Science.gov

Sample records for 2d correlation spectra

  1. 2D correlation analysis of the magnetic excitations in Raman spectra of HoMnO3

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Huyen; Nguyen, Thi Minh Hien; Chen, Xiang-Bai; Yang, In-Sang; Park, Yeonju; Jung, Young Mee

    2014-07-01

    2D correlation analysis is performed on the temperature-dependent Raman spectra of HoMnO3 thin films. As the temperature of the HoMnO3 thin films decrease, the depletion of the spectral weight at 336, 656, and 1304 cm-1 occurs at higher temperatures than the increase of the intensity at 508, 766, and 945 cm-1 below ∼70 K, the Néel temperature. The power spectrum asserts that all the changes in the spectral weight are strongly correlated. Most of the temperature-induced spectral changes of HoMnO3 occur at lower temperature than 70 K, while there is slight depletion of the spectral weight at 336, 656, and 1304 cm-1 even at higher temperature than 70 K. PCA scores and loading vectors plots also support these 2D correlation results. Our 2D correlation analysis supports the existence of the short range spin correlations between Mn sites in HoMnO3 even above the Néel temperature.

  2. Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra

    NASA Astrophysics Data System (ADS)

    Marcott, Curtis; Lo, Michael; Hu, Qichi; Kjoller, Kevin; Boskey, Adele; Noda, Isao

    2014-07-01

    The recent combination of atomic force microscopy and infrared spectroscopy (AFM-IR) has led to the ability to obtain IR spectra with nanoscale spatial resolution, nearly two orders-of-magnitude better than conventional Fourier transform infrared (FT-IR) microspectroscopy. This advanced methodology can lead to significantly sharper spectral features than are typically seen in conventional IR spectra of inhomogeneous materials, where a wider range of molecular environments are coaveraged by the larger sample cross section being probed. In this work, two-dimensional (2D) correlation analysis is used to examine position sensitive spectral variations in datasets of closely spaced AFM-IR spectra. This analysis can reveal new key insights, providing a better understanding of the new spectral information that was previously hidden under broader overlapped spectral features. Two examples of the utility of this new approach are presented. Two-dimensional correlation analysis of a set of AFM-IR spectra were collected at 200-nm increments along a line through a nucleation site generated by remelting a small spot on a thin film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). There are two different crystalline carbonyl band components near 1720 cm-1 that sequentially disappear before a band at 1740 cm-1 due to more disordered material appears. In the second example, 2D correlation analysis of a series of AFM-IR spectra spaced every 1 μm of a thin cross section of a bone sample measured outward from an osteon center of bone growth. There are many changes in the amide I and phosphate band contours, suggesting changes in the bone structure are occurring as the bone matures.

  3. Determination of size and sign of hetero-nuclear coupling constants from 2D 19F-13C correlation spectra

    NASA Astrophysics Data System (ADS)

    Ampt, Kirsten A. M.; Aspers, Ruud L. E. G.; Dvortsak, Peter; van der Werf, Ramon M.; Wijmenga, Sybren S.; Jaeger, Martin

    2012-02-01

    Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{Cacq} and F-C{H,Cacq} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the JCH, JCF, and JHF coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization.

  4. Removal of t1 noise from metabolomic 2D 1H- 13C HSQC NMR spectra by Correlated Trace Denoising

    NASA Astrophysics Data System (ADS)

    Poulding, Simon; Charlton, Adrian J.; Donarski, James; Wilson, Julie C.

    2007-12-01

    The presence of t1 noise artefacts in 2D phase-cycled Heteronuclear Single Quantum Coherence (HSQC) spectra constrains the use of this experiment despite its superior sensitivity. This paper proposes a new processing algorithm, working in the frequency-domain, for reducing t1 noise. The algorithm has been developed for use in contexts, such as metabolomic studies, where existing denoising techniques cannot always be applied. Two test cases are presented that show the algorithm to be effective in improving the SNR of peaks embedded within t1 noise by a factor of more than 2, while retaining the intensity and shape of genuine peaks.

  5. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  6. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  7. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin “wrapping”, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  8. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  9. Simulation of 2D NMR Spectra of Carbohydrates Using GODESS Software.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2016-06-27

    Glycan Optimized Dual Empirical Spectrum Simulation (GODESS) is a web service, which has been recently shown to be one of the most accurate tools for simulation of (1)H and (13)C 1D NMR spectra of natural carbohydrates and their derivatives. The new version of GODESS supports visualization of the simulated (1)H and (13)C chemical shifts in the form of most 2D spin correlation spectra commonly used in carbohydrate research, such as (1)H-(1)H TOCSY, COSY/COSY-DQF/COSY-RCT, and (1)H-(13)C edHSQC, HSQC-COSY, HSQC-TOCSY, and HMBC. Peaks in the simulated 2D spectra are color-coded and labeled according to the signal assignment and can be exported in JCAMP-DX format. Peak widths are estimated empirically from the structural features. GODESS is available free of charge via the Internet at the platform of the Carbohydrate Structure Database project ( http://csdb.glycoscience.ru ). PMID:27227420

  10. Ring Correlations in Two-Dimensional (2D) Random Networks

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Thorpe, M. F.

    Amorphous materials can be characterized by their ring structure. Recently, two experimental groups imaged bilayers of vitreous silica at atomic resolution which provides a direct access to the ring structure of a 2D glass. It has been shown that experimental samples have various ring statistics, obey Aboav-Weaire law and have a distinct area law. In this work, we study correlations between rings as a function of their size and topological separation. We show that correlation is medium-range and vanishes when the separation is about three rings apart. We also present a generalization of the Aboav-Weaire law.

  11. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  12. Geometrical Correlation and Matching of 2d Image Shapes

    NASA Astrophysics Data System (ADS)

    Vizilter, Y. V.; Zheltov, S. Y.

    2012-07-01

    The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications require image matching "just by shape" with no dependence on the concrete intensity or color values. Most popular technique for image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. Another approach was proposed by Pytiev (so called "Pytiev morphology") based on geometrical and algebraic reasoning. In this framework images are considered as piecewise-constant 2D functions, tessellation of image frame by the set of non-intersected connected regions determines the "shape" of image and the projection of image onto the shape of other image is determined. Morphological image comparison is performed using the normalized morphological correlation coefficients. These coefficients estimate the closeness of one image to the shape of other image. Such image analysis technique can be characterized as an ""ntensity-to-geometry" matching. This paper generalizes the Pytiev morphological approach for obtaining the pure "geometry-to-geometry" matching techniques. The generalized intensity-geometrical correlation coefficient is proposed including the linear correlation coefficient and the square of Pytiev correlation coefficient as its partial cases. The morphological shape correlation coefficient is proposed based on the statistical averaging of images with the same shape. Centered morphological correlation coefficient is obtained under the condition of intensity centering of averaged images. Two types of symmetric geometrical normalized correlation coefficients are proposed for comparison of shape-tessellations. The technique for correlation and matching of shapes with ordered intensities is proposed with correlation measures invariant to monotonous intensity transformations. The quality of proposed geometrical correlation measures is experimentally estimated in the task of

  13. Multiple-perturbation two-dimensional (2D) correlation analysis for spectroscopic imaging data

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hashimoto, Kosuke; Sato, Hidetoshi; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    A series of data analysis techniques, including multiple-perturbation two-dimensional (2D) correlation spectroscopy and kernel analysis, were used to demonstrate how these techniques can sort out convoluted information content underlying spectroscopic imaging data. A set of Raman spectra of polymer blends consisting of poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG) were collected under varying spatial coordinates and subjected to multiple-perturbation 2D correlation analysis and kernel analysis by using the coordinates as perturbation variables. Cross-peaks appearing in asynchronous correlation spectra indicated that the change in the spectral intensity of the free Cdbnd O band of the PMMA band occurs before that of the Cdbnd O⋯Hsbnd O band arising from the molecular interaction between PMMA and PEG. Kernel matrices, generated by carrying out 2D correlation analysis on principal component analysis (PCA) score images, revealed subtle but important discrepancy between the patterns of the images, providing additional interpretation to the PCA in an intuitively understandable manner. Consequently, the results provided apparent spectroscopic evidence that PMMA and PEG in the blends are partially miscible at the molecular level, allowing the PMMAs to respond to the perturbations in different manner.

  14. Application of quantitative artificial neural network analysis to 2D NMR spectra of hydrocarbon mixtures.

    PubMed

    Väänänen, Taito; Koskela, Harri; Hiltunen, Yrjö; Ala-Korpela, Mika

    2002-01-01

    Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data. PMID:12444730

  15. Fluorescence2D: Software for Accelerated Acquisition and Analysis of Two-Dimensional Fluorescence Spectra

    PubMed Central

    Kovrigin, Evgenii L.

    2014-01-01

    The Fluorescence2D is free software that allows analysis of two-dimensional fluorescence spectra obtained using the accelerated “triangular” acquisition schemes. The software is a combination of Python and MATLAB-based programs that perform conversion of the triangular data, display of the two-dimensional spectra, extraction of 1D slices at different wavelengths, and output in various graphic formats. PMID:24984078

  16. Progress in Understanding the Infrared Spectra of He- and Ne-C_2D_2

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, Nasser; McKellar, Bob

    2014-06-01

    Infrared spectra of He-C_2H_2 were recorded around 1990 in Roger Miller's lab, but detailed rotational assignment was apparently not possible even with the help of theoretical predictions. So there were no published experimental spectra of helium-acetylene van der Waals complexes until our recent work on He-C_2D_2 in the νb{3} region (˜2440 wn). The problem is that this complex lies close to the free rotor limit, so that most of the intensity in the spectrum piles up in tangles of closely spaced lines located close to the monomer rotational transitions, R(0), P(1), etc. Our previous He-C_2D_2 assignments were limited to the R(0) region, that is, the j = 1 ← 0 subband, where j represents C_2D_2 rotation. Here, we extend the analysis to j = 0 ← 1 and 2 ← 1 transitions with the help of new spectra obtained using a tunable OPO laser probe and a cooled supersonic jet nozzle. These subbands are weaker, not only because of the Boltzmann factor, but also the 2:1 nuclear spin statistics of j" = even:odd C_2D_2 levels. Moreover, the j = 0 ← 1 subband is overlapped by strong (C_2D_2)_2 transitions. We use a term value approach, obtaining a self-consistent set of ``experimental" energy levels which can be directly compared with theory or fitted in terms of a Coriolis model. Challenges also arise with Ne-C_2D_2, which is not quite so close to the free rotor limit, but still has many overlapping lines. Insights gained here help in assigning the tricky R(1) region for Ne-C_2D_2. M. Rezaei, N. Moazzen-Ahmadi, A.R.W. McKellar, B. Fernández, and D. Farrelly, Mol. Phys. 110, 2743 (2012).

  17. Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions

    SciTech Connect

    Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.

    2009-01-21

    A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.

  18. Utilizing Lifetimes to Suppress Random Coil Features in 2D IR Spectra of Peptides

    PubMed Central

    Middleton, Chris T.; Buchanan, Lauren E.; Dunkelberger, Emily B.

    2011-01-01

    We report that the waiting time delay in 2D IR pulse sequences can be used to suppress signals from structurally disordered regions of amyloid fibrils. At a waiting time delay of 1.0 ps, the random coil vibrational modes of amylin fibrils are no longer detectable, leaving only the sharp excitonic vibrational features of the fibril β-sheets. Isotope labeling with 13C18O reveals that structurally disordered residues decay faster than residues protected from solvent. Since structural disorder is usually accompanied by hydration, we conclude that the shorter lifetimes of random-coil residues is due to solvent exposure. These results indicate that 2D IR pulse sequences can utilize the waiting time to better resolve solvent-protected regions of peptides and that local mode lifetimes should be included in simulations of 2D IR spectra. PMID:21966585

  19. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state. PMID:27351464

  20. Investigation on the conformations of AOT in water-in-oil microemulsions using 2D-ATR-FTIR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Lai, Zuliang; Wu, Peiyi

    2008-07-01

    The carbonyl groups of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in the water-in-oil (W/O) microemulsions of AOT/tetrachloromethane/water were investigated by using two-dimensional attenuated total reflection Fourier transform infrared (2D-ATR-FTIR) correlation spectroscopy under a perturbation of temperature. The results of a traditional curve fitting method were compared with the 2D correlation spectra results. The peaks at 1718 and 1736 cm -1 were assigned to different carbonyl groups in trans conformation and gauche conformation of AOT molecules, respectively. With the increase of temperature, the trans conformation increased quickly at the lower temperature below 35 °C and decreased slowly at the higher temperature. The special phenomenon owed to the composition and decomposition of the hydrogen bonding between water of the inner polar core and carbonyl groups of AOT molecules. Two new peaks at 1707 and 1747 cm -1 in the 2D correlation spectra implied the process of the transition of AOT molecule conformation and the deviation of correlation coefficients of curve fitting method. 2D-ATR-FTIR correlation spectroscopy exhibited the superiority over the traditional curve fitting method.

  1. Interpreting digit ratio (2D:4D)-behavior correlations: 2D:4D sex difference, stability, and behavioral correlates and their replicability in young children.

    PubMed

    Wong, Wang I; Hines, Melissa

    2016-02-01

    The popularity of using the ratio of the second to the fourth digit (2D:4D) to study influences of early androgen exposure on human behavior relies, in part, on a report that the ratio is sex-dimorphic and stable from age 2 years (Manning etal., 1998). However, subsequent research has rarely replicated this finding. Moreover, although 2D:4D has been correlated with many behaviors, these correlations are often inconsistent. Young children's 2D:4D-behavior correlations may be more consistent than those of older individuals, because young children have experienced fewer postnatal influences. To evaluate the usefulness of 2D:4D as a biomarker of prenatal androgen exposure in studies of 2D:4D-behavior correlations, we assessed its sex difference, temporal stability, and behavioral correlates over a 6- to 8-month period in 126, 2- to 3-year-old children, providing a rare same-sample replicability test. We found a moderate sex difference on both hands and high temporal stability. However, between-sex overlap and within-sex variability were also large. Only 3 of 24 correlations with sex-typed behaviors-scores on the Preschool Activities Inventory (PSAI), preference for a boy-typical toy, preference for a girl-typical toy, were significant and in the predicted direction, all of which involved the PSAI, partially confirming findings from another study. Correlation coefficients were larger for behaviors that showed larger sex differences. But, as in older samples, the overall pattern showed inconsistency across time, sex, and hand. Therefore, although sex-dimorphic and stable, 2D:4D-behavior correlations are no more consistent for young children than for older samples. Theoretical and methodological implications are discussed. PMID:26542674

  2. 2D-ACAR spectra of insulating and superconducting Y-123

    SciTech Connect

    Smedskjaer, L.C.; Bansil, A.

    1992-09-01

    An overview of the two-dimensional angular correlation (2D-ACAR) positron annihilation results for the three fundamental phases of YBa{sub 2}Cu{sub 3}O{sub x}, namely, the normal metal, the superconductor, and the insulator, is presented. In addition to the c-axis projected momentum density, the recent results for the a-axis projection as well as the insulating Y123 are discussed. The experimental results are compared and contrasted with the corresponding band theory predictions as far as possible in order to gain insight into the electronic structure and Fermiology of this archetypal high-{Tc} superconductor.

  3. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  4. Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a newly developed protocol for the differential analysis of arrays of 2D NMR spectra, we were able to rapidly identify two previously unreported indole alkaloids from a library of unfractionated fungal extracts. Differential analyses of NMR spectra thus constitute an effective tool for the non...

  5. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy

    PubMed Central

    Xiong, Wei; Laaser, Jennifer E.; Mehlenbacher, Randy D.; Zanni, Martin T.

    2011-01-01

    In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple “atop” configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces. PMID:22143772

  6. Synthetic spectra: a tool for correlation spectroscopy

    SciTech Connect

    Sinclair, Michael B.; Butler, Michael A.; Ricco, Anthony J. Senturia, Stephen D.

    1997-05-01

    We show that computer-generated diffractive optical elements can be used to synthesize the infrared spectra of important compounds, and we describe a modified phase-retrieval algorithm useful for the design of elements of this type. In particular, we present the results of calculations of diffractive elements that are capable of synthesizing portions of the infrared spectra of gaseous hydrogen fluoride (HF) and trichloroethylene (TCE). Further, we propose a new type of correlation spectrometer that uses these diffractive elements rather than reference cells for the production of reference spectra. Storage of a large number of diffractive elements, each producing a synthetic spectrum corresponding to a different target compound, in compact-disk-like format will allow a spectrometer of this type to rapidly determine the composition of unknown samples. Other advantages of the proposed correlation spectrometer are also discussed. {copyright} 1997 Optical Society of America

  7. Correlation Functions Aid Analyses Of Spectra

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H., Jr.

    1989-01-01

    New uses found for correlation functions in analyses of spectra. In approach combining elements of both pattern-recognition and traditional spectral-analysis techniques, spectral lines identified in data appear useless at first glance because they are dominated by noise. New approach particularly useful in measurement of concentrations of rare species of molecules in atmosphere.

  8. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    USGS Publications Warehouse

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  9. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations.

    PubMed

    Lee, Myung Won; Carr, Joshua K; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-08-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN(-) solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN(-) molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN(-) and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN(-) is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm(-1) vs. 14.9 cm(-1)) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements. PMID:23927269

  10. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-08-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN- solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN- molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN- and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN- is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm-1 vs. 14.9 cm-1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  11. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    SciTech Connect

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R.; Ishizaki, Akihito

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  12. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    NASA Astrophysics Data System (ADS)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  13. Analysis of spectra using correlation functions

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard; Norton, Robert H.

    1988-01-01

    A novel method is presented for the quantitative analysis of spectra based on the properties of the cross correlation between a real spectrum and either a numerical synthesis or laboratory simulation. A new goodness-of-fit criterion called the heteromorphic coefficient H is proposed that has the property of being zero when a fit is achieved and varying smoothly through zero as the iteration proceeds, providing a powerful tool for automatic or near-automatic analysis. It is also shown that H can be rendered substantially noise-immune, permitting the analysis of very weak spectra well below the apparent noise level and, as a byproduct, providing Doppler shift and radial velocity information with excellent precision. The technique is in regular use in the Atmospheric Trace Molecule Spectroscopy (ATMOS) project and operates in an interactive, realtime computing environment with turn-around times of a few seconds or less.

  14. Effects of 2D and Finite Density Fluctuations on O-X Correlation Reflectometry

    SciTech Connect

    G.J. Kramer; R. Nazikian; E. Valeo

    2001-07-05

    The correlation between O-mode and X-mode reflectometer signals is studied with a 1D and 2D reflectometer model in order to explore its feasibilities as a q-profile diagnostic. It was found that 2D effects and finite fluctuation levels both decrease the O-X correlation. At very low fluctuation levels, which are usually present in the plasma core, there is good possibility to determine the local magnetic field strength and use that as a constraint for the equilibrium reconstruction.

  15. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    DOE PAGESBeta

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less

  16. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.

    PubMed

    Burris, Paul C; Laage, Damien; Thompson, Ward H

    2016-05-21

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra. PMID:27208967

  17. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    NASA Astrophysics Data System (ADS)

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-01

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.

  18. Sensitivity of Cosmic-Ray Proton Spectra to the Low-wavenumber Behavior of the 2D Turbulence Power Spectrum

    NASA Astrophysics Data System (ADS)

    Engelbrecht, N. E.; Burger, R. A.

    2015-12-01

    In this study, a novel ab initio cosmic ray (CR) modulation code that solves a set of stochastic transport equations equivalent to the Parker transport equation, and that uses output from a turbulence transport code as input for the diffusion tensor, is introduced. This code is benchmarked with a previous approach to ab initio modulation. The sensitivity of computed galactic CR proton spectra at Earth to assumptions made as to the low-wavenumber behavior of the two-dimensional (2D) turbulence power spectrum is investigated using perpendicular mean free path expressions derived from two different scattering theories. Constraints on the low-wavenumber behavior of the 2D power spectrum are inferred from the qualitative comparison of computed CR spectra with spacecraft observations at Earth. Another key difference from previous studies is that observed and inferred CR intensity spectra at 73 AU are used as boundary spectra instead of the usual local interstellar spectrum. Furthermore, the results presented here provide a tentative explanation as to the reason behind the unusually high galactic proton intensity spectra observed in 2009 during the recent unusual solar minimum.

  19. Discrimination of adulterated milk based on two-dimensional correlation spectroscopy (2D-COS) combined with kernel orthogonal projection to latent structure (K-OPLS).

    PubMed

    Yang, Renjie; Liu, Rong; Xu, Kexin; Yang, Yanrong

    2013-12-01

    A new method for discrimination analysis of adulterated milk and pure milk is proposed by combining two-dimensional correlation spectroscopy (2D-COS) with kernel orthogonal projection to latent structure (K-OPLS). Three adulteration types of milk with urea, melamine, and glucose were prepared, respectively. The synchronous 2D spectra of adulterated milk and pure milk samples were calculated. Based on the characteristics of 2D correlation spectra of adulterated milk and pure milk, a discriminant model of urea-tainted milk, melamine-tainted milk, glucose-tainted milk, and pure milk was built by K-OPLS. The classification accuracy rates of unknown samples were 85.7, 92.3, 100, and 87.5%, respectively. The results show that this method has great potential in the rapid discrimination analysis of adulterated milk and pure milk. PMID:24359648

  20. Constraining Polarized Foregrounds for EoR Experiments I: 2D Power Spectra from the PAPER-32 Imaging Array

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Aguirre, J. E.; Nunhokee, C. D.; Bernardi, G.; Pober, J. C.; Ali, Z. S.; Bradley, R. F.; Carilli, C. L.; DeBoer, D. R.; Gugliucci, N. E.; Jacobs, D. C.; Klima, P.; MacMahon, D. H. E.; Manley, J. R.; Moore, D. F.; Parsons, A. R.; Stefan, I. I.; Walbrugh, W. P.

    2016-06-01

    Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge) and spectrally structured 21 cm background emission (the EoR window). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.

  1. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    NASA Astrophysics Data System (ADS)

    Murienne, Barbara J.; Nguyen, Thao D.

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  2. Parallel acquisition of Raman spectra from a 2D multifocal array using a modulated multifocal detection scheme

    NASA Astrophysics Data System (ADS)

    Kong, Lingbo; Chan, James W.

    2015-03-01

    A major limitation of spontaneous Raman scattering is its intrinsically weak signals, which makes Raman analysis or imaging of biological specimens slow and impractical for many applications. To address this, we report the development of a novel modulated multifocal detection scheme for simultaneous acquisition of full Raman spectra from a 2-D m × n multifocal array. A spatial light modulator (SLM), or a pair of galvo-mirrors, is used to generate m × n laser foci. Raman signals generated within each focus are projected simultaneously into a spectrometer and detected by a CCD camera. The system can resolve the Raman spectra with no crosstalk along the vertical pixels of the CCD camera, e.g., along the entrance slit of the spectrometer. However, there is significant overlap of the spectra in the horizontal pixel direction, e.g., along the dispersion direction. By modulating the excitation multifocal array (illumination modulation) or the emitted Raman signal array (detection modulation), the superimposed Raman spectra of different multifocal patterns are collected. The individual Raman spectrum from each focus is then retrieved from the superimposed spectra using a postacquisition data processing algorithm. This development leads to a significant improvement in the speed of acquiring Raman spectra. We discuss the application of this detection scheme for parallel analysis of individual cells with multifocus laser tweezers Raman spectroscopy (M-LTRS) and for rapid confocal hyperspectral Raman imaging.

  3. Phase angle description of perturbation correlation analysis and its application to time-resolved infrared spectra.

    PubMed

    Morita, Shigeaki; Tanaka, Masaru; Noda, Isao; Ozaki, Yukihiro

    2007-08-01

    A method of spectral analysis, phase angle description of perturbation correlation analysis, is proposed. This method is based on global phase angle description of generalized two-dimensional (2D) correlation spectroscopy, proposed by Shin-ichi Morita et al., and perturbation-correlation moving-window 2D (PCMW2D) correlation spectroscopy, proposed by Shigeaki Morita et al. For a spectral data set collected under an external perturbation, such as time-resolved infrared spectra, this method provides only one phase angle spectrum. A phase angle of the Fourier frequency domain correlation between a spectral intensity (e.g., absorbance) variation and a perturbation variation (e.g., scores of the first principle component) as a function of spectral variable (e.g., wavenumber) is plotted. Therefore, a degree of time lag of each band variation with respect to the perturbation variation is directly visualized in the phase angle spectrum. This method is applied to time-resolved infrared spectra in the O-H stretching region of the water sorption process into a poly(2-methoxyethyl acrylate) (PMEA) film. The time-resolved infrared (IR) spectra show three broad and overlapping bands in the region. Each band increases toward saturated water sorption with different relaxation times. In comparison to conventional methods of generalized 2D correlation spectroscopy and global phase angle mapping, the method proposed in the present study enables the easier visualization of the sequence as a degree of phase angle in the spectrum. PMID:17716406

  4. Laser probe for measuring 2-D wave slope spectra of ocean capillary waves

    NASA Technical Reports Server (NTRS)

    Palm, C. S.; Anderson, R. C.; Reece, A. M.

    1977-01-01

    A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.

  5. Gint2D-T2 correlation NMR of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.

  6. Gint2D-T2 correlation NMR of porous media.

    PubMed

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient G(int) can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T(2) in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of G(int)(2)D and T(2) by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between G(int) and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz (1)H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint(2)D-T(2) maps were obtained to study the sample heterogeneity. PMID:25723135

  7. Radar Reflectivity Simulated by a 2-D Spectra Bin Model: Sensitivity of Cloud-aerosol Interaction

    NASA Technical Reports Server (NTRS)

    Li, Kiaowen; Tao, Wei-Kuo; Khain, Alexander; Simpson, Joanne; Johnson, Daniel

    2003-01-01

    The Goddard Cumulus Ensemble (GCE) model with bin spectra microphysics is used to simulate mesoscale convective systems.The model uses explicit bins to represent size spectra of cloud nuclei, water drops, ice crystals, snow and graupel. Each hydrometeorite category is described by 33 mass bins. The simulations provide a unique data set of simulated raindrop size distribution in a realistic dynamic frame. Calculations of radar parameters using simulated drop size distribution serve as an evaluation of numerical model performance. In addition, the GCE bin spectra modes is a very useful tool to study uncertainties related to radar observations; all the environmental parameters are precisely known. In this presentation, we concentrate on the discussion of Z-R (ZDR-R) relation in the simulated systems. Due to computational limitations, the spectra bin model has been run in two dimensions with 31 stretched vertical layers and 1026 horizontal grid points (1 km resolution). Two different cases, one in midlatitude continent, the other in tropical ocean, have been simulated. The continental case is a strong convection which lasted for two hours. The oceanic case is a persistent system with more than 10 hours' life span. It is shown that the simulated Z-R (ZDR-R) relations generally agree with observations using radar and rain gauge data. The spatial and temporal variations of Z-R relation in different locations are also analyzed. Impact of aerosols on cloud formation and raindrop size distribution was studied. Both clean (low CCN) and dirty (high CCN) cases are simulated. The Z-R relation is shown to vary considerable in the initial CCN concentrations.

  8. Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system

    NASA Astrophysics Data System (ADS)

    Manivannan, N.; Neil, M. A. A.

    2011-04-01

    In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.

  9. Computer-assisted assignment of 2D 1H NMR spectra of proteins: basic algorithms and application to phoratoxin B.

    PubMed

    Kleywegt, G J; Boelens, R; Cox, M; Llinás, M; Kaptein, R

    1991-05-01

    A suite of computer programs (CLAIRE) is described which can be of assistance in the process of assigning 2D 1H NMR spectra of proteins. The programs embody a software implementation of the sequential assignment approach first developed by Wüthrich and co-workers (K. Wüthrich, G. Wider, G. Wagner and W. Braun (1982) J. Mol. Biol. 155, 311). After data-abstraction (peakpicking), the software can be used to detect patterns (spin systems), to find cross peaks between patterns in 2D NOE data sets and to generate assignments that are consistent with all available data and which satisfy a number of constraints imposed by the user. An interactive graphics program called CONPAT is used to control the entire assignment process as well as to provide the essential feedback from the experimental NMR spectra. The algorithms are described in detail and the approach is demonstrated on a set of spectra from the mistletoe protein phoratoxin B, a homolog of crambin. The results obtained compare well with those reported earlier based entirely on a manual assignment process. PMID:1841687

  10. Disentangling polar and non-polar solvation with 2D spectra

    NASA Astrophysics Data System (ADS)

    Yu, Anchi; Hybl, John; Farrow, Darcie; Jonas, David

    2002-03-01

    Polar and non-polar solvation are closely connected in polar solvents. Nonlinear spectroscopy of two structurally related cyanines (with and without a dipole moment change upon electronic excitation) were compared in several solvents. In each solvent, each relaxation timescale observed for polar solvation has a corresponding non-polar timescale. The timescales and amplitudes of the polar relaxation are always slower and larger. The fastest solvation components are extracted from two-dimensional Fourier transform spectra. The question of whether Brownian oscillator models can capture the observed relaxation will be discussed.

  11. Efficient implementation of the rank correlation merit function for 2D/3D registration.

    PubMed

    Figl, M; Bloch, C; Gendrin, C; Weber, C; Pawiro, S A; Hummel, J; Markelj, P; Pernus, F; Bergmann, H; Birkfellner, W

    2010-10-01

    A growing number of clinical applications using 2D/3D registration have been presented recently. Usually, a digitally reconstructed radiograph is compared iteratively to an x-ray image of the known projection geometry until a match is achieved, thus providing six degrees of freedom of rigid motion which can be used for patient setup in image-guided radiation therapy or computer-assisted interventions. Recently, stochastic rank correlation, a merit function based on Spearman's rank correlation coefficient, was presented as a merit function especially suitable for 2D/3D registration. The advantage of this measure is its robustness against variations in image histogram content and its wide convergence range. The considerable computational expense of computing an ordered rank list is avoided here by comparing randomly chosen subsets of the DRR and reference x-ray. In this work, we show that it is possible to omit the sorting step and to compute the rank correlation coefficient of the full image content as fast as conventional merit functions. Our evaluation of a well-calibrated cadaver phantom also confirms that rank correlation-type merit functions give the most accurate results if large differences in the histogram content for the DRR and the x-ray image are present. PMID:20844334

  12. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  13. An inversion method of 2D NMR relaxation spectra in low fields based on LSQR and L-curve

    NASA Astrophysics Data System (ADS)

    Su, Guanqun; Zhou, Xiaolong; Wang, Lijia; Wang, Yuanjun; Nie, Shengdong

    2016-04-01

    The low-field nuclear magnetic resonance (NMR) inversion method based on traditional least-squares QR decomposition (LSQR) always produces some oscillating spectra. Moreover, the solution obtained by traditional LSQR algorithm often cannot reflect the true distribution of all the components. Hence, a good solution requires some manual intervention, for especially low signal-to-noise ratio (SNR) data. An approach based on the LSQR algorithm and L-curve is presented to solve this problem. The L-curve method is applied to obtain an improved initial optimal solution by balancing the residual and the complexity of the solutions instead of manually adjusting the smoothing parameters. First, the traditional LSQR algorithm is used on 2D NMR T1-T2 data to obtain its resultant spectra and corresponding residuals, whose norms are utilized to plot the L-curve. Second, the corner of the L-curve as the initial optimal solution for the non-negative constraint is located. Finally, a 2D map is corrected and calculated iteratively based on the initial optimal solution. The proposed approach is tested on both simulated and measured data. The results show that this algorithm is robust, accurate and promising for the NMR analysis.

  14. Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization

    NASA Astrophysics Data System (ADS)

    Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken

    How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.

  15. Exact solution of an anisotropic 2D random walk model with strong memory correlations

    NASA Astrophysics Data System (ADS)

    Cressoni, J. C.; Viswanathan, G. M.; da Silva, M. A. A.

    2013-12-01

    Over the last decade, there has been progress in understanding one-dimensional non-Markovian processes via analytic, sometimes exact, solutions. The extension of these ideas and methods to two and higher dimensions is challenging. We report the first exactly solvable two-dimensional (2D) non-Markovian random walk model belonging to the family of the elephant random walk model. In contrast to Lévy walks or fractional Brownian motion, such models incorporate memory effects by keeping an explicit history of the random walk trajectory. We study a memory driven 2D random walk with correlated memory and stops, i.e. pauses in motion. The model has an inherent anisotropy with consequences for its diffusive properties, thereby mixing the dominant regime along one dimension with a subdiffusive walk along a perpendicular dimension. The anomalous diffusion regimes are fully characterized by an exact determination of the Hurst exponent. We discuss the remarkably rich phase diagram, as well as several possible combinations of the independent walks in both directions. The relationship between the exponents of the first and second moments is also unveiled.

  16. Correlating Structural and Electronic Degrees of Freedom in 2D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tung, I.-Cheng; Zhang, Z.; Seyler, K. L.; Jones, A. M.; Clark, G.; Xiao, D.; Laanait, N.; Xu, X.; Wen, H.

    We have conducted a microscopic study of the interplay between structural and electronic degrees of freedom in two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers, multilayers and heterostructures. Using the recently developed full field x-ray reflection interface microscopy with the photoluminescence microscopic probe capability at the Advanced Photon Source, we demonstrated the x-ray reflection imaging of a monolayer 2D material for the first time. The structural variation across an exfoliated WSe2 monolayer is quantified by interlayer spacing relative to the crystal substrate and the smoothness of the layer. This structural information is correlated with the electronic properties of TMDs characterized by the in-situ photoluminescence measurements. This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012509. The use of Advanced Photon Source is supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  17. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Popescu, Maria-Cristina; Froidevaux, Julien; Navi, Parviz; Popescu, Carmen-Mihaela

    2013-02-01

    It is known that heat treatment of wood combined with a low percent of relative humidity causes transformations in the chemical composition of it. The modifications and/or degradation of wood components occur by hydrolysis, oxidation, and decarboxylation reactions. The aim of this study was to give better insights on wood chemical modifications during wood heat treatment under low temperature at about 140 °C and 10% percentage of relative humidity, by infrared, principal component analysis and two dimensional infrared correlation spectroscopy. For this purpose, hardwood samples of lime (Tilia cordata) were investigated and analysed. The infrared spectra of treated samples were compared with the reference ones, the most important differences being observed in the "fingerprint" region. Due to the complexity of this region, which have contributions from all the wood constituents the chemical changes during hydro-thermal treatment were examined in detail using principal component analysis and 2D IR correlation spectroscopy. By hydro-thermal treatment of wood results the formation of acetic acid, which catalyse the hydrolysis reactions of hemicelluloses and amorphous cellulose. The cleavage of the β-O-4 linkages and splitting of the aliphatic methoxyl chains from the aromatic lignin ring was also observed. For the first treatment interval, a higher extent of carbohydrates degradation was observed, then an increase of the extent of the lignin degradation also took place.

  18. A Practical Deconvolution Computation Algorithm to Extract 1D Spectra from 2D Images of Optical Fiber Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guangwei, Li; Haotong, Zhang; Zhongrui, Bai

    2015-06-01

    Bolton & Schlegel presented a promising deconvolution method to extract one-dimensional (1D) spectra from a two-dimensional (2D) optical fiber spectral CCD (charge-coupled device) image. The method could eliminate the PSF (point-spread function) difference between fibers, extract spectra to the photo noise level, as well as improve the resolution. But the method is limited by its huge computation requirement and thus can not be implemented in actual data reduction. In this article, we develop a practical computation method to solve the computation problem. The new computation method can deconvolve a 2D fiber spectral image of any size with actual PSFs, which may vary with positions. Our method does not require large amounts of memory and can extract a 4 k × 4 k noise-free CCD image with 250 fibers in 2 hr. To make our method more practical, we further consider the influence of noise, which is thought to be an intrinsic ill-posed problem in deconvolution algorithms. We modify our method with a Tikhonov regularization item to depress the method induced noise. We do a series of simulations to test how our method performs under more real situations with Poisson noise and extreme cross talk. Compared with the results of traditional extraction methods, i.e., the Aperture Extraction Method and the Profile Fitting Method, our method has the least residual and influence by cross talk. For the noise-added image, the computation speed does not depend very much on fiber distance, the signal-to-noise ratio converges in 2-4 iterations, and the computation times are about 3.5 hr for the extreme fiber distance and about 2 hr for nonextreme cases. A better balance between the computation time and result precision could be achieved by setting the precision threshold similar to the noise level. Finally, we apply our method to real LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope; a.k.a. Guo Shou Jing Telescope) data. We find that the 1D spectrum extracted by our

  19. Correlation spectroscopy applied to glycerol polyester spectra

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent development of glycerol polyesters for use as controlled release matrix materials in the nutraceuticals and pharmaceuticals industries presented a unique opportunity to apply correlation spectroscopy. In a typical formulation the glycerol is reacted with a polyfunctional acid such as citr...

  20. 2D Raman correlation analysis of formation mechanism of passivating film on overcharged LiCoO2 electrode with additive system

    NASA Astrophysics Data System (ADS)

    Park, Yeonju; Shin, Su Hyun; Lee, Sung Man; Kim, Sung Phil; Choi, Hyun Chul; Jung, Young Mee

    2014-07-01

    The effect of vinylene carbonate (VC) as solid electrolyte interface (SEI)-forming additive on the electrochemical performance of the LiCoO2 cathode was investigated by galvanostatic charge-discharge testing as well as Raman and 2D correlation spectroscopy. It was found that VC-containing electrolyte has a positive effect on capacity fading. An analysis of the 2D Raman correlation spectra suggested that even though the same SEI components (i.e., Co3O4 and Li2O) are produced on the cathode surface, the electrochemical reaction kinetics in the cathode/electrolyte interface differ according to the non-use or use of VC: in the latter case, formation of the SEI components is delayed.

  1. [Identification and analysis of genuine and false Flos Rosae Rugosae by FTIR and 2D correlation IR spectroscopy].

    PubMed

    Cai, Fang; Sun, Su-qin; Yan, Wen-rong; Niu, Shi-jie; Li, Xian-en

    2009-09-01

    The genuine and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora) were examined in terms of their differences by using Fourier transform infrared spectroscopy (FTIR) combined with two-dimensional (2D) correlation IR spectroscopy. The three species were shown very similar in FTIR spectra. The peak of 1318 cm(-1) of genuine Flos Rosae Rugosae is not obvious but this peak could be found sharp in Flos Rosae Chinensis and Flos Rosa multiflora. Generally, the second derivative IR spectrum can clearly enhance the spectral resolution. Flos Rosae Rugosae and Flos rosae Chinensis have aromatic compounds distinct fingerprint characteristics at 1 617 and 1 618 cm(-1), respectively. Nevertheless, FlosRosa multiflora has the peak at 1612 cm(-1). There is a discrepancy of 5 to 6 cm(-1). FlosRosa multiflora has glucide's distinct fingerprint characteristics at 1 044 cm(-1), but Flos Rosae Rugosae and Flos Rosae Chinensis don't. The second derivative infrared spectra indicated different fingerprint characteristics. Three of them showed aromatic compounds with autopeaks at 1620, 1560 and 1460 cm(-1). Flos Rosae Chinensis and Flos Rosa multiflora have the shoulder peak at 1660 cm(-1). In the range of 850-1250 cm(-1), three of them are distinct different, Flos Rosae Rugosae has the strongest autopeak, Flos Rosae Chinensis has the feeble autopeak and Flos Rosa multiflora has no autopeak at 1050 cm(-1). In third-step identification, the different contents of aromatic compounds and glucide in Flos Rosae Rugosae, Flos Rosae Chinensis and Flos Rosa multiflora were revealed. It is proved that the method is fast and effective for distinguishing and analyzing genuine Flos Rosae Rugosae and false Flos Rosae Rugosae (Flos Rosae Chinensis and Flos Rosa multiflora). PMID:19950645

  2. Spatial Correlation of Rain Drop Size Distribution from Polarimetric Radar and 2D-Video Disdrometers

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Bringi, Viswanathan; Gatlin, Patrick N.; Wingo, Matt; Petersen, Walter Arthur; Carey, Lawrence D.

    2011-01-01

    Spatial correlations of two of the main rain drop-size distribution (DSD) parameters - namely the median-volume diameter (Do) and the normalized intercept parameter (Nw) - as well as rainfall rate (R) are determined from polarimetric radar measurements, with added information from 2D video disdrometer (2DVD) data. Two cases have been considered, (i) a widespread, long-duration rain event in Huntsville, Alabama, and (ii) an event with localized intense rain-cells within a convection line which occurred during the MC3E campaign. For the first case, data from a C-band polarimetric radar (ARMOR) were utilized, with two 2DVDs acting as ground-truth , both being located at the same site 15 km from the radar. The radar was operated in a special near-dwelling mode over the 2DVDs. In the second case, data from an S-band polarimetric radar (NPOL) data were utilized, with at least five 2DVDs located between 20 and 30 km from the radar. In both rain event cases, comparisons of Do, log10(Nw) and R were made between radar derived estimates and 2DVD-based measurements, and were found to be in good agreement, and in both cases, the radar data were subsequently used to determine the spatial correlations For the first case, the spatial decorrelation distance was found to be smallest for R (4.5 km), and largest fo Do (8.2 km). For log10(Nw) it was 7.2 km (Fig. 1). For the second case, the corresponding decorrelation distances were somewhat smaller but had a directional dependence. In Fig. 2, we show an example of Do comparisons between NPOL based estimates and 1-minute DSD based estimates from one of the five 2DVDs.

  3. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  4. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-06-01

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  5. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    SciTech Connect

    Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  6. Combining random forest and 2D correlation analysis to identify serum spectral signatures for neuro-oncology.

    PubMed

    Smith, Benjamin R; Ashton, Katherine M; Brodbelt, Andrew; Dawson, Timothy; Jenkinson, Michael D; Hunt, Neil T; Palmer, David S; Baker, Matthew J

    2016-06-01

    Fourier transform infrared (FTIR) spectroscopy has long been established as an analytical technique for the measurement of vibrational modes of molecular systems. More recently, FTIR has been used for the analysis of biofluids with the aim of becoming a tool to aid diagnosis. For the clinician, this represents a convenient, fast, non-subjective option for the study of biofluids and the diagnosis of disease states. The patient also benefits from this method, as the procedure for the collection of serum is much less invasive and stressful than traditional biopsy. This is especially true of patients in whom brain cancer is suspected. A brain biopsy is very unpleasant for the patient, potentially dangerous and can occasionally be inconclusive. We therefore present a method for the diagnosis of brain cancer from serum samples using FTIR and machine learning techniques. The scope of the study involved 433 patients from whom were collected 9 spectra each in the range 600-4000 cm(-1). To begin the development of the novel method, various pre-processing steps were investigated and ranked in terms of final accuracy of the diagnosis. Random forest machine learning was utilised as a classifier to separate patients into cancer or non-cancer categories based upon the intensities of wavenumbers present in their spectra. Generalised 2D correlational analysis was then employed to further augment the machine learning, and also to establish spectral features important for the distinction between cancer and non-cancer serum samples. Using these methods, sensitivities of up to 92.8% and specificities of up to 91.5% were possible. Furthermore, ratiometrics were also investigated in order to establish any correlations present in the dataset. We show a rapid, computationally light, accurate, statistically robust methodology for the identification of spectral features present in differing disease states. With current advances in IR technology, such as the development of rapid discrete

  7. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy

    PubMed Central

    Díaz-Visurraga, Judith; Daza, Carla; Pozo, Claudio; Becerra, Abraham; von Plessing, Carlos; García, Apolinaria

    2012-01-01

    Background The objective of this study was to clarify the intermolecular interaction between antibacterial copper nanoparticles (Cu NPs) and sodium alginate (NaAlg) by Fourier transform infrared spectroscopy (FT-IR) and to process the spectra applying two-dimensional infrared (2D-IR) correlation analysis. To our knowledge, the addition of NaAlg as a stabilizer of copper nanoparticles has not been previously reported. It is expected that the obtained results will provide valuable additional information on: (1) the influence of reducing agent ratio on the formation of copper nanoparticles in order to design functional nanomaterials with increased antibacterial activity, and (2) structural changes related to the incorporation of Cu NPs into the polymer matrix. Methods Cu NPs were prepared by microwave heating using ascorbic acid as reducing agent and NaAlg as stabilizing agent. The characterization of synthesized Cu NPs by ultraviolet visible spectroscopy, transmission electron microscopy (TEM), electron diffraction analysis, X-ray diffraction (XRD), and semiquantitative analysis of the weight percentage composition indicated that the average particle sizes of Cu NPs are about 3–10 nm, they are spherical in shape, and consist of zerovalent Cu and Cu2O. Also, crystallite size and relative particle size of stabilized Cu NPs were calculated by XRD using Scherrer’s formula and FT from the X-ray diffraction data. Thermogravimetric analysis, differential thermal analysis, differential scanning calorimetry (DSC), FT-IR, second-derivative spectra, and 2D-IR correlation analysis were applied to studying the stabilization mechanism of Cu NPs by NaAlg molecules. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of stabilized Cu NPs against five bacterial strains (Staphylococccus aureus ATCC 6538P, Escherichia coli ATCC 25922 and O157: H7, and Salmonella enterica serovar Typhimurium ATCC 13311 and 14028) were evaluated with macrodilution

  8. Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential

    NASA Astrophysics Data System (ADS)

    Guillamon, I.; Vieira, S.; Suderow, H.; Cordoba, R.; Sese, J.; de Teresa, J. M.; Ibarra, R.

