in terms of groundwater flow and transport a distinct hydrogeological environment from that of sedimentary basins, the characterisation of which is generally more complex and uncertain. Massifs are composed of hard crystalline rocks with the very low effective porosity. Due to their rheological properties such rocks are predisposed to brittle deformation resulting from changes in stress conditions. Our specific research project (Research on the influence of intergrangular porosity on deep geological disposal: geological formations, methodology and the development of measurement apparatus) is focussed on the problem of permeable zones within apparently undisturbed granitic rock matrix. The project including the both laboratory and in-situ tracer tests study migration along and through mineral grains in fresh and altered granite. The objective of the project is to assess whether intergranular porosity is a general characteristic of the granitic rock matrix or subject to significant evolution resulting from geochemical and/or hydrogeochemical processes, geotechnical and/or mechanical processes. Moreover, the research is focussed on evaluating methods quantifying intergranular porosity by both physical testing and mathematical modelling using verified standard hydrological software tools. Groundwater flow in microfractures and intergranular pores in granite rock matrix were simulated in three standard hydrogeological modeling programs with completely different conceptual approaches: MODFLOW (Equivalent Continuum concept), FEFLOW (Discrete Fracture and Equivalent Continuum concepts) and NAPSAC (Discrete Fracture Network concept). Specialized random fracture generators were used for creation of several 2D and 3D models in each of the chosen program. Percolation characteristics of these models were tested and analyzed. Several scenarios of laboratory tests of the rock samples permeability made in triaxial

  4. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    EPA Science Inventory

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  5. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  6. MO-F-CAMPUS-J-05: Using 2D Relative Gamma Analysis From EPID Image as a Predictor of Plan Deterioration Due to Anatomical Changes

    SciTech Connect

    Piron, O; Varfalvy, N; Archambault, L

    2015-06-15

    Purpose: One of the side effects of radiotherapy for head and neck (H&N) cancer is the patient’s anatomical changes. The changes can strongly affect the planned dose distribution. In this work, our goal is to demonstrate that relative analysis of EPID images is a fast and simple method to detect anatomical changes that can have a strong dosimetric impact on the treatment plan for H&N patients. Methods: EPID images were recorded at every beam and all fractions for 50 H&N patients. Of these, five patients that showed important anatomical changes were selected to evaluate dosimetric impacts of these changes and to correlate them with a 2D relative gamma analysis of EPID images. The planning CT and original contours were deformed onto CBCTs (one mid treatment and one at the end of treatment). By using deformable image registration, it was possible to map accurate CT numbers from the planning CT to the anatomy of the day obtained with CBCTs. Clinical treatment plan were then copied on the deformed dataset and dose was re-computed. In parallel, EPID images were analysed using the gamma index (3%3mm) relative to the first image. Results: It was possible to divide patients in two distinct, statistically different (p<0.001) categories using an average gamma index of 0.5 as a threshold. Below this threshold no significant dosimetric degradation of the plan are observed. Above this threshold two types of plan deterioration were seen: (1) target dose increases, but coverage remains adequate while dose to at least one OAR increases beyond tolerances; (2) the OAR doses remain low, but the target dose is reduced and coverage becomes inadequate. Conclusion: Relative analysis gamma of EPID images could indeed be a fast and simple method to detect anatomical changes that can potentially deteriorates treatment plan for H&N patients. This work was supported in part by Varian Medical System.

  7. Determination of chemical changes in Isatis indigotica seeds carried after Chinese first spaceship with FTIR and 2D-IR correlation spectroscopy.

    PubMed

    Chen, Xiangdong; Keong, Choong Yew; Mei, Xiling; Lan, Jin

    2014-04-24

    Spaceflight represents a complex environmental condition. Space mutagenesis breeding has achieved and marked certain results over the years. This method was employed in our previous studies in order to obtain improved germplasm of Isatis indigotica. This study is to determine the chemical changes in I. indigotica seeds carried after Chinese first spaceship (Shenzhou I). Fourier transform infrared (FTIR), second derivative and two-dimensional infrared (2DIR) correlation spectroscopy were used in analysis. Not much differences between the two spectra were found except the peaks in the range of 1500-1200 cm(-)(1) which was about 7 cm(-)(1) different and indicated the absorption could be initialed from different bonds. SP4 showed different derivative compared with C4 in the second derivative spectra of 1200-800 cm(-)(1). The stronger signal of 2DIR in SP4 indicated the protein content of the seed was changed after spaceflight. It is concluded that spaceflight provided an extreme condition that caused changes of chemical properties in I. indigotica.

  8. Selection of the NIR region for a regression model of the ethanol concentration in fermentation process by an online NIR and mid-IR dual-region spectrometer and 2D heterospectral correlation spectroscopy.

    PubMed

    Nishii, Takashi; Genkawa, Takuma; Watari, Masahiro; Ozaki, Yukihiro

    2012-01-01

    A new selection procedure of an informative near-infrared (NIR) region for regression model building is proposed that uses an online NIR/mid-infrared (mid-IR) dual-region spectrometer in conjunction with two-dimensional (2D) NIR/mid-IR heterospectral correlation spectroscopy. In this procedure, both NIR and mid-IR spectra of a liquid sample are acquired sequentially during a reaction process using the NIR/mid-IR dual-region spectrometer; the 2D NIR/mid-IR heterospectral correlation spectrum is subsequently calculated from the obtained spectral data set. From the calculated 2D spectrum, a NIR region is selected that includes bands of high positive correlation intensity with mid-IR bands assigned to the analyte, and used for the construction of a regression model. To evaluate the performance of this procedure, a partial least-squares (PLS) regression model of the ethanol concentration in a fermentation process was constructed. During fermentation, NIR/mid-IR spectra in the 10000 - 1200 cm(-1) region were acquired every 3 min, and a 2D NIR/mid-IR heterospectral correlation spectrum was calculated to investigate the correlation intensity between the NIR and mid-IR bands. NIR regions that include bands at 4343, 4416, 5778, 5904, and 5955 cm(-1), which result from the combinations and overtones of the C-H group of ethanol, were selected for use in the PLS regression models, by taking the correlation intensity of a mid-IR band at 2985 cm(-1) arising from the CH(3) asymmetric stretching vibration mode of ethanol as a reference. The predicted results indicate that the ethanol concentrations calculated from the PLS regression models fit well to those obtained by high-performance liquid chromatography. Thus, it can be concluded that the selection procedure using the NIR/mid-IR dual-region spectrometer combined with 2D NIR/mid-IR heterospectral correlation spectroscopy is a powerful method for the construction of a reliable regression model.

  9. Localization of the CYP2D gene locus to human chromosome 22q13. 1 by polymerase chain reaction, in situ hybridization, and linkage analysis

    SciTech Connect

    Gouch, A.C.; Howell, S.M.; Bryant, S.P.; Spurr, N.K. ); Smith, C.A.D.; Wolf, C.R. )

    1993-02-01

    Using a combination of somatic cell hybrids, in situ hybridization, and linkage mapping, we have been able to localize the cytochrome P450 CYP2D6 gene to chromosome 22 in the region q13.1. Linkage analysis, using locus-specific primers, showed a maximum sex-average lod score of 8.12 ([theta] = 0.00) between the marker pH130 (D22S64) and CYPsD6, of 6.92 ([theta] - 0.00) between the marker KI839 (D22S95) and CYP2D6, and 4.80 ([theta] = 0.036) between the platelet-derived growth factor [beta] subunit gene (PDGFB) and CYP2D6. 16 refs., 2 figs.

  10. Quantification and geometric analysis of coiling patterns in gastropod shells based on 3D and 2D image data.

    PubMed

    Noshita, Koji

    2014-12-21

    The morphology of gastropod shells has been a focus of analyses in ecology and evolution. It has recently emerged as an important issue in developmental biology, thanks to recent advancements in molecular biological techniques. The growing tube model is a theoretical morphological model for describing various coiling patterns of molluscan shells, and it is a useful theoretical tool to relate local tissue growth with global shell morphology. However, the growing tube model has rarely been adopted in empirical research owing to the difficulty in estimating the parameters of the model from morphological data. In this article, I solve this problem by developing methods of parameter estimation when (1) 3D Computed Tomography (CT) data are available and (2) only 2D image data (such as photographs) are available. When 3D CT data are available, the parameters can be estimated by fitting an analytical solution of the growing tube model to the data. When only 2D image data are available, we first fit Raup׳s model to the 2D image data and then convert the parameters of Raup׳s model to those of the growing tube model. To illustrate the use of these methods, I apply them to data generated by a computer simulation of the model. Both methods work well, except when shells grow without coiling. I also demonstrate the effectiveness of the methods by applying the model to actual 3D CT data and 2D image data of land snails. I conclude that the method proposed in this article can reconstruct the coiling pattern from observed data.

  11. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis.

    PubMed

    de Oliveira, Ricardo A G; Camargo, Fiamma; Pesquero, Naira C; Faria, Ronaldo Censi

    2017-03-08

    This paper describes the fabrication of 2D and 3D microfluidic paper-based analytical devices (μPADs) for monitoring glucose, total protein, and nitrite in blood serum and artificial urine. A new method of cutting and sealing filter paper to construct μPADs was demonstrated. Using an inexpensive home cutter printer soft cellulose-based filter paper was easily and precisely cut to produce pattern hydrophilic microchannels. 2D and 3D μPADs were designed with three detection zones each for the colorimetric detection of the analytes. A small volume of samples was added to the μPADs, which was photographed after 15 min using a digital camera. Both μPADs presented an excellent analytical performance for all analytes. The 2D device was applied in artificial urine samples and reached limits of detection (LODs) of 0.54 mM, 5.19 μM, and 2.34 μM for glucose, protein, and nitrite, respectively. The corresponding LODs of the 3D device applied for detecting the same analytes in artificial blood serum were 0.44 mM, 1.26 μM, and 4.35 μM.

  12. Analysis of EEG signals regularity in adults during video game play in 2D and 3D.

    PubMed

    Khairuddin, Hamizah R; Malik, Aamir S; Mumtaz, Wajid; Kamel, Nidal; Xia, Likun

    2013-01-01

    Video games have long been part of the entertainment industry. Nonetheless, it is not well known how video games can affect us with the advancement of 3D technology. The purpose of this study is to investigate the EEG signals regularity when playing video games in 2D and 3D modes. A total of 29 healthy subjects (24 male, 5 female) with mean age of 21.79 (1.63) years participated. Subjects were asked to play a car racing video game in three different modes (2D, 3D passive and 3D active). In 3D passive mode, subjects needed to wear a passive polarized glasses (cinema type) while for 3D active, an active shutter glasses was used. Scalp EEG data was recorded during game play using 19-channel EEG machine and linked ear was used as reference. After data were pre-processed, the signal irregularity for all conditions was computed. Two parameters were used to measure signal complexity for time series data: i) Hjorth-Complexity and ii) Composite Permutation Entropy Index (CPEI). Based on these two parameters, our results showed that the complexity level increased from eyes closed to eyes open condition; and further increased in the case of 3D as compared to 2D game play.

  13. SU-E-T-77: Comparison of 2D and 3D Gamma Analysis in Patient-Specific QA for Prostate VMAT Plans

    SciTech Connect

    Clemente, F; Perez, C

    2014-06-01

    Purpose: Patient-specific QA procedures for IMRT and VMAT are traditionally performed by comparing TPS calculations with measured single point values and plane dose distributions by means of gamma analysis. New QA devices permit us to calculate 3D dose distributions on patient anatomy as redundant secondary check and reconstruct it from measurements taken with 2D and 3D detector arrays. 3D dose calculations allow us to perform DVH-based comparisons with clinical relevance, as well as 3D gamma analysis. One of these systems (Compass, IBA Dosimetry) combines traditional 2D with new anatomical-based 3D gamma analysis. This work shows the ability of this system by comparing 2D and 3D gamma analysis in pre-treatment QA for several VMAT prostate plans. Methods: Compass is capable of calculating dose as secondary check from DICOM TPS data and reconstructing it from measurements taken by a 2D ion chamber array (MatriXX Evolution, IBA Dosimetry). Both 2D and 3D gamma tests are available to compare calculated and reconstructed dose in Compass with TPS RT Dose. Results: 15 VMAT prostate plans have been measured with Compass. Dose is reconstructed with Compass for these plans. 2D gamma comparisons can be done for any plane from dose matrix. Mean gamma passing rates for isocenter planes (axial, coronal, sagittal) are (99.7±0.2)%, (99.9±0.1)%, (99.9±0.1)% for reconstructed dose planes. 3D mean gamma passing rates are (98.5±1.7)% for PTVs, (99.1±1.5)% for rectum, (100.0±0.0)% for bladder, (99.6±0.7)% for femoral heads and (98.1±4.1)% for penile bulb. Conclusion: Compass is a powerful tool to perform a complete pre-treatment QA analysis, from 2D techniques to 3D DVH-based techniques with clinical relevance. All reported values for VMAT prostate plans are in good agreement with TPS values. This system permits us to ensure the accuracy in the delivery of VMAT treatments completing a full patient-specific QA program.

  14. Mean cell size and collagen orientation from 2D Fourier analysis on confocal laser scanning microscopy and two-photon fluorescence microscopy on human skin in vivo

    NASA Astrophysics Data System (ADS)

    Lucassen, Gerald W.; Bakker, Bernard L.; Neerken, Sieglinde; Hendriks, Rob F. M.

    2003-07-01

    We present results from 2D Fourier analysis on 3D stacks of images obtained by confocal laser scanning reflectance microscopy (CLSM) and two-photon fluorescence microscopy (2PM) on human skin in vivo. CLSM images were obtained with a modified commercial system (Vivascope1000, Lucid Inc, excitation wavelength 830 nm) equipped with a piezo-focusing element (350 μm range) for depth positioning of the objective lens. 2PM was performed with a specially designed set-up with excitation wavelength 730 nm. Mean cell size in the epidermal layer and structural orientation in the dermal layer have been determined as a function of depth by 2D Fourier analysis. Fourier analysis on microscopic images enables automatic non-invasive quantitative structural analysis (mean cell size and orientation) of living human skin.

  15. Allowing for Correlations between Correlations in Random-Effects Meta-Analysis of Correlation Matrices

    ERIC Educational Resources Information Center

    Prevost, A. Toby; Mason, Dan; Griffin, Simon; Kinmonth, Ann-Louise; Sutton, Stephen; Spiegelhalter, David

    2007-01-01

    Practical meta-analysis of correlation matrices generally ignores covariances (and hence correlations) between correlation estimates. The authors consider various methods for allowing for covariances, including generalized least squares, maximum marginal likelihood, and Bayesian approaches, illustrated using a 6-dimensional response in a series of…

  16. Sensitivity and specificity of 3-D texture analysis of lung parenchyma is better than 2-D for discrimination of lung pathology in stage 0 COPD

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Sonka, Milan; McLennan, Geoffrey; Guo, Junfeng; Hoffman, Eric

    2005-04-01

    Lung parenchyma evaluation via multidetector-row CT (MDCT), has significantly altered clinical practice in the early detection of lung disease. Our goal is to enhance our texture-based tissue classification ability to differentiate early pathologic processes by extending our 2-D Adaptive Multiple Feature Method (AMFM) to 3-D AMFM. We performed MDCT on 34 human volunteers in five categories: emphysema in severe Chronic Obstructive Pulmonary Disease (COPD) as EC, emphysema in mild COPD (MC), normal appearing lung in COPD (NC), non-smokers with normal lung function (NN), smokers with normal function (NS). We volumetrically excluded the airway and vessel regions, calculated 24 volumetric texture features for each Volume of Interest (VOI); and used Bayesian rules for discrimination. Leave-one-out and half-half methods were used for testing. Sensitivity, specificity and accuracy were calculated. The accuracy of the leave-one-out method for the four-class classification in the form of 3-D/2-D is: EC: 84.9%/70.7%, MC: 89.8%/82.7%; NC: 87.5.0%/49.6%; NN: 100.0%/60.0%. The accuracy of the leave-one-out method for the two-class classification in the form of 3-D/2-D is: NN: 99.3%/71.6%; NS: 99.7%/74.5%. We conclude that 3-D AMFM analysis of the lung parenchyma improves discrimination compared to 2-D analysis of the same images.

  17. User's Guide for MSAP2D: A Program for Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Multistage Compressors and Turbines. 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    1996-01-01

    This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.

  18. Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses

    PubMed Central

    Chapman, K. E.; Thomas, A. D.; Jenkins, G. J. S.

    2014-01-01

    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay’s fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in

  19. Nano-spatial parameters from 3D to 2D lattice dimensionality by organic variant in [ZnCl4]- [R]+ hybrid materials: Structure, architecture-lattice dimensionality, microscopy, optical Eg and PL correlations

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh

    2016-04-01

    The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.

  20. A Comparative Analysis for Verification of IMRT and VMAT Treatment Plans using a 2-D and 3-D Diode Array

    NASA Astrophysics Data System (ADS)

    Dance, Michael J.

    With the added complexity of current radiation treatment dose delivery modalities such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy), quality assurance (QA) of these plans become multifaceted and labor intensive. To simplify the patient specific quality assurance process, 2D or 3D diode arrays are used to measure the radiation fluence for IMRT and VMAT treatments which can then be quickly and easily compared against the planned dose distribution. Because the arrays that can be used for IMRT and VMAT patient-specific quality assurance are of different geometry (planar vs. cylindrical), the same IMRT or VMAT treatment plan measured by two different arrays could lead to different measured radiation fluences, regardless of the output and performance of linear accelerator. Thus, the purpose of this study is to compare patient specific QA results as measured by the MapCHECK 2 and ArcCHECK diode arrays for the same IMRT and VMAT treatment plans to see if one diode array consistently provides a closer comparison to reference data. Six prostate and three thoracic spine IMRT treatment plans as well as three prostate and three thoracic spine VMAT treatment plans were produced. Radiotherapy plans for this study were generated using the Pinnacle TPS v9.6 (Philips Radiation Oncology Systems, Fitchburg, WI) using 6 MV, 6 MV FFF, and 10 MV x-ray beams from a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA) with a 120-millenium multi-leaf collimator (MLC). Each IMRT and VMAT therapy plan was measured on Sun Nuclear's MapCHECK 2 and ArcCHECK diode arrays. IMRT measured data was compared with planned dose distribution using Sun Nuclear's 3DVH quality assurance software program using gamma analysis and dose-volume histograms for target volumes and critical structures comparison. VMAT arc plans measured on the MapCHECK 2 and ArcCHECK were compared using beam-by-beam analysis with the gamma evaluation method with

  1. Parasitic extraction and magnetic analysis for transformers, inductors and igbt bridge busbar with maxwell 2d and maxwell 3d simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Ning

    This thesis presents the parasitic extraction and magnetic analysis for transformers, inductors, and IGBT bridge busbars with Maxwell 2D and Maxwell 3D simulation. In the first chapter, the magnetic field of a transformer in Maxwell 2D is analyzed. The parasitic capacitance between each winding of the transformer are extracted by Maxwell 2D. According to the actual dimensions, the parasitic capacitances are calculated. The results are verified by comparing with the measurement results from 4395A impedance analyzer. In the second chapter, two CM inductors are simulated in Maxwell 3D. One is the conventional winding inductor, the other one is the proposed one. The magnetic field distributions of different winding directions are analyzed. The analysis is verified by the simulation result. The last chapter introduces a technique to analyze, extract, and measure the parasitic inductance of planar busbars. With this technique, the relationship between self-inductance and mutual-inductance is analyzed. Secondly, a total inductance is calculated based on the developed technique. Thirdly, the current paths and the inductance on a planar busbar are investigated with DC-link capacitors. Furthermore, the analysis of the inductance is addressed. Ansys Q3D simulation and analysis are presented. Finally, the experimental verification is shown by the S-parameter measurement.

  2. Prediction of {sup 2}D Rydberg energy levels of {sup 6}Li and {sup 7}Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions

    SciTech Connect

    Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik

    2013-04-28

    Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.

  3. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  4. Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels

    NASA Astrophysics Data System (ADS)

    Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Madsen, J.; Schepers, J. G.

    2016-09-01

    2D wind tunnel tests at high Reynolds numbers have been done within the EU FP7 AVATAR project (Advanced Aerodynamic Tools of lArge Rotors) on the DU00-W-212 airfoil and at two different test facilities: the DNW High Pressure Wind Tunnel in Gottingen (HDG) and the LM Wind Power in-house wind tunnel. Two conditions of Reynolds numbers have been performed in both tests: 3 and 6 million. The Mach number and turbulence intensity values are similar in both wind tunnels at the 3 million Reynolds number test, while they are significantly different at 6 million Reynolds number. The paper presents a comparison of the data obtained from the two wind tunnels, showing good repeatability at 3 million Reynolds number and differences at 6 million Reynolds number that are consistent with the different Mach number and turbulence intensity values.

  5. Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures

    NASA Technical Reports Server (NTRS)

    Jeyapaul, Elbert; Rumsey Christopher

    2013-01-01

    Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.

  6. Analysis of Telomere-Homologous DNA with Different Conformations Using 2D Agarose Electrophoresis and In-Gel Hybridization.

    PubMed

    Zhang, Zepeng; Hu, Qian; Zhao, Yong

    2017-01-01

    In mammalian cells, in addition to double-stranded telomeric DNA at chromosome ends, extra telomere-homologous DNA is present that adopts different conformations, including single-stranded G- or C-rich DNA, extrachromosomal circular DNA (T-circle), and telomeric complex (T-complex) with an unidentified structure. The formation of such telomere-homologous DNA is closely related to telomeric DNA metabolism and chromosome end protection by telomeres. Conventional agarose gel electrophoresis is unable to separate DNA based on conformation. Here, we introduce the method of two-dimensional (2D) agarose electrophoresis in combination with in-gel native/denatured hybridization to determine different conformations formed by telomere-homologous DNA.

  7. Semi-automated 2D Bruch's membrane shape analysis in papilledema using spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jui-Kai; Sibony, Patrick A.; Kardon, Randy H.; Kupersmith, Mark J.; Garvin, Mona K.

    2015-03-01

    Recent studies have shown that the Bruch's membrane (BM) and retinal pigment epithelium (RPE), visualized on spectral-domain optical coherence tomography (SD-OCT), is deformed anteriorly towards the vitreous in patients with intracranial hypertension and papilledema. The BM/RPE shape has been quantified using a statistical-shape-model approach; however, to date, the approach has involved the tedious and time-consuming manual placement of landmarks and correspondingly, only the shape (and shape changes) of a limited number of patients has been studied. In this work, we first present a semi-automated approach for the extraction of 20 landmarks along the BM from an optic-nerve-head (ONH) centered OCT slice from each patient. In the approach, after the manual placement of the two Bruch's membrane opening (BMO) points, the remaining 18 landmarks are automatically determined using a graph-based segmentation approach. We apply the approach to the OCT scans of 116 patients (at baseline) enrolled in the Idiopathic Intracranial Hypertension Treatment Trial and generate a statistical shape model using principal components analysis. Using the resulting shape model, the coefficient (shape measure) corresponding to the second principal component (eigenvector) for each set of landmarks indicates the degree of the BM/RPE is oriented away from the vitreous. Using a subset of 20 patients, we compare the shape measure computed using this semi-automated approach with the resulting shape measure when (1) all landmarks are specified manually (Experiment I); and (2) a different expert specifies the two BMO points (Experiment II). In each case, a correlation coefficient >= 0.99 is obtained.

  8. Hyporheic Exchange: Analysis of Aquifer Heterogeneity, Channel Morphology and Bedforms- 2D and 3D Simulations Using MODFLOW and MODPATH

    NASA Astrophysics Data System (ADS)

    Matos, J. R.; Welty, C.; Packman, A.

    2005-12-01

    The main purpose of the simulations in this research is the analysis of three-dimensional surface-groundwater interchange in heterogeneous systems. The effects of channel pattern, bed forms and aquifer heterogeneity on flow interactions between stream and groundwater systems are examined in order to contribute for a better understanding of the hyporheic process. A two-dimensional approach was also adopted to allow comparisons with the three-dimensional results. The grid was designed using the correlation scales of the heterogeneous fields and the scale of the stream meanders. MODFLOW and MODPATH were used to evaluate magnitude, direction and spatial distribution of the exchange flow. PMWIN and PMPATH were used as pre and post-processors during the construction of the models and analysis of results. Gaining and losing streams as well as parallel flow and flow across streams were simulated as idealized cases intended to describe how properties of the streambed and aquifer in low-gradient lowland streams contribute to hyporheic exchange. At first a straight river was analyzed then meandering streams were created with a sine curve and variations on wavelength and amplitude. Bed forms were simulated assuming a sinusoidal distribution of pressure head in the bed surface. Aspects of the influence of bedforms on mechanisms such as "pumping" and "turnover" are expected to be addressed with simulations. Flow velocities between 20 and 40 cm/s in the channel were tested with the objective of showing the influence of river morphology and natural bed forms on the flow exchange in the hyporheic zone. Several meander cycles and four levels of hydraulic conductivity variance were analyzed. Results of flow variances along the cross-sections and wetted perimeter show the increasing on hyporheic exchange as the degree of heterogeneity increases. Particle tracking was performed to define hyporheic residence time distributions. When comparing the homogeneous fields with all degrees of

  9. Vibration analysis using digital correlation

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Lehner, David L.; Dudderar, T. Dixon; Matthys, Donald R.

    1988-01-01

    This paper demonstrates the use of a computer-based optical method for locating the positions of nodes and antinodes in vibrating members. Structured light patterns are projected at an angle onto the vibrating surface using a 35 mm slide projector. The vibrating surface and the projected images are captured in a time averaged photograph which is subsequently digitized. The inherent fringe patterns are filtered to determine amplitudes of vibration, and computer programs are used to compare the time averaged images to images recorded prior to excitation to locate nodes and antinodes. Some of the influences of pattern regularity on digital correlation are demonstrated, and a speckle-based method for determining the mode shapes and the amplitudes of vibration with variable sensitivity is suggested.

  10. Computer-aided 2D and 3D quantification of human stem cell fate from in vitro samples using Volocity high performance image analysis software.

    PubMed

    Piltti, Katja M; Haus, Daniel L; Do, Eileen; Perez, Harvey; Anderson, A J; Cummings, B J

    2011-11-01

    Accurate automated cell fate analysis of immunostained human stem cells from 2- and 3-dimensional (2D-3D) images would improve efficiency in the field of stem cell research. Development of an accurate and precise tool that reduces variability and the time needed for human stem cell fate analysis will improve productivity and interpretability of the data across research groups. In this study, we have created protocols for high performance image analysis software Volocity® to classify and quantify cytoplasmic and nuclear cell fate markers from 2D-3D images of human neural stem cells after in vitro differentiation. To enhance 3D image capture efficiency, we optimized the image acquisition settings of an Olympus FV10i® confocal laser scanning microscope to match our quantification protocols and improve cell fate classification. The methods developed in this study will allow for a more time efficient and accurate software based, operator validated, stem cell fate classification and quantification from 2D and 3D images, and yield the highest ≥94.4% correspondence with human recognized objects.

  11. Characterization of attenuated total reflection infrared spectral intensity variations of immature and mature cotton fibers by two-dimensional correlation analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of immature and mature cotton fibers. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity of 660 cm-1 to ...

  12. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    PubMed

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process.

  13. A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data.

    PubMed

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-03-11

    Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses.