    In two dimensional (2D) systems, theory has proposed that random disorder destroys long range correlations driving a transition to a glassy state. Here, I will discuss new insights into this issue obtained through the direct visualization of the critical behaviour of a 2D superconducting vortex lattice formed in a thin film with a smooth 1D thickness modulation. Using scanning tunneling microscopy at 0.1K, we have tracked the modification in the 2D vortex arrangements induced by the 1D thickness modulation while increasing the vortex density by three orders of magnitude. Upon increasing the field, we observed a two-step order-disorder transition in the 2D vortex lattice mediated by the appearance of dislocations and disclinations and accompanied by an increase in the local vortex density fluctuations. Through a detailed analysis of correlation functions, we find that the transition is driven by the incommensurate 1D thickness modulation. We calculate the critical points and exponents and find that they are well above theoretical expectation for random disorder. Our results show that long range 1D correlations in random potentials enhance the stability range of the ordered phase in a 2D vortex lattice. Work supported by Spanish MINECO, CIG Marie Curie Grant, Axa Research Fund and FBBVA.

  9. Application of 2D and 3D Digital Image Correlation on CO2-like altered carbonate

    NASA Astrophysics Data System (ADS)

    zinsmeister, Louis; Dautriat, Jérémie; Dimanov, Alexandre; Raphanel, Jean; Bornert, Michel

    2013-04-01

    In order to provide mechanical constitutive laws for reservoir monitoring during CO2 long term storage, we studied the mechanical properties of Lavoux limestone before and after a homogeneous alteration following the protocol of acid treatments defined by Egermann et al, (2006). The mechanical data have been analysed at the light of systematic microstructural investigations. Firstly, the alteration impact on the evolution of flow properties related to microstructural changes was studied at successive levels of alteration by classical petrophysical measurements of porosity and permeability (including NMR, mercury porosimetry and laser diffraction) and by observations of microstructures on thin sections and by SEM. Secondly, the mechanical properties of the samples were investigated by classical (macroscopic) triaxial and uniaxial tests and are discussed in terms of the structural modifications. The macroscopic tests indicate that the alteration weakens the material, according to the observed decrease of elastic moduli and Uniaxial Compressive Strengths, from 29MPa to 19MPa after 6 cycles of acid treatments. The study is further complemented by 2D full (mechanical) field measurements, thanks to Digital Image Correlation (DIC) performed on images acquired during the uniaxial tests. This technique allows for continuous quantitative micro-mechanical monitoring in terms of deformation history and localisation processes during compression. This technique was applied on both intact and altered materials and at different scales of observation: (i) cm-sized samples were compressed in a classical load frame and optically imaged, (ii) mm-sized samples were loaded with a miniaturized compression rig implemented within a Scanning Electron Microscope. At last, 3D full field measurements were performed by 3D-DIC on mm-sized samples, which were compressed "in-situ" an X-ray microtomograph thanks to a miniaturized triaxial cell allowing for confining pressures of up to 15 MPa. At

  10. Ab initio potential energy and dipole moment surfaces, infrared spectra, and vibrational predissociation dynamics of the 35Cl-⋯H2/D2 complexes

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. A.; Grinev, T. A.; Kłos, J.; Bieske, E. J.; Szczȩśniak, M. M.; Chałasiński, G.

    2003-12-01

    Three-dimensional potential energy and dipole moment surfaces of the Cl--H2 system are calculated ab initio by means of a coupled cluster method with single and double excitations and noniterative correction to triple excitations with augmented correlation consistent quadruple-zeta basis set supplemented with bond functions, and represented in analytical forms. Variational calculations of the energy levels up to the total angular momentum J=25 provide accurate estimations of the measured rotational spectroscopic constants of the ground van der Waals levels n=0 of the Cl-⋯H2/D2 complexes although they underestimate the red shifts of the mid-infrared spectra with v=0→v=1 vibrational excitation of the monomer. They also attest to the accuracy of effective radial interaction potentials extracted previously from experimental data using the rotational RKR procedure. Vibrational predissociation of the Cl-⋯H2/D2(v=1) complexes is shown to follow near-resonant vibrational-to-rotational energy transfer mechanism so that more than 97% of the product monomers are formed in the highest accessible rotational level. This mechanism explains the strong variation of the predissociation rate with isotopic content and nuclear spin form of the complex. Strong deviation of the observed relative abundances of ortho and para forms of the complexes from those of the monomers is qualitatively explained by the secondary ligand exchange reactions in the ionic beam, within the simple thermal equilibrium model. Positions and intensities of the hot v=0, n=1→v=1, n=1 and combination v=0, n=0→v=1, n=1 bands are predicted, and implications to the photoelectron spectroscopy of the complex are briefly discussed.

  11. Impact of Interface Roughness on the Metallic Transport of Strongly Correlated 2D Holes in GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Goble, Nicholas; Watson, John; Manfra, Michael; Gao, Xuan

    2014-03-01

    Understanding the non-monotonic behavior in the temperature dependent resistance, R(T) , of strongly correlated two-dimensional (2D) carriers in clean semiconductors has been a central issue in the studies of 2D metallic states and metal-insulator transitions. We have studied the transport of high mobility 2D holes in 20nm wide GaAs quantum wells with varying interface roughness by changing the Al fraction x in the AlxGa1-xAs barrier. Prior to this work, no comprehensive study of the non-monotonic resistance peak against controlled barrier characteristics has been conducted. We show that the shape of the electronic contribution to R(T) is qualitatively unchanged throughout all of our measurements, regardless of the percentage of Al in the barrier. It is observed that increasing x or short range interface roughness suppresses both the strength and characteristic temperature scale of the 2D metallicity, pointing to the distinct role of short range versus long range disorder in the 2D metallic transport in this 2D hole system with interaction parameter rs ~ 20. N.G. acknowledges the US DOE GAANN fellowship (P200A090276 & P200A070434). M.J.M. is supported by the Miller Family Foundation and the US DOE, Office of Basic Energy Sciences, DMS (DE-SC0006671). X.P.A.G thanks the NSF for funding support (DMR-0906415).

  12. CC2D2A mutations in Meckel and Joubert syndromes indicate a genotype-phenotype correlation

    PubMed Central

    Mougou-Zerelli, Soumaya; Thomas, Sophie; Szenker, Emmanuelle; Audollent, Sophie; Elkhartoufi, Nadia; Babarit, Candice; Romano, Stéphane; Salomon, Rémi; Amiel, Jeanne; Esculpavit, Chantal; Gonzales, Marie; Escudier, Estelle; Leheup, Bruno; Loget, Philippe; Odent, Sylvie; Roume, Joëlle; Gérard, Marion; Delezoide, Anne-Lise; Khung, Suonavy; Patrier, Sophie; Cordier, Marie-Pierre; Bouvier, Raymonde; Martinovic, Jéléna; Gubler, Marie-Claire; Boddaert, Nathalie; Munnich, Arnold; Encha-Razavi, Férechté; Valente, Enza Maria; Saad, Ali; Saunier, Sophie; Vekemans, Michel; Attié-Bitach, Tania

    2009-01-01

    The Meckel syndrome (MKS) is a lethal fetal disorder characterized by diffuse renal cystic dysplasia, polydactyly, a brain malformation that is usually occipital encephalocele and/or vermian agenesis, with intrahepatic biliary duct proliferation. Joubert syndrome (JBS) is a viable neurological disorder with a characteristic “molar tooth sign” (MTS) on axial images reflecting cerebellar vermian hypoplasia/dysplasia. Both conditions are classified as ciliopathies with an autosomal recessive mode of inheritance. Allelism of MS and JBS has been reported for TMEM67/MKS3, CEP290/MKS4, and RPGRIP1L/MKS5. Recently, one homozygous splice mutation with a founder effect was reported in the CC2D2A gene in Finnish fetuses with MKS, defining the 6th locus for MKS. Shortly thereafter, CC2D2A mutations were reported in JBS also. The analysis of the CC2D2A gene in our series of MKS fetuses, identified 14 novel truncating mutations in 11 cases. These results confirm the involvement of CC2D2A in MKS and reveal a major contribution of CC2D2A to the disease. We also identified three missense CC2D2A mutations in two JBS cases. Therefore and in accordance with the data reported regarding RPGRIP1L, our results indicate phenotype-genotype correlations, as missense and presumably hypomorphic mutations lead to JBS while all null alleles lead to MKS. PMID:19777577

  13. Spin-spin correlation functions of spin systems coupled to 2-d quantum gravity for 0 < c < 1.

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.; Thorleifsson, G.

    1997-02-01

    We perform Monte Carlo simulations of 2-d dynamically triangulated surfaces coupled to Ising and three-states Potts model matter. By measuring spin-spin correlation functions as a function of the geodesic distance we provide substantial evidence for a diverging correlation length at βc. The corresponding scaling exponents are directly related to the KPZ exponents of the matter fields as conjectured in [4].

  14. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect

    Chai, Feng; Chen, YiPing; You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  15. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao

    2008-06-01

    As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.

  16. Interpretation of fluorescence correlation spectra of biopolymer solutions.

    PubMed

    Phillies, George D J

    2016-05-01

    Fluorescence correlation spectroscopy (FCS) is regularly used to study diffusion in non-dilute "crowded" biopolymer solutions, including the interior of living cells. For fluorophores in dilute solution, the relationship between the FCS spectrum G(t) and the diffusion coefficient D is well-established. However, the dilute-solution relationship between G(t) and D has sometimes been used to interpret FCS spectra of fluorophores in non-dilute solutions. Unfortunately, the relationship used to interpret FCS spectra in dilute solutions relies on an assumption that is not always correct in non-dilute solutions. This paper obtains the correct form for interpreting FCS spectra of non-dilute solutions, writing G(t) in terms of the statistical properties of the fluorophore motions. Approaches for applying this form are discussed. PMID:26756528

  17. Evaluation on intrinsic quality of licorice influenced by environmental factors by using FTIR combined with 2D-IR correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Ying-qun; Yu, Hua; Zhang, Yan-ling; Sun, Su-qin; Chen, Shi-lin; Zhao, Run-huai; Zhou, Qun; Noda, Isao

    2010-06-01

    To evaluate the intrinsic quality of licorice influenced by environmental factors, the spectral comparison of licorice from two typical ecological habitats was conducted by using FTIR and 2D-IR correlation spectroscopy. There were differences in the peak intensities of 1155, 1076 and 1048 cm -1 of FTIR profiles. The difference was amplified by the second derivative spectrum for the peak intensities at 1370, 1365 and 1317 cm -1 and the peak shape in 958-920 cm -1 and 1050-988 cm -1. The synchronous 2D-IR spectra within the range of 860-1300 cm -1 were classified into type I and type II and their frequency in the two groups was noticeably different. Although the chemical compounds of licorice samples from two areas were generally similar, the contents of starch, calcium oxalate, and some chemical compounds containing alcohol hydroxyl group were different, indicating the influence of precipitation and temperature. This study demonstrates that the systematical analysis of FTIR, the second derivative spectrum and 2D-IR can effectively determine the differences in licorice samples from different ecological habitats.

  18. Off-resonance effects on 2D NMR nutation spectra of I = 3/2 quadrupolar nuclei in static samples.

    PubMed

    Xia, Y; Deng, F; Ye, C

    1995-12-01

    The off-resonance effects on 2D NMR nutation of I = 3/2 quadrupolar nuclei are demonstrated with perturbation theory and numerical calculation in static samples. The off-resonant (delta omega) rf field (omega 1) enlarges a nutation frequency and consequently increases the measurement range of nuclear quadrupolar interaction parameters. When omega e > omega Qmax, and arctg(omega 1/delta omega) = +/- 54.7 degrees (magic angle), the satellite lines (produced by coherence transfers) in a nutation spectrum are superimposed with the line of central transition, and hence the nutation spectrum is simplified and its sensitivity is enhanced. The nuclear quadrupolar interaction parameters of 23Na nuclei in Na omega molecular sieve are obtained using 2D NMR nutation. PMID:9053113

  19. HyperSPASM NMR: A new approach to single-shot 2D correlations on DNP-enhanced samples

    NASA Astrophysics Data System (ADS)

    Donovan, Kevin J.; Frydman, Lucio

    2012-12-01

    Dissolution DNP experiments are limited to a single or at most a few scans, before the non-Boltzmann magnetization has been consumed. This makes it impractical to record 2D NMR data by conventional, t1-incremented schemes. Here a new approach termed HyperSPASM to establish 2D heteronuclear correlations in a single scan is reported, aimed at dealing with this kind of challenge. The HyperSPASM experiment relies on imposing an amplitude-modulation of the data by a single Δt1 indirect-domain evolution time, and subsequently monitoring the imparted encoding on separate echo and anti-echo pathway signals within a single continuous acquisition. This is implemented via the use of alternating, switching, coherence selection gradients. As a result of these manipulations the phase imparted by a heteronucleus over its indirect domain evolution can be accurately extracted, and 2D data unambiguously reconstructed with a single-shot excitation. The nature of this sequence makes the resulting experiment particularly well suited for collecting indirectly-detected HSQC data on hyperpolarized samples. The potential of the ensuing HyperSPASM method is exemplified with natural-abundance hyperpolarized correlations on model systems.

  20. A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA

    SciTech Connect

    Knutson, Heather A.; Howard, Andrew W.; Isaacson, Howard

    2010-09-10

    We present evidence for a correlation between the observed properties of hot Jupiter emission spectra and the activity levels of the host stars measured using Ca II H and K emission lines. We find that planets with dayside emission spectra that are well-described by standard one-dimensional atmosphere models with water in absorption (HD 189733, TrES-1, TrES-3, WASP-4) orbit chromospherically active stars, while planets with emission spectra that are consistent with the presence of a strong high-altitude temperature inversion and water in emission orbit quieter stars. We estimate that active G and K stars have Lyman {alpha} fluxes that are typically a factor of 4-7 times higher than quiet stars with analogous spectral types and propose that the increased UV flux received by planets orbiting active stars destroys the compounds responsible for the formation of the observed temperature inversions. In this paper, we also derive a model-independent method for differentiating between these two atmosphere types using the secondary eclipse depths measured in the 3.6 and 4.5 {mu}m bands on the Spitzer Space Telescope and argue that the observed correlation is independent of the inverted/non-inverted paradigm for classifying hot Jupiter atmospheres.

  1. Multielectron Correlation in High-Harmonic Generation: A 2D Model Analysis

    SciTech Connect

    Sukiasyan, Suren; McDonald, Chris; Destefani, Carlos; Brabec, Thomas; Ivanov, Misha Yu.

    2009-06-05

    We analyze the role of multielectron dynamics in high-harmonic generation spectroscopy, using an example of a two-electron system. We identify and systematically quantify the importance of correlation and exchange effects. One of the main sources for correlation is identified to be the polarization of the ion by the recombining continuum electron. This effect, which plays an important qualitative and quantitative role, seriously undermines the validity of the standard approaches to high-harmonic generation, which ignore the contribution of excited ionic states to the radiative recombination of the continuum electron.

  2. Combination Bands of the Nonpolar N_2O Dimer and Infrared Spectra of (C_2D_4)_2 and (C_2D_4)_3 Using a Quantum Cascade Laser

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Moazzen-Ahmadi, N.; McKellar, A. R. W.; Michaelian, K. H.

    2012-06-01

    Our pulsed-jet supersonic apparatus has been retrofitted by an infrared cw external-cavity quantum cascade laser (QCL) manufactured by Dayligh Slutions to study infrared spectra of weakly-bound complexes. The QCL is used in the rapid-scan signal-averaging mode. Although the repetition rate of the QCL is limited by its PZT scan rate, which is 100 Hz, we describe a simple technique to increase the effective repetition rate to 625 Hz. In addition, we have significantly reduced the long term frequency drift of the QCL by locking the laser frequency to the sides of a reference line. Performance of the apparatus is illustrated by recording spectra of the combination bands of the nonpolar (14N_2O)_2 and (15N_2O)_2 and infrared spectra of ethylene dimer and trimer. Spectra of ethylene dimer and trimer were studied in the ν11 fundamental band region of C_2D_4 (˜2200 cm-1). The dimer spectrum is that of a prolate symmetric top perpendicular band, with a distinctive appearance because the A rotational constant is almost exactly equal to six times the B constant. The analysis supports the previously determined cross-shaped dimer structure with D2h symmetry. Ethylene trimer has not previously been observed with rotational resolution. The spectrum is that of an oblate symmetric top parallel band. It leads to a proposed trimer structure which is barrel shaped and has C3h or C_3 symmetry, with the ethylene monomer C-C axes approximately aligned along the trimer symmetry axis.

  3. Study of the equilibrium vacancy ensemble in aluminum using 1D- and 2D-angular correlation of annihilation radiation

    SciTech Connect

    Fluss, M.J.; Berko, S.; Chakraborty, B.; Hoffmann, K.R.; Lippel, P.; Siegel, R.W.

    1985-03-12

    One- and two-dimensional angular correlation of positron-electron annihilation radiation (1D and 2D-ACAR) data have been obtained between 293 and 903 K for single crystals of aluminum. The peak counting rates vs temperature, which were measured using the 1D-ACAR technique, provide a model independent value for the temperature dependence of the positron trapping probability. Using these results it is possible to strip out the Bloch state contribution from the observed 2D-ACAR surfaces and then compare the resulting defect ACAR surfaces to calculated 2D-ACAR surfaces for positrons annihilating from the Bloch, monovacancy, and divacancy-trapped states. The result of this comparison is that the presence of an increasing equilibrium divacancy population is consistent with the observed temperature dependence of ACAR data at high temperature in Al and that the present results when compared to earlier studies on Al indicate that the ratio of the trapping rates at divacancies and monovacancies is of order two.

  4. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Lei, Ran; Chai, Xiaochuan; Mei, Hongxin; Zhang, Hanhui; Chen, Yiping; Sun, Yanqiong

    2010-07-01

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H 2L 1(HL 1) 2(H 2O) 2]·2H 2O 1, [Ni 2(4,4'-bipy)(L 2)(OH)(H 2O) 2]·3H 2O 2, Mn(phen) 2(H 2L 1) 23 and Mn(phen)(HL 2) 4 (H 3L 1= p-H 2O 3PCH 2-C 6H 4-COOH, H 3L 2= m-H 2O 3PCH 2-C 6H 4-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni 4 cluster units are connected by pairs of H 3L 2 ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R 22(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H 3L 2 ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H 3L 1 and H 3L 2 ligands in the compounds more efficiently.

  5. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy.

    PubMed

    Singh, Anand Pratap; Krieger, Jan Wolfgang; Buchholz, Jan; Charbon, Edoardo; Langowski, Jörg; Wohland, Thorsten

    2013-04-01

    Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, transport, flow velocities and concentrations in an imaging mode. SPIM-FCS records correlation functions over a whole plane in a sample, which requires array detectors for recording the fluorescence signal. Several types of image sensors are suitable for FCS. They differ in properties such as effective area per pixel, quantum efficiency, noise level and read-out speed. Here we compare the performance of several low light array detectors based on three different technologies: (1) Single-photon avalanche diode (SPAD) arrays, (2) passive-pixel electron multiplying charge coupled device (EMCCD) and (3) active-pixel scientific-grade complementary metal oxide semiconductor cameras (sCMOS). We discuss the influence of the detector characteristics on the effective FCS observation volume, and demonstrate that light sheet based SPIM-FCS provides absolute diffusion coefficients. This is verified by parallel measurements with confocal FCS, single particle tracking (SPT), and the determination of concentration gradients in space and time. While EMCCD cameras have a temporal resolution in the millisecond range, sCMOS cameras and SPAD arrays can extend the time resolution of SPIM-FCS down to 10 μs or lower. PMID:23571955

  6. Correlations between mercuric iodide photoluminescence spectra and nuclear detector performance

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Harvey, S. J.; Cheng, A. Y.; Gerrish, V.; Ortale, C.

    1992-06-01

    Low temperature photoluminescence spectroscopy was performed on a variety of HgI 2 samples and also on graded HgI 2 nuclear detectors. Correlations were found between features in the photoluminescence spectra and a crystal's ability to produce high-quality detectors. The intensity of a broad emission band centered at 6200 Å (designated as band 3) is weaker in crystals that yield high-quality detectors. Therefore, the defects responsible for this emission band are undesirable in the fabrication of HgI 2 nuclear detectors. The measurements also revealed that stronger emission in the exciton region (designated as band 1) is associated with crystals which produce high-quality detectors, indicating that a high degree of structural perfection is important for HgI 2 detector applications. These correlations, together with earlier results from studies of processing-induced defects, lead to suggestions regarding improvement of the manufacturing yield of high-quality HgI 2 detectors.

  7. Experimental validation of 2D uncertainty quantification for digital image correlation.

    SciTech Connect

    Reu, Phillip L.

    2010-03-01

    Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual test images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.

  8. Impact of lens distortions on strain measurements obtained with 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Lava, P.; Van Paepegem, W.; Coppieters, S.; De Baere, I.; Wang, Y.; Debruyne, D.

    2013-05-01

    The determination of strain fields based on displacements obtained via digital image correlation (DIC) at the micro-strain level (≤1000 μm/m) is still a cumbersome task. In particular when high-strain gradients are involved, e.g. in composite materials with multidirectional fibre reinforcement, uncertainties in the experimental setup and errors in the derivation of the displacement fields can substantially hamper the strain identification process. In this contribution, the aim is to investigate the impact of lens distortions on strain measurements. To this purpose, we first perform pure rigid body motion experiments, revealing the importance of precise correction of lens distortions. Next, a uni-axial tensile test on a textile composite with spatially varying high strain gradients is performed, resulting in very accurately determined strains along the fibers of the material.

  9. Time-domain calculations of the 1D and 2D spectra of resonantly-coupled vibrations in liquids and proteins

    NASA Astrophysics Data System (ADS)

    Torii, Hajime

    2012-12-01

    A time-domain computational method for calculating 1D and 2D spectra of resonantly-coupled vibrations in condensed-phase systems is presented. This method simultaneously takes into account the diagonal frequency modulations, the off-diagonal vibrational couplings, and the dynamics of the system, and is applicable to systems of wide interest, e.g., the O-H stretching modes of water and alcohols, and the amide I modes of proteins. The case of the amide I mode of (Ala-d)4 in D2O solution is shown as an example.

  10. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    NASA Astrophysics Data System (ADS)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  11. Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation.

    PubMed

    Zhao, Zhihua; Zheng, Zhiqin; Roux, Clément; Delmas, Céline; Marty, Jean-Daniel; Kahn, Myrtil L; Mingotaud, Christophe

    2016-08-22

    Analysis of nanoparticle size through a simple 2D plot is proposed in order to extract the correlation between length and width in a collection or a mixture of anisotropic particles. Compared to the usual statistics on the length associated with a second and independent statistical analysis of the width, this simple plot easily points out the various types of nanoparticles and their (an)isotropy. For each class of nano-objects, the relationship between width and length (i.e., the strong or weak correlations between these two parameters) may suggest information concerning the nucleation/growth processes. It allows one to follow the effect on the shape and size distribution of physical or chemical processes such as simple ripening. Various electron microscopy pictures from the literature or from the authors' own syntheses are used as examples to demonstrate the efficiency and simplicity of the proposed 2D plot combined with a multivariate analysis. PMID:27460632

  12. TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra.

    PubMed

    Zawadzka-Kazimierczuk, Anna; Koźmiński, Wiktor; Billeter, Martin

    2012-09-01

    While NMR studies of proteins typically aim at structure, dynamics or interactions, resonance assignments represent in almost all cases the initial step of the analysis. With increasing complexity of the NMR spectra, for example due to decreasing extent of ordered structure, this task often becomes both difficult and time-consuming, and the recording of high-dimensional data with high-resolution may be essential. Random sampling of the evolution time space, combined with sparse multidimensional Fourier transform (SMFT), allows for efficient recording of very high dimensional spectra (≥4 dimensions) while maintaining high resolution. However, the nature of this data demands for automation of the assignment process. Here we present the program TSAR (Tool for SMFT-based Assignment of Resonances), which exploits all advantages of SMFT input. Moreover, its flexibility allows to process data from any type of experiments that provide sequential connectivities. The algorithm was tested on several protein samples, including a disordered 81-residue fragment of the δ subunit of RNA polymerase from Bacillus subtilis containing various repetitive sequences. For our test examples, TSAR achieves a high percentage of assigned residues without any erroneous assignments. PMID:22806130

  13. Crustal Magnetic Spectra from Correlated Sources on Mars

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2004-01-01

    The spectral method for distinguishing crustal from core-source magnetic fields has been re-examined, modified and applied to both a comprehensive geomagnetic field model and an altitude normalized magnetic map of Mars. These observational spectra are fairly fitted by theoretical forms expected from certain elementary classes of magnetic sources. For Earth we found fields from a core radius 3512 +/- 64 km and a crust represented by a shell of random dipolar sources at radius 6367 +/- 14 km. For Mars we found only a field from a crust represented in the same way, but 46 +/- 10 km below the planetary menu radius. More realistic theoretical spectra, allowing for crustal thickness, oblateness and magnetization by a planet centered dipole, were derived and discussed, as were spectral effects of laterally correlated sources. The main effect of laterally correlated sources is to soften the spectrum at high degrees. We tend to over-estimate source shell depth when this is omitted. To include this effect simply size and magnetization distribution functions for extended sources are recast as a characteristic diameter and mean square magnetization amplitude for an ensemble of vertically magnetized spherical caps on a shell. For small caps, and at moderated degrees, the practical derivatives of the log-theoretical spectrum with respect to amplitude, shell radius, and cap diameter are approximately proportional to l, n, and -n **2, respectively. Separation of diameter from amplitude from layer thickness. Results from applications to observational spectra are discussed, noting that there are now several fine field models for Mars; moreover, the terrestrial magnetic spectrum at high degrees, as revised, updated with high precision Oerstad data, and upgrade with high resolution Champ data, appears softer than before.

  14. Interactions in two-component liposomes studied by 2D correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Murawska, Agnieszka; Cieślik-Boczula, Katarzyna; Czarnik-Matusewicz, Bogusława

    2010-06-01

    The effect of dipping amphiphilic ICPANs (1-Alkylaminium, N-[2-[3-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1-oxopropoxy]ethyl]-N,N-dimethyl-, bromide) homologues, characterized by varying alkyl chain length ( n = 8, 10, 12, and 16), into large multilamellar vesicles (MLVs) of dipalmitoylphosphatidylcholine (DPPC) was studied. Attenuated total reflectance infrared (ATR-IR) spectroscopy combined with 31P-NMR enabled observing a cut-off effect for the longest homologue. By employing two-dimensional correlation spectroscopy (2DCOS) for monitoring spectral changes induced by the heating process, detailed information about structural changes was obtained. They confirmed the substantial reorganization in the structure of the interfacial region in the ICPAN-C16/DPPC vesicles compared with the shorter homologues, where mainly the alkyl chains experience significant trans-to-gauche reorganization. Absorbance changes around 1400 cm -1 assigned to the symmetric deformation mode δsym ( +N(CH 3) 3) are a good marker of changes in vesicle shape and are sensitive to the percentage of DPPC molecules directly interacting with the surface of the ATR crystal. This study clearly demonstrates the potential of 2DCOS in investigating interactions in two-component liposomes.

  15. An automated calibration system that combines fringe projection and 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Siegmann, Philip; Felipe-Sesé, Luis A.; Díaz Garrido, Francisco; Piñeiro-Ave, José

    2015-09-01

    An optical non-contact and full-field system that allows large displacement measurements in x-, y- and z-direction is presented. The system combines 2-dimentional digital image correlation (for in-plane measurements) and fringe projection (for out-of-plane displacements) and uses only one camera. The in- and out-of-plane displacements are obtained at the same instant allowing real-time measurements thanks to a color encoding filtering procedure. The out-of-plane measurement allows the correction of the in-plane measurements and the system has to be precisely aligned by following an established alignment procedure. Furthermore, a calibration has to be done to obtain a fringe parameter k for each pixel of the specimen surface image necessary to relate the shifted phase with the out-of-plane displacements. The presented system obtains different values of k for each pixel because of the divergent and non-normal incidence of the fringe beam onto the sample surface (non zero incidence angle). The calibration is performed automatically and only has to be done once for each configuration of the system. The system is portable and can be easily adapted to measure large displacements and wide areas (using small incidence angle) or smaller distances but with higher resolutions (when increasing the incidence angle).

  16. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    SciTech Connect

    Plenio, M. B.; Almeida, J.; Huelga, S. F.

    2013-12-21

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  17. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: Quantitative benchmark for the interpretation of amyloid and protein infrared spectra

    PubMed Central

    Woys, Ann Marie; Almeida, Aaron M.; Wang, Lu; Chiu, Chi Cheng; McGovern, Michael; de Pablo, Juan J.; Skinner, James L.; Gellman, Samuel H.; Zanni, Martin T.

    2012-01-01

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly 13C=18O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequen cies of the labels ranged from 1585 to 1595 cm−1, with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the linewidths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm−1 linewidth. Narrower linewidths indicate that the amide I backbone is solvent protected

  18. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  19. Automated structure verification based on a combination of 1D (1)H NMR and 2D (1)H - (13)C HSQC spectra.

    PubMed

    Golotvin, Sergey S; Vodopianov, Eugene; Pol, Rostislav; Lefebvre, Brent A; Williams, Antony J; Rutkowske, Randy D; Spitzer, Timothy D

    2007-10-01

    A method for structure validation based on the simultaneous analysis of a 1D (1)H NMR and 2D (1)H - (13)C single-bond correlation spectrum such as HSQC or HMQC is presented here. When compared with the validation of a structure by a 1D (1)H NMR spectrum alone, the advantage of including a 2D HSQC spectrum in structure validation is that it adds not only the information of (13)C shifts, but also which proton shifts they are directly coupled to, and an indication of which methylene protons are diastereotopic. The lack of corresponding peaks in the 2D spectrum that appear in the 1D (1)H spectrum, also gives a clear picture of which protons are attached to heteroatoms. For all these benefits, combined NMR verification was expected and found by all metrics to be superior to validation by 1D (1)H NMR alone. Using multiple real-life data sets of chemical structures and the corresponding 1D and 2D data, it was possible to unambiguously identify at least 90% of the correct structures. As part of this test, challenging incorrect structures, mostly regioisomers, were also matched with each spectrum set. For these incorrect structures, the false positive rate was observed as low as 6%. PMID:17694570

  20. Amplitude and phase fourier correlation of ``twin'' GC-spectra of fatty acids from sheep dairy

    NASA Astrophysics Data System (ADS)

    Teusdea, Alin C.; Gabor, Gianina; Hilma, Elena

    2012-08-01

    Authors present the discrimination performances of amplitude and phase-only Fourier correlation over the "twin" typed GC-spectra of sheep milk and ripened cheese. Therefore, in order to assess the most robust Fourier correlation method for the "twin" GC-spectra discrimination, the correlation matrix is built up over 17 analyzed GC-spectra in both amplitude and phase domains.

  1. SU-E-T-422: Correlation Between 2D Passing Rates and 3D Dose Differences for Pretreatment VMAT QA

    SciTech Connect

    Jin, X; Xie, C

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) quality assurance (QA) is typically using QA methods and action levels taken from fixedbeam intensity-modulated radiotherapy (IMRT) QA methods. However, recent studies demonstrated that there is no correlation between the percent gamma passing rate (%GP) and the magnitude of dose discrepancy between the planned dose and the actual delivered dose for IMRT. The purpose of this study is to investigate whether %GP is correlated with clinical dosimetric difference for VMAT. Methods: Twenty nasopharyngeal cancer (NPC) patients treated with dual-arc simultaneous integrated boost VMAT and 20 esophageal cancer patients treated with one-arc VMAT were enrolled in this study. Pretreatment VMAT QA was performed by a 3D diode array ArcCheck. Acceptance criteria of 2%/2mm, 3%/3mm, and 4%/4mm were applied for 2D %GP. Dose values below 10% of the per-measured normalization maximum dose were ignored.Mean DVH values obtained from 3DVH software and TPS were calculated and percentage dose differences were calculated. Statistical correlation between %GP and percent dose difference was studied by using Pearson correlation. Results: The %GP for criteria 2%/2mm, 3%/3mm, and 4%/4mm were 82.33±4.45, 93.47±2.31, 97.13±2.41, respectively. Dose differences calculated from 3DVH and TPS for beam isocenter, mean dose of PTV, maximum dose of PTV, D2 of PTV and D98 of PTV were -1.04±3.24, -0.74±1.71, 2.92±3.62, 0.89±3.29, -1.46±1.97, respectively. No correction were found between %GP and dose differences. Conclusion: There are weak correlations between the 2D %GP and dose differences calculated from 3DVH. The %GP acceptance criteria of 3%/3mm usually applied for pretreatment QA of IMRT and VMAT is not indicating strong clinical correlation with 3D dose difference. 3D dose reconstructions on patient anatomy may be necessary for physicist to predict the accuracy of delivered dose for VMAT QA.

  2. Correlation dependences in infrared spectra of metal phthalocyanines

    SciTech Connect

    Ziminov, A. V. Ramsh, S. M.; Terukov, E. I.; Trapeznikova, I. N.; Shamanin, V. V.; Yurre, T. A.

    2006-10-15

    Metal-phthalocyanine (MPc) complexes CoPc, CuPc, CuPcCl{sub 15-16}, CuPc(4-NO{sub 2}-5-OPh){sub 4}, CuPc(4-CH{sub 2}-phthalimide){sub 4}, CuPc(4-NO{sub 2}-5-NHPhBr){sub 4}, PdPc, MgPc, PbPc, EuOAcPc, SmOAcPc, SmPc{sub 2}, and YOAcPc were obtained and studied using IR spectroscopy. The correlation between the shift of the absorption band maximum in the range of 1100-1600 cm{sup -1} and the atomic radius of template metal is found. It is shown that the planarity of the macrocycle of peripherally substituted CuPc can be estimated from the characteristics of the IR spectra.

  3. Four divalent transition metal carboxyarylphosphonate compounds: Hydrothermal synthesis, structural chemistry and generalized 2D FTIR correlation spectroscopy studies

    SciTech Connect

    Lei Ran; Chai Xiaochuan; Mei Hongxin; Zhang Hanhui; Chen Yiping; Sun Yanqiong

    2010-07-15

    Four divalent transition metal carboxyarylphosphonates, [Ni(4,4'-bipy)H{sub 2}L{sup 1}(HL{sup 1}){sub 2}(H{sub 2}O){sub 2}].2H{sub 2}O 1, [Ni{sub 2}(4,4'-bipy)(L{sup 2})(OH)(H{sub 2}O){sub 2}].3H{sub 2}O 2, Mn(phen){sub 2}(H{sub 2}L{sup 1}){sub 2}3 and Mn(phen)(HL{sup 2}) 4 (H{sub 3}L{sup 1}=p-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, H{sub 3}L{sup 2}=m-H{sub 2}O{sub 3}PCH{sub 2}-C{sub 6}H{sub 4}-COOH, 4,4'-bipy=4,4'-bipyridine, phen=1,10-phenanthroline) were synthesized under hydrothermal conditions. 1 features 1D linear chains built from Ni(II) ions bridging 4,4'-bipy. In 2, neighboring Ni{sub 4} cluster units are connected by pairs of H{sub 3}L{sup 2} ligands to form 1D double-crankshaft chains, which are interconnected by pairs of 4,4'-bipy into 2D sheets. 3 exhibits 2D supramolecular layers via the R{sub 2}{sup 2}(8) ringed hydrogen bonding units. 4 has 1D ladderlike chains, in which the 4-membered rings are cross-linked by the organic moieties of the H{sub 3}L{sup 2} ligands. Additionally, 2D FTIR correlation analysis is applied with thermal and magnetic perturbation to clarify the structural changes of functional groups from H{sub 3}L{sup 1} and H{sub 3}L{sup 2} ligands in the compounds more efficiently. - Graphical abstract: A series of divalent transition metal carboxyarylphosphonate compounds were synthesized under hydrothermal conditions. The figure displays 2D sheet structure with large windows in compound 2.

  4. Robust initialization of 2D-3D image registration using the projection-slice theorem and phase correlation

    SciTech Connect

    Bom, M. J. van der; Bartels, L. W.; Gounis, M. J.; Homan, R.; Timmer, J.; Viergever, M. A.; Pluim, J. P. W.

    2010-04-15

    Purpose: The image registration literature comprises many methods for 2D-3D registration for which accuracy has been established in a variety of applications. However, clinical application is limited by a small capture range. Initial offsets outside the capture range of a registration method will not converge to a successful registration. Previously reported capture ranges, defined as the 95% success range, are in the order of 4-11 mm mean target registration error. In this article, a relatively computationally inexpensive and robust estimation method is proposed with the objective to enlarge the capture range. Methods: The method uses the projection-slice theorem in combination with phase correlation in order to estimate the transform parameters, which provides an initialization of the subsequent registration procedure. Results: The feasibility of the method was evaluated by experiments using digitally reconstructed radiographs generated from in vivo 3D-RX data. With these experiments it was shown that the projection-slice theorem provides successful estimates of the rotational transform parameters for perspective projections and in case of translational offsets. The method was further tested on ex vivo ovine x-ray data. In 95% of the cases, the method yielded successful estimates for initial mean target registration errors up to 19.5 mm. Finally, the method was evaluated as an initialization method for an intensity-based 2D-3D registration method. The uninitialized and initialized registration experiments had success rates of 28.8% and 68.6%, respectively. Conclusions: The authors have shown that the initialization method based on the projection-slice theorem and phase correlation yields adequate initializations for existing registration methods, thereby substantially enlarging the capture range of these methods.

  5. VIBA-Lab 3.0: Computer program for simulation and semi-quantitative analysis of PIXE and RBS spectra and 2D elemental maps

    NASA Astrophysics Data System (ADS)

    Orlić, Ivica; Mekterović, Darko; Mekterović, Igor; Ivošević, Tatjana

    2015-11-01

    VIBA-Lab is a computer program originally developed by the author and co-workers at the National University of Singapore (NUS) as an interactive software package for simulation of Particle Induced X-ray Emission and Rutherford Backscattering Spectra. The original program is redeveloped to a VIBA-Lab 3.0 in which the user can perform semi-quantitative analysis by comparing simulated and measured spectra as well as simulate 2D elemental maps for a given 3D sample composition. The latest version has a new and more versatile user interface. It also has the latest data set of fundamental parameters such as Coster-Kronig transition rates, fluorescence yields, mass absorption coefficients and ionization cross sections for K and L lines in a wider energy range than the original program. Our short-term plan is to introduce routine for quantitative analysis for multiple PIXE and XRF excitations. VIBA-Lab is an excellent teaching tool for students and researchers in using PIXE and RBS techniques. At the same time the program helps when planning an experiment and when optimizing experimental parameters such as incident ions, their energy, detector specifications, filters, geometry, etc. By "running" a virtual experiment the user can test various scenarios until the optimal PIXE and BS spectra are obtained and in this way save a lot of expensive machine time.

  6. Sample Optimization and Identification of Signal Patterns of Amino Acid Side Chains in 2D RFDR Spectra of the α-Spectrin SH3 Domain

    NASA Astrophysics Data System (ADS)

    Pauli, Jutta; van Rossum, Barth; Förster, Hans; de Groot, Huub J. M.; Oschkinat, Hartmut

    2000-04-01

    Future structural investigations of proteins by solid-state CPMAS NMR will rely on uniformly labeled protein samples showing spectra with an excellent resolution. NMR samples of the solid α-spectrin SH3 domain were generated in four different ways, and their 13C CPMAS spectra were compared. The spectrum of a [u-13C, 15N]-labeled sample generated by precipitation shows very narrow 13C signals and resolved scalar carbon-carbon couplings. Linewidths of 16-19 Hz were found for the three alanine Cβ signals of a selectively labeled [70% 3-13C]alanine-enriched SH3 sample. The signal pattern of the isoleucine, of all prolines, valines, alanines, and serines, and of three of the four threonines were identified in 2D 13C-13C RFDR spectra of the [u-13C,15N]-labeled SH3 sample. A comparison of the 13C chemical shifts of the found signal patterns with the 13C assignment obtained in solution shows an intriguing match.

  7. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    SciTech Connect

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimension without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.

  8. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100kHz MAS

    DOE PAGESBeta

    Nishiyama, Y.; Kobayashi, T.; Malon, M.; Singappuli-Arachchige, D.; Slowing, I. I.; Pruski, M.

    2015-02-16

    Two-dimensional 1H{13C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in 1H dimensionmore » without resorting to 1H–1H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. As a result, the HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone.« less

  9. CORRELATIONS OF QUASAR OPTICAL SPECTRA WITH RADIO MORPHOLOGY

    SciTech Connect

    Kimball, Amy E.; Ivezic, Zeljko; Wiita, Paul J.; Schneider, Donald P.

    2011-06-15

    Using the largest homogeneous quasar sample with high-quality optical spectra and robust radio morphology classifications assembled to date, we investigate relationships between radio and optical properties with unprecedented statistical power. The sample consists of 4714 radio quasars from FIRST with S{sub 20} {>=} 2 mJy and with spectra from the Sloan Digital Sky Survey (SDSS). Radio morphology classes include core-only (core), core-lobe (lobe), core-jet (jet), lobe-core-lobe (triple), and double-lobe. Electronic tables of the quasar samples, along with spectral composites for individual morphology classes, are made available. We examine the optical colors of these subsamples and find that radio quasars with core emission unresolved by FIRST (on {approx}5'' scale) have a redder color distribution than radio-quiet quasars (S{sub 20} {approx}< 1 mJy); other classes of radio quasars have optical color distributions similar to the radio-quiet quasars. This analysis also suggests that optical colors of z {approx}< 2.7 SDSS quasars are not strongly (<0.1 mag) biased blue. We show that the radio core-to-lobe flux density ratio (R) and the radio-to-optical (i-band) ratio of the quasar core (R{sub I}) are correlated, which supports the hypothesis that both parameters are indicative of line-of-sight orientation. We investigate spectral line equivalent widths (EWs) as a function of R and R{sub I}, including the O [III] narrow line doublet and the C IV {lambda}1549 and Mg II {lambda}2799 broad lines. We find that the rest EWs of the broad lines correlate positively with R{sub I} at the 4{sigma}-8{sigma} level. However, we find no strong dependence of EW on R, in contrast to previously published results. A possible interpretation of these results is that EWs of quasar emission lines increase as the line-of-sight angle to the radio-jet axis decreases. These results are in stark contrast to commonly accepted orientation-based theories, which suggest that continuum emission

  10. Analysis of the rotational structure in the high-resolution infrared spectra of trans-hexatriene-2-d1 and -3-d1

    SciTech Connect

    Craig, Norman C.; Chen, Yihui; van Besien, Herman; Blake, Thomas A.

    2014-09-01

    The 2-d1 and 3-d1 isotopologues of trans-hexatriene have been synthesized, and their high-resolution (0.0015 cm-1) IR spectra have been recorded. For each of the isotopologues the rotational structure in four C-type bands for out-of-plane vibrational modes has been analyzed, and the ground state combination differences (GSCDs) have been pooled. Ground state rotational constants have been fitted to the GSCDs. For the 2-d species, A0, B0, and C0 values of 0.7837254(5), 0.0442806(3), and 0.0419299(2) cm-1 were fitted to 2450 GSCDs. For the 3-d species, A0, B0, and C0 values of 0.7952226(8), 0.0446149(7), and 0.0422661(4) cm-1 were fitted to 2234 GSCDs. For the eleven out-of-plane modes of the two isotopologues, predictions of anharmonic wavenumbers and harmonic intensities have been computed and compared with experiment where possible.