  14. Analysis of 2D Torus and Hub Topologies of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Pedretti, Kevin T.; Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    A variety of different network technologies and topologies are currently being evaluated as part of the Whitney Project. This paper reports on the implementation and performance of a Fast Ethernet network configured in a 4x4 2D torus topology in a testbed cluster of 'commodity' Pentium Pro PCs. Several benchmarks were used for performance evaluation: an MPI point to point message passing benchmark, an MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2). Our results show that for point to point communication on an unloaded network, the hub and 1 hop routes on the torus have about the same bandwidth and latency. However, the bandwidth decreases and the latency increases on the torus for each additional route hop. Collective communication benchmarks show that the torus provides roughly four times more aggregate bandwidth and eight times faster MPI barrier synchronizations than a hub based network for 16 processor systems. Finally, the SOAPBOX benchmarks, which simulate real-world CFD applications, generally demonstrated substantially better performance on the torus than on the hub. In the few cases the hub was faster, the difference was negligible. In total, our experimental results lead to the conclusion that for Fast Ethernet networks, the torus topology has better performance and scales better than a hub based network.

  15. Proteome analysis of the large and the small rubber particles of Hevea brasiliensis using 2D-DIGE.

    PubMed

    Xiang, Qiulan; Xia, Kecan; Dai, Longjun; Kang, Guijuan; Li, Yu; Nie, Zhiyi; Duan, Cuifang; Zeng, Rizhong

    2012-11-01

    The rubber particle is a specialized organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis (para rubber tree). It has been demonstrated that the small rubber particles (SRPs) has higher rubber biosynthesis ratio than the large rubber particles (LRPs), but the underlying molecular mechanism still remains unknown. In this study, LRPs and SRPs were firstly separated from the fresh latex using differential centrifugation, and two-dimensional difference in-gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF was then applied to investigate the proteomic alterations associated with the changed rubber biosynthesis capacity between LRPs and SRPs. A total of 53 spots corresponding to 22 gene products, were significantly altered with the |ratio|≥2.0 and T value ≤0.05, among which 15 proteins were up-regulated and 7 were down-regulated in the SRPs compared with the LRPs. The 15 up-regulated proteins in the SRPs included small rubber particle protein (SRPP), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS), phospholipase D alpha (PLD α), ethylene response factor 2, eukaryotic translation initiation factor 5A isoform IV (eIF 5A-4), 70-kDa heat shock cognate protein (HSC 70), several unknown proteins, etc., whereas the 7 up-regulated proteins in the LRPs were rubber elongation factor (REF, 19.6kDa), ASR-like protein 1, REF-like stress-related protein 1, a putative phosphoglyceride transfer family protein, β-1,3-glucanase, a putative retroelement, and a hypothetical protein. Since several proteins related to rubber biosynthesis were differentially expressed between LRPs and SRPs, the comparative proteome data may provide useful insights into understanding the mechanism involved in rubber biosynthesis and latex coagulation in H. brasiliensis.

  16. A rapid-pressure correlation representation consistent with the Taylor-Proudman theorem materially-frame-indifferent in the 2D limit

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.; Lumley, J. L.; Abid, R.

    1994-01-01

    A nonlinear representation for the rapid-pressure correlation appearing in the Reynolds stress equations, consistent with the Taylor-Proudman theorem, is presented. The representation insures that the modeled second-order equations are frame-invariant with respect to rotation when the flow is two-dimensional in planes perpendicular to the axis of rotation. The representation satisfies realizability in a new way: a special ansatz is used to obtain analytically, the values of coefficients valid away from the realizability limit: the model coefficients are functions of the state of the turbulence that are valid for all states of the mechanical turbulence attaining their constant limiting values only when the limit state is achieved. Utilization of all the mathematical constraints are not enough to specify all the coefficients in the model. The unspecified coefficients appear as free parameters which are used to insure that the representation is asymptotically consistent with the known equilibrium states of a homogeneous sheared turbulence. This is done by insuring that the modeled evolution equations have the same fixed points as those obtained from computer and laboratory experiments for the homogeneous shear. Results of computations of the homogeneous shear, with and without rotation, and with stabilizing and destabilizing curvature, are shown. Results are consistently better, in a wide class of flows which the model not been calibrated, than those obtained with other nonlinear models.

  17. Characterization of transform faults within the South Georgia Rift using 2-D seismic line SCO2-3 correlated with well data

    NASA Astrophysics Data System (ADS)

    Mccormack, K. A.; Heffner, D. M.; Knapp, J. H.

    2012-12-01

    The South Georgia Rift Basin (SGR) has long been thought to be relatively simple on terms of its geology: with coastal plain sediments that vary gradually in thickness overlying a relatively uniform basalt province known as the "J-horizon". However recent re-examination of well data collected throughout the SGR suggests there are a number of generally NW-SE striking transform faults within the area due to the fact that the depth of the coastal plain sediments vary drastically over short lateral distances. (Hefner, D.M., 2011) To better understand these anomalies, we interpret the seismic line SCO2-3 collected in 2010 that looks to cross a transform fault at a high angle. By doing so and correlating it with available well and gravity data we will contribute to a better understanding of the South Georgia Rift (SGR) by determining the location and orientation of this transform fault. These possible faults are currently only constrained by well data and thus their exact strike, location and extent remain poorly understood. The characterization of the transform faults within this area is important due to the possibility of CO2 sequestration in parts of the SGR. It has also been suggested that the transform faults cutting through the SGR may line up with, and have originally been connected to, the transform faults that are found along the Mid Atlantic Ridge today. A better understanding of the extent, orientation and movement of these faults through seismic studies is essential to understanding the overall geology of the Sough Georgia Rift Basin.

  18. Exact e-e (exchange) correlations of 2-D quantum dots in magnetic field: Size extensive N = 3 , 4 , … , ‧ n ‧ -electron systems via multi-pole expansion

    NASA Astrophysics Data System (ADS)

    Aggarwal, Priyanka; Sharma, Shivalika; Singh, Sunny; Kaur, Harsimran; Hazra, Ram Kuntal

    2017-04-01

    Inclusion of coulomb interaction emerges with the complexity of either convergence of integrals or separation of variables of Schrödinger equations. For an N-electron system, interaction terms grow by N(N-1)/2 factors. Therefore, 2-e system stands as fundamental basic unit for generalized N-e systems. For the first time, we have evaluated e-e correlations in very simple and absolutely terminating finite summed hypergeometric series for 2-D double carrier parabolic quantum dot in both zero and arbitrary non-zero magnetic field (symmetric gauge) and have appraised these integrals in variational methods. The competitive role among confinement strength, magnetic field, mass of the carrier and dielectric constant of the medium on energy level diagram, level-spacing statistics, heat capacities (Cv at 1 K) and magnetization (T ∼ (0-1)K) is studied on systems spanning over wide range of materials (GaAs,Ge,CdS,SiO2 and He, etc). We have also constructed an exact theory for generalized correlated N-e 2-D quantum dots via multi-pole expansion but for the sake of compactness of the article we refrain from data.

  19. Correlations of CYP2C9∗3/CYP2D6∗10/CYP3A5∗3 gene polymorphisms with efficacy of etanercept treatment for patients with ankylosing spondylitis

    PubMed Central

    Chen, Yuan-Yuan

    2017-01-01

    Abstract Background: The tumor necrosis factor alpha (TNF-α) inhibitor etanercept has been proven to be effective in the treatment of ankylosing spondylitis (AS), while genetic polymorphism may affect drug metabolism or drug receptor, resulting in interindividual variability in drug disposition and efficacy. The purpose of this study is to investigate the correlations between CYP2C9∗3/CYP2D6∗10/CYP3A5∗3 gene polymorphisms and the efficacy of etanercept treatment for patients with AS. Methods: From March 2012 to June 2015, 312 AS patients (174 males and 138 females, mean age: 35.2 ± 5.83 years) from 18 to 56 years old were enrolled in this study. Polymerase chain reaction-restriction fragment length polymorphism was applied to detect the allele and genotype frequencies of CYP2C9∗3, CYP2D6∗10, and CYP3A5∗3 gene polymorphisms. The joint swelling score, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) level of AS patients were compared before and after 24-week etanercept treatment. Assessment in Ankylosing Spondylitis (ASAS) and bath ankylosing spondylitis disease activity index (BASDAI) scores were recorded to assess the efficacy of etanercept treatment. Results: The AS patients with wild-type ∗1/∗1 and heterozygous ∗1/∗3 genotypes of CYP2C9∗3 polymorphism accounted for 93.59% and 6.41%, respectively, without ∗3/∗3 genotype. The AS patients with wild-type CC, heterozygous CT, and mutation homozygous TT genotypes of CYP2D6∗10 polymorphism accounted for 19.23%, 39.10%, and 41.67%, respectively. The AS patients with wild-type ∗1/∗1, heterozygous ∗1/∗3, and mutation homozygous ∗3/∗3 genotypes of CYP3A5∗3 polymorphism accounted for 7.69%, 36.22%, and 56.09%, respectively. After 24-week treatment, AS patients with wild-type ∗1/∗1 genotype of CYP2C9∗3, CC genotype of CYP2D6∗10, and ∗3/∗3 genotype of CYP3A5∗3 polymorphisms had lower joint swelling score, ESR, and CRP level. The joint swelling

  20. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  1. Strategies of statistical image analysis of 2D immunoblots: the case of IgG response in experimental Taenia crassiceps cysticercosis.

    PubMed

    Ostoa-Saloma, Pedro; Esquivel-Velázquez, Marcela; Ostoa-Jacobo, Pedro; Larralde, Carlos

    2009-12-31

    A procedure is described to measure the diversity and enrich the meaning and usefulness of the information contained in 2D immunoblot images of the reaction between a complex mixture of parasite antigens and the complex set of antibodies usually present in the sera of infected individual hosts. The procedure and results are illustrated by the experimental infection of 30 mice (three strains, both sexes, 5 mice in each strain x sex combination) with Taenia crassiceps cysticerci, thirty days after the challenge. The exercise revealed a significant positive correlation of parasite loads with the hosts' IgG response, in association with their genetic background and less clearly with their sex, all in the midst of a remarkable diversity of both response variables among individual mice. After superimposing a 10 x 10 grid upon the 2D immunoblots some 10% of the positive grid-cells (those who had at least one spot) were positively correlated, suggesting shared epitopes between different antigen spots and/or similar factors controlling different antibody-producing cell clones. Also, a significant correlation was found between many of the positive grid-cells with high values of [Sigma]parasites, but none with low. Thus, the procedure provided many clues for the selection of antigen spots useful to improve immunodiagnosis of cysticercosis and weakened the inclusion of any as vaccine candidate(s). However, some 16 antigen spots were shared almost exclusively by the resistant strains and could relate to protection. The procedure here illustrated may be used in other infections to assess and identify the relevance of antibodies in diagnosis and prevention, as well as provides a measurement of the expected diversity in the hosts' antibody response to the pathogen and of the possible relations between the individual responses towards different antigens contained in the mixture.

  2. Regularized Multiple-Set Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Takane, Yoshio; Hwang, Heungsun; Abdi, Herve

    2008-01-01

    Multiple-set canonical correlation analysis (Generalized CANO or GCANO for short) is an important technique because it subsumes a number of interesting multivariate data analysis techniques as special cases. More recently, it has also been recognized as an important technique for integrating information from multiple sources. In this paper, we…

  3. A Fast One Step Extraction and UPLC-MS/MS Analysis for E2/D2 Series Prostaglandins and Isoprostanes

    PubMed Central

    Brose, Stephen A.; Baker, Andrew G.; Golovko, Mikhail Y.

    2013-01-01

    Prostaglandins (PG) and isoprostanes (iso-PG) may be derived through cyclooxygenase or free radical pathways and are important signaling molecules that are also robust biomarkers of oxidative stress. Their quantification is important for understanding many biological processes where PG, iso-PG, or oxidative stress are involved. One of the common methods for PG and iso-PG quantifications is LC-MS/MS that allows a highly selective, sensitive, simultaneous analysis for prostanoids without derivatization. However, the currently used LC-MS/MS methods require a multi-step extraction and a long (within an hour) LC separation to achieve simultaneous separation and analysis of the major iso-PG. The developed and validated for brain tissue analysis one-step extraction protocol and UPLC-MS/MS method significantly increases the recovery of the PG extraction up to 95%, and allows for a much faster (within 4 min) major iso-PGE2 and -PGD2 separation with 5 times narrower chromatographic peaks as compared to previously used methods. In addition, it decreases the time and cost of analysis due to one-step extraction approach performed in disposable centrifuge tubes. All together, this significantly increases the sensitivity, and the time and cost efficiency of the PG and iso-PG analysis. PMID:23400687

  4. Use of Multiple Correlation Analysis and Multiple Regression Analysis.

    ERIC Educational Resources Information Center

    Huberty, Carl J.; Petoskey, Martha D.

    1999-01-01

    Distinguishes between multiple correlation and multiple regression analysis. Illustrates suggested information reporting methods and reviews the use of regression methods when dealing with problems of missing data. (SK)

  5. Numerical Monte Carlo analysis of the influence of pore-scale dispersion on macrodispersion in 2-D heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Beaudoin, Anthony; de Dreuzy, Jean-Raynald; Erhel, Jocelyne

    2010-12-01

    We investigate the influences of pore-scale dispersion and of larger-scale permeability heterogeneities on the macrodispersion without the molecular diffusion. Permeability follows a lognormal exponentially correlated distribution characterized by its correlation length λ and its lognormal variance σ2. Macrodispersion is evaluated numerically by using parallel simulations on grids of characteristic size ranging from 200λ to 1600λ. We note αL and αT the pore-scale longitudinal and transversal dispersivities. For αL/λ < 10-2 and αT/λ < 10-3, the influence of pore-scale dispersion on the macrodispersion is smaller than 5% of the macrodispersion due only to permeability heterogeneities. Larger dispersivities (αL/λ ≥ 10-2 or αT/λ ≥ 10-3) induce larger effects than those obtained by the semianalytical expression of Salandin and Fiorotto (1998) for σ2 > 1. The effects of local dispersion on the longitudinal macrodispersion remain limited to 25% at most of the macrodispersion due only to permeability heterogeneities. For σ2 > 1, isotropic local dispersion induces a reduction of the longitudinal macrodispersion, whereas anisotropic local dispersion lets it increase. The longitudinal and transverse local dispersions induce opposite effects on the longitudinal macrodispersion, which are respectively an increase and a reduction. The transverse macrodispersion null without local dispersion or molecular diffusion becomes strictly positive with local dispersion. Because of the velocity field heterogeneities, it is amplified by a factor of 2 to 50 from the grid scale to the macro scale. The transverse dispersion is triggered by both longitudinal and transverse local dispersions. A reduction of a factor of 2 of the transverse local dispersion at fixed longitudinal local dispersion yields only a reduction of a factor of 4 at most of the transverse macrodispersion for σ2 ≥ 2.25.

  6. RixsToolBox: software for the analysis of soft X-ray RIXS data acquired with 2D detectors.

    PubMed

    Kummer, K; Tamborrino, A; Amorese, A; Minola, M; Braicovich, L; Brookes, N B; Ghiringhelli, G

    2017-03-01

    A software with a graphical user interface has been developed with the aim of facilitating the data analysis for users of a new resonant inelastic X-ray scattering (RIXS) spectrometer installed at the ESRF beamline ID32. The software is organized in modules covering all relevant steps in the data reduction from a stack of several hundred two-dimensional CCD images to a single RIXS spectrum. It utilizes both full charge integration and single-photon centroiding to cope with high-flux and high-resolution requirements. Additional modules for further data analysis and the extraction of instrumental parameters are available. The software has been in routine use for about a year now and in that time many additional features have been incorporated. It now meets the users' need for an easy-to-use data analysis tool that allows looking at and understanding data as it is acquired and thus steering users' experiments more efficiently.

  7. 2D semiconductor optoelectronics

    NASA Astrophysics Data System (ADS)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  8. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences.

    PubMed

    Lemesle-Varloot, L; Henrissat, B; Gaboriaud, C; Bissery, V; Morgat, A; Mornon, J P

    1990-08-01

    Hydrophobic cluster analysis (HCA) [15] is a very efficient method to analyse and compare protein sequences. Despite its effectiveness, this method is not widely used because it relies in part on the experience and training of the user. In this article, detailed guidelines as to the use of HCA are presented and include discussions on: the definition of the hydrophobic clusters and their relationships with secondary and tertiary structures; the length of the clusters; the amino acid classification used for HCA; the HCA plot programs; and the working strategies. Various procedures for the analysis of a single sequence are presented: structural segmentation, structural domains and secondary structure evaluation. Like most sequence analysis methods, HCA is more efficient when several homologous sequences are compared. Procedures for the detection and alignment of distantly related proteins by HCA are described through several published examples along with 2 previously unreported cases: the beta-glucosidase from Ruminococcus albus is clearly related to the beta-glucosidases from Clostridum thermocellum and Hansenula anomala although they display a reverse organization of their constitutive domains; the alignment of the sequence of human GTPase activating protein with that of the Crk oncogene is presented. Finally, the pertinence of HCA in the identification of important residues for structure/function as well as in the preparation of homology modelling is discussed.

  9. High-throughput morphometric analysis of pulmonary airways in MSCT via a mixed 3D/2D approach

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Asthma and COPD are complex airway diseases with an increased incidence estimated for the next decade. Today, the mechanisms and relationships between airway structure/physiology and the clinical phenotype and genotype are not completely understood. We thus lack the tools to predict disease progression or therapeutic responses. One of the main causes is our limited ability to assess the complexity of airway diseases in large populations of patients with appropriate controls. Multi-slice computed tomography (MSCT) imaging opened the way to the non-invasive assessment of airway physiology and structure, but the use of such technology in large cohorts requires a high degree of automation of the measurements. This paper develops an investigation framework and the associated image quantification tools for high-throughput analysis of airways in MSCT. A mixed approach is proposed, combining 3D and cross-section measurements of the airway tree where the user-interaction is limited to the choice of the desired analysis patterns. Such approach relies on the fully-automated segmentation of the 3D airway tree, caliber estimation and visualization based on morphologic granulometry, central axis computation and tree segment selection, cross-section morphometry of airway lumen and wall, and bronchus longitudinal shape analysis for stenosis/bronciectasis detection and measure validation. The developed methodology has been successfully applied to a cohort of 96 patients from a multi-center clinical study of asthma control in moderate and persistent asthma.

  10. The chemical composition of animal cells reconstructed from 2D and 3D ToF-SIMS analysis

    NASA Astrophysics Data System (ADS)

    Breitenstein, D.; Rommel, C. E.; Stolwijk, J.; Wegener, J.; Hagenhoff, B.

    2008-12-01

    This paper gives an overview on the progress achieved in our lab within the last two years in the analysis of single cells and tissue-like cell layers by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Basically two types of investigations were performed: on the one hand a two-dimensional imaging and on the other hand a three-dimensional microarea analysis. In both cases chemical fixation in combination with slow air-drying were used as easy sample preparation method. It was the goal of both approaches to identify the distribution of natural components as well as the localisation of xenobiotic fluorophors. In our experimental set-ups the distribution of phophatidylcholine and amino-acid signals were in line with the expectation. In contrast, the distribution of the fluorophor ethidiumhomodimer could only be detected within the two-dimensional imaging, whereas it was not detected in the three-dimensional analysis. Also four other fluorophors failed in the latter approach. Thus, in our hands the three-dimensional detection is to date limited to certain molecules with a comparably low mass and/or an intrinsical charge.

  11. Bayesian Correlation Analysis for Sequence Count Data

    PubMed Central

    Lau, Nelson; Perkins, Theodore J.

    2016-01-01

    Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities’ measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low—especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities’ signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset. PMID:27701449

  12. Bayesian Correlation Analysis for Sequence Count Data.

    PubMed

    Sánchez-Taltavull, Daniel; Ramachandran, Parameswaran; Lau, Nelson; Perkins, Theodore J

    2016-01-01

    Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities' measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low-especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities' signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset.

  13. Data of the recombination loss mechanisms analysis on Al2O3 PERC cell using PC1D and PC2D simulations.

    PubMed

    Huang, Haibing; Lv, Jun; Bao, Yameng; Xuan, Rongwei; Sun, Shenghua; Sneck, Sami; Li, Shuo; Modanese, Chiara; Savin, Hele; Wang, Aihua; Zhao, Jianhua

    2017-04-01

    This data article is related to our recently published article ('20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%', Huang et al., 2017 [1]) where we have presented a systematic evaluation of the overall cell processing and a cost-efficient industrial roadmap for PERC cells. Aside from the information already presented in Huang et al., 2017 [1], here we provide data related to Sectin 3 in Huang et al., 2017 [1] concerning the analysis of the recombination losses׳ mechanisms by PC1D V5.9 and PC2D simulations (Clugston and Basore, 1997, Basore and Cabanas-Holmen, 2011, Cabanas-Holmen and Basore, 2012 and Cabanas-Holmen and Basore, 2012.) [2], [3], [4], [5] on our current industrial Al2O3 PERC cell. The data include: i) PC2D simulations on J02, ii) the calculation of series resistance and back surface recombination velocity (BSRV) on the rear side metallization of PERC cell for the case of a point contact, and iii) the PC1D simulation on the cumulative photo-generation and recombination along the distance from the front surface. Finally, the roadmap of the solar cell efficiency for an industrial PERC technology up to 24% is presented, with the aim of providing a potential guideline for industrial researchers.

  14. A Model Based Cost-Effectiveness Analysis of Routine Genotyping for CYP2D6 among Older, Depressed Inpatients Starting Nortriptyline Pharmacotherapy

    PubMed Central

    Luttjeboer, Jos; Wilffert, Bob; Postma, Maarten J.

    2016-01-01

    Objective Genotyping for CYP2D6 has the potential to predict differences in metabolism of nortriptyline. This information could optimize pharmacotherapy. We determined the costs and effects of routine genotyping for old aged Dutch depressed inpatients. Methods With a decision-tree, we modelled the first 12 weeks of nortriptyline therapy. Direct costs of genotyping, hospitalization, therapeutic drug monitoring and drugs were included. Based on genotype, patients could be correctly, sub-, or supratherapeutically dosed. Improvement from sub- or supratherapeutically dosed patients to correctly dosed patients was simulated, assuming that genotyping would prevent under- or overdosing of patients. In the base case, this improvement was assumed to be 35%. A probabilistic sensitivity analysis (PSA) was performed to determine uncertainty around the incremental cost-effectiveness ratio (ICER). Results In the base case analysis, costs for genotyping were assumed €200 per test with a corresponding ICER at €1 333 000 per QALY. To reach a €50 000 per QALY cut-off, genotyping costs should be decreased towards €40 per test. At genotyping test costs < €35 per test, genotyping was dominant. At test costs of €17 per test there was a 95% probability that genotyping was cost-effective at €50 000 per QALY. Conclusions CYP2D6 genotyping was not cost-effective at current genotyping costs at a €50 000 per QALY threshold, however at test costs below €40, genotyping could be costs-effective. PMID:28033366

  15. Evaluation of Accuracy for 2D Elastic-Plastic Analysis by Embedded Force Doublet Model Combined with Automated Delaunay Tessellation

    NASA Astrophysics Data System (ADS)

    Ino, Takuichiro; Hasib, M. D. Abdul; Takase, Toru; Saimoto, Akihide

    2015-03-01

    An embedded force doublet (EFD) model is proposed to express the presence of permanent strain in body force method (BFM). BFM is known as a boundary type method for elastic stress analysis based on the principle of superposition. In EFD model, the permanent strain is replaced by distributed force doublets. In an actual elastic-plastic analysis, the plastic region whose shape is not clear a priori, have to be discretized into elements where the magnitude of embedded force doublets is unknown to be determined numerically. In general, the determination process of magnitude of EFD is considerably difficult due to nonlinear nature of yield criterion and plastic constitutive relations. In this study, by introducing the automated Delaunay tessellation scheme for discretizing the prospective plastic region, appreciable reduction in input data was realized. Adding to this, in order to improve the computational efficiency, influence coefficients used for determining the magnitude of EFD are stored in a database. The effectiveness of these two inventions was examined by computing the elastic-plastic problem of an infinite medium with circular hole subjected to uniform internal pressure. The numerical solution was compared with Nadai’s closed form solution and found a good agreement.

  16. Comparison of 2D Finite Element Modeling Assumptions with Results From 3D Analysis for Composite Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2004-01-01

    The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.

  17. Digital Correlation Microwave Polarimetry: Analysis and Demonstration

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Gasiewski, A. J.; Krebs, Carolyn A. (Technical Monitor)

    2000-01-01

    The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in earth remote sensing is presented. We begin with an analysis of three-level digital correlation and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are discussed. A two-look unpolarized calibration scheme is developed for identifying correlation offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration method is successfully compared with results using a polarimetric scheme. Finally, sample data from an aircraft experiment demonstrates that the polarimeter is highly-useful for ocean wind-vector measurement.

  18. Extended multiscale finite element method for elasto-plastic analysis of 2D periodic lattice truss materials

    NASA Astrophysics Data System (ADS)

    Zhang, H. W.; Wu, J. K.; Fu, Z. D.

    2010-05-01

    An extended multiscale finite element method is developed for small-deformation elasto-plastic analysis of periodic truss materials. The base functions constructed numerically are employed to establish the relationship between the macroscopic displacement and the microscopic stress and strain. The unbalanced nodal forces in the micro-scale of unit cells are treated as the combined effects of macroscopic equivalent forces and microscopic perturbed forces, in which macroscopic equivalent forces are used to solve the macroscopic displacement field and microscopic perturbed forces are used to obtain the stress and strain in the micro-scale to make sure the correctness of the results obtained by the downscale computation in the elastic-plastic problems. Numerical examples are carried out and the results verify the validity and efficiency of the developed method by comparing it with the conventional finite element method.

  19. Self-diffusion of polycrystalline ice Ih under confining pressure: Hydrogen isotope analysis using 2-D Raman imaging

    NASA Astrophysics Data System (ADS)

    Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko

    2016-08-01

    We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0 ± 15.4kJ /mol/RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be <104 that of volume diffusivity.

  20. Quantitative 2D liquid-state NMR.

    PubMed

    Giraudeau, Patrick

    2014-06-01

    Two-dimensional (2D) liquid-state NMR has a very high potential to simultaneously determine the absolute concentration of small molecules in complex mixtures, thanks to its capacity to separate overlapping resonances. However, it suffers from two main drawbacks that probably explain its relatively late development. First, the 2D NMR signal is strongly molecule-dependent and site-dependent; second, the long duration of 2D NMR experiments prevents its general use for high-throughput quantitative applications and affects its quantitative performance. Fortunately, the last 10 years has witnessed an increasing number of contributions where quantitative approaches based on 2D NMR were developed and applied to solve real analytical issues. This review aims at presenting these recent efforts to reach a high trueness and precision in quantitative measurements by 2D NMR. After highlighting the interest of 2D NMR for quantitative analysis, the different strategies to determine the absolute concentrations from 2D NMR spectra are described and illustrated by recent applications. The last part of the manuscript concerns the recent development of fast quantitative 2D NMR approaches, aiming at reducing the experiment duration while preserving - or even increasing - the analytical performance. We hope that this comprehensive review will help readers to apprehend the current landscape of quantitative 2D NMR, as well as the perspectives that may arise from it.

  1. ZORNOC: a 1 1/2-D tokamak data analysis code for studying noncircular high beta plasmas

    SciTech Connect

    Zurro, B.; Wieland, R.M.; Murakami, M.; Swain, D.W.

    1980-03-01

    A new tokamak data analysis code, ZORNOC, was developed to study noncircular, high beta plasmas in the Impurity Study Experiment (ISX-B). These plasmas exhibit significant flux surface shifts and elongation in both ohmically heated and beam-heated discharges. The MHD equilibrium flux surface geometry is determined by solving the Grad-Shafranov equation based on: (1) the shape of the outermost flux surface, deduced from the magnetic loop probes; (2) a pressure profile, deduced by means of Thomson scattering data (electrons), charge exchange data (ions), and a Fokker-Planck model (fast ions); and (3) a safety factor profile, determined from the experimental data using a simple model (Z/sub eff/ = const) that is self-consistently altered while the plasma equilibrium is iterated. For beam-heated discharches the beam deposition profile is determined by means of a Monte Carlo scheme and the slowing down of the fast ions by means of an analytical solution of the Fokker-Planck equation. The code also carries out an electron power balance and calculates various confinement parameters. The code is described and examples of its operation are given.

  2. Correlation study of finite element analysis

    NASA Technical Reports Server (NTRS)

    Long, C. A.; Rhodes, J. L.

    1975-01-01

    A study was conducted to investigate and prove the correlation between the NASTRAN predicted stresses and those measured on an actual structure. NASTRAN is a general purpose digital computer program for the analysis of large complex structures. A real airframe, which had logged several thousand hours flying time, was obtained, instrumented, and loaded to obtain the measured strains.

  3. Analysis of tissue proteomes of the Gulf killifish, Fundulus grandis, by 2D electrophoresis and MALDI-TOF/TOF mass spectrometry.

    PubMed

    Abbaraju, Naga V; Boutaghou, Mohamed Nazim; Townley, Ian K; Zhang, Qiang; Wang, Guangdi; Cole, Richard B; Rees, Bernard B

    2012-11-01

    The Gulf killifish, Fundulus grandis, is a small teleost fish that inhabits marshes of the Gulf of Mexico and demonstrates high tolerance of environmental variation, making it an excellent subject for the study of physiological and molecular adaptations to environmental stress. In the present study, two-dimensional (2D) gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry were used to resolve and identify proteins from five tissues: skeletal muscle, liver, brain, heart, and gill. Of 864 protein features excised from 2D gels, 424 proteins were identified, corresponding to a 49% identification rate. For any given tissue, several protein features were identified as the same protein, resulting in a total of 254 nonredundant proteins. These nonredundant proteins were categorized into a total of 11 molecular functions, including catalytic activity, structural molecule, binding, and transport. In all tissues, catalytic activity and binding were the most highly represented molecular functions. Comparing across the tissues, proteome coverage was lowest in skeletal muscle, due to a combination of a low number of gel spots excised for analysis and a high redundancy of identifications among these spots. Nevertheless, the identification of a substantial number of proteins with high statistical confidence from other tissues suggests that F. grandis may serve as a model fish for future studies of environmental proteomics and ultimately help to elucidate proteomic responses of fish and other vertebrates to environmental stress.

  4. Application of rank-ordered multifractal analysis (ROMA) to intermittent fluctuations in 3D turbulent flows, 2D MHD simulation and solar wind data

    NASA Astrophysics Data System (ADS)

    Wu, C.; Chang, T.

    2010-12-01

    A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.

  5. Hip2Norm: an object-oriented cross-platform program for 3D analysis of hip joint morphology using 2D pelvic radiographs.

    PubMed

    Zheng, G; Tannast, M; Anderegg, C; Siebenrock, K A; Langlotz, F

    2007-07-01

    We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.

  6. An analysis of electrochemical energy storage using electrodes fabricated from atomically thin 2D structures of MoS2, graphene and MoS2/graphene composites

    NASA Astrophysics Data System (ADS)

    Huffstutler, Jacob D.

    The behavior of 2D materials has become of great interest in the wake of development of electrochemical double-layer capacitors (EDLCs) and the discovery of monolayer graphene by Geim and Novoselov. This study aims to analyze the response variance of 2D electrode materials for EDLCs prepared through the liquid-phase exfoliation method when subjected to differing conditions. Once exfoliated, samples are tested with a series of structural characterization methods, including tunneling electron microscopy, atomic force microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy. A new ionic liquid for EDLC use, 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate is compared in performance to 6M potassium hydroxide aqueous electrolyte. Devices composed of liquid-phase exfoliated graphene / MoS2 composites are analyzed by concentration for ideal performance. Device performance under cold extreme temperatures for the ionic fluid is presented as well. A brief overview of by-layer analysis of graphene electrode materials is presented as-is. All samples were tested with cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy, with good capacitive results. The evolution of electrochemical behavior through the altered parameters is tracked as well.

  7. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  8. Quantum coherence selective 2D Raman-2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-03-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  9. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    PubMed

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  10. The Curvelet Transform in the analysis of 2-D GPR data: Signal enhancement and extraction of orientation-and-scale-dependent information

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas

    2013-04-01

    processing GPR data is its capability to describe wavefronts. The roots of the CT are traced to the field of Harmonic Analysis, where curvelets were introduced as expansions for asymptotic solutions of wave equations (Smith, 1998; Candès, 1999). In consequence, curvelets can be viewed as primitive and prototype waveforms - they are local in both space and spatial frequency and correspond to a partitioning of the 2D Fourier plane by highly anisotropic elements (for the high frequencies) that obey the parabolic scaling principle, that their width is proportional to the square of their length (Smith, 1998). The GPR data essentially comprise recordings of the amplitudes of transient waves generated and recorded by source and receiver antennae, with each source/receiver pair generating a data trace that is a function of time. An ensemble of traces collected sequentially along a scan line, i.e. a GPR section or B-scan, provides a spatio-temporal sampling of the wavefield which contains different arrivals that correspond to different interactions with wave scatterers (inhomogeneities) in the subsurface. All these arrivals represent wavefronts that are relatively smooth in their longitudinal direction and oscillatory in their transverse direction. The connection between Harmonic Analysis and curvelets has resulted in important nonlinear approximations of functions with intermittent regularity (Candès and Donoho, 2004). Such functions are assumed to be piecewise smooth with singularities, i.e. regions where the derivative diverges. In the subsurface, these singularities correspond to geological inhomogeneities, at the boundaries of which waves reflect. In GPR data, these singularities correspond to wavefronts. Owing to their anisotropic shape, curvelets are well adapted to detect wavefronts at different angles and scales because aligned curvelets of a given scale, locally correlate with wavefronts of the same scale. The CT can also be viewed as a higher dimensional extension of the

  11. Multivariate Longitudinal Analysis with Bivariate Correlation Test.

    PubMed

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.

  12. SMJ's analysis of Ising model correlation functions

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.; Kohmoto, Mahito

    1980-05-01

    In a series of recent publications Sato, Miwa, and Jimbo (SMJ) have shown how to derive multispin correlation functions of the two-dimensional Ising model in the continuum, or scaling, limit by analyzing the behavior of the solutions to the two-dimensional version of the Dirac equation. The major purpose of the present work is to describe SMJ's analysis more discursively and in terms closer to that used in previous studies of the Ising model. In addition, new and more compact expressions for their basic equations are derived. A single new answer is obtained: the form of the three-spin correlation function at criticality.

  13. Performance analysis of junctionless double gate VeSFET considering the effects of thermal variation - An explicit 2D analytical model

    NASA Astrophysics Data System (ADS)

    Chaudhary, Tarun; Khanna, Gargi

    2017-03-01

    The purpose of this paper is to explore junctionless double gate vertical slit field effect transistor (JLDG VeSFET) with reduced short channel effects and to develop an analytical threshold voltage model for the device considering the impact of thermal variations for the very first time. The model has been derived by solving 2D Poisson's equation and the effects of variation in temperature on various electrical parameters of the device such as Rout, drain current, mobility, subthreshold slope and DIBL has been studied and described in the paper. The model provides a deep physical insight of the device behavior and is also very helpful in contributing to the design space exploration for JLDG VeSFET. The proposed model is verified with simulative analysis at different radii of the device and it has been observed that there is a good agreement between the analytical model and simulation results.

  14. A combination of metabolic labeling and 2D-DIGE analysis in response to a farnesyltransferase inhibitor facilitates the discovery of new prenylated proteins

    PubMed Central

    Palsuledesai, Charuta C.; Ochocki, Joshua D.; Markowski, Todd W.; Distefano, Mark D.

    2014-01-01

    Protein prenylation is a post-translational modification required for proper cellular localization and activity of many important eukaryotic proteins. Farnesyltransferase inhibitors (FTIs) have been explored extensively for their antitumor activity. To assist in identifying potentially new and more useful markers for therapeutic applications, we developed a strategy that uses a combination of metabolic labeling and 2D DIGE (differential gel electrophoresis) to discover new prenylated proteins whose cellular levels are influenced by FTIs. In this approach, metabolic labeling of prenylated proteins was first carried out with an alkyne-modified isoprenoid analog, C15Alk, in the presence or absence of the FTI L-744,832. The resulting alkyne-tagged proteins were then labeled with Cy3-N3 and Cy5-N3 and subjected to 2D differential gel electrophoresis (DIGE). Multiple spots having altered levels of labeling in presence of the FTI were observed. Mass spectrometric analysis of some of the differentially labeled spots identified several known prenylated proteins, along with HisRS, PACN-3, GNAI-1 and GNAI-2, which are not known to be prenylated. In vitro farnesylation of a C-terminal peptide sequence derived from GNAI-1 and GNAI-2 produced a farnesylated product, suggesting GNAI-1 and GNAI-2 are potential novel farnesylated proteins. These results suggest that this new strategy could be useful for the identification of prenylated proteins whose level of post-translational modification has been modulated by the presence of an FTI. Additionally, this approach, which decreases sample complexity and thereby facilitates analysis, should be applicable to studies of other post-translational modifications as well. PMID:24577581

  15. Subclinical hypothyroidism and the risk of chronic kidney disease in T2D subjects: A case-control and dose-response analysis.

    PubMed

    Zhou, Jian-Bo; Li, Hong-Bing; Zhu, Xiao-Rong; Song, Hai-Lin; Zhao, Ying-Ying; Yang, Jin-Kui

    2017-04-01

    Evidence indicated a positive association between subclinical hypothyroidism (SCH) and cardiovascular diseases. But the relationship between SCH and chronic kidney diseases (CKD) remains unclear. A case-control study was performed to ascertain this relationship followed by a meta-analysis. In this hospital-based, case-control study, we recruited 3270 type 2 diabetic patients with euthyroidism and 545 type 2 diabetic patients with SCH. All English studies were searched upon the relationship between SCH and CKD up to October 2016. Meta-analysis was performed using STATA 13.0 software. Our case-control study indicated an association between SCH and CKD in patients with type 2 diabetes [OR (95% CI): 1.22 (1.09-1.36)]. Five observational studies reporting risk of CKD in SCH individuals were enrolled. A significant relationship between SCH and CKD was shown [pooled OR 1.80, (95% CI) 1.38-2.35]. Among normal TSH range, individuals with TSH ≥3.0 μIU/ml had a significantly higher rate of CKD (Fisher exact test, P = 0.027). Dose-response linear increase of CKD events was explored [pooled OR 1.09 (95% CI): 1.03-1.16 per1 mIU/L increase of TSH]. The present evidence suggests that SCH is probably a significant risk factor of CKD in T2D. Linear trend is shown between TSH elevation and CKD in T2D. This relationship between serum TSH and renal impairment in type 2 diabetic patients needs further studies to investigate.

  16. A combination of metabolic labeling and 2D-DIGE analysis in response to a farnesyltransferase inhibitor facilitates the discovery of new prenylated proteins.

    PubMed

    Palsuledesai, Charuta C; Ochocki, Joshua D; Markowski, Todd W; Distefano, Mark D

    2014-05-01

    Protein prenylation is a post-translational modification required for proper cellular localization and activity of many important eukaryotic proteins. Farnesyltransferase inhibitors (FTIs) have been explored extensively for their antitumor activity. To assist in identifying potentially new and more useful markers for therapeutic applications, we developed a strategy that uses a combination of metabolic labeling and 2D DIGE (differential gel electrophoresis) to discover new prenylated proteins whose cellular levels are influenced by FTIs. In this approach, metabolic labeling of prenylated proteins was first carried out with an alkyne-modified isoprenoid analog, C15Alk, in the presence or absence of the FTI L-744,832. The resulting alkyne-tagged proteins were then labeled with Cy3-N3 and Cy5-N3 and subjected to 2D-DIGE. Multiple spots having altered levels of labeling in presence of the FTI were observed. Mass spectrometric analysis of some of the differentially labeled spots identified several known prenylated proteins, along with HisRS, PACN-3, GNAI-1 and GNAI-2, which are not known to be prenylated. In vitro farnesylation of a C-terminal peptide sequence derived from GNAI-1 and GNAI-2 produced a farnesylated product, suggesting GNAI-1 and GNAI-2 are potential novel farnesylated proteins. These results suggest that this new strategy could be useful for the identification of prenylated proteins whose level of post-translational modification has been modulated by the presence of an FTI. Additionally, this approach, which decreases sample complexity and thereby facilitates analysis, should be applicable to studies of other post-translational modifications as well.

  17. Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.

  18. Correlative Feature Analysis for Multimodality Breast CAD

    DTIC Science & Technology

    2008-09-01

    calculation of texture features in our study is based on the gray-level co-occurrence matrix GLCM .4,19,26,27 For an image with G gray levels, the...paired pixels with an offset of r pixels along the direction in the image. Fourteen texture feature were extracted from the GLCM matrix...Correlative feature analysis on FFDM 5493nondirectional GLCM was obtained by summing all the di- rectional GLCMs . Texture features were computed from each

  19. Analysis and Visualization of 2D and 3D Grain and Pore Size ofFontainebleau Sandstone Using Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Latief, FDE

    2016-08-01

    Fontainebleau sandstone is sandstone found in one of the cities in France. This sandstone has unique characteristics, which is a clean-fme sandstone, composed of 99% quartz, virtually devoid of clay, with the grain size of about 200 μm. Fontainebleau sandstone is widely used as a reference in the study of rock microstructure analysis and modelling. In this work analysis regarding the grain and pore size of Fontainebleau is presented. Calculation of 2D pore size and grain size distribution were done on the 299 slice of digital image of the Fontainebleau sandstone using Feret's diameters, equivalent diameters (d = 4A/P), and by means of local thickness/separation using plate model. For the 3D grain and pore size distribution, calculation of local thickness and local separation of the structure were used. Two dimensional analysis by means of Feret's diameter and equivalent diameter reveal that both grain and pore size distributions are in the form of reverse-J shaped (right skewed) while the local thickness/separation approach produces almost similar to symmetric Gaussian distribution. Three dimensional analysis produces fairly symmetric Gaussian distribution for both the grain and pore size. Further image processing were conducted and were succeed in producing three dimensional visual of the colour coded structure thickness (grain related) and structure separation (pore related).

  20. Face hallucination using orthogonal canonical correlation analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Huiling; Lam, Kin-Man

    2016-05-01

    A two-step face-hallucination framework is proposed to reconstruct a high-resolution (HR) version of a face from an input low-resolution (LR) face, based on learning from LR-HR example face pairs using orthogonal canonical correlation analysis (orthogonal CCA) and linear mapping. In the proposed algorithm, face images are first represented using principal component analysis (PCA). Canonical correlation analysis (CCA) with the orthogonality property is then employed, to maximize the correlation between the PCA coefficients of the LR and the HR face pairs to improve the hallucination performance. The original CCA does not own the orthogonality property, which is crucial for information reconstruction. We propose using orthogonal CCA, which is proven by experiments to achieve a better performance in terms of global face reconstruction. In addition, in the residual-compensation process, a linear-mapping method is proposed to include both the inter- and intrainformation about manifolds of different resolutions. Compared with other state-of-the-art approaches, the proposed framework can achieve a comparable, or even better, performance in terms of global face reconstruction and the visual quality of face hallucination. Experiments on images with various parameter settings and blurring distortions show that the proposed approach is robust and has great potential for real-world applications.

  1. 20 Meter Solar Sail Analysis and Correlation

    NASA Technical Reports Server (NTRS)

    Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.

    2005-01-01

    This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.

  2. Performance Analysis of Error Probabilities for Arbitrary 2-D Signaling with I/Q Unbalances over Nakagami-m Fading Channels

    NASA Astrophysics Data System (ADS)

    Lee, Jaeyoon; Yoon, Dongweon; Park, Sang Kyu

    Recently, we provided closed-form expressions involving two-dimensional (2-D) joint Gaussian Q-function for the symbol error rate (SER) and bit error rate (BER) of an arbitrary 2-D signal with I/Q unbalances over an additive white Gaussian noise (AWGN) channel [1]. In this letter, we extend the expressions to Nakagami-m fading channels. Using Craig representation of the 2-D joint Gaussian Q-function, we derive an exact and general expression for the error probabilities of arbitrary 2-D signaling with I/Q phase and amplitude unbalances over Nakagami-m fading channels.

  3. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients

    PubMed Central

    Lledó, Luis D.; Díez, Jorge A.; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J.; Sabater-Navarro, José M.; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  4. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients.

    PubMed

    Lledó, Luis D; Díez, Jorge A; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J; Sabater-Navarro, José M; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  5. A Benchmarking Analysis for Five Radionuclide Vadose Zone Models (Chain, Multimed{_}DP, Fectuz, Hydrus, and Chain 2D) in Soil Screening Level Calculations

    SciTech Connect

    Chen, J-S.; Drake, R.; Lin, Z.; Jewett, D. G.

    2002-02-26

    Five vadose zone models with different degrees of complexity (CHAIN, MULTIMED{_}DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in radionuclide soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide ({sup 99}Tc) release scenario at the Las Cruces Trench Site in New Mexico. Sensitivity of three model outputs to the input parameters were evaluated and compared among the models. The three outputs were peak contaminant concentrations, time to peak concentrations at the water table, and time to exceed the contaminants maximum critical level at a representative receptor well. Model parameters investigated include soil properties such as bulk density, water content, soil water retention parameters and hydraulic conductivity. Chemical properties examined include distribution coefficient, radionuclide half-life, dispersion coefficient, and molecular diffusion. Other soil characteristics, such as recharge rate, also were examined. Model sensitivity was quantified in the form of sensitivity and relative sensitivity coefficients. Relative sensitivities were used to compare the sensitivities of different parameters. The analysis indicates that soil water content, recharge rate, saturated soil water content, and soil retention parameter, {beta}, have a great influence on model outputs. In general, the results of sensitivities and relative sensitivities using five models are similar for a specific scenario. Slight differences were observed in predicted peak contaminant concentrations due to different mathematical treatment among models. The results of benchmarking and sensitivity analysis would facilitate the model selection and application of the model in SSL calculations.

  6. Chemical analysis of solid materials by a LIMS instrument designed for space research: 2D elemental imaging, sub-nm depth profiling and molecular surface analysis

    NASA Astrophysics Data System (ADS)

    Moreno-García, Pavel; Grimaudo, Valentine; Riedo, Andreas; Neuland, Maike B.; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Direct quantitative chemical analysis with high lateral and vertical resolution of solid materials is of prime importance for the development of a wide variety of research fields, including e.g., astrobiology, archeology, mineralogy, electronics, among many others. Nowadays, studies carried out by complementary state-of-the-art analytical techniques such as Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Secondary Ion Mass Spectrometry (SIMS), Glow Discharge Time-of-Flight Mass Spectrometry (GD-TOF-MS) or Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) provide extensive insight into the chemical composition and allow for a deep understanding of processes that might have fashioned the outmost layers of an analyte due to its interaction with the surrounding environment. Nonetheless, these investigations typically employ equipment that is not suitable for implementation on spacecraft, where requirements concerning weight, size and power consumption are very strict. In recent years Laser Ablation/Ionization Mass Spectrometry (LIMS) has re-emerged as a powerful analytical technique suitable not only for laboratory but also for space applications.[1-3] Its improved performance and measurement capabilities result from the use of cutting edge ultra-short femtosecond laser sources, improved vacuum technology and fast electronics. Because of its ultimate compactness, simplicity and robustness it has already proven to be a very suitable analytical tool for elemental and isotope investigations in space research.[4] In this contribution we demonstrate extended capabilities of our LMS instrument by means of three case studies: i) 2D chemical imaging performed on an Allende meteorite sample,[5] ii) depth profiling with unprecedented sub-nm vertical resolution on Cu electrodeposited interconnects[6,7] and iii) preliminary molecular desorption of polymers without assistance of matrix or functionalized substrates.[8] On the whole

  7. Analysis of spectra using correlation functions

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H.

    1988-01-01

    A novel method is presented for the quantitative analysis of spectra based on the properties of the cross correlation between a real spectrum and either a numerical synthesis or laboratory simulation. A new goodness-of-fit criterion called the heteromorphic coefficient H is proposed that has the property of being zero when a fit is achieved and varying smoothly through zero as the iteration proceeds, providing a powerful tool for automatic or near-automatic analysis. It is also shown that H can be rendered substantially noise-immune, permitting the analysis of very weak spectra well below the apparent noise level and, as a byproduct, providing Doppler shift and radial velocity information with excellent precision. The technique is in regular use in the Atmospheric Trace Molecule Spectroscopy (ATMOS) project and operates in an interactive, realtime computing environment with turn-around times of a few seconds or less.

  8. Metrics correlation and analysis service (MCAS)

    SciTech Connect

    Baranovski, Andrew; Dykstra, Dave; Garzoglio, Gabriele; Hesselroth, Ted; Mhashilkar, Parag; Levshina, Tanya; /Fermilab

    2009-05-01

    The complexity of Grid workflow activities and their associated software stacks inevitably involves multiple organizations, ownership, and deployment domains. In this setting, important and common tasks such as the correlation and display of metrics and debugging information (fundamental ingredients of troubleshooting) are challenged by the informational entropy inherent to independently maintained and operated software components. Because such an information 'pond' is disorganized, it a difficult environment for business intelligence analysis i.e. troubleshooting, incident investigation and trend spotting. The mission of the MCAS project is to deliver a software solution to help with adaptation, retrieval, correlation, and display of workflow-driven data and of type-agnostic events, generated by disjoint middleware.

  9. PCaAnalyser: A 2D-Image Analysis Based Module for Effective Determination of Prostate Cancer Progression in 3D Culture

    PubMed Central

    Lovitt, Carrie J.; Avery, Vicky M.

    2013-01-01

    Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated. PMID:24278197

  10. Correlative feature analysis of FFDM images

    NASA Astrophysics Data System (ADS)

    Yuan, Yading; Giger, Maryellen L.; Li, Hui; Sennett, Charlene

    2008-03-01

    Identifying the corresponding image pair of a lesion is an essential step for combining information from different views of the lesion to improve the diagnostic ability of both radiologists and CAD systems. Because of the non-rigidity of the breasts and the 2D projective property of mammograms, this task is not trivial. In this study, we present a computerized framework that differentiates the corresponding images from different views of a lesion from non-corresponding ones. A dual-stage segmentation method, which employs an initial radial gradient index(RGI) based segmentation and an active contour model, was initially applied to extract mass lesions from the surrounding tissues. Then various lesion features were automatically extracted from each of the two views of each lesion to quantify the characteristics of margin, shape, size, texture and context of the lesion, as well as its distance to nipple. We employed a two-step method to select an effective subset of features, and combined it with a BANN to obtain a discriminant score, which yielded an estimate of the probability that the two images are of the same physical lesion. ROC analysis was used to evaluate the performance of the individual features and the selected feature subset in the task of distinguishing between corresponding and non-corresponding pairs. By using a FFDM database with 124 corresponding image pairs and 35 non-corresponding pairs, the distance feature yielded an AUC (area under the ROC curve) of 0.8 with leave-one-out evaluation by lesion, and the feature subset, which includes distance feature, lesion size and lesion contrast, yielded an AUC of 0.86. The improvement by using multiple features was statistically significant as compared to single feature performance. (p<0.001)

  11. 20 Meter Solar Sail Analysis and Correlation

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.; Lively, P. S.; Banik, J.; Murphy, D. M.; Trautt, T. A.

    2005-01-01

    This paper describes finite element analyses and correlation studies to predict deformations and vibration modes/frequencies of a 20-meter solar sail system developed by ATK Space Systems. Under the programmatic leadership of NASA Marshall Space Flight Center's In-Space Propulsion activity, the 20-meter solar sail program objectives were to verify the design, to assess structural responses of the sail system, to implement lessons learned from a previous 10-meter quadrant system analysis and test program, and to mature solar sail technology to a technology readiness level (TRL) of 5. For this 20 meter sail system, static and ground vibration tests were conducted in NASA Glenn Research Center's 100 meter diameter vacuum chamber at Plum Brook station. Prior to testing, a preliminary analysis was performed to evaluate test conditions and to determine sensor and actuator locations. After testing was completed, an analysis of each test configuration was performed. Post-test model refinements included updated properties to account for the mass of sensors, wiring, and other components used for testing. This paper describes the development of finite element models (FEM) for sail membranes and masts in each of four quadrants at both the component and system levels, as well as an optimization procedure for the static test/analyses correlation.

  12. VIBA-Lab 3.0: Computer program for simulation and semi-quantitative analysis of PIXE and RBS spectra and 2D elemental maps

    NASA Astrophysics Data System (ADS)

    Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana

    2015-11-01

    VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.

  13. Novel TOPP descriptors in 3D-QSAR analysis of apoptosis inducing 4-aryl-4H-chromenes: comparison versus other 2D- and 3D-descriptors.

    PubMed

    Sciabola, Simone; Carosati, Emanuele; Cucurull-Sanchez, Lourdes; Baroni, Massimo; Mannhold, Raimund

    2007-10-01

    Novel 3D-descriptors using Triplets Of Pharmacophoric Points (TOPP) were evaluated in QSAR-studies on 80 apoptosis-inducing 4-aryl-4H-chromenes. A predictive QSAR model was obtained using PLS, confirmed by means of internal and external validations. Performance of the TOPP approach was compared with that of other 2D- and 3D-descriptors; statistical analysis indicates that TOPP descriptors perform best. A ranking of TOPP>GRIND>BCI 4096=ECFP>FCFP>GRID-GOLPE>DRAGON>MDL 166 was achieved. Finally, in a 'consensus' analysis predictions obtained using the single methods were compared with an average approach using six out of eight methods. The use of the average is statistically superior to the single methods. Beyond it, the use of several methods can help to easily investigate the presence/absence of outliers according to the 'consensus' of the predicted values: agreement among all the methods indicates a precise prediction, whereas large differences between predicted values (for the same compounds by different methods) would demand caution when using such predictions.

  14. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis.

    PubMed

    Li, Jiazhong; Li, Shuyan; Bai, Chongliang; Liu, Huanxiang; Gramatica, Paola

    2013-07-01

    Malaria is a fatal tropical and subtropical disease caused by the protozoal species Plasmodium. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistant Plasmodium falciparum, which drives the need for the development of new antimalarial drugs. Recently, a series of 3-carboxyl-4(1H)-quinolone analogs, derived from the famous compound endochin, were reported as promising candidates for orally efficacious antimalarials. In this study, to analyze the structure-activity relationships (SAR) of these quinolones and investigate the structural requirements for antimalarial activity, the 2D multiple linear regressions (MLR) method and 3D comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods are employed to evolve different QSAR models. All these models give satisfactory results with highly accurate fitting and strong external predictive abilities for chemicals not used in model development. Furthermore, the contour maps from 3D models can provide an intuitive understanding of the key structure features responsible for the antimalarial activities. In conclusion, we summarize the detailed position-specific structural requirements of these derivatives accordingly. All these results are helpful for the rational design of new compounds with higher antimalarial bioactivities.

  15. Comparative proteomics profile of osteoblasts cultured on dissimilar hydroxyapatite biomaterials: an iTRAQ-coupled 2-D LC-MS/MS analysis.