  11. Correlation and spectra analysis of climate data sets

    NASA Astrophysics Data System (ADS)

    Byalko, Alexey

    2014-05-01

    In January 2013 O.Humlum, K.Stordahl, and J.Solheim published [1] a correlation and spectral analysis of inter-annual oscillations for multiple climate data sets covering the time span from 1980 to December 2011. A similar but independent study of other climate data was published in September last year [2]. Here the ENSO-index [3], global surface temperatures (GST) [4], and the Mauna Loa CO2 monthly data [5] were analyzed for the period 1958-2012. Methods of trend extraction in these two studies were similar but not the same. Nevertheless, three spectral lines coincided in [1, 2] within the exactness of the calculations. The corresponding periods are equal to 2.48(width 1%), 3.64(width 1%), and 9(width 2%) years. The line half-widths turned out to be from two to four times the theoretical limit related to the data length. The inter-correlation functions (covariance) showed lags in the order ENSO/GST/CO2. Analysis of longer data sets reveals higher covariance maximums (up to 0.74 for GST/CO2) with significantly lower lags than in [1]. We also seek a relation between the ENSO index and the 1962-2013 length of day (LOD) data [6]. The LOD/ENSO covariance reveals a rather low maximum about 0.2 with lag of +1 and width of 2 months. Such a nearly simultaneous covariance indicates a possible weak, coupled interaction between the Moon dynamics and the Pacific temperature and pressure oscillations. All the correlations mentioned above could provide better probability predictions for climate changes at the inter-annual scale. Literature 1. Humlum O., Stordahl K., Solheim J. The phase relation between atmospheric carbon dioxide and global temperature. Global and Planetary Change. V.100, 51-69 (2013). 2. Byalko A.V. Spectra of the Earth climate system perturbations. Priroda, No9, 23-32 (2013, in Russian). 3. Earth System Research Laboratory Extended Multivariate ENSO Index: http://www.esrl.noaa.gov/psd/enso/mei/table.html 4. National Climatic Data Center: ftp://ftp

  12. Anisotropic multi-resolution analysis in 2D, application to long-range correlations in cloud mm-radar fields

    SciTech Connect

    Davis, A.B.; Clothiaux, E.

    1999-03-01

    Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where the dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.

  13. Dynamics-based selective 2D (1)H/(1)H chemical shift correlation spectroscopy under ultrafast MAS conditions.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of (1)H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of (1)H/(1)H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials. PMID:26026440

  14. Two-dimensional electronic-vibrational spectra: modeling correlated electronic and nuclear motion.

    PubMed

    Terenziani, F; Painelli, A

    2015-05-21

    We calculate 2D electronic-vibrational (2D-EV) spectra of solvated organic dyes modeled in terms of a reduced set of electronic diabatic states (the essential states) non-adiabatically coupled to molecular vibrations. An effective overdamped coordinate, whose dynamics is described by the Smoluchowski diffusion equation, accounts for polar solvation. Results are discussed for two dyes with distinctively different spectroscopic behavior: 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and 8-(N,N-dibutylamino)-2-azachrysene (AAC). Linear absorption and fluorescence spectra of DCM are well reproduced based on a minimal two-state model. The same model leads to 2D-EV spectra in good agreement with the recent experimental data reported by Oliver and coworkers for DCM in DMSO. In contrast, linear spectra of AAC show a subtle interplay between a locally-excited (LE) and a charge-transfer (CT) excitation, calling for a three-state model. Calculated 2D-EV spectra for AAC show a qualitatively different behavior, demonstrating that the experimental data for DCM do not support a LE/CT interplay. This resolves the long-lasting discussion about the nature of low-lying excitations of DCM in favor of the simplest picture. PMID:25912698

  15. UBE2D3 is a positive prognostic factor and is negatively correlated with hTERT expression in esophageal cancer

    PubMed Central

    GUAN, GE GE; WANG, WEN BO; LEI, BING XIN; WANG, QIAO LI; WU, LIN; FU, ZHEN MING; ZHOU, FU XIANG; ZHOU, YUN FENG

    2015-01-01

    Human telomerase reverse transcriptase (hTERT) is a critical factor in unlimited cell proliferation and immortalization, with numerous studies demonstrating that high expression of hTERT is a poor prognostic factor in various types of cancer. Ubiquitin-conjugating enzyme E2D 3 (UBE2D3) is a member of the E2 family, and participates in the ubiquitin proteasome pathway to regulate basic cellular activities, such as cell cycle control, the DNA damage response, apoptosis, and tumorigenesis. Our previous study initially determined that downregulation of UBE2D3 expression increases hTERT expression and cell proliferation, however, the association between the expression of these two proteins and their functions in cancer tissues remains unknown. Therefore, the protein expression levels of hTERT and UBE2D3 were evaluated in 150 esophageal cancer and 30 adjacent healthy tissue samples by performing immunohistochemical analysis. Concurrently, the clinicopathological data of the enrolled patients were obtained to allow correlation analysis. It was identified that the expression of hTERT in the esophageal cancer tissues was significantly higher compared with that of the adjacent tissues (P=0.015), however, the expression of UBE2D3 was significantly lower in esophageal cancer tissues than the adjacent tissues (P=0.001). Additionally, the study demonstrated that hTERT was significantly upregulated in poorly-differentiated, advanced tumor-node-metastasis (TNM) stage cancer tissues (P<0.05 for all), however, UBE2D3 expression was downregulated in poorly-differentiated, lymph node invaded cancer tissues and recurrent cases. It was also identified that traditional factors, including tumor location, T stage, lymph node status, TNM stage, and molecular factors of hTERT and UBE2D3, were significantly associated with overall survival time (P<0.05 for all). Furthermore, UBE2D3, lymph node status and tumor location were independent prognostic factors for esophageal cancer in multivariate

  16. Comparison and Characterization of Proteomes in the ThreeDomains of Life Using 2D Correlation Analysis

    NASA Astrophysics Data System (ADS)

    Fujishima, K.; Komasa, M.; Kitamura, S.; Tomita, M.; Kanai, A.

    Proteins are a major regulatory component in complex biological systems.Among them, DNA/RNA-binding proteins, the key components of the central dogma of molecular biology, and membrane proteins, which are necessary for both signal transduction and metabolite transport, are suggested to be the most important protein families that arose in the early stage of life. In this study, we computationally analyzed the whole proteome data of six model species to overview the protein diversity in the three domains of life (Bacteria, Archaea and Eukaryota), especially focusing on the above two protein families. To compare the protein distribution among the six model species, we calculated various protein profiles: hydropathy, molecular weight, amino acid composition and periodicity for each protein. We found a domain-specific distribution of the proteome based on 2D correlation analysis of hydropathy and molecular weight. Further, the merged protein distribution of Archaea and other do mains revealed many membrane proteins localized in Bacteria-specific regions with a high ratio of hydropathy and many DNA/RNA-binding proteins localized in Eukaryota-specific regions with a low ratio of hydropathy. Since about half of the proteins encoded in the genome are still functionally unknown, we further conducted Support Vector Machine (SVM)-based functional prediction using amino acid composition (CO score) and periodicity (PD score) as feature vectors to predict the overall number of DNA/RNA-binding proteins and membrane proteins in the proteome. Our estimation indicated that two functional categories occupy approximately 60% to 80% of the proteome, and further, the proportion of the two categories varied among the three domains of life, suggesting that the proteome has gone through different selective pressure during evolution.

  17. Rotational Analysis of Bands in the High-Resolution Infrared Spectra of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1

    SciTech Connect

    Craig, Norman C.; Easterday, Clay C.; Nemchick, Deacon J.; Williamson, Drew; Sams, Robert L.

    2012-02-01

    Pure samples of cis,cis- and trans,trans-1,4-difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0015 cm-1) infrared spectra have been recorded for these nonpolar molecules in the gas phase. For the cis,cis isomer, the rotational structure in two C-type bands at 775 and 666 cm-1 and one A-type band at 866 cm-1 has been analyzed to yield a combined set of 2020 ground state combination differences (GSCDs). Ground state rotational constants fit to these GSCDs are A0 = 0.4195790(4), B0 = 0.0536508(8), and C0 = 0.0475802(9) cm-1. For the trans,trans isomer, three Ctype bands at 856, 839, and 709 cm-1 have been investigated to give a combined set of 1624 GSCDs. Resulting ground state rotational constants for this isomer are A0 = 0.9390117(8), B0 = 0.0389225(4), and C0 = 0.0373778(3) cm-1. Small inertial defects confirm the planarity of both isomers in the ground state. Upper state rotational constants have been determined for most of the transitions. The ground state rotational constants for the two isotopologues will contribute to the data set needed for determining semiexperimental equilibrium structures for the nonpolar isomers of 1,4- difluorobutadiene.

  18. Length of psychiatric hospitalization is correlated with CYP2D6 functional status in inpatients with major depressive disorder

    PubMed Central

    Ruaño, Gualberto; Szarek, Bonnie L; Villagra, David; Gorowski, Krystyna; Kocherla, Mohan; Seip, Richard L; Goethe, John W; Schwartz, Harold I

    2016-01-01

    Aim This study aimed to determine the effect of the CYP2D6 genotype on the length of hospitalization stay for patients treated for major depressive disorder. Methods A total of 149 inpatients with a diagnosis of major depressive disorder at the Institute of Living, Hartford Hospital (CT, USA), were genotyped to detect altered alleles in the CYP2D6 gene. Prospectively defined drug metabolism indices (metabolic reserve, metabolic alteration and allele alteration) were determined quantitatively and assessed for their relationship to length of hospitalization stay. Results Hospital stay was significantly longer in deficient CYP2D6 metabolizers (metabolic reserve <2) compared with functional or suprafunctional metabolizers (metabolic reserve ≥2; 7.8 vs 5.7 days, respectively; p = 0.002). Conclusion CYP2D6 enzymatic functional status significantly affected length of hospital stay, perhaps due to reduced efficacy or increased side effects of the medications metabolized by the CYP2D6 isoenzyme. Functional scoring of CYP2D6 alleles may have a substantial impact on the quality of care, patient satisfaction and the economics of psychiatric treatment. PMID:23734807

  19. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    SciTech Connect

    Ono, Junichi; Takada, Shoji; Saito, Shinji

    2015-06-07

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  20. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase

    NASA Astrophysics Data System (ADS)

    Ono, Junichi; Takada, Shoji; Saito, Shinji

    2015-06-01

    An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.

  1. Multifractal cross-correlation spectra analysis on Chinese stock markets

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaojun; Shang, Pengjian; Shi, Wenbin

    2014-05-01

    In this paper, the long-range cross-correlation of Chinese stock indices is systematically studied. The multifractal detrended cross-correlation analysis (MF-DXA) appears to be one of the most effective methods in detecting long-range cross-correlation of two non-stationary variables. The Legendre spectrum and the large deviations spectrum are extended to the cross-correlation case, so as to present multifractal structure of stock return and volatility series. It is characterized of the multifractality in Chinese stock markets, partly due to clusters of local detrended covariance with large and small magnitudes.

  2. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    DOE PAGESBeta

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ionsmore » on the spinel lattice.« less

  3. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    PubMed Central

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.

    2015-01-01

    We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice. PMID:26644220

  4. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    SciTech Connect

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.

    2015-12-08

    In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice.

  5. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    NASA Astrophysics Data System (ADS)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  6. Spectral function and photoemission spectra in antiferromagnetically correlated metals

    SciTech Connect

    Kampf, A.P.; Schrieffer, J.R. )

    1990-11-01

    Antiferromagnetic spin fluctuations in a two-dimensional metal, such as doped high-{Tc} superconductors, lead to a pseudogap in the electronic spectrum. In the spectral function weight is shifted from the single quasiparticle peak of the Fermi-liquid regime to the incoherent particle and hole backgrounds, which evolve into the upper and lower Mott-Hubbard bands of the antiferromagnetic insulator. Precursors of these split bands show up as shadow bands'' in angle-resolved photoemission spectra.

  7. (abstract) Cross with Your Spectra? Cross-Correlate Instead!

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    The use of cross-correlation for certain types of spectral analysis is discussed. Under certain circumstances, the use of cross-correlation between a real spectrum and either a model or another spectrum can provide a very powerful tool for spectral analysis. The method (and its limitations) will be described with concrete examples using ATMOS data.

  8. Rotational Analysis of Bands in the High-Resolution Infrared Spectra of trans,trans- and cis,cis-1,4-DIFLUOROBUTADIENE-2-d1

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Nemchick, Deacon J.; Easterday, Clay C.; Glor, Ethan C.; Williamson, Drew F. K.; Blake, Thomas A.; Sams, Robert L.

    2010-06-01

    Ground state rotational constants for a series of isotopomers are being sought for use in determining the semi-experimental equilibrium structures of the isomers of 1,4-difluorobutadiene. Because fluorine substitution has a large influence on CC bond lengths in C3 and C4 rings, we asked how fluorine substitution affects butadiene. trans,trans- and cis,cis-1,4-Difluorobutadiene-2-d1 have been synthesized, and high-resolution (0.0013 cm-1) infrared spectra have been recorded for these nonpolar species. Analysis of the rotational structure in several bands is reported. For the trans,trans isomer, the C-type band at 709.0 cm-1 for ν 21(a^") has been fully analyzed, and the C-type band at 914.3 cm-1 for ν 18(a^") has been partially analyzed. Interfering with the analysis of the second band is overlap of its R branch with the P branch of the A/B-type band for ν 13(a^') at 933 cm-1. For the cis,cis isomer, as much as possible of the C-type band (K_a^' = 10 to 34) for ν 20(a^") at 775.4 cm-1 has been analyzed. An A-type band for ν 13(a^') at 865.8 cm-1 has also been analyzed into the band center. Small inertial defects confirm that these molecules are planar. Ground state rotational constants are reported for both isomers in comparison with those for the normal species. N. C. Craig, M. C. Moore, C. F. Neese, D. C. Oertel, L. Pedraza, and T. Masiello, J. Mol. Spectrosc. 254, 39-46 (2009).

  9. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm

    PubMed Central

    Ladstein, Jarle; Evensmoen, Hallvard R.; Håberg, Asta K.; Kristoffersen, Anders; Goa, Pål E.

    2016-01-01

    Purpose: To compare 2D and 3D echo-planar imaging (EPI) in a higher cognitive level fMRI paradigm. In particular, to study the link between the presence of task-correlated physiological fluctuations and motion and the fMRI contrast estimates from either 2D EPI or 3D EPI datasets, with and without adding nuisance regressors to the model. A signal model in the presence of partly task-correlated fluctuations is derived, and predictions for contrast estimates with and without nuisance regressors are made. Materials and Methods: Thirty-one healthy volunteers were scanned using 2D EPI and 3D EPI during a virtual environmental learning paradigm. In a subgroup of 7 subjects, heart rate and respiration were logged, and the correlation with the paradigm was evaluated. FMRI analysis was performed using models with and without nuisance regressors. Differences in the mean contrast estimates were investigated by analysis-of-variance using Subject, Sequence, Day, and Run as factors. The distributions of group level contrast estimates were compared. Results: Partially task-correlated fluctuations in respiration, heart rate and motion were observed. Statistically significant differences were found in the mean contrast estimates between the 2D EPI and 3D EPI when using a model without nuisance regressors. The inclusion of nuisance regressors for cardiorespiratory effects and motion reduced the difference to a statistically non-significant level. Furthermore, the contrast estimate values shifted more when including nuisance regressors for 3D EPI compared to 2D EPI. Conclusion: The results are consistent with 3D EPI having a higher sensitivity to fluctuations compared to 2D EPI. In the presence partially task-correlated physiological fluctuations or motion, proper correction is necessary to get expectation correct contrast estimates when using 3D EPI. As such task-correlated physiological fluctuations or motion is difficult to avoid in paradigms exploring higher cognitive functions, 2

  10. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification

    PubMed Central

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J

    2015-01-01

    Objective: To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). Methods: %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Results: Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. Conclusions: There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Advances in knowledge: Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time. PMID:25494412

  11. Localized Gravity/Topography Correlation and Admittance Spectra one the Moon

    NASA Astrophysics Data System (ADS)

    Ishihara, Y.; Namiki, N.; Sugita, S.; Matsumoto, K.; Goossens, S.; Araki, H.; Noda, H.; Sasaki, S.; Iwata, T.; Hanada, H.

    2009-04-01

    indicated by anti-correlations for these window sizes. For Lwin = 26 scale, we can see weak and spatially small anti-correlation at center of Type I basins. This difference mainly due to spatial size of anti-correlation. In contrast, almost all near-side basins show anti-correlations for all window sizes. This difference is probably due to the difference of elastic thickness between near-side and far-side during the age of impact basin formation. It provides important information on the origin of lunar dichotomy and lunar thermal history. The admittance spectra of the South Pole-Aitken basin (SPA) and far-side highland terrain (FHT) show no significant difference. This means that elastic thickness of two regions are not so different. On the other hand, crustal thickness of two regions are drastically different. It suggests that elatic part of upper mantle of SPA region is probably thicker than FHT. Acknowledgements: SHTOOLS2.4 [7] was used for calculating localized correlation and admittance spectra. References: [1] A. S. Konopliv et al. (1998) Science, 281, 1476-1480. [2] D. E. Smith et al. (1997) JGR, 102, 1591-1611. [3] K. Matsumoto et al. this meeting. [4] H. Araki et al. Submitted to Science. [5] M. Simons et al., (1997) Geophys. J. Int., 131, 24-44. [6] N. Namiki et al. Science in press. [7] M. Wieczorek, (2007) http://www.ipgp.jussieu.fr/~wieczor/SHTOOLS/SHTOOLS.html.

  12. Study of Positronium in Low-k Dielectric Films by means of 2D-Angular Correlation Experiments at a High-Intensity Slow-Positron Beam

    SciTech Connect

    Gessmann, T; Petkov, M P; Weber, M H; Lynn, K G; Rodbell, K P; Asoka-Kumar, P; Stoeffl, W; Howell, R H

    2001-06-20

    Depth-resolved measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed at the high-intensity slow-positron beam of Lawrence Livermore National Laboratory. We studied the formation of positronium in thin films of methyl-silsesquioxane (MSSQ) spin-on glass containing open-volume defects in the size of voids. Samples with different average void sizes were investigated and positronium formation could be found in all cases. The width of the angular correlation related to the annihilation of parapositronium increased with the void size indicating the annihilation of non-thermalized parapositronium.

  13. A study on correlation between 2D and 3D gamma evaluation metrics in patient-specific quality assurance for VMAT.

    PubMed

    Rajasekaran, Dhanabalan; Jeevanandam, Prakash; Sukumar, Prabakar; Ranganathan, Arulpandiyan; Johnjothi, Samdevakumar; Nagarajan, Vivekanandan

    2014-01-01

    In this study, we investigated the correlation between 2-dimensional (2D) and 3D gamma analysis using the new PTW OCTAVIUS 4D system for various parameters. For this study, we selected 150 clinically approved volumetric-modulated arc therapy (VMAT) plans of head and neck (50), thoracic (esophagus) (50), and pelvic (cervix) (50) sites. Individual verification plans were created and delivered to the OCTAVIUS 4D phantom. Measured and calculated dose distributions were compared using the 2D and 3D gamma analysis by global (maximum), local and selected (isocenter) dose methods. The average gamma passing rate for 2D global gamma analysis in coronal and sagittal plane was 94.81% ± 2.12% and 95.19% ± 1.76%, respectively, for commonly used 3-mm/3% criteria with 10% low-dose threshold. Correspondingly, for the same criteria, the average gamma passing rate for 3D planar global gamma analysis was 95.90% ± 1.57% and 95.61% ± 1.65%. The volumetric 3D gamma passing rate for 3-mm/3% (10% low-dose threshold) global gamma was 96.49% ± 1.49%. Applying stringent gamma criteria resulted in higher differences between 2D planar and 3D planar gamma analysis across all the global, local, and selected dose gamma evaluation methods. The average gamma passing rate for volumetric 3D gamma analysis was 1.49%, 1.36%, and 2.16% higher when compared with 2D planar analyses (coronal and sagittal combined average) for 3mm/3% global, local, and selected dose gamma analysis, respectively. On the basis of the wide range of analysis and correlation study, we conclude that there is no assured correlation or notable pattern that could provide relation between planar 2D and volumetric 3D gamma analysis. Owing to higher passing rates, higher action limits can be set while performing 3D quality assurance. Site-wise action limits may be considered for patient-specific QA in VMAT. PMID:24910246

  14. Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS)

    NASA Astrophysics Data System (ADS)

    Park, Yeonju; Shin, Su Hyun; Hwang, Hoon; Lee, Sung Man; Kim, Sung Phil; Choi, Hyun Chul; Jung, Young Mee

    2014-07-01

    The effects of fluoroethylene carbonate (FEC) on the electrochemical performance of the LiCoO2 cathode were investigated by galvanostatic charge-discharge testing and cyclic voltammetry (CV). It was found that FEC has a positive effect on cycling stability and also improves cell performance. We also studied solid electrolyte interface (SEI) film on the LiCoO2 cathode, using X-ray photoelectron spectroscopy (XPS) and 2D correlation spectroscopy. The 2D correlation XPS spectra showed that, initially, the polyvinylidene fluoride (PVdF) binder and electrolyte components are decomposed, after which SEI components are formed on the LiCoO2 cathode surface. In the FEC-containing electrolyte, the polycarbonate components are more abundant than in the FEC-free electrolyte. The formed carbonates in SEI film can act as Li+-conducting materials in reducing the electrode/electrolyte interfacial impedance. This hypothesis is supported by the results of an electrochemical impedance spectrum (EIS) analysis.

  15. High-accuracy 2D digital image correlation measurements using low-cost imaging lenses: implementation of a generalized compensation method

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang

    2014-02-01

    The ideal pinhole imaging model commonly assumed for an ordinary two-dimensional digital image correlation (2D-DIC) system is neither perfect nor stable because of the existence of small out-of-plane motion of the test sample surface that occurred after loading, small out-of-plane motion of the sensor target due to temperature variation of a camera and unavoidable geometric distortion of an imaging lens. In certain cases, these disadvantages can lead to significant errors in the measured displacements and strains. Although a high-quality bilateral telecentric lens has been strongly recommended to be used in the 2D-DIC system as an essential optical component to achieve high-accuracy measurement, it is not generally applicable due to its fixed field of view, limited depth of focus and high cost. To minimize the errors associated with the imperfectness and instability of a common 2D-DIC system using a low-cost imaging lens, a generalized compensation method using a non-deformable reference sample is proposed in this work. With the proposed method, the displacement of the reference sample rigidly attached behind the test sample is first measured using 2D-DIC, and then it is fitted using a parametric model. The fitted parametric model is then used to correct the displacements of the deformed sample to remove the influences of these unfavorable factors. The validity of the proposed compensation method is first verified using out-of-plane translation, out-of-plane rotation, in-plane translation tests and their combinations. Uniaxial tensile tests of an aluminum specimen were also performed to quantitatively examine the strain accuracy of the proposed compensation method. Experiments show that the proposed compensation method is an easy-to-implement yet effective technique for achieving high-accuracy deformation measurement using an ordinary 2D-DIC system.

  16. The correlation of 2D-resistivity and magnetic methods in fault verification at northern Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Nur Aminuda; Saad, Rosli; Nordiana, M. M.; Azwin, I. N.

    2015-04-01

    The Great Sumatra Fault system was split into two sub-parallel lines or segments at the Northern Sumatra. This event is one of the impacts of powerful earthquakes that hit Sumatra Island especially one that occurred in 2004. These two sub-parallel segments known as Aceh and Seulimeum fault. The study is focused on the Seulimeum fault and two geophysical methods chosen aimed to compare and verified the result obtained respectively. 2-D resistivity method is a common geophysical method used in determination of near surface structures such as faults, cavities, voids and sinkholes. Meanwhile, the magnetic method often chosen to delineate subsurface structures, determine depth of magnetic source bodies and possibly sediment thickness. Three survey lines of resistivity method and randomly magnetic stations were carried out covering Krueng district. The resistivity data processed using Res2Dinv and result presented using Surfer software. The fault identified by the contrast of low and high resistivity value. Meanwhile, the magnetic data were presented in magnetic residual contour map and the extended fault system is suspected represent by the contrast value of the magnetic anomalies. Within suspected fault zone, the results of resistivity are tally with magnetic result.

  17. A new approach to the optimisation of non-uniform sampling schedules for use in the rapid acquisition of 2D NMR spectra of small molecules.

    PubMed

    Sidebottom, Philip J

    2016-08-01

    Non-uniform sampling allows the routine, rapid acquisition of 2D NMR data. When the number of points in the NUS schedule is low, the quality of the data obtained is very dependent of the schedule used. A simple proceedure for finding optimium schedules has been developed and is demonstrated for the multiplicity edited HSQC experiment. PMID:27160788

  18. Two-dimensional correlation spectroscopy (2D-COS) variable selection for near-infrared microscopy discrimination of meat and bone meal in compound feed.

    PubMed

    Lü, Chengxu; Chen, Longjian; Yang, Zengling; Liu, Xian; Han, Lujia

    2014-01-01

    This article presents a novel method for combining auto-peak and cross-peak information for sensitive variable selection in synchronous two-dimensional correlation spectroscopy (2D-COS). This variable selection method is then applied to the case of near-infrared (NIR) microscopy discrimination of meat and bone meal (MBM). This is of important practical value because MBM is currently banned in ruminate animal compound feed. For the 2D-COS analysis, a set of NIR spectroscopy data of compound feed samples (adulterated with varying concentrations of MBM) was pretreated using standard normal variate and detrending (SNVD) and then mapped to the 2D-COS synchronous matrix. For the auto-peak analysis, 12 main sensitive variables were identified at 6852, 6388, 6320, 5788, 5600, 5244, 4900, 4768, 4572, 4336, 4256, and 4192 cm(-1). All these variables were assigned their specific spectral structure and chemical component. For the cross-peak analysis, these variables were divided into two groups, each group containing the six sensitive variables. This grouping resulted in a correlation between the spectral variables that was in accordance with the chemical-component content of the MBM and compound feed. These sensitive variables were then used to build a NIR microscopy discrimination model, which yielded a 97% correct classification. Moreover, this method detected the presence of MBM when its concentration was less than 1% in an adulterated compound feed sample. The concentration-dependent 2D-COS-based variable selection method developed in this study has the unique advantages of (1) introducing an interpretive aspect into variable selection, (2) substantially reducing the complexity of the computations, (3) enabling the transferability of the results to discriminant analysis, and (4) enabling the efficient compression of spectral data. PMID:25061786

  19. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    PubMed

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  20. Remote sensing of stream flow rates - Correlation of meander and discharge spectra

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1973-01-01

    Results of a study of river meander patterns and discharges, in which attempt was made to correlate the discharge spectrum of a river with the river meander power spectrum determined from aerial and satellite imagery. Some significant characteristics of both the discharge and the meander spectra have been discovered. Discharge frequency spectra based on long-term records of daily streamflow are found to have an inverse power-law dependence on discharge. This is shown to reflect the short-term decay of individual floods which are found to have an inverse power-law dependence on time. Meander power spectra for a number of river reaches, digitized from aerial photography, also show significant structure, the power spectral density having an inverse power-law dependence on wave number over one or more portions of the spectrum with breaks in the spectra at characteristic wave numbers. A number of examples of typical discharge and meander spectra are shown.

  1. Fast detection of choline-containing metabolites in liver using 2D 1H- 14N three-bond correlation (HN3BC) spectroscopy

    NASA Astrophysics Data System (ADS)

    Mao, Xi-an; Li, Ning; Mao, Jiezhen; Li, Qiurong; Xiao, Nan; Jiang, Bin; Jiang, Ling; Wang, Xu-xia; Liu, Maili

    2012-01-01

    Detection and quantification of total choline-containing metabolites (CCMs) in tissues by magnetic resonance spectroscopy (MRS) has received considerable attention as a biomarker of cancer. Tissue CCMs are mainly choline (Cho), phosphocholine (PCho), and glycerophosphocholine (GPCho). Because the methyl 1H resonances of tissue CCMs exhibit small chemical shift differences and overlap significantly in 1D 1H MRS, quantification of individual components is precluded. Development of a MRS method capably of resolving individual components of tissue CCMs would be a significant advance. Herein, a modification of the 2D 1H- 14N HSQC technique is targeted on the two methylene 1H in the CH 2O group ( 3J1H14N = 2.7 Hz) and applied to ex vivo mouse and human liver samples at physiological temperature (37 °C). Specifically, the 1H- 14N HSQC technique is modified into a 2D 1H- 14N three-bond correlation (HN3BC) experiment, which selectively detects the 1H of CH 2O coupled to 14N in CCMs. Separate signals from Cho, PCho, and GPCho components are resolved with high detection sensitivity. A 2D HN3BC spectrum can be recorded from mouse liver in only 1.5 min and from human carcinoma liver tissue in less than 3 min with effective sample volume of 0.2 ml at 14.1 T.

  2. Spin Correlations and Excitations in the Quasi-2D Triangular Bilayer Spin Glass LuCoGaO4

    NASA Astrophysics Data System (ADS)

    Fritsch, K.; Granroth, G. E.; Savici, A. T.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.

    2012-02-01

    LuCoGaO4 is a layered magnetic-bilayer material wherein Co2+ magnetic moments and nonmagnetic Ga3+ ions are randomly distributed on planar triangular bilayers. This makes it an ideal case to study the interplay between geometric frustration, site disorder and low dimensionality and its influence on the magnetic ground of the system. This novel material has been grown for the first time in single crystal form at McMaster University. We have performed magnetization measurements, revealing a previously identified spin glass transition near Tf˜19K, and a Curie Weiss temperature of Tcw˜-96K, consistent with antiferromagnetic interactions[1]. We discuss time-of-flight neutron scattering measurements using SEQUOIA at SNS which elucidate the evolution of the static and dynamic spin correlations in LuCoGaO4 over a range of temperatures from T<< Tf to T>Tcw. We observe quasielastic scattering at (1/3,1/3,L) positions in reciprocal space and rods of scattering along the c*-direction, consistent with short range antiferromagnetic correlations within decoupled bilayers, and which comfirm the 2-dimensional character of this system. Inelastic scattering measurements show a gapped ˜ 12 meV spin excitation which softens and broadens in energy, filling in the gap on a temperature scale of ˜ Tcw/2. [1] Cava et al., J. Solid State Chem. 140, 337 (1998).

  3. Nano-spatial parameters from 3D to 2D lattice dimensionality by organic variant in [ZnCl4]- [R]+ hybrid materials: Structure, architecture-lattice dimensionality, microscopy, optical Eg and PL correlations

    NASA Astrophysics Data System (ADS)

    Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh

    2016-04-01

    The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.

  4. Accurate and efficient calculation of discrete correlation functions and power spectra

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Liu, J. M.; Zhu, W. D.

    2015-07-01

    Operational modal analysis (OMA), or output-only modal analysis, has been widely conducted especially when excitation applied on a structure is unknown or difficult to measure. Discrete cross-correlation functions and cross-power spectra between a reference data series and measured response data series are bases for OMA to identify modal properties of a structure. Such functions and spectra can be efficiently transformed from each other using the discrete Fourier transform (DFT) and inverse DFT (IDFT) based on the cross-correlation theorem. However, a direct application of the theorem and transforms, including the DFT and IDFT, can yield physically erroneous results due to periodic extension of the DFT on a function of a finite length to be transformed, which is false most of the time. Padding zero series to ends of data series before applying the theorem and transforms can reduce the errors, but the results are still physically erroneous. A new methodology is developed in this work to calculate discrete cross-correlation functions of non-negative time delays and associated cross-power spectra, referred to as half spectra, for OMA. The methodology can be extended to cross-correlation functions of any time delays and associated cross-power spectra, referred to as full spectra. The new methodology is computationally efficient due to use of the transforms. Data series are properly processed to avoid the errors caused by the periodic extension, and the resulting cross-correlation functions and associated cross-power spectra perfectly comply with their definitions. A coherence function, a convergence function, and a convergence index are introduced to evaluate qualities of measured cross-correlation functions and associated cross-power spectra. The new methodology was numerically and experimentally applied to an ideal two-degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum beam, respectively, and OMA was conducted using half spectra to estimate

  5. Effect of GRB spectra on the empirical luminosity correlations and the GRB Hubble diagram

    NASA Astrophysics Data System (ADS)

    Lin, Hai-Nan; Li, Xin; Chang, Zhe

    2016-04-01

    The spectra of gamma-ray bursts (GRBs) in a wide energy range can usually be well described by the Band function, which is a two smoothly jointed power laws cutting at a breaking energy. Below the breaking energy, the Band function reduces to a cut-off power law, while above the breaking energy it is a simple power law. However, for some detectors (such as the Swift-BAT) whose working energy is well below or just near the breaking energy, the observed spectra can be fitted to cut-off power law with enough precision. Besides, since the energy band of Swift-BAT is very narrow, the spectra of most GRBs can be fitted well even using a simple power law. In this paper, with the most up-to-date sample of Swift-BAT GRBs, we study the effect of different spectral models on the empirical luminosity correlations, and further investigate the effect on the reconstruction of GRB Hubble diagram. We mainly focus on two luminosity correlations, i.e., the Amati relation and Yonetoku relation. We calculate these two luminosity correlations on both the case that the GRB spectra are modeled by Band function and cut-off power law. It is found that both luminosity correlations only moderately depend on the choice of GRB spectra. Monte Carlo simulations show that Amati relation is insensitive to the high-energy power-law index of the Band function. As a result, the GRB Hubble diagram calibrated using luminosity correlations is almost independent on the GRB spectra.

  6. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  7. Near-infrared (NIR) imaging analysis of polylactic acid (PLA) nanocomposite by multiple-perturbation two-dimensional (2D) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Murakami, Takurou N.; Nishida, Masakazu; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    Multiple-perturbation two-dimensional (2D) correlation spectroscopy was applied to sets of near-infrared (NIR) imaging data of polylactic acid (PLA) nanocomposite samples undergoing UV degradation. Incorporation of clay nanoparticles substantially lowers the surface free energy barrier for the nucleation of PLA and eventually increases the frequency of the spontaneous nucleation of PLA crystals. Thus, when exposed to external stimuli such as UV light, PLA nanocomposite may show different structure alternation depending on the clay dispersion. Multiple-perturbation 2D correlation analysis of the PLA nanocomposite samples revealed different spatial variation between crystalline and amorphous structure of PLA, and the phenomenon especially becomes acute in the region where the clay particles are coagulated. The incorporation of the clay leads to the cleavage-induced crystallization of PLA when the sample is subjected to the UV light. The additional development of the ordered crystalline structure then works favorably to restrict the initial degradation of the polymer, providing the delay in the weight loss of the PLA.

  8. Cluster ion distributions and correlation with fragment valence in laser-induced mass spectra of oxides

    SciTech Connect

    Michiels, E.; Bijbels, R.

    1984-06-01

    Laser microprobe mass analysis (LAMMA) spectra are described for binary oxides belonging to different groups in the periodic table. The positive and negative cluster ion distributions show a strong correlation with the valence electron configuration of the metal in the oxide. The bond dissociation energy of the MO/sup +/ ion also affects the intensity distributions. 20 references, 10 figures.

  9. Correlation of quality measurements to visible-near infrared spectra of pasteurized egg

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using ch...

  10. Chemometric correlation of shelf life, quality measurements, and visible-near infrared spectra of pasteurized eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using pr...

  11. Efficient 2D MRI relaxometry using compressed sensing

    NASA Astrophysics Data System (ADS)

    Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.

    2015-06-01

    Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.

  12. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  13. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  14. APOE genotype and age modifies the correlation between cognitive status and metabolites from hippocampus by a 2D 1H-MRS in non-demented elders

    PubMed Central

    Liu, Renyuan; Liang, Xue; Yu, Tingting; Chen, Xiaoling; Feng, Jie; Guo, Aibin; Xie, Yu; Yang, Haiyan; Huang, Mingmin; Tian, Chuanshuai

    2015-01-01

    Purpose. To examine the associations among age, Apolipoprotein E (APOE) genotype, metabolic changes in the hippocampus detected by 2D 1H magnetic resonance spectroscopy (MRS), and neuropsychological measures of cognition in non-demented elders. Materials and Methods. We studied a cohort of 16 cognitively normal controls (CN) and 11 amnestic mild cognitive impairment (aMCI) patients between 66 and 88 years old who were genotyped for APOE genetic polymorphism. Measurements of 2D1H-MRS metabolites were obtained in the hippocampus region. Adjusting by age among all subjects, the association between metabolic changes and cognitive function was measured by Spearman partial rank-order correlation. The effect of APOE status was measured by separating the subjects into APOE genotype subgroups, including the APOEε4 carriers and APOEε4 non-carriers. Results. In contrast to the CN group matched with age, gender, and education, aMCI patients showed increased myo-inositol (mI)/Creatine (Cr) ratio only in the right hippocampus. No differences were noted on N-acetylaspartate (NAA)/Cr and mI/NAA from bilateral hippocampus, and so was mI/Cr ratio in left hippocampus between aMCI and CN. The mI/Cr ratio from the right hippocampus in non-demented elders was negatively correlated with Montreal Cognitive Assessment (MoCA) scores. Whether ε4 genotype or age was added as a covariate, none of the correlation effects remained significant. Additionally, adjusting for age and APOE genotype together, there was no significant correlation between them. Conclusion. Since the higher mI/Cr from the right hippocampus of the patients with aMCI than those from CN, the mI/Cr could be a more specific predictor of general cognitive function in aMCI patients. There is an association between higher mI/Cr in right hippocampus and worse cognitive function for the non-demented older adults, and the correlation could be modified by APOE status and age. That provided a window on objectively understanding the

  15. Reaction of O2(+)(X 2Pi sub g) with H2, D2, and HD - Guided ion beam studies, MO correlations, and statistical theory calculations

    NASA Technical Reports Server (NTRS)

    Weber, M. E.; Dalleska, N. F.; Tjelta, B. L.; Fisher, E. R.; Armentrout, P. B.

    1993-01-01

    Guided ion-beam mass spectrometry is used to examined the reactions of vibrationally cold ground-state O2(+)(X 2Pi sub g) with H2, D2, and HD. The energy dependence of the absolute integral cross sections from thermal energy to over 4 eV are measured in the center-of-mass frame of reference. Results are also presented for internally excited O2(+) ions reacting with D2 and HD. The results are consistent with the dominant state being the a 4Pi sub u electronic state. The experimental excitation functions are analyzed in detail and interpreted by extending the molecular orbital correlation arguments of Mahan (1971) and by comparison with results of statistical phase space theory and with a theory that predicts a tight transition state.

  16. The price of privately releasing contingency tables, and the spectra of random matrices with correlated rows

    SciTech Connect

    Kasiviswanathan, Shiva; Rudelson, Mark; Smith, Adam

    2009-01-01

    Contingency tables are the method of choice of government agencies for releasing statistical summaries of categorical data. In this paper, we consider lower bounds on how much distortion (noise) is necessary in these tables to provide privacy guarantees when the data being summarized is sensitive. We extend a line of recent work on lower bounds on noise for private data analysis [10, 13. 14, 15] to a natural and important class of functionalities. Our investigation also leads to new results on the spectra of random matrices with correlated rows. Consider a database D consisting of n rows (one per individual), each row comprising d binary attributes. For any subset of T attributes of size |T| = k, the marginal table for T has 2{sup k} entries; each entry counts how many times in the database a particular setting of these attributes occurs. Imagine an agency that wishes to release all (d/k) contingency tables for a given database. For constant k, previous work showed that distortion {tilde {Omicron}}(min{l_brace}n, (n{sup 2}d){sup 1/3}, {radical}d{sup k}{r_brace}) is sufficient for satisfying differential privacy, a rigorous definition of privacy that has received extensive recent study. Our main contributions are: (1) For {epsilon}- and ({epsilon}, {delta})-differential privacy (with {epsilon} constant and {delta} = 1/poly(n)), we give a lower bound of {tilde {Omega}}(min{l_brace}{radical}n, {radical}d{sup k}{r_brace}), which is tight for n = {tilde {Omega}}(d{sup k}). Moreover, for a natural and popular class of mechanisms based on additive noise, our bound can be strengthened to {Omega}({radical}d{sup k}), which is tight for all n. Our bounds extend even to non-constant k, losing roughly a factor of {radical}2{sup k} compared to the best known upper bounds for large n. (2) We give efficient polynomial time attacks which allow an adversary to reconstruct sensitive infonnation given insufficiently perturbed contingency table releases. For constant k, we obtain a

  17. Analysis of Correlations Among Supercontinuum Spectra using Liquid Crystal Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Matsuike, Mitsumasa; Nishizawa, Norihiko; Mori, Masakazu; Goto, Ryosuke; Goto, Toshio

    The generation of supercontinuum spectra from the injection of femtosecond pulses into microstructure or tapered fibers has now been achieved by several groups(1)(2). In 2001, we have generated the supercontinuum around 1.55 μm by injecting a 100-fs-duration fiber laser pulse with a 1-nJ pulse energy into a 5-m-long highly nonlinear dispersion-shifted fiber. Supercontinuum is a remarkable light source for applications in a lot of fields because of its extreme spectral broadness and the simple generation scheme. These unique properties should make the supercontinuum an ideal tool for important applications including WDM telecommunications, optical coherence tomography, optical-frequency measurement and so on. However, a significant broadband noise on the supercontinuum has been observed to limit its stability. So the supercontinuum is too noisy for many applications. In this study, we experimentally analyze the correlation among supercontinuum spectra that contribute increasing and decreasing this noise by spectral filtering using spatial light modulator. We observed the formation of correlations among supercontinuum spectra for two fibers which have different properties for chromatic dispersion. We also discuss how nonlinear effects act on the formation of correlations.

  18. Emerging spectra of singular correlation matrices under small power-map deformations

    NASA Astrophysics Data System (ADS)

    Vinayak; Schäfer, Rudi; Seligman, Thomas H.

    2013-09-01

    Correlation matrices are a standard tool in the analysis of the time evolution of complex systems in general and financial markets in particular. Yet most analysis assume stationarity of the underlying time series. This tends to be an assumption of varying and often dubious validity. The validity of the assumption improves as shorter time series are used. If many time series are used, this implies an analysis of highly singular correlation matrices. We attack this problem by using the so-called power map, which was introduced to reduce noise. Its nonlinearity breaks the degeneracy of the zero eigenvalues and we analyze the sensitivity of the so-emerging spectra to correlations. This sensitivity will be demonstrated for uncorrelated and correlated Wishart ensembles.

  19. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy

    NASA Astrophysics Data System (ADS)

    Wirtz, T.; Philipp, P.; Audinot, J.-N.; Dowsett, D.; Eswara, S.

    2015-10-01

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM).

  20. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy.

    PubMed

    Wirtz, T; Philipp, P; Audinot, J-N; Dowsett, D; Eswara, S

    2015-10-30

    Secondary ion mass spectrometry (SIMS) constitutes an extremely sensitive technique for imaging surfaces in 2D and 3D. Apart from its excellent sensitivity and high lateral resolution (50 nm on state-of-the-art SIMS instruments), advantages of SIMS include high dynamic range and the ability to differentiate between isotopes. This paper first reviews the underlying principles of SIMS as well as the performance and applications of 2D and 3D SIMS elemental imaging. The prospects for further improving the capabilities of SIMS imaging are discussed. The lateral resolution in SIMS imaging when using the microprobe mode is limited by (i) the ion probe size, which is dependent on the brightness of the primary ion source, the quality of the optics of the primary ion column and the electric fields in the near sample region used to extract secondary ions; (ii) the sensitivity of the analysis as a reasonable secondary ion signal, which must be detected from very tiny voxel sizes and thus from a very limited number of sputtered atoms; and (iii) the physical dimensions of the collision cascade determining the origin of the sputtered ions with respect to the impact site of the incident primary ion probe. One interesting prospect is the use of SIMS-based correlative microscopy. In this approach SIMS is combined with various high-resolution microscopy techniques, so that elemental/chemical information at the highest sensitivity can be obtained with SIMS, while excellent spatial resolution is provided by overlaying the SIMS images with high-resolution images obtained by these microscopy techniques. Examples of this approach are given by presenting in situ combinations of SIMS with transmission electron microscopy (TEM), helium ion microscopy (HIM) and scanning probe microscopy (SPM). PMID:26436905

  1. Theoretical prediction of gas-phase infrared spectra of imidazo[1,2- a]pyrazinediones and imidazo[1,2- a]imidazo[1,2- d]pyrazinediones derived from glycine

    NASA Astrophysics Data System (ADS)

    Contreras-Torres, Flavio F.; Basiuk, Vladimir A.

    2005-09-01

    Imidazo[1,2- a]pyrazine-3,6-diones and imidazo[1,2- a]imidazo[1,2- d]pyrazine-3,8-diones can be produced by pyrolysis of simple amino acids. While such bicyclic and tricyclic amidines were detected and characterized by IR spectroscopy for some α-substituted amino acids, the parent systems composed of glycine fragments are unknown up to now. IR spectra for five amidines derived from glycine were calculated by using different semi-empirical (PM3, AM1, MNDO and MINDO/3), HF, and hybrid DFT (B3LYP, B3P86 and B3PW91) methods in conjunction with 6-31G( d) basis set (for HF and DFT). Vibration frequencies in the experimental IR spectra were predicted based upon the B3LYP data, by correcting the calculated wavenumbers by a scaling factor of 0.959. The behavior of most characteristic bands ( νC dbnd X , νNH, etc.) and their shifts with respect to such bands in the spectra of alanine and α-aminoisobutyric acid derivatives studied before, are discussed. Performance of the semi-empirical methods was tested, bearing in mind possible future needs for IR spectra predictions for larger molecular systems of similar chemical nature; the use of MINDO/3 and MNDO is recommended. A basis set effect on the B3LYP fundamental vibration frequencies for hexahydroimidazo[1,2- a]pyrazine-3,6-dione was studied by varying Pople basis sets from minimal STO-3G to 6-311++G( d, p). No significant improvements were found beyond the 6-31G( d) basis set, which thus can be recommended to predict IR spectra for the amidines and similar molecules.