    PubMed

    Xu, Jinling; Khor, Khiam Aik; Sui, Jianjun; Zhang, Jianhua; Tan, Tuan Lin; Chen, Wei Ning

    2008-10-01

    Hydroxyapatite (HA) and its derived bioceramic materials have been widely used for skeletal implants and/or bone repair scaffolds. It has been reported that carbon nanotube (CNT) is able to enhance the brittle ceramic matrix without detrimental to the bioactivity. However, interaction between osteoblasts and these bioceramics, as well as the underlying mechanism of osteoblast proliferation on these bioceramic surfaces remain to be determined. Using iTRAQ-coupled 2-D LC-MS/MS analysis, we report the first comparative proteomics profiling of human osteoblast cells cultured on plane HA and CNT reinforced HA, respectively. Cytoskeletal proteins, metabolic enzymes, signaling, and cell growth proteins previous associated with cell adhesion and proliferation were found to be differentially expressed on these two surfaces. The level of these proteins was generally higher in cells adhered to HA surface, indicating a higher level of cellular proliferation in these cells. The significance of these findings was further assessed by Western blot analysis. The differential protein profile in HA and CNT strengthened HA established in our study should be valuable for future design of biocompatible ceramics.

  16. 2D shear wave velocity mapping of the Hartoušov CO2 degassing area in the Cheb Basin, NW Bohemia (Czech Republic), using Multichannel Analysis of Surface Waves

    NASA Astrophysics Data System (ADS)

    Flores Estrella, H.; Henke, M.

    2015-12-01

    For the characterization of the subsurface of the Hartoušov CO2 degassing area in the Cheb Basin, NW Bohemia, Czech Republic several different approaches have been made. However, no active seismic characterization has been presented, nor published. The Multi­channel Analysis of Surface Waves (MASW) offers an useful tool to estimate vertical and horizontal velocity changes of the shallow subsurface. This can correlate to variations on rock elastic properties and/or fluid content, and represents the subsurface-layering.Surface waves were stimulated using a sledgehammer as source, and were measured with 48 vertical geophones with spacing of 1 m and the roll along method with a setup dis­placement of 2 m. Two source offsets, 10 m and 30 m, were used to increase the data quality and the resolution.The analysis of propagation velocities leads to dispersion curves from which 1D shear wave velocity profiles can be inverted. Those will be interpolated to create a 2D ground stiffness map. The measurements were taken in the NW area of the main degassing zone and are partially in the same spot of former investigations, i.e. CO2 concentration and gas flux measurements, electric and gravimetric surveys and continuous seismic noise mea­surements.Changes in the structure of the 2D velocity maps can be explained potentially with the oc­currence of fluid paths and their diffusion in the subsurface or the existence of the Počatky-Plesná fault zone, which position is not fully understood yet or both features in combination.

  17. Multifractal detrended cross-correlation analysis of genome sequences using chaos-game representation

    NASA Astrophysics Data System (ADS)

    Pal, Mayukha; Kiran, V. Satya; Rao, P. Madhusudana; Manimaran, P.

    2016-08-01

    We characterized the multifractal nature and power law cross-correlation between any pair of genome sequence through an integrative approach combining 2D multifractal detrended cross-correlation analysis and chaos game representation. In this paper, we have analyzed genomes of some prokaryotes and calculated fractal spectra h(q) and f(α) . From our analysis, we observed existence of multifractal nature and power law cross-correlation behavior between any pair of genome sequences. Cluster analysis was performed on the calculated scaling exponents to identify the class affiliation and the same is represented as a dendrogram. We suggest this approach may find applications in next generation sequence analysis, big data analytics etc.

  18. MTCLAB: A MATLAB ®-based program for traveltime quality analysis and pre-inversion velocity tuning in 2D transmission tomography

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, J. L.; Fernández-Alvarez, J. P.; Pedruelo-González, L. M.

    2008-03-01

    A MATLAB ®-based computer code that analyses the traveltime distribution and performs quality analysis at the pre-inversion stage for 2D transmission experiments is presented. The core tools of this approach are the so-called mean traveltime curves. For any general recording geometry, the user may select any pair of subsets of contiguous sources and receivers. The portion of the domain swept by the implied rays defines a zone of analysis, and for each source (receiver) the outcoming (incoming) ray fan is named a source (receiver) gather. The empirical mean traveltime curves are constructed, for each zone, by assigning the average and the standard deviation of the traveltimes in the gathers to the positions of the sources (receivers). The theoretical expressions assume isotropic homogeneous velocity inside each zone. The empirical counterparts use the observed traveltimes and make no assumptions. Isotropic velocity in each zone is inferred by least-squares fitting of the empirical mean traveltime curves. The user may refine the analysis considering different zones (multi-zone analysis). Initially the whole domain is modelled as a single zone. The procedure compares empirical versus theoretical curves. In addition, residuals can be plotted using source-receiver positions as plane coordinates. The results are used to unravel the possible presence of anomalous gathers, heterogeneities, anisotropies, etc. Depending on the kind of anomalies, velocity estimation and mean time residuals are different in the source and receiver gather curves. This software helps to grasp a better understanding of the data variability before the inversion and provides to the geophysicist an approximate zonal isotropic model and a range of velocity variation that can be used in the inverse problem as a priori information (regularization term). Its use is described through tutorial examples. A guided user interface leads the user through the algorithm steps.

  19. Genome-wide analysis correlates Ayurveda Prakriti

    PubMed Central

    Govindaraj, Periyasamy; Nizamuddin, Sheikh; Sharath, Anugula; Jyothi, Vuskamalla; Rotti, Harish; Raval, Ritu; Nayak, Jayakrishna; Bhat, Balakrishna K.; Prasanna, B. V.; Shintre, Pooja; Sule, Mayura; Joshi, Kalpana S.; Dedge, Amrish P.; Bharadwaj, Ramachandra; Gangadharan, G. G.; Nair, Sreekumaran; Gopinath, Puthiya M.; Patwardhan, Bhushan; Kondaiah, Paturu; Satyamoorthy, Kapaettu; Valiathan, Marthanda Varma Sankaran; Thangaraj, Kumarasamy

    2015-01-01

    The practice of Ayurveda, the traditional medicine of India, is based on the concept of three major constitutional types (Vata, Pitta and Kapha) defined as “Prakriti”. To the best of our knowledge, no study has convincingly correlated genomic variations with the classification of Prakriti. In the present study, we performed genome-wide SNP (single nucleotide polymorphism) analysis (Affymetrix, 6.0) of 262 well-classified male individuals (after screening 3416 subjects) belonging to three Prakritis. We found 52 SNPs (p ≤ 1 × 10−5) were significantly different between Prakritis, without any confounding effect of stratification, after 106 permutations. Principal component analysis (PCA) of these SNPs classified 262 individuals into their respective groups (Vata, Pitta and Kapha) irrespective of their ancestry, which represent its power in categorization. We further validated our finding with 297 Indian population samples with known ancestry. Subsequently, we found that PGM1 correlates with phenotype of Pitta as described in the ancient text of Caraka Samhita, suggesting that the phenotypic classification of India’s traditional medicine has a genetic basis; and its Prakriti-based practice in vogue for many centuries resonates with personalized medicine. PMID:26511157

  20. E-2D Advanced Hawkeye Aircraft (E-2D AHE)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-364 E-2D Advanced Hawkeye Aircraft (E-2D AHE) As of FY 2017 President’s Budget Defense...Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined

  1. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L. A.; Hallquist, J. O.

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  2. Automated screening of 2D crystallization trials using transmission electron microscopy: a high-throughput tool-chain for sample preparation and microscopic analysis.

    PubMed

    Coudray, Nicolas; Hermann, Gilles; Caujolle-Bert, Daniel; Karathanou, Argyro; Erne-Brand, Françoise; Buessler, Jean-Luc; Daum, Pamela; Plitzko, Juergen M; Chami, Mohamed; Mueller, Urs; Kihl, Hubert; Urban, Jean-Philippe; Engel, Andreas; Rémigy, Hervé-W

    2011-02-01

    We have built and extensively tested a tool-chain to prepare and screen two-dimensional crystals of membrane proteins by transmission electron microscopy (TEM) at room temperature. This automated process is an extension of a new procedure described recently that allows membrane protein 2D crystallization in parallel (Iacovache et al., 2010). The system includes a gantry robot that transfers and prepares the crystalline solutions on grids suitable for TEM analysis and an entirely automated microscope that can analyze 96 grids at once without human interference. The operation of the system at the user level is solely controlled within the MATLAB environment: the commands to perform sample handling (loading/unloading in the microscope), microscope steering (magnification, focus, image acquisition, etc.) as well as automatic crystal detection have been implemented. Different types of thin samples can efficiently be screened provided that the particular detection algorithm is adapted to the specific task. Hence, operating time can be shared between multiple users. This is a major step towards the integration of transmission electron microscopy into a high throughput work-flow.

  3. A 2-D hydro-morphodynamic modelling approach for predicting suspended sediment propagation and related heavy metal contamination in floodplain: a sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Hissler, C.; Matgen, P.; Guignard, C.; Bates, P.

    2014-02-01

    Fine sediments represent an important vector of pollutant diffusion in rivers. When deposited in floodplains and riverbeds they can be responsible for soil pollution. In this context, this paper proposes a hydro-morphodynamic modelling exercise aiming at predicting transport and diffusion of fine sediments and dissolved pollutants. The model is based upon the Telemac hydro-informatic system (dynamical coupling Telemac-2D-Sysiphe). As empirical and semi-empirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. In parallel to the modelling exercise, an extensive hydrological/geochemical database has been set up during two flood events. The main sensitive parameters were found to be the hydraulic friction coefficient and the sediment particle settling velocity in water. Using the two monitored hydrological events as calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolve pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment deposition in the floodplain and a soil contamination map shows that the preferential zones for deposition identified by the model are realistic.

  4. Large-scale flooding analysis in the suburbs of Tokyo Metropolis caused by levee breach of the Tone River using a 2D hydrodynamic model.

    PubMed

    Hai, Pham T; Magome, J; Yorozuya, A; Inomata, H; Fukami, K; Takeuchi, K

    2010-01-01

    In order to assess the effects of climate change on flood disasters in urban areas, we applied a two dimensional finite element hydrodynamic model (2D-FEM) to simulate flood processes for the case analysis of levee breach caused by Kathleen Typhoon on 16 September 1947 in Kurihashi reach of Tone River, upstream of Tokyo area. The purpose is to use the model to simulate flood inundation processes under the present topography and land-use conditions with impending extreme flood scenarios due to climate change for mega-urban areas like Tokyo. Simulation used 100 m resolution topographic data (in PWRI), which was derived from original LiDAR (Light Detection and Ranging) data, and levee breach hydrographic data in 1947. In this paper, we will describe the application of the model with calibration approach and techniques when applying for such fine spatial resolution in urban environments. The fine unstructured triangular FEM mesh of the model appeared to be the most capable of introducing of constructions like roads/levees in simulations. Model results can be used to generate flood mapping, subsequently uploaded to Google Earth interface, making the modeling and presentation process much comprehensible to the general public.

  5. Comparative 2D-DIGE proteomic analysis of bovine mammary epithelial cells during lactation reveals protein signatures for lactation persistency and milk yield.

    PubMed

    Janjanam, Jagadeesh; Singh, Surender; Jena, Manoj K; Varshney, Nishant; Kola, Srujana; Kumar, Sudarshan; Kaushik, Jai K; Grover, Sunita; Dang, Ajay K; Mukesh, Manishi; Prakash, B S; Mohanty, Ashok K

    2014-01-01

    Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC) reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling.

  6. Inversion of TEM data and analysis of the 2D induced magnetic field applied to the aquifers characterization in the Paraná basin, Brazil

    NASA Astrophysics Data System (ADS)

    Realpe Campaña, Julian David; Porsani, Jorge Luís; Bortolozo, Cassiano Antonio; Serejo de Oliveira, Gabriela; Monteiro dos Santos, Fernando Acácio

    2017-03-01

    Results of a TEM profile by using the fixed-loop array and an analysis of the induced magnetic field are presented in this work performed in the northwest region of São Paulo State, Brazil, Paraná Basin. The objectives of this research were to map the sedimentary and crystalline aquifers in the area and analyzing the behavior of the magnetic field by observation of magnetic profiles. TEM measurements in the three spatial components were taken to create magnetic profiles of the induced (secondary) magnetic field. The TEM data were acquired using a fixed transmitter loop of 200 m × 200 m and a 3D coil receiver moving along a profile line of 1000 m. Magnetic profiles of dBz, dBx and dBy components showed symmetrical spatial behavior related with loop geometry. z-component showed a behavior probably related to superparamagnetic effect (SPM). dBz data was used to perform individual 1D inversion for each position and to generate an interpolated pseudo-2D geoelectric profile. The results showed two low resistivity zones: the first shallow, between 10 m and 70 m deep, probably related to the Adamantina Formation (sedimentary aquifer). The second between 200 m and 300 m depth, probably related to a fractured zone filled with water or clay inside the basalt layer of the Serra Geral Formation (crystalline aquifer). These results agree with the well logs information available in the studied region.

  7. Effects of coffee bean aroma on the rat brain stressed by sleep deprivation: a selected transcript- and 2D gel-based proteome analysis.

    PubMed

    Seo, Han-Seok; Hirano, Misato; Shibato, Junko; Rakwal, Randeep; Hwang, In Kyeong; Masuo, Yoshinori

    2008-06-25

    The aim of this study was 2-fold: (i) to demonstrate influences of roasted coffee bean aroma on rat brain functions by using the transcriptomics and proteomics approaches and (ii) to evaluate the impact of roasted coffee bean aroma on stress induced by sleep deprivation. The aroma of the roasted coffee beans was administered to four groups of adult male Wistar rats: 1, control group; 2, 24 h sleep deprivation-induced stress group (the stress group); 3, coffee aroma-exposed group without stress (the coffee group); and 4, the stress with coffee aroma group (the stress with coffee group). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of some known genes responsive to aroma or stress was performed using total RNA from these four groups. A total of 17 selected genes of the coffee were differently expressed over the control. Additionally, the expression levels of 13 genes were different between the stress group and the stress with coffee group: Up-regulation was found for 11 genes, and down-regulation was seen for two genes in the stress with coffee group. We also looked to changes in protein profiles in these four samples using two-dimensional (2D) gel electrophoresis; 25 differently expressed gel spots were detected on 2D gels stained by silver nitrate. Out of these, a total of nine proteins were identified by mass spectrometry. Identified proteins belonged to five functional categories: antioxidant; protein fate; cell rescue, defense, and virulence; cellular communication/signal transduction mechanism; and energy metabolism. Among the differentially expressed genes and proteins between the stress and the stress with coffee group, NGFR, trkC, GIR, thiol-specific antioxidant protein, and heat shock 70 kDa protein 5 are known to have antioxidant or antistress functions. In conclusion, the roasted coffee bean aroma changes the mRNA and protein expression levels of the rat brain, providing for the first time clues to the potential antioxidant or stress

  8. High speed image correlation for vibration analysis

    NASA Astrophysics Data System (ADS)

    Siebert, T.; Wood, R.; Splitthof, K.

    2009-08-01

    Digital speckle correlation techniques have already been successfully proven to be an accurate displacement analysis tool for a wide range of applications. With the use of two cameras, three dimensional measurements of contours and displacements can be carried out. With a simple setup it opens a wide range of applications. Rapid new developments in the field of digital imaging and computer technology opens further applications for these measurement methods to high speed deformation and strain analysis, e.g. in the fields of material testing, fracture mechanics, advanced materials and component testing. The high resolution of the deformation measurements in space and time opens a wide range of applications for vibration analysis of objects. Since the system determines the absolute position and displacements of the object in space, it is capable of measuring high amplitudes and even objects with rigid body movements. The absolute resolution depends on the field of view and is scalable. Calibration of the optical setup is a crucial point which will be discussed in detail. Examples of the analysis of harmonic vibration and transient events from material research and industrial applications are presented. The results show typical features of the system.

  9. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: an Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation.

    PubMed

    T'jollyn, Huybrecht; Snoeys, Jan; Vermeulen, An; Michelet, Robin; Cuyckens, Filip; Mannens, Geert; Van Peer, Achiel; Annaert, Pieter; Allegaert, Karel; Van Bocxlaer, Jan; Boussery, Koen

    2015-11-01

    This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life. In two in vitro pediatric human liver microsomal (HLM) batches (1 and 3 months), O-desmethyltramadol and N-desmethyltramadol formation rates were compared with CYP2D6 and CYP3A4 activity, respectively. O-desmethyltramadol formation was mediated only by CYP2D6, while N-desmethyltramadol was mediated in part by CYP3A4. Additionally, the clearance maturation of the PBPK model predictions was compared to two in vivo maturation models (Hill and exponential) based on plasma concentration data, and to clearance estimations from a WinNonlin® fit of plasma concentration and urinary excretion data. Maturation of renal and CYP2D6 clearance is captured well in the PBPK model predictions, but total tramadol clearance is underpredicted. The most pronounced underprediction of total and CYP2D6-mediated clearance was observed in the age range of 2-13 years. In conclusion, the PBPK technique showed to be a powerful mechanistic tool capable of predicting maturation of CYP2D6 and renal tramadol clearance in early infancy, although some underprediction occurs between 2 and 13 years for total and CYP2D6-mediated tramadol clearance.

  10. Assessment of bone microarchitecture in chronic kidney disease: a comparison of 2D bone texture analysis and high-resolution peripheral quantitative computed tomography at the radius and tibia.

    PubMed

    Bacchetta, Justine; Boutroy, Stéphanie; Vilayphiou, Nicolas; Fouque-Aubert, Anne; Delmas, Pierre D; Lespessailles, Eric; Fouque, Denis; Chapurlat, Roland

    2010-11-01

    Bone microarchitecture can be studied noninvasively using high-resolution peripheral quantitative computed tomography (HR-pQCT). However, this technique is not widely available, so more simple techniques may be useful. BMA is a new 2D high-resolution digital X-ray device, allowing for bone texture analysis with a fractal parameter (H(mean)). The aims of this study were (1) to evaluate the reproducibility of BMA at two novel sites (radius and tibia) in addition to the conventional site (calcaneus), (2) to compare the results obtained with BMA at all of those sites, and (3) to study the relationship between H(mean) and trabecular microarchitecture measured with an in vivo 3D device (HR-pQCT) at the distal tibia and radius. BMA measurements were performed at three sites (calcaneus, distal tibia, and radius) in 14 healthy volunteers to measure the short-term reproducibility and in a group of 77 patients with chronic kidney disease to compare BMA results to HR-pQCT results. The coefficient of variation of H(mean) was 1.2, 2.1, and 4.7% at the calcaneus, radius, and tibia, respectively. We found significant associations between trabecular volumetric bone mineral density and microarchitectural variables measured by HR-pQCT and H(mean) at the three sites (e.g., Pearson correlation between radial trabecular number and radial H(mean) r = 0.472, P < 0.001). This study demonstrated a significant but moderate relationship between 2D bone texture and 3D trabecular microarchitecture. BMA is a new reproducible technique with few technical constraints. Thus, it may represent an interesting tool for evaluating bone structure, in association with biological parameters and DXA.

  11. Identification of weak transitions using moving-window two-dimensional correlation analysis: treatment with scaling techniques.

    PubMed

    Zhou, Tao; Liu, Yongcheng; Peng, Leilei; Zhan, Yanhui; Liu, Feiwei; Zhang, Aiming; Li, Lin

    2014-07-01

    In the present study, the theory of the data treatment with scaling techniques for moving-window two-dimensional (scaling-MW2D) correlation analysis was first proposed. This new analytical method of spectroscopy can significantly enhance the resolving capacity of the moving-window two-dimensional (MW2D) correlation infrared spectroscopy in the direction of the perturbation variable. So, it strengthened the ability of MW2D to highlight the weak transitions. The in situ infrared spectra of four common polymers, including polyamide 66 (PA66), polystyrene-block-polybutadiene-block-polystyrene block copolymer (SBS), isotactic polypropylene (iPP), and polyoxymethylene (POM), were employed to illustrate the advantages of scaling-MW2D. In the applications of the present study, the conventional autocorrelation MW2D can only distinguish the melting point of PA66, the maximum crystallization temperature of POM, and the primary oxidation of SBS. However, the autocorrelation scaling-MW2D not only can more easily determine the above transitions, but also can identify PA66 brill transition, the dissociation of adsorbed water in PA66, POM secondary crystallization, the glass transition of hard blocks in SBS, and the generation of the aldehyde and hydroxyl groups during SBS oxidation. Our further study found that the selection of the scaling factor α was very important. The golden point α = 0.618 was the best value, and satisfactory application results can be achieved. The slice scaling-MW2D was also investigated. The scaling-MW2D method of spectroscopy can be used elsewhere. The application of this analytical method should not be limited to the infrared spectra, and it also should not be limited to transitions in polymers. This method can be easily extended and applied to other materials and spectra.

  12. 2D DIGE analysis of the bursa of Fabricius reveals characteristic proteome profiles for different stages of chicken B-cell development.

    PubMed

    Korte, Julia; Fröhlich, Thomas; Kohn, Marina; Kaspers, Bernd; Arnold, Georg J; Härtle, Sonja

    2013-01-01

    Antibody producing B-cells are an essential component of the immune system. In contrast to human and mice where B-cells develop in the bone marrow, chicken B-cells develop in defined stages in the bursa of Fabricius, a gut associated lymphoid tissue. In order to gain a better understanding of critical biological processes like immigration of B-cell precursors into the bursa anlage, their differentiation and final emigration from the bursa we analyzed the proteome dynamics of this organ during embryonic and posthatch development. Samples were taken from four representative developmental stages (embryonic day (ED) 10, ED18, day 2, and day 28) and compared in an extensive 2D DIGE approach comprising six biological replicates per time point. Cluster analysis and PCA demonstrated high reliability and reproducibility of the obtained data set and revealed distinctive proteome profiles for the selected time points, which precisely reflect the differentiation processes. One hundred fifty three protein spots with significantly different intensities were identified by MS. We detected alterations in the abundance of several proteins assigned to retinoic acid metabolism (e.g. retinal-binding protein 5) and the actin-cytoskeleton (e.g. vinculin and gelsolin). By immunohistochemistry, desmin was identified as stromal cell protein associated with the maturation of B-cell follicles. Strongest protein expression difference (10.8-fold) was observed for chloride intracellular channel 2. This protein was thus far not associated with B-cell biology but our data suggest an important function in bursa B-cell development.

  13. Influences of CYP2D6*10 polymorphisms on the pharmacokinetics of iloperidone and its metabolites in Chinese patients with schizophrenia: a population pharmacokinetic analysis

    PubMed Central

    Pei, Qi; Huang, Lu; Huang, Jie; Gu, Jing-kai; Kuang, Yun; Zuo, Xiao-cong; Ding, Jun-jie; Tan, Hong-yi; Guo, Cheng-xian; Liu, Shi-kun; Yang, Guo-ping

    2016-01-01

    Aim: Iloperidone is an atypical antipsychotic drug that is mainly metabolized by CYP2D6, CYP3A4, and cytosolic enzymes. Previous studies show that extensive and poor metabolizers of CYP2D6 exhibit different plasma concentrations of iloperidone and its metabolites. The aim of this study was to develop a parent-metabolite population pharmacokinetic (PPK) model to quantify the effects of CYP2D6*10 allele on the pharmacokinetics of iloperidone and its metabolites in Chinese schizophrenia patients. Methods: Seventy Chinese schizophrenia patients were enrolled, from whom limited blood samples were collected on d 15 (0 h) and d 28 (0, 4 and 12 h after drug administration). The plasma concentrations of iloperidone and its metabolites M1 (P-88) and M2 (P-95) were simultaneously detected using a validated HPLC-MS assay. CYP2D6*10 (rs1065852) genotyping was performed. A PPK model was developed based on data from the patients using the NONMEM software (version 7.2). A one-compartment model with first-order absorption and elimination was used to describe the pharmacokinetic data related to iloperidone and its metabolites. Results: Patients with the CYP2D6*10 T/T genotype had significantly higher concentrations of iloperidone and M1, and lower concentrations of M2 than the patients with C/C or C/T genotypes. The CYP2D6*10 genotype affected the elimination constants for transformation of iloperidone to the metabolites M1 (K23) and M2 (K24). The K23 value of the patients with T/T genotype was 1.34-fold as great as that of the patients with C/C or C/T genotype. The K24 value of the patients with C/T and T/T genotypes was 0.693- and 0.492-fold, respectively, as low as that of the patients with C/C genotype. Conclusion: CYP2D6*10 mutations affect the pharmacokinetics of iloperidone and its metabolites in Chinese schizophrenia patients, suggesting that the clinical doses of iloperidone for patients with CYP2D6*10 mutations need to be optimized. PMID:27665849

  14. A New Methodology of Spatial Cross-Correlation Analysis

    PubMed Central

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  15. Application of the order-of-magnitude analysis to a fourth-order RANS closure for simulating a 2D boundary layer

    NASA Astrophysics Data System (ADS)

    Poroseva, Svetlana V.

    2013-11-01

    Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.

  16. 2D design rule and layout analysis using novel large-area first-principles-based simulation flow incorporating lithographic and stress effects

    NASA Astrophysics Data System (ADS)

    Prins, Steven L.; Blatchford, James; Olubuyide, Oluwamuyiwa; Riley, Deborah; Chang, Simon; Hong, Qi-Zhong; Kim, T. S.; Borges, Ricardo; Lin, Li

    2009-03-01

    As design rules and corresponding logic standard cell layouts continue to shrink node-on-node in accordance with Moore's law, complex 2D interactions, both intra-cell and between cells, become much more prominent. For example, in lithography, lack of scaling of λ/NA implies aggressive use of resolution enhancement techniques to meet logic scaling requirements-resulting in adverse effects such as 'forbidden pitches'-and also implies an increasing range of optical influence relative to cell size. These adverse effects are therefore expected to extend well beyond the cell boundary, leading to lithographic marginalities that occur only when a given cell is placed "in context" with other neighboring cells in a variable design environment [1]. This context dependence is greatly exacerbated by increased use of strain engineering techniques such as SiGe and dual-stress liners (DSL) to enhance transistor performance, both of which also have interaction lengths on the order of microns. The use of these techniques also breaks the formerly straightforward connection between lithographic 'shapes' and end-of-line electrical performance, thus making the formulation of design rules that are robust to process variations and complex 2D interactions more difficult. To address these issues, we have developed a first-principles-based simulation flow to study contextdependent electrical effects in layout, arising not only from lithography, but also from stress and interconnect parasitic effects. This flow is novel in that it can be applied to relatively large layout clips- required for context-dependent analysis-without relying on semi-empirical or 'black-box' models for the fundamental electrical effects. The first-principles-based approach is ideal for understanding contextdependent effects early in the design phase, so that they can be mitigated through restrictive design rules. The lithographic simulations have been discussed elsewhere [1] and will not be presented in detail. The

  17. The effect of excitation and preparation pulses on nonslice selective 2D UTE bicomponent analysis of bound and free water in cortical bone at 3T

    SciTech Connect

    Li, Shihong; Chang, Eric Y.; Chung, Christine B.; Bae, Won C.; Du, Jiang; Hua, Yanqing; Zhou, Yi

    2014-02-15

    Purpose: The purpose of this study was to investigate the effect of excitation, fat saturation, long T2 saturation, and adiabatic inversion pulses on ultrashort echo time (UTE) imaging with bicomponent analysis of bound and free water in cortical bone for potential applications in osteoporosis. Methods: Six bovine cortical bones and six human tibial midshaft samples were harvested for this study. Each bone sample was imaged with eight sequences using 2D UTE imaging at 3T with half and hard excitation pulses, without and with fat saturation, long T2 saturation, and adiabatic inversion recovery (IR) preparation pulses. Single- and bicomponent signal models were utilized to calculate the T2{sup *}s and/or relative fractions of short and long T2{sup *}s. Results: For all bone samples UTE T2{sup *} signal decay showed bicomponent behavior. A higher short T2{sup *} fraction was observed on UTE images with hard pulse excitation compared with half pulse excitation (75.6% vs 68.8% in bovine bone, 79.9% vs 73.2% in human bone). Fat saturation pulses slightly reduced the short T2{sup *} fraction relative to regular UTE sequences (5.0% and 2.0% reduction, respectively, with half and hard excitation pulses for bovine bone, 6.3% and 8.2% reduction, respectively, with half and hard excitation pulses for human bone). Long T2 saturation pulses significantly reduced the long T2{sup *} fraction relative to regular UTE sequence (18.9% and 17.2% reduction, respectively, with half and hard excitation pulses for bovine bone, 26.4% and 27.7% reduction, respectively, with half and hard excitation pulses for human bone). With IR-UTE preparation the long T2{sup *} components were significantly reduced relative to regular UTE sequence (75.3% and 66.4% reduction, respectively, with half and hard excitation pulses for bovine bone, 87.7% and 90.3% reduction, respectively, with half and hard excitation pulses for human bone). Conclusions: Bound and free water T2{sup *}s and relative fractions can

  18. NEW SCX PEPTIDE ELUTION SCORE FOR PH/SALT-GRADIENT SCX CHROMATOGRAPHY IN 2D-NANO-LC/MSMS ANALYSIS OF PROTEIN DIGESTS

    EPA Science Inventory

    A new automated 2D-(SCX/RP)-nano-LC/MSMS method was developed. Separation of the peptides in the first LC dimension was the main focus of this work, and it was optimized using human serum albumin (HSA) and human lung cell lysate tryptic digests. Samples were reduced and alkylated...

  19. VERA2D-84: a computer program for two-dimensional analysis of flow, heat, and mass transfer in evaporative cooling towers. Volume 2. User's manual. Final report

    SciTech Connect

    Majumdar, A.K.; Agrawal, N.K.; Keeton, L.W.; Singhal, A.K.

    1985-07-01

    Cooling towers that do not meet design performance standards can add millions of dollars to the long-term operating costs of generating plants. The VERA2D-84 code offers a reliable method for predicting the performance of natural-draft and mechanical-draft towers on the basis of physical design information.

  20. 2D discrete Fourier transform on sliding windows.

    PubMed

    Park, Chun-Su

    2015-03-01

    Discrete Fourier transform (DFT) is the most widely used method for determining the frequency spectra of digital signals. In this paper, a 2D sliding DFT (2D SDFT) algorithm is proposed for fast implementation of the DFT on 2D sliding windows. The proposed 2D SDFT algorithm directly computes the DFT bins of the current window using the precalculated bins of the previous window. Since the proposed algorithm is designed to accelerate the sliding transform process of a 2D input signal, it can be directly applied to computer vision and image processing applications. The theoretical analysis shows that the computational requirement of the proposed 2D SDFT algorithm is the lowest among existing 2D DFT algorithms. Moreover, the output of the 2D SDFT is mathematically equivalent to that of the traditional DFT at all pixel positions.

  1. The potential of 2D Kalman filtering for soil moisture data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examine the potential for parameterizing a two-dimensional (2D) land data assimilation system using spatial error auto-correlation statistics gleaned from a triple collocation analysis and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-based surface soil ...

  2. Application of two-dimensional correlation spectroscopy to chemometrics: self-modeling curve resolution analysis of spectral data sets.

    PubMed

    Jung Mee, Young; Kim Bin, Seung; Noda, Isao

    2003-11-01

    This paper demonstrates the use of two-dimensional (2D) correlation spectroscopy in conjunction with alternating least squares (ALS) based self-modeling curve resolution (SMCR) analysis of spectral data sets. This iterative regression technique utilizes the non-negativity constraints for spectral intensity and concentration. ALS-based SMCR analysis assisted with 2D correlation was applied to Fourier transform infrared (FT-IR) spectra of a polystyrene/methyl ethyl ketone/deuterated toluene (PS/MEK/d-toluene) solution mixture during the solvent evaporation process to obtain the pure component spectra and then the time-dependent concentration profiles of these three components during the evaporation process. We focus the use of asynchronous 2D correlation peaks for the identification of pure variables needed for the initial estimates of the ALS process. Choosing the most distinct bands via the positions of asynchronous 2D peaks is a viable starting point for ALS iteration. Once the pure variables are selected, ALS regression can be used to obtain the concentration profiles and pure component spectra. The obtained pure component spectra of MEK, d-toluene, and PS matched well with known spectra. The concentration profiles for components looked reasonable.

  3. A 2D hydro-morphodynamic modelling approach for predicting suspended sediment propagation and related heavy metal contamination in floodplains: a sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Hissler, Christophe; Matgen, Patrick; Guignard, Cédric; Bates, Paul

    2014-05-01

    Recent years have seen a growing awareness for the central role that fine sediment loads play in transport and diffusion of pollutants by rivers and streams. Suspended sediment can potentially carry important amounts of nutrients and contaminants, such as trace metals among which some are recognized as Potential Harmful Elements (PHE). These threaten water quality in rivers and wetlands and soil quality in floodplains. Currently, many studies focusing on sediment transport modelling deal with marine and estuarine areas. Some studies evaluate sediment transport at basin scales and often evaluate yearly sediment fluxes using hydrologic and simplified hydraulic models. Some more theoretical studies develop and improve numerical models on the basis of physical model experiments. As a matter of fact, sediment transport modelling in small rivers at reach/floodplain scale is a rather new research field. In this study, we aim at simulating sediment transport at the floodplain scale and the single flood event scale in order to predict sediment spreading on alluvial soils. This simulation will help for the estimation of the potential pollution of soils due to the transport of PHEs by suspended sediments. The model is based upon the Telemac hydro-informatic system (i.e. dynamical coupling of Telemac-2D and Sysiphe). As empirical and semi-empirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. In parallel to the modelling exercise, an extensive hydrological/geochemical database has been set up for two flood events. The most sensitive parameters were found to be the hydraulic friction coefficient and the sediment particle settling velocity in water. Using the two monitored hydrological events for calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolved pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment

  4. Two-dimensional heterospectral correlation analysis of water and liquid oleic acid using an online near-infrared/mid-infrared dual-region spectrometer.

    PubMed

    Genkawa, Takuma; Watari, Masahiro; Nishii, Takashi; Suzuki, Masao; Ozaki, Yukihiro

    2013-07-01

    Two-dimensional (2D) near-infrared (NIR) and mid-infrared (mid-IR) heterospectral correlation analyses were used to characterize temperature-dependent spectral variations of water and liquid oleic acid (OA), utilizing a dataset obtained with an online NIR/mid-IR dual-region spectrometer. The spectrometer facilitated sequential acquisition of both NIR (10 000-4000 cm(-1)) and mid-IR (5000-1200 cm(-1)) spectra, which compose the spectral dataset required for 2D NIR/mid-IR heterospectral correlation analysis. Both NIR and mid-IR spectra were obtained under the same conditions by using the same sample compartment, more quickly and easily than is possible when using existing spectrometers. Successful 2D NIR/mid-IR correlation analysis was performed with the data collected with this instrument to characterize the temperature dependence of the molecular structures of water and pure liquid OA. Temperature-induced NIR/mid-IR spectral changes for water and OA were analyzed in detail, and band assignments in the NIR and mid-IR regions were elucidated by 2D NIR/mid-IR heterospectral correlation analysis. The results of this study indicate that liquid water consists of two major species, strongly hydrogen-bonded species and weakly hydrogen-bonded species, as well as one minor species. Additionally, OA was found to form an intermolecularly hydrogen-bonded species in which a single hydrogen bond of the dimer was broken; a mid-IR band at 1724 cm(-1) was assigned to this species. Moreover, 2D NIR/mid-IR heterospectral correlation analysis revealed that NIR bands at 4690 and 4644 cm(-1) also arose from intermolecularly hydrogen-bonded species. These results demonstrate that 2D NIR/mid-IR heterospectral correlation analysis is useful not only for NIR band assignments, but also for molecular structure studies. The spectrometer we developed makes this analysis even more accessible.

  5. Diagnostic performance of 3D TSE MRI versus 2D TSE MRI of the knee at 1.5 T, with prompt arthroscopic correlation, in the detection of meniscal and cruciate ligament tears*

    PubMed Central

    Chagas-Neto, Francisco Abaeté; Nogueira-Barbosa, Marcello Henrique; Lorenzato, Mário Müller; Salim, Rodrigo; Kfuri-Junior, Maurício; Crema, Michel Daoud

    2016-01-01

    Objective To compare the diagnostic performance of the three-dimensional turbo spin-echo (3D TSE) magnetic resonance imaging (MRI) technique with the performance of the standard two-dimensional turbo spin-echo (2D TSE) protocol at 1.5 T, in the detection of meniscal and ligament tears. Materials and Methods Thirty-eight patients were imaged twice, first with a standard multiplanar 2D TSE MR technique, and then with a 3D TSE technique, both in the same 1.5 T MRI scanner. The patients underwent knee arthroscopy within the first three days after the MRI. Using arthroscopy as the reference standard, we determined the diagnostic performance and agreement. Results For detecting anterior cruciate ligament tears, the 3D TSE and routine 2D TSE techniques showed similar values for sensitivity (93% and 93%, respectively) and specificity (80% and 85%, respectively). For detecting medial meniscal tears, the two techniques also had similar sensitivity (85% and 83%, respectively) and specificity (68% and 71%, respectively). In addition, for detecting lateral meniscal tears, the two techniques had similar sensitivity (58% and 54%, respectively) and specificity (82% and 92%, respectively). There was a substantial to almost perfect intraobserver and interobserver agreement when comparing the readings for both techniques. Conclusion The 3D TSE technique has a diagnostic performance similar to that of the routine 2D TSE protocol for detecting meniscal and anterior cruciate ligament tears at 1.5 T, with the advantage of faster acquisition. PMID:27141127

  6. The Curvelet Transform in the analysis of 2-D GPR data: Signal enhancement and extraction of orientation-and-scale-dependent information

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas

    2015-04-01

    The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. The purpose of this paper is to investigate the Curvelet Transform (CT) as a means of S/N enhancement and information retrieval from 2-D GPR sections, with particular emphasis on the recovery of features associated with specific temporal or spatial scales and geometry (orientation/dip). The CT is a multiscale and multidirectional expansion that formulates an optimally sparse representation of bivariate functions with singularities on twice-differentiable (C2-continuous) curves (e.g. edges) and allows for the optimal, whole or partial reconstruction of such objects. The CT can be viewed as a higher dimensional extension of the wavelet transform: whereas discrete wavelets are isotropic and provide sparse representations of functions with point singularities, curvelets are highly anisotropic and provide sparse representations of functions with singularities on curves. A GPR section essentially comprises a spatio-temporal sampling of the transient wavefield which contains different arrivals that correspond to different interactions with wave scatterers in the subsurface (wavefronts). These are generally longitudinally piecewise smooth and transversely oscillatory, i.e. they comprise edges. Curvelets can detect

  7. Optoelectronics with 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Mueller, Thomas

    2015-03-01

    Two-dimensional (2D) atomic crystals, such as graphene and layered transition-metal dichalcogenides, are currently receiving a lot of attention for applications in electronics and optoelectronics. In this talk, I will review our research activities on electrically driven light emission, photovoltaic energy conversion and photodetection in 2D semiconductors. In particular, WSe2 monolayer p-n junctions formed by electrostatic doping using a pair of split gate electrodes, type-II heterojunctions based on MoS2/WSe2 and MoS2/phosphorene van der Waals stacks, 2D multi-junction solar cells, and 3D/2D semiconductor interfaces will be presented. Upon optical illumination, conversion of light into electrical energy occurs in these devices. If an electrical current is driven, efficient electroluminescence is obtained. I will present measurements of the electrical characteristics, the optical properties, and the gate voltage dependence of the device response. In the second part of my talk, I will discuss photoconductivity studies of MoS2 field-effect transistors. We identify photovoltaic and photoconductive effects, which both show strong photoconductive gain. A model will be presented that reproduces our experimental findings, such as the dependence on optical power and gate voltage. We envision that the efficient photon conversion and light emission, combined with the advantages of 2D semiconductors, such as flexibility, high mechanical stability and low costs of production, could lead to new optoelectronic technologies.

  8. High-resolution FTIR spectroscopic analysis of the ν11 and ν2 + ν7 bands of 13C2D4

    NASA Astrophysics Data System (ADS)

    Gabona, M. G.; Tan, T. L.

    2016-06-01

    The FTIR spectrum of the ν11 band of 13C2D4 was recorded at a resolution of 0.0063 cm-1 in the 2130-2250 cm-1 region. This band was perturbed by the unobserved ν2 + ν7 band. By fitting 862 infrared transitions for the ν11 band with a rms deviation of 0.0024 cm-1 using a Watson's A-reduced Hamiltonian in the Ir representation including a Coriolis coupling constant, the rovibrational constants for the ν11 = 1 state and three rotational constants for the ν2 = ν7 = 1 state of 13C2D4 were derived for the first time. The band centers of ν11 and ν2 + ν7 were determined to be 2193.75982(25) cm-1 and 2184.613(11) cm-1 respectively.

  9. 2D THD and 3D TEHD analysis of large spindle supported thrust bearings with pins and double layer system used in the three gorges hydroelectric generators

    NASA Astrophysics Data System (ADS)

    Huang, B.; Wu, Z. D.; Wu, J. L.; Wang, L. Q.

    2012-11-01

    A 2D THD model and a 3DTEHD model for large spindle supported thrust bearings were set up and used to analyze the lubrication performance of the Three Gorges test thrust beating withpins and double layer system developed by Alstom Power. The finite difference method was employed to solve the THD model, and the thermal-elasticdeformations in the pad and runner were obtained by the finite element software ANSYS11.0. The data transfer between the THD model and ANSYS11.0 was carried out automatically by an interface program.A detailed comparison between the experimental results and numerical predictions by the two different modelsset up in this paper was carried out. Poor agreement has been found between the theoretical results obtained by 2D THD model and experimental data, while 3D TEHD provides fairly good agreement, confirming the importance of thermal effects and thermal-elastic deformations in both pad and runner.

  10. The Langley Stability and Transition Analysis Code (LASTRAC) : LST, Linear and Nonlinear PSE for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2003-01-01

    During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary

  11. 2D and 3D anatomical analyses of hand dimensions for custom-made gloves.

    PubMed

    Yu, A; Yick, K L; Ng, S P; Yip, J

    2013-05-01

    Measuring hand anthropometric data for the development of good-fitting gloves is crucial. In pursuing higher accuracy in hand anthropometric measurements, scanning of hand surfaces with the aids of image analysis system to acquire measurements is an alternative to the manual methods. This study proposes a new hand measuring approach by using 2D and 3D scanning which are evaluated through comparisons of manual measurements. Thirty-three dimensions are measured by using (1) tape and calliper measurement; (2) 2D image analysis; (3) 3D image analysis based on ten captures; and (4) 3D image analysis based on three captures, respectively. Repeated-measures ANOVA, correlation analysis and RMSE are used to examine the results. The hand dimensions obtained from the four methods are highly linearly correlated. Hand data taken from 3D image analysis has no significant difference compared with manual measurements on hand and wrist circumferences, length and breadth dimension, regardless of the number of captures.

  12. Morphologic Analysis of the Temporomandibular Joint Between Patients With Facial Asymmetry and Asymptomatic Subjects by 2D and 3D Evaluation

    PubMed Central

    Zhang, Yuan-Li; Song, Jin-Lin; Xu, Xian-Chao; Zheng, Lei-Lei; Wang, Qing-Yuan; Fan, Yu-Bo; Liu, Zhan

    2016-01-01

    Abstract Signs and symptoms of temporomandibular joint (TMJ) dysfunction are commonly found in patients with facial asymmetry. Previous studies on the TMJ position have been limited to 2-dimensional (2D) radiographs, computed tomography (CT), or cone-beam computed tomography (CBCT). The purpose of this study was to compare the differences of TMJ position by using 2D CBCT and 3D model measurement methods. In addition, the differences of TMJ positions between patients with facial asymmetry and asymptomatic subjects were investigated. We prospectively recruited 5 patients (cases, mean age, 24.8 ± 2.9 years) diagnosed with facial asymmetry and 5 asymptomatic subjects (controls, mean age, 26 ± 1.2 years). The TMJ spaces, condylar and ramus angles were assessed by using 2D and 3D methods. The 3D models of mandible, maxilla, and teeth were reconstructed with the 3D image software. The variables in each group were assessed by t-test and the level of significance was 0.05. There was a significant difference in the horizontal condylar angle (HCA), coronal condylar angle (CCA), sagittal ramus angle (SRA), medial joint space (MJS), lateral joint space (LJS), superior joint space (SJS), and anterior joint space (AJS) measured in the 2D CBCT and in the 3D models (P < 0.05). The case group had significantly smaller SJS compared to the controls on both nondeviation side (P = 0.009) and deviation side (P = 0.004). In the case group, the nondeviation SRA was significantly larger than the deviation side (P = 0.009). There was no significant difference in the coronal condylar width (CCW) in either group. In addition, the anterior disc displacement (ADD) was more likely to occur on the deviated side in the case group. In conclusion, the 3D measurement method is more accurate and effective for clinicians to investigate the morphology of TMJ than the 2D method. PMID:27043669

  13. Preliminary results of determination of chemical changes on Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.)P. Karst. (higher Basidiomycetes) carried by Shenzhou I spaceship with FTIR and 2D-IR correlation spectroscopy.

    PubMed

    Choong, Yew Keong; Chen, Xiangdong; Jamal, Jamia Azdina; Wang, Qiuying; Lan, Jin

    2012-01-01

    Spaceflight represents a complex environmental condition. Space mutagenesis breeding has achieved marked results over the years. The objective of this study is to determine the chemical changes in medicinal mushroom Ganoderma lucidum cultivated after spaceflight in 1999. Fourier transform infrared (FTIR) and two-dimensional infrared (2DIR) correlation spectroscopy were used in analysis. The sample Sx and its control Cx showed the least dissimilarities in one-dimensional FTIR spectra, but absorbance of Sx is twice as high as Cx. Sx presented a clear peak at 1648 cm in 2nd derivative spectra, which could not be detected in the Cx. The 2DIR spectra showed the intensity of Sx in the range 1800-1400 cm-1 for protein is higher than the control. The sample Sx produced some carbohydrate peaks in the area of 889 cm-1 compared with the Cx. The spaceflight set up an extreme condition and caused changes of chemical properties in G. lucidum strain.

  14. Highly crystalline 2D superconductors

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Nojima, Tsutomu; Iwasa, Yoshihiro

    2016-12-01

    Recent advances in materials fabrication have enabled the manufacturing of ordered 2D electron systems, such as heterogeneous interfaces, atomic layers grown by molecular beam epitaxy, exfoliated thin flakes and field-effect devices. These 2D electron systems are highly crystalline, and some of them, despite their single-layer thickness, exhibit a sheet resistance more than an order of magnitude lower than that of conventional amorphous or granular thin films. In this Review, we explore recent developments in the field of highly crystalline 2D superconductors and highlight the unprecedented physical properties of these systems. In particular, we explore the quantum metallic state (or possible metallic ground state), the quantum Griffiths phase observed in out-of-plane magnetic fields and the superconducting state maintained in anomalously large in-plane magnetic fields. These phenomena are examined in the context of weakened disorder and/or broken spatial inversion symmetry. We conclude with a discussion of how these unconventional properties make highly crystalline 2D systems promising platforms for the exploration of new quantum physics and high-temperature superconductors.

  15. Extensions of 2D gravity

    SciTech Connect

    Sevrin, A.

    1993-06-01

    After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.

  16. Comparison and analysis of 2-D simulation results with two implosion radiation experiments on the Los Alamos Pegasus I and Pegasus II capacitor banks

    SciTech Connect

    Peterson, D.L.; Bowers, R.L.; Lebeda, C.F.; Matuska, W.; Benage, J.; Idzorek, G.; Oona, H.; Stokes, J.; Roderick, N.F.

    1995-09-01

    Two experiments, PegI-41, conducted on the Los Alamos Pegasus I capacitor bank, and PegII-25, on the Pegasus II bank, consisted of the implosions of 13 mg (nominal), 5 cm radius, 2 cm high thin cylindrical aluminum foils resulting in soft x-ray radiation pulses from the plasma thermalization on axis. The implosions were conducted in direct-drive (no intermediate switching) mode with peak currents of about 4 MA and 5 MA respectively, and implosion times of about 2.5 {micro}s and 2.0 {micro}s. A radiation yield of about 250 kJ was measured for PegII-25. The purpose of these experiments was to examine the physics of the implosion and relate this physics to the production of the radiation pulse and to provide detailed experimental data which could be compared with 2-D radiation-magnetohydrodynamic (RMHD) simulations. Included in the experimental diagnostic suites were faraday rotation and dB/dt current measurements, a visible framing camera, an x-ray stripline camera, time-dependent spectroscopy, bolometers and XRD`S. A comparison of the results from these experiments shows agreement with 2-D simulation results in the instability development, current, and radiation pulse data, including the pulsewidth, shape, peak power and total radiation yield as measured by bolometry. Instabilities dominate the behavior of the implosion and largely determine the properties of the resulting radiation pulse. The 2-D simulations can be seen to be an important tool in understanding the implosion physics.

  17. Comparison of Analysis Results Between 2D/1D Synthesis and RAPTOR-M3G in the Korea Standard Nuclear Plant (KSNP)

    NASA Astrophysics Data System (ADS)

    Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.

    2016-02-01

    The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.

  18. Multifractal detrended cross-correlation analysis in the MENA area

    NASA Astrophysics Data System (ADS)

    El Alaoui, Marwane; Benbachir, Saâd

    2013-12-01

    In this paper, we investigated multifractal cross-correlations qualitatively and quantitatively using a cross-correlation test and the Multifractal detrended cross-correlation analysis method (MF-DCCA) for markets in the MENA area. We used cross-correlation coefficients to measure the level of this correlation. The analysis concerns four stock market indices of Morocco, Tunisia, Egypt and Jordan. The countries chosen are signatory of the Agadir agreement concerning the establishment of a free trade area comprising Arab Mediterranean countries. We computed the bivariate generalized Hurst exponent, Rényi exponent and spectrum of singularity for each pair of indices to measure quantitatively the cross-correlations. By analyzing the results, we found the existence of multifractal cross-correlations between all of these markets. We compared the spectrum width of these indices; we also found which pair of indices has a strong multifractal cross-correlation.

  19. The basics of 2D DIGE.

    PubMed

    Beckett, Phil

    2012-01-01

    The technique of two-dimensional (2D) gel electrophoresis is a powerful tool for separating complex mixtures of proteins, but since its inception in the mid 1970s, it acquired the stigma of being a very difficult application to master and was generally used to its best effect by experts. The introduction of commercially available immobilized pH gradients in the early 1990s provided enhanced reproducibility and easier protocols, leading to a pronounced increase in popularity of the technique. However gel-to-gel variation was still difficult to control without the use of technical replicates. In the mid 1990s (at the same time as the birth of "proteomics"), the concept of multiplexing fluorescently labeled proteins for 2D gel separation was realized by Jon Minden's group and has led to the ability to design experiments to virtually eliminate gel-to-gel variation, resulting in biological replicates being used for statistical analysis with the ability to detect very small changes in relative protein abundance. This technology is referred to as 2D difference gel electrophoresis (2D DIGE).

  20. Enantioselective analysis of citalopram and escitalopram in postmortem blood together with genotyping for CYP2D6 and CYP2C19.

    PubMed

    Carlsson, Björn; Holmgren, Anita; Ahlner, Johan; Bengtsson, Finn

    2009-03-01

    Citalopram is marketed as a racemate (50:50) mixture of the S(+)-enantiomer and R(-)-enantiomer and the active S(+)-enantiomer (escitalopram) that possess inhibitory effects. Citalopram was introduced in Sweden in 1992 and is the most frequently used antidepressant to date in Sweden. In 2002, escitalopram was introduced onto the Swedish market for treatment of depression and anxiety disorders. The main objective of this study was to investigate S(+)-citalopram [i.e., the racemic drug (citalopram) or the enantiomer (escitalopram)] present in forensic autopsy cases positive for the presence of citalopram in routine screening using a non-enantioselective bioanalytical method. Fifty out of the 270 samples found positive by gas chromatography-nitrogen-phosphorus detection were further analyzed using enantioselective high-performance liquid chromatography. The 50 cases were genotyped for CYP2D6 and CYP2C19, as these isoenzymes are implicated in the metabolism of citalopram and escitalopram. In samples positive for racemic citalopram using the screening method for forensic autopsy cases, up to 20% would have been misinterpreted in the absence of an enantioselective method. An enantioselective method is thus necessary for correct interpretation of autopsy cases, after the enantiomer has been introduced onto the market. The percentage of poor metabolizers was 6% for CYP2D6 and 8% for CYP2C19.

  1. Adulteration detection in milk using infrared spectroscopy combined with two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    He, Bin; Liu, Rong; Yang, Renjie; Xu, Kexin

    2010-02-01

    Adulteration of milk and dairy products has brought serious threats to human health as well as enormous economic losses to the food industry. Considering the diversity of adulterants possibly mixed in milk, such as melamine, urea, tetracycline, sugar/salt and so forth, a rapid, widely available, high-throughput, cost-effective method is needed for detecting each of the components in milk at once. In this paper, a method using Fourier Transform Infrared spectroscopy (FTIR) combined with two-dimensional (2D) correlation spectroscopy is established for the discriminative analysis of adulteration in milk. Firstly, the characteristic peaks of the raw milk are found in the 4000-400 cm-1 region by its original spectra. Secondly, the adulterant samples are respectively detected with the same method to establish a spectral database for subsequent comparison. Then, 2D correlation spectra of the samples are obtained which have high time resolution and can provide information about concentration-dependent intensity changes not readily accessible from one-dimensional spectra. And the characteristic peaks in the synchronous 2D correlation spectra of the suspected samples are compared with those of raw milk. The differences among their synchronous spectra imply that the suspected milk sample must contain some kinds of adulterants. Melamine, urea, tetracycline and glucose adulterants in milk are identified respectively. This nondestructive method can be used for a correct discrimination on whether the milk and dairy products are adulterated with deleterious substances and it provides a new simple and cost-effective alternative to test the components of milk.

  2. Gene differential coexpression analysis based on biweight correlation and maximum clique.

    PubMed

    Zheng, Chun-Hou; Yuan, Lin; Sha, Wen; Sun, Zhan-Li

    2014-01-01

    Differential coexpression analysis usually requires the definition of 'distance' or 'similarity' between measured datasets. Until now, the most common choice is Pearson correlation coefficient. However, Pearson correlation coefficient is sensitive to outliers. Biweight midcorrelation is considered to be a good alternative to Pearson correlation since it is more robust to outliers. In this paper, we introduce to use Biweight Midcorrelation to measure 'similarity' between gene expression profiles, and provide a new approach for gene differential coexpression analysis. Firstly, we calculate the biweight midcorrelation coefficients between all gene pairs. Then, we filter out non-informative correlation pairs using the 'half-thresholding' strategy and calculate the differential coexpression value of gene, The experimental results on simulated data show that the new approach performed better than three previously published differential coexpression analysis (DCEA) methods. Moreover, we use the maximum clique analysis to gene subset included genes identified by our approach and previously reported T2D-related genes, many additional discoveries can be found through our method.