  2. Two dimensional correlation analysis of Fourier transform ion cyclotron resonance mass spectra of dissolved organic matter: a new graphical analysis of trends.

    PubMed

    Abdulla, Hussain A N; Sleighter, Rachel L; Hatcher, Patrick G

    2013-04-16

    Two-dimensional (2D) correlation analysis was applied to 20 Fourier transform ion cyclotron resonance mass spectra (FTICR-MS) of ultrafiltered dissolved organic matter samples from a salinity transect of the lower Chesapeake Bay. We were able to investigate the chemical changes in the dissolved organic matter pool at the molecular level and classify the individual peaks based on their biogeochemical reactivity. The power of this technique is its ability to be used on either the presence/absence of the individual peaks or their normalized magnitudes. The presence or absence of the peaks are utilized to identify the reactivity and correlation between peaks that plot in different regions of the van Krevelen diagram, whereas the normalized magnitudes are used to correlate the changes among individual peaks. One of the promising advantages of 2D correlation of FTICR-MS data is the ability to associate the variations of the individual peaks with the changes in the functional groups that are measured by other spectroscopic techniques. This approach takes us one step further from identifying molecular formulas to proposing chemical structures. PMID:23472832

  3. Vibrational study and spectra-structure correlations in ammonium saccharinate: comparison with the alkali saccharinates.

    PubMed

    Naumov, P; Jovanovski, G

    2000-06-01

    The FT IR spectra, at temperatures from liquid-nitrogen boiling (LNT) up to room temperature (RT), as well as the RT Raman solid-state spectra of protonated and deuterated ammonium saccharinate and of a series of alkali (Na, K, Rb, Cs) saccharinates are studied. The spectral assignments are aided with ab initio calculations on the free saccharinato anion at the HF/6-31 + + G(d,p) level. Attention is paid to the ND, CO and SO2 stretching regions. Correlation splitting is believed to be responsible for the presence of a v(CO) doublet. The averaged v(CO) frequency in (purely ionic) ammonium saccharinate is found to be the lowest in the so far studied saccharinates, along with the assumptions that the v(CO) frequency (or the corresponding averaged value) can have predictive value for the type of the metal-to-saccharinato ligand/ion bonding. The appreciably higher contribution of the dominating internal coordinate in the corresponding normal vibration in case of v(as)(SO2) than in v(s)(SO2) makes it suitable for spectra-structure correlations. Contrary to RT, even though no phase transitions were observed in the studied temperature range, some polycentered character is prescribed to the hydrogen bonds in which the ammonium ions of effective symmetry C8 participate at LNT. Certain structural predictions about the saccharinates of K, Rb and Cs are made. PMID:10888436

  4. Correlations Between Textures and Infrared Spectra of the Martian Surface in Valles Marineris

    NASA Astrophysics Data System (ADS)

    Ralston, S. J.; Wray, J. J.

    2013-12-01

    RALSTON, S. J., School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, sralston3@gatech.edu, WRAY, James, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, jwray@eas.gatech.edu In the past few decades, a wealth of information has become available on the appearance and composition of the Martian surface. While some previous research has examined possible correlations between certain surface features and mineralogy (such as the hypothesized connection between Recurring Slope Lineae and perchlorate salts), little has yet been done to determine possible correlations between mineralogy and texture in less extraordinary circumstances. In this project, one hundred images taken from across the Valles Marineris region were examined both in infrared (obtained from the CRISM instrument aboard the Mars Reconnaissance Orbiter) and in visible-light images from the HiRISE camera. Spectra were obtained from regions of interest, focusing mainly on the identification of monohydrated and polyhydrated sulfates. Other materials were included in the imaging, including phyllosilicate clays, gypsum, and jarosite, although those materials proved less abundant than the sulfates. The areas from which the spectra were taken were then examined in visible-light wavelengths using HiRISE images to determine textural qualities. The focus of this research was on two particular textures, a 'reticulated' texture and a 'stepped texture,' hypothesized to correlate to monohydrated and polyhydrated sulfates, respectively. Results showed that over 55% of areas containing monohydrated sulfates also contained reticulate texture, whereas areas that contained other materials, such as polyhydrated sulfates and clays, had only a 2-8% correlation with reticulate texture. The stepped texture was shown to have no significant correlation to any one material, although other texture/mineral pairs did

  5. Correlations between density distributions, optical spectra, and ion species in a hydrogen plasma (invited)

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Tarvainen, O.; Kalvas, T.; Koivisto, H.

    2016-02-01

    An experimental study of plasma distributions in a 2.45 GHz hydrogen discharge operated at 100 Hz repetition rate is presented. Ultrafast photography, time integrated visible light emission spectra, time resolved Balmer-alpha emission, time resolved Fulcher Band emission, ion species mass spectra, and time resolved ion species fraction measurements have been implemented as diagnostic tools in a broad range of plasma conditions. Results of plasma distributions and optical emissions correlated with H+, H2 + , and H3 + ion currents by using a Wien filter system with optical observation capability are reported. The magnetic field distribution and strength is found as the most critical factor for transitions between different plasma patterns and ion populations.

  6. Correlations between density distributions, optical spectra, and ion species in a hydrogen plasma (invited).

    PubMed

    Cortázar, O D; Megía-Macías, A; Tarvainen, O; Kalvas, T; Koivisto, H

    2016-02-01

    An experimental study of plasma distributions in a 2.45 GHz hydrogen discharge operated at 100 Hz repetition rate is presented. Ultrafast photography, time integrated visible light emission spectra, time resolved Balmer-alpha emission, time resolved Fulcher Band emission, ion species mass spectra, and time resolved ion species fraction measurements have been implemented as diagnostic tools in a broad range of plasma conditions. Results of plasma distributions and optical emissions correlated with H(+), H2 (+), and H3 (+) ion currents by using a Wien filter system with optical observation capability are reported. The magnetic field distribution and strength is found as the most critical factor for transitions between different plasma patterns and ion populations. PMID:26931922

  7. Dynamics-based selective 2D {sup 1}H/{sup 1}H chemical shift correlation spectroscopy under ultrafast MAS conditions

    SciTech Connect

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-28

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of {sup 1}H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of {sup 1}H/{sup 1}H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  8. Plasma fluctuations in a Kaufman thruster. [root mean square magnitude, spectra and cross correlation

    NASA Technical Reports Server (NTRS)

    Serafini, J. S.; Terdan, F. F.

    1973-01-01

    Measurements of the RMS magnitude, spectra and cross-correlations for the fluctuations in the beam, discharge and neutralizer keeper currents are presented for a 30-cm diameter dished grid ion thrustor for a range of magnetic baffle currents and up to 2.0 amperes beam current. The ratio of RMS to mean ion beam current varied from 0.04 to 0.23. The spectra of the amplitudes of the beam and discharge current fluctuations were taken up to 9 MHz and show that the predominant amplitudes occur at frequencies of 10 kHz or below. The fall-off with increasing frequency is rapid. Frequencies above 100 kHz the spectral levels are 45 kb or more below the maximum peak amplitudes. The cross-correlations revealed the ion beam fluctuations to have large radial and axial scales which implied that the beam fluctuates as a whole or 'in-phase.' The cross-correlations of the beam and neutralizer keeper current fluctuations indicated the neutralizer contributions to the beam fluctuations to be small, but not negligible. The mode of operation of the thrustor (values of beam and magnetic baffle currents) was significant in determining the RMS magnitude and spectral shape of the beam fluctuations. The major oscillations were not found to be directly dependent on the power conditioner inverter frequencies.

  9. Role of dipolar correlations in the infrared spectra of water and ice

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Sharma, Manu; Resta, Raffaele; Galli, Giulia; Car, Roberto

    2008-06-01

    We report simulated infrared (IR) spectra of deuterated water and ice using Car-Parrinello molecular dynamics with maximally localized Wannier functions. Experimental features are accurately reproduced within the harmonic approximation. By decomposing the line shapes in terms of intramolecular and intermolecular dipole correlation functions, we find that short-range intermolecular dynamic charge fluctuations associated to hydrogen bonds are prominent over the entire spectral range. Our analysis reveals the origin of several spectral features and identifies network bending modes in the far IR range.

  10. Correlations between structure, spectra, and thermodynamics in solutions of cobalt chloride in sodium tetrachloroaluminates

    SciTech Connect

    Newman, D.S.; Tumidajski, P.J.; Blander, M.

    1990-01-01

    An EMF technique using the cell Co/CoCl{sub 2} {minus} Na AlCl{sub 4}//(AgCl)x {minus} NaAlCl{sub 4} (x fixed)/Ag was used to measure the solubility of CoCl{sub 2} in NaCl{center dot}AlCl{sub 3} melts. The changes in EMF as a function of changes in melt composition were correlated with changes in the UV-Vis spectra of the dissolved cobalt species. From these data the microscopic structural contributions to the macroscopic thermodynamic properties of the solutions were estimated. 14 refs., 5 figs., 1 tab.

  11. Application of unsymmetrical indirect covariance NMR methods to the computation of the (13)C <--> (15)N HSQC-IMPEACH and (13)C <--> (15)N HMBC-IMPEACH correlation spectra.

    PubMed

    Martin, Gary E; Hilton, Bruce D; Irish, Patrick A; Blinov, Kirill A; Williams, Antony J

    2007-10-01

    Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra. We recently reported the use of unsymmetrical indirect covariance processing to combine (1)H--(13)C GHSQC and (1)H--(15)N GHMBC long-range spectra to yield a (13)C--(15)N HSQC-HMBC chemical shift correlation spectrum that could not be acquired in a reasonable period of time without resorting to (15)N-labeled molecules. We now report the unsymmetrical indirect covariance processing of (1)H--(13)C GHMBC and (1)H--(15)N IMPEACH spectra to afford a (13)C--(15)N HMBC-IMPEACH spectrum that has the potential to span as many as six to eight bonds. Correlations for carbon resonances long-range coupled to a protonated carbon in the (1)H--(13)C HMBC spectrum are transferred via the long-range (1)H--(15)N coupling pathway in the (1)H--(15)N IMPEACH spectrum to afford a much broader range of correlation possibilities in the (13)C--(15)N HMBC-IMPEACH correlation spectrum. The indole alkaloid vincamine is used as a model compound to illustrate the application of the method. PMID:17729230

  12. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    NASA Technical Reports Server (NTRS)

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    A major goal of airborne imaging spectrometry is to estimate the biochemical composition of vegetation canopies from reflectance spectra. Remotely-sensed estimates of foliar biochemical concentrations of forests would provide valuable indicators of ecosystem function at regional and eventually global scales. Empirical research has shown a relationship exists between the amount of radiation reflected from absorption features and the concentration of given biochemicals in leaves and canopies (Matson et al., 1994, Johnson et al., 1994). A technique commonly used to determine which wavelengths have the strongest correlation with the biochemical of interest is unguided (stepwise) multiple regression. Wavelengths are entered into a multivariate regression equation, in their order of importance, each contributing to the reduction of the variance in the measured biochemical concentration. A significant problem with the use of stepwise regression for determining the correlation between biochemical concentration and spectra is that of 'overfitting' as there are significantly more wavebands than biochemical measurements. This could result in the selection of wavebands which may be more accurately attributable to noise or canopy effects. In addition, there is a real problem of collinearity in that the individual biochemical concentrations may covary. A strong correlation between the reflectance at a given wavelength and the concentration of a biochemical of interest, therefore, may be due to the effect of another biochemical which is closely related. Furthermore, it is not always possible to account for potentially suitable waveband omissions in the stepwise selection procedure. This concern about the suitability of stepwise regression has been identified and acknowledged in a number of recent studies (Wessman et al., 1988, Curran, 1989, Curran et al., 1992, Peterson and Hubbard, 1992, Martine and Aber, 1994, Kupiec, 1994). These studies have pointed to the lack of a physical

  13. Threshold photoelectron spectroscopy of the methyl radical isotopomers, CH3, CH2D, CHD2 and CD3: synergy between VUV synchrotron radiation experiments and explicitly correlated coupled cluster calculations.

    PubMed

    Cunha de Miranda, Bárbara K; Alcaraz, Christian; Elhanine, Mohamed; Noller, Bastian; Hemberger, Patrick; Fischer, Ingo; Garcia, Gustavo A; Soldi-Lose, Héloïse; Gans, Bérenger; Mendes, Luiz A Vieira; Boyé-Péronne, Séverine; Douin, Stéphane; Zabka, Jan; Botschwina, Peter

    2010-04-15

    Threshold photoelectron spectra (TPES) of the isotopomers of the methyl radical (CH(3), CH(2)D, CHD(2), and CD(3)) have been recorded in the 9.5-10.5 eV VUV photon energy range using third generation synchrotron radiation to investigate the vibrational spectroscopy of the corresponding cations at a 7-11 meV resolution. A threshold photoelectron-photoion coincidence (TPEPICO) spectrometer based on velocity map imaging and Wiley-McLaren time-of-flight has been used to simultaneously record the TPES of several radical species produced in a Ar-seeded beam by dc flash-pyrolysis of nitromethane (CH(x)D(y)NO(2), x + y = 3). Vibrational bands belonging to the symmetric stretching and out-of-plane bending modes have been observed and P, Q, and R branches have been identified in the analysis of the rotational profiles. Vibrational configuration interaction (VCI), in conjunction with near-equilibrium potential energy surfaces calculated by the explicitly correlated coupled cluster method CCSD(T*)-F12a, is used to calculate vibrational frequencies for the four radical isotopomers and the corresponding cations. Agreement with data from high-resolution IR spectroscopy is very good and a large number of predictions is made. In particular, the calculated wavenumbers for the out-of-plane bending vibrations, nu(2)(CH(3)(+)) = 1404 cm(-1), nu(4)(CH(2)D(+)) = 1308 cm(-1), nu(4)(CHD(2)(+)) = 1205 cm(-1), and nu(2)(CD(3)(+)) = 1090 cm(-1), should be accurate to ca. 2 cm(-1). Additionally, computed Franck-Condon factors are used to estimate the importance of autoionization relative to direct ionization. The chosen models globally account for the observed transitions, but in contrast to PES spectroscopy, evidence for rotational and vibrational autoionization is found. It is shown that state-selected methyl cations can be produced by TPEPICO spectroscopy for ion-molecule reaction studies, which are very important for the understanding of the planetary ionosphere chemistry. PMID:20218643

  14. Spectra and correlations in the solar wind from Voyager 2 around 5 AU

    NASA Astrophysics Data System (ADS)

    Gallana, Luca; Fraternale, Federico; Iovieno, Michele; Magli, Enrico; Fosson, Sophie; Opher, Merav; Richardson, John; Tordella, Daniela

    2014-11-01

    Solar wind spectra deduced from the data recorded by the Voyager 2 mission during 1979 at about 5 astronomical units from the sun are considered. The data are time series which contain voids that typically become larger and irregularly sparse as the craft moves away from the sun (45% missing data in 1979). By extracting complete subsets and filling gaps with different techniques (polynomial interpolation, Rybicki (AJ 1992) and compressed sensing (e.g. Candes et al. CPAM 2006) reconstruction methods, global DFT for irregularly spaced data) we obtain velocity and magnetic field fluctuations between 10-5 and 10-2 Hz in the MHD inertial range of solar wind. Spectra of all variables show a power law scaling with exponents in between -1.5 and -1.8. PDFs and correlations indicate that the flow has a significant intermittency. The reliability of the reconstruction methods used is analyzed by introducing the same sequence of gaps observed in the Voyager data into a reference dataset extracted from direct numerical simulations of incompressible Navier-Stokes turbulence as well as from synthetic turbulence, and then by comparing the statistics obtained with those of the complete reference dataset.

  15. Separation of overlapping vibrational peaks in terahertz spectra using two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Otani, Chiko

    2014-07-01

    In this study, the terahertz (THz) absorption spectra of poly(3-hydroxybutyrate) (PHB) were measured during isothermal crystallization at 90-120 °C. The temporal changes in the absorption spectra were analyzed using two-dimensional correlation spectroscopy (2DCOS). In the asynchronous plot, cross peaks were observed around 2.4 THz, suggesting that two vibrational modes overlap in the raw spectrum. By comparing this to the peak at 2.9 THz corresponding to the stretching mode of the helical structure of PHB and the assignment obtained using polarization spectroscopy, we concluded that the high-frequency band could be attributed to the vibration of the helical structure and the low-frequency band to the vibration between the helical structures. The exact frequencies of the overlapping vibrational bands and their assignments provide a new means to inspect the thermal behavior of the intermolecular vibrational modes. The large red-shift of the interhelix vibrational mode suggests a large anharmonicity in the vibrational potential.

  16. Some air electricity phenomena caused by waterfalls: Correlative study of the spectra

    NASA Astrophysics Data System (ADS)

    Luts, Aare; Parts, Tiia-Ene; Laakso, Lauri; Hirsikko, Anne; Grönholm, Tiia; Kulmala, Markku

    2009-02-01

    According to our previous measurements, waterfalls permanently modify air ion spectra. In this paper we performed a correlative study of these results and proposed some pathways which can produce the observed waterfall ions. The small ion composition near waterfalls should be different from that further away due to gaseous OH - core (water shell) clusters. We assumed that the combination of factors (autoionization, fluctuating charge rearrangement, surface protrusions, collisions, Coulomb explosion) serves as the main source of observed intermediate ions, and an extra source for large ions. Evaporation of droplets produces nearly equal numbers of positive and negative intermediate and large ions. Waterfall-produced intermediate ions can attach to the waterfall-produced larger particles, which creates an additional link between the waterfall intermediate and large ions.

  17. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    PubMed Central

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-01-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here. PMID:24671105

  18. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  19. Differentiation between used motor oils on the basis of their IR spectra with application of the correlation method.

    PubMed

    Zieba-Palus, J; Kościelniak, P; Lacki, M

    2001-10-15

    Two brands of motor oils (Elf and Castrol) that had been used for various periods of time were examined. The aim was to differentiate these samples (of varying degree of use) on the basis of their infrared spectra, for criminalistic purposes. The correlation method was used. It was found that the FTIR method is capable of providing sufficiently detailed information if some specific fragments of spectra are examined. Hence, it can be concluded that the investigation procedure proposed is adequate. PMID:11587863

  20. Linking of EEM spectra with FTICRMS data via van Krevelen diagrams and rank correlation

    NASA Astrophysics Data System (ADS)

    Herzsprung, Peter; von Tümpling, Wolf; Hertkorn, Norbert; Harir, Mourad; Bravidor, Jenny; Büttner, Olaf; Friese, Kurt; Schmitt-Kopplin, Philippe

    2014-05-01

    DOM plays an important role in both natural and engineered water systems. Due to its sensitivity and non-destruction of samples EEM is widespread used for comprehension of CDOM. EEM provides sensitive bulk optical parameters with low structural resolution concerning DOM quality even when spectra are modelled by PARAFAC or EEM is coupled to chromatography. Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) is a high-resolution analytical tool to determine the elemental compositions of thousands of DOM components directly out of mixtures. Lacking the ability for identification of distinct chemical substances (isomers), the elemental compositions can nevertheless be allocated to biogeochemical pools by means of van Krevelen diagrams. The spearman rank correlation was applied to link the EEM intensities (humic like fluorescence) with exact molecular formulas and their corresponding relative mass peak abundances. The initiative for this study to find out what is humic like fluorescence was the environmental problem of increasing levels of organic carbon in fresh waters as a great challenge for processing and commercial supply of drinking water. In the southern Saxony region, Germany, raw drinking water is mainly received from reservoirs situated in the ore mountains (Erzgebirge). Most of these reservoirs are affected by high concentrations of humic substances detected by the drinking water administration via measurement of the dissolved organic carbon (DOC) and the spectral absorption coefficient at 254 nm (SAC254). To get a better insight into the DOM composition, the seasonal variability of DOM quality was determined using EEM and FTICRMS and coupling these two methods in the catchment area of the reservoir Muldenberg. Thereby, humic-like fluorescence could be allocated to the pool of oxygen-rich and relatively unsaturated components with stoichiometries similar to those of tannic acids [1]. [1] Herzsprung, P., von Tümpling, W., Hertkorn, N., Harir

  1. AVIRIS spectra correlated with the chlorophyll concentration of a forest canopy

    NASA Technical Reports Server (NTRS)

    Kupiec, John; Smith, Geoffrey M.; Curran, Paul J.

    1993-01-01

    Imaging spectrometers have many potential applications in the environmental sciences. One of the more promising applications is that of estimating the biochemical concentrations of key foliar biochemicals in forest canopies. These estimates are based on spectroscopic theory developed in agriculture and could be used to provide the spatial inputs necessary for the modeling of forest ecosystem dynamics and productivity. Several foliar biochemicals are currently under investigation ranging from those with primary absorption features in visible to middle infrared wavelengths (e.g., water, chlorophyll) to those with secondary to tertiary absorption features in this part of the spectrum (e.g., nitrogen, lignin). The foliar chemical of interest in this paper is chlorophyll; this is a photoreceptor and catalyst for the conversion of sunlight into chemical energy and as such plays a vital role in the photochemical synthesis of carbohydrates in plants. The aim of the research reported here was to determine if the chlorophyll concentration of a forest canopy could be correlated with the reflectance spectra recorded by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

  2. Cloud Turbulence Correlation Functions and Power Spectra Measured using a Gyroklystron-Powered 94 GHz Radar

    NASA Astrophysics Data System (ADS)

    Fliflet, Arne; Manheimer, Wallace; Linde, George; Cheung, Winjoy; Ngo, Mai; Gregershansen, Vilhelm; Danly, Bruce; St. Germain, Karen

    2003-10-01

    The Naval Research Laboratory (NRL) has recently developed a high power 94 GHz radar called WARLOC. This radar has unique advantages for cloud research stemming from the fact that the return from clouds scales inversely as the fourth power of the wavelength. Clouds are largely invisible to conventional radars and opaque to lidars, whereas millimeter-wave radars produce strong signals from cloud water droplets. Thus W-Band radars can be used to sense the internal structure of clouds. The WARLOC transmitter has about three orders-of-magnitude more average power than the W-Band radars used in previous cloud studies and greatly improved resolution and scanning capability. Here we report initial results on cloud studies. The new capabilities of WARLOC have allowed us to produce high-resolution images of the internal structure of clouds. Regions many square kilometers in area can be scanned with 15 m resolution in about a minute even through intervening cloud layers. The scanned cloud reflectivity yields two-dimensional cloud turbulence correlation functions and power spectra directly from spatial measurements for the first time, and with higher resolution than previously possible. We find that in the inertial range, the Kolmogorov spectral index (-5/3) agrees reasonably well with the data, but the assumption of isotropy does not. Interestingly, in two clouds studied, at longer scale lengths, the fluctuations appear to be wavelike in the vertical direction, but not in the horizontal direction.

  3. Correlations between X-ray Spectra and kHz QPOS in Sco X-1

    NASA Astrophysics Data System (ADS)

    Bradshaw, Charles F.; Titarchuk, Lev; Kuznetsov, Sergey

    2008-05-01

    Recent analysis of the RXTE X-ray spectra of Sco X-1 discovered that Sco X-1 can be adequately modeled by a simple two-component model of Compton up-scattering with a soft photon electron temperature of about 0.4 keV, plus an Iron K-line. The results show a strong correlation between spectral power law index and kHz QPOs. Sco X-1 is the prototypical Z-source low-mass X-ray binary (LMXB) system radiating near the Eddington limit. This radiation produces a high radiation pressure in its Compton cloud. We infer that the radiation pressure produces a geometrical configuration of the cloud that is quasi-spherical. We conclude that the high Thomson optical depth of the Compton cloud, in the range of 5-6 from the best-fit model parameters, is consistent with the neutron star's surface being obscured by material, which would likely suppress a spin frequency of Sco X-1 due to photon scattering off cloud electrons. We also demonstrate the evolution of its power spectrum when Sco X-1 transitions from the horizontal branch to the normal branch.

  4. Effect of gamma-ray burst (GRB) spectra on the empirical luminosity correlations and the GRB Hubble diagram

    NASA Astrophysics Data System (ADS)

    Lin, Hai-Nan; Li, Xin; Chang, Zhe

    2016-07-01

    The spectra of gamma-ray bursts (GRBs) in a wide energy range can usually be well described by the Band function, which is a two smoothly jointed power laws cutting at a breaking energy. Below the breaking energy, the Band function reduces to a cut-off power law, while above the breaking energy it is a simple power law. However, for some detectors [such as the Swift-Burst Alert Telescope (BAT)] whose working energy is well below or just near the breaking energy, the observed spectra can be fitted to cut-off power law with enough precision. Besides, since the energy band of Swift-BAT is very narrow, the spectra of most GRBs can be fitted well even using a simple power law. In this paper, with the most up-to-date sample of Swift-BAT GRBs, we study the effect of different spectral models on the empirical luminosity correlations, and further investigate the effect on the reconstruction of GRB Hubble diagram. We mainly focus on two luminosity correlations, i.e. the Amati relation and Yonetoku relation. We calculate these two luminosity correlations in both cases that the GRB spectra are modelled by Band function and cut-off power law. It is found that both luminosity correlations only moderately depend on the choice of GRB spectra. Monte Carlo simulations show that Amati relation is insensitive to the high-energy power-law index of the Band function. As a result, the GRB Hubble diagram calibrated using luminosity correlations is almost independent on the GRB spectra.

  5. A multifunctional automated system of 2D laser polarimetry of biological tissues

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Radchenko, Kostiantyn O.

    2014-09-01

    Multifunctional automated system of 2D laser polarimetry of biological tissues with enhanced functional capabilities is proposed. Two-layer optically thin (attenuation coefficient τ <= 0,1 ) biological structures, formed by "muscle tissue (MT) - the dermis of the skin (DS)" histological cryosections for the two physiological states (normal - dystrophy) were investigated. Complex of objective indexes which characterized by 2D polarization reproduced distributions under the following criteria: histograms of the distributions; statistical moments of the 1st - 4th order; autocorrelation functions; correlation moments; power spectra logarithmic dependencies of the distributions; fractal dimensions of the distributions; spectra moments are presented.

  6. Shot noise cross-correlation functions and cross spectra - Implications for models of QPO X-ray sources

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Elsner, R. F.; Bussard, R. W.; Ebisuzaki, T.; Weisskopf, M. C.

    1988-01-01

    The cross-correlation functions (CCFs) and cross spectra expected for quasi-periodic oscillation (QPO) shot noise models are calculated under various assumptions, and the results are compared to observations. Effects due to possible coherence of the QPO oscillations are included. General formulas for the cross spectrum, the cross-phase spectrum, and the time-delay spectrum for QPO shot models are calculated and discussed. It is shown that the CCFs, cross spectra, and power spectra observed for Cyg X-e2 imply that the spectrum of the shots evolves with time, with important implications for the interpretation of these functions as well as of observed average energy spectra. The possible origins for the observed hard lags are discussed, and some physical difficulties for the Comptonization model are described. Classes of physical models for QPO sources are briefly addressed, and it is concluded that models involving shot formation at the surface of neutron stars are favored by observation.

  7. Prediction of RVA Curves from Vibrational Spectra of Flours Using PLS2 Correlation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to predict viscoelastic properties from vibrational spectra of grain flours has been investigated. Both dispersive near-infrared (NIR) and NIR Fourier-transform Raman (NIR/FT-Raman) spectra were used to generate two-dimensional matrix maps versus Rapid Visco Analyzer (RVA) generated vis...

  8. The multiplicity and the spectra of secondaries correlated with the leading particle energy

    NASA Technical Reports Server (NTRS)

    Kruglov, N. A.; Proskuryakov, A. S.; Sarycheva, L. I.; Smirnova, L. N.

    1985-01-01

    The spectra of leading particles of different nature in pp-collisions at E sub 0 = 33 GeV are obtained. The multiplicities and the spectra of secondaries, mesons, gamma-quanta, lambda and lambda-hyperons and protons for different leading particle energy ranges are determined.

  9. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.

    PubMed

    Giraudeau, Patrick; Frydman, Lucio

    2014-01-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342

  10. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  11. TODCOR: A New Two-Dimensional Correlation Technique to Analyze Stellar Spectra in Search for Faint Companions

    NASA Astrophysics Data System (ADS)

    Mazeh, T.; Zucker, S.; Smith, H.

    1993-12-01

    TODCOR is a new TwO-Dimensional CORrelation technique to measure radial velocities of two components of a spectroscopic binary (Zucker and Mazeh 1993, ApJ, in press). Assuming the spectra of the two components are known, the technique correlates an observed binary spectrum against a combination of the two spectra with different shifts. TODCOR measures simultaneously the radial velocities of the two stars by finding the maximum correlation. A few real single-line spectroscopic binaries already have been turned into double-line systems with TODCOR, demonstrating the power of the technique. One of the advantages of TODCOR is its ability to detect a very faint companion in a combined spectrum, and to measure its radial velocity. We present numerical tests in which we applied TODCOR to simulated spectra which were prepared as combinations of two observed infrared spectra with various luminosity ratios, together with random noise. These tests show that TODCOR can detect in principle a very faint secondary spectrum and measure correctly its velocity, provided the combined spectrum has adequate spectral coverage and S/N. Measuring the radial velocity of the faint secondary will enable us to estimate its mass, making the technique a very useful tool in the search for brown dwarfs and giant planets around nearby stars.

  12. Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses.

    PubMed

    Chapman, K E; Thomas, A D; Wills, J W; Pfuhler, S; Doak, S H; Jenkins, G J S

    2014-05-01

    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay's fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in vivo

  13. Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses

    PubMed Central

    Chapman, K. E.; Thomas, A. D.; Jenkins, G. J. S.

    2014-01-01

    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay’s fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in

  14. Feasibility and correlation of standard 2D speckle tracking echocardiography and automated function imaging derived parameters of left ventricular function during dobutamine stress test.

    PubMed

    Wierzbowska-Drabik, Karina; Hamala, Piotr; Roszczyk, Nikolina; Lipiec, Piotr; Plewka, Michał; Kręcki, Radosław; Kasprzak, Jarosław Damian

    2014-04-01

    Speckle tracking echocardiography (STE) is a method of quantitative assessment of myocardial function complementary to ejection fraction and visual evaluation. Standard STE analysis, demands manual tracing of the myocardium whereas automated function imaging (AFI) offers more convenient (based on selection of three points) assessment of longitudinal strain. Nevertheless, feasibility and correlation between both methods were not thoroughly examined, especially during tachycardia at peak stage of dobutamine stress echocardiography (DSE). We performed DSE in 238 patients (pts) with recording of apical views during baseline (0) and peak (1) DSE and analyzed them by STE and AFI. According to angiography, 127/238 pts had significant (≥70%) lesions in coronary arteries. We assessed correlations between STE and AFI derived peak systolic longitudinal strain values for global and regional parameters, feasibility, time of analysis and interobserver agreement. Global systolic longitudinal strain measured during baseline and peak stage of DSE by AFI showed very good correlation with standard STE parameters, with correlation coefficients r = 0.90 and r = 0.86 respectively (p < 0.0001). For regional parameters correlation coefficients ranged from 0.83 to 0.85 for baseline and from 0.70 to 0.79 for peak DSE. Both methods provided good and similar feasibility with only 1% segments excluded from analysis at peak stage of DSE with shorter time and lower coefficient of variance offered by AFI. Global and regional longitudinal strain achieved by faster and less operator-dependent AFI method correlate well with standard more time-consuming STE analysis during baseline and peak stage of DSE. PMID:24522406

  15. Correlation of CpG Island Methylation of the Cytochrome P450 2E1/2D6 Genes with Liver Injury Induced by Anti-Tuberculosis Drugs: A Nested Case-Control Study

    PubMed Central

    Zhang, Jinling; Zhu, Xuebin; Li, Yuhong; Zhu, Lingyan; Li, Shiming; Zheng, Guoying; Ren, Qi; Xiao, Yonghong; Feng, Fumin

    2016-01-01

    This study investigated the role of CpG island methylation of the CYP2E1 and CYP2D6 genes in liver injury induced by anti-TB drugs from an epigenetic perspective in a Chinese cohort. A 1:1 matched nested case-control study design was applied. Pulmonary tuberculosis (TB) patients, who underwent standard anti-TB therapy and developed liver injury were defined as cases, while those who did not develop liver injury were defined as control. The two groups were matched in terms of sex, treatment regimen, and age. In 114 pairs of cases, CpG island methylation levels of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of anti-TB drug-induced liver injury (ADLI), with odds ratio (OR) values of 2.429 and 3.500, respectively (p < 0.01). Moreover, through multivariate logistic regression analysis, CpG island methylation of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of ADLI, with adjusted OR values of 4.390 (95% confidence interval (CI): 1.982–9.724) and 9.193 (95% CI: 3.624–25.888), respectively (p < 0.001). These results suggest that aberrantly elevated methylation of CpG islands of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA may increase the risk of ADLI in Chinese TB patients. PMID:27490558

  16. Correlation of CpG Island Methylation of the Cytochrome P450 2E1/2D6 Genes with Liver Injury Induced by Anti-Tuberculosis Drugs: A Nested Case-Control Study.

    PubMed

    Zhang, Jinling; Zhu, Xuebin; Li, Yuhong; Zhu, Lingyan; Li, Shiming; Zheng, Guoying; Ren, Qi; Xiao, Yonghong; Feng, Fumin

    2016-01-01

    This study investigated the role of CpG island methylation of the CYP2E1 and CYP2D6 genes in liver injury induced by anti-TB drugs from an epigenetic perspective in a Chinese cohort. A 1:1 matched nested case-control study design was applied. Pulmonary tuberculosis (TB) patients, who underwent standard anti-TB therapy and developed liver injury were defined as cases, while those who did not develop liver injury were defined as control. The two groups were matched in terms of sex, treatment regimen, and age. In 114 pairs of cases, CpG island methylation levels of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of anti-TB drug-induced liver injury (ADLI), with odds ratio (OR) values of 2.429 and 3.500, respectively (p < 0.01). Moreover, through multivariate logistic regression analysis, CpG island methylation of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of ADLI, with adjusted OR values of 4.390 (95% confidence interval (CI): 1.982-9.724) and 9.193 (95% CI: 3.624-25.888), respectively (p < 0.001). These results suggest that aberrantly elevated methylation of CpG islands of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA may increase the risk of ADLI in Chinese TB patients. PMID:27490558

  17. Ride quality judgements as a function of environmental, personality, and ride spectra correlates

    NASA Technical Reports Server (NTRS)

    Coates, G. D.

    1977-01-01

    Personality and demographic correlates, as well as physical correlates, of ride-quality judgements in a field situation namely, in selected passenger-train ride segments, were identified and investigated.

  18. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise.

    PubMed

    Winzenrieth, Renaud; Michelet, Franck; Hans, Didier

    2013-01-01

    The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93 μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488 μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711 ≤ r² ≤ 0.752) and trabecular number (0.584 ≤ r² ≤ 0.648) and negative for trabecular space (-0.407 ≤ r² ≤ -0.491), up to a pixel size of 1023 μm. In addition, TBSμCT values were strongly correlated between each other (0.77 ≤ r² ≤ 0.96). Study results show that the correlations between TBSμCT at 93 μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise. PMID:22749406

  19. Thermal diffusivity of Zn1-xBexSe crystals and it's correlation with electrical conductivity and optical absorption spectra

    NASA Astrophysics Data System (ADS)

    Bodzenta, J.; Firszt, F.; Kaźmierczak-Bałata, A.; Pyka, M.; Szperlich, P.; Szydłowski, M.; Zakrzewski, J.

    2008-01-01

    This article presents results obtained for mixed crystal of Zn{1-x}Be{x}Se. Samples with different Be contents were examined to determine their thermal, optical and electrical properties. The influence of composition of investigated mixed crystals on the value of thermal diffusivity, electrical resistivity and energy gap was checked. An interesting problem is a correlation between thermal properties and other physical parameters. In this work possible correlations between the thermal diffusivity and either the optical band gap determined from photothermal spectra or electrical conductivity are studied. The current investigation is a part of research projects: BK-269/RMF-1/2006 and 1 P03B 092 27.

  20. Two-electron ionization in strong laser fields below intensity threshold: Signatures of attosecond timing in correlated spectra

    NASA Astrophysics Data System (ADS)

    Bondar, Denys I.; Liu, Wing-Ki; Ivanov, Misha Yu.

    2009-02-01

    We develop an analytical model of correlated two-electron ionization in strong infrared laser fields. The model includes all relevant interactions between the electrons, the laser field, and the ionic core nonperturbatively. We focus on the deeply quantum regime, where the energy of the active electron driven by the laser field is insufficient to collisionally ionize the parent ion, and the assistance of the laser field is required to create a doubly charged ion. In this regime, the electron-electron and the electron-ion interactions leave distinct footprints in the correlated two-electron spectra, recording the mutual dynamics of the escaping electrons.

  1. Correlation between electron spin resonance spectra and oil yield in eastern oil shales

    USGS Publications Warehouse

    Choudhury, M.; Rheams, K.F.; Harrell, J.W., Jr.

    1986-01-01

    Organic free radical spin concentrations were measured in 60 raw oil shale samples from north Alabama and south Tennessee and compared with Fischer assays and uranium concentrations. No correlation was found between spin concentration and oil yield for the complete set of samples. However, for a 13 sample set taken from a single core hole, a linear correlation was obtained. No correlation between spin concentration and uranium concentration was found. ?? 1986.

  2. Aniso2D

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  3. Identification of histidine tautomers in proteins by 2D 1H/13C(delta2) one-bond correlated NMR.

    PubMed

    Sudmeier, James L; Bradshaw, Elizabeth M; Haddad, Kristin E Coffman; Day, Regina M; Thalhauser, Craig J; Bullock, Peter A; Bachovchin, William W

    2003-07-16

    If the 13Cdelta2 chemical shift of neutral ("high pH") histidine is >122 ppm, primarily Ndelta1-H tautomer (2) is indicated; if it is <122 ppm, primarily Nepsilon2-H tautomer (1) is indicated. His resonances from the catalytic triad of active serine proteases, for example, are readily distinguished from those of denatured enzyme. The 13Cdelta2 chemical shifts increased by 6.2 ppm for the catalytic histidines in both alpha-lytic protease and subtilisin BPN' in raising the pH from that of imidazolium cation to that of tautomer 2. This tautomer identification method is easy to implement, requiring only bioincorporation of [U-13C] (or the more readily available [U-13C,15N])-histidine. Standard 1H/13C correlation HMQC or HSQC NMR pulse programs then yield the 13Cdelta2 chemical shifts with the benefit of high 1H sensitivity. Because of large one-bond spin-couplings (1JCH approximately 200 Hz), the method should extend to proteins having large 1H and 13C line widths, including very high molecular weights. PMID:12848537

  4. A rapid-pressure correlation representation consistent with the Taylor-Proudman theorem materially-frame-indifferent in the 2D limit

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.; Lumley, J. L.; Abid, R.

    1994-01-01

    A nonlinear representation for the rapid-pressure correlation appearing in the Reynolds stress equations, consistent with the Taylor-Proudman theorem, is presented. The representation insures that the modeled second-order equations are frame-invariant with respect to rotation when the flow is two-dimensional in planes perpendicular to the axis of rotation. The representation satisfies realizability in a new way: a special ansatz is used to obtain analytically, the values of coefficients valid away from the realizability limit: the model coefficients are functions of the state of the turbulence that are valid for all states of the mechanical turbulence attaining their constant limiting values only when the limit state is achieved. Utilization of all the mathematical constraints are not enough to specify all the coefficients in the model. The unspecified coefficients appear as free parameters which are used to insure that the representation is asymptotically consistent with the known equilibrium states of a homogeneous sheared turbulence. This is done by insuring that the modeled evolution equations have the same fixed points as those obtained from computer and laboratory experiments for the homogeneous shear. Results of computations of the homogeneous shear, with and without rotation, and with stabilizing and destabilizing curvature, are shown. Results are consistently better, in a wide class of flows which the model not been calibrated, than those obtained with other nonlinear models.

  5. Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation.

    PubMed

    Palummo, Maurizia; Hogan, Conor; Sottile, Francesco; Bagalá, Paolo; Rubio, Angel

    2009-08-28

    We present a theoretical investigation of electronic and optical properties of free-base porphyrins based on density functional theory and many-body perturbation theory. The electronic levels of free-base porphine (H(2)P) and its phenyl derivative, free-base tetraphenylporphyrin (H(2)TPP) are calculated using the ab initio GW approximation for the self-energy. The approach is found to yield results that compare favorably with the available photoemission spectra. The excitonic nature of the optical peaks is revealed by solving the Bethe-Salpeter equation, which provides an accurate description of the experimental absorption spectra. The lowest triplet transition energies are in good agreement with the measured values. PMID:19725603

  6. OSO-8 X-ray spectra of clusters of galaxies. 1. Observations of twenty clusters: Physical correlations

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Serlemitsos, P. J.; Smith, B. W.; Boldt, E. A.; Holt, S. S.

    1978-01-01

    OSO-8 X-ray spectra from 2 to 20 keV were analyzed for 26 clusters of galaxies. Temperature, emission integrals, iron abundances, and low energy absorption measurements are given. Eight clusters have positive iron emission line detections at the 90% confidence level, and all twenty cluster spectra are consistent with Fe/H=0.000014 by number with the possible exception of Virgo. Physical correlations between X-ray spectral parameters and other cluster properties are examined. It is found that: (1) the X-ray temperature is approximately proportional to the square of the velocity dispersion of the galaxies; (2) the emission integral and therefore the bolometric X-ray luminosity is a strong function of the X-ray temperature; (3) the X-ray temperature and emission integral are better correlated with cluster central galaxy density than with richness; (4) temperature and emission integral are separately correlated with Rood-Sastry type; and (5) the fraction of galaxies which are spirals is correlated with the observed ram pressure in the cluster core.

  7. Design procedures for Strain Hardening Cement Composites (SHCC) and measurement of their shear properties by mechanical and 2-D Digital Image Correlation (DIC) method

    NASA Astrophysics Data System (ADS)

    Aswani, Karan

    The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.

  8. Equation of state of strongly interacting matter: spectra for thermal particles and intensity correlation of thermal photons

    NASA Astrophysics Data System (ADS)

    De, Somnath; Srivastava, Dinesh K.; Chatterjee, Rupa

    2010-11-01

    We find that an equation of state for hot hadronic matter consisting of all baryons having M < 2 GeV and all mesons having M < 1.5 GeV, along with Hagedorn resonances in thermal and chemical equilibrium, matches rather smoothly with the lattice equation of state (p4 action, Nτ = 8) for T up to ≈200 MeV, when corrected for the finite volume of hadrons. Next we construct two equations of state for strongly interacting matter; one, HHL, in which the above is matched to the lattice equation of state at T = 165 MeV and the other, HHB, where we match it to a bag model equation of state with critical temperature Tc = 165 MeV. We compare particle spectra, thermal photon spectra and histories of evolution of the quark-gluon plasma produced in the central collision of gold (lead) nuclei at RHIC (LHC) energies, considering ideal hydrodynamical expansion of the system. The particle and thermal photon spectra are seen to differ only marginally for the two equations of state. The history of evolution shows differences in the evolution of temperature and radial velocity, as one might expect. We calculate intensity interferometry of thermal photons and find it to be quite distinct for the two equations of state, especially for the outward correlation. The longitudinal correlation also shows a dependence on the equation of state, though, to a smaller extent.

  9. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    SciTech Connect

    Lyakin, D V; Ryabukho, V P

    2013-10-31

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  10. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  11. Mesh2d

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  12. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  13. Nonsequential Double Ionization of Atoms in Strong Laser Field: Identifying the Mechanisms behind the Correlated-Electron Momentum Spectra

    NASA Astrophysics Data System (ADS)

    Ye, Difa; Fu, Libin; Liu, Jie

    Within the strong-field physics community, there has been increasing interest on nonsequential double ionization (NSDI) induced by electron-electron (e-e) correlation. A large variety of novel phenomena has been revealed in experiments during the past decades. However, the theoretical understanding and interpretation of this process is still far from being complete. The most accurate simulation, i.e. the exact solution of the time-dependent Schrödinger equation (TDSE) for two electrons in a laser field is computationally expensive. In order to overcome the difficulty, we proposed a feasible semiclassical model, in which we treat the tunneling ionization of the outmost electron quantum mechanically according to the ADK theory, sample the inner electron from microcanonical distribution and then evolve the two electrons with Newton's equations. With this model, we have successfully explained various NSDI phenomena, including the excessive DI yield, the energy spectra and angular distribution of photoelectrons. Very recently, it is adopted to reveal the physical mechanisms behind the fingerlike structure in the correlated electron momentum spectra, the unexpected correlation-anticorrelation transition close to the recollision threshold, and the anomalous NSDI of alkaline-earth-metal atoms in circularly polarized field. The obvious advantage of our model is that it gives time-resolved insights into the complex dynamics of NSDI, from the turn-on of the laser field to the final escape of the electrons, thus allowing us to disentangle and thoroughly analyze the underlying physical mechanisms.

  14. Problem of intercollisional correlation in vibration-rotation spectra of molecules

    NASA Astrophysics Data System (ADS)

    Galtsev, A. P.; Kuznetsov, M. N.

    1995-01-01

    The shapes of vibration-rotation bands are studied considering the statistical dependence between the moments of occurring of different collisions (intercollisional correlation). The expression for the shape of spectral lines has been obtained describing the influence of intercollisional correlation on the absorption in the frequency range near the centers of lines. Modeling of the distribution function for the intervals between adjacent collisions has been carried out. Numerical calculations of the absorption coefficient in the vibration-rotation bands of CO and N2O have been performed using the proposed model for the line shape. Comparison between calculated results and available experimental data for the absorption at high pressures shows that the present model can adequately explain molecular absorption in compressed gases.

  15. Searching for Correlations with the HCO+ 4-3 Molecular Spectra of Protostars

    NASA Astrophysics Data System (ADS)

    Acikgoz, Ogulcan; Basturk, Seda

    The assignment is based on HCO+ J=4-3 spectral line molecular observations of protostars from the James Clerk Maxwell Telescope, which has the 15 m diameter dish and located in Mauna Kea, Hawaii, USA. Data of 20 protostars are taken from the public LOMASS database and analyzed. We looked for correlations between a few observational quantities. We thank Dr Umut Yildiz (NASA/JPL-Caltech) for providing data and his comments and support to our research project.

  16. Relativistic correlation effects on the x-ray spectra of Li-like ions

    NASA Astrophysics Data System (ADS)

    Natarajan, L.

    2016-03-01

    The wavelengths and rates of electric dipole transitions between states with n =2 and n =1 of doubly excited Li-like ions have been studied for some selected ions in the range 13 ≤Z ≤54 using fully relativistic multiconfiguration Dirac-Fock wave functions in the active space approximation with the inclusion of finite nuclear size, Breit interaction, self-energy, and vacuum polarization. A detailed discussion on the effects of intercomplex correlation around Z =26 and intracomplex correlation around Z =37 leading to irregularities and sharp discontinuities in the x-ray rates noticed for a few transitions has been provided. An unusually large contribution of Breit interaction has been found for intercomplex correlation in certain cases. The present results are compared with other available experimental and theoretical data. The errors associated with the transitions are highlighted for some experimentally available lines taking into account the uncertainties on the fine-structure energy levels and also on the line strengths.

  17. Structures, energetics and vibrational spectra of (H2O)32 clusters: a journey from model potentials to correlated theory

    NASA Astrophysics Data System (ADS)

    Sahu, Nityananda; Khire, Subodh S.; Gadre, Shridhar R.

    2015-10-01

    Empirical model potentials are found to be very useful for generating most competitive minima of large water clusters, whereas correlated (e.g. second order-Møller-Plesset perturbation (MP2) theory or higher) calculations are necessary for predicting their accurate energetics and vibrational features. The present study reports the structures and energetics of (H2O)32 clusters at MP2 level using aug-cc-pvDZ basis set, starting with low-lying structures generated from model potentials. Such high-end and accurate calculations are made feasible by the cost-effective fragment-based molecular tailoring approach (MTA) in conjunction with the grafting procedure. The latter is found to yield electronic energies with a sub-millihartree accuracy with reference to their full calculation counterparts. The vibrational spectra of nine low-lying (H2O)32 isomers are obtained from the corresponding MTA-based Hessian matrix. All these low-lying isomers show almost similar spectral features, which are in fair agreement with the experiment. The experimental spectrum of (H2O)32 is thus better understood from the vibrational features of this set of very closely spaced isomers. The present case study of (H2O)32 clearly demonstrates the efficacy in obtaining accurate structures, energetics and spectra at correlated level of theory by combining model potential-based structures with fragmentation methods.

  18. Correlation effect investigations on the Magneto-optical Kerr Spectra of Co-based Heusler alloys from first principles

    NASA Astrophysics Data System (ADS)

    Kim, Miyoung; Lim, Hanjo; Lee, Jae Il

    2011-03-01

    Here, we report our ab-initio calculational results on the electronic structures and magneto-optical (MO) properties of the ferromagnetic Co 2 Mn X full Heusler alloys. Employing the +U corrections for the transition metal 3 d bands in addition to the local density approximation (LDA), we investigate the correlation effect on the MO spectra in polar geometry as well as the detailed electronic structures using FLAPW method. Results show that the correlation effect results in a blue-shift of the peak positions and large enhancement of the low energy MO spectra, which are attributed to the increased t 2g - e g splitting of spin minority Co and Mn d - bands indicating the suppression of diagonal elements of optical conductivity at energy region of 1 ~ 2 eV where the interband transitions are forbidden. This work is supported by Korean Research Foundation Grant by MOEHRD (KRF 2007-412-J04001) and also by Basic Science Research Program through the National Research Foundation of Korea (NRF-2010-0005387).

  19. Two-dimensional correlation analysis of near-infrared spectral intensity variations of ground wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Generalized two-dimensional (2D) correlation analysis was applied to characterize the NIR spectral intensity fluctuations among many spectra of ground wheat with multi-variable variations. Prior to 2D analysis, the spectra having neighboring protein / SDSS reference values were averaged and then new...

  20. Interband optical spectra of magnetoexcitons in semiconductor nanorings: Electron-hole spatial correlation

    NASA Astrophysics Data System (ADS)

    Citrin, D. S.; Maslov, A. V.

    2005-08-01

    An analytic model [R. A. Römer and M. E. Raikh, Phys. Rev. B 62, 7045 (2000); K. Moulopoulos and M. Constantinou, Phys. Rev. B 70, 235327 (2004)] for magnetoexcitons in nanoscale semiconductor rings is extended to calculate directly the linear optical properties. The spectroscopic properties exhibit pronounced Φ0=hc/e excitonic Aharonov-Bohm oscillations in the threading magnetic flux Φ when the ring radius R is less than the effective exciton Bohr radius a0 . The electron-hole spatial correlation induced by an optical field as a function of nanoring radius and threading magnetic flux is studied.

  1. Isolation and 2D NMR Studies of Alkaloids from Comptonella sessilifoliola1.

    PubMed

    Pusset, J; Lopez, J L; Pais, M; Neirabeyeh, M A; Veillon, J M

    1991-04-01

    Six known furanoquinoline alkaloids have been isolated from the wood and trunk bark of COMPTONELLA SESSILIFOLIOLA (Guillaumin) Hartley (Rutaceae). 2D NMR experiments gave the assignment of all the signals for both (1)H- and (13)C-NMR spectra. Pteleine and kokusaginine were used as models. The two-dimensional carbon-proton correlation experiments, performed for the first time on furanoquinoline alkaloids, led us to correct (13)C-NMR assignments previously described in the literature. PMID:17226139

  2. Spectra-structure correlations in solid metal saccharinates. II. Ab initio molecular structures and vibrational spectra of N-substituted saccharins at the HF level

    NASA Astrophysics Data System (ADS)

    Naumov, Panče; Jovanovski, Gligor; Ohashi, Yuji

    2002-02-01

    Ground-state ab initio molecular geometries and vibrational spectra of 24 N-substituted isolated saccharins with small-size B, Br, C, Cl, F, N, O, P or S-groups and the parent molecule are predicted at RHF/6-31G level to examine the molecular structural changes stemming from N-substitution of saccharin (o-sulfobenzimide). Trends in the molecular geometrical parameters of the sulfimide ring and the carbonyl stretching frequency are discussed in relation to the electronic properties of the substituent and the solid state effects. The results are compared with the crystallographic data for N-substituted saccharins and metal saccharinato salts/complexes retrieved from the Cambridge Structural Database. The ability of several theoretical methods to describe the substitution/deprotonation of the conjugated CONHSO 2 structure is summarized. Electronic properties of the substituent affect significantly only the immediate CN and SN bonds by as much as ±0.014 Å, while other bonds are relatively less influenced (±0.004 Å). Combined with the effects of the crystal packing and thermal vibrations, they impose flexibility on the intramolecular lengths up to ±0.02 Å. High correlation ( R=0.966) between the theoretical ν(CO) frequencies and CO distances is predictable for both of these parameters, but is lowered notably in the crystal by both vibrational and solid-state circumstances. From the structural viewpoint, the N sac-X bonds (X = B, Br, C, Cl, F, N, O, P, S; sac denotes saccharin) behave similarly to the purely covalent N sac-metal bonds.

  3. Correlation of capacity fading processes and electrochemical impedance spectra in lithium/sulfur cells

    NASA Astrophysics Data System (ADS)

    Risse, Sebastian; Cañas, Natalia A.; Wagner, Norbert; Härk, Eneli; Ballauff, Matthias; Friedrich, K. Andreas

    2016-08-01

    The capacity fading of lithium/sulfur (Li/S) cells is one major challenge that has to be overcome for a successful commercialization of this electrochemical storage system. Therefore it is essential to detect the major fading mechanisms for further improvements of this system. In this work, the processes leading to fading are analyzed in terms of a linear four state model and correlated to the distribution of relaxation times calculated with a modified Levenberg-Marquardt algorithm. Additionally, the Warburg impedance and the solution resistance are also obtained by the same algorithm. The detailed analysis of intermediate states during the first cycle gives the distinction between relaxation processes at the sulfur cathode and at the lithium anode. The influence of the polysulfides on the impedance parameters was evaluated using symmetric cells; this yields a good correlation with the results obtained from the first discharge/charge experiment. A fast and a slow capacity fading process are observed for the charge and the discharge during 50 cycles. The fast fading process can be assigned to Faradaic reactions at the lithium anode.

  4. Quantitative analysis of volatile organic compounds using ion mobility spectra and cascade correlation neural networks

    NASA Technical Reports Server (NTRS)

    Harrington, Peter DEB.; Zheng, Peng

    1995-01-01

    Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.

  5. Correlations and Statistics of the Discrete Spectra of Multielectron Quantum Dots

    NASA Astrophysics Data System (ADS)

    Marcus, Charles M.

    1998-03-01

    This talk concerns the effects of electron-electron interactions on the ground state and excited state spectra of multielectron quantum dots. Recent experiments are described in which linear and nonlinear magnetoconductance measurements of Coulomb blockade peaks in low-temperature regime, kT<Δ << Ec (Δ is the mean level spacing, Ec is the charging energy), are used to ``fingerprint'' individual quantum levels, as ground states as well as excited states. Quantum levels maintain their magnetofingerprint for up to 4 consecutive peaks, moving sequentially from higher excited states to the ground state as electrons are added to the dot.(D.R. Stewart, D.S. Sprinzak, C.M. Marcus, C. I. Duruoz, J.S. Harris, Jr., Science 278), 17 84 (1997). This observation is (perhaps surprisingly) in accordance with a simple single-particle constant-interaction picture of quantum Coulomb blockade transport, except for a notable absence of spin degeneracy in the spectrum. In a related measurement (S. R. Patel, S. M. Cronenwett, D. R. Stewart, A. G. Huibers, C. M. Marcus, C. I. Duruoz, J. S. Harris, K. Campman, A. C. Gossard, "Statistics of Peak Spacing Fluctuations" (preprint) condmat/9708090), the distribution of spacings between Coulomb blockade peaks measured over ~ 10^4 peaks also fails to show spin degeneracy, which would show up as a bimodal spacing distribution. Both experiments suggest that multielectron chaotic or disordered dots show a breaking of spin pairing similar to Hund's rule effects in atoms and few-electron parabolic dots. Related papers can be found at http:// www.stanford.edu/group/MarcusLab/grouppubs.html. Support for the Marcus Group from ARO (DAAH04-95-1-0331), ONR (N00014-94-1-0622) and NSF-NYI and PECASE programs, for the Harris Group (Stanford) from JSEP (DAAH04-94-G-0058), and for the Gossard Group (UCSB) from the AFOSR (F49620-94-1-0158) and QUEST is greatfully acknowledged.

  6. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 1. New concepts and noteworthy developments

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2014-07-01

    A comprehensive survey review of new and noteworthy developments, which are advancing forward the frontiers in the field of 2D correlation spectroscopy during the last four years, is compiled. This review covers books, proceedings, and review articles published on 2D correlation spectroscopy, a number of significant conceptual developments in the field, data pretreatment methods and other pertinent topics, as well as patent and publication trends and citation activities. Developments discussed include projection 2D correlation analysis, concatenated 2D correlation, and correlation under multiple perturbation effects, as well as orthogonal sample design, predicting 2D correlation spectra, manipulating and comparing 2D spectra, correlation strategy based on segmented data blocks, such as moving-window analysis, features like determination of sequential order and enhanced spectral resolution, statistical 2D spectroscopy using covariance and other statistical metrics, hetero-correlation analysis, and sample-sample correlation technique. Data pretreatment operations prior to 2D correlation analysis are discussed, including the correction for physical effects, background and baseline subtraction, selection of reference spectrum, normalization and scaling of data, derivatives spectra and deconvolution technique, and smoothing and noise reduction. Other pertinent topics include chemometrics and statistical considerations, peak position shift phenomena, variable sampling increments, computation and software, display schemes, such as color coded format, slice and power spectra, tabulation, and other schemes.

  7. Localized Gravity/Topography Admittance and Correlation Spectra on Mars: Implications for Regional and Global Evolution

    NASA Technical Reports Server (NTRS)

    McGovern, Patrick J.; Solomon, Sean C.; Smith, David E.; Zuber, Maria T.; Simons, Mark; Wieczorek, Mark A.; Phillips, Roger J.; Neumann, Gregory A.; Aharonson, Oded; Head, James W.

    2002-01-01

    [i] From gravity and topography data collected by the Mars Global Surveyor spacecraft we calculate gravity/topography admittances and correlations in the spectral domain and compare them to those predicted from models of lithospheric flexure. On the basis of these comparisons we estimate the thickness of the Martian elastic lithosphere (T(sub e)) required to support the observed topographic load since the time of loading. We convert T(sub e) to estimates of heat flux and thermal gradient in the lithosphere through a consideration of the response of an elastic/plastic shell. In regions of high topography on Mars (e.g., the Tharsis rise and associated shield volcanoes), the mass-sheet (small-amplitude) approximation for the calculation of gravity from topography is inadequate. A correction that accounts for finite-amplitude topography tends to increase the amplitude of the predicted gravity signal at spacecraft altitudes. Proper implementation of this correction requires the use of radii from the center of mass (collectively known as the planetary shape ) in lieu of topography referenced to a gravitational equipotential. Anomalously dense surface layers or buried excess masses are not required to explain the observed admittances for the Tharsis Montes or Olympus Mons volcanoes when this correction is applied. Derived T, values generally decrease with increasing age of the lithospheric load, in a manner consistent with a rapid decline of mantle heat flux during the Noachian and more modest rates of decline during subsequent epochs.

  8. Excitation spectra and correlation functions of quantum Su-Schrieffer-Heeger models

    NASA Astrophysics Data System (ADS)

    Weber, Manuel; Assaad, Fakher F.; Hohenadler, Martin

    2015-06-01

    We study one-dimensional Su-Schrieffer-Heeger (SSH) models with quantum phonons using a continuous-time quantum Monte Carlo method. Within statistical errors, we obtain identical results for the SSH model with acoustic phonons, and a related model with a coupling to an optical bond phonon mode. Based on this agreement, we first study the Peierls metal-insulator transition of the spinless SSH model, and relate it to the Kosterlitz-Thouless transition of a spinless Luttinger liquid. In the Peierls phase, the spectral functions reveal the single-particle and charge gap, and a central peak related to long-range order. For the spinful SSH model, which has a dimerized ground state for any nonzero coupling, we reveal a symmetry-related degeneracy of spin and charge excitations, and the expected spin and charge gaps as well as a central peak. Finally, we study the SSH-U V model with electron-phonon and electron-electron interaction. We observe a Mott phase with critical spin and bond correlations at weak electron-phonon coupling, and a Peierls phase with gapped spin excitations at strong coupling. We relate our findings to the extended Hubbard model, and discuss the physical origin of the agreement between optical and acoustic phonons.

  9. Space-Time Correlations and Spectra of Wall Pressure in a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Willmarth, W. W.

    1959-01-01

    Measurements of the statistical properties of the fluctuating wall pressure produced by a subsonic turbulent boundary layer are described. The measurements provide additional information about the structure of the turbulent boundary layer; they are applicable to the problems of boundary-layer induced noise inside an airplane fuselage and to the generation of waves-on water. The spectrum of the wall pressure is presented in dimensionless form. The ratio of the root-mean-square wall pressure to the free-stream dynamic pressure is found to be a constant square root of bar P(sup 2)/q(sub infinity) = 0.006 independent of Mach number and Reynolds number. In addition, space- time correlation measurements in the stream direction show that pressure fluctuations whose scale is greater than or equal to 0.3 times the boundary-layer thickness are convected with the convection speed U(sub c) = 0.82U(sub infinity) where U(infinity) is the free-stream velocity and have lost their identity in a distance approximately equal to 10 boundary-layer thicknesses.

  10. Using NPOL (the NASA S-band polarimetric radar), and a network of 2D video disdrometers for external radar calibration and rain rate estimation, and to determine spatial correlation of rain drop size distribution parameters

    NASA Astrophysics Data System (ADS)

    Thurai, M.; Bringi, V. N.; Tolstoy, L.; Petersen, W. A.

    2012-12-01

    On two days during the MC3E campaign in northern Oklahoma, NASA's S-band polarimetric radar (NPOL) performed repeated PPI scans over a network of six 2D video disdrometer (2DVD) sites, located 20 to 30 km from the radar. The scans were repeated approximately every 40 seconds. We consider here the two cases, one a rapidly evolving multi-cell rain event (with large drops) on 24 April 2011 and the second a somewhat more uniform rain event on 11 May 2011. For both events, the external calibration offsets for radar reflectivity and differential reflectivity were determined by comparing the radar data extracted over the disdrometer sites with those determined from scattering simulations using the 2DVD data. Time series comparisons show excellent agreement for all six sites, and a technique was developed to determine the offsets for the NPOL data quantitatively from the comparisons. The radar data were then used to determine the rain rates over the six sites and compared with those derived from the 2DVD measurements. Once again, excellent agreement was obtained for all six sites, both in terms of rain fall rates and rain accumulations (see Fig. 1). Comparisons have also been made over many rain gauges located within ground validation network area. The repeated PPI scans were also used to determine the spatial correlations of two of the main rain drop-size distribution (DSD) parameters (Do and log Nw) as well as rainfall rate (R). The correlations were determined along the radial over the whole azimuthal range of the PPI scans. The spatial correlation of R shows azimuthal dependence particularly for the first event. However, the 50 percentile levels are similar between the two events, at least up to 4 km. For the DSD parameters, reasonable agreement with 2DVD-based spatial correlations were obtained As part of the abovementioned scan sequence, the NPOL had also made repeated RHI scans along one azimuth. These scans were used to determine the vertical correlations of the

  11. Evidence for Strong Electronic Correlations in the Spectra of Gate-Doped Single-Wall Carbon Nanotubes.

    PubMed

    Hartleb, Holger; Späth, Florian; Hertel, Tobias

    2015-10-27

    We have investigated the photophysical properties of electrochemically gate-doped semiconducting single-wall carbon nanotubes (s-SWNTs). A comparison of photoluminescence (PL) and simultaneously recorded absorption spectra reveals that free-carrier densities correlate well with the first sub-band exciton or trion oscillator strengths but not with PL intensities. We thus used a global analysis of the first sub-band exciton absorption for a detailed investigation of gate-doping, here of the (6,5) SWNT valence band. Our data are consistent with a doping-induced valence band shift according to Δϵv = n × b, where n is the free-carrier density, ϵv is the valence band edge, and b = 0.15 ± 0.05 eV·nm. We also predict such band gap renormalization of one-dimensional gate-doped semiconductors to be accompanied by a stepwise increase of the carrier density by Δn = (32meffb)/(πℏ)(2) (meff is effective carrier mass). Moreover, we show that the width of the spectroelectrochemical window of the first sub-band exciton of 1.55 ± 0.05 eV corresponds to the fundamental band gap of the undoped (6,5) SWNTs in our samples and not to the renormalized band gap of the doped system. These observations as well as a previously unidentified absorption band emerging at high doping levels in the Pauli-blocked region of the single-particle Hartree band structure provide clear evidence for strong electronic correlations in the optical spectra of SWNTs. PMID:26381021

  12. NUBOW-2D Inelastic

    2002-01-31

    This program solves the two-dimensional mechanical equilbrium configuration of a core restraint system, which is subjected to radial temperature and flux gradients, on a time increment basis. At each time increment, the code calculates the irradiation creep and swelling strains for each duct from user-specified creep and swelling correlations. Using the calculated thermal bowing, inelastic bowing and the duct dilation, the corresponding equilibrium forces, beam deflections, total beam displacements, and structural reactivity changes are calculated.

  13. Correlations between metal spin states and vibrational spectra of a trinuclear Fe(II) complex exhibiting spin crossover

    NASA Astrophysics Data System (ADS)

    Gerasimova, Tatiana P.; Katsyuba, Sergey A.; Lavrenova, Ludmila G.; Pelmenschikov, Vladimir; Kaupp, Martin

    2015-12-01

    Combined IR spectroscopic/quantum-chemical analysis of a 4-propyl-1,2,4-triazole trinuclear Fe(II) complex capable of reversible thermal spin crossover has revealed mid-IR bands of the ligand sensitive to the Fe(II) spin state. The character of the correlations found between the intensity and peak position of the triazole bands and the spin state of the metal center depends neither on the identity of the metal nor on the nuclearity of the complex. The found spectral correlations therefore allow analysis of various similar complexes. This is illustrated by the example of experimental IR spectra reported earlier for Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with triazole ligands. Quantum-chemical IR spectral simulations further suggest that certain ligand bands vary between the states with the same total molecular spin, but different distribution of the spin density between the metal centers. However these variations are too subtle to discriminate between the spin transitions of the central and peripheral Fe(II) ions. The experimentally revealed mid-IR markers are therefore conclusive only for the total molecular spin.

  14. Novel 2D Triple-Resonance NMR Experiments for Sequential Resonance Assignments of Proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2002-06-01

    We present 2D versions of the popular triple resonance HN(CO) CACB, HN(COCA)CACB, HN(CO)CAHA, and HN(COCA) CAHA experiments, commonly used for sequential resonance assignments of proteins. These experiments provide information about correlations between amino proton and nitrogen chemical shifts and the α- and β-carbon and α-proton chemical shifts within and between amino acid residues. Using these 2D spectra, sequential resonance assignments of H N, N, C α, C β, and H α nuclei are easily achieved. The resolution of these spectra is identical to the well-resolved 2D 15N- 1H HSQC and H(NCO)CA spectra, with slightly reduced sensitivity compared to their 3D and 4D versions. These types of spectra are ideally suited for exploitation in automated assignment procedures and thereby constitute a fast and efficient means for NMR structural determination of small and medium-sized proteins in solution in structural genomics programs.

  15. Fermi-surface reconstruction from two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) data using maximum-likelihood fitting of wavelet-like functions

    NASA Astrophysics Data System (ADS)

    G, A., Major; Fretwell, H. M.; Dugdale, S. B.; Alam, M. A.

    1998-11-01

    A novel method for reconstructing the Fermi surface from experimental two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) projections is proposed. In this algorithm, the 3D electron momentum-density distribution is expanded in terms of a basis of wavelet-like functions. The parameters of the model, the wavelet coefficients, are determined by maximizing the likelihood function corresponding to the experimental data and the projections calculated from the model. In contrast to other expansions, in the case of that in terms of wavelets a relatively small number of model parameters are sufficient for representing the relevant parts of the 3D distribution, thus keeping computation times reasonably short. Unlike other reconstruction methods, this algorithm takes full account of the statistical information content of the data and therefore may help to reduce the amount of time needed for data acquisition. An additional advantage of wavelet expansion may be the possibility of retrieving the Fermi surface directly from the wavelet coefficients rather than indirectly using the reconstructed 3D distribution.

  16. 2D to 3D transition of polymeric carbon nitride nanosheets

    SciTech Connect

    Chamorro-Posada, Pedro; Vázquez-Cabo, José; Martín-Ramos, Pablo; Martín-Gil, Jesús; Navas-Gracia, Luis M.; Dante, Roberto C.

    2014-11-15

    The transition from a prevalent turbostratic arrangement with low planar interactions (2D) to an array of polymeric carbon nitride nanosheets with stronger interplanar interactions (3D), occurring for samples treated above 650 °C, was detected by terahertz-time domain spectroscopy (THz-TDS). The simulated 3D material made of stacks of shifted quasi planar sheets composed of zigzagged polymer ribbons, delivered a XRD simulated pattern in relatively good agreement with the experimental one. The 2D to 3D transition was also supported by the simulation of THz-TDS spectra obtained from quantum chemistry calculations, in which the same broad bands around 2 THz and 1.5 THz were found for 2D and 3D arrays, respectively. This transition was also in accordance with the tightening of the interplanar distance probably due to an interplanar π bond contribution, as evidenced also by a broad absorption around 2.6 eV in the UV–vis spectrum, which appeared in the sample treated at 650 °C, and increased in the sample treated at 700 °C. The band gap was calculated for 1D and 2D cases. The value of 3.374 eV for the 2D case is, within the model accuracy and precision, in a relative good agreement with the value of 3.055 eV obtained from the experimental results. - Graphical abstract: 2D lattice mode vibrations and structural changes correlated with the so called “2D to 3D transition”. - Highlights: • A 2D to 3D transition has been detected for polymeric carbon nitride. • THz-TDS allowed us to discover and detect the 2D to 3D transition of polymeric carbon nitride. • We propose a structure for polymeric carbon nitride confirming it with THz-TDS.

  17. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  18. Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films.

    PubMed

    Xiong, Wei; Laaser, Jennifer E; Paoprasert, Peerasak; Franking, Ryan A; Hamers, Robert J; Gopalan, Padma; Zanni, Martin T

    2009-12-23

    We use nonlinear 2D IR spectroscopy to study TiO(2) nanocrystalline thin films sensitized with a Re dye. We find that the free electron signal, which often obscures the vibrational features in the transient absorption spectrum, is not observed in the 2D IR spectra. Its absence allows the vibrational features of the dye to be much better resolved than with the typical IR absorption probe. We observe multiple absorption bands but no cross peaks in the 2D IR spectra, which indicates that the dyes have at least three conformations. Furthermore, by using a pulse sequence in which we initiate electron transfer in the middle of the infrared pulse train, we are able to assign the excited state features by correlating them to the ground state vibrational modes and determine that the three conformations have different time scales and cross sections for electron injection. 2D IR spectroscopy is proving to be very useful in disentangling overlapping structural distributions in biological and chemical physics processes. These experiments demonstrate that nonlinear infrared probes are also a powerful new tool for studying charge transfer at interfaces. PMID:19947603

  19. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  20. Study on molecular structure and hydration mechanism of Domyoji-ko starch by IR and NIR hetero 2D analysis

    NASA Astrophysics Data System (ADS)

    Katayama, Norihisa; Kondo, Miyuki; Miyazawa, Mitsuhiro

    2010-06-01

    The hydration structure of starch molecule in Domyoji-ko, which is made from gluey rice, was investigated by hetero 2D correlation analysis of IR and NIR spectroscopy. The feature near 1020 cm -1 in the IR spectra of Domyoji-ko is changed by rehydration process, indicating that the molecular structure of amylopectin in the starch has been varied by the hydration without heating. The intensity of a band at 4770 cm -1 in NIR spectra is decreasing with the increasing of either the heating time with water or rehydration time without heating. These results suggest that the hydration of Domyoji-ko has proceeded in similar mechanisms on these processes. The generalized hetero 2D IR-NIR correlation analysis for rehydration of Domyoji-ko has supported the assignments for NIR bands concerning the gelatinization of starch.

  1. ULTRAVIOLET EMISSION-LINE CORRELATIONS IN HST/COS SPECTRA OF ACTIVE GALACTIC NUCLEI: SINGLE-EPOCH BLACK HOLE MASSES

    SciTech Connect

    Tilton, Evan M.; Shull, J. Michael E-mail: michael.shull@colorado.edu

    2013-09-01

    Effective methods of measuring supermassive black hole masses in active galactic nuclei (AGNs) are of critical importance to studies of galaxy evolution. While there has been much success in obtaining masses through reverberation mapping, the extensive observing time required by this method has limited the practicality of applying it to large samples at a variety of redshifts. This limitation highlights the need to estimate these masses using single-epoch spectroscopy of ultraviolet (UV) emission lines. We use UV spectra of 44 AGNs from HST/COS, the International Ultraviolet Explorer, and the Far Ultraviolet Spectroscopic Explorer of the C IV {lambda}1549, O VI {lambda}1035, O III] {lambda}1664, He II {lambda}1640, C II {lambda}1335, and Mg II {lambda}2800 emission lines and explore their potential as tracers of the broad-line region and supermassive black hole mass. The higher signal-to-noise ratio and better spectral resolution of the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) resolve AGN intrinsic absorption and produce more accurate line widths. From these, we test the viability of mass-scaling relationships based on line widths and luminosities and carry out a principal component analysis based on line luminosities, widths, skewness, and kurtosis. At L{sub 1450} {<=} 10{sup 45} erg s{sup -1}, the UV line luminosities correlate well with H{beta}, as does the 1450 A continuum luminosity. We find that C IV, O VI, and Mg II can be used as reasonably accurate estimators of AGN black hole masses, while He II and C II are uncorrelated.

  2. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  3. Dominant 2D magnetic turbulence in the solar wind

    SciTech Connect

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1996-07-20

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.

  4. AnisWave 2D

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  5. Diagnostic performance of 3D TSE MRI versus 2D TSE MRI of the knee at 1.5 T, with prompt arthroscopic correlation, in the detection of meniscal and cruciate ligament tears*

    PubMed Central

    Chagas-Neto, Francisco Abaeté; Nogueira-Barbosa, Marcello Henrique; Lorenzato, Mário Müller; Salim, Rodrigo; Kfuri-Junior, Maurício; Crema, Michel Daoud

    2016-01-01

    Objective To compare the diagnostic performance of the three-dimensional turbo spin-echo (3D TSE) magnetic resonance imaging (MRI) technique with the performance of the standard two-dimensional turbo spin-echo (2D TSE) protocol at 1.5 T, in the detection of meniscal and ligament tears. Materials and Methods Thirty-eight patients were imaged twice, first with a standard multiplanar 2D TSE MR technique, and then with a 3D TSE technique, both in the same 1.5 T MRI scanner. The patients underwent knee arthroscopy within the first three days after the MRI. Using arthroscopy as the reference standard, we determined the diagnostic performance and agreement. Results For detecting anterior cruciate ligament tears, the 3D TSE and routine 2D TSE techniques showed similar values for sensitivity (93% and 93%, respectively) and specificity (80% and 85%, respectively). For detecting medial meniscal tears, the two techniques also had similar sensitivity (85% and 83%, respectively) and specificity (68% and 71%, respectively). In addition, for detecting lateral meniscal tears, the two techniques had similar sensitivity (58% and 54%, respectively) and specificity (82% and 92%, respectively). There was a substantial to almost perfect intraobserver and interobserver agreement when comparing the readings for both techniques. Conclusion The 3D TSE technique has a diagnostic performance similar to that of the routine 2D TSE protocol for detecting meniscal and anterior cruciate ligament tears at 1.5 T, with the advantage of faster acquisition. PMID:27141127

  6. On the correlation between phonon spectra and surface segregation features in Ag-Cu-Ni ternary nanoalloys

    NASA Astrophysics Data System (ADS)

    Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.

    2011-08-01

    Atomic scale characterization of chemical ordering, compositional distribution and microstructure is of tremendous importance for applications such as catalysis which is primarily dominated by processes occurring at surface and is strongly influenced by the subsurface layers. Phonon spectra obtained from molecular dynamics simulations of single metals as well as their bimetallic and ternary alloy nanoclusters can be used to obtain new insights into the atomic scale distribution in the nanoclusters, their microstructure and dynamical properties. Monte-Carlo (MC) simulations are used to obtain the minimum energy configurations of various Ag-Cu-Ni ternary alloys in which the Ag content is systematically varied from 0 to 50%Ag while keeping the relative composition of Cu and Ni constant. Detailed compositional analyses of the final MC configurations are carried out. The generated microstructure comprised of surface segregated structures in which Ag atoms occupy low coordination sites such as corners, edges and faces. As the Ag content in the ternary alloy is increased, the surface sites get increasingly occupied with the lowest coordination sites being populated first. The Cu and Ni compositions in the interior of the cluster show compositional oscillation. The final alloy microstructure is dictated by the competition between the various entropic and energetic factors. Our analysis of the phonon density of states identifies various surface (low frequency) and bulk (high frequency) modes which is determined by their location in the nanocluster and the local environment. Systematic trends in the observed peak intensities and frequency shifts at the low and high frequency ends of the spectrum for the various alloy compositions are explained on the basis of bond-lengths, local coordination, extent of alloying, and neighboring elemental environment. We find that the characteristic microstructural features observed at the atomic scale are strongly correlated to the

  7. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Ham, Kyung-Sik; Han, Song-Hee; Yoo, Jonghyun; Jeong, Sungho

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results.

  8. Unitary quantum lattice gas representation of 2D quantum turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min

    2011-05-01

    Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.

  9. Correlation between the quantized energies and the photovoltaic spectra for a GaAs/AlGaAs quantum well structure

    SciTech Connect

    Russo, O.L.; Rehn, V.; Nee, T.W.; Dumas, K.A.

    1996-12-31

    The authors have measured the photovoltaic spectra at 300K for a PIN GaAs/AlGaAs structure containing five coupled wells (50A/28A) grown by molecular beam epitaxy (MBE). The spectra were obtained in the energy range from 1.40 eV to 1.60 eV. This is the region in which optical transitions between the sub-band valence and conduction states are possible. Five direct optical transitions are allowed for this structure. These transitions are normally difficult to measure at room temperature because of broadening, nevertheless, some of the allowed transitions were observed from the photovoltaic spectra and agreed with calculations. The authors have previously shown that measurements made using electroreflectance (ER) agree with these results. However, with ER, three possible transitions were observed but only one with certainty, possibly because of interference caused by adjacent line spectra interaction. This interference appears to be less pronounced in the photovoltaic spectra, which aids in the identification of transitions.

  10. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    PubMed

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-01

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms. PMID:27388151

  11. Importance of cross-correlated relaxation in the spectra of simple organofluorine compounds: Spectral complexity of A3B3X spin systems compared to ABX spin systems

    NASA Astrophysics Data System (ADS)

    Alemany, Lawrence B.; Malloy, Thomas B.; Nunes, Megan M.; Zaibaq, Nicholas G.

    2012-09-01

    In a continuation of our initial investigation of the complex 13C and 19F spectra exhibited by two simple organofluorine compounds, additional organofluorine compounds expected to exhibit a wide range of spectral complexity were studied. Spectral simulations are critical for analyzing the more complex spin systems, in particular, A3B3X and A6B3X. Cross-correlated relaxation is commonly observed; examples of 13Csbnd 19F cross-correlated relaxation are shown with the signals for each nucleus exhibiting unequal relaxation rates. Higher order effects are particularly noticeable in the spectra of perfluoro-t-butyl alcohol because of a large 4JFF value in the (13CF3)(12CF3)212COH isotopomer. The many additional transitions in an A3B3X spin system compared to an ABX spin system result in much more complex 19F (A3 and B3) and 13C (X) spectra, even though only three types of nuclei are involved in each spin system. The corresponding protio compounds typically constitute a much simpler A3M3X spin system because the long-range nJHH coupling (n ⩾ 4) is much smaller than the corresponding long-range nJFF coupling. Spectra previously published for ethane-1-13C (A3B3X) and hexafluoroethane-1-13C (A3M3X) are notable exceptions and are discussed.

  12. Proton nuclear magnetic resonance spectroscopy of horseradish peroxidase isoenzymes: correlation of distinctive spectra with isoenzyme specific activities.

    PubMed

    Gonzalez-Vergara, E; Meyer, M; Goff, H M

    1985-11-01

    High-resolution proton NMR spectra are reported for the paramagnetic ferric native and cyano complexes of the five major horseradish root peroxidase (HRP) isoenzymes (A1, A2, A3, B, and C). Axial imidazole resonances are observed in the native and cyano-complex spectra of all the isoenzymes, thus indicating the presence of a common axial histidine ligand. Proton NMR spectra outside the usual diamagnetic region are identical for sets of A1 and A2 isoenzymes and for the B and C isoenzyme set. Variation in heme residue chemical shift positions may be controlled in part by porphyrin vinyl side chain-protein interactions. Diverse upfield spectra among the isoenzymes reflect amino acid substitutions and/or conformational differences near the prosthetic group, as signals in this region must result from amino acid residues in proximity to the heme center. Acid-base dependence studies reveal an "alkaline" transition that converts the native high-spin iron (III) porphyrin to the low-spin state. The transition occurs at pH 9.3, 9.4, 9.8, and 10.9 for respective HRP A1, A2, A3, and C isoenzymes, respectively. Significantly, this ordering also reflects specific activities for the isoenzymes in the order A1 = A2 greater than A3 greater than B = C. Identical proton NMR spectra for A1/A2 and B/C isoenzyme sets parallel equivalent specific activities for members of a particular set. Proton NMR spectra thus appear to be highly sensitive to protein modifications that affect catalytic activity. PMID:4084538

  13. 2-D or not 2-D, that is the question: A Northern California test

    SciTech Connect

    Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D

    2005-06-06

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2

  14. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Harack, B.; Leary, A.; Coish, W. A.; Hilke, M.; Yu, G.; Payette, C.; Gupta, J. A.; Austing, D. G.

    2013-12-01

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ˜2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ˜2 pA amplitude and of ˜100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillations about zero.

  15. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    SciTech Connect

    Harack, B.; Leary, A.; Coish, W. A.; Hilke, M.; Yu, G.; Gupta, J. A.; Payette, C.; Austing, D. G.

    2013-12-04

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillations about zero.

  16. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  17. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  18. Methods for defect characterisation in thin film materials by depth-selective 2D-ACAR

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Falub, C. V.; van Veen, A.; Schut, H.; Mijnarends, P. E.

    2002-06-01

    The advent of intense positron beams makes it possible to perform depth-selective 2D-ACAR (two-dimensional angular correlation of annihilation radiation) studies. The Delft POSH-ACAR setup employs a strong permanent magnet for focusing of the POSH beam on the sample, which leads to a ˜15% spread in implantation energy. The effects of this spread on positron depth-profiling data are discussed, and are shown to be consistent with Doppler experiments on Si(1 0 0) with a subsurface layer of nanocavities. A method is presented to decompose depth-selective 2D-ACAR spectra reliably into their various (layer) components. This is used to reveal strong positron trapping in the nanocavities in Si(1 0 0).

  19. Microwave Spectra of Furazan. IV. Rotation Spectra of Vibrationally Excited States of Perdeuterated Furazan

    NASA Astrophysics Data System (ADS)

    Stiefvater, Otto L.

    1990-10-01

    The pure rotation spectra of molecules in 25 vibrationally excited states of perdeuterated furazan, C2D2N2O, have been studied by double resonance modulation (DRM) microwave spectroscopy. Twelve of these spectra have been correlated, -on the basis of relative intensity measurements under DRM -, with fundamental vibrations as previously established by IR spectroscopy. Rotational parameters for these 12 fundamental levels are reported, and the contributions to the effective rotational constants and to the inertia defect of the ground state of d2 -furazan have been determined for 10 modes of vibration.

  20. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-08-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.

  1. Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates

    PubMed Central

    Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder

    2015-01-01

    In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655

  2. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  3. Correlation and Characterization of 3D Morphological Dependent Localized Surface Plasmon Resonance Spectra of Single Silver Nanoparticles Using Dark-field Optical Microscopy and Spectroscopy and AFM

    PubMed Central

    Song, Yujun; Nallathamby, Prakash D.; Huang, Tao; Elsayed-Ali, Hani E.; Xu, Xiao-Hong Nancy

    2009-01-01

    We have developed a new and effective methodology to correlate optical and AFM images of single Ag nanoparticles (NPs), allowing us to study 3D-morphological dependent localized surface plasmon resonance (LSPR) spectra of individual Ag NPs. We fabricated arrays of distinctive microwindows on glass coverslips using photo-lithography method, and created well-isolated individual Ag NPs with a wide variety of shapes and morphologies on the glass coverslips using a modified nanosphere lithography method (NSL). Using distinctive geometries of microwindows, we located individual Ag NPs of interest in their optical and AFM images, enabling us to correlate and characterize the LSPR spectra and 3D morphologies of the same single NPs using dark-field optical microscopy and spectroscopy (DFOMS) and AFM, respectively. We found that LSPR spectra of single Ag NPs, with nearly equal volume [(8.6 ± 0.4) × 103 nm3], cross-section [(2.2 ± 0.2) × 102 nm3], and height (39.6 ± 3.6 nm), highly depend on their shapes, showing the red shift of peak wavelength to 629 nm (quasi trapezoidal cylindrical NP) from that of 506 nm (quasi circular cylindrical NP). LSPR spectra of single Ag NPs simulated using discrete dipole approximation (DDA) agree well with those measured experimentally when their shapes and morphologies can be accuractely described in both methods, but differ when they are not. Furthermore, we found location-dependent LSPR spectra on and around a single NP, offering a unique opportunity to characterize multi-mode plasmonic NPs at nanometer resolution for better understanding their plasmonic optical properties and for rational design of single NP optics. PMID:20190865

  4. Correlation of Rock Spectra with Quantitative Morphologic Indices: Evidence for a Single Rock Type at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Yingst, R. A.; Biedermann, K. L.; Pierre, N. M.; Haldemann, A. F. C.; Johnson, J. R.

    2005-01-01

    The Mars Pathfinder (MPF) landing site was predicted to contain a broad sampling of rock types varying in mineralogical, physical, mechanical and geochemical characteristics. Although rocks have been divided into several spectral categories based on Imager for Mars Pathfinder (IMP) visible/near-infrared data, efforts in isolating and classifying spectral units among MPF rocks and soils have met with varying degrees of success, as many factors influencing spectral signatures cannot be quantified to a sufficient level to be removed. It has not been fully determined which spectral categories stem from intrinsic mineralogical differences between rocks or rock surfaces, and which result from factors such as physical or chemical weathering. This has made isolation of unique rock mineralogies difficult. Morphology, like composition, is a characteristic tied to the intrinsic properties and geologic and weathering history of rocks. Rock morphologies can be assessed quantitatively and compared with spectral data, to identify and classify rock types at the MPF landing site. They can also isolate actual rock spectra from spectral types that are surficial in origin, as compositions associated with mantling dust or chemical coatings would presumably not influence rock morphology during weathering events. We previously reported on an initial classification of rocks using the quantitative morphologic indices of size, roundness, sphericity and elongation. Here, we compare this database of rock characteristics with associated rock surface spectra to improve our ability to discriminate between spectra associated with rock types and those from other sources.

  5. 2D signature for detection and identification of drugs

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  6. Broadband 2D Electronic Spectroscopy Reveals Coupling Between Dark 1Bu- State of Carotenoid and Qx State of Bacteriochlorophyll

    NASA Astrophysics Data System (ADS)

    Ostroumov, Evgeny E.; Jumper, Chanelle C.; Mulvaney, Rachel M.; Cogdell, Richard J.; Scholes, Gregory D.

    2013-03-01

    The study of LH2 protein of purple bacteria by broadband 2D electronic spectroscopy is presented. The dark 1Bu- carotenoid state is directly observed in 2D spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.

  7. MOSS2D V1

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  8. Two-dimensional hetero-spectral mid-infrared and near-infrared correlation spectroscopy for discrimination adulterated milk

    NASA Astrophysics Data System (ADS)

    Yang, Renjie; Liu, Rong; Dong, Guimei; Xu, Kexin; Yang, Yanrong; Zhang, Weiyu

    2016-03-01

    A new approach for discriminant analysis of adulterated milk is proposed based on two-dimensional (2D) hetero-spectral near-infrared (NIR) and mid-infrared (IR) correlation spectroscopy along with multi-way partial least squares discriminant analysis (NPLS-DA). NIR transmittance spectra and IR attenuated total reflection spectra of pure milk and adulterated milk with level of melamine varying from 0.03 to 3 g·L- 1 were collected at room temperature. The synchronous 2D hetero-spectral IR/NIR correlation spectra of all samples were calculated to build a discriminant model to classify adulterated milk and pure milk. Also, the NPLS-DA models were built based on synchronous 2D homo-spectral NIR/NIR and IR/IR correlation spectra, respectively. Comparison results showed that the NPLS-DA model could provide better results using 2D hetero-spectral IR/NIR correlation spectra than using 2D homo-spectral NIR/NIR and 2D IR/IR correlation spectra.