  3. Canonical Correlation Analysis: An Explanation with Comments on Correct Practice.

    ERIC Educational Resources Information Center

    Thompson, Bruce

    This paper briefly explains the logic underlying the basic calculations employed in canonical correlation analysis. A small hypothetical data set is employed to illustrate that canonical correlation analysis subsumes both univariate and multivariate parametric methods. Several real data sets are employed to illustrate other themes. Three common…

  4. Two-Dimensional Correlation Method for Polymer Analysis

    SciTech Connect

    Herman, Matthew Joseph

    2015-06-08

    Since its introduction by Noda in 1986 two-dimension correlation spectroscopy has been offering polymer scientists an opportunity to look more deeply into collected spectroscopic data. When the spectra are recorded in response to an external perturbation, it is possible to correlate the spectra and expand the information over a separate spectra axis allow for enhancement of spectral resolution, the ability to determine synchronous change, and a unique way to organize observed changes in the spectra into sequential order following a set of three simple rules. By organizing the 2D spectra into synchronous change plots and asynchronous change plots it is possible to correlate change between spectral regions and develop their temporal relationships to one another. With the introduction of moving-window correlation-spectroscopy by Thomas and Richardson in 2000, a method of binning and processing data, it became possible to directly correlate relationships generated in the spectra from the change in the perturbation variable. This method takes advantage of the added resolution of two-dimension spectroscopy and has been applied to study very week transitions found in polymer materials. Appling both of these techniques we are beginning to develop an understanding of how polymers decay under radiolytic aging, to develop a stronger understanding of changes in mechanical properties and the service capabilities of materials.

  5. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.

    PubMed

    Vysotsky, Yu B; Kartashynska, E S; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Miller, R

    2015-11-21

    Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase. This results in a significant increase of contact effectiveness of alkanes with the interface during the adsorption and film formation. The obtained results are in good agreement with the existing experimental data. To test the model the thermodynamic and structural parameters of formation and clusterization are calculated for vaporous alkanes C(n)H(2n+2) (n(CH3) = 6-16) at the water surface in the presence of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K. It is shown that the values of clusterization enthalpy, entropy and Gibbs' energy per one monomer of the cluster depend on the chain lengths of corresponding alcohols and alkanes, the alcohol molar fraction in the monolayers formed, and the shift of the alkane molecules with respect to the alcohol molecules Δn. Two possible competitive structures of mixed 2D film alkane-alcohol are considered: 2D films 1 with single alcohol molecules enclosed by alkane molecules (the alcohols do not form domains) and 2D films 2 that contain alcohol domains enclosed by alkane molecules. The formation of the alkane films of the first type is nearly independent of the surfactant type present at the interface, but depends on their molar fraction in the monolayer formed and the chain length of the compounds participating in the clusterization, whereas for the formation of the films of the second type the interaction between the hydrophilic parts of the surfactant is

  6. Diffusion Tensor Analysis by Two-Dimensional Pair Correlation of Fluorescence Fluctuations in Cells.

    PubMed

    Di Rienzo, Carmine; Cardarelli, Francesco; Di Luca, Mariagrazia; Beltram, Fabio; Gratton, Enrico

    2016-08-23

    In a living cell, the movement of biomolecules is highly regulated by the cellular organization into subcompartments that impose barriers to diffusion, can locally break the spatial isotropy, and ultimately guide these molecules to their targets. Despite the pivotal role of these processes, experimental tools to fully probe the complex connectivity (and accessibility) of the cell interior with adequate spatiotemporal resolution are still lacking. Here, we show how the heterogeneity of molecular dynamics and the location of barriers to molecular motion can be mapped in live cells by exploiting a two-dimensional (2D) extension of the pair correlation function (pCF) analysis. Starting from a time series of images collected for the same field of view, the resulting 2D pCF is calculated in the proximity of each point for each time delay and allows us to probe the spatial distribution of the molecules that started from a given pixel. This 2D pCF yields an accurate description of the preferential diffusive routes. Furthermore, we combine this analysis with the image-derived mean-square displacement approach and gain information on the average nanoscopic molecular displacements in different directions. Through these quantities, we build a fluorescence-fluctuation-based diffusion tensor that contains information on speed and directionality of the local dynamical processes. Contrary to classical fluorescence correlation spectroscopy and related methods, this combined approach can distinguish between isotropic and anisotropic local diffusion. We argue that the measurement of this iMSD tensor will contribute to advance our understanding of the role played by the intracellular environment in the regulation of molecular diffusion at the nanoscale.

  7. A 2D Microphysical Analysis of Aerosol Nucleation in the Polar Winter Stratosphere: Implications for H2SO4 Photolysis and Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Mills, Michael J.; Toon, Owen B.; Mills, Michael J.; Solomon, Susan

    1997-01-01

    Each spring a layer of small particles forms between 20 and 30 km in the polar regions. Results are presented from a 2D microphysical model of sulfate aerosol, which provide the first self-consistent explanation of the observed "CN layer." Photochemical conversion of sulfuric acid to SO2 in the upper stratosphere and mesosphere is necessary for this layer to form. Recent laboratory measurements of H2SO4 and SO3 photolysis rates are consistent with such conversion, though an additional source of SO2 may be required. Nucleation throughout the polar winter extends the top of the aerosol layer to higher altitudes, despite strong downward transport of ambient air. This finding may be important to heterogeneous chemistry at the top of the aerosol layer in polar winter and spring.

  8. Spatial mapping of correlation profile in Brillouin optical correlation domain analysis

    NASA Astrophysics Data System (ADS)

    Somepalli, Bhargav; Venkitesh, Deepa; Srinivasan, Balaji

    2017-04-01

    We report an approach to spatially map the correlation profile along the sensing fiber in Brillouin optical correlation domain analysis by pulsing the pump radiation. Simulations are carried out to demonstrate the influence of frequency modulation parameters of a narrow linewidth source on the width of the correlation profile and its peak position. The simulation results are validated through controlled experiments. The correlation profile is mapped over 1 km long fiber with spatial resolution of 1 m, limited only by the finite lifetime of acoustic phonons in the silica fiber.

  9. 2D X-ray and FTIR micro-analysis of the degradation of cadmium yellow pigment in paintings of Henri Matisse

    NASA Astrophysics Data System (ADS)

    Pouyet, E.; Cotte, M.; Fayard, B.; Salomé, M.; Meirer, F.; Mehta, A.; Uffelman, E. S.; Hull, A.; Vanmeert, F.; Kieffer, J.; Burghammer, M.; Janssens, K.; Sette, F.; Mass, J.

    2015-11-01

    The chemical and physical alterations of cadmium yellow (CdS) paints in Henri Matisse's The Joy of Life (1905-1906, The Barnes Foundation) have been recognized since 2006, when a survey by portable X-ray fluorescence identified this pigment in all altered regions of the monumental painting. This alteration is visible as fading, discoloration, chalking, flaking, and spalling of several regions of light to medium yellow paint. Since that time, synchrotron radiation-based techniques including elemental and spectroscopic imaging, as well as X-ray scattering have been employed to locate and identify the alteration products observed in this and related works by Henri Matisse. This information is necessary to formulate one or multiple mechanisms for degradation of Matisse's paints from this period, and thus ensure proper environmental conditions for the storage and the display of his works. This paper focuses on 2D full-field X-ray Near Edge Structure imaging, 2D micro-X-ray Diffraction, X-ray Fluorescence, and Fourier Transform Infra-red imaging of the altered paint layers to address one of the long-standing questions about cadmium yellow alteration—the roles of cadmium carbonates and cadmium sulphates found in the altered paint layers. These compounds have often been assumed to be photo-oxidation products, but could also be residual starting reagents from an indirect wet process synthesis of CdS. The data presented here allow identifying and mapping the location of cadmium carbonates, cadmium chlorides, cadmium oxalates, cadmium sulphates, and cadmium sulphides in thin sections of altered cadmium yellow paints from The Joy of Life and Matisse's Flower Piece (1906, The Barnes Foundation). Distribution of various cadmium compounds confirms that cadmium carbonates and sulphates are photo-degradation products in The Joy of Life, whereas in Flower Piece, cadmium carbonates appear to have been a [(partially) unreacted] starting reagent for the yellow paint, a role

  10. Handwriting: Feature Correlation Analysis for Biometric Hashes

    NASA Astrophysics Data System (ADS)

    Vielhauer, Claus; Steinmetz, Ralf

    2004-12-01

    In the application domain of electronic commerce, biometric authentication can provide one possible solution for the key management problem. Besides server-based approaches, methods of deriving digital keys directly from biometric measures appear to be advantageous. In this paper, we analyze one of our recently published specific algorithms of this category based on behavioral biometrics of handwriting, the biometric hash. Our interest is to investigate to which degree each of the underlying feature parameters contributes to the overall intrapersonal stability and interpersonal value space. We will briefly discuss related work in feature evaluation and introduce a new methodology based on three components: the intrapersonal scatter (deviation), the interpersonal entropy, and the correlation between both measures. Evaluation of the technique is presented based on two data sets of different size. The method presented will allow determination of effects of parameterization of the biometric system, estimation of value space boundaries, and comparison with other feature selection approaches.

  11. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  12. Sensitivity analysis of a sound absorption model with correlated inputs

    NASA Astrophysics Data System (ADS)

    Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.

    2017-04-01

    Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.

  13. Inter-ethnic differences in genetic polymorphisms of xenobiotic-metabolizing enzymes (CYP1A1, CYP2D6, NAT1 and NAT2) in healthy populations: correlation with the functional in silico prediction.

    PubMed

    Khlifi, Rim; Ben Salah, Ghada; Chakroun, Amine; Hamza-Chaffai, Amel; Rebai, Ahmed

    2014-09-01

    Several studies have shown that many polymorphisms of the xenobiotic-metabolizing enzymes (XME) affect either enzymatic functions or are associated with various aspects of human health. Owing to the presence of these single nucleotide variants (SNVs), differences in detoxification capacity have been observed between many ethnicities. The aim of this investigation was to study the prevalence of four polymorphisms in XME among various ethnic groups. Attention was focused on polymorphisms of CYP2D6 (rs1058172, G>A, p.Arg365His), CYP1A1 (rs4646421, c.-26-728C>T), NAT1 (rs4921880, c.-85-1014T>A) and NAT2 (rs1208, A>G, p.Arg268Lys). These polymorphisms were analyzed in 261 healthy Tunisians individuals in comparison with different ethnic backgrounds from hapmap database. In addition, in silico functional prediction was also performed to determine the loss of function variants. Our results demonstrated that population's origins widely affect the genetic variability of XME enzymes and Tunisians show a characteristic pattern. In silico predictions showed a deleterious effect for p.Arg268Lys substitution on CYP2D6 function, findings confirmed its key role played in cancer susceptibility. These data show that detoxification genes structures depend on the studied population. This suggests that ethnic differences impact on disease risk or response to drugs and therefore should be taken into consideration in genetic association studies focusing on XME enzymes. Our results provide the first report on these SNV in Tunisian population and could be useful for further epidemiological investigations including targeted therapy.

  14. Single nucleotide polymorphism analysis of the NKG2D ligand cluster on the long arm of chromosome 6: Extensive polymorphisms and evidence of diversity between human populations.

    PubMed

    Antoun, Ayman; Jobson, Shirley; Cook, Mark; O'Callaghan, Chris A; Moss, Paul; Briggs, David C

    2010-06-01

    NKG2D is an important activating receptor on NK cells and T-cells and has a diverse panel of ligands (NKG2DL) which include the ULBP and RAET1 proteins. Several NKG2DL exhibit a considerable degree of genetic polymorphism, and although the functional significance of such allelic variation remains unclear, genetic variants have been implicated in susceptibility to infection and auto-immune disease. We used sequence-specific primer polymerase chain reaction to determine the frequency of 25 single nucleotide polymorphisms (SNPs) in the promoter and coding regions of genes of the RAET1/ULBP cluster in 223 Euro-Caucasoid, 60 Afro-Caribbean, and 52 Indo-Asian individuals to determine NKG2DL allele and haplotype frequencies within these populations. We show marked differences in the frequency of NKG2DL SNPs and haplotypes among the three ethnic groups, and certain haplotypes were observed almost exclusively in Afro-Caribbean compared with the Euro-Caucasoid and Indo-Asian populations. Interestingly, variation was focused within the RAET1E (ULBP4), RAET1L, and ULBP3 genes, whereas the ULBP1, ULBP2 and RAET1G (ULBP5) genes were highly conserved. These findings suggest that individual NKG2DL alleles have been subject to divergent selective pressures during the migration of Homo sapiens. This information will be of importance in understanding the biology and clinical significance of NKG2DL polymorphism.

  15. Comparative 2D-DIGE proteomic analysis of ovarian carcinoma cells: toward a reorientation of biosynthesis pathways associated with acquired platinum resistance.

    PubMed

    Lincet, Hubert; Guével, Blandine; Pineau, Charles; Allouche, Stéphane; Lemoisson, Edwige; Poulain, Laurent; Gauduchon, Pascal

    2012-02-02

    Ovarian cancer is the fifth most frequent cause of cancer death in women. Emergence of chemoresistance in the course of treatments with platinum drugs is in part responsible for therapeutic failures. In order to improve the understanding of the complex mechanisms involved in acquired platinum chemoresistance, we decided to compare the basal protein expression profile of the platinum-sensitive cell line OAW42 and that of its resistant counterpart OAW42-R by a proteomic approach. Reversed-phase HPLC pre-fractionated extracts from both cell lines were subjected to 2D-DIGE coupled to mass spectrometry (MS). Forty eight differentially expressed proteins were identified, 39 being up-regulated and 19 down-regulated in OAW42-R versus OAW42 cells. From the current knowledge on biological activities of most differentially expressed proteins, it can be inferred that the acquisition of resistance was associated with a global reorganization of biochemical pathways favoring the production of precursors for biosynthesis, and with the mobilization of macromolecule quality control mechanisms, preserving RNA and protein integrity under damage-inducing conditions.

  16. 2-D DIGE analysis of Senegalese sole (Solea senegalensis) testis proteome in wild-caught and hormone-treated F1 fish.

    PubMed

    Forné, Ignasi; Agulleiro, María J; Asensio, Esther; Abián, Joaquín; Cerdà, Joan

    2009-04-01

    In the farmed flatfish Senegalese sole, F1 males reared in captivity often show lower sperm production and fertilization capacity than wild-caught males. To gain insights into the molecular mechanisms that may be altered in the F1 testis, we used 2-D DIGE to compare the protein profiling of the testis of wild-caught males at the spermiation stage with that of F1 males showing different stages of germ cell development after hormone treatment in vivo. The abundance of 58 out of 1014 protein spots was found to differ significantly between the groups. De novo identification of these proteins by MS/MS revealed that proteins implicated in oxidoreductase activity, protein catabolism, formation of the zona pellucida receptor, cytoskeleton organization, and lipid binding and metabolism, were regulated in the F1 testes as germ cell development progressed. However, distinct isoforms or PTMs of some of these proteins, as well as of proteins involved in iron and glucose metabolism and ATP production, were expressed at lower levels in the testes of F1 males than in wild fish regardless of the hormone treatment. These results contribute to identifying proteins associated with spermatogenesis not previously described in teleosts, and suggest potential mechanisms that may be involved in the poor reproductive performance of Senegalese sole F1 males.

  17. Rotational Analysis of Bands in the High-Resolution Infrared Spectra of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1

    SciTech Connect

    Craig, Norman C.; Easterday, Clay C.; Nemchick, Deacon J.; Williamson, Drew; Sams, Robert L.

    2012-02-01

    Pure samples of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0015 cm-1) infrared spectra have been recorded for these nonpolar molecules in the gas phase. For the cis,cis isomer, the rotational structure in two C-type bands at 775 and 666 cm-1 and one A-type band at 866 cm-1 has been analyzed to yield a combined set of 2020 ground state combination differences (GSCDs). Ground state rotational constants fit to these GSCDs are A0 = 0.4195790(4), B0 = 0.0536508(8), and C0 = 0.0475802(9) cm-1. For the trans,trans isomer, three Ctype bands at 856, 839, and 709 cm-1 have been investigated to give a combined set of 1624 GSCDs. Resulting ground state rotational constants for this isomer are A0 = 0.9390117(8), B0 = 0.0389225(4), and C0 = 0.0373778(3) cm-1. Small inertial defects confirm the planarity of both isomers in the ground state. Upper state rotational constants have been determined for most of the transitions. The ground state rotational constants for the two isotopologues will contribute to the data set needed for determining semiexperimental equilibrium structures for the nonpolar isomers of 1,4- difluorobutadiene.

  18. High resolution infrared synchrotron study of CH2D81Br: ground state constants and analysis of the ν5, ν6 and ν9 fundamentals

    NASA Astrophysics Data System (ADS)

    Baldacci, A.; Stoppa, P.; Visinoni, R.; Wugt Larsen, R.

    2012-09-01

    The high resolution infrared absorption spectrum of CH2D81Br has been recorded by Fourier transform spectroscopy in the range 550-1075 cm-1, with an unapodized resolution of 0.0025 cm-1, employing a synchrotron radiation source. This spectral region is characterized by the ν6 (593.872 cm-1), ν5 (768.710 cm-1) and ν9 (930.295 cm-1) fundamental bands. The ground state constants up to sextic centrifugal distortion terms have been obtained for the first time by ground-state combination differences from the three bands and subsequently employed for the evaluation of the excited state parameters. Watson's A-reduced Hamiltonian in the Ir representation has been used in the calculations. The ν 6 = 1 level is essentially free from perturbation whereas the ν 5 = 1 and ν 9 = 1 states are mutually interacting through a-type Coriolis coupling. Accurate spectroscopic parameters of the three excited vibrational states and a high-order coupling constant which takes into account the interaction between ν5 and ν9 have been determined.

  19. Kinematic analysis of healthy hips during weight-bearing activities by 3D-to-2D model-to-image registration technique.

    PubMed

    Hara, Daisuke; Nakashima, Yasuharu; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Iwamoto, Yukihide

    2014-01-01

    Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3 mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics' data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips.

  20. Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology

    PubMed Central

    Faltermeier, Rupert; Proescholdt, Martin A.; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses. PMID:26693250

  1. Correlational Meta-Analysis: Independent and Nonindependent Cases.

    ERIC Educational Resources Information Center

    Tracz, Susan M.; And Others

    1992-01-01

    Effects of violating the independence assumption when combining correlation coefficients in a meta-analysis were studied. This Monte-Carlo simulation varied sample size, predictor number, population intercorrelation among predictors, and population correlation between predictors and criterion. Combining statistics from nonindependent data in a…

  2. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  3. THE FERTILITY BIOMARKER (SP22) IS COMPROMISED IN AN ADDITIVE FASHION BY HALOACIDS: COMPARATIVE QUANTITATION BY IMMUNOASSAY AND 2D-GEL ANALYSIS

    EPA Science Inventory

    Dibromoacetic acid (DBA) and bromochloroacetic acid (BCA) are prevalent disinfection by-products of drinking water known to produce defects in spermatogenesis and fertility in adult rats. Previous work in our laboratory demonstated a high correlation between fertility of sperm fr...

  4. Nondestructive Evaluation Correlated with Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Azid, Ali; Baaklini, George Y.

    1999-01-01

    Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.

  5. Dynamic test/analysis correlation using reduced analytical models

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Angelucci, A. F.; Javeed, Mehzad

    1992-01-01

    Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.

  6. Dynamic test/analysis correlation using reduced analytical models

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Angelucci, A. Filippo; Javeed, Mehzad

    1992-01-01

    Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System (IRS) reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.

  7. Multiscale Detrended Cross-Correlation Analysis of STOCK Markets

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2014-06-01

    In this paper, we employ the detrended cross-correlation analysis (DCCA) to investigate the cross-correlations between different stock markets. We report the results of cross-correlated behaviors in US, Chinese and European stock markets in period 1997-2012 by using DCCA method. The DCCA shows the cross-correlated behaviors of intra-regional and inter-regional stock markets in the short and long term which display the similarities and differences of cross-correlated behaviors simply and roughly and the persistence of cross-correlated behaviors of fluctuations. Then, because of the limitation and inapplicability of DCCA method, we propose multiscale detrended cross-correlation analysis (MSDCCA) method to avoid "a priori" selecting the ranges of scales over which two coefficients of the classical DCCA method are identified, and employ MSDCCA to reanalyze these cross-correlations to exhibit some important details such as the existence and position of minimum, maximum and bimodal distribution which are lost if the scale structure is described by two coefficients only and essential differences and similarities in the scale structures of cross-correlation of intra-regional and inter-regional markets. More statistical characteristics of cross-correlation obtained by MSDCCA method help us to understand how two different stock markets influence each other and to analyze the influence from thus two inter-regional markets on the cross-correlation in detail, thus we get a richer and more detailed knowledge of the complex evolutions of dynamics of the cross-correlations between stock markets. The application of MSDCCA is important to promote our understanding of the internal mechanisms and structures of financial markets and helps to forecast the stock indices based on our current results demonstrated the cross-correlations between stock indices. We also discuss the MSDCCA methods of secant rolling window with different sizes and, lastly, provide some relevant implications and

  8. Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4.

    PubMed

    Sager, J E; Lutz, J D; Foti, R S; Davis, C; Kunze, K L; Isoherranen, N

    2014-06-01

    Fluoxetine and its circulating metabolite norfluoxetine comprise a complex multiple-inhibitor system that causes reversible or time-dependent inhibition of the cytochrome P450 (CYP) family members CYP2D6, CYP3A4, and CYP2C19 in vitro. Although significant inhibition of all three enzymes in vivo was predicted, the areas under the concentration-time curve (AUCs) for midazolam and lovastatin were unaffected by 2-week dosing of fluoxetine, whereas the AUCs of dextromethorphan and omeprazole were increased by 27- and 7.1-fold, respectively. This observed discrepancy between in vitro risk assessment and in vivo drug-drug interaction (DDI) profile was rationalized by time-varying dynamic pharmacokinetic models that incorporated circulating concentrations of fluoxetine and norfluoxetine enantiomers, mutual inhibitor-inhibitor interactions, and CYP3A4 induction. The dynamic models predicted all DDIs with less than twofold error. This study demonstrates that complex DDIs that involve multiple mechanisms, pathways, and inhibitors with their metabolites can be predicted and rationalized via characterization of all the inhibitory species in vitro.

  9. 2D quasiperiodic plasmonic crystals

    PubMed Central

    Bauer, Christina; Kobiela, Georg; Giessen, Harald

    2012-01-01

    Nanophotonic structures with irregular symmetry, such as quasiperiodic plasmonic crystals, have gained an increasing amount of attention, in particular as potential candidates to enhance the absorption of solar cells in an angular insensitive fashion. To examine the photonic bandstructure of such systems that determines their optical properties, it is necessary to measure and model normal and oblique light interaction with plasmonic crystals. We determine the different propagation vectors and consider the interaction of all possible waveguide modes and particle plasmons in a 2D metallic photonic quasicrystal, in conjunction with the dispersion relations of a slab waveguide. Using a Fano model, we calculate the optical properties for normal and inclined light incidence. Comparing measurements of a quasiperiodic lattice to the modelled spectra for angle of incidence variation in both azimuthal and polar direction of the sample gives excellent agreement and confirms the predictive power of our model. PMID:23209871

  10. Valleytronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Schaibley, John R.; Yu, Hongyi; Clark, Genevieve; Rivera, Pasqual; Ross, Jason S.; Seyler, Kyle L.; Yao, Wang; Xu, Xiaodong

    2016-11-01

    Semiconductor technology is currently based on the manipulation of electronic charge; however, electrons have additional degrees of freedom, such as spin and valley, that can be used to encode and process information. Over the past several decades, there has been significant progress in manipulating electron spin for semiconductor spintronic devices, motivated by potential spin-based information processing and storage applications. However, experimental progress towards manipulating the valley degree of freedom for potential valleytronic devices has been limited until very recently. We review the latest advances in valleytronics, which have largely been enabled by the isolation of 2D materials (such as graphene and semiconducting transition metal dichalcogenides) that host an easily accessible electronic valley degree of freedom, allowing for dynamic control.

  11. Unparticle example in 2D.

    PubMed

    Georgi, Howard; Kats, Yevgeny

    2008-09-26

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

  12. Cytochrome P450 2D6 variants in a Caucasian population: Allele frequencies and phenotypic consequences

    SciTech Connect

    Sachse, C.; Brockmoeller, J.; Bauer, S.; Roots, I.

    1997-02-01

    Cytochrome P450 2D6 (CYP2D6) metabolizes many important drugs. CYP2D6 activity ranges from complete deficiency to ultrafast metabolism, depending on at least 16 different known alleles. Their frequencies were determined in 589 unrelated German volunteers and correlated with enzyme activity measured by phenotyping with dextromethorphan or debrisoquine. For genotyping, nested PCR-RFLP tests from a PCR amplificate of the entire CYP2D6 gene were developed. The frequency of the CYP2D6*1 allele coding for extensive metabolizer (EM) phenotype was .364. The alleles coding for slightly (CYP2D6*2) or moderately (*9 and *10) reduced activity (intermediate metabolizer phenotype [IM]) showed frequencies of .324, .018, and .015, respectively. By use of novel PCR tests for discrimination, CYP2D6 gene duplication alleles were found with frequencies of.005 (*1 x 2), .013 (* 2 x 2), and .001 (*4 x 2). Frequencies of alleles with complete deficiency (poor metabolizer phenotype [PM]) were .207 (*4), .020 (*3 and *5), .009 (*6), and .001 (*7, *15, and *16). The defective CYP2D6 alleles *8, *11, *12, *13, and *14 were not found. All 41 PMs (7.0%) in this sample were explained by five mutations detected by four PCR-RFLP tests, which may suffice, together with the gene duplication test, for clinical prediction of CYP2D6 capacity. Three novel variants of known CYP2D6 alleles were discovered: *1C (T{sub 1957}C), *2B (additional C{sub 2558}T), and *4E (additional C{sub 2938}T). Analysis of variance showed significant differences in enzymatic activity measured by the dextromethorphan metabolic ratio (MR) between carriers of EN/PM (mean MR = .006) and IM/PM (mean MR = .014) alleles and between carriers of one (mean MR = .009) and two (mean MR = .003) functional alleles. The results of this study provide a solid basis for prediction of CYP2D6 capacity, as required in drug research and routine drug treatment. 35 refs., 4 figs., 5 tabs.

  13. Effective Hamiltonians of 2D Spin Glass Clusters

    NASA Astrophysics Data System (ADS)

    Clement, Colin; Liarte, Danilo; Middleton, Alan; Sethna, James

    2015-03-01

    We have a method for directly identifying the clusters which are thought to dominate the dynamics of spin glasses. We also have a method for generating an effective Hamiltonian treating each cluster as an individual spin. We used these methods on a 2D Ising spin glass with Gaussian bonds. We study these systems by generating samples and correlation functions using a combination of Monte Carlo and high-performance numerically exact Pfaffian methods. With effective cluster Hamiltonians we can calculate the free energy asymmetry of the original clusters and perform a scaling analysis. The scaling exponents found are consistent with Domain-Wall Renormalization Group methods, and probe all length scales. We can also study the flow of these effective Hamiltonians by clustering the clustered spins, and we find that our hard spin Hamiltonians at high temperature retain accurate low-temperature fluctuations when compared to their parent models.

  14. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    PubMed

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  15. Remarks on thermalization in 2D CFT

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  16. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations.