  9. Correlation between N 1s core level x-ray photoelectron and x-ray absorption spectra of amorphous carbon nitride films

    NASA Astrophysics Data System (ADS)

    Quirós, C.; Gómez-García, J.; Palomares, F. J.; Soriano, L.; Elizalde, E.; Sanz, J. M.

    2000-08-01

    This work presents a comparative analysis of the N 1s core level spectra, as measured by x-ray photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS), of amorphous CNx films which gives evidence of the existing correlation between the different components that constitute the respective spectra. After annealing, the contribution of XPS at 399.3 eV and the components of XAS at 399.6 and 400.8 eV are clearly enhanced. They are assigned to sp2 with two neighbors and to sp states of nitrogen. In addition, the XPS component at 401.3 eV is related to the XAS feature at 402.0 eV and has been assigned to sp2 nitrogen bonded to three carbon neighbors.

  10. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  11. Two-dimensional attenuated total reflection infrared correlation spectroscopy study of desorption process of water-soaked cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of native cotton fibers with various water contents. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity ...

  12. Correlation of the earth's rotation rate and the secular change of the geomagnetic field. [power spectra/harmonic analysis

    NASA Technical Reports Server (NTRS)

    Jin, R. S.

    1975-01-01

    Power spectral density analysis using Burg's maximum entropy method was applied to the geomagnetic dipole field and its rate of change for the years 1901 to 1969. Both spectra indicate relative maxima at 0.015 cycles/year and its harmonics. These maxima correspond approximately to 66, 33, 22, 17, 13, 11, and 9-year spectral lines. The application of the same analysis techniques to the length-of-day (l.o.d) fluctuations for the period 1865 to 1961 reveal similar spectral characteristics. Although peaks were observed at higher harmonics of the fundamental frequency, the 22-year and 11-year lines are not attributed unambiguously to the solar magnetic cycle and the solar cycle. It is suggested that the similarity in the l.o.d fluctuations and the dipole field variations is related to the motion within the earth's fluid core during the past one hundred years.

  13. Modeling the IR spectra of aqueous metal carboxylate complexes: correlation between bonding geometry and stretching mode wavenumber shifts.

    PubMed

    Sutton, Catherine C R; da Silva, Gabriel; Franks, George V

    2015-04-27

    A widely used principle is that shifts in the wavenumber of carboxylate stretching modes upon bonding with a metal center can be used to infer if the geometry of the bonding is monodentate or bidentate. We have tested this principle with ab initio modeling for aqueous metal carboxylate complexes and have shown that it does indeed hold. Modeling of the bonding of acetate and formate in aqueous solution to a range of cations was used to predict the infrared spectra of the metal-carboxylate complexes, and the wavenumbers of the symmetric and antisymmetric vibrational modes are reported. Furthermore, we have shown that these shifts in wavenumber occur primarily due to how bonding with the metal changes the carboxylate C-O bond lengths and O-C-O angle. PMID:25753376

  14. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO( 1 0 0 ) and MgO( 1 1 0 )

    NASA Astrophysics Data System (ADS)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W. H.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -26Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  15. High-resolution heteronuclear correlation spectroscopy based on spatial encoding and coherence transfer in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Wang, Kaiyu; Zhang, Zhiyong; Chen, Hao; Cai, Shuhui; Chen, Zhong

    2015-11-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy has been proven to be a powerful technique for chemical, biological, and medical studies. Heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are two frequently used 2D NMR methods. In combination with spatially encoded techniques, a heteronuclear 2D NMR spectrum can be acquired in several seconds and may be applied to monitoring chemical reactions. However, it is difficult to obtain high-resolution NMR spectra in inhomogeneous fields. Inspired by the idea of tracing the difference of precession frequencies between two different spins to yield high-resolution spectra, we propose a method with correlation acquisition option and J-resolved-like acquisition option to ultrafast obtain high-resolution HSQC/HMBC spectra and heteronuclear J-resolved-like spectra in inhomogeneous fields.

  16. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials

    NASA Astrophysics Data System (ADS)

    Verma, Prakash; Bartlett, Rodney J.

    2016-07-01

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.

  17. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials.

    PubMed

    Verma, Prakash; Bartlett, Rodney J

    2016-07-21

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis. PMID:27448875

  18. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  19. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  20. 2dF grows up: Echidna for the AAT

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg

    2008-07-01

    We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.

  1. Application of the Correlation Method to Vibrational Spectra of C60 and Other Fullerenes: Predicting the Number of IR- and Raman-Active Bands

    NASA Astrophysics Data System (ADS)

    Nakamoto, Kazuo; McKinney, Michael A.

    2000-06-01

    The C60 molecule (Buckyball/soccer ball) exhibits only 4 IR and 10 Raman bands although it possesses 174 (3 x 60 - 6) normal vibrations. This striking reduction in the number of observed bands is evidently due to the molecule's extremely high symmetry (Ih point group). First, the 120 symmetry elements of its truncated icosahedral structure are identified and the local (site) symmetry of the carbon atoms (Cc) is determined. Use of molecular models greatly facilitates the process in determining the local and molecular symmetries. Then the correlation method is used to derive a table that classifies the 174 normal vibrations into the respective symmetry species of the Ih point group. In this method, symmetry properties of atomic displacements in terms of the local point group (Cc) are correlated with those in terms of the molecular point group (Ih). After the normal vibrations are classified into respective symmetry species, the numbers of IR- and Raman-active vibrations can be determined by the symmetry selection rules for IR and Raman spectra. The vibrational spectra of C60 and C70 (rugby ball) are analyzed by the above procedure, and the results obtained for C28, C32, C50, and dodecahedrane are provided.

  2. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  3. Very accurate variational non-relativistic non-Born-Oppenheimer atomic & molecular spectra predictions employing explicitly correlated Gaussian basis functions

    NASA Astrophysics Data System (ADS)

    Sharkey, Keeper

    2015-03-01

    Due to the fast increasing capabilities of modern computers it now becomes feasible to calculate spectra of small atom and molecules with accuracy which matches the accuracy of high-resolution measurements. The algorithms for the calculations are directly derived from the first principles of quantum mechanics. The Hamiltonian operator used in the approach is called the internal Hamiltonian and is obtained by rigorously separating out the center-of-mass motion from the laboratory-frame Hamiltonian. Algorithms for determining the isotopic energy shifts of L=0 and M=0 states of atoms were implemented and tested in the calculations of the ground 4S state of the nitrogen atom. Bound states of diatomic molecules corresponding to the total angular momentum quantum number equal to one (N=1) was derived and implemented and was tested in the calculations of the N=1, v=0, . . . , 22 states of the HD+ ion and in the calculations of the ortho-para spin isomerization of the hydrogen molecule in its all bound vibrational states. This has lead to the development of a new studying of muonic molecules (dp μ, tp μ and td μ). The algorithms for calculating rovibrational states of small molecules is currently being extended to H3+using sin and cos ECGs. National Science Foundation.

  4. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument. PMID:27287846

  5. 2D NMR Barcoding and Differential Analysis of Complex Mixtures for Chemical Identification: The Actaea Triterpenes

    PubMed Central

    2015-01-01

    The interpretation of NMR spectroscopic information for structure elucidation involves decoding of complex resonance patterns that contain valuable molecular information (δ and J), which is not readily accessible otherwise. We introduce a new concept of 2D-NMR barcoding that uses clusters of fingerprint signals and their spatial relationships in the δ−δ coordinate space to facilitate the chemical identification of complex mixtures. Similar to widely used general barcoding technology, the structural information of individual compounds is encoded as a specifics pattern of their C,H correlation signals. Software-based recognition of these patterns enables the structural identification of the compounds and their discrimination in mixtures. Using the triterpenes from various Actaea (syn. Cimicifuga) species as a test case, heteronuclear multiple-bond correlation (HMBC) barcodes were generated on the basis of their structural subtypes from a statistical investigation of their δH and δC data in the literature. These reference barcodes allowed in silico identification of known triterpenes in enriched fractions obtained from an extract of A. racemosa (black cohosh). After dereplication, a differential analysis of heteronuclear single-quantum correlation (HSQC) spectra even allowed for the discovery of a new triterpene. The 2D barcoding concept has potential application in a natural product discovery project, allowing for the rapid dereplication of known compounds and as a tool in the search for structural novelty within compound classes with established barcodes. PMID:24673652

  6. 2D NMR barcoding and differential analysis of complex mixtures for chemical identification: the Actaea triterpenes.

    PubMed

    Qiu, Feng; McAlpine, James B; Lankin, David C; Burton, Ian; Karakach, Tobias; Chen, Shao-Nong; Pauli, Guido F

    2014-04-15

    The interpretation of NMR spectroscopic information for structure elucidation involves decoding of complex resonance patterns that contain valuable molecular information (δ and J), which is not readily accessible otherwise. We introduce a new concept of 2D-NMR barcoding that uses clusters of fingerprint signals and their spatial relationships in the δ-δ coordinate space to facilitate the chemical identification of complex mixtures. Similar to widely used general barcoding technology, the structural information of individual compounds is encoded as a specifics pattern of their C,H correlation signals. Software-based recognition of these patterns enables the structural identification of the compounds and their discrimination in mixtures. Using the triterpenes from various Actaea (syn. Cimicifuga) species as a test case, heteronuclear multiple-bond correlation (HMBC) barcodes were generated on the basis of their structural subtypes from a statistical investigation of their δH and δC data in the literature. These reference barcodes allowed in silico identification of known triterpenes in enriched fractions obtained from an extract of A. racemosa (black cohosh). After dereplication, a differential analysis of heteronuclear single-quantum correlation (HSQC) spectra even allowed for the discovery of a new triterpene. The 2D barcoding concept has potential application in a natural product discovery project, allowing for the rapid dereplication of known compounds and as a tool in the search for structural novelty within compound classes with established barcodes. PMID:24673652

  7. Development of Micro-Raman Spectroscopic Instrumentation for Measurement of Novel 2D Materials

    NASA Astrophysics Data System (ADS)

    Watson, Michael; Thompson, Zach; Simpson, Jeff; Towson University Team

    2013-03-01

    Recent research activity in mono-atomic layer graphene stimulates interest in other novel 2D materials, including molybdenum disulfide (MoS2) . Raman spectroscopy, based on the inelastic scattering of light, provides a powerful and high-throughput spectroscopic technique to probe low energy excitations, e.g., phonons, in graphene and related novel 2D materials. The accurate measurement of phonon frequency, especially its sensitive dependence on physical parameters such as temperature, carrier doping, and defects, requires an appropriately calibrated spectrometer. We report on the implementation and calibration of a homebuilt Raman system. Specifically we correlated peak wavelength from known atomic spectral lines with the pixel number detected on a thermoelectrically-cooled CCD camera attached to a grating monochromator. Additionally we developed software to control the grating position and maintain calibration while acquiring spectra. Once calibrated, we interfaced the spectrometer to a microscope to acquire spatial maps of small samples. Single-layer MoS2 flakes were prepared using the mechanical exfoliation of bulk MoS2 and transferred to substrates using techniques pioneered in graphene research. Using HeNe and Ar ion lasers for excitation, we measured the Raman spectra of single-layer MoS2 flakes. The temperature-dependence of the observed Raman-active phonons will be discussed.

  8. Charge-multiplicity dependence of single-particle transverse-rapidity yt and pseudorapidity η densities and 2D angular correlations from 200 GeV p -p collisions

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.; Prindle, Duncan J.

    2016-01-01

    An established phenomenology and theoretical interpretation of p -p collision data at lower collision energies should provide a reference for p -p and other collision systems at higher energies, against which claims of novel physics may be tested. The description of p -p collisions at the relativistic heavy ion collider has remained incomplete even as claims for collectivity and other novelties in data from smaller systems at the large hadron collider have emerged recently. In this study we report the charge-multiplicity dependence of two-dimensional angular correlations and of single-particle (SP) densities on transverse rapidity yt and pseudorapidity η from 200 GeV p -p collisions. We define a comprehensive and self-consistent two-component (soft+hard ) model for hadron production and report a significant p -p nonjet quadrupole component as a third (angular-correlation) component. Our results have implications for p -p centrality, the underlying event, collectivity in small systems and the existence of flows in high-energy nuclear collisions.

  9. Intra-epidemic evolutionary dynamics of a Dengue virus type 1 population reveal mutant spectra that correlate with disease transmission

    PubMed Central

    Hapuarachchi, Hapuarachchige Chanditha; Koo, Carmen; Kek, Relus; Xu, Helen; Lai, Yee Ling; Liu, Lilac; Kok, Suet Yheng; Shi, Yuan; Chuen, Raphael Lee Tze; Lee, Kim-Sung; Maurer-Stroh, Sebastian; Ng, Lee Ching

    2016-01-01

    Dengue virus (DENV) is currently the most prevalent mosquito-borne viral pathogen. DENVs naturally exist as highly heterogeneous populations. Even though the descriptions on DENV diversity are plentiful, only a few studies have narrated the dynamics of intra-epidemic virus diversity at a fine scale. Such accounts are important to decipher the reciprocal relationship between viral evolutionary dynamics and disease transmission that shape dengue epidemiology. In the current study, we present a micro-scale genetic analysis of a monophyletic lineage of DENV-1 genotype III (epidemic lineage) detected from November 2012 to May 2014. The lineage was involved in an unprecedented dengue epidemic in Singapore during 2013–2014. Our findings showed that the epidemic lineage was an ensemble of mutants (variants) originated from an initial mixed viral population. The composition of mutant spectrum was dynamic and positively correlated with case load. The close interaction between viral evolution and transmission intensity indicated that tracking genetic diversity through time is potentially a useful tool to infer DENV transmission dynamics and thereby, to assess the epidemic risk in a disease control perspective. Moreover, such information is salient to understand the viral basis of clinical outcome and immune response variations that is imperative to effective vaccine design. PMID:26940650

  10. Intra-epidemic evolutionary dynamics of a Dengue virus type 1 population reveal mutant spectra that correlate with disease transmission.

    PubMed

    Hapuarachchi, Hapuarachchige Chanditha; Koo, Carmen; Kek, Relus; Xu, Helen; Lai, Yee Ling; Liu, Lilac; Kok, Suet Yheng; Shi, Yuan; Chuen, Raphael Lee Tze; Lee, Kim-Sung; Maurer-Stroh, Sebastian; Ng, Lee Ching

    2016-01-01

    Dengue virus (DENV) is currently the most prevalent mosquito-borne viral pathogen. DENVs naturally exist as highly heterogeneous populations. Even though the descriptions on DENV diversity are plentiful, only a few studies have narrated the dynamics of intra-epidemic virus diversity at a fine scale. Such accounts are important to decipher the reciprocal relationship between viral evolutionary dynamics and disease transmission that shape dengue epidemiology. In the current study, we present a micro-scale genetic analysis of a monophyletic lineage of DENV-1 genotype III (epidemic lineage) detected from November 2012 to May 2014. The lineage was involved in an unprecedented dengue epidemic in Singapore during 2013-2014. Our findings showed that the epidemic lineage was an ensemble of mutants (variants) originated from an initial mixed viral population. The composition of mutant spectrum was dynamic and positively correlated with case load. The close interaction between viral evolution and transmission intensity indicated that tracking genetic diversity through time is potentially a useful tool to infer DENV transmission dynamics and thereby, to assess the epidemic risk in a disease control perspective. Moreover, such information is salient to understand the viral basis of clinical outcome and immune response variations that is imperative to effective vaccine design. PMID:26940650

  11. Characterization of attenuated total reflection infrared spectral intensity variations of immature and mature cotton fibers by two-dimensional correlation analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional (2D) correlation analysis was applied to characterize the ATR spectral intensity fluctuations of immature and mature cotton fibers. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm-1 and then were normalized at the peak intensity of 660 cm-1 to ...

  12. Two-dimensional correlation analysis and waterfall plots for detecting positional fluctuations of spectral changes.

    PubMed

    Ryu, Soo Ryeon; Noda, Isao; Lee, Chang-Hee; Lee, Phil Ho; Hwang, Hyonseok; Jung, Young Mee

    2011-04-01

    In this study, we demonstrate the potentials and pitfalls of using various waterfall plots, such as conventional waterfall plots, two-dimensional (2D) gradient maps, moving window two-dimensional analysis (MW2D), perturbation-correlation moving window two-dimensional analysis (PCMW2D), and moving window principal component analysis two-dimensional correlation analysis (MWPCA2D), in the detection of the existence of band position shifts. Waterfall plots of the simulated spectral datasets are compared with conventional 2D correlation spectra. Different waterfall plots give different features in differentiating the behaviors of frequency shift versus two overlapped bands. Two-dimensional correlation spectra clearly show the very characteristic cluster pattern for both band position shifts and two overlapped bands. The vivid pattern differences are readily detectable in various waterfalls plots. Various types of waterfall plots of temperature-dependent infrared (IR) spectra of ethylene glycol, which does not have the actual band shift but only two overlapped bands, and of Fourier transform infrared (FT-IR) spectra of 2 wt% acetone in a mixed solvent of CHCl(3)/CCl(4) demonstrate that waterfall plots are not able to unambiguously detect the difference between real band shift and two overlapped bands. Thus, the presence or lack of the asynchronous 2D butterfly pattern seems like the most effective diagnostic tool for band shift detection. PMID:21396181

  13. Inferring supernova IIb/Ib/Ic ejecta properties from light curves and spectra: correlations from radiative-transfer models

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Hillier, D. John; Woosley, Stan; Livne, Eli; Waldman, Roni; Yoon, Sung-Chul; Langer, Norbert

    2016-05-01

    We present 1D non-local thermodynamic equilibrium time-dependent radiative-transfer simulations for a large grid of supernovae (SNe) IIb/Ib/Ic that result from the terminal explosion of the mass donor in a close-binary system. Our sample covers ejecta masses Me of 1.7-5.2 M⊙, kinetic energies Ekin of 0.6-5.0 × 1051 erg, and 56Ni masses of 0.05-0.30 M⊙. We find a strong correlation between the 56Ni mass and the photometric properties at maximum, and between the rise time to bolometric maximum and the post-maximum decline rate. We confirm the small scatter in (V - R) at 10 d past R-band maximum. The quantity V_m ≡ √{2E_kin/M_e} is comparable to the Doppler velocity measured from He I 5875 Å at maximum in SNe IIb/Ib, although some scatter arises from the uncertain level of chemical mixing. The O I 7772 Å line may be used for SNe Ic, but the correspondence deteriorates with higher ejecta mass/energy. We identify a temporal reversal of the Doppler velocity at maximum absorption in the ˜1.05 μm feature in all models. The reversal is due to He I alone and could serve as a test for the presence of helium in SNe Ic. Because of variations in composition and ionization, the ejecta opacity shows substantial variations with both velocity and time. This is in part the origin of the offset between our model light curves and the predictions from the Arnett model.

  14. Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence

    NASA Astrophysics Data System (ADS)

    Karadan, Prajith; John, Siju; Anappara, Aji A.; Narayana, Chandrabhas; Barshilia, Harish C.

    2016-07-01

    We have fabricated highly ordered, vertically aligned, high aspect ratio silicon nanopillars (SiNPLs) of diameter ~80 nm by combining metal-assisted chemical etching and nanosphere lithography. The evolution of surface morphology of porous silicon nanopillars has been explained, and the presence of mesoporous structures was detected on the top of silicon nanopillars using field emission scanning electron microscopy. The mesoporosity of the SiNPLs is confirmed by Brunauer-Emmett-Teller measurements. The peak shift and the splitting of optical phonon modes into LO and TO modes in the micro-Raman spectra of mesoporous SiNPLs manifest the presence of 2-3 nm porous Si nanocrystallites ( P-SiNCs) on the top of SiNPLs and the size of crystallites was calculated using bond polarizability model for spherical phonon confinement. The origin of red luminescence is explained using quantum confinement (QC) and QC luminescent center models for the P-SiNCs, which is correlated with the micro-Raman spectra. Finally, we confirmed the origin of the red luminescence is from the P-SiNCs formed on surface of SiNPLs, highly desired for LED devices by suitably tailoring the substrate.

  15. Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra.

    PubMed

    Vanrobays, M-L; Bastin, C; Vandenplas, J; Hammami, H; Soyeurt, H; Vanlierde, A; Dehareng, F; Froidmont, E; Gengler, N

    2016-09-01

    The aim of this study was to estimate phenotypic and genetic correlations between methane production (Mp) and milk fatty acid contents of first-parity Walloon Holstein cows throughout lactation. Calibration equations predicting daily Mp (g/d) and milk fatty acid contents (g/100 dL of milk) were applied on milk mid-infrared spectra related to Walloon milk recording. A total of 241,236 predictions of Mp and milk fatty acids were used. These data were collected between 5 and 305 d in milk in 33,555 first-parity Holstein cows from 626 herds. Pedigree data included 109,975 animals. Bivariate (i.e., Mp and a fatty acid trait) random regression test-day models were developed to estimate phenotypic and genetic parameters of Mp and milk fatty acids. Individual short-chain fatty acids (SCFA) and groups of saturated fatty acids, SCFA, and medium-chain fatty acids showed positive phenotypic and genetic correlations with Mp (from 0.10 to 0.16 and from 0.23 to 0.30 for phenotypic and genetic correlations, respectively), whereas individual long-chain fatty acids (LCFA), and groups of LCFA, monounsaturated fatty acids, and unsaturated fatty acids showed null to positive phenotypic and genetic correlations with Mp (from -0.03 to 0.13 and from -0.02 to 0.32 for phenotypic and genetic correlations, respectively). However, these correlations changed throughout lactation. First, de novo individual and group fatty acids (i.e., C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, SCFA group) showed low phenotypic or genetic correlations (or both) in early lactation and higher at the end of lactation. In contrast, phenotypic and genetic correlations between Mp and C16:0, which could be de novo synthetized or derived from blood lipids, were more stable during lactation. This fatty acid is the most abundant fatty acid of the saturated fatty acid and medium-chain fatty acid groups of which correlations with Mp showed the same pattern across lactation. Phenotypic and genetic correlations between Mp and C17

  16. Correlation of Chemical Bond Directions and Functional Group Orientations in Solids by Two-Dimensional NMR

    NASA Astrophysics Data System (ADS)

    Weliky, D. P.; Dabbagh, G.; Tycko, R.

    We describe a new two-dimensional NMR technique for structural studies of polycrystalline and noncrystalline solids. The technique is a variant of 2D exchange spectroscopy applicable to organic molecules, macromolecules, or molecular complexes that are doubly 13C-labeled at a specific carboncarbon bond and singly 13C labeled at a specific functional group. A Carr-Purcell sequence is used to obtain dipolar spectra in the t1 dimension. Spectra in the t2 dimension are determined primarily by the chemical-shift anisotropy. With spin diffusion among the labeled sites between the t1 and t2 periods, the resulting 2D spectra reveal correlations between the direction of the labeled bond and the orientation of the labeled functional group. Experimental spectra of two polycrystalline model compounds, dimethyl succinate and diammonium succinate, are presented and compared with simulations to illustrate the structural information contained in the 2D spectra.

  17. Simultaneous Acquisition of 2D and 3D Solid-State NMR Experiments for Sequential Assignment of Oriented Membrane Protein Samples

    PubMed Central

    Gopinath, T.; Mote, Kaustubh R; Veglia, Gianluigi

    2016-01-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins aligned in mechanically or magnetically lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through 15N-15N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish 15N-15N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments. PMID:25749871

  18. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    PubMed

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments. PMID:25749871

  19. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  20. Vector correlations study of the reaction N(2D)+H2(X1Σg+)→NH(a1Δ)+H(2S) with different collision energies and reagent vibration excitations

    NASA Astrophysics Data System (ADS)

    Li, Yong-Qing; Zhang, Yong-Jia; Zhao, Jin-Feng; Zhao, Mei-Yu; Ding, Yong

    2015-11-01

    Vector correlations of the reaction are studied based on a recent DMBE-SEC PES for the first excited state of NH2 [J. Phys. Chem. A 114 9644 (2010)] by using a quasi-classical trajectory method. The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0-5 and j = 0 states in a wide collision energy range (10-50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly, the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H-H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(ϕr), and P(θr, ϕr). Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141 and 11404080), the Special Fund Based Research New Technology of Methanol conversion and Coal Instead of Oil, the China Postdoctoral Science Foundation (Grant No. 2014M550158) , the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. 2014-1685), and the Program for Liaoning Excellent Talents in University, China (Grant Nos. LJQ2015040 and LJQ2014001).

  1. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  2. 2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films

    NASA Astrophysics Data System (ADS)

    Williams, Gary A.

    2003-03-01

    With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.

  3. Theory for spiralling ions for 2D FT-ICR and comparison with precessing magnetization vectors in 2D NMR.

    PubMed

    Sehgal, Akansha Ashvani; Pelupessy, Philippe; Rolando, Christian; Bodenhausen, Geoffrey

    2016-04-01

    Two-dimensional (2D) Fourier transform ion cyclotron resonance (FT-ICR) offers an approach to mass spectrometry (MS) that pursuits similar objectives as MS/MS experiments. While the latter must focus on one ion species at a time, 2D FT ICR can examine all possible correlations due to ion fragmentation in a single experiment: correlations between precursors, charged and neutral fragments. We revisited the original 2D FT-ICR experiment that has hitherto fallen short of stimulating significant analytical applications, probably because it is technically demanding. These shortcomings can now be overcome by improved FT-ICR instrumentation and computer hard- and software. We seek to achieve a better understanding of the intricacies of the behavior of ions during a basic two-dimensional ICR sequence comprising three simple monochromatic pulses. Through simulations based on Lorentzian equations, we have mapped the ion trajectories for different pulse durations and phases. PMID:26974979

  4. MR imaging and spectroscopy of the basal ganglia in chronic liver disease: correlation of T1-weighted contrast measurements with abnormalities in proton and phosphorus-31 MR spectra.

    PubMed

    Taylor-Robinson, S D; Sargentoni, J; Oatridge, A; Bryant, D J; Hajnal, J V; Marcus, C D; Seery, J P; Hodgson, H J; deSouza, N M

    1996-09-01

    The purpose of this study was to correlate the hyperintensity in the globus pallidus seen on T1-weighted magnetic resonance imaging (MRI) of the brain in chronic liver disease with changes in metabolite ratios measured from both proton and phosphorus-31 magnetic resonance spectroscopy (MRS) localised to the basal ganglia. T1-weighted spin echo (T1WSE) images were obtained in 21 patients with biopsy-proven cirrhosis (nine Child's grade A, eight Child's grade B and four Child's grade C). Four subjects showed no evidence of neuropsychiatric impairment on clinical, psychometric and electrophysiological testing, four showed evidence of subclinical hepatic encephalopathy and 13 had overt hepatic encephalopathy. Signal intensities of the globus pallidus and adjacent brain parenchyma were measured and contrast calculated, which correlated with the severity of the underlying liver disease, when graded according to the Pugh's score (p < 0.05). Proton MRS of the basal ganglia was performed in 12 patients and 14 healthy volunteers. Peak area ratios of choline (Cho), glutamine and glutamate (Glx) and N-acetylaspartate relative to creatine (Cr) were measured. Significant reductions in mean Cho/Cr and elevations in mean Glx/Cr ratios were observed in the patient population. Phosphorus-31 MRS of the basal ganglia was performed in the remaining nine patients and in 15 healthy volunteers. Peak area ratios of phosphomonoesters (PME), inorganic phosphate, phosphodiesters (PDE) and phosphocreatine relative to beta ATP (ATP) were then measured. Mean values of PME/ATP and PDE/ATP were significantly lower in the patient population. No correlation was found between the T1WSE MRI contrast measurements of the globus pallidus and the abnormalities in the metabolite ratios measured from either proton or phosphorus-31 MR spectra. Our results suggest that pallidal hyperintensity seen on T1WSE MR imaging of patients with chronic liver disease is not related to the functional abnormalities of the

  5. MIR and NIR group spectra of n-alkanes and 1-chloroalkanes

    NASA Astrophysics Data System (ADS)

    Kwaśniewicz, Michał; Czarnecki, Mirosław A.

    2015-05-01

    Numerous attempts were undertaken to resolve the absorption originating from different parts of alkanes. The separation of the contributions from the terminal and midchain methylene units was observed only in the spectra of solid alkanes at low temperatures. On the other hand, for liquid alkanes this effect was not reported as yet. In this study, ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-chloroalkanes in the liquid phase were measured from 1000 to 12,000 cm-1. The spectra were analyzed by using two-dimensional (2D) correlation approach and chemometrics methods. It was shown that in 2D asynchronous contour plots, constructed from the spectra of n-alkanes and 1-chloroalkanes, the methylene band was resolved into two components. These two components were assigned to the terminal and midchain methylene groups. For the first time, the contributions from these two molecular fragments were resolved in the spectra of liquid n-alkanes and 1-chloroalkanes. MCR-ALS resolved these spectra into two components that were assigned to the ethyl and midchain methylene groups. These components represent the group spectra that can be used for assignment, spectral analysis and prediction of unknown spectra. The spectral prediction based on the group spectra provides very good results for n-alkanes, especially in the first and second overtone regions.

  6. Experimental validation of equations for 2D DIC uncertainty quantification.

    SciTech Connect

    Reu, Phillip L.; Miller, Timothy J.

    2010-03-01

    Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.

  7. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  8. Characterizing the compositional variation of dissolved organic matter over hydrophobicity and polarity using fluorescence spectra combined with principal component analysis and two-dimensional correlation technique.

    PubMed

    Su, Ben-Sheng; Qu, Zhen; He, Xiao-Song; Song, Ying-Hao; Jia, Li-Min

    2016-05-01

    Dissolved organic matter (DOM) obtained from three leachates with different landfill ages was fractionated, and its compositional variation based on hydrophobicity and polarity was characterized by synchronous fluorescence spectra combined with principal component analysis (PCA) and two-dimensional correlation technique. The results showed that the bulk DOM and its fractions were comprised of tryosine-, tryptophan-, fulvic-, and humic-like substances. Tyrosine-like matter was dominant in the young leachate DOM and its fractions, while tryptophan-, fulvic-, and humic-like substances were the main components in the intermediate and old leachate DOMs and their fractions. Tryosine-, tryptophan-, fulvic-, and humic-like substances varied concurrently with the hydrophobicity and polarity. However, the change ratio of these substances was different for the three leachates. Tyrosine-like matter, humic-like materials, and fulvic-like substances were the most sensitive to the hydrophobicity and polarity in the young, intermediate, and old leachates, respectively. Such an integrated approach jointly enhances the characterization of the hydrophobicity- and polarity-dependent DOM fractions and provides a promising way to elucidate the environmental behaviors of different DOM species. PMID:26841775

  9. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  10. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  11. Line shape analysis of two-dimensional infrared spectra

    PubMed Central

    Guo, Qi; Pagano, Philip; Li, Yun-Liang; Kohen, Amnon; Cheatum, Christopher M.

    2015-01-01

    Ultrafast two-dimensional infrared (2D IR) spectroscopy probes femtosecond to picosecond time scale dynamics ranging from solvation to protein motions. The frequency-frequency correlation function (FFCF) is the quantitative measure of the spectral diffusion that reports those dynamics and, within certain approximations, can be extracted directly from 2D IR line shapes. A variety of methods have been developed to extract the FFCF from 2D IR spectra, which, in principle, should give the same FFCF parameters, but the complexity of real experimental systems will affect the results of these analyses differently. Here, we compare five common analysis methods using both simulated and experimental 2D IR spectra to understand the effects of apodization, anharmonicity, phasing errors, and finite signal-to-noise ratios on the results of each of these analyses. Our results show that although all of the methods can, in principle, yield the FFCF under idealized circumstances, under more realistic experimental conditions they behave quite differently, and we find that the centerline slope analysis yields the best compromise between the effects we test and is most robust to the distortions that they cause. PMID:26049447

  12. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  13. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  14. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  15. A cyclo‐P6 Ligand Complex for the Formation of Planar 2D Layers

    PubMed Central

    Heindl, Claudia; Peresypkina, Eugenia V.; Lüdeker, David; Brunklaus, Gunther; Virovets, Alexander V.

    2016-01-01

    Abstract The all‐phosphorus analogue of benzene, stabilized as middle deck in triple‐decker complexes, is a promising building block for the formation of graphene‐like sheet structures. The reaction of [(CpMo)2(μ,η6:η6‐P6)] (1) with CuX (X=Br, I) leads to self‐assembly into unprecedented 2D networks of [{(CpMo)2P6}(CuBr)4]n (2) and [{(CpMo)2P6}(CuI)2]n (3). X‐ray structural analyses show a unique deformation of the previously planar cyclo‐P6 ligand. This includes bending of one P atom in an envelope conformation as well as a bisallylic distortion. Despite this, 2 and 3 form planar layers. Both polymers were furthermore analyzed by 31P{1H} magic angle spinning (MAS) NMR spectroscopy, revealing signals corresponding to six non‐equivalent phosphorus sites. A peak assignment is achieved by 2D correlation spectra as well as by DFT chemical shift computations. PMID:26711699

  16. A cyclo-P6 Ligand Complex for the Formation of Planar 2D Layers.

    PubMed

    Heindl, Claudia; Peresypkina, Eugenia V; Lüdeker, David; Brunklaus, Gunther; Virovets, Alexander V; Scheer, Manfred

    2016-02-01

    The all-phosphorus analogue of benzene, stabilized as middle deck in triple-decker complexes, is a promising building block for the formation of graphene-like sheet structures. The reaction of [(CpMo)2 (μ,η(6) :η(6) -P6 )] (1) with CuX (X=Br, I) leads to self-assembly into unprecedented 2D networks of [{(CpMo)2 P6 }(CuBr)4 ]n (2) and [{(CpMo)2 P6 }(CuI)2 ]n (3). X-ray structural analyses show a unique deformation of the previously planar cyclo-P6 ligand. This includes bending of one P atom in an envelope conformation as well as a bisallylic distortion. Despite this, 2 and 3 form planar layers. Both polymers were furthermore analyzed by (31) P{(1) H} magic angle spinning (MAS) NMR spectroscopy, revealing signals corresponding to six non-equivalent phosphorus sites. A peak assignment is achieved by 2D correlation spectra as well as by DFT chemical shift computations. PMID:26711699

  17. Light field morphing using 2D features.

    PubMed

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126

  18. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  19. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  20. The physics of 2D microfluidic droplet ensembles

    NASA Astrophysics Data System (ADS)

    Beatus, Tsevi; Bar-Ziv, Roy H.; Tlusty, Tsvi

    2012-07-01

    We review non-equilibrium many-body phenomena in ensembles of 2D microfluidic droplets. The system comprises of continuous two-phase flow with disc-shaped droplets driven in a channel, at low Reynolds number of 10-4-10-3. The basic physics is that of an effective potential flow, governed by the 2D Laplace equation, with multiple, static and dynamic, boundaries of the droplets and the walls. The motion of the droplets induces dipolar flow fields, which mediate 1/r2 hydrodynamic interaction between the droplets. Summation of these long-range 2D forces over droplet ensembles converges, in contrast to the divergence of the hydrodynamic forces in 3D. In analogy to electrostatics, the strong effect of boundaries on the equations of motion is calculated by means of image dipoles. We first consider the dynamics of droplets flowing in a 1D crystal, which exhibits unique phonon-like excitations, and a variety of nonlinear instabilities-all stemming from the hydrodynamic interactions. Narrowing the channel results in hydrodynamic screening of the dipolar interactions, which changes salient features of the phonon spectra. Shifting from a 1D ordered crystal to 2D disordered ensemble, the hydrodynamic interactions induce collective density waves and shocks, which are superposed on single-droplet randomized motion and dynamic clustering. These collective modes originate from density-velocity coupling, whose outcome is a 1D Burgers equation. The rich observational phenomenology and the tractable theory render 2D droplet ensembles a suitable table-top system for studying non-equilibrium many-body physics with long-range interactions.

  1. A SPITZER c2d LEGACY SURVEY TO IDENTIFY AND CHARACTERIZE DISKS WITH INNER DUST HOLES

    SciTech Connect

    Merin, Bruno; Brown, Joanna M.; Herczeg, Gregory J.; Van Dishoeck, Ewine F.; Oliveira, Isa; Lahuis, Fred; Bottinelli, Sandrine; Augereau, Jean-Charles; Olofsson, Johan; Evans, Neal J.; Harvey, Paul M.; Cieza, Lucas; Spezzi, Loredana; Prusti, Timo; Alcala, Juan M.; Blake, Geoffrey A.; Bayo, Amelia; Geers, Vincent G.; Walter, Frederick M.; Chiu, Kuenley

    2010-08-01

    Understanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipate is complicated due to the difficulty of finding objects that are clearly in the transition phase of losing their surrounding material. We use Spitzer Infrared Spectrograph (IRS) spectra to examine 35 photometrically selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3 mm photometry to measure disk masses. Based on detailed spectral energy distribution modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria to identify disks with inner holes from Spitzer photometry, and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the young stellar object population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than in previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample, although the 10 {mu}m feature strength above the continuum declines for holes with radii larger than {approx}7 AU. In contrast, polycyclic aromatic hydrocarbons are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole-forming process in most cases.

  2. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  3. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  4. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  5. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  6. 2-d Finite Element Code Postprocessor

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  7. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  8. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  9. Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.

    PubMed

    Gao, Feng; Cundiff, Steven T; Li, Hebin

    2016-07-01

    We have implemented double-quantum 2D spectroscopy on a rubidium vapor and shown that this technique provides sensitive and background-free detection of the dipole-dipole interaction. The 2D spectra include signals from both individual atoms and interatomic interactions, allowing quantitative studies of the interaction. A theoretical model based on the optical Bloch equations is used to reproduce the experimental spectrum and confirm the origin of double-quantum signals. PMID:27367074

  10. A nonmagnetic impurity in a 2D quantum critical antiferromagnet

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2003-03-01

    We compute the properties of a mobile hole and a static impurity injected into a two-dimensional antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point. A static S=1/2 impurity doped into a quantum-disordered spin gap system induces a local moment with spin S=1/2 and a corresponding Curie-like impurity susceptibility, while the same impurity in a Néel ordered state only gives a finite impurity susceptibility. For the quantum critical system however an interesting field-theoretical prediction has been made that there the impurity spin susceptibility still has a Curie-like divergence, but with a universal effective spin that is neither an integer nor a half-odd integer [1]. In large-scale quantum Monte Carlo (QMC) simulations using the loop algorithm we calculate the impurity susceptibility and find that, unfortunately, this effect is not observable since the renormalization of the effective spin away from S=1/2 is minimal. Other predictions of the field theory, such as a new critical exponent η' describing the time-dependent impurity spin correlations can however be confirmed [2]. Next we compute the spectral function of a hole injected into a 2D antiferromagnet or superconductor in the vicinity of a magnetic quantum critical point [3]. We show that, near van Hove singularities, the problem maps onto that of a static vacancy. This allows the calculation of the spectral function in a QMC simulation without encountering the negative sign problem. We find a vanishing quasiparticle residue at the critical point, a new exponent η_h0.080.04 describing the frequency dependence of the spectral function G_h(ω)(ɛ_0-ω)-1+ηh and discuss possible relevance to photoemission spectra of cuprate superconductors near the antinodal points. ^1 S. Sachdev, C. Buragohain and M. Vojta, Science 286, 2479 (1999). ^2 M. Troyer, in Prog. Theor. Phys. Suppl. 145 (2002); M. Körner and M. Troyer, ibid. ^3 S. Sachdev, M. Troyer, and M. Vojta, Phys. Rev

  11. Characterization of Porous Medium Properties Using 2D NMR

    NASA Astrophysics Data System (ADS)

    Sun, Boqin; Dunn, Keh-Jim

    2003-03-01

    We have successfully applied the concept of 2D NMR to the characterization of properties of fluid-saturated porous medium. Using a two-windowed modified CPMG pulse sequence, we were able to explore the magnetic internal filed gradient distribution within the pore space of a fluid-saturated porous medium due to magnetic susceptibility contrast between the solid matrix and pore fluid. Similar scheme is used to identify and quantify different types of pore fluids, such as oil, water, and gas, based on the contrast in their diffusion coefficients. The magic angle spinning technique (MAS) can also be applied in the 2D NMR framework for delineating the chemical shift spectra of the pore fluids in a porous medium at different T1 or T2 relaxation times. The results can be displayed in a two-dimensional plot, with one axis being the T1 or T2 relaxation times, the other axis being the internal field gradient, diffusion coefficient, or chemical shift, and the third axis being the proton population. Our preliminary laboratory work indicates that the 2D NMR approach can be a powerful tool for the characterization of properties of fluid-saturated porous medium, such as fluid typing, oil viscosity determination, surface wettability, etc.

  12. Discrimination of five species of Fritillaria and its extracts by FT-IR and 2D-IR

    NASA Astrophysics Data System (ADS)

    Li, Dan; Jin, Zhexiong; Zhou, Qun; Chen, Jianbo; Lei, Yu; Sun, Suqin

    2010-06-01

    Bulbus Fritillariae (in Chinese named Beimu), referred to the bulbs of several Fritillaria species ( Liliaceae), is a commonly used anti-tussive and expectorant herb in traditional Chinese medicine (TCM) for more than 2000 years. The objective of this study is to discriminate five species of Beimu herbs and their total alkaloid extracts by Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy, and two-dimensional correlation infrared spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicated that, Beimu and their extract residues contain a large amount of starch, since some characteristic absorption peaks of the starch, such as 1158, 1080, 1015 and 987 cm -1 can be observed. Further more, the characteristic absorption peaks of the sulfate which arouse at 1120 ± 5 and 618 cm -1 in the IR spectra of Beimu aqueous extracts can be find. This validated that people used the sulfur fumigation method in the processing. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.

  13. Kinematics of segregating granular mixtures in quasi-2D heaps

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard

    2012-11-01

    Segregation of granular mixtures of different sized particles in heap flow appears in a variety of contexts. Our recent experiments showed that when bi-disperse mixtures of different sized spherical particles fill a quasi-two dimensional (2D) silo, three different final heap configurations - stratified, segregated, and mixed - occur, depending on either 2D flow rate or heap rise velocity. However, since it is difficult to measure the kinematic details of the segregating granular mixtures in heap flow experimentally, the underlying mechanisms for how 2D flow rate or heap rise velocity influences final particle configurations have not been well understood. In this work, we use the discrete element method (DEM) to simulate heap flow of bi-disperse mixtures in experimental scale quasi-2D heaps. The final particle distributions in the simulations agree quantitatively with experiments. We measure several key kinematic properties of the segregating granular mixtures including the local flow rate, velocity, and flowing layer thickness. We correlate the characteristics of these kinematic properties with the local particle distributions of the mixtures. This provides new insights for understanding the mechanisms of segregation and stratification in heap flow including the linear decrease in flow rate and maximum velocity down the heap as well as the relatively constant flowing layer thickness along the length of the heap. Funded by Dow Chemical Co.

  14. 2D exchange 31P NMR spectroscopy of bacteriophage M13 and tobacco mosaic virus.

    PubMed Central

    Magusin, P C; Hemminga, M A

    1995-01-01

    Two-dimensional (2D) exchange 31P nuclear magnetic resonance spectroscopy is used to study the slow overall motion of the rod-shaped viruses M13 and tobacco mosaic virus in concentrated gels. Even for short mixing times, observed diagonal spectra differ remarkably from projection spectra and one-dimensional spectra. Our model readily explains this to be a consequence of the T2e anisotropy caused by slow overall rotation of the viruses about their length axis. 2D exchange spectra recorded for 30% (w/w) tobacco mosaic virus with mixing times < 1 s do not show any off-diagonal broadening, indicating that its overall motion occurs in the sub-Hz frequency range. In contrast, the exchange spectra obtained for 30% M13 show significant off-diagonal intensity for mixing times of 0.01 s and higher. A log-gaussian distribution around 25 Hz of overall diffusion coefficients mainly spread between 1 and 10(3) Hz faithfully reproduces the 2D exchange spectra of 30% M13 recorded at various mixing times in a consistent way. A small but notable change in diagonal spectra at increasing mixing time is not well accounted for by our model and is probably caused by 31P spin diffusion. PMID:7756532

  15. 2D properties of core turbulence on DIII-D and comparison to gyrokinetic simulations

    SciTech Connect

    Shafer, Morgan W; Fonck, R. J.; McKee, G. R.; Holland, Chris; White, A. E.; Schlossberg, D J

    2012-01-01

    Quantitative 2D characteristics of localized density fluctuations are presented over the range of 0.3 < r/a < 0.9 in L-mode plasmas on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. Broadband density fluctuations increase in amplitude from (n) over tilde/n < 0.5% in the deep core to (n) over tilde/n similar to 2.5% near the outer region. The observed Doppler-shift due to the E x B velocity matches well with the measured turbulence group and phase velocities (in toroidally rotating neutral beam heated plasmas). Turbulence decorrelation rates are found to be similar to 200 kHz at the edge and to decrease toward the core (0.45 < r/a < 0.9) where they approach the E x B shearing rate (similar to 50 kHz). Radial and poloidal correlation lengths are found to scale with the ion gyroradius and exhibit an asymmetric poloidally elongated eddy structure. The ensemble-averaged turbulent eddy structure changes its tilt with respect to the radial-poloidal coordinates in the core, consistent with an E x B shear mechanism. The 2D spatial correlation and wavenumber spectra [S(k(r); k(theta))] are presented and compared to nonlinear flux-tube GYRO simulations at two radii, r/a = 0.5 and r/a = 0.75, showing reasonable overall agreement, but the GYRO spectrum exhibits a peak at finite kr for r/a = 0.75 that is not observed experimentally; E x B shear may cause this discrepancy. (C) 2012 American Institute of Physics.

  16. A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.

    PubMed

    Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong

    2015-09-01

    Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508

  17. Dopamine D2/D3 receptor availability and venturesomeness.

    PubMed

    Bernow, Nina; Yakushev, Igor; Landvogt, Christian; Buchholz, Hans-Georg; Smolka, Michael N; Bartenstein, Peter; Lieb, Klaus; Gründer, Gerhard; Vernaleken, Ingo; Schreckenberger, Mathias; Fehr, Christoph

    2011-08-30

    The construct of impulsivity is considered as a major trait of personality. There is growing evidence that the mesolimbic dopamine system plays an important role in the modulation of impulsivity and venturesomeness, the two key components within the impulsivity-construct. The aim of the present study was to explore an association between trait impulsivity measured with self-assessment and the dopaminergic neurotransmission as measured by positron emission tomography (PET) in a cohort of healthy male subjects. In vivo D2/D3 receptor availability was determined with [(18)F]fallypride PET in 18 non-smoking healthy subjects. The character trait impulsivity was measured using the Impulsiveness-Venturesomeness-Empathy questionnaire (I7). Image processing and statistical analysis was performed on a voxel-by-voxel basis using statistical parametric mapping (SPM) software. The I7 subscale venturesomeness correlated positively with the D2/D3 receptor availability within the left temporal cortex and the thalamus. Measures on the I7 subscale impulsiveness and empathy did not correlate with the D2/D3 receptor availability in any brain region investigated. Our results suggest the involvement of extrastriatal dopaminergic neurotransmission in venturesomeness, a component of impulsivity. PMID:21689908

  18. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  19. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  20. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  1. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  2. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  3. 2D-Crystal-Based Functional Inks.

    PubMed

    Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia

    2016-08-01

    The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554

  4. The 2D lingual appliance system.

    PubMed

    Cacciafesta, Vittorio

    2013-09-01

    The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953

  5. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  6. Measurement of 2D birefringence distribution

    NASA Astrophysics Data System (ADS)

    Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru

    1992-10-01

    A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.

  7. The Relationship Between Digit Ratio (2D:4D) and Sexual Orientation in Men from China.

    PubMed

    Xu, Yin; Zheng, Yong

    2016-04-01

    We examined the relationship between 2D:4D digit ratio and sexual orientation in men from China and analyzed the influences of the components used to assess sexual orientation and the criteria used to classify individuals as homosexual on this relationship. A total of 309 male and 110 female participants took part in a web-based survey. Our results showed that heterosexual men had a significantly lower 2D:4D than heterosexual women and exclusively homosexual men had a significantly higher left 2D:4D than heterosexual men whereas only exclusively homosexual men had a significantly higher right 2D:4D than heterosexual men when sexual orientation was assessed via sexual attraction. The left 2D:4D showed a significant positive correlation with sexual identity, sexual attraction, and sexual behavior, and the right 2D:4D showed a significant positive correlation with sexual attraction. The effect sizes for differences in 2D:4D between homosexual and heterosexual men varied according to criteria used to classify individuals as homosexual and sexual orientation components; the more stringent the criteria (scores closer to the homosexual category), the larger the effect sizes; further, sexual attraction yielded the largest effect size. There were no significant effects of age and latitude on Chinese 2D:4D. This study contributes to the current understanding of the relationship between 2D:4D and male sexual orientation. PMID:25957135

  8. Parallel stitching of 2D materials

    DOE PAGESBeta

    Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al

    2016-01-27

    Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.

  9. Parallel Stitching of 2D Materials.

    PubMed

    Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing

    2016-03-01

    Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882

  10. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  11. External reflection FTIR of peptide monolayer films in situ at the air/water interface: experimental design, spectra-structure correlations, and effects of hydrogen-deuterium exchange.

    PubMed Central

    Flach, C R; Brauner, J W; Taylor, J W; Baldwin, R C; Mendelsohn, R

    1994-01-01

    A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution. PMID:7919013

  12. AUTOMATED DETERMINATION OF PRECURSOR ION, PRODUCT ION, AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF COMPOSITE MASS SPECTRA USING ION CORRELATION BASED ON EXACT MASSES AND RELATIVE ISOTOPIC ABUNDANCES

    EPA Science Inventory

    After a dispersive event, rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A Direct Analysis in Real Time (DART)® ion source interfaced to a JEOL AccuTOF® mass spectrometer provided exact masses accurate to ...

  13. AUTOMATED ELEMENTAL COMPOSITION DETERMINATION AND CORRELATION OF PRECURSOR WITH PRODUCT IONS BASED ON ORTHOGONAL ACCELERATION, TIME-OF-FLIGHT MASS SPECTRA

    EPA Science Inventory

    For more than a decade in our laboratory, elemental compositions of ions in mass spectra havebeen routinely determined by measuring exact masses and relative isotopic abundances of ions in isotopicclusters using a GC coupled to a double focusing mass spectrometer.1 HPLC interfac...

  14. Observation and theory of reorientation-induced spectral diffusion in polarization-selective 2D IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kramer, Patrick L.; Nishida, Jun; Giammanco, Chiara H.; Tamimi, Amr; Fayer, Michael D.

    2015-05-01

    In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, , than in the standard all parallel configuration, , in which all four pulses have the same polarization. The 2D IR experiment with polarizations ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system.

  15. Observation and theory of reorientation-induced spectral diffusion in polarization-selective 2D IR spectroscopy.

    PubMed

    Kramer, Patrick L; Nishida, Jun; Giammanco, Chiara H; Tamimi, Amr; Fayer, Michael D

    2015-05-14

    In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, 〈XXY Y〉, than in the standard all parallel configuration, 〈XXXX〉, in which all four pulses have the same polarization. The 2D IR experiment with polarizations 〈XY XY〉 ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the 〈XXXX〉 configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system. PMID:25978898

  16. [Progress in Application of Two-Dimensional Correlation Spectroscopy for Detection of Food Quality].

    PubMed

    Yang, Ren-jie; Yang, Yan-rong; Liu, Hai-xue; Dong, Gui-mei; Du, Yan-hong; Shan, Hui-yong; Zhang, Wei-yu

    2015-08-01

    In recent years, the food safety and quality has always been a serious issue. Therefore, it is urgent to develop a rapid and widely available method to determine the quality of food. Due to high spectral resolution, good spectral selectivity and good ability of spectrogram analysis, the technology of two-dimensional (2D) correlation spectroscopy is an effective method for solving three major problems encountered by the conventional one-dimensional (1D) spectrum: low selectivity of the spectra, difficulty in extracting the information of the spectral feature and difficulty in spectrogram analysis. Therefore, 2D correlation spectroscopy, which is suited to distinguish similar samples hardly distinguished by the conventional 1D spectroscopy, has been successfully applied in many complex biological systems. The developmental process, the experimental way to obtain spectrum, the fundamental mathematical principle and the properties of 2D correlation spectroscopy were introduced in this paper. At the same time, it is pointed out that the origin of weak characteristic bands of substance can be verified in terms of the positive or negative corss peaks in synchronous 2D correlation spectrum combined with the existence or inexistence of corss peaks in asynchronous 2D correlation spectrum. The application of 2D near-infrared, mid-infrared, fluorescence, and raman correlation spectroscopy in the detection of food quality and adulteration, concentrated specifically on diary product, wine, oil, meat, honey, and rice were reviewed. Finally, the limitations and future development prospects were pointed out. PMID:26672279

  17. Infrared imaging of MDA-MB-231 breast cancer cell line phenotypes in 2D and 3D cultures.

    PubMed

    Smolina, Margarita; Goormaghtigh, Erik

    2015-04-01

    One current challenge in the field of breast cancer infrared imaging is the identification of carcinoma cell subtypes in the tissue. Neither sequencing nor immunochemistry is currently able to provide a cell by cell thorough classification. The latter is needed to build accurate statistical models capable of recognizing the diversity of breast cancer cell lines that may be present in a tissue section. One possible approach for overcoming this problem is to obtain the IR spectral signature of well-characterized tumor cell lines in culture. Cultures in three-dimensional matrices appear to generate an environment that mimics better the in vivo environment. There are, at present, series of breast cancer cell lines that have been thoroughly characterized in two- and three-dimensional (2D and 3D) cultures by full transcriptomics analyses. In this work, we describe the methods used to grow, to process, and to characterize a triple-negative breast cancer cell line, MDA-MB-231, in 3D laminin-rich extracellular matrix (lrECM) culture and compare it with traditional monolayer cultures and tissue sections. While unsupervised analyses did not completely separate spectra of cells grown in 2D from 3D lrECM cultures, a supervised statistical analysis resulted in an almost perfect separation. When IR spectral responses of epithelial tumor cells from clinical triple-negative breast carcinoma samples were added to these data, a principal component analysis indicated that they cluster closer to the spectra of 3D culture cells than to the spectra of cells grown on a flat plastic substrata. This result is encouraging because of correlating well-characterized cell line features with clinical biopsies. PMID:25568895

  18. Simultaneous, coincident 2-D ACAR and DBAR using segmented HPGe detectors incorporating sub-pixel interpolation

    NASA Astrophysics Data System (ADS)

    Williams, Christopher S.; Burggraf, Larry W.; Adamson, Paul E.; Petrosky, James C.; Oxley, Mark E.

    2010-04-01

    A three-dimensional Positron Annihilation Spectrometry System (3D PASS) for determination of 3D electron-positron (e--e+) momentum densities by measuring coincident annihilation photons was designed, constructed and characterized. 3D PASS collects a single data set including correlated photon energies and coincident photon positions which are typically collected separately by two-dimensional angular correlation of annihilation radiation (2D ACAR) and two-detector coincident Doppler broadening of annihilation radiation (CDBAR) spectrometry. 3D PASS is composed of two position-sensitive, high-purity germanium (HPGe) double-sided strip detectors (DSSD(s)) linked together by a 32-channel, 50 MHz digital electronics suite. The DSSDs data were analyzed to determine location of photon detection events using an interpolation method to achieve a spatial resolution less than the 5-mm width of the DSSDs' charge collection strips. The interpolation method relies on measuring a figure-of-merit proportional to the area of the transient charges observed on both strips directly adjacent to the charge collection strip detecting the full charge deposited by the annihilation photon. This sub-pixel resolution, corresponding to the error associated with event location within a sub-pixel was measured for both DSSDs using the approach outlined in Williams et al [1] and was on the order of ± 0.20 mm (± one-standard deviation). As a result of the sub-pixel resolution, the distance between the DSSDs and material sample was reduced by a factor of five compared to what is typically required in 2D ACAR systems was necessary to achieve 0.5-mrad angular resolution. This reduction in the system's footprint decreases attenuation of the annihilation photons in the air between the material sample and the DSSDs and increases the solid angle between the sample and the DSSDs, ultimately resulting in higher system detection efficiency. 3D PASS was characterized in the same manner comparable to state

  19. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  20. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  1. Observation of kinetic networks of hydrogen-bond exchange using 2D IR echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Yung Sam; Hochstrasser, Robin M.

    The ultrafast H-bond motion in acetonitrile/methanol and of methanol and water around a dicarbonyl (piperidone) dominates the mechanism of vibrational coherence transfer in linear and 2D IR echo spectra. Multiple state coherence transfer and energy transfer are seen at and between the two carbonyl groups of the piperidone in both water and methanol.

  2. The 2d MIT: The Pseudogap and Fermi Liquid Theory

    NASA Astrophysics Data System (ADS)

    Castner, T. G.

    2005-06-01

    Fermi liquid theory for the 2d metal-insulator transition is extended to include the correlation gap in the density-of-states. The results are consistent with the scaling form g=gce[on(To/T)] at T larger than a characteristic T* ∝ xTc (Tc=Ec= mobility edge). The two-component model n1+nloc=n=nc(1+x) for n>nc is required and the theory explains the T-dependence of the data of Hanein et al. for p-type GaAs.

  3. Region-based Statistical Analysis of 2D PAGE Images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise; Korostyshevskiy, Valeriy R.

    2011-01-01

    A new comprehensive procedure for statistical analysis of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) images is proposed, including protein region quantification, normalization and statistical analysis. Protein regions are defined by the master watershed map that is obtained from the mean gel. By working with these protein regions, the approach bypasses the current bottleneck in the analysis of 2D PAGE images: it does not require spot matching. Background correction is implemented in each protein region by local segmentation. Two-dimensional locally weighted smoothing (LOESS) is proposed to remove any systematic bias after quantification of protein regions. Proteins are separated into mutually independent sets based on detected correlations, and a multivariate analysis is used on each set to detect the group effect. A strategy for multiple hypothesis testing based on this multivariate approach combined with the usual Benjamini-Hochberg FDR procedure is formulated and applied to the differential analysis of 2D PAGE images. Each step in the analytical protocol is shown by using an actual dataset. The effectiveness of the proposed methodology is shown using simulated gels in comparison with the commercial software packages PDQuest and Dymension. We also introduce a new procedure for simulating gel images. PMID:21850152

  4. A 2-D ECE Imaging Diagnostic for TEXTOR

    NASA Astrophysics Data System (ADS)

    Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.

    2002-11-01

    A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.

  5. Static & Dynamic Response of 2D Solids

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  6. Explicit 2-D Hydrodynamic FEM Program

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  7. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  8. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    SciTech Connect

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  9. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  10. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  11. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  12. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  13. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  14. TACO (2D AND 3D). Taco

    SciTech Connect

    Mason, W.E.

    1983-03-01

    A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.

  15. Atmospheric Outflows from Hot Jupiters: 2D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Uribe, A.; Matsakos, T.; Konigl, A.

    2015-01-01

    Recent observations of stellar hydrogen Ly-α line absorption during transits of some hot Jupiter exoplanets suggest the presence of a dense, fast wind that is blowing from planetary atmosphere tep{2003Natur.422..143V,2007ApJ...671L..61B}. Modeling efforts include 1D hydrodynamic models tep{2009ApJ...693...23M,2004Icar..170..167Y,2007P&SS...55.1426G} and 2D isothermal magnetized wind models tep{2014arXiv1404.5817T}, among others. In this work, we model the 2D structure of the irradiated upper atmosphere of a hot Jupiter planet and its interaction with the planetary magnetic field. We calculate self consistently the heating by stellar UV radiation and the cooling of the atmosphere by Ly-α emission. We solve for the ionization structure assuming a 100% hydrogen atmosphere, accounting for the radiative ionization, recombination and advection of the gas. We show the effect of stellar tides and planetary magnetic field on the planet outflow and calculate the Ly-α transmission spectra of the resulting atmosphere.

  16. Evaluation of 2D spatially selective MR spectroscopy using parallel excitation at 7 T

    PubMed Central

    Haas, Martin; Darji, Niravkumar; Speck, Oliver

    2015-01-01

    Background In this work, two-dimensional (2D) spatially selective magnetic resonance spectroscopy (MRS) was evaluated in both phantom and human brain using 8-channel parallel excitation (pTX) at 7 T and compared to standard STEAM. Materials and methods A 2D spiral excitation k-space trajectory was segmented into multiple individual segments to increase the bandwidth. pTX was used to decrease the number of segments by accelerating the trajectory. Different radio frequency (RF) shim settings were used for refocusing, water suppression and fat saturation pulses. Results Phantom experiments demonstrate that, although segmented 2D excitation provided excellent spatial selectivity and spectral quality, STEAM outperformed it in terms of outer volume suppression with 0.6% RMSD compared to 1.7%, 2.5%, 3.9% and 5.5% RMSDs for acceleration factors of R=1, 2, 3 and 4, respectively. Seven major metabolites [choline (Cho), creatine (Cr), phosphocreatine (PCr), glutamate (Glu), glutamine (Gln), glutathione (GSH) and N-acetylaspartate (NAA)] were detected with sufficient accuracy [Cramér-Rao lower bounds (CRLBs) <20%] from the in vivo spectra of both methods. Conservative RF power limits resulted in reduced SNR for 2D selective MR spectra (SNR 131 and 82 for R=1 and 2, respectively) compared to the reference STEAM spectrum (SNR 199). Conclusions Single voxel spectra acquired using 2D selective MRS with and without pTX showed very good agreement with the reference STEAM spectrum. Efficient SAR management of the 2D selective MRS sequence would potentially improve the SNR of spectra. PMID:26029637

  17. Tomosynthesis imaging with 2D scanning trajectories

    NASA Astrophysics Data System (ADS)

    Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2011-03-01

    Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.

  18. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  19. Engineering light outcoupling in 2D materials.

    PubMed

    Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462

  20. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles

    PubMed Central

    Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.

    2015-01-01

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc) -fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development. PMID:25371538

  1. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    NASA Astrophysics Data System (ADS)

    Kraning-Rush, Casey M.; Carey, Shawn P.; Califano, Joseph P.; Smith, Brooke N.; Reinhart-King, Cynthia A.

    2011-02-01

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.

  2. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.

    2014-11-01

    Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.

  3. Similarities between 2D and 3D convection for large Prandtl number

    NASA Astrophysics Data System (ADS)

    Pandey, Ambrish; Verma, Mahendra K.; Chatterjee, Anando G.; Dutta, Biplab

    2016-06-01

    Using direct numerical simulations of Rayleigh-B\\'{e}nard convection (RBC), we perform a comparative study of the spectra and fluxes of energy and entropy, and the scaling of large-scale quantities for large and infinite Prandtl numbers in two (2D) and three (3D) dimensions. We observe close similarities between the 2D and 3D RBC, in particular the kinetic energy spectrum $E_u(k) \\sim k^{-13/3}$, and the entropy spectrum exhibits a dual branch with a dominant $k^{-2}$ spectrum. We showed that the dominant Fourier modes in the 2D and 3D flows are very close. Consequently, the 3D RBC is quasi two-dimensional, which is the reason for the similarities between the 2D and 3D RBC for large- and infinite Prandtl numbers.

  4. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  5. 2-D/3-D ECE imaging data for validation of turbulence simulations

    NASA Astrophysics Data System (ADS)

    Choi, Minjun; Lee, Jaehyun; Yun, Gunsu; Lee, Woochang; Park, Hyeon K.; Park, Young-Seok; Sabbagh, Steve A.; Wang, Weixing; Luhmann, Neville C., Jr.

    2015-11-01

    The 2-D/3-D KSTAR ECEI diagnostic can provide a local 2-D/3-D measurement of ECE intensity. Application of spectral analysis techniques to the ECEI data allows local estimation of frequency spectra S (f) , wavenumber spectra S (k) , wavernumber and frequency spectra S (k , f) , and bispectra b (f1 ,f2) of ECE intensity over the 2-D/3-D space, which can be used to validate turbulence simulations. However, the minimum detectable fluctuation amplitude and the maximum detectable wavenumber are limited by the temporal and spatial resolutions of the diagnostic system, respectively. Also, the finite measurement area of the diagnostic channel could introduce uncertainty in the spectra estimation. The limitations and accuracy of the ECEI estimated spectra have been tested by a synthetic ECEI diagnostic with the model and/or fluctuations calculated by GTS. Supported by the NRF of Korea under Contract No. NRF-2014M1A7A1A03029881 and NRF-2014M1A7A1A03029865 and by U.S. DOE grant DE-FG02-99ER54524.

  6. Homo- and heteronuclear 2D NMR approaches to analyse a mixture of deuterated unlike/like stereoisomers using weakly ordering chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Ben Ali, Karim; Lafon, Olivier; Zimmermann, Herbert; Guittet, Eric; Lesot, Philippe

    2007-08-01

    We describe several homo- and heteronuclear 2D NMR strategies dedicated to the analysis of anisotropic 2H spectra of a mixture of dideuterated unlike/like stereoisomers with two remote stereogenic centers, using weakly orienting chiral liquid crystals. To this end, we propose various 2D correlation experiments, denoted "D(H) nD" or "D(H) nC" (with n = 1, 2), that involve two heteronuclear polarization transfers of INEPT-type with one or two proton relays. The analytical expressions of correlation signals for four pulse sequences reported here were calculated using the product-operators formalism for spin I = 1 and S = 1/2. The features and advantages of each scheme are presented and discussed. The efficiency of these 2D sequences is illustrated using various deuterated model molecules, dissolved in organic solutions of polypeptides made of poly- γ-benzyl- L-glutamate (PBLG) or poly- ɛ-carbobenzyloxy- L-lysine (PCBLL) and NMR numerical simulations.

  7. A Spatial Correlation Model of Peak Ground Acceleration and Response Spectra Based on Data of the Istanbul Earthquake Rapid Response and Early Warning System

    NASA Astrophysics Data System (ADS)

    Wagener, Thomas; Goda, Katsuichiro; Erdik, Mustafa; Daniell, James; Wenzel, Friedemann

    2016-04-01

    Ground motion intensity measures such as the peak ground acceleration (PGA) and the pseudo spectral acceleration (PSA) at two sites due to the same seismic event are correlated. The spatial correlation needs to be considered when modelling ground-motion fields for seismic loss assessments, since it can have a significant influence on the statistical moments and probability distribution of aggregated seismic loss of a building portfolio. Empirical models of spatial correlation of ground motion intensity measures exist only for a few seismic regions in the world such as Japan, Taiwan and California, since for this purpose a dense observation network of earthquake ground motion is required. The Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) provides one such dense array with station spacing of typically 2 km in the urban area of Istanbul. Based on the records of eight small to moderate (Mw3.5 - Mw5.1) events, which occurred since 2003 in the Marmara region, we establish a model of intra-event spatial correlation for PGA and PSA up to the natural period of 1.0 s. The results indicate that the correlation coefficients of PGA and short-period PSA decay rapidly with increasing interstation distance, resulting in correlation lengths of approximately 2-3 km, while correlation lengths at longer natural periods (above 0.5 s) exceed 5 km. Finally, we implement the correlation model in a Monte Carlo simulation to evaluate economic loss in Istanbul's district Zeytinburnu due to an Mw7.2 scenario earthquake.

  8. The properties of cross-correlation and spectra of the low-mass X-ray binary 4U 1608-52

    SciTech Connect

    Lei, Ya-Juan; Yuan, Hai-Long; Dong, Yi-Qiao; Zhang, Hao-Tong; Zhang, Cheng-Min; Zhao, Yong-Heng; Zhang, Shu; Qu, Jin-Lu; Wang, Ya-Nan; Li, Zhi-Bing

    2014-03-01

    With RXTE data, we analyzed the cross-correlation function between the soft and hard X-rays of the transient atoll source 4U 1608-52. We found anti-correlations in three outbursts occurred in 1998, 2002, and 2010, and we found significant time lags of several hundreds of seconds in the latter two outbursts. Our results show no correlation between the soft and hard X-rays in the extreme island state and a dominated positive correlation in the lower banana state. Anti-correlations are presented at the upper banana state for the outburst of 2010 and at the island and the lower left banana states for the other two outbursts. So far for atoll sources, the cross-correlation has been studied statistically only for 4U 1735-44, where anti-correlations showed up in the upper banana state. Here our investigation on 4U 1608-52 provides a similar result in its 2010 outburst. In addition, we notice that the luminosities in the upper banana of the 1998 and 2002 outbursts are about 1.5 times that of the 2010 outburst whose luminosity in the upper banana is close to that of 4U 1735-44. The results suggest that the states in the color-color diagram of a source could be correlated with the luminosity of the source. A further spectral analysis during the 2010 outburst is also shown, which suggests that the disk can be a little truncated in the upper banana. The feature on the upper banana is similar to the previous results of the flaring branch in Z sources.

  9. The Properties of Cross-correlation and Spectra of the Low-mass X-Ray Binary 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Lei, Ya-Juan; Zhang, Shu; Qu, Jin-Lu; Yuan, Hai-Long; Wang, Ya-Nan; Dong, Yi-Qiao; Zhang, Hao-Tong; Li, Zhi-Bing; Zhang, Cheng-Min; Zhao, Yong-Heng

    2014-03-01

    With RXTE data, we analyzed the cross-correlation function between the soft and hard X-rays of the transient atoll source 4U 1608-52. We found anti-correlations in three outbursts occurred in 1998, 2002, and 2010, and we found significant time lags of several hundreds of seconds in the latter two outbursts. Our results show no correlation between the soft and hard X-rays in the extreme island state and a dominated positive correlation in the lower banana state. Anti-correlations are presented at the upper banana state for the outburst of 2010 and at the island and the lower left banana states for the other two outbursts. So far for atoll sources, the cross-correlation has been studied statistically only for 4U 1735-44, where anti-correlations showed up in the upper banana state. Here our investigation on 4U 1608-52 provides a similar result in its 2010 outburst. In addition, we notice that the luminosities in the upper banana of the 1998 and 2002 outbursts are about 1.5 times that of the 2010 outburst whose luminosity in the upper banana is close to that of 4U 1735-44. The results suggest that the states in the color-color diagram of a source could be correlated with the luminosity of the source. A further spectral analysis during the 2010 outburst is also shown, which suggests that the disk can be a little truncated in the upper banana. The feature on the upper banana is similar to the previous results of the flaring branch in Z sources.

  10. Determination of melamine of milk based on two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ren-jie; Liu, Rong; Xu, Kexin

    2012-03-01

    The adulteration of milk with harmful substances is a threat to public health and beyond question a serious crime. In order to develop a rapid, cost-effective, high-throughput analysis method for detecting of adulterants in milk, the discriminative analysis of melamine is established in milk based on the two-dimensional (2D) correlation infrared spectroscopy in present paper. Pure milk samples and adulterated milk samples with different content of melamine were prepared. Then the Fourier Transform Infrared spectra of all samples were measured at room temperature. The characteristics of pure milk and adulterated milk were studied by one-dimensional spectra. The 2D NIR and 2D IR correlation spectroscopy were calculated under the perturbation of adulteration concentration. In the range from 1400 to 1800 cm-1, two strong autopeaks were aroused by melamine in milk at 1464 cm-1 and 1560 cm-1 in synchronous spectrum. At the same time, the 1560 cm-1 band does not share cross peak with the 1464 cm-1 band, which further confirm that the two bands have the same origin. Also in the range from 4200 to 4800 cm-1, the autopeak was shown at 4648 cm-1 in synchronous spectrum of melamine in milk. 2D NIR-IR hetero-spectral correlation analysis confirmed that the bands at 1464, 1560 and 4648 cm-1 had the same origin. The results demonstrated that the adulterant can be discriminated correctly by 2D correlation infrared spectroscopy.

  11. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  12. 2D XAFS-XEOL Spectroscopy - Some recent developments

    NASA Astrophysics Data System (ADS)

    Ward, M. J.; Smith, J. G.; Regier, T. Z.; Sham, T. K.

    2013-03-01

    The use of optical photons to measure the modulation of the absorption coefficient upon X-ray excitation, or optical XAFS, is of particular interest for application to the study of light emitting semiconducting nanomaterials due to the additional information that may be gained. The potential for site-selectivity, elemental and excitation energy specific luminescence decay channels, and surface vs. bulk effects all make the use of X-ray excited optical luminescence (XEOL) desirable as a detection method. Previous experiments have made use of a monochromator to select the optical emission wavelength used to monitor optical XAFS. This method of detection suffers from the primary limitation of only being able to monitor the optical response at one emission wavelength. By combining the high resolution soft X-ray Spherical Grating Monochromator beam-line at the Canadian Light Source with an Ocean Optics QE 65000 fast CCD spectrophotometer and custom integration software we have developed a technique for collecting 2D XAFS-XEOL spectra, in which the excitation energy is scanned and a XEOL spectra is collected for every energy value. Herein we report the development of this technique and its capabilities using the study of the luminescence emitted from single crystal zinc oxide as an example.

  13. Detection of an endogenous urinary biomarker associated with CYP2D6 activity using global metabolomics

    PubMed Central

    Tay-Sontheimer, Jessica; Shireman, Laura M; Beyer, Richard P; Senn, Taurence; Witten, Daniela; Pearce, Robin E; Gaedigk, Andrea; Fomban, Cletus L Gana; Lutz, Justin D; Isoherranen, Nina; Thummel, Kenneth E; Fiehn, Oliver; Leeder, J Steven; Lin, Yvonne S

    2015-01-01

    Aim We sought to discover endogenous urinary biomarkers of human CYP2D6 activity. Patients & methods Healthy pediatric subjects (n = 189) were phenotyped using dextromethorphan and randomized for candidate biomarker selection and validation. Global urinary metabolomics was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Candidate biomarkers were tested in adults receiving fluoxetine, a CYP2D6 inhibitor. Results A biomarker, M1 (m/z 444.3102) was correlated with CYP2D6 activity in both the pediatric training and validation sets. Poor metabolizers had undetectable levels of M1, whereas it was present in subjects with other phenotypes. In adult subjects, a 9.56-fold decrease in M1 abundance was observed during CYP2D6 inhibition. Conclusion Identification and validation of M1 may provide a noninvasive means of CYP2D6 phenotyping. PMID:25521354

  14. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution.

    PubMed

    Wang, Peng; Jiang, Xue; Zhao, Jijun

    2016-01-27

    To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials. PMID:26704386

  15. Bottom-up design of 2D organic photocatalysts for visible-light driven hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Jiang, Xue; Zhao, Jijun

    2016-01-01

    To design two-dimensional (2D) organocatalysts, three series of covalent organic frameworks (COFs) are constructed using bottom-up strategies, i.e. molecular selection, tunable linkage, and functionalization. First-principles calculations are performed to confirm their photocatalytic activity under visible light. Two of our constructed 2D COF models (B1 and C3) are identified as a sufficiently efficient organocatalyst for visible light water splitting. The controllable construction of such COFs from suitable organic subunit, linkage, and functional groups paves the way for correlating band edge alignments and geometry parameters of 2D organic materials. Our theoretical prediction not only provides essential insights into designing 2D-COF photocatalysts for water splitting, but also sparks other technological applications for 2D organic materials.

  16. Correlation of infrared spectra and phase transitions in annealed proton-exchanged MgO doped LiNbO{sub 3}

    SciTech Connect

    Sun, Jian; Xu, Chang-qing

    2015-01-28

    Infrared spectra of OH{sup −} groups in annealed proton-exchanged (APE) 5 mol. % MgO-doped LiNbO{sub 3} (MgO:LiNbO{sub 3}) crystals were studied using the Fourier transform infrared spectroscopy technique. Samples were prepared by benzoic acid proton-exchange followed with thermal annealing in oxygen. Evolutions of absorption peaks in APE MgO:LiNbO{sub 3} crystals were recorded and analyzed. Comparing with none-doped APE LiNbO{sub 3} crystals, a different phase transition behavior was found during thermal annealing. A periodically poled MgO:LiNbO{sub 3} slab waveguide was prepared using identical procedures, and the second harmonic generation (SHG) signals were measured. Comparing the obtained SHG results with the infrared spectra, relationships between the phase transitions and the recovery of second-order nonlinear coefficients during thermal annealing were investigated. Finally, a method for optimizing the performance of MgO:LiNbO{sub 3} waveguides was proposed.

  17. Correlation of infrared spectra and phase transitions in annealed proton-exchanged MgO doped LiNbO3

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Xu, Chang-qing

    2015-01-01

    Infrared spectra of OH- groups in annealed proton-exchanged (APE) 5 mol. % MgO-doped LiNbO3 (MgO:LiNbO3) crystals were studied using the Fourier transform infrared spectroscopy technique. Samples were prepared by benzoic acid proton-exchange followed with thermal annealing in oxygen. Evolutions of absorption peaks in APE MgO:LiNbO3 crystals were recorded and analyzed. Comparing with none-doped APE LiNbO3 crystals, a different phase transition behavior was found during thermal annealing. A periodically poled MgO:LiNbO3 slab waveguide was prepared using identical procedures, and the second harmonic generation (SHG) signals were measured. Comparing the obtained SHG results with the infrared spectra, relationships between the phase transitions and the recovery of second-order nonlinear coefficients during thermal annealing were investigated. Finally, a method for optimizing the performance of MgO:LiNbO3 waveguides was proposed.

  18. Interparticle Attraction in 2D Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  19. Periodically sheared 2D Yukawa systems

    SciTech Connect

    Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  20. ENERGY LANDSCAPE OF 2D FLUID FORMS

    SciTech Connect

    Y. JIANG; ET AL

    2000-04-01

    The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.

  1. A scalable 2-D parallel sparse solver

    SciTech Connect

    Kothari, S.C.; Mitra, S.

    1995-12-01

    Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.

  2. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  3. 2D-ACAR Studies on Swift Heavy Ion Si-Implanted GaAs

    NASA Astrophysics Data System (ADS)

    Sivaji, K.; Selvakumar, S.

    Material properties modification by high energy heavy ion implantation is a prospective technology leading to many device fabrications. This technique induces defects and hence the physical properties of the materials are modified. The effects of swift heavy ion implantation induced defects by 120 MeV 28+Si ion implantation and doping in SI-GaAs are presented from the electron momentum distribution (EMD) of vacancy-type defects studied by two-dimensional angular correlation of annihilation radiation (2D-ACAR). The positron trapping due to the influence of high-energy Si- implantation in GaAs (n-type) is compared with the corresponding spectra of SI- GaAs and with Si-doped (n-type) GaAs. The EMD of the implanted sample shows a distinct increased isotropic distribution with a characteristic transform of its structure as evident from the low momentum region compared to the pristine sample. The characteristics of defects created by Si doping and by 120 MeV 28+Si ion implantation of undoped semi-insulating (SI) GaAS are discussed. These results indicate the nature of positron trapping in open volume defects such as vacancy clusters created by implantation.

  4. Interactions of sialic acid with phosphatidylcholine liposomes studied by 2D NMR spectroscopy.

    PubMed

    Timoszyk, Anna; Latanowicz, Lidia

    2013-01-01

    Biological membranes are complex systems which have attracted scientific interest for a long time and for various reasons. The sialic acid-liposome interactions at the molecular level depend on their hydro-lipophilic characteristics. The aim of the present study was to investigate the changes of conformation of the phospholipid (1,2-Diacyl-sn-glycero-3-phosphocholine) and sialic acid (2,8-(N-acetylneuraminic acid)) molecules and the type of interactions induced by the sialic acid molecules on membrane-like systems (liposomes) by 2D NMR (TOCSY, HETCOR, ROESY). The nature of the interaction of sialic acid with the model membrane depends on the structure of the phospholipid headgroups and the hydration of membrane. In ROESY spectra was observed the absence of dipole-dipole couplings within the choline head, between headgroups and glycerol, and between glycerol and fatty acid chains. It indicates an increase of the membrane dynamics in the presence of sialic acid. Moreover, the conformation of sialic acid molecule is changed in the presence of liposomes, which depends on stereochemistry of the chemical groups of the carbon atoms C7 and C8, and oxygen O8. The observed differences between the ROESY spectra of free and liposome bound sialic acid may be a consequence of a changed orientation of the pyranose ring from trans to gauche in the presence of liposomes. The sialic acid penetrate into the phospholipid bilayer to a sufficient depth to allow the dipole interaction. The present result that the correlation signal was found only between the methyl protons from the acetyl group of sialic acid and the methylene tail of phospholipid molecule in the ROESY spectrum indicates that the opposite end of the sialic acid molecule stays in the aqueous phase without interacting with membrane molecules. PMID:24364043

  5. Evidence of strong correlations at the van Hove singularity in the scanning tunneling spectra of superconducting Bi2Sr2CaCu2O8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Nieminen, Jouko; Suominen, Ilpo; Das, Tanmoy; Markiewicz, R. S.; Bansil, A.

    2012-06-01

    We present realistic multiband calculations of scanning tunneling spectra in Bi2Sr2CaCu2O8+δ over a wide doping range. Our modeling incorporates effects of a competing pseudogap and pairing gap as well as effects of strong electronic correlations, which are included by introducing self-energy corrections in the one-particle propagators. The calculations provide a good description of the two-gap features seen in experiments at low energies and the evolution of the van Hove singularity (VHS) with doping, and suggest a possible quantum critical point near the point where the VHS crosses the Fermi level.

  6. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  7. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  8. Photocurrent spectroscopy of 2D materials

    NASA Astrophysics Data System (ADS)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  9. Multienzyme Inkjet Printed 2D Arrays.

    PubMed

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  10. First 2D-ACAR Measurements on Cu with the new Spectrometer at TUM

    NASA Astrophysics Data System (ADS)

    Weber, J. A.; Böni, P.; Ceeh, H.; Leitner, M.; Hugenschmidt, Ch

    2013-06-01

    The two-dimensional measurement of the angular correlation of the positron annihilation radiation (2D-ACAR) is a powerful tool to investigate the electronic structure of materials. Here we report on the first results obtained with the new 2D-ACAR spectrometer at the Technische Universitat München (TUM). To get experience in processing and interpreting 2D-ACAR data, first measurements were made on copper. The obtained data are treated with standard procedures and compared to theoretical calculations. It is shown that the measurements are in good agreement with the calculations and that the Fermi surface can be entirely reconstructed using three projections only.

  11. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics.

    PubMed

    Miksys, Sharon; Rao, Yushu; Hoffmann, Ewa; Mash, Deborah C; Tyndale, Rachel F

    2002-09-01

    Cytochrome P450 (CYP) 2D6 is expressed in liver, brain and other extrahepatic tissues where it metabolizes a range of centrally acting drugs and toxins. As ethanol can induce CYP2D in rat brain, we hypothesized that CYP2D6 expression is higher in brains of human alcoholics. We examined regional and cellular expression of CYP2D6 mRNA and protein by RT-PCR, Southern blotting, slot blotting, immunoblotting and immunocytochemistry. A significant correlation was found between mean mRNA and CYP2D6 protein levels across 13 brain regions. Higher expression was detected in 13 brain regions of alcoholics (n = 8) compared to nonalcoholics (n = 5) (anovap < 0.0001). In hippocampus this was localized in CA1-3 pyramidal cells and dentate gyrus granular neurons. In cerebellum this was localized in Purkinje cells and their dendrites. Both of these brain regions, and these same cell-types, are known to be susceptible to alcohol damage. For one case, a poor metabolizer (CYP2D6*4/*4), there was no detectable CYP2D6 protein, confirming the specificity of the antibody used. These data suggest that in alcoholics elevated brain CYP2D6 expression may contribute to altered sensitivity to centrally acting drugs and to the mediation of neurotoxic and behavioral effects of alcohol. PMID:12354285

  12. Elite collegiate tennis athletes have lower 2D: 4D ratios than those of nonathlete controls.

    PubMed

    Hsu, Cheng-Chen; Su, Borcherng; Kan, Nai-Wen; Lai, Su-Ling; Fong, Tsorng-Harn; Chi, Chung-Pu; Chang, Ching-Chyuan; Hsu, Mei-Chich

    2015-03-01

    The ratio of the length of the second finger (index finger) to the fourth finger (ring finger) (2D:4D ratio) is a putative marker for prenatal hormones. Physiological research has suggested a low 2D:4D ratio correlates with high athletic ability. Athletes of specific sports (e.g., American football) have lower 2D:4D ratios than those of nonathletes, whereas athletes of some sports (e.g., rowing, gymnastics, and soccer) do not. This study investigated the 2D:4D ratios among collegiate tennis athletes, elite collegiate tennis athletes, and nonelite collegiate tennis athletes and compared them with nonathletes of both sexes. The participants included 43 elite collegiate tennis athletes (Level I intercollegiate athletes in Taiwan; 27 males and 16 females), 107 nonelite collegiate tennis athletes (Level II athletes; 55 males and 52 females), and 166 nonathlete college students (80 males and 86 females). The principle findings suggest that (a) regardless of sex, collegiate tennis athletes have lower 2D:4D values than those of nonathletes; (b) elite collegiate tennis athletes have lower 2D:4D values than those of nonathletes; (c) among females but not males, athletes and nonelite athletes have lower 2D:4D values than those of nonathletes; and (d) males have lower 2D:4D values than those of females. PMID:25226321

  13. AN ION CORRELATION PROGRAM FOR DECONVOLUTING COMPOSITE MASS SPECTRA ACQUIRED USING A DIRECT SURFACE IONIZATION SOURCE INTERFACED TO A TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    The rapid sampling provided by the DART in ambient air will allow rapid delineation of areas of dispersed chemicals after natural or man-made disasters. Exact masses and RIAs of dimer, precursor, and product ions measured by the oa-TOFMS entered dinto the Ion Correlation Program...

  14. Digit ratio (2D:4D), aggression, and testosterone in men exposed to an aggressive video stimulus.

    PubMed

    Kilduff, Liam P; Hopp, Renato N; Cook, Christian J; Crewther, Blair T; Manning, John T

    2013-01-01

    The relative lengths of the 2(nd) and 4(th) digits (2D:4D) is a negative biomarker for prenatal testosterone, and low 2D:4D may be associated with aggression. However, the evidence for a 2D:4D-aggression association is mixed. Here we test the hypothesis that 2D:4D is robustly linked to aggression in "challenge" situations in which testosterone is increased. Participants were exposed to an aggressive video and a control video. Aggression was measured after each video and salivary free testosterone levels before and after each video. Compared to the control video, the aggressive video was associated with raised aggression responses and a marginally significant increase in testosterone. Left 2D:4D was negatively correlated with aggression after the aggressive video and the strength of the correlation was higher in those participants who showed the greatest increases in testosterone. Left 2D:4D was also negatively correlated to the difference between aggression scores in the aggressive and control conditions. The control video did not influence testosterone concentrations and there were no associations between 2D:4D and aggression. We conclude that 2D:4D moderates the impact of an aggressive stimulus on aggression, such that an increase in testosterone resulting from a "challenge" is associated with a negative correlation between 2D:4D and aggression. PMID:24113579

  15. Determination of the Ground Vibrational State Parameters of the C2D4 Molecule

    NASA Astrophysics Data System (ADS)

    Fomchenko, A. L.; Zhang, F.; Gromova, O. V.; Buttersack, T.

    2016-07-01

    The object of the study is the C2D4 molecule, as it is important to know its properties to address numerous problems of molecular physics. The analysis of high-resolution spectra of the deuterated ethylene molecule was made in the range of 600-1200 cm-1, specifically bands ν7 and ν12. The results obtained were used to determine high-accurate values of the vibrational-rotational levels of the ground vibrational state of the C2D4 molecule.

  16. Infrared intensities and optical constants of crystalline C 2H 4 and C 2D 4

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Ospina, M. J.; Khanna, R. K.

    Infrared absorption spectra of several thin films of C 2H 4 and C 2D 4 at ˜55 K were investigated at ˜0.6 cm -1 resolution. The integrated band intensities of the infrared active fundamental modes were obtained by a linear fit of the integrated absorbances vs film thickness. An iterative Kramers—Kronig analysis of the absorption data was carried out to obtain the complex refractive indices of crystalline C 2H 4 and C 2D 4 in the regions of absorption bands.

  17. Electron momentum distribution and singlet-singlet annihilation in the organic anthracene molecular crystals using positron 2D-ACAR and fluorescence spectroscopy.

    PubMed

    Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam

    2014-08-14

    We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation. PMID:24963608

  18. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  19. Canard configured aircraft with 2-D nozzle

    NASA Technical Reports Server (NTRS)

    Child, R. D.; Henderson, W. P.

    1978-01-01

    A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.