    PubMed

    Paluch, Piotr; Pawlak, Tomasz; Jeziorna, Agata; Trébosc, Julien; Hou, Guangjin; Vega, Alexander J; Amoureux, Jean-Paul; Dracinsky, Martin; Polenova, Tatyana; Potrzebowski, Marek J

    2015-11-21

    We report a new multidimensional magic angle spinning NMR methodology, which provides an accurate and detailed probe of molecular motions occurring on timescales of nano- to microseconds, in sidechains of proteins. The approach is based on a 3D CPVC-RFDR correlation experiment recorded under fast MAS conditions (ν(R) = 62 kHz), where (13)C-(1)H CPVC dipolar lineshapes are recorded in a chemical shift resolved manner. The power of the technique is demonstrated in model tripeptide Tyr-(d)Ala-Phe and two nanocrystalline proteins, GB1 and LC8. We demonstrate that, through numerical simulations of dipolar lineshapes of aromatic sidechains, their detailed dynamic profile, i.e., the motional modes, is obtained. In GB1 and LC8 the results unequivocally indicate that a number of aromatic residues are dynamic, and using quantum mechanical calculations, we correlate the molecular motions of aromatic groups to their local environment in the crystal lattice. The approach presented here is general and can be readily extended to other biological systems.

  17. Recovering the Fermi surface with 2D-ACAR spectroscopy in samples with defects

    NASA Astrophysics Data System (ADS)

    Dugdale, S. B.; Laverock, J.

    2014-04-01

    When two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) experiments are performed in metals containing defects, conventional analysis in which the measured momentum distribution is folded back into the first Brillouin zone is rendered ineffective due to the contribution from positrons annihilating from the defect. However, by working with the radial anisotropy of the spectrum, it is shown that an image of the Fermi surface can be recovered since the defect contribution is essentially isotropic.

  18. Accuracy of the Parallel Analysis Procedure with Polychoric Correlations

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Li, Feiming; Bandalos, Deborah

    2009-01-01

    The purpose of this study was to investigate the application of the parallel analysis (PA) method for choosing the number of factors in component analysis for situations in which data are dichotomous or ordinal. Although polychoric correlations are sometimes used as input for component analyses, the random data matrices generated for use in PA…

  19. Methods of Assessing Replicability in Canonical Correlation Analysis (CCA).

    ERIC Educational Resources Information Center

    King, Jason E.

    Theoretical hypotheses generated from data analysis of a single sample should not be advanced until the replicability issue is treated. At least one of three questions usually arises when evaluating the invariance of results obtained from a canonical correlation analysis (CCA): (1) "Will an effect occur in subsequent studies?"; (2)…

  20. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    PubMed Central

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  1. Comparison of 2-D and 3-D estimates of placental volume in early pregnancy.

    PubMed

    Aye, Christina Y L; Stevenson, Gordon N; Impey, Lawrence; Collins, Sally L

    2015-03-01

    Ultrasound estimation of placental volume (PlaV) between 11 and 13 wk has been proposed as part of a screening test for small-for-gestational-age babies. A semi-automated 3-D technique, validated against the gold standard of manual delineation, has been found at this stage of gestation to predict small-for-gestational-age at term. Recently, when used in the third trimester, an estimate obtained using a 2-D technique was found to correlate with placental weight at delivery. Given its greater simplicity, the 2-D technique might be more useful as part of an early screening test. We investigated if the two techniques produced similar results when used in the first trimester. The correlation between PlaV values calculated by the two different techniques was assessed in 139 first-trimester placentas. The agreement on PlaV and derived "standardized placental volume," a dimensionless index correcting for gestational age, was explored with the Mann-Whitney test and Bland-Altman plots. Placentas were categorized into five different shape subtypes, and a subgroup analysis was performed. Agreement was poor for both PlaV and standardized PlaV (p < 0.001 and p < 0.001), with the 2-D technique yielding larger estimates for both indices compared with the 3-D method. The mean difference in standardized PlaV values between the two methods was 0.007 (95% confidence interval: 0.006-0.009). The best agreement was found for regular rectangle-shaped placentas (p = 0.438 and p = 0.408). The poor correlation between the 2-D and 3-D techniques may result from the heterogeneity of placental morphology at this stage of gestation. In early gestation, the simpler 2-D estimates of PlaV do not correlate strongly with those obtained with the validated 3-D technique.

  2. Asymmetric Matrices in an Analysis of Financial Correlations

    NASA Astrophysics Data System (ADS)

    Kwapien, J.; Drozdz, S.; Gorski, A. Z.; Oswiecimka, P.

    2006-11-01

    Financial markets are highly correlated systems that reveal both the inter-market dependencies and the correlations among their different components. Standard analyzing techniques include correlation coefficients for pairs of signals and correlation matrices for rich multivariate data. In the latter case one constructs a real symmetric matrix with real non-negative eigenvalues describing the correlation structure of the data. However, if one performs a correlation-function-like analysis of multivariate data, when a stress is put on investigation of delayed dependencies among different types of signals, one can calculate an asymmetric correlation matrix with complex eigenspectrum. From the Random Matrix Theory point of view this kind of matrices is closely related to Ginibre Orthogonal Ensemble (GinOE). We present an example of practical application of such matrices in correlation analyses of empirical data. By introducing the time lag, we are able to identify temporal structure of the inter-market correlations. Our results show that the American and German stock markets evolve almost simultaneously without a significant time lag so that it is hard to find imprints of information transfer between these markets. There is only an extremely subtle indication that the German market advances the American one by a few seconds.

  3. Detrended Partial-Cross-Correlation Analysis: A New Method for Analyzing Correlations in Complex System

    PubMed Central

    Yuan, Naiming; Fu, Zuntao; Zhang, Huan; Piao, Lin; Xoplaki, Elena; Luterbacher, Juerg

    2015-01-01

    In this paper, a new method, detrended partial-cross-correlation analysis (DPCCA), is proposed. Based on detrended cross-correlation analysis (DCCA), this method is improved by including partial-correlation technique, which can be applied to quantify the relations of two non-stationary signals (with influences of other signals removed) on different time scales. We illustrate the advantages of this method by performing two numerical tests. Test I shows the advantages of DPCCA in handling non-stationary signals, while Test II reveals the “intrinsic” relations between two considered time series with potential influences of other unconsidered signals removed. To further show the utility of DPCCA in natural complex systems, we provide new evidence on the winter-time Pacific Decadal Oscillation (PDO) and the winter-time Nino3 Sea Surface Temperature Anomaly (Nino3-SSTA) affecting the Summer Rainfall over the middle-lower reaches of the Yangtze River (SRYR). By applying DPCCA, better significant correlations between SRYR and Nino3-SSTA on time scales of 6 ~ 8 years are found over the period 1951 ~ 2012, while significant correlations between SRYR and PDO on time scales of 35 years arise. With these physically explainable results, we have confidence that DPCCA is an useful method in addressing complex systems. PMID:25634341

  4. Detrended cross-correlation analysis consistently extended to multifractality

    NASA Astrophysics Data System (ADS)

    Oświȩcimka, Paweł; DroŻdŻ, Stanisław; Forczek, Marcin; Jadach, Stanisław; Kwapień, Jarosław

    2014-02-01

    We propose an algorithm, multifractal cross-correlation analysis (MFCCA), which constitutes a consistent extension of the detrended cross-correlation analysis and is able to properly identify and quantify subtle characteristics of multifractal cross-correlations between two time series. Our motivation for introducing this algorithm is that the already existing methods, like multifractal extension, have at best serious limitations for most of the signals describing complex natural processes and often indicate multifractal cross-correlations when there are none. The principal component of the present extension is proper incorporation of the sign of fluctuations to their generalized moments. Furthermore, we present a broad analysis of the model fractal stochastic processes as well as of the real-world signals and show that MFCCA is a robust and selective tool at the same time and therefore allows for a reliable quantification of the cross-correlative structure of analyzed processes. In particular, it allows one to identify the boundaries of the multifractal scaling and to analyze a relation between the generalized Hurst exponent and the multifractal scaling parameter λq. This relation provides information about the character of potential multifractality in cross-correlations and thus enables a deeper insight into dynamics of the analyzed processes than allowed by any other related method available so far. By using examples of time series from the stock market, we show that financial fluctuations typically cross-correlate multifractally only for relatively large fluctuations, whereas small fluctuations remain mutually independent even at maximum of such cross-correlations. Finally, we indicate possible utility of MFCCA to study effects of the time-lagged cross-correlations.

  5. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  6. Two-dimensional heterospectral correlation analysis of the redox-induced conformational transition in cytochrome c using surface-enhanced Raman and infrared absorption spectroscopies on a two-layer gold surface.

    PubMed

    Zou, Changji; Larisika, Melanie; Nagy, Gabor; Srajer, Johannes; Oostenbrink, Chris; Chen, Xiaodong; Knoll, Wolfgang; Liedberg, Bo; Nowak, Christoph

    2013-08-22

    The heme protein cytochrome c adsorbed to a two-layer gold surface modified with a self-assembled monolayer of 2-mercaptoethanol was analyzed using a two-dimensional (2D) heterospectral correlation analysis that combined surface-enhanced infrared absorption spectroscopy (SEIRAS) and surface-enhanced Raman spectroscopy (SERS). Stepwise increasing electric potentials were applied to alter the redox state of the protein and to induce conformational changes within the protein backbone. We demonstrate herein that 2D heterospectral correlation analysis is a particularly suitable and useful technique for the study of heme-containing proteins as the two spectroscopies address different portions of the protein. Thus, by correlating SERS and SEIRAS data in a 2D plot, we can obtain a deeper understanding of the conformational changes occurring at the redox center and in the supporting protein backbone during the electron transfer process. The correlation analyses are complemented by molecular dynamics calculations to explore the intramolecular interactions.

  7. Analysis of transverse momentum correlations in hadronic Z decays

    NASA Astrophysics Data System (ADS)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Merle, E.; Minard, M.-N.; Nief, J.-Y.; Perrodo, P.; Pietrzyk, B.; Alemany, R.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Pacheco, A.; Park, I. C.; Pascual, A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moneta, L.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Tournefier, E.; Wachsmuth, H.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.-C.; Rougé, A.; Rumpf, M.; Swynghedauw, M.; Valassi, A.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Marinelli, N.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Williams, M. I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Etienne, F.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Büscher, V.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; dell'Orso, R.; Ferrante, I.; Foà, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Chambers, J. T.; Cowan, G.; Green, M. G.; Medcalf, T.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Prange, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1999-02-01

    In a recent paper, evidence was presented for a significant, positive correlation between the total transverse momenta of particles on opposite hemispheres of hadronic events. A new, model independent analysis of the data has been made. Two components can be distinguished in the correlation, and quantitative estimates of each are given. The results form a significant test of Monte Carlo models and some of the physics behind them.

  8. Calcium-dependent activation and autolysis of Arabidopsis metacaspase 2d.

    PubMed

    Watanabe, Naohide; Lam, Eric

    2011-03-25

    Metacaspases (MCPs) are members of a new family of cysteine proteases found in plants, fungi, and protozoa that are structurally related to metazoan caspases. Recent studies showed that plant MCPs are arginine/lysine-specific cysteine proteases with caspase-like processing activities in vitro and in vivo, and some of the plant type II MCPs exhibit Ca(2+) dependence for their endopeptidase activity in vitro. However, the mechanisms and biological relevance of Ca(2+) dependence and self-processing of plant MCPs remains unclear. Here we show that recombinant AtMCP2d, the most abundantly expressed member of Arabidopsis type II MCPs at the transcriptional level, exhibits a strict Ca(2+) dependence for its catalytic activation that is apparently mediated by intramolecular self-cleavage mechanism. However, rapid inactivation of AtMCP2d activity concomitant with Ca(2+)-induced self-processing at multiple internal sites was observed. Because active AtMCP2d can cleave its inactive form, intermolecular cleavage (autolysis) of AtMCP2d could also occur under our assay conditions. Ca(2+)-induced self-processing of recombinant AtMCP2d was found to correlate with the sequential appearance of at least six intermediates, including self-cleaved forms, during the proenzyme purification process. Six of these peptides were characterized, and the cleavage sites were mapped through N-terminal protein sequencing. Mutation analysis of AtMCP2d revealed that cleavage after Lys-225, which is a highly conserved residue among the six Arabidopsis type II MCPs, is critical for the catalytic activation by Ca(2+), and we demonstrate that this residue is essential for AtMCP2d activation of H(2)O(2)-induced cell death in yeast. Together, our results provide clues to understand the mode of regulation for this class of proteases.

  9. Statistical Characterization of Altitude Matrices by Computer. Report 2. Calibration Tests on the Rayner-McCalden Program for 2-D Spectral Analysis.

    DTIC Science & Technology

    1974-01-01

    igurecs for th e %oT t o t al ’a iac rC i n domain show how mucl , variance is sacrificod In rm;nni ,’-sir.., S1.ClOdS I the case of C’amclon the...analysis; Te-’- 1- 4C S 3 (𔃼 I. .- 2 TOBLER, W.R. 1969, An analysis of a digitalizd sUr ac; 2xs 2~ (Ed.) A Study of the Land T1’r-e (U.S. Army "Reseal’ch Qfc,~ru North Carolina, Contract DA-31-12-4-ARG-D)-453, z;9-6~

  10. Regional subsidence modelling in Murcia city (SE Spain) using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    NASA Astrophysics Data System (ADS)

    Tessitore, S.; Fernández-Merodo, J. A.; Herrera, G.; Tomás, R.; Ramondini, M.; Sanabria, M.; Duro, J.; Mulas, J.; Calcaterra, D.

    2015-11-01

    Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982-1984, 1992-1995 and 2004-2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.

  11. Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

    DTIC Science & Technology

    2015-07-01

    circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis. By...used to validate the contact stress distributions associated with a circular hole in an aluminium plate fitted with a titanium fastener that were...fatigue life and aircraft structural integrity management of RAAF airframes. An aluminium coupon has been previously designed in support of the

  12. Correlation analysis of objectively defined galaxy and cluster catalogues

    NASA Astrophysics Data System (ADS)

    Stevenson, P. R. F.; Fong, R.; Shanks, T.

    1988-10-01

    The authors present further galaxy clustering results from the objective COSMOS/UKST galaxy catalogue of Stevenson et al. They first re-examine the results of SSFM for the galaxy correlation function, wgg(θ), testing the stability of the result against possible systematic effects and extending the analysis to larger angular scales. They then use the method of Turner & Gott to automatically detect groups and clusters in these catalogues. The authors next present the cluster-galaxy cross-correlation function wcg. Finally, the above correlation analyses are carried out on simulated galaxy and cluster catalogues.

  13. Data Reduction and Its Impact on Test-Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Bark, Lindley W.

    2001-01-01

    A research project has been initiated to improve crash test and analysis correlation. The research has focused on two specimen types: simple metallic beams and plates; and a representative composite fuselage section. Impact tests were performed under carefully controlled conditions. In addition, the specimens were densely instrumented to enable not only correlation with finite element simulations, but to also assess the repeatability of the data. Simulations utilizing a detailed finite element model were executed in a nonlinear transient dynamic code. The results presented in this paper concentrate on the effect of several data reduction processes, to include filtering frequency and sampling rate, on the correlation accuracy.

  14. Delay correlation analysis and representation for vital complaint VHDL models

    DOEpatents

    Rich, Marvin J.; Misra, Ashutosh

    2004-11-09

    A method and system unbind a rise/fall tuple of a VHDL generic variable and create rise time and fall time generics of each generic variable that are independent of each other. Then, according to a predetermined correlation policy, the method and system collect delay values in a VHDL standard delay file, sort the delay values, remove duplicate delay values, group the delay values into correlation sets, and output an analysis file. The correlation policy may include collecting all generic variables in a VHDL standard delay file, selecting each generic variable, and performing reductions on the set of delay values associated with each selected generic variable.

  15. Multifractal detrended cross-correlation analysis for two nonstationary signals.

    PubMed

    Zhou, Wei-Xing

    2008-06-01

    We propose a method called multifractal detrended cross-correlation analysis to investigate the multifractal behaviors in the power-law cross-correlations between two time series or higher-dimensional quantities recorded simultaneously, which can be applied to diverse complex systems such as turbulence, finance, ecology, physiology, geophysics, and so on. The method is validated with cross-correlated one- and two-dimensional binomial measures and multifractal random walks. As an example, we illustrate the method by analyzing two financial time series.

  16. Analysis of community structure in networks of correlated data

    SciTech Connect

    Gomez, S.; Jensen, P.; Arenas, A.

    2008-12-25

    We present a reformulation of modularity that allows the analysis of the community structure in networks of correlated data. The new modularity preserves the probabilistic semantics of the original definition even when the network is directed, weighted, signed, and has self-loops. This is the most general condition one can find in the study of any network, in particular those defined from correlated data. We apply our results to a real network of correlated data between stores in the city of Lyon (France).

  17. Digit ratio (2D:4D) and hand preference for writing in the BBC Internet Study.

    PubMed

    Manning, J T; Peters, M

    2009-09-01

    The ratio of the length of the second to the fourth digit (2D:4D) may be negatively correlated with prenatal testosterone. Hand preference has been linked with prenatal testosterone and 2D:4D. Here we show that 2D:4D is associated with hand preference for writing in a large internet sample (n>170,000) in which participants self-reported their finger lengths. We replicated a significant association between right 2D:4D and writing hand preference (low right 2D:4D associated with left hand preference) as well as a significant correlation between writing hand preference and the difference between left and right 2D:4D or Dr-l (low Dr-l associated with left hand preference). A new significant correlation between left 2D:4D and writing hand preference was also shown (high left 2D:4D associated with left hand preference). There was a clear interaction between writing hand preference and 2D:4D: The left 2D:4D was significantly larger than the right 2D:4D in male and female left-handed writers, and the right hand 2D:4D was significantly larger than the left hand 2D:4D in male and female right-handed writers.

  18. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  19. Evaluation of Test/Analysis Correlation Methods for Crash Applications

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Bark, Lindley W.; Jackson, Karen E.

    2001-01-01

    A project has been initiated to improve crash test and analysis correlation. The work in this paper concentrated on the test and simulation results for a fuselage section. Two drop tests of the section were conducted. The first test was designed to excite the linear structural response for comparison with finite element modal analysis results. The second test was designed to provide data for correlation with crash simulations. An MSC.Dytran model was developed to generate nonlinear transient dynamic results. Following minor modifications, the same model was executed in MSC.Nastran to generate modal analysis results. The results presented in this paper concentrate on evaluation of correlation methodologies for crash test data and finite element simulation results.

  20. [Study of thermal perturbation of natural bamboo fiber by two dimensional correlation analysis and Fourier transform infrared spectroscopy].

    PubMed

    Huang, An-min; Wang, Ge; Zhou, Qun; Liu, Jun-liang; Sun, Su-qin

    2008-06-01

    The Fourier transform infrared spectroscopy (FTIR) combined with generalized two-dimensional correlation analysis was applied to study the mini-heating process of natural bamboo fiber. The absorption peaks of natural bamboo fiber and bamboo in the FTIR spectra were different, which showed the contents of lignin and hemicelluloses of natural bamboo fiber was lower than those of bamboo. The changes in absorption peaks of natural bamboo fiber in the FTIR spectra at different temperatures were inconspicuous during heating up from 50 to 120 degrees C, which showed that there was not oxidation reaction in natural bamboo fiber during the process. With the help of 2D correlation analysis, the changes of different groups of natural bamboo fiber and bamboo during heating process were reflected. The strongest autopeak of them was all aroused at 1 665 cm1 in synchronous spectrum. The difference was that there were several weak auto-peaks and cross peaks in the natural bamboo fiber, but in the bamboo, one stronger 5 x 5 group was aroused in the 833-1230 cm(-1). Region the reason was the difference in chemistry composition and the change degree during heating process. In conclusion, the 2D correlation analysis of FTIR can be a new method to analyze the microcosmic dynamic change in the structure of natural bamboo fiber and bamboo during the mini-heating process and also offers an important theory gist for the study of oxidation mechanism of them.

  1. Proteome analysis of responses to ascochlorin in a human osteosarcoma cell line by 2-D gel electrophoresis and MALDI-TOF MS.

    PubMed

    Kang, Jeong Han; Park, Kwan-Kyu; Lee, In-Seon; Magae, Junji; Ando, Kunio; Kim, Cheorl-Ho; Chang, Young-Chae

    2006-10-01

    Ascochlorin is a prenyl-phenol compound that was isolated from the fungus Ascochyta viciae. Ascochlorin reduces serum cholesterol and triglyceride levels, suppresses hypertension and tumor development, and ameliorates type I and II diabetes. Here, to better understand the mechanisms by which ascochlorin regulates physiological or pathological events and induces responses in the pharmacological treatment of cancer, we performed differential analysis of the proteome of the human osteosarcoma cells U2OS in response to ascochlorin. In addition, we established the first two-dimensional map of the U2OS proteome. The U2OS cell proteomes with and without treatment with ascochlorin were compared using two-dimensional electrophoresis, matrix-assisted laser desorption/ionization mass spectrometry and bioinformatics. The largest differences in expression were observed for the epidermal growth factor receptor (4-fold decrease), ribulose-5-phosphate-epimerase (13-fold decrease), ATP-dependent RNA helicase (8-fold decrease), and kelch-like ECH-associated protein 1 (6-fold decrease). The abundance of heterogeneous nuclear ribonucleoprotein L and minichromosome maintenance protein 7 increased 12- and 8.2-fold, respectively. In addition, Erk 2 was increased 3-fold in U2OS cells treated with ascochlorin. The expression of some selected proteins was confirmed by western blotting, zymography and RT-PCR analysis.

  2. Megaflood analysis through channel networks of the Athabasca Valles, Mars based on multi-resolution stereo DTMs and 2D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Rack; Schumann, Guy; Neal, Jeffrey C.; Lin, Shih-Yuan

    2014-09-01

    Stereo analysis of in-orbital imagery provides valuable topographic data for scientific research over planetary surfaces especially for the interpretation of potential fluvial activity. The focus of research into planetary fluvial activity has been shifting toward quantitative modeling with various spatial resolution DTMs from visual interpretation with ortho images. Thus in this study, we tested the application of hydraulic analysis with multi resolution Martian DTMs, which were constructed following the approaches of Kim and Muller (2009). Planet. Space Sci. 57 (14), 2095. Subsequently, a two-dimensional hydraulic model was introduced to conduct flow simulation using the extracted 1.2-150 m resolution DTMs. As a result, it was found that the simulated water flows coincided with what might be water eroded geomorphic features over target areas. Moreover, the information acquired from the modeling, such as water depth along the time line, flow direction and travel time, is proving of great value for the interpretation of surface characteristics. Results highlighted the importance of DTM quality for simulating fluvial channel hydraulics across planetary surfaces.

  3. Proteome analysis of Sorangium cellulosum employing 2D-HPLC-MS/MS and improved database searching strategies for CID and ETD fragment spectra.

    PubMed

    Leinenbach, Andreas; Hartmer, Ralf; Lubeck, Markus; Kneissl, Benny; Elnakady, Yasser A; Baessmann, Carsten; Müller, Rolf; Huber, Christian G

    2009-09-01

    Shotgun proteome analysis of the myxobacterial model strain for secondary metabolite biosynthesis Sorangium cellulosum was performed employing off-line two-dimensional high-pH reversed-phase HPLC x low-pH ion-pair reversed-phase HPLC and dual tandem mass spectrometry with collision-induced dissociation (CID) and electron transfer dissociation (ETD) as complementary fragmentation techniques. Peptide identification using database searching was optimized for ETD fragment spectra to obtain the maximum number of identifications at equivalent false discovery rates (1.0%) in the evaluation of both fragmentation techniques. In the database search of the CID MS/MS data, the mass tolerance was set to the well-established 0.3 Da window, whereas for ETD data, it was widened to 1.1 Da to account for hydrogen-rearrangement in the radical-intermediate of the peptide precursor ion. To achieve a false discovery rate comparable to the CID results, we increased the significance threshold for peptide identification to 0.001 for the ETD data. The ETD based analysis yielded about 74% of all peptides and about 78% of all proteins compared to the CID-method. In the combined data set, 952 proteins of S. cellulosum were confidently identified by at least two peptides per protein, facilitating the study of the function of regulatory proteins in the social myxobacteria and their role in secondary metabolism.

  4. Sample Size Tables for Correlation Analysis with Applications in Partial Correlation and Multiple Regression Analysis

    ERIC Educational Resources Information Center

    Algina, James; Olejnik, Stephen

    2003-01-01

    Tables for selecting sample size in correlation studies are presented. Some of the tables allow selection of sample size so that r (or r[squared], depending on the statistic the researcher plans to interpret) will be within a target interval around the population parameter with probability 0.95. The intervals are [plus or minus] 0.05, [plus or…

  5. Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.

    PubMed

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun

    2016-05-10

    Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.

  6. Label Free Cell-Tracking and Division Detection Based on 2D Time-Lapse Images For Lineage Analysis of Early Embryo Development

    PubMed Central

    Cicconet, Marcelo; Gutwein, Michelle; Gunsalus, Kristin C; Geiger, Davi

    2014-01-01

    In this paper we report a database and a series of techniques related to the problem of tracking cells, and detecting their divisions, in time-lapse movies of mammalian embryos. Our contributions are: (1) a method for counting embryos in a well, and cropping each individual embryo across frames, to create individual movies for cell tracking; (2) a semi-automated method for cell tracking that works up to the 8-cell stage, along with a software implementation available to the public (this software was used to build the reported database); (3) an algorithm for automatic tracking up to the 4-cell stage, based on histograms of mirror symmetry coefficients captured using wavelets; (4) a cell-tracking database containing 100 annotated examples of mammalian embryos up to the 8-cell stage; (5) statistical analysis of various timing distributions obtained from those examples. PMID:24873887

  7. Analysis of correlation between corneal topographical data and visual performance

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanqing; Yu, Lei; Ren, Qiushi

    2007-02-01

    Purpose: To study correlation among corneal asphericity, higher-order aberrations and visual performance for eyes of virgin myopia and postoperative laser in situ keratomileusis (LASIK). Methods: There were 320 candidates 590 eyes for LASIK treatment included in this study. The mean preoperative spherical equivalence was -4.35+/-1.51D (-1.25 to -9.75), with astigmatism less than 2.5 D. Corneal topography maps and contrast sensitivity were measured and analyzed for every eye before and one year after LASIK for the analysis of corneal asphericity and wavefront aberrations. Results: Preoperatively, only 4th and 6th order aberration had significant correlation with corneal asphericity and apical radius of curvature (p<0.001). Postoperatively, all 3th to 6th order aberrations had statistically significant correlation with corneal asphericity (p<0.01), but only 4th and 6th order aberration had significant correlation with apical radius of curvature (p<0.05). The asymmetrical aberration like coma had significant correlation with vertical offset of pupil center (p<0.01). Preoperatively, corneal aberrations had no significant correlation with visual acuity and area under the log contrast sensitivity (AULCSF) (P>0.05). Postoperatively, corneal aberrations still didn't have significant correlation with visual acuity (P>0.05), but had significantly negative correlation with AULCSF (P<0.01). Corneal asphericity had no significant correlation with AULCSF before and after the treatment (P>0.05). Conclusions: Corneal aberrations had different correlation with corneal profile and visual performance for eyes of virgin myopia and postoperative LASIK, which may be due to changed corneal profile and limitation of metrics of corneal aberrations.

  8. Validation of a computer analysis to determine 3-D rotations and translations of the rib cage in upright posture from three 2-D digital images

    PubMed Central

    Harrison, Deed E.; Janik, Tadeusz J.; Cailliet, Rene; Normand, Martin C.; Perron, Denise L.; Ferrantelli, Joseph R

    2006-01-01

    Since thoracic cage posture affects lumbar spine coupling and loads on the spinal tissues and extremities, a scientific analysis of upright posture is needed. Common posture analyzers measure human posture as displacements from a plumb line, while the PosturePrint™ claims to measure head, rib cage, and pelvic postures as rotations and translations. In this study, it was decided to evaluate the validity of the PosturePrint™ Internet computer system’s analysis of thoracic cage postures. In a university biomechanics laboratory, photographs of a mannequin thoracic cage were obtained in different postures on a stand in front of a digital camera. For each mannequin posture, three photographs were obtained (left lateral, right lateral, and AP). The mannequin thoracic cage was placed in 68 different single and combined postures (requiring 204 photographs) in five degrees of freedom: lateral translation (Tx), lateral flexion (Rz), axial rotation (Ry), flexion–extension (Rx), and anterior–posterior translation (Tz). The PosturePrint™ system requires 13 reflective markers to be placed on the subject (mannequin) during photography and 16 additional “click-on” markers via computer mouse before a set of three photographs is analyzed by the PosturePrint™ computer system over the Internet. Errors were the differences between the positioned mannequin and the calculated positions from the computer system. Average absolute value errors were obtained by comparing the exact inputted posture to the PosturePrint™’s computed values. Mean and standard deviation of computational errors for sagittal displacements of the thoracic cage were Rx=0.3±0.1°, Tz=1.6±0.7 mm, and for frontal view displacements were Ry=1.2±1.0°, Rz=0.6±0.4°, and Tx=1.5±0.6 mm. The PosturePrint™ system is sufficiently accurate in measuring thoracic cage postures in five degrees of freedom on a mannequin indicating the need for a further study on human subjects. PMID:16547756

  9. Correlation Spectroscopy of Minor Species: Signal Purification and Distribution Analysis

    SciTech Connect

    Laurence, T A; Kwon, Y; Yin, E; Hollars, C; Camarero, J A; Barsky, D

    2006-06-21

    We are performing experiments that use fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) to monitor the movement of an individual donor-labeled sliding clamp protein molecule along acceptor-labeled DNA. In addition to the FRET signal sought from the sliding clamp-DNA complexes, the detection channel for FRET contains undesirable signal from free sliding clamp and free DNA. When multiple fluorescent species contribute to a correlation signal, it is difficult or impossible to distinguish between contributions from individual species. As a remedy, we introduce ''purified FCS'' (PFCS), which uses single molecule burst analysis to select a species of interest and extract the correlation signal for further analysis. We show that by expanding the correlation region around a burst, the correlated signal is retained and the functional forms of FCS fitting equations remain valid. We demonstrate the use of PFCS in experiments with DNA sliding clamps. We also introduce ''single molecule FCS'', which obtains diffusion time estimates for each burst using expanded correlation regions. By monitoring the detachment of weakly-bound 30-mer DNA oligomers from a single-stranded DNA plasmid, we show that single molecule FCS can distinguish between bursts from species that differ by a factor of 5 in diffusion constant.

  10. Qualitative and quantitative analysis of the unsaponifiable fraction of vegetable oils by using comprehensive 2D GC with dual MS/FID detection.

    PubMed

    Tranchida, Peter Q; Salivo, Simona; Franchina, Flavio A; Bonaccorsi, Ivana; Dugo, Paola; Mondello, Luigi

    2013-05-01

    The present investigation is focused on the development of a comprehensive two-dimensional GC (GC × GC) method, with dual MS/FID detection, for the qualitative and quantitative analysis of the entire unsaponifiable fraction of vegetable oils. The unsaponifiable fraction forms a minor, highly specific part of a vegetable oil, and can be used as an indicator of genuineness. The column set used consisted of a low-polarity first dimension, and a medium-polarity secondary one, both characterized by a high thermal stability. The use of dual detection enabled the attainment of both mass spectral information and relative % FID data. The complexity of the fingerprint, generated by the unsaponifiable fraction, fully justified the employment of the two-dimensional GC technology. Furthermore, two other GC × GC benefits contributed greatly to the attainment of promising results, namely sensitivity enhancement and the formation of group-type patterns. The method herein proposed could potentially open a new opportunity for the more in-depth knowledge of the unsaponifiable fraction of vegetable oils.

  11. Performance analysis of ultrasonic ranging using a digital polarity correlator

    NASA Astrophysics Data System (ADS)

    Kodama, T.; Nakahira, K.

    2013-01-01

    This paper presents performance analysis of the distance measurement using a digital polarity correlator applied to the ultrasonic ranging system, consisting of piezoelectric transducers for pulse echo operation and a pulse compression filter using chirp signals. Analytical and simulation results show that the technique of one-bit correlation is as effective as two-bit correlation with respect to signal-to-noise ratios and probability of detecting a target, and further that both methods approach results obtained from a complete correlation of received signals with a reference signal, in the case that the threshold of the received signals is adjusted with regards to the noise level. Experimental results show close agreement with the presented theory.

  12. Origin of the Ion Foreshock in a Quasi-perpendicular Curved Collisionless Shock: Particles Trajectory Analysis in 2D PIC Simulations

    NASA Astrophysics Data System (ADS)

    Savoini, P.; Lembege, B.

    2015-12-01

    The ion foreshock located upstream of the Earth's shock wave is populated with ions having interacted with the shock, and then, reflected back with an high energy gain. Spacecrafts have clearly established the existence of two distinct populations in the quasi-perpendicular shock region (i.e. for 45° ≤ ΘBn ≤ 90°, where ΘBn is the angle between the shock normal and the upstream magnetic field) : (i) field-aligned ion beams or « FAB » characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions or « GPB » characterized by a NON gyrotropic distribution. One of the important unresolved problem is the exact origin of the particles contributing to these two populations. To our knowledge, it was the first time that full-particle simulations have been performed including self-consistently the shock front curvature and nonstationarity, and the time-of-flight effects. Our analysis evidences that these two backstreaming populations may be reflected by the front itself and can be differentiated both in terms of interaction time and trajectory within the shock front. In particular, simulations evidence that "GPB" population is characterized by a short interaction time (ΔTinter = 1 to 2 τci) while the "FAB" population corresponds to a much larger time range (from 1 τci to 10 τci), where tci is the upstream ion gyroperiod. Present individual ion trajectories evidence that "FAB" population shows a strong perpendicular drift at the shock front (i.e. strong dependence of the pitch angle to the perpendicular velocity) whereas the "GPB" population shows no perpendicular drift (i.e. its pitch angle is mainly driven by the parallel velocity). Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". This important result was not expected and greatly simplifies the question of their origin.

  13. 2D spatiotemporal visualization system of expired gaseous ethanol after oral administration for real-time illustrated analysis of alcohol metabolism.

    PubMed

    Wang, Xin; Ando, Eri; Takahashi, Daishi; Arakawa, Takahiro; Kudo, Hiroyuki; Saito, Hirokazu; Mitsubayashi, Kohji

    2010-08-15

    A novel 2-dimensional spatiotemporal visualization system of expired gaseous ethanol after oral administration for real-time illustrated analysis of alcohol metabolism has been developed, which employed a low level light CCD camera to detect chemiluminescence (CL) generated by catalytic reactions of standard gaseous ethanol and expired gaseous ethanol after oral administration. First, the optimization of the substrates for visualization and the concentration of luminol solution for CL were investigated. The cotton mesh and 5.0 mmol L(-1) luminol solution were selected for further investigations and this system is useful for 0.1-20.0 mmol L(-1) of H(2)O(2) solution. Then, the effect of pH condition of Tris-HCl buffer solution was also evaluated with CL intensity and under the Tris-HCl buffer solution pH 10.1, a wide calibration range of standard gaseous ethanol (30-400 ppm) was obtained. Finally, expired air of 5 healthy volunteers after oral administration was measured at 15, 30, 45, 60, 75, 90, 105 and 120 min after oral administration, and this system showed a good sensitivity on expired gaseous ethanol for alcohol metabolism. The peaks of expired gaseous ethanol concentration appeared within 30 min after oral administration. During the 30 min after oral administration, the time variation profile based on mean values showed the absorption and distribution function, and the values onward showed the elimination function. The absorption and distribution of expired gaseous ethanol in 5 healthy volunteers following first-order absorption process were faster than the elimination process, which proves efficacious of this system for described alcohol metabolism in healthy volunteers. This system is expected to be used as a non-invasive method to detect VOCs as well as several other drugs in expired air for clinical purpose.

  14. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  15. Vector correlations study of the reaction N(2D)+H2(X1Σg+)→NH(a1Δ)+H(2S) with different collision energies and reagent vibration excitations

    NASA Astrophysics Data System (ADS)

    Li, Yong-Qing; Zhang, Yong-Jia; Zhao, Jin-Feng; Zhao, Mei-Yu; Ding, Yong

    2015-11-01

    Vector correlations of the reaction are studied based on a recent DMBE-SEC PES for the first excited state of NH2 [J. Phys. Chem. A 114 9644 (2010)] by using a quasi-classical trajectory method. The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0-5 and j = 0 states in a wide collision energy range (10-50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly, the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H-H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(ϕr), and P(θr, ϕr). Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141 and 11404080), the Special Fund Based Research New Technology of Methanol conversion and Coal Instead of Oil, the China Postdoctoral Science Foundation (Grant No. 2014M550158) , the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. 2014-1685), and the Program for Liaoning Excellent Talents in University, China (Grant Nos. LJQ2015040 and LJQ2014001).

  16. Prediction of p38 map kinase inhibitory activity of 3, 4-dihydropyrido [3, 2-d] pyrimidone derivatives using an expert system based on principal component analysis and least square support vector machine

    PubMed Central

    Shahlaei, M.; Saghaie, L.

    2014-01-01

    A quantitative structure–activity relationship (QSAR) study is suggested for the prediction of biological activity (pIC50) of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors. Modeling of the biological activities of compounds of interest as a function of molecular structures was established by means of principal component analysis (PCA) and least square support vector machine (LS-SVM) methods. The results showed that the pIC50 values calculated by LS-SVM are in good agreement with the experimental data, and the performance of the LS-SVM regression model is superior to the PCA-based model. The developed LS-SVM model was applied for the prediction of the biological activities of pyrimidone derivatives, which were not in the modeling procedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.460 for LS-SVM. The study provided a novel and effective approach for predicting biological activities of 3, 4-dihydropyrido [3,2-d] pyrimidone derivatives as p38 inhibitors and disclosed that LS-SVM can be used as a powerful chemometrics tool for QSAR studies. PMID:26339262

  17. NIKE2D96. Static & Dynamic Response of 2D Solids

    SciTech Connect

    Raboin, P.; Engelmann, B.; Halquist, J.O.

    1992-01-24

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surface contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.

  18. Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target

    NASA Astrophysics Data System (ADS)

    Scherer, Artur; Valiron, Benoît; Mau, Siun-Chuon; Alexander, Scott; van den Berg, Eric; Chapuran, Thomas E.

    2017-03-01

    We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set { X, Y, Z, H, S, T, { CNOT } }. In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size N=332{,}020{,}680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy ɛ =0.01 requires an approximate circuit width 340 and circuit depth of order 10^{25} if oracle costs are excluded, and a circuit width and circuit depth of order 10^8 and 10^{29}, respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient

  19. Sliding window correlation analysis for dengue-climate variable relationship

    NASA Astrophysics Data System (ADS)

    Thiruchelvam, Loshini; Asirvadam, Vijanth S.; Dass, Sarat C.; Daud, Hanita; Gill, Balvinder S.

    2016-11-01

    This study discussed building of sliding windows to analyze the relationship between dengue incidences and weather variables of mean temperature, relative humidity and rainfall, across the timeline. A window sized of 20 was selected and applied to find correlation between dengue incidences and each of the weather variable. A few time lag of zero, two, four, six, and eight is compared and the time lag with best correlation is selected for each weather variable. Study did not found a good insight for analysis using mean temperature and relative humidity. For both these variables, it was suggested dengue incidences is better measured using fluctuation of maximum and minimum values. Analysis using rainfall variable was found to vary across the timeline in magnitude and direction of the correlation. Time lag of eight was found to be the most significant explaining the relationship between dengue incidences and rainfall variable.

  20. Topology Studies of Hydrodynamics Using Two-Particle Correlation Analysis

    NASA Astrophysics Data System (ADS)

    Takahashi, J.; Tavares, B. M.; Qian, W. L.; Andrade, R.; Grassi, F.; Hama, Y.; Kodama, T.; Xu, N.

    2009-12-01

    The effects of fluctuating initial conditions are studied in the context of relativistic heavy ion collisions where a rapidly evolving system is formed. Two-particle correlation analysis is applied to events generated with the NEXSPHERIO hydrodynamic code, starting with fluctuating nonsmooth initial conditions (IC). The results show that the nonsmoothness in the IC survives the hydroevolution and can be seen as topological features of the angular correlation function of the particles emerging from the evolving system. A long range correlation is observed in the longitudinal direction and in the azimuthal direction a double peak structure is observed in the opposite direction to the trigger particle. This analysis provides clear evidence that these are signatures of the combined effect of tubular structures present in the IC and the proceeding collective dynamics of the hot and dense medium.

  1. Joint regression analysis of correlated data using Gaussian copulas.

    PubMed

    Song, Peter X-K; Li, Mingyao; Yuan, Ying

    2009-03-01

    This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an efficiency gain in the estimation of regression coefficients. The availability of joint probability models enables us to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for discrete correlated data, including multidimensional logistic regression models and a joint model for mixed normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared to the popular generalized estimating equations, which is a moment-based estimating equation method to join univariate GLMs. Two real-world data examples are used in the illustration.

  2. 2-D Versus 3-D Magnetotelluric Data Interpretation

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  3. Drivers and Outcomes of Scenario Planning: A Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Chermack, Thomas J.; Nimon, Kim

    2013-01-01

    Purpose: The paper's aim is to report a research study on the mediator and outcome variable sets in scenario planning. Design/methodology/approach: This is a cannonical correlation analysis (CCA) Findings Two sets of variables; one as a predictor set that explained a significant amount of variability in the second, or outcome set of variables were…

  4. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    SciTech Connect

    Wang Shijun; Yao Jianhua; Liu Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-12-15

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.

  5. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  6. Superfast robust digital image correlation analysis with parallel computing

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Tian, Long

    2015-03-01

    Existing digital image correlation (DIC) using the robust reliability-guided displacement tracking (RGDT) strategy for full-field displacement measurement is a path-dependent process that can only be executed sequentially. This path-dependent tracking strategy not only limits the potential of DIC for further improvement of its computational efficiency but also wastes the parallel computing power of modern computers with multicore processors. To maintain the robustness of the existing RGDT strategy and to overcome its deficiency, an improved RGDT strategy using a two-section tracking scheme is proposed. In the improved RGDT strategy, the calculated points with correlation coefficients higher than a preset threshold are all taken as reliably computed points and given the same priority to extend the correlation analysis to their neighbors. Thus, DIC calculation is first executed in parallel at multiple points by separate independent threads. Then for the few calculated points with correlation coefficients smaller than the threshold, DIC analysis using existing RGDT strategy is adopted. Benefiting from the improved RGDT strategy and the multithread computing, superfast DIC analysis can be accomplished without sacrificing its robustness and accuracy. Experimental results show that the presented parallel DIC method performed on a common eight-core laptop can achieve about a 7 times speedup.

  7. Analysis of physiological signals using state space correlation entropy.

    PubMed

    Tripathy, Rajesh Kumar; Deb, Suman; Dandapat, Samarendra

    2017-02-01

    In this letter, the authors propose a new entropy measure for analysis of time series. This measure is termed as the state space correlation entropy (SSCE). The state space reconstruction is used to evaluate the embedding vectors of a time series. The SSCE is computed from the probability of the correlations of the embedding vectors. The performance of SSCE measure is evaluated using both synthetic and real valued signals. The experimental results reveal that, the proposed SSCE measure along with SVM classifier have sensitivity value of 91.60%, which is higher than the performance of both sample entropy and permutation entropy features for detection of shockable ventricular arrhythmia.

  8. Frequency of undetected CYP2D6 hybrid genes in clinical samples: impact on phenotype prediction.

    PubMed

    Black, John Logan; Walker, Denise L; O'Kane, Dennis J; Harmandayan, Maria

    2012-01-01

    Cytochrome P450 2D6 (CYP2D6) is highly polymorphic. CYP2D6-2D7 hybrid genes can be present in samples containing CYP2D6*4 and CYP2D6*10 alleles. CYP2D7-2D6 hybrid genes can be present in samples with duplication signals and in samples with homozygous genotyping results. The frequency of hybrid genes in clinical samples is unknown. We evaluated 1390 samples for undetected hybrid genes by polymerase chain reaction (PCR) amplification, PCR fragment analysis, TaqMan copy number assays, DNA sequencing, and allele-specific primer extension assay. Of 508 CYP2D6*4-containing samples, 109 (21.5%) harbored CYP2D6*68 + *4-like, whereas 9 (1.8%) harbored CYP2D6*4N + *4-like. Of 209 CYP2D6*10-containing samples, 44 (21.1%) were found to have CYP2D6*36 + *10. Of 332 homozygous samples, 4 (1.2%) harbored a single CYP2D7-2D6 hybrid, and of 341 samples with duplication signals, 25 (7.3%) harbored an undetected CYP2D7-2D6 hybrid. Phenotype before and after accurate genotyping was predicted using a method in clinical use. The presence of hybrid genes had no effect on the phenotype prediction of CYP2D6*4- and CYP2D6*10-containing samples. Four of four (100%) homozygous samples containing a CYP2D7-2D6 gene had a change in predicted phenotype, and 23 of 25 (92%) samples with a duplication signal and a CYP2D7-2D6 gene had a change in predicted phenotype. Four novel genes were identified (CYP2D6*13A1 variants 1 and 2, CYP2D6*13G1, and CYP2D6*13G2), and two novel hybrid tandem structures consisting of CYP2D6*13B + *68×2 + *4-like and CYP2D6*13A1 variant 2 + *1×N were observed.

  9. ORION96. 2-d Finite Element Code Postprocessor

    SciTech Connect

    Sanford, L.A.; Hallquist, J.O.

    1992-02-02

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  10. The relationship between second-to-fourth digit (2D:4D) ratios and problematic and pathological Internet use among Turkish university students.

    PubMed

    Canan, Fatih; Karaca, Servet; Düzgün, Melike; Erdem, Ayşe Merve; Karaçaylı, Esranur; Topan, Nur Begüm; Lee, Sang-Kyu; Zhai, Zu Wei; Kuloğlu, Murat; Potenza, Marc N

    2017-03-01

    Background and aims The ratio of the second and fourth fingers (2D:4D ratio) is a sexually dimorphic trait, with men tending to have lower values than women. This ratio has been related to prenatal testosterone concentrations and addictive behaviors including problematic video-gaming. We aimed to investigate the possible association between 2D:4D ratios and Internet addiction and whether such a relationship would be independent of impulsivity. Methods A total of 652 university students (369 women, 283 men), aged 17-27 years, were enrolled in the study. Problematic and pathological Internet use (PPIU) was assessed using the Internet Addiction Test (IAT). The participants also completed the Barratt Impulsiveness Scale (version 11; BIS-11) and had their 2D:4D ratios measured. Results 2D:4D ratios were not significantly different in women with PPIU and in those with adaptive Internet use (AIU). Men with PPIU exhibited lower 2D:4D ratios on both hands when compared with those with AIU. Correlation analysis revealed that 2D:4D ratios on both hands were negatively correlated with IAT scores among men, but not among women. The multiple linear regression analysis revealed that age, duration of weekly Internet use, impulsiveness, and 2D:4D ratios on the right hand were independently associated with IAT scores among men, and impulsivity did not mediate the relationship between 2D:4D ratios and PPIU. Conclusions For men, 2D:4D ratios on the right hand were inversely correlated with Internet addiction severity even after controlling for individual differences in impulsivity. These findings suggest that high prenatal testosterone levels may contribute to the occurrence of PPIU among men.

  11. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  12. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 1. New concepts and noteworthy developments

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2014-07-01

    A comprehensive survey review of new and noteworthy developments, which are advancing forward the frontiers in the field of 2D correlation spectroscopy during the last four years, is compiled. This review covers books, proceedings, and review articles published on 2D correlation spectroscopy, a number of significant conceptual developments in the field, data pretreatment methods and other pertinent topics, as well as patent and publication trends and citation activities. Developments discussed include projection 2D correlation analysis, concatenated 2D correlation, and correlation under multiple perturbation effects, as well as orthogonal sample design, predicting 2D correlation spectra, manipulating and comparing 2D spectra, correlation strategy based on segmented data blocks, such as moving-window analysis, features like determination of sequential order and enhanced spectral resolution, statistical 2D spectroscopy using covariance and other statistical metrics, hetero-correlation analysis, and sample-sample correlation technique. Data pretreatment operations prior to 2D correlation analysis are discussed, including the correction for physical effects, background and baseline subtraction, selection of reference spectrum, normalization and scaling of data, derivatives spectra and deconvolution technique, and smoothing and noise reduction. Other pertinent topics include chemometrics and statistical considerations, peak position shift phenomena, variable sampling increments, computation and software, display schemes, such as color coded format, slice and power spectra, tabulation, and other schemes.

  13. Windowed Multitaper Correlation Analysis of Multimodal Brain Monitoring Parameters

    PubMed Central

    Proescholdt, Martin A.; Bele, Sylvia; Brawanski, Alexander

    2015-01-01

    Although multimodal monitoring sets the standard in daily practice of neurocritical care, problem-oriented analysis tools to interpret the huge amount of data are lacking. Recently a mathematical model was presented that simulates the cerebral perfusion and oxygen supply in case of a severe head trauma, predicting the appearance of distinct correlations between arterial blood pressure and intracranial pressure. In this study we present a set of mathematical tools that reliably detect the predicted correlations in data recorded at a neurocritical care unit. The time resolved correlations will be identified by a windowing technique combined with Fourier-based coherence calculations. The phasing of the data is detected by means of Hilbert phase difference within the above mentioned windows. A statistical testing method is introduced that allows tuning the parameters of the windowing method in such a way that a predefined accuracy is reached. With this method the data of fifteen patients were examined in which we found the predicted correlation in each patient. Additionally it could be shown that the occurrence of a distinct correlation parameter, called scp, represents a predictive value of high quality for the patients outcome. PMID:25821507

  14. Correlation and path analysis of biomass sorghum production.

    PubMed

    Vendruscolo, T P S; Barelli, M A A; Castrillon, M A S; da Silva, R S; de Oliveira, F T; Corrêa, C L; Zago, B W; Tardin, F D

    2016-12-23

    Sorghum biomass is an interesting raw material for bioenergy production due to its versatility, potential of being a renewable energy source, and low-cost of production. The objective of this study was to evaluate the genetic variability of biomass sorghum genotypes and to estimate genotypic, phenotypic, and environmental correlations, and direct and indirect effects of seven agronomic traits through path analysis. Thirty-four biomass sorghum genotypes and two forage sorghum genotypes were cultivated in a randomized block design with three replicates. The following morpho-agronomic traits were evaluated: flowering date, stem diameter, number of stems, plant height, number of leaves, green mass production, and dry matter production. There were significant differences at the 1% level for all traits. The highest genotypic correlation was found between the traits green mass production and dry matter production. The path analysis demonstrated that green mass production and number of leaves can assist in the selection of dry matter production.

  15. Hierarchical alignment and full resolution pattern recognition of 2D NMR spectra: application to nematode chemical ecology.

    PubMed

    Robinette, Steven L; Ajredini, Ramadan; Rasheed, Hasan; Zeinomar, Abdulrahman; Schroeder, Frank C; Dossey, Aaron T; Edison, Arthur S

    2011-03-01

    Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability to detect a broad range of compounds in an untargeted manner. While one-dimensional (1D) (1)H NMR experiments are popular in metabolic profiling due to their simplicity and fast acquisition times, two-dimensional (2D) NMR spectra offer increased spectral resolution as well as atomic correlations, which aid in the assignment of known small molecules and the structural elucidation of novel compounds. Given the small number of statistical analysis methods for 2D NMR spectra, we developed a new approach for the analysis, information recovery, and display of 2D NMR spectral data. We present a native 2D peak alignment algorithm we term HATS, for hierarchical alignment of two-dimensional spectra, enabling pattern recognition (PR) using full-resolution spectra. Principle component analysis (PCA) and partial least squares (PLS) regression of full resolution total correlation spectroscopy (TOCSY) spectra greatly aid the assignment and interpretation of statistical pattern recognition results by producing back-scaled loading plots that look like traditional TOCSY spectra but incorporate qualitative and quantitative biological information of the resonances. The HATS-PR methodology is demonstrated here using multiple 2D TOCSY spectra of the exudates from two nematode species: Pristionchus pacificus and Panagrellus redivivus. We show the utility of this integrated approach with the rapid, semiautomated assignment of small molecules differentiating the two species and the identification of spectral regions suggesting the presence of species-specific compounds. These results demonstrate that the combination of 2D NMR spectra with full-resolution statistical analysis provides a platform for chemical and

  16. Physiogenomic analysis of CYP450 drug metabolism correlates dyslipidemia with pharmacogenetic functional status in psychiatric patients

    PubMed Central

    Ruaño, Gualberto; Villagra, David; Szarek, Bonnie; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Berrezueta, Christopher; Schwartz, Harold I; Goethe, John

    2011-01-01

    Aims To investigate associations between novel human cytochrome P450 (CYP450) combinatory (multigene) and substrate-specific drug metabolism indices, and elements of metabolic syndrome, such as low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol (HDLc), triglycerides and BMI, using physiogenomic analysis. Methods CYP2C9, CYP2C19 and CYP2D6 genotypes and clinical data were obtained for 150 consecutive, consenting hospital admissions with a diagnosis of major depressive disorder and who were treated with psychotropic medications. Data analysis compared clinical measures of LDLc, HDLc, triglyceride and BMI with novel combinatory and substrate-specific CYP450 drug metabolism indices. Results We found that a greater metabolic reserve index score is related to lower LDLc and higher HDLc, and that a greater metabolic alteration index score corresponds with higher LDLc and lower HLDc values. We also discovered that the sertraline drug-specific indices correlated with cholesterol and triglyceride values. Conclusions Overall, we demonstrated how a multigene approach to CYP450 genotype analysis yields more accurate and significant results than single-gene analyses. Ranking the individual with respect to the population represents a potential tool for assessing risk of dyslipidemia in major depressive disorder patients who are being treated with psychotropics. In addition, the drug-specific indices appear useful for modeling a variable of potential relevance to an individual’s risk of drug-related dyslipidemia. PMID:21861666

  17. Efficient set tests for the genetic analysis of correlated traits.

    PubMed

    Casale, Francesco Paolo; Rakitsch, Barbara; Lippert, Christoph; Stegle, Oliver

    2015-08-01

    Set tests are a powerful approach for genome-wide association testing between groups of genetic variants and quantitative traits. We describe mtSet (http://github.com/PMBio/limix), a mixed-model approach that enables joint analysis across multiple correlated traits while accounting for population structure and relatedness. mtSet effectively combines the benefits of set tests with multi-trait modeling and is computationally efficient, enabling genetic analysis of large cohorts (up to 500,000 individuals) and multiple traits.

  18. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  19. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  20. Regulation of NKG2D ligand gene expression.

    PubMed

    Eagle, Robert A; Traherne, James A; Ashiru, Omodele; Wills, Mark R; Trowsdale, John

    2006-03-01

    The activating immunoreceptor NKG2D has seven known host ligands encoded by the MHC class I chain-related MIC and ULBP/RAET genes. Why there is such diversity of NKG2D ligands is not known but one hypothesis is that they are differentially expressed in different tissues in response to different stresses. To explore this, we compared expression patterns and promoters of NKG2D ligand genes. ULBP/RAET genes were transcribed independent of each other in a panel of cell lines. ULBP/RAET gene expression was upregulated on infection with human cytomegalovirus; however, a clinical strain, Toledo, induced expression more slowly than did a laboratory strain, AD169. ULBP4/RAET1E was not induced by infection with either strain. To investigate the mechanisms behind the similarities and differences in NKG