  20. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  1. 2D Electrostatic Actuation of Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  2. Graphene suspensions for 2D printing

    NASA Astrophysics Data System (ADS)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  3. Differentiation of five species of Danggui raw materials by FTIR combined with 2D-COS IR

    NASA Astrophysics Data System (ADS)

    Li, Jian-Rui; Sun, Su-Qin; Wang, Xiao-Xiao; Xu, Chang-Hua; Chen, Jian-Bo; Zhou, Qun; Lu, Guang-Hua

    2014-07-01

    Five herbs named as Chinese Danggui (CDG), Japanese Danggui (JDG), Korea Danggui (KDG), Lovage root (LR) and Angelica root (AR) are widely and confusedly used in eastern and western countries owing to their homonym. These herbs come from different plant species resulting in the variety of bioactive components and medical efficacy. A method combing tri-step IR macro-fingerprinting techniques with statistical pattern recognition was therefore employed discriminate the five herbs in order to assure their genuineness. A total of 26 samples were collected and identified by conventional Fourier transform infrared (FTIR) spectroscopy, second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-COS IR) spectroscopy. CDG and KDG were easily differentiated from others herbs by FTIR and SD-IR spectra. The characteristic peaks of CDG were located at 1068, 1051, 990, 909 and 867 cm-1, whilst KDG contained the peaks located at 1628, 1565, 1392, 1232 and 1136 cm-1. By 2D-COS IR spectra, the bands in the range of 950-1110 cm-1 could be a characteristic range to identify the five herbs. There were six auto-peaks located at 978, 991, 1028 (strongest), 1061, 1071 and 1097 cm-1 for CDG, six auto-peaks at 975, 991, 1026, 1053, 1070 (strongest) and 1096 cm-1 for KDG, five auto-peaks at 970, 1009, 1037, 1070 and 1096 (strongest) cm-1 for JDG, five auto-peaks at 973 (strongest), 1009, 1033, 1072 and 1099 cm-1 for LR, and five auto-peaks at 974 (strongest), 1010, 1033, 1072 and 1099 cm-1 for AR. Classification analysis of FTIR showed that these species located in different clusters. The results indicate the tri-step infrared macro-fingerprinting combines with principle component analysis (PCA) is suitable to rapidly and nondestructively differentiate these herbs.

  4. Point-point and point-line moving-window correlation spectroscopy and its applications

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Sun, Suqin; Zhan, Daqi; Yu, Zhiwu

    2008-07-01

    In this paper, we present a new extension of generalized two-dimensional (2D) correlation spectroscopy. Two new algorithms, namely point-point (P-P) correlation and point-line (P-L) correlation, have been introduced to do the moving-window 2D correlation (MW2D) analysis. The new method has been applied to a spectral model consisting of two different processes. The results indicate that P-P correlation spectroscopy can unveil the details and re-constitute the entire process, whilst the P-L can provide general feature of the concerned processes. Phase transition behavior of dimyristoylphosphotidylethanolamine (DMPE) has been studied using MW2D correlation spectroscopy. The newly proposed method verifies that the phase transition temperature is 56 °C, same as the result got from a differential scanning calorimeter. To illustrate the new method further, a lysine and lactose mixture has been studied under thermo perturbation. Using the P-P MW2D, the Maillard reaction of the mixture was clearly monitored, which has been very difficult using conventional display of FTIR spectra.

  5. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  6. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    PubMed

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590

  7. Quantitative Comparison of Tandem Mass Spectra Obtained on Various Instruments

    NASA Astrophysics Data System (ADS)

    Bazsó, Fanni Laura; Ozohanics, Oliver; Schlosser, Gitta; Ludányi, Krisztina; Vékey, Károly; Drahos, László

    2016-05-01

    The similarity between two tandem mass spectra, which were measured on different instruments, was compared quantitatively using the similarity index (SI), defined as the dot product of the square root of peak intensities in the respective spectra. This function was found to be useful for comparing energy-dependent tandem mass spectra obtained on various instruments. Spectral comparisons show the similarity index in a 2D "heat map", indicating which collision energy combinations result in similar spectra, and how good this agreement is. The results and methodology can be used in the pharma industry to design experiments and equipment well suited for good reproducibility. We suggest that to get good long-term reproducibility, it is best to adjust the collision energy to yield a spectrum very similar to a reference spectrum. It is likely to yield better results than using the same tuning file, which, for example, does not take into account that contamination of the ion source due to extended use may influence instrument tuning. The methodology may be used to characterize energy dependence on various instrument types, to optimize instrumentation, and to study the influence or correlation between various experimental parameters.

  8. Quantitative Comparison of Tandem Mass Spectra Obtained on Various Instruments.

    PubMed

    Bazsó, Fanni Laura; Ozohanics, Oliver; Schlosser, Gitta; Ludányi, Krisztina; Vékey, Károly; Drahos, László

    2016-08-01

    The similarity between two tandem mass spectra, which were measured on different instruments, was compared quantitatively using the similarity index (SI), defined as the dot product of the square root of peak intensities in the respective spectra. This function was found to be useful for comparing energy-dependent tandem mass spectra obtained on various instruments. Spectral comparisons show the similarity index in a 2D "heat map", indicating which collision energy combinations result in similar spectra, and how good this agreement is. The results and methodology can be used in the pharma industry to design experiments and equipment well suited for good reproducibility. We suggest that to get good long-term reproducibility, it is best to adjust the collision energy to yield a spectrum very similar to a reference spectrum. It is likely to yield better results than using the same tuning file, which, for example, does not take into account that contamination of the ion source due to extended use may influence instrument tuning. The methodology may be used to characterize energy dependence on various instrument types, to optimize instrumentation, and to study the influence or correlation between various experimental parameters. Graphical Abstract ᅟ. PMID:27206510

  9. Quantitative Comparison of Tandem Mass Spectra Obtained on Various Instruments

    NASA Astrophysics Data System (ADS)

    Bazsó, Fanni Laura; Ozohanics, Oliver; Schlosser, Gitta; Ludányi, Krisztina; Vékey, Károly; Drahos, László

    2016-08-01

    The similarity between two tandem mass spectra, which were measured on different instruments, was compared quantitatively using the similarity index (SI), defined as the dot product of the square root of peak intensities in the respective spectra. This function was found to be useful for comparing energy-dependent tandem mass spectra obtained on various instruments. Spectral comparisons show the similarity index in a 2D "heat map", indicating which collision energy combinations result in similar spectra, and how good this agreement is. The results and methodology can be used in the pharma industry to design experiments and equipment well suited for good reproducibility. We suggest that to get good long-term reproducibility, it is best to adjust the collision energy to yield a spectrum very similar to a reference spectrum. It is likely to yield better results than using the same tuning file, which, for example, does not take into account that contamination of the ion source due to extended use may influence instrument tuning. The methodology may be used to characterize energy dependence on various instrument types, to optimize instrumentation, and to study the influence or correlation between various experimental parameters.

  10. A novel correlation of vibrational circular dichroism spectra with the electronic ground state for Δ-SAPR-8-cesium-tetrakis((+)-heptafluorobutyryl-camphorato)lanthanide(III) complexes.

    PubMed

    Kaizaki, Sumio; Shirotani, Dai; Sato, Hisako

    2013-06-28

    For Δ-SAPR-8-Cs[Ln((+)-hfbc)4]((+)-hfbc = (+)-heptafluoro-butyrylcamphorate; Cs-Ln), the vibrational circular dichroism pattern and intensity of Cs-La, Cs-Nd, Cs-Gd, Cs-Ho, Cs-Er, Cs-Lu and Cs-Sm, Cs-Eu, Cs-Tb, Cs-Dy, Cs-Tm, Cs-Yb, respectively, are correlated with the even and the odd parity of total orbital angular momentum in the ground state terms. PMID:23689479

  11. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    NASA Astrophysics Data System (ADS)

    Shahil, Khan Mohammad Farhan

    Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was

  12. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  13. Quantum computational capability of a 2D valence bond solid phase

    SciTech Connect

    Miyake, Akimasa

    2011-07-15

    Highlights: > Our model is the 2D valence bond solid phase of a quantum antiferromagnet. > Universal quantum computation is processed by measurements of quantum correlations. > An intrinsic complexity of strongly-correlated quantum systems could be a resource. - Abstract: Quantum phases of naturally-occurring systems exhibit distinctive collective phenomena as manifestation of their many-body correlations, in contrast to our persistent technological challenge to engineer at will such strong correlations artificially. Here we show theoretically that quantum correlations exhibited in the 2D valence bond solid phase of a quantum antiferromagnet, modeled by Affleck, Kennedy, Lieb, and Tasaki (AKLT) as a precursor of spin liquids and topological orders, are sufficiently complex yet structured enough to simulate universal quantum computation when every single spin can be measured individually. This unveils that an intrinsic complexity of naturally-occurring 2D quantum systems-which has been a long-standing challenge for traditional computers-could be tamed as a computationally valuable resource, even if we are limited not to create newly entanglement during computation. Our constructive protocol leverages a novel way to herald the correlations suitable for deterministic quantum computation through a random sampling, and may be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.

  14. Measurement of topological invariants in a 2D photonic system

    NASA Astrophysics Data System (ADS)

    Mittal, Sunil; Ganeshan, Sriram; Fan, Jingyun; Vaezi, Abolhassan; Hafezi, Mohammad

    2016-03-01

    A hallmark feature of topological physics is the presence of one-way propagating chiral modes at the system boundary. The chirality of edge modes is a consequence of the topological character of the bulk. For example, in a non-interacting quantum Hall model, edge modes manifest as mid-gap states between two topologically distinct bulk bands. The bulk-boundary correspondence dictates that the number of chiral edge modes, a topological invariant called the winding number, is completely determined by the bulk topological invariant, the Chern number. Here, for the first time, we measure the winding number in a 2D photonic system. By inserting a unit flux quantum at the edge, we show that the edge spectrum resonances shift by the winding number. This experiment provides a new approach for unambiguous measurement of topological invariants, independent of the microscopic details, and could possibly be extended to probe strongly correlated topological orders.

  15. Correlations between Cassini VIMS spectra and RADAR SAR images: Implications for Titan's surface composition and the character of the Huygens Probe Landing Site

    USGS Publications Warehouse

    Soderblom, L.A.; Kirk, R.L.; Lunine, J.I.; Anderson, J.A.; Baines, K.H.; Barnes, J.W.; Barrett, J.M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Cruikshank, D.P.; Elachi, C.; Janssen, M.A.; Jaumann, R.; Karkoschka, E.; Le Mouélic, Stéphane; Lopes, R.M.; Lorenz, R.D.; McCord, T.B.; Nicholson, P.D.; Radebaugh, J.; Rizk, B.; Sotin, C.; Stofan, E.R.; Sucharski, T.L.; Tomasko, M.G.; Wall, S.D.

    2007-01-01

    Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as "brown" and "blue" in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spectral cubes (RGB as 2.0, 1.6, 1.3 ??m). In such composites bluer materials exhibit higher reflectance at 1.3 ??m and lower at 1.6 and 2.0 ??m. The dark brown unit is highly correlated with the RADAR-dark dunes. The dark brown unit shows less evidence of water ice suggesting that the saltating grains of the dunes are largely composed of hydrocarbons and/or nitriles. In general, the bright units also show less evidence of absorption due to water ice and are inferred to consist of deposits of bright fine precipitating tholin aerosol dust. Some set of chemical/mechanical processes may be converting the bright fine-grained aerosol deposits into the dark saltating hydrocarbon and/or nitrile grains. Alternatively the dark dune materials may be derived from a different type of air aerosol photochemical product than are the bright materials. In our model, both the bright aerosol and dark hydrocarbon dune deposits mantle the VIMS dark blue water ice-rich substrate. We postulate that the bright mantles are effectively invisible (transparent) in RADAR synthetic aperture radar (SAR) images leading to lack of correlation in the RADAR images with optically bright mantling units. RADAR images mostly show only dark dunes and the water ice substrate that varies in roughness, fracturing, and porosity. If the rate of deposition of bright aerosol is 0.001-0.01 ??m/yr, the surface would be coated (to optical instruments) in hundreds-to-thousands of years unless cleansing processes are active. The dark dunes must be mobile on this very short timescale to prevent the accumulation of bright coatings. Huygens landed in a region of the VIMS bright and dark blue materials and about 30 km south of the

  16. Enhancement of Vibronic and Ground-State Vibrational Coherences in 2D Spectra of Photosynthetic Complexes

    PubMed Central

    Chenu, Aurélia; Christensson, Niklas; Kauffmann, Harald F.; Mančal, Tomáš

    2013-01-01

    A vibronic-exciton model is applied to investigate the recently proposed mechanism of enhancement of coherent oscillations due to mixing of electronic and nuclear degrees of freedom. We study a dimer system to elucidate the role of resonance coupling, site energies, vibrational frequency and energy disorder in the enhancement of vibronic-exciton and ground-state vibrational coherences, and to identify regimes where this enhancement is significant. For a heterodimer representing two coupled bachteriochloropylls of the FMO complex, long-lived vibronic coherences are found to be generated only when the frequency of the mode is in the vicinity of the electronic energy difference. Although the vibronic-exciton coherences exhibit a larger initial amplitude compared to the ground-state vibrational coherences, we conclude that, due to the dephasing of the former, both type of coherences have a similar magnitude at longer population time. PMID:23778355

  17. 2D Seismic Reflection Data across Central Illinois

    SciTech Connect

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  18. Correlation of permeability, velocity, strain and crack spectra for a suite of seven LASL rock samples. Interim report: partial data compilation

    SciTech Connect

    Warren, N.

    1980-09-01

    Compressional and shear velocities, static strain, and permeabilities were measured for a suite of 7 rocks from LASL. The sample included two gneisses (cored parallel and perpendicular to the plane of foliation), a diorite, a granite, two quartzites and a marble. This interim report is a partial compilation of data, presented simply as a useable inventory and as a reference source of data for other studies in the future. The import of this data set is that for each sample it consists of measurements of four physical properties all of which are controlled by the sample's microstructure. Therefore, the sets of data for any one rock are expected to show strong cross-correlations, and to provide insight into the inverse problem of predicting physical properties from petrostructural models.

  19. Structure analysis of aromatic medicines containing nitrogen using near-infrared spectroscopy and generalized two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Gao, Hongbin; Qu, Lingbo; Huang, Yanping; Xiang, Bingren

    2008-12-01

    Four aromatic medicines (acetaminophen; niacinamide; p-aminophenol; nicotinic acid) containing nitrogen were investigated by FT-NIR (Fourier transform near-infrared) spectroscopy and generalized two-dimensional (2D) correlation spectroscopy. The FT-NIR spectra were measured over a temperature range of 30-130 °C. By combining near-infrared spectroscopy, generalized 2D correlation spectroscopy and references, the molecular structures (especially the hydrogen bond related with nitrogen) were analyzed and the NIR band assignments were performed. The results will be helpful to the understanding of aromatic medicines containing nitrogen and the utility of these substances.

  20. Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.

    PubMed

    Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T

    2010-08-01

    We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230

  1. Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements

    PubMed Central

    Liu, Tian; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Silverman, Ronald H.; Kutcher, Gerald J.

    2010-01-01

    A theoretical model is described for application in ultrasonic tissue characterization using a calibrated 2-D spectrum analysis method. This model relates 2-D spectra computed from ultrasonic backscatter signals to intrinsic physical properties of tissue microstructures, e.g., size, shape, and acoustic impedance. The model is applicable to most clinical diagnostic ultrasound systems. Two experiments employing two types of tissue architectures, spherical and cylindrical scatterers, are conducted using ultrasound with center frequencies of 10 and 40 MHz, respectively. Measurements of a tissue-mimicking phantom with an internal suspension of microscopic glass beads are used to validate the theoretical model. Results from in vitro muscle fibers are presented to further elucidate the utility of 2-D spectrum analysis in ultrasonic tissue characterization. PMID:17441250

  2. Comparison of and limits of accuracy for statistical analyses of vibrational and electronic circular dichroism spectra in terms of correlations to and predictions of protein secondary structure.

    PubMed Central

    Pancoska, P.; Bitto, E.; Janota, V.; Urbanova, M.; Gupta, V. P.; Keiderling, T. A.

    1995-01-01

    predictions by utilizing the strengths of each. However, the residual error, its distribution, and, most importantly, the lack of dependence of the method on many of the significant components derived from the spectra leads to the conclusion that the heterogeneity of protein structure is a fundamental limitation to the use of such spectral analysis methods. The underutilization of these data for prediction of secondary structure suggests spectral data could predict a more detailed descriptor. PMID:7670380

  3. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  4. Finger length ratios (2D:4D) in anthropoids implicate reduced prenatal androgens in social bonding.

    PubMed

    Nelson, Emma; Shultz, Susanne

    2010-03-01

    The second-to-fourth digit ratio (2D:4D) has been proposed as a biomarker reflecting prenatal androgen effects (PAE), such that individuals with lower ratios have experienced higher PAE than those with higher ratios. 2D:4D has been correlated with a number of sex-linked traits in humans such as aggression, promiscuity, and competitiveness. In addition, polygynous societies reportedly have lower 2D:4D (higher PAE) than more monogamous populations. This evidence suggests that PAE may be implicated in the development of sexually selected behaviors in humans. To place 2D:4D research into a broader context, we test the relationship between digit ratios and behavior across nonhuman anthropoids; polygynous species, with higher levels of intrasexual competition, should have more pronounced markers of PAE (lower 2D:4D) than pair-bonded species. Our results accord with those found in humans: 2D:4D is lower in polygynous species and higher (lower PAE) in pair-bonded species. Old World monkeys have low, and relatively invariant 2D:4D (high PAE), which is coupled with high levels of intrasexual competition. This contrasts with higher and more variable ratios in both great apes and New World monkeys. In addition, both male and female ratios decrease with increasing levels of intrasexual competition. Human ratios are intermediate between pair-bonded and more promiscuous hominoids. We propose that PAE may be involved in promoting species characteristic social behavior in anthropoids. PMID:19862809

  5. Design and true Reynolds number 2-D testing of an advanced technology airfoil

    NASA Technical Reports Server (NTRS)

    Reaser, J. S.; Hallissy, J. B.; Campbell, R. L.

    1983-01-01

    A NASA-industry program has been conducted to determine the accuracy of available 2-D airfoil analysis procedures over a wide range of Reynolds numbers. The program also served to develop and demonstrate effective wind tunnel model designs for use in a cryogenic environment. A Lockheed design, CRYO 12X, supercritical, shockfree airfoil was configured using a continuous curvature analytical definition of the ordinates. Test results show a very close ordinate tolerance was necessary to realize the intended pressure distribution. Correlation of test with Korn-Garabedian 2-D analysis pressure data were generally good. GRUMFOIL analysis with a sidewall correction gave a better correlation.

  6. Establishment of CYP2D6 reference samples by multiple validated genotyping platforms.

    PubMed

    Fang, H; Liu, X; Ramírez, J; Choudhury, N; Kubo, M; Im, H K; Konkashbaev, A; Cox, N J; Ratain, M J; Nakamura, Y; O'Donnell, P H

    2014-12-01

    Cytochrome P450 2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6)), a highly polymorphic drug-metabolizing enzyme, is involved in the metabolism of one-quarter of the most commonly prescribed medications. Here we have applied multiple genotyping methods and Sanger sequencing to assign precise and reproducible CYP2D6 genotypes, including copy numbers, for 48 HapMap samples. Furthermore, by analyzing a set of 50 human liver microsomes using endoxifen formation from N-desmethyl-tamoxifen as the phenotype of interest, we observed a significant positive correlation between CYP2D6 genotype-assigned activity score and endoxifen formation rate (rs = 0.68 by rank correlation test, P = 5.3 × 10(-8)), which corroborated the genotype-phenotype prediction derived from our genotyping methodologies. In the future, these 48 publicly available HapMap samples characterized by multiple substantiated CYP2D6 genotyping platforms could serve as a reference resource for assay development, validation, quality control and proficiency testing for other CYP2D6 genotyping projects and for programs pursuing clinical pharmacogenomic testing implementation. PMID:24980783

  7. Establishment of CYP2D6 Reference Samples by Multiple Validated Genotyping Platforms

    PubMed Central

    Fang, Hua; Liu, Xiao; Ramírez, Jacqueline; Choudhury, Noura; Kubo, Michiaki; Im, Hae Kyung; Konkashbaev, Anuar; Cox, Nancy J.; Ratain, Mark J.; Nakamura, Yusuke; O’Donnell, Peter H.

    2014-01-01

    Cytochrome P450 2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6, or CYP2D6), a highly polymorphic drug metabolizing enzyme, is involved in the metabolism of one quarter of the most commonly prescribed medications. Here, we have applied multiple genotyping methods and Sanger sequencing to assign precise and reproducible CYP2D6 genotypes, including copy numbers, for 48 HapMap samples. Furthermore, by analyzing a set of 50 human liver microsomes using endoxifen formation from N-desmethyl-tamoxifen as the phenotype of interest, we observed a significant positive correlation between CYP2D6 genotype-assigned activity score and endoxifen formation rate (rs = 0.68 by Rank correlation test, P = 5.3 ×10−8), which corroborated the genotype-phenotype prediction derived from our genotyping methodologies. In the future, these 48 publicly available HapMap samples characterized by multiple substantiated CYP2D6 genotyping platforms could serve as a reference resource for assay development, validation, quality control, and proficiency testing for other CYP2D6 genotyping projects, and for programs pursuing clinical pharmacogenomic testing implementation. PMID:24980783

  8. NKG2D Signaling Leads to NK Cell Mediated Lysis of Childhood AML

    PubMed Central

    Schlegel, Patrick; Ditthard, Kerstin; Lang, Peter; Mezger, Markus; Michaelis, Sebastian; Handgretinger, Rupert; Pfeiffer, Matthias

    2015-01-01

    Natural killer cells have been shown to be relevant in the recognition and lysis of acute myeloid leukemia. In childhood acute lymphoblastic leukemia, it was shown that HLA I expression and KIR receptor-ligand mismatch significantly impact ALL cytolysis. We characterized 14 different primary childhood AML blasts by flow cytometry including NKG2D ligands. Further HLA I typing of blasts was performed and HLA I on the AML blasts was quantified. In two healthy volunteer NK cell donors HLA I typing and KIR genotyping were done. Blasts with high NKG2D ligand expression had significantly higher lysis by isolated NK cells. Grouping the blasts by NKG2D ligand expression led to a significant inverse correlation of HLA I expression and cytolysis in NKG2D low blasts. Furthermore, a significant positive correlation of NKG2D ligand expression and blast cytolysis was shown. No impact of KIR ligand-ligand mismatch was found but a significantly increased lysis of homozygous C2 blasts by KIR2DL1 negative NK cells (donor B) was revealed. In conclusion, NKG2D signaling leads to NK cell mediated lysis of childhood AML despite high HLA I expression. PMID:26236752

  9. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  10. 2D Radiative Processes Near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Varnai, T.

    2012-01-01

    Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.

  11. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702

  12. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  13. Ion Transport in 2-D Graphene Nanochannels

    NASA Astrophysics Data System (ADS)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  14. Parallel map analysis on 2-D grids

    SciTech Connect

    Berry, M.; Comiskey, J.; Minser, K.

    1993-12-31

    In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.

  15. 2D Turbulence with Complicated Boundaries

    NASA Astrophysics Data System (ADS)

    Roullet, G.; McWilliams, J. C.

    2014-12-01

    We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.

  16. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  17. Competing coexisting phases in 2D water.

    PubMed

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  18. 2-D wavelet with position controlled resolution

    NASA Astrophysics Data System (ADS)

    Walczak, Andrzej; Puzio, Leszek

    2005-09-01

    Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.

  19. Interrogating Fiber Formation Kinetics with Automated 2D-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Strasfeld, David B.; Ling, Yun L.; Shim, Sang-Hee; Zanni, Martin T.

    A new method for collecting 2D-IR spectra that utilizes both a pump-probe beam geometry and a mid-IR pulse shaper is used to gain a fuller understanding of fiber formation in the human islet amyloid polypeptide (hIAPP). We extract structural kinetics in order to better understand aggregation in hIAPP, the protein component of the amyloid fibers found to inhibit insulin production in type II diabetes patients.

  20. Realization of an Er 2D MOT for a Na+Er mixture experiment

    NASA Astrophysics Data System (ADS)

    Anderson, Neil; Banik, Swarnav; Gutierrez, Monica; Kumar, Avinash; Eckel, Stephen; Campbell, Gretchen

    2016-05-01

    We have realized a dual-species sodium and erbium 2D MOT. This compact source allows us to rapidly switch between loading either species into 3D MOTs in a main chamber. We have characterized the flux from this source and the resulting loading rates into the 3D MOTs. This new source opens possibilities of studying lanthanide-alkali collisions and Feshbach spectra, possibly opening new pathways to realizing interesting quantum many body systems.

  1. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  2. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    K.R. Maskaly

    2005-06-01

    increasing RMS roughness. Again, the homogenization approximation is able to predict these results. The problem of surface scratches on 1D photonic crystals is also addressed. Although the reflectivity decreases are lower in this study, up to a 15% change in reflectivity is observed in certain scratched photonic crystal structures. However, this reflectivity change can be significantly decreased by adding a low index protective coating to the surface of the photonic crystal. Again, application of homogenization theory to these structures confirms its predictive power for this type of imperfection as well. Additionally, the problem of a circular pores in 2D photonic crystals is investigated, showing that almost a 50% change in reflectivity can occur for some structures. Furthermore, this study reveals trends that are consistent with the 1D simulations: parameter changes that increase the absolute reflectivity of the photonic crystal will also increase its tolerance to structural imperfections. Finally, experimental reflectance spectra from roughened 1D photonic crystals are compared to the results predicted computationally in this thesis. Both the computed and experimental spectra correlate favorably, validating the findings presented herein.

  3. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  4. On 2D graphical representation of DNA sequence of nondegeneracy

    NASA Astrophysics Data System (ADS)

    Zhang, Yusen; Liao, Bo; Ding, Kequan

    2005-08-01

    Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.

  5. Generates 2D Input for DYNA NIKE & TOPAZ

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  6. VizieR Online Data Catalog: c2d Spitzer final data release (DR4) (Evans+, 2003)

    NASA Astrophysics Data System (ADS)

    Evans, N. J., II; Allen, L. E.; Blake, G. A.; Boogert, A. C. A.; Bourke, T.; Harvey, P. M.; Kessler, J. E.; Koerner, D. W.; Lee, C. W.; Mundy, L. G.; Myers, P. C.; Padgett, D. L.; Pontoppidan, K.; Sargent, A. I.; Stapelfeldt, K. R.; van Dishoeck, E. F.; Young, C. H.; Young, K. E.

    2014-05-01

    This is the final delivery (DR4, Fall 2006 and Fall 2007) of the Spitzer Space Telescope "From Molecular Cores to Planet-Forming Disks" (c2d) Legacy Project. The data are also available as Enhanced Products from the Spitzer Science Center (SSC). c2d has delivered 867 catalogs. IRSA has merged these delivered catalogs into four groups - Clouds, Off-Cloud, Cores, Stars - and serves them through the general catalog search engine Gator. Many of the delivered catalogs, images and spectra are accessible through IRSA's general search service, Atlas. As a service to its users, the CDS has downloaded a dataset containing most of the c2d data (but not all columns) from the IRSA archive. The individual catalogs are listed below: C2D Fall '07 Full CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 High Reliability (HREL) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 candidate Young Stellar Objects (YSO) OFF-CLOUD Catalog (CHA_II, LUP, OPH, PER, SER) C2D Fall '07 Full CORES Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) CORES Catalog C2D Fall '07 Full STARS Catalog C2D Fall '07 candidate Young Stellar Objects (YSO) STARS Catalog These tables have been merged into a single table at CDS. All three SIRTF instruments (Infrared Array Camera [IRAC], Multiband Imaging Photometer for SIRTF [MIPS], and Infrared Spectrograph [IRS]) were used to observe sources that span the evolutionary sequence from molecular cores to protoplanetary disks, encompassing a wide range of cloud masses, stellar masses, and star-forming environments. (1 data file).

  7. Two-dimensional sum-frequency generation (2D SFG) spectroscopy: Summary of principles and its application to amyloid fiber monolayers

    PubMed Central

    Ghosh, Ayanjeet; Ho, Jia-Jung; Serrano, Arnaldo L.; Skoff, David R.; Zhang, Tianqi; Zanni, Martin T.

    2015-01-01

    By adding a mid-infrared pulse shaper to a sum-frequency generation (SFG) spectrometer, we have built a 2D SFG spectrometer capable of measuring spectra analogous to 2D IR spectra but with monolayer sensitivity and SFG selection rules. In this paper, we describe the experimental apparatus and provide an introduction to 2D SFG spectroscopy to help the reader interpret 2D SFG spectra. The main aim of this manuscript is to report 2D SFG spectra of the amyloid forming peptide FGAIL. FGAIL is a critical segment of the human islet amyloid polypeptide (hIAPP or amylin) that aggregates in people with type 2 diabetes. FGAIL is catalyzed into amyloid fibers by many types of surfaces. Here, we study the structure of FGAIL upon deposition onto a gold surface covered with a self-assembled monolayer of methyl 4-mercaptobenzoate (MMB) that produces an ester coating. FGAIL deposited on bare gold does not form ordered layers. The measured 2D SFG spectrum is consistent with amyloid fiber formation, exhibiting both the parallel (a+) and perpendicular (a−) symmetry modes associated with amyloid β-sheets. Cross peaks are observed between the ester stretches of the coating and the FGAIL peptides. Simulations are presented for two possible structures of FGAIL amyloid β-sheets that illustrates the sensitivity of the 2D SFG spectra to structure and orientation. These results provide some of the first molecular insights into surface catalyzed amyloid fiber structure. PMID:25611039

  8. 2d PDE Linear Symmetric Matrix Solver

    1983-10-01

    ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  9. 2d PDE Linear Asymmetric Matrix Solver

    1983-10-01

    ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less

  10. Ultrasonic 2D matrix PVDF transducer

    NASA Astrophysics Data System (ADS)

    Ptchelintsev, A.; Maev, R. Gr.

    2000-05-01

    During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.

  11. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  12. Analysis of fingerprints features of infrared spectra of various processed products of Radix Aconiti kusnezoffii

    NASA Astrophysics Data System (ADS)

    Tu-ya; Yang, Ping; Sun, Su-qin; Zhou, Qun; Bao, Xiao-hua; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR)) are employed to analyze various processed products and ether extracts of Radix Aconiti kusnezoffii. There is a resemblance among the spectra of different processed products. The major difference lies in the absorption peak at 1641 cm -1 in the IR spectra, which reflects the transformation of raw aconite to the processed products. There are distinctive differences in the absorption peaks in the range of 1800-1500 cm -1 in the second derivative spectra, which has better resolution, of different processed products. 2D-IR spectra, which elevate the resolution further, can present even more differences among the products in the range of 1800-800 cm -1. Analysis of ether extracts of various processed products proves that there are alcohols, esters, carboxylic acids or ketones in all of them. However, their contents in different samples have obvious differences. With the advantages of high resolution, high-speed and convenience, IR can quickly and precisely distinguish various processed products of Radix A. kusnezoffii, and can be applied to predict the tendency of transformation of the complicated chemical mixture systems under heat perturbation.

  13. Evidence of strong correlations at the Van Hove singularity in the scanning-tunneling spectra of superconducting Bi2Sr2CaCu2O8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Bansil, Arun; Nieminen, Jouko; Suominen, Ilpo; Das, Tanmoy; Markiewicz, Robert

    2012-02-01

    We present realistic multiband calculations of scanning tunneling spectra in Bi2Sr2CaCu2O8+δ over a wide doping range. Our modeling incorporates effects of a competing pseudogap and pairing gap as well as effects of strong electronic correlations, which are included by introducing self-energy corrections in the one-particle propagators. The calculations provide a good description of the two-gap features seen in experiments at low energies. In particular, the Van Hove singularity (VHS) in the underlying electronic states is found to split into a prominent incoherent feature at high energies and a weaker coherent part near the Fermi level which is strongly involved in gap formation. The progressive hybridization of the localized VHS into the Fermi surface with increasing doping is suggestive of Kondo physics which has been proposed previously for cuprates and heavy fermion compounds.

  14. The infrared spectrum of the Ne-C2D2 complex.

    PubMed

    Moazzen-Ahmadi, N; McKellar, A R W; Fernández, Berta; Farrelly, David

    2015-11-28

    Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm(-1)) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes. PMID:26627959

  15. The infrared spectrum of the Ne-C2D2 complex

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, N.; McKellar, A. R. W.; Fernández, Berta; Farrelly, David

    2015-11-01

    Infrared spectra of Ne-C2D2 are observed in the region of the ν3 fundamental band (asymmetric C-D stretch, ≈2440 cm-1) using a tunable optical parametric oscillator to probe a pulsed supersonic slit jet expansion from a cooled nozzle. Like helium-acetylene, this system lies close to the free rotor limit, making analysis tricky because stronger transitions tend to pile up close to monomer (C2D2) rotation-vibration transitions. Assignments are aided by predicted rotational energies calculated from a published ab initio intermolecular potential energy surface. The analysis extends up to the j = 3←2 band, where j labels C2D2 rotation within the dimer, and is much more complete than the limited infrared assignments previously reported for Ne-C2H2 and Ne-C2HD. Two previous microwave transitions within the j = 1 state of Ne-C2D2 are reassigned. Coriolis model fits to the theoretical levels and to the spectrum are compared. Since the variations observed as a function of C2D2 vibrational excitation are comparable to those noted between theory and experiment, it is evident that more detailed testing of theory will require vibrational averaging over the acetylene intramolecular modes.

  16. Parmeterization of spectra

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    Following reception and analog to digital conversion (A/D) conversion, atmospheric radar backscatter echoes need to be processed so as to obtain desired information about atmospheric processes and to eliminate or minimize contaminating contributions from other sources. Various signal processing techniques have been implemented at mesosphere-stratosphere-troposphere (MST) radar facilities to estimate parameters of interest from received spectra. Such estimation techniques need to be both accurate and sufficiently efficient to be within the capabilities of the particular data-processing system. The various techniques used to parameterize the spectra of received signals are reviewed herein. Noise estimation, electromagnetic interference, data smoothing, correlation, and the Doppler effect are among the specific points addressed.

  17. Spectra ID of recent SN

    NASA Astrophysics Data System (ADS)

    Challis, Peter

    2013-12-01

    P. Challis, Harvard-Smithsonian Center for Astrophysics (CfA), on behalf of the CfA Supernova Group, report spectra (range 320-860 nm) of various SN obtained during Dec. 24-27 UT by P. Challis, S. Gottilla (MMTO.org), and E. Marin (MMTO.org) with the MMT 6.5-m telescope (+ Blue Channel). Cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, Ap.J.

  18. Quantum geometry of 2D gravity coupled to unitary matter

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.

    1997-02-01

    We show that there exists a divergent correlation length in 2D quantum gravity for the matter fields close to the critical point provided one uses the invariant geodesic distance as the measure of distance. The corresponding reparameterization invariant two-point functions satisfy all scaling relations known from the ordinary theory of critical phenomena and the KPZ exponents are determined by the power-like fall-off of these two-point functions. The only difference compared to flat space is the appearance of a dynamically generated fractal dimension d h in the scaling relations. We analyze numerically the fractal properties of space-time for the Ising and three-states Potts model coupled to two-dimensional quantum gravity using finite size scaling as well as small distance scaling of invariant correlation functions. Our data are consistent with dh = 4, but we cannot rule out completely the conjecture dH = -2 α1/ α-1, where α- n is the gravitational dressing exponent of a spinless primary field of conformal weight ( n + 1, n + 1). We compute the moments < L> and the loop-length distribution function and show that the fractal properties associated with these observables are identical, with good accuracy, to the pure gravity case.

  19. Quantum Simulation with 2D Arrays of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Richerme, Philip

    2016-05-01

    The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to understanding the behavior of strongly correlated quantum matter. This work proposes the design and construction of a 2D quantum spin simulator to investigate the physics of frustrated materials, highly entangled states, mechanisms potentially underpinning high-temperature superconductivity, and other topics inaccessible to current 1D systems. The effective quantum spins will be encoded within the well-isolated electronic levels of trapped ions, confined in a two-dimensional planar geometry, and made to interact using phonon-mediated optical dipole forces. The system will be scalable to 100+ quantum particles, far beyond the realm of classical intractability, while maintaining individual-ion control, long quantum coherence times, and site-resolved projective spin measurements. Once constructed, the two-dimensional quantum simulator will implement a broad range of spin models on a variety of reconfigurable lattices and characterize their behavior through measurements of spin-spin correlations and entanglement. This versatile tool will serve as an important experimental resource for exploring difficult quantum many-body problems in a regime where classical methods fail.

  20. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping

    PubMed Central

    Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea

    2016-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact

  1. CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.

    PubMed

    Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea

    2015-01-01

    TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer

  2. 2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability

    SciTech Connect

    Mayeda, K M; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D S; Morasca, P

    2005-07-13

    Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter

  3. The potential of 2D Kalman filtering for soil moisture data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examine the potential for parameterizing a two-dimensional (2D) land data assimilation system using spatial error auto-correlation statistics gleaned from a triple collocation analysis and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-based surface soil ...

  4. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    PubMed

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations. PMID:20202872

  5. Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy.

    PubMed

    García, Víctor P

    2011-05-01

    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution (1)H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that ωτ(c) ~ 1, where τ(c) are the motional correlation times and ω is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of τ(c). The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180° Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were determined by ROESY experiments. PMID:21431831

  6. Storm Spectra

    NASA Technical Reports Server (NTRS)

    2007-01-01

    portion is defined by the day/night boundary (known as the terminator).

    These two images illustrate only a small fraction of the information contained in a single LEISA scan, highlighting just one aspect of the power of infrared spectra for atmospheric studies.

  7. Cytochrome P450 2D6 Activity Predicts Discontinuation of Tamoxifen Therapy in Breast Cancer Patients

    PubMed Central

    Rae, James M.; Sikora, Matthew J.; Henry, N. Lynn; Li, Lang; Kim, Seongho; Oesterreich, Steffi; Skaar, Todd; Nguyen, Anne T.; Desta, Zeruesenay; Storniolo, Anna Maria; Flockhart, David A.; Hayes, Daniel F.; Stearns, Vered

    2009-01-01

    The selective estrogen receptor modulator tamoxifen is routinely used for treatment and prevention of estrogen receptor positive breast cancer. Studies of tamoxifen adherence suggest that over half of patients discontinue treatment before the recommended 5 years. We hypothesized that polymorphisms in CYP2D6, the enzyme responsible for tamoxifen activation, predict for tamoxifen discontinuation. Tamoxifen-treated women (n = 297) were genotyped for CYP2D6 variants and assigned a “score” based on predicted allele activities from 0 (no activity) to 2 (high activity). Correlation between CYP2D6 score and discontinuation rates at 4 months were tested. We observed a strong non-linear correlation between higher CYP2D6 score and increased rates of discontinuation (r2 = 0.935, p = 0.018). These data suggest that presence of active CYP2D6 alleles may predict for higher likelihood of tamoxifen discontinuation. Therefore, patients who may be most likely to benefit from tamoxifen may paradoxically be most likely to discontinue treatment prematurely. PMID:19421167

  8. Using 2D: 4D digit ratios to determine motor skills in children.

    PubMed

    Wang, Y; Wang, H-L; Li, Y-H; Zhu, F-L; Li, S-J; Ni, H

    2016-03-01

    In past few decades, there has an outburst of research surrounding second to fourth finger digit ratio (2D:4D) and its relation to prenatal sex steroids including both testosterone and estrogen. In utero, testosterone and estrogen are responsible for the differences in digit ratio between the genders. Recent research has tried to extend past the influence of steroids and look at the potential effect of digit ratios on fine and gross motor skills in children. We compiled the current understanding of the connection between sex hormones and the development of the 2D:4D ratio as well as the effect the ratio has on motor skills. There seems to be a significant positive correlation between 2D:4D digit ratio and precision of fine motor skill. In addition, there is a negative correlation between 2D:4D ratio and speed of fine motor activity. In this review, we will outline the use of 2D:4D ratio as a biomarker for prenatal sex steroids and through that, a proxy marker for fine and gross motor skills. PMID:27010133

  9. Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics

    PubMed Central

    Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.

    2015-01-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856

  10. Combined treatment of relaxation and fluctuation dynamics in the calculation of two-dimensional electronic spectra

    SciTech Connect

    Seibt, Joachim; Pullerits, Tõnu

    2014-09-21

    While the theoretical description of population transfer subsequent to electronic excitation in combination with a line shape function description of vibrational dynamics in the context of 2D-spectroscopy is well-developed under the assumption of different timescales of population transfer and fluctuation dynamics, the treatment of the interplay between both kinds of processes lacks a comprehensive description. To bridge this gap, we use the cumulant expansion approach to derive response functions, which account for fluctuation dynamics and population transfer simultaneously. We compare 2D-spectra of a model system under different assumptions about correlations between fluctuations and point out under which conditions a simplified treatment is justified. Our study shows that population transfer and dissipative fluctuation dynamics cannot be described independent of each other in general. Advantages and limitations of the proposed calculation method and its compatibility with the modified Redfield description are discussed.

  11. Three-Dimensional Maximum-Quantum Correlation HMQC NMR Spectroscopy (3D MAXY-HMQC)

    NASA Astrophysics Data System (ADS)

    Liu, Maili; Mao, Xi-An; Ye, Chaohui; Nicholson, Jeremy K.; Lindon, John C.

    1997-11-01

    The extension of two-dimensional maximum-quantum correlation spectroscopy (2D MAXY NMR), which can be used to simplify complex NMR spectra, to three dimensions (3D) is described. A new pulse sequence for 3D MAXY-HMQC is presented and exemplified using the steroid drug dexamethasone. The sensitivity and coherence transfer efficiency of the MAXY NMR approach has also been assessed in relation to other HMQC- and HSQC-based 3D methods.

  12. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  13. 2D/3D Visual Tracker for Rover Mast

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems

  14. Comparisons of 2D IR measured spectral diffusion in rotating frames using pulse shaping and in the stationary frame using the standard method

    NASA Astrophysics Data System (ADS)

    Karthick Kumar, S. K.; Tamimi, A.; Fayer, M. D.

    2012-11-01

    Multidimensional visible spectroscopy using pulse shaping to produce pulses with stable controllable phases and delays has emerged as an elegant tool to acquire electronic spectra faster and with greatly reduced instrumental and data processing errors. Recent migration of this approach using acousto-optic modulator (AOM) pulse shaping to the mid-infrared region has proved useful for acquiring two dimensional infrared (2D IR) vibrational echo spectra. The measurement of spectral diffusion in 2D IR experiments hinges on obtaining accurate 2D line shapes. To date, pulse shaping 2D IR has not been used to study the time-dependent spectral diffusion of a vibrational chromophore. Here we compare the spectral diffusion data obtained from a standard non-collinear 2D IR spectrometer using delay lines to the data obtained from an AOM pulse shaper based 2D IR spectrometer. The pulse shaping experiments are performed in stationary, partially rotating, and fully rotating reference frames and are the first in the infrared to produce 2D spectra collected in a fully rotating frame using a phase controlled pulse sequence. Rotating frame experiments provide a dramatic reduction in the number of time points that must be measured to obtain a 2D IR spectrum, with the fully rotating frame giving the greatest reduction. Experiments were conducted on the transition metal carbonyl complex tricarbonylchloro(1,10-phenanthroline)rhenium(I) in chloroform. The time dependent data obtained from the different techniques and with different reference frames are shown to be in agreement.

  15. Resistivity inversion in 2-D anisotropic media: numerical experiments

    NASA Astrophysics Data System (ADS)

    Wiese, Timothy; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark; Marescot, Laurent

    2015-04-01

    Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy although it is rare in practice to incorporate anisotropy into resistivity inversion. In this contribution, we present a series of 2.5-D synthetic inversion experiments for various electrode configurations and 2-D anisotropic models. We examine and compare the image reconstructions obtained using the correct anisotropic inversion code with those obtained using the false but widely used isotropic assumption. Superior reconstruction in terms of reduced data misfit, true anomaly shape and position, and anisotropic background parameters were obtained when the correct anisotropic assumption was employed for medium to high coefficients of anisotropy. However, for low coefficient values the isotropic assumption produced better-quality results. When an erroneous isotropic inversion is performed on medium to high level anisotropic data, the images are dominated by patterns of banded artefacts and high data misfits. Various pole-pole, pole-dipole and dipole-dipole data sets were investigated and evaluated for the accuracy of the inversion result. The eigenvalue spectra of the pseudo-Hessian matrix and the formal resolution matrix were also computed to determine the information content and goodness of the results. We also present a data selection strategy based on high sensitivity measurements which drastically reduces the number of data to be inverted but still produces comparable results to that of the comprehensive data set. Inversion was carried out using transversely isotropic model parameters described in two different co-ordinate frames for the conductivity tensor, namely Cartesian versus natural or eigenframe. The Cartesian frame provided a more stable inversion product. This can be simply explained from inspection of the eigenspectra of the pseudo-Hessian matrix for the two model descriptions.

  16. Analysis of monolayer formation of α-mycolic acid derived from Mycobacterium bovis BCG pasteur strain by infrared reflection-absorption spectrometry with two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Hasegawa, T.; Nishijo, J.; Umemura, J.; Watanabe, M.

    2000-03-01

    Monolayer formation mechanism of α-mycolic acid (α-MA) isolated from Mycobacterium bovis BCG Pasteur strain was investigated by infrared reflection-absorption (IRRA) spectrometry with two-dimensional (